Sample records for saline solution pbs

  1. Coefficient of Friction of Human Corneal Tissue.

    PubMed

    Wilson, Tawnya; Aeschlimann, Rudolf; Tosatti, Samuele; Toubouti, Youssef; Kakkassery, Joseph; Osborn Lorenz, Katherine

    2015-09-01

    A novel property evaluation methodology was used to determine the elusive value for the human corneal coefficient of friction (CoF). Using a microtribometer on 28 fresh human donor corneas with intact epithelia, the CoF was determined in 4 test solutions (≥5 corneas/solution): tear-mimicking solution (TMS) in borate-buffered saline (TMS-PS), TMS in phosphate-buffered saline (TMS-PBS), TMS with HEPES-buffered saline (TMS-HEPES), and tear-like fluid in PBS (TLF-PBS). Mean (SD) CoF values ranged from 0.006 to 0.015 and were 0.013 (0.010) in TMS-PS, 0.006 (0.003) in TMS-PBS, 0.014 (0.005) in TMS-HEPES, and 0.015 (0.009) in TLF-PBS. Statistically significant differences were shown for TMS-PBS versus TLF (P = 0.0424) and TMS-PBS versus TMS-HEPES (P = 0.0179), but not for TMS-PBS versus TMS-PS (P = 0.2389). Successful measurement of the fresh human corneal tissue CoF was demonstrated, with values differing in the evaluated buffer solutions, within this limited sample size.

  2. Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions.

    PubMed

    Wang, Lu-Ning; Huang, Xian-Qiu; Shinbine, Alyssa; Luo, Jing-Li

    2013-02-01

    The corrosion behaviour of Zr in phosphate buffered saline (PBS) solutions with various concentrations (0-4 g L(-1)) of albumin was studied by electrochemical techniques and surface analysis. Addition of albumin to PBS solutions moved the open circuit potential (OCP) to less nobler direction. OCP, polarization resistance and impedance increased and the corrosion current decreased over immersion duration. At early stages of immersion, the resistance was increased with the concentration of albumin because of the high adsorption kinetics of albumin on metal. After the long term immersion, the resistance in PBS without albumin was higher than PBS with albumin owing to the anodic dissolution effect of albumin on metal. According to the analysis of effective capacitances, a normal distribution of time-constants was proposed to estimate the surface film on Zr. A corrosion mechanism of Zr in PBS with different albumin was proposed based on electrochemical analysis.

  3. A comparison of the biocompatibility of phosphate-buffered saline and dianeal 3.86% in the rat model of peritoneal dialysis.

    PubMed

    Wieczorowska-Tobis, K; Polubinska, A; Breborowicz, A; Oreopoulos, D G

    2001-01-01

    Phosphate-buffered saline (PBS), an isotonic solution with a physiologic pH can be considered an example of a biocompatible dialysis fluid. This study compared the biocompatibility of PBS with that of Dianeal 3.86% (Baxter Healthcare Corporation, Deerfield, IL, U.S.A.), using a model of peritoneal dialysis in the rat. In an acute experiment, after catheter implantation, rats were infused on day 1 with PBS, on day 5 with standard dialysis solution (Dianeal 3.86%), and on day 7 again with PBS. When rats were injected with Dianeal 3.86%, the inflammatory reaction was suppressed as compared with PBS. The cell count was lower with Dianeal (-85%, p < 0.001), the neutrophil:macrophage ratio in dialysate was 80% lower (p < 0.01), total protein concentration in the Dianeal dialysate was 73% lower (p < 0.01), and the dialysate nitrite level was 45% lower (p < 0.01). In a chronic experiment, after catheter implantation, rats were dialyzed for four weeks with PBS or with Dianeal 3.86%. At the end of the study, a 1-hour peritoneal equilibration test (PET) was performed. As evaluated on a semiquantitative scale, macroscopic changes in the peritoneum were more severe in rats exposed to PBS than in those exposed to Dianeal 3.86% (8.6 +/- 3.2 vs 5.2 +/- 2.6, p < 0.05). The thickness of the visceral peritoneum was comparable in both groups; but, in PBS-treated rats, the peritoneal interstitium contained more inflammatory cells and more new vessels. During the 1-hour PET, peritoneal permeability to water and solutes was comparable in the two groups. Despite a more physiologic composition, PBS is a less biocompatible peritoneal dialysis solutions than is standard, acidic, hypertonic dialysis solution.

  4. Program on Resorbable Radio Devices

    DTIC Science & Technology

    2014-05-05

    radio circuit - + PDMS Copper Mg PBS Buffer 1© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com Transient, Biocompatible...way, ZnO provides an alternative to silicon [ 16 ] or organic semi- conductors [ 17–20 ] for physically transient forms of electronics and sensors...immersion in several different types of solutions, such as phosphate buffer saline (PBS, pH 4.0, Sigma- Figure 1 . Materials and designs for

  5. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.

    PubMed

    He, Guangli; Hu, Weihua; Li, Chang Ming

    2015-11-01

    We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Metal release and speciation of released chromium from a biomedical CoCrMo alloy into simulated physiologically relevant solutions.

    PubMed

    Hedberg, Yolanda; Odnevall Wallinder, Inger

    2014-05-01

    The objective of this study was to investigate the extent of released Co, Cr(III), Cr(VI), and Mo from a biomedical high-carbon CoCrMo alloy exposed in phosphate-buffered saline (PBS), without and with the addition of 10 µM H2 O2 (PBS + H2 O2 ), and 10 g L(-1) bovine serum albumin (PBS + BSA) for time periods up to 28 days. Comparative studies were made on AISI 316L for the longest time period. No Cr(VI) release was observed for any of the alloys in either PBS or PBS + H2 O2 at open-circuit potential (no applied potential). However, at applied potentials (0.7 V vs. Ag/AgCl), Cr was primarily released as Cr(VI). Co was preferentially released from the CoCrMo alloy at no applied potential. As a consequence, Cr was enriched in the utmost surface oxide reducing the extent of metal release over time. This passivation effect was accelerated in PBS + H2 O2 . As previously reported for 316L, BSA may also enhance metal release from CoCrMo. However, this was not possible to verify due to the precipitation of metal-protein complexes with reduced metal concentrations in solution as a consequence. This was particularly important for Co-BSA complexes after sufficient time and resulted in an underestimation of metals in solution. Copyright © 2013 Wiley Periodicals, Inc.

  7. Comparison of bend angle measurements in fresh cryopreserved cartilage specimens after electromechanical reshaping

    NASA Astrophysics Data System (ADS)

    Karimi, Koohyar; Protsenko, Dimitry; Wu, Edward C.; Foulad, Allen; Manuel, Cyrus T.; Lim, Amanda; Wong, Brian J. F.

    2010-02-01

    Cryopreservation of cartilage has been investigated for decades and is currently an established protocol. However, the reliability and applicability of cartilage cryopreservation for the use in electromechanical reshaping (EMR) has not been studied exclusively. A system to cryopreserve large numbers of tissue specimens provides a steady source of cartilage of similar quality for experimentation at later dates. This will reduce error that may arise from different cartilage stock, and has the potential to maximize efficiency under time constraints. Our study utilizes a unique methodology to cryopreserve septal cartilage for use in EMR studies. Rabbit septal cartilage specimens were harvested and standardized to 20 x 8 x 1 mm, and placed in one of three solutions (normal saline, PBS, 10% DMSO in PBS) for four hours in a cold storage room at 4 degrees Celsius. Then, each cartilage specimen was vacuumed and sealed in an anti-frost plastic bag and stored in a freezer at -80 degrees Celsius for 1 to 3 weeks duration. EMR was performed using 2 and 6 volts for 2 minutes application time. Bend angle measurements of the cryopreserved cartilage specimens were compared to bend angles of fresh cartilage which underwent EMR using the same parameters. Results demonstrate that normal saline, phosphate buffered saline (PBS), and PBS with DMSO were effective in cryopreservation, and indicated no significant differences in bend angle measurements when compared to no cryopreservation. Our methodology to cryopreserve cartilage specimens provides a successful approach for use in conducting large-scale EMR studies.

  8. Effect of ionic strength and presence of serum on lipoplexes structure monitorized by FRET

    PubMed Central

    Madeira, Catarina; Loura, Luís MS; Prieto, Manuel; Fedorov, Aleksander; Aires-Barros, M Raquel

    2008-01-01

    Background Serum and high ionic strength solutions constitute important barriers to cationic lipid-mediated intravenous gene transfer. Preparation or incubation of lipoplexes in these media results in alteration of their biophysical properties, generally leading to a decrease in transfection efficiency. Accurate quantification of these changes is of paramount importance for the success of lipoplex-mediated gene transfer in vivo. Results In this work, a novel time-resolved fluorescence resonance energy transfer (FRET) methodology was used to monitor lipoplex structural changes in the presence of phosphate-buffered saline solution (PBS) and fetal bovine serum. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/pDNA lipoplexes, prepared in high and low ionic strength solutions, are compared in terms of complexation efficiency. Lipoplexes prepared in PBS show lower complexation efficiencies when compared to lipoplexes prepared in low ionic strength buffer followed by addition of PBS. Moreover, when serum is added to the referred formulation no significant effect on the complexation efficiency was observed. In physiological saline solutions and serum, a multilamellar arrangement of the lipoplexes is maintained, with reduced spacing distances between the FRET probes, relative to those in low ionic strength medium. Conclusion The time-resolved FRET methodology described in this work allowed us to monitor stability and characterize quantitatively the structural changes (variations in interchromophore spacing distances and complexation efficiencies) undergone by DOTAP/DNA complexes in high ionic strength solutions and in presence of serum, as well as to determine the minimum amount of potentially cytotoxic cationic lipid necessary for complete coverage of DNA. This constitutes essential information regarding thoughtful design of future in vivo applications. PMID:18302788

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonoda, Akinaga, E-mail: akinagasonoda@yahoo.co.jp; Nitta, Norihisa; Yamamoto, Takefumi

    PurposeWe investigated the possibility of shortening the time required for loading epirubicin into calibrated polyvinyl alcohol-based hydrogel beads (DC Beads{sup ®}) to be used for transarterial chemoembolization.MethodAfter separating the beads suspended in phosphate-buffered saline (PBS) solution by the use of a sieve (clearance 75 µm), epirubicin hydrochloride (EH) was loaded for 20, 30, or 60 s under vibration into DC beads. The EH loading rate into conventionally prepared (control) beads, i.e., beads loaded for 30 min without vibration, and vibration-loaded beads were calculated from the residual EH concentration in the bead-depleted EH solution. The amount of EH eluted from conventionally and vibration-loadedmore » samples into a PBS solution (pH 7.0) was measured at 15 and 30 min and 1, 2, 6, 12, and 24 h. We also recorded the inhibitory effect of the PBS solution on the loading time. Using frozen sections, the EH load in the beads was evaluated visually under a fluorescence microscope.ResultsSpectrophotometry (495 nm) showed that the loading rate was 98.98 ± 0.34, 99.02 ± 0.32, and 99.50 ± 0.11 % with 20-, 30-, and 60-s vibration, respectively. The eluted rate was statistically similar between vibration- and statically loaded (control) beads. The PBS solution hampered EH loading into the beads. Visually, the distribution of EH in conventionally and vibration-loaded DC beads was similar.DiscussionThe use of vibration and the removal of PBS solution when epirubicin hydrochloride was loaded into DC beads dramatically shortened the loading time of epirubicin hydrochloride into DC beads.« less

  10. An Attempt to Shorten Loading Time of Epirubicin into DC Beads® Using Vibration and a Sieve.

    PubMed

    Sonoda, Akinaga; Nitta, Norihisa; Yamamoto, Takefumi; Tomozawa, Yuki; Ohta, Shinichi; Watanabe, Shobu; Murata, Kiyoshi

    2017-04-01

    We investigated the possibility of shortening the time required for loading epirubicin into calibrated polyvinyl alcohol-based hydrogel beads (DC Beads ® ) to be used for transarterial chemoembolization. After separating the beads suspended in phosphate-buffered saline (PBS) solution by the use of a sieve (clearance 75 µm), epirubicin hydrochloride (EH) was loaded for 20, 30, or 60 s under vibration into DC beads. The EH loading rate into conventionally prepared (control) beads, i.e., beads loaded for 30 min without vibration, and vibration-loaded beads were calculated from the residual EH concentration in the bead-depleted EH solution. The amount of EH eluted from conventionally and vibration-loaded samples into a PBS solution (pH 7.0) was measured at 15 and 30 min and 1, 2, 6, 12, and 24 h. We also recorded the inhibitory effect of the PBS solution on the loading time. Using frozen sections, the EH load in the beads was evaluated visually under a fluorescence microscope. Spectrophotometry (495 nm) showed that the loading rate was 98.98 ± 0.34, 99.02 ± 0.32, and 99.50 ± 0.11 % with 20-, 30-, and 60-s vibration, respectively. The eluted rate was statistically similar between vibration- and statically loaded (control) beads. The PBS solution hampered EH loading into the beads. Visually, the distribution of EH in conventionally and vibration-loaded DC beads was similar. The use of vibration and the removal of PBS solution when epirubicin hydrochloride was loaded into DC beads dramatically shortened the loading time of epirubicin hydrochloride into DC beads.

  11. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions

    NASA Astrophysics Data System (ADS)

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-08-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  12. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions.

    PubMed

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-12-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  13. [Wavelength Selection in Hemolytic Evaluation Systems with Spectrophotometry Detection].

    PubMed

    Zhang, Hong; Su, Baochang; Ye, Xunda; Luo, Man

    2016-04-01

    Spectrophotometry is a simple hemolytic evaluation method commonly used in new drugs,biomedical materials and blood products.It is for the quantitative analysis of the characteristic absorption peaks of hemoglobin.Therefore,it is essential to select the correct detection wavelength when the evaluation system has influences on the conformation of hemoglobin.Based on the study of changes in the characteristic peaks over time of the hemolysis supernatant in four systems,namely,cell culture medium,phosphate buffered saline(PBS),physiological saline and banked blood preservation solution,using continuous wavelength scanning,the selections of detection wavelength were proposed as follows.In the cell culture medium system,the wavelength of 415 nm should be selected within 4h;,near 408 nm should be selected within 4~72h.In PBS system,within 4h,541 nm,577nm or 415 nm should be selected;4~72h,541 nm,577nm or near 406 nm should be selected.In physiological saline system,within 4h,414 nm should be selected;4~72h,near 405 nm should be selected;within 12 h,541nm or 577 nm could also be selected.In banked blood preservation solution system,within 72 h,415nm,540 nm or 576 nm should be selected.

  14. Controlled release formulation of an anti-depression drug based on a L-phenylalanate-zinc layered hydroxide intercalation compound

    NASA Astrophysics Data System (ADS)

    Hashim, Norhayati; Sharif, Sharifah Norain Mohd; Isa, Illyas Md; Hamid, Shahidah Abdul; Hussein, Mohd Zobir; Bakar, Suriani Abu; Mamat, Mazidah

    2017-06-01

    The intercalation of L-phenylalanate (LP) into the interlayer gallery of zinc layered hydroxide (ZLH) has been successfully executed using a simple direct reaction method. The synthesised intercalation compound, zinc layered hydroxide-L-phenylalanate (ZLH-LP), was characterised using PXRD, FTIR, CHNS, ICP-OES, TGA/DTG, FESEM and TEM. The PXRD patterns of the intercalation compound demonstrate an intense and symmetrical peak, indicating a well-ordered crystalline layered structure. The appearance of an intercalation peak at a low angle of 2θ with a basal spacing of 16.3 Å, signifies the successful intercalation of the L-phenylalanate anion into the interlayer gallery of the host. The intercalation is also validated by FTIR spectroscopy and CHNS elemental analysis. Thermogravimetric analysis confirms that the ZLH-LP intercalation compound has higher thermal stability than the pristine L-phenylalanine. The observed percentage of L-phenylalanate accumulated release varies in each release media, with 84.5%, 79.8%, 63.8% and 61.8% release in phosphate buffer saline (PBS) solution at pH 4.8, deionised water, PBS solution at pH 7.4 and NaCl solution, respectively. The release behaviour of LP from its intercalation compounds in deionised water and PBS solution at pH 4.8 follows pseudo second order, whereas in NaCl solution and PBS solution at pH 7.4, it follows the parabolic diffusion model. This study shows that the synthesised ZLH-LP intercalation compound can be used for the formation of a new generation of materials for targeted drug release with controlled release properties.

  15. Influence of D-Penicillamine on the Viscosity of Hyaluronic Acid Solutions

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Krause, Wendy E.; Colby, Ralph H.

    2006-03-01

    Polyelectrolyte hyaluronic acid (HA, hyaluronan) is an important component in synovial fluid. Its presence results in highly viscoelastic solutions with excellent lubricating and shock-absorbing properties. In comparison to healthy synovial fluid, diseased fluid has a reduced viscosity. In osteoarthritis this reduction in viscosity results from a decline in both the molecular weight and concentration of hyaluronic acid HA. Initial results indicate that D-penicillamine affects the rheology of bovine synovial fluid, a model synovial fluid solution, and its components, including HA. In order to understand how D-penicillamine modifies the viscosity of these solutions, the rheological properties of sodium hyaluronate (NaHA) in phosphate-buffered saline (PBS) with D-penicillamine were studied as function of time, D-penicillamine concentration (0 -- 0.01 M), and storage conditions. Penicillamine has a complex, time dependent effect on the viscosity of NaHA solutions---reducing the zero shear rate viscosity of a 3 mg/mL NaHA in PBS by ca. 40% after 44 days.

  16. Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02% benzalkonium chloride

    PubMed Central

    Liang, H; Baudouin, C; Pauly, A; Brignole-Baudouin, F

    2008-01-01

    Aim: To compare the conjunctival and corneal reactions of commercially available solution of latanoprost (Xalatan) and preservative-free (PF) tafluprost in rabbits. Methods: The rabbits received 50 μl of phosphate-buffered saline (PBS), PF-tafluprost 0.0015%, latanoprost 0.005% or benzalkonium chloride (BAK) 0.02%; all solutions were applied at 5 min intervals for a total of 15 times. The ocular surface toxicity was investigated using slit-lamp biomicroscopy examination, flow cytometry (FCM) and on imprints for CD45 and tumour necrosis factor-receptor 1 (TNFR1) conjunctival impression cytology (CIC) and corneal in vivo confocal microscopy (IVCM). Standard immunohistology also assessed inflammatory/apoptotic cells. Results: Clinical observation and IVCM images showed the highest ocular surface toxicity with latanoprost and BAK, while PF-tafluprost and PBS eyes presented almost normal corneoconjunctival aspects. FCM showed a higher expression of CD45+ and TNFR1+ in latanoprost- or BAK-instilled groups, compared with PF-tafluprost and PBS groups. Latanoprost induced fewer positive cells for inflammatory marker expressions in CIC specimens compared with BAK-alone, both of which were higher than with PF-tafluprost or PBS. Immunohistology showed the same tendency of toxic ranking. Conclusion: The authors confirm that rabbit corneoconjunctival surfaces presented a better tolerance when treated with PF-tafluprost compared with commercially available latanoprost or BAK solution. PMID:18723745

  17. Cold physical plasma treated buffered saline solution as effective agent against pancreatic cancer cells.

    PubMed

    Bekeschus, Sander; Kading, Andre; Schroder, Tim; Wende, Kristian; Hackbarth, Christine; Liedtke, Kim Rouven; van der Linde, Julia; von Woedtke, Thomas; Heidecke, Claus-Dieter; Partecke, Lars-Ivo

    2018-05-07

    Cold physical plasma has been suggested as a new anticancer tool recently. However, direct use of plasma is limited to visible tumors and in some clinical situations not feasible. This includes repetitive treatment of peritoneal metastases which commonly occur in advanced gastrointestinal cancer and in pancreatic cancer in particular. In case of diffuse intraperitoneal metastatic spread Hyperthermic Intraperitoneal Intraoperative Chemotherapy (HIPEC) is used as therapeutic approach. Plasma treated solutions may combine their suspected systemic non-toxic characteristics with the anticancer effects of HIPEC. Previous work has provided evidence for an anti-cancer efficacy of plasma treated cell culture medium but the clinical relevance of such an approach is low due to its complex formulation and lack of medical accreditation. Therefore, plasma treated phosphate-buffered saline (PBS) which closely resembles medically certified solutions was investigated for its cytotoxic effect on 2D monolayer murine pancreatic cancer cells in vitro. It significantly decreased cancer cell metabolisms and proliferation whereas plasma treated Dulbecco's Modified Eagle Medium had no effect. Moreover, tumor cell growth attenuation was significantly higher when compared to syngeneic primary murine fibroblasts. Both results were confirmed in a human pancreatic cancer cell line. Finally, plasma treated PBS also decreased tumor sizes of pancreatic tumors in the TUM-CAM model in a three-dimensional manner, and induction of apoptosis was found to be responsible for all anticancer effects identified. Altogether, plasma treated PBS inhibited cell growth in 2D and 3D models of cancer. These results may help facilitating the development of new plasma derived anticancer agent with clinical relevance in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Long-term corrosion of a Ga-containing restorative material.

    PubMed

    Sarkar, N K; Moiseyeva, R; Berzins, D W; Osborne, J W

    2000-03-01

    The aim was to simulate and characterize the long-term corrosion of a Ga-containing alloy (Galloy, SDI). To induce corrosion, cylindrical specimens, 8 x 4 mm, of the material were subject to potentiostatic polarization at -0.1 V (SCE) in a phosphated buffered saline (PBS) solution at 20 degrees C for d. The current-time transients during polarization were recorded and the corresponding anodic charge, Q, was calculated. Parallel potentiostatic corrosion tests in a Cl-free PBS solution were also conducted to demonstrate the significance of the Cl- ion in corrosion. In addition, potentiodynamic anodic polarization tests were performed to characterize the overall corrosion behavior of the alloy in both electrolytes. The external and internal corroded layers, formed during potentiostatic corrosion in PBS, were measured by optical microscopy. SEM and EDXA were used to characterize the morphology and composition of the potentiostatically polarized surfaces. Galloy was passive in Cl-free PBS. The Cl- ion in PBS destroyed passivity and initiated a "dissolution-precipitation" type reaction during potentiostatic corrosion. The latter led to circumferential internal corrosion and growth of a layer of external corrosion products. The thickness of the internal and external corrosion layers was 0.77 +/- 0.07 and 0.86 +/- 0.37 mm, respectively. The Q value (89.3 +/- 13.7 C/cm2) in PBS was about two orders of magnitude higher than that (0.66 +/- 0.24 C/cm2) in Cl-free PBS. The corrosion products contained Sn, Ga, In, Cu, O and Cl. Massive internal and external corrosion in a Cl-containing medium as in saliva, accumulation of corrosion products at the cavity wall, and the consequent stress build-up contribute to post-operative pain, tooth straining, marginal breakdown and fractured teeth reported with the clinical use of Galloy.

  19. Susceptibility of nitinol to localized corrosion.

    PubMed

    Pound, Bruce G

    2006-04-01

    The effect of different conditions on the susceptibility of nitinol to localized corrosion was examined using the cyclic potentiodynamic polarization technique. Tests were performed on mechanically polished (MP) and electropolished (EP) nitinol wire in 0.9 wt % NaCl and phosphate-buffered saline (PBS). A polarization curve was also obtained for an EP stent in the NaCl. Differences between the breakdown potential and the corrosion potential (E(corr)) and between the protection potential and E(corr) were used to evaluate the susceptibility to pitting corrosion and crevice corrosion, respectively. The type of solution and, particularly, the surface condition affected the resistance of nitinol to pitting corrosion. Both EP and MP nitinol were more susceptible to breakdown in the NaCl than in PBS, indicating that the NaCl provides a more severe test environment than does PBS. Electropolishing increased the breakdown resistance of nitinol in PBS and the NaCl, as found in previous studies with Hank's solution. Surface condition, however, did not have a significant effect on the repassivation behavior of nitinol, as is also the case with titanium. The EP wire and stent showed similar breakdown and repassivation behavior in the NaCl, suggesting that the nature of the EP surface was similar in both cases. (c) 2005 Wiley Periodicals, Inc.

  20. Electrocapillary Phenomena at Edible Oil/Saline Interfaces.

    PubMed

    Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao

    2017-03-01

    Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil < OA-oil < SO-oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.

  1. Structure, molecular simulation, and release of aspirin from intercalated Zn-Al-layered double hydroxides.

    PubMed

    Meng, Zilin; Li, Xiaowei; Lv, Fengzhu; Zhang, Qian; Chu, Paul K; Zhang, Yihe

    2015-11-01

    Aspirin or acetylsalicylic acid (AA), a non-steroidal anti-inflammatory drug, is intercalated into Zn-Al-layered double hydroxides (ZnAl-LDHs) by co-precipitation and reconstruction methods. The composition, structure, and morphology of the intercalated products as well as their release behavior are determined experimentally and theoretically by Material Studio 5.5. Experimental results disclose the strong interaction between the LDHs sheets and AA in the intercalated ZnAl-LDHs produced by co-precipitation and slow release of AA from the intercalated ZnAl-LDHs in both phosphate buffered saline (PBS) and borate buffered saline (BBS) solutions. The percentage of AA released from the ZnAl-LDHs prepared by both methods in PBS (96.87% and 98.12%) are much more than those in BBS (68.59% and 81.22%) implying that both H4BO4(-) and H2PO4(-) can exchange with AA in the ZnAl-LDHs. After AA is released to PBS, ZnAl-LDHs break into small pieces. The experimental results are explained theoretically based on the calculation of the bonding energy between the anions and LDHs sheets as well as the AlO bond length change in the LDHs sheets. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A Study on Factors Affecting the Degradation of Magnesium and a Magnesium-Yttrium Alloy for Biomedical Applications

    PubMed Central

    Johnson, Ian; Liu, Huinan

    2013-01-01

    Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key factors to consider in order to satisfy the degradation requirements for next-generation biodegradable implants and devices. PMID:23799028

  3. Korean Hemorrhagic Fever.

    DTIC Science & Technology

    1981-03-31

    secretions, and ectoparasites were prepared in phosphate buffered saline, pH 7.6 containing 0.2% serum bovine albumin(PBS). Penicillin, streptomycin...water source and urine was collected during an interval of 3-5 hours, in sterile bottles containing 10 ml of Hanks balanced solution(BSS) with 1% bovine ...Shope, R. E. and Harrison, A. Physiocochemical and morphological relationships of some arthropod-borne viruses to bluetongue virus - a new taxonomic

  4. Bio-sorbable, liquid electrolyte gated thin-film transistor based on a solution-processed zinc oxide layer.

    PubMed

    Singh, Mandeep; Palazzo, Gerardo; Romanazzi, Giuseppe; Suranna, Gian Paolo; Ditaranto, Nicoletta; Di Franco, Cinzia; Santacroce, Maria Vittoria; Mulla, Mohammad Yusuf; Magliulo, Maria; Manoli, Kyriaki; Torsi, Luisa

    2014-01-01

    Among the metal oxide semiconductors, ZnO has been widely investigated as a channel material in thin-film transistors (TFTs) due to its excellent electrical properties, optical transparency and simple fabrication via solution-processed techniques. Herein, we report a solution-processable ZnO-based thin-film transistor gated through a liquid electrolyte with an ionic strength comparable to that of a physiological fluid. The surface morphology and chemical composition of the ZnO films upon exposure to water and phosphate-buffered saline (PBS) are discussed in terms of the operation stability and electrical performance of the ZnO TFT devices. The improved device characteristics upon exposure to PBS are associated with the enhancement of the oxygen vacancies in the ZnO lattice due to Na(+) doping. Moreover, the dissolution kinetics of the ZnO thin film in a liquid electrolyte opens the possible applicability of these devices as an active element in "transient" implantable systems.

  5. Effect of synovial fluid, phosphate-buffered saline solution, and water on the dissolution and corrosion properties of CoCrMo alloys as used in orthopedic implants.

    PubMed

    Lewis, A C; Kilburn, M R; Papageorgiou, I; Allen, G C; Case, C P

    2005-06-15

    The corrosion and dissolution of high- and low-carbon CoCrMo alloys, as used in orthopedic joint replacements, were studied by immersing samples in phosphate-buffered saline (PBS), water, and synovial fluid at 37 degrees C for up to 35 days. Bulk properties were analyzed with a fine ion beam microscope. Surface analyses by X-ray photoelectron spectroscopy and Auger electron spectroscopy showed surprisingly that synovial fluid produced a thin oxide/hydroxide layer. Release of ions into solution from the alloy also followed an unexpected pattern where synovial fluid, of all the samples, had the highest Cr concentration but the lowest Co concentration. The presence of carbide inclusions in the alloy did not affect the corrosion or the dissolution mechanisms, although the carbides were a significant feature on the metal surface. Only one mechanism was recognized as controlling the thickness of the oxide/hydroxide interface. The analysis of the dissolved metal showed two mechanisms at work: (1) a protein film caused ligand-induced dissolution, increasing the Cr concentration in synovial fluid, and was explained by the equilibrium constants; (2) corrosion at the interface increased the Co in PBS. The effect of prepassivating the samples (ASTM F-86-01) did not always have the desired effect of reducing dissolution. The release of Cr into PBS increased after prepassivation. The metal-synovial fluid interface did not contain calcium phosphate as a deposit, typically found where samples are exposed to calcium rich bodily fluids. (c) 2005 Wiley Periodicals, Inc.

  6. Self-assembled phytosterol-fructose-chitosan nanoparticles as a carrier of anticancer drug.

    PubMed

    Qiu, Yeyan; Zhu, Jun; Wang, Jianting; Gong, Renmin; Zheng, Mingming; Huang, Fenghong

    2013-08-01

    Self-assembled nanoparticles were synthesized from water-soluble fructose-chitosan, substituted by succinyl linkages with phytosterols as hydrophobic moieties for self-assembly. The physicochemical properties of the prepared self-assembled nanoparticles were characterized by Fourier transform infrared spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. Doxorubicin (DOX), as a model anticancer drug, was physically entrapped inside prepared self-assembled nanoparticles by the dialysis method. With increasing initial levels of the drug, the drug loading content increased, but the encapsulation efficiency decreased. The release profiles in vitro demonstrated that the DOX showed slow sustained released over 48 h, and the release rate in phosphate buffered saline (PBS) solution (pH 7.4) was much slower than in PBS solution (pH 5.5 and pH 6.5), indicating the prepared self-assembled nanoparticles had the potential to be used as a carrier for targeted delivery of hydrophobic anticancer drugs with declined cytotoxicity to normal tissues.

  7. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    PubMed

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  8. In-Vitro Corrosion Studies of Bioabsorbable Alloys

    NASA Astrophysics Data System (ADS)

    Gill, P.; Munroe, N.

    Magnesium alloys have inspired a significant amount of attention from researchers all over the world for cardiovascular and orthopedic applications due to their light weight, mechanical integrity and degradation behavior. In this investigation, cast manufactured binary, ternary and quaternary magnesium alloys were studied for their degradation behavior by potentiodynamic polarization tests in phosphate buffer saline solution (PBS) and PBS containing amino acids (cysteine, C and tryptophan, W) at 37 °C. Electrochemical impedance spectroscopy (EIS) tests were performed to determine the charge transfer resistance and immersion tests were performed to assess corrosion rate and hydrogen evolution from the alloys. Furthermore, the surface morphology and surface chemistry of the alloys were observed by scanning electron microscopy (SEM) and X-ray diffraction (XRD).

  9. Effect of dissolution of magnesium alloy AZ31 on the rheological properties of Phosphate Buffer Saline.

    PubMed

    Riaz, Usman; Rakesh, Leela; Shabib, Ishraq; Haider, Waseem

    2018-06-05

    The issue of long-term incompatible interactions associated with the permanent implants can be eliminated by using various biodegradable metal implants. The recent research is focusing on the use of degradable stents to restore most of the hindrances of capillaries, and coronary arteries by supplying instant blood flow with constant mechanical and structural support. However, internal endothelialization and infection due to the corrosion of implanted stents are not easy to diagnose in the long run. In the recent past, magnesium (Mg) has been widely investigated for the cardiovascular stent applications. Here we made an attempt to understand the biodegradation process of Mg alloy stent by studying the degradation of Mg alloy AZ31 (3 wt% Aluminum, 1 wt% Zn) powder at various time-intervals in simulated blood fluid using the Rheological methods. The degradability of the Mg stent in the arteries affects the stress-strain properties of blood plasma and the subsequent flow conditions. Blood and plasma viscosities alter due to the degradation of Mg resulting from the stress-strain experienced in the blood vessels, in which the stent is inserted. Here our objective was to explore the influence of Mg degradation on the blood plasma viscosity by studying the viscoelastic properties. In this work, the effect of dissolution of Mg alloy AZ31 on the rheological properties of Phosphate Buffer Saline (PBS) at various time intervals have been investigated. The viscosity of the PBS-AZ31 solution increased with the dissolution of both slurries and percolated clear solution. The only exception was day-7 of the percolated clear solution, where viscosity was decreased showing a reduction in viscosity at initial stages of dissolution. The frequency sweep showed the tendency of the PBS-AZ31 gelation up to 100 rad/s frequency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Biodegradable neural cell culture sheet made of poly(lactic-co-glycolic acid) thin film with micropatterns of Dulbecco’s phosphate-buffered saline (-) containing laminin layers

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuki; Horiuchi, Shunpu; Nishioka, Yasushiro

    2018-02-01

    In the regenerative medicine field of nervous systems, techniques used to fabricate microstructures of neurons on flexible and biodegradable substrates have attracted attention. In this research, biodegradable and flexible neuron culture thin films that enable the selective axonal outgrowth of neurons were fabricated using poly(lactic-co-glycolic acid) (PLGA) thin films with micropatterns of Dulbecco’s phosphate-buffered saline (D-PBS) (-) containing laminin layers. The 100-µm-thick PLGA thin films were fabricated by diluting PLGA in acetone (5% w/w) and the solution was distributed onto a poly(dimethylsiloxane) (PDMS) mold. D-PBS (-) micropatterns containing laminin layers with widths of 10-150 µm were fabricated by micromolding in capillaries (MIMIC) and the microstencil method. Rat neurons were selectively cultured for 3 d on the laminin micropatterns; using the MIMIC method, the cells properly adhered to a pattern wider than 30 µm, while with the microstencil method, the necessary pattern width for proper adhesion was more than 50 µm.

  11. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase.

    PubMed

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes' ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion.

  12. Comparative Analysis of Two Biological Warfare Air Samplers Using Live Surrogate Agents

    DTIC Science & Technology

    2012-03-01

    extensively for Phosphate Buffer Saline (PBS) solution and water , and, to a very limited degree in AF evaluations, for virus preserving media, specifically...or water . Furthermore, viral studies have been conducted comparing the effectiveness of utilizing the reduced secondary flow rate on the XMX/2L...with using bioagent aerosols rated BSL-2 or higher. Male Specific Coliphage 2 (MS2), American Type Culture Collection (ATCC) 15597-B1, was selected

  13. Signal Amplification in Field Effect-Based Sandwich Enzyme-Linked Immunosensing by Tuned Buffer Concentration with Ionic Strength Adjuster.

    PubMed

    Kumar, Satyendra; Kumar, Narendra; Panda, Siddhartha

    2016-04-01

    Miniaturization of the sandwich enzyme-based immunosensor has several advantages but could result in lower signal strength due to lower enzyme loading. Hence, technologies for amplification of the signal are needed. Signal amplification in a field effect-based electrochemical immunosensor utilizing chip-based ELISA is presented in this work. First, the molarities of phosphate buffer saline (PBS) and concentrations of KCl as ionic strength adjuster were optimized to maximize the GOx glucose-based enzymatic reactions in a beaker for signal amplification measured by change in the voltage shift with an EIS device (using 20 μl of solution) and validated with a commercial pH meter (using 3 ml of solution). The PBS molarity of 100 μM with 25 mM KCl provided the maximum voltage shift. These optimized buffer conditions were further verified for GOx immobilized on silicon chips, and similar trends with decreased PBS molarity were obtained; however, the voltage shift values obtained on chip reaction were lower as compared to the reactions occurring in the beaker. The decreased voltage shift with immobilized enzyme on chip could be attributed to the increased Km (Michaelis-Menten constant) values in the immobilized GOx. Finally, a more than sixfold signal enhancement (from 8 to 47 mV) for the chip-based sandwich immunoassay was obtained by altering the PBS molarity from 10 to 100 μM with 25 mM KCl.

  14. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs.

    PubMed

    Holden, Christopher A; Tyagi, Puneet; Thakur, Ashish; Kadam, Rajendra; Jadhav, Gajanan; Kompella, Uday B; Yang, Hu

    2012-07-01

    Dendrimer hydrogel (DH), made from ultraviolet-cured polyamidoamine dendrimer G3.0 tethered with three polyethylene glycol (PEG, 12,000 Da)-acrylate chains (8.1% w/v) in pH 7.4 phosphate buffered saline (PBS), was studied for the delivery of brimonidine (0.1% w/v) and timolol maleate (0.5% w/v), two antiglaucoma drugs. DH was found to be mucoadhesive to mucin particles and nontoxic to human corneal epithelial cells. DH increased the PBS solubility of brimonidine by 77.6% and sustained the in vitro release of both drugs over 56-72 hours. As compared to eye drop formulations (PBS-drug solutions), DH brought about substantially higher human corneal epithelial cells uptake and significantly increased bovine corneal transport for both drugs. DH increased timolol maleate uptake in bovine corneal epithelium, stroma, and endothelium by 0.4- to 4.6-fold. This work demonstrated that DH can enhance the delivery of antiglaucoma drugs in multiple aspects and represents a novel platform for ocular drug delivery. Dendrimer hydrogel was studied as agent for simultaneous delivery of two anti-glaucoma drugs, one hydrophobic and one hydrophilic. Superiority over standard PBS-based formulation was clearly demonstrated for both drugs. The work may be a novel platform for ocular drug delivery. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity.

    PubMed

    Hedberg, Jonas; Karlsson, Hanna L; Hedberg, Yolanda; Blomberg, Eva; Odnevall Wallinder, Inger

    2016-05-01

    Copper nanoparticles (Cu NPs) are increasingly used in various biologically relevant applications and products, e.g., due to their antimicrobial and catalytic properties. This inevitably demands for an improved understanding on their interactions and potential toxic effects on humans. The aim of this study was to investigate the corrosion of copper nanoparticles in various biological media and to elucidate the speciation of released copper in solution. Furthermore, reactive oxygen species (ROS) generation and lung cell (A549 type II) membrane damage induced by Cu NPs in the various media were studied. The used biological media of different complexity are of relevance for nanotoxicological studies: Dulbecco's modified eagle medium (DMEM), DMEM(+) (includes fetal bovine serum), phosphate buffered saline (PBS), and PBS+histidine. The results show that both copper release and corrosion are enhanced in DMEM(+), DMEM, and PBS+histidine compared with PBS alone. Speciation results show that essentially no free copper ions are present in the released fraction of Cu NPs in neither DMEM(+), DMEM nor histidine, while labile Cu complexes form in PBS. The Cu NPs were substantially more membrane reactive in PBS compared to the other media and the NPs caused larger effects compared to the same mass of Cu ions. Similarly, the Cu NPs caused much more ROS generation compared to the released fraction only. Taken together, the results suggest that membrane damage and ROS formation are stronger induced by Cu NPs and by free or labile Cu ions/complexes compared with Cu bound to biomolecules. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Effect of container, vitrification volume and warming solution on cryosurvival of in vitro-produced bovine embryos.

    PubMed

    Rios, G L; Mucci, N C; Kaiser, G G; Alberio, R H

    2010-03-01

    The aim of the present research was to develop a low cost and easy to perform vitrification method for in vitro-produced cattle embryos. Effect of container material was evaluated (plastic straw compared to glass capillary, experiment 1), two volume sample (1 compared to 0.5 microL, experiment 2) and warming solution composition medium (Tissue Culture Medium 199 (TCM-199) compared to phosphate buffered saline (PBS), experiment 3) as modifications of the open pulled straw (OPS) system in order to reduce embryo damage caused by exposure to cold. In all experiments, day 7 and expanded blastocysts of cattle were exposed to the vitrification solution 1 for 3 min and 30s in solution 2. After this, embryos were placed in a droplet and loaded in a narrow end container, and immediately submerged into liquid nitrogen. For warming, vitrified embryos were plunged into warming solution 1 for 3 min, and transferred into warming solution 2 for 1 min. Fresh embryos kept in culture were used as control group. Hatching rates were recorded in all cases at day 13. In experiment 1 there was no significant effect of container material on hatching rates. Postwarming survival rate of vitrified embryos was lower than control (27.5% plastic straws, 18.9% glass capillary and 80.5% control, P<0.05). In experiment 2, there was no significant effect of volume in hatching rates (58.3% 1 microL, 61.3% 0.5 microL and 80.5% control, P<0.05). In experiment 3, the composition of the holding medium of warming solution influenced hatching rates (84.1% TCM-199, 74.8% PBS and 91.1% control P<0.05). These data suggest that neither glass capillaries nor reduced sample volume could improve hatching rates after vitrification-warming with open pulled straw (OPS) procedure, and that PBS can replace TCM-199 in warming solutions, but lesser hatching rates should be expected.

  17. Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids.

    PubMed

    Dekeyser, C M; Buron, C C; Derclaye, S R; Jonas, A M; Marchand-Brynaert, J; Rouxhet, P G

    2012-07-15

    The 24 h stability of bare silicon wafers as such or silanized with CH(3)O-(CH(2)-CH(2)-O)(n)-C(3)H(6)-trichlorosilane (n=6-9) was investigated in water, NaCl, phosphate and carbonate solutions, and in phosphate buffered saline (PBS) at 37 °C (close to biological conditions regarding temperature, high ionic strength, and pH). The resulting surfaces were analyzed using ellipsometry, X-ray Reflectometry (XRR), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM). Incubation of the silanized wafers in phosphate solution and PBS provokes a detachment of the silane layer. This is due to a hydrolysis of Si-O bonds which is favored by the action of phosphate, also responsible for a corrosion of non-silanized wafers. The surface alteration (detachment of silane layer and corrosion of the non-silanized wafer) is also important with carbonate solution, due to a higher pH (8.3). The protection of the silicon oxide layer brought by silane against the action of the salts is noticeable for phosphate but not for carbonate. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. An SFG study of interfacial amino acids at the hydrophilic SiO2 and hydrophobic deuterated polystyrene surfaces.

    PubMed

    Holinga, George J; York, Roger L; Onorato, Robert M; Thompson, Christopher M; Webb, Nic E; Yoon, Alfred P; Somorjai, Gabor A

    2011-04-27

    Sum frequency generation (SFG) vibrational spectroscopy was employed to characterize the interfacial structure of eight individual amino acids--L-phenylalanine, L-leucine, glycine, L-lysine, L-arginine, L-cysteine, L-alanine, and L-proline--in aqueous solution adsorbed at model hydrophilic and hydrophobic surfaces. Specifically, SFG vibrational spectra were obtained for the amino acids at the solid-liquid interface between both hydrophobic d(8)-polystyrene (d(8)-PS) and SiO(2) model surfaces and phosphate buffered saline (PBS) at pH 7.4. At the hydrophobic d(8)-PS surface, seven of the amino acids solutions investigated showed clear and identifiable C-H vibrational modes, with the exception being l-alanine. In the SFG spectra obtained at the hydrophilic SiO(2) surface, no C-H vibrational modes were observed from any of the amino acids studied. However, it was confirmed by quartz crystal microbalance that amino acids do adsorb to the SiO(2) interface, and the amino acid solutions were found to have a detectable and widely varying influence on the magnitude of SFG signal from water at the SiO(2)/PBS interface. This study provides the first known SFG spectra of several individual amino acids in aqueous solution at the solid-liquid interface and under physiological conditions.

  19. Tribological and Rheological Properties of a Synovial Fluid Model

    NASA Astrophysics Data System (ADS)

    Klossner, Rebecca; Liang, Jing; Krause, Wendy

    2010-03-01

    Hyaluronic acid (HA) and the plasma proteins, albumin and globulins, are the most abundant macromolecules in synovial fluid, the fluid that lubricates freely moving joints. In previous studies, bovine synovial fluid, a synovial fluid model (SFM) and albumin in phosphate buffered saline (PBS) were observed to be rheopectic---viscosity increases over time under constant shear. Additionally, steady shear experiments have a strong shear history dependence in protein-containing solutions, whereas samples of HA in PBS behaved as a ``typical'' polyelectrolyte. The observed rheopexy and shear history dependence are indicative of structure building in solution, which is most likely caused by protein aggregation. The tribology of the SFM was also investigated using nanoindenter-based scratch tests. The coefficient of frictions (μ) between the diamond nanoindenter tip and a polyethylene surface was measured in the presence of the SFM and solutions with varied protein and HA concentrations. The lowest μ is observed in the SFM, which most closely mimics a healthy joint. Finally, an anti-inflammatory drug, hydroxychloroquine, was shown to inhibit protein interactions in the SFM in rheological studies, and thus the tribological response was examined. We hypothesize that the rheopectic behavior is important in lubrication regimes and therefore, the rheological and tribological properties of these solutions will be correlated.

  20. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase

    PubMed Central

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    Background It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. Materials and methods We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes’ ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. Results The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. Conclusion These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion. PMID:24333060

  1. Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles

    NASA Astrophysics Data System (ADS)

    Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (<15 mM), the micelle radius was about 10nm but not very reproducible on account of unstable pH levels arising from low buffer concentrations. At intermediate salt concentrations (15 - 60 mM), the system formed spherically-shaped micelles, exhibiting a steady growth in the hydrodynamic radius (Rh) from 10 to 21 nm, with increasing PBS concentration. Interestingly, higher salt concentrations (>60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.

  2. Nucleation and growth of hydroxyapatite on arc-deposited TiO2 surfaces studied by quartz crystal microbalance with dissipation

    NASA Astrophysics Data System (ADS)

    Lilja, Mirjam; Butt, Umer; Shen, Zhijian; Bjöörn, Dorota

    2013-11-01

    Understanding of nucleation and growth kinetics of biomimetically deposited hydroxyapatite (HA) on crystalline TiO2 surfaces is important with respect to the application and performance of HA as functional implant coatings. Arc-evaporation was used to deposit TiO2 coatings dominated by anatase phase, rutile phase or their mixtures. Subsequent formation of HA from phosphate buffered saline solution (PBS) was investigated in real-time using in situ quartz crystal microbalance with dissipation technique (QCM-D). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the presence, morphology and crystal structure of TiO2 coatings and the formed HA. Increasing temperature of the PBS, increasing flow rate and applying a higher ion concentration in solution were found to accelerate HA nucleation process and hence affect growth kinetics. Lower PBS temperature resulted in the formation of HA coatings with flake-like morphology and increasing HA porosity. All TiO2 coatings under study enabled HA formation at body temperature, while in contrast Ti reference surfaces only supported HA nucleation and growth at elevated temperatures. QCM-D technique is a powerful tool for studying the impact of process parameters during biomimetic coating deposition on coating structure evolution in real time and provides valuable information for understanding, optimizing as well as tailoring the biomimetic HA growth processes.

  3. AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles.

    PubMed

    Zhao, Junwei; He, Zhaoshuai; Li, Biao; Cheng, Tanyu; Liu, Guohua

    2017-04-01

    Recently, the controlled drug delivery system has become a potential platform for biomedical application. Herein, we developed a pH and light-dual controlled cargo release system exhibiting AND logic based on MCM-41 mesoporous silica nanoparticles, which was surface modified using β-cyclodextrin (β-CD) with imine bond and azobenzene derivative. The complex of β-CD and azobenzene derivative effectively blocked the cargo delivery in pH=7.0 phosphate buffered saline (PBS) solution without 365nm UV light irradiation. The cargo was fully released when both factors of acidic environment (pH=5.0 PBS) and 365nm UV light irradiation were satisfied, meanwhile only very little cargo was delivered if one factor was satisfied. The result also demonstrates that the opening/closing of the gate and the release of the cargo in small portions can be controlled. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Stability of solutions of antineoplastic agents during preparation and storage for in vitro assays. General considerations, the nitrosoureas and alkylating agents.

    PubMed

    Bosanquet, A G

    1985-01-01

    In vitro drug sensitivity of tumour biopsies is currently being determined using a variety of methods. For these chemosensitivity assays many drugs are required at short notice, and this in turn means that the drugs must generally be stored in solution. There are, however, a number of potential problems associated with dissolving and storing drugs for in vitro use, which include (a) drug adsorption; (b) effects of freezing; (c) drug stability under the normal conditions of dilution and setting up of an in vitro assay; and (d) insolubility of drugs in normal saline (NS) or phosphate-buffered saline (PBS). These problems are considered in general, and some recommendations for use of solutions of drugs in in vitro assays are suggested. The nitrosoureas and alkylating agents are also investigated in greater detail in this respect. The nitrosoureas are found to be very labile in PBS at pH 7, with 5% degradation (t0.95) occurring in 10-50 min at room temperature. These values are increased about 10-fold on refrigeration and about 5- to 10-fold on reduction of the pH of the medium to pH 4-5. At pH 7 and room temperature, t0.95 is observed in under 1 h with the alkylating agents nitrogen mustard, chlorambucil, melphalan, 2,5-diaziridinyl-3,6-bis(2-hydroxyethylamino)-1,4-benzoquinone (BZQ), dibromodulcitol, dibromomannitol, treosulphan, and procarbazine. Of the other alkylating agents, 4-hydroperoxycylophosphamide (sometimes used in vitro in place of cyclophosphamide), busulphan, dianhydrogalactitol, aziridinylbenzoquinone (AZQ), and dacarbazine have a t0.95 of between 2 and 24 h, while ifosfamide and pentamethylmelamine are both stable in aqueous solution for greater than 7 days. About half the drugs studied in detail have been stored frozen in solution for in vitro use, although very little is known about their stability under these conditions.

  5. DEVELOPMENT OF BIOMARKER OF EXPOSURE TO VIRAL PATHOGENS

    EPA Science Inventory

    Interferon gamma (IFN-γ) was selected as a biomarker for a viral exposure study. Twelve-week-old BALB/c mice were intraperitoneally injected with 0.2ml of 104 PFU/ml of coxsackievirus B3 or B4 diluted in phosphate-buffered saline (PBS). Control mice were injected with PBS on...

  6. Interferon Gamma as a Biomarker of Exposure to Enteric Viruses

    EPA Science Inventory

    Interferon gamma (IFN-γ) was selected as a biomarker for viral exposure. Twelve-week-old BALB/c mice were intraperitoneally injected with Coxsackievirus B3 or B4 diluted in phosphate-buffered saline (PBS). Control mice were injected with PBS only. Four months after viral infectio...

  7. Effects of solutions treated with oxygen radicals in neutral pH region on inactivation of microorganism

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tsuyoshi; Hashizume, Hiroshi; Ohta, Takayuki; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2015-09-01

    The inactivation of microorganisms using nonequilbrium atmospheric pressure plasmas has been attracted much attention due to the low temperature processing and high speed treatment. In this study, we have inactivated E. coli suspended in solutions with neutral pH using an atmospheric-pressure oxygen radical source which can selectively supply electrically neutral oxygen radicals. E. coli cells were suspended with deionized distilled water (DDW) (pH = 6.8) or phosphate buffered saline (PBS) (pH = 7.4) or Citrate-Na buffer (pH = 6.5). The treated samples were diluted and spread on nutrient agar (Nutrient Broth). They were cultured at 37° C. The inactivation effects of oxygen radicals on those cells in solutions were evaluated by colony-counting method. O2 diluted by Ar gas were employed as a working gas for the radical source. The total gas flow rate and the gas mixture ratio of O2/(Ar + O2) were set at 5 slm and 0.6%, respectively. The distance between the radical exit and the suspension surface were set at 10 mm. As a result, the D values for DDW(pH = 6.8), PBS(pH = 7.4) and Citrate-Na buffer(pH = 6.5) were estimated to be 1.4 min, 0.9 min and 16.8 min respectively. The inactivation rates in DDW, PBS were significantly different from that in Citrate-Na buffer. This work was partly supported by JSPS KAKENHI Grant Number 26286072 and project for promoting Research Center in Meijo University.

  8. Exposure to buffer solution alters tendon hydration and mechanics.

    PubMed

    Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M

    2017-08-16

    A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.

    PubMed

    Han, Bumsoo; Bischof, John C

    2004-04-01

    Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (< or = -40 degrees C). Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present study are discussed in the context of the implications for cryobiology applications.

  10. Common buffers, media, and stock solutions.

    PubMed

    2001-05-01

    This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.

  11. Development of an enzyme-linked immunosorbent assay for seven sulfonamide residues and investigation of matrix effects from different food samples.

    PubMed

    Zhang, Hongyan; Wang, Lei; Zhang, Yan; Fang, Guozhen; Zheng, Wenjie; Wang, Shuo

    2007-03-21

    Direct competitive enzyme-linked immunosorbent assays (ELISA) were developed to detect a broad range of sulfonamides in various matrices. Screening for this class of antibiotics in pig muscle, chicken muscle, fish, and egg extracts was accomplished by simple, rapid extraction methods carried out with only phosphate-buffered saline (PBS) buffer. Twenty milliliters of extract solution was added to 4 g of sample to extract the sulfonamide residues, and sample extracts diluted with assay buffer were directly analyzed by ELISA; matrix effects could be avoided with 1:5 dilution of pig muscle, chicken muscle, and egg extracts with PBS and 1:5 dilution of fish extract with 1% bovine serum albumin (BSA)-PBS. For liver sample, the extraction method was a little more complicated; 2 g of sample was added to 20 mL of ethanol, mixed, and then centrifuged. The solvent of 10 mL of the upper liquid was removed, and the residues were dissolved in 10 mL of PBS and then filtered; the filtrate was diluted two-fold with 0.5% BSA-PBS for ELISA. These common methods were able to detect seven sulfonamide residues such as sulfisozole, sulfathiazole, sufameter, sulfamethoxypyridazine, sulfapyridine, sulfamethizole, and sulfachlorpyridazine in pig muscle, liver, chicken muscle, egg, and fish. The assay's detection limits for these compounds were less than 100 microg kg-1. Various extraction methods were tested, and the average recovery (n=3) of 100 microg kg-1 for the matrices was found to range from 77.3 to 123.7%.

  12. In Vivo and In Vitro Nitinol Corrosion Properties

    NASA Astrophysics Data System (ADS)

    Lonn, Melissa K.; Metcalf, Justin M.; Choules, Brian D.

    2015-09-01

    Regulatory authorities often require in vitro testing on medical devices prior to approval. Current standardized corrosion testing methods (ASTM F2129) require testing in a non-physiologic, de-oxygenated solution for a pre-exposure time of ≤1 h; however, no correlations between the prescribed simulated environment and whole blood conditions have been elucidated. This study compared open circuit potential (OCP), breakdown potentials (Eb), Eb - OCP, and cyclic polarization curves tested in vivo (OCP only) and in vitro in whole blood to those tested in phosphate-buffered saline (PBS). Two oxide thicknesses of Nitinol, two solution oxygen contents (deaerated and aerated solutions), and two pre-exposure durations (acute and chronic) were investigated. The in vitro OCP in whole blood was not significantly different than the in vivo OCP, suggesting that whole blood in vitro can be used to determine baseline corrosion behavior of medical implants. Eb - OCP tested per ASTM F2129 was comparable to acute whole blood and was conservative compared to chronic whole blood for both oxide thicknesses. However, OCP, Eb, and cyclic polarization curves were not always comparable to whole blood. Testing in aerated PBS achieved Eb, Eb - OCP, and cyclic polarization curves that were comparable to or more conservative than whole blood testing, regardless of pre-exposure duration and oxide thickness.

  13. Covalent conjugation of graphene oxide with methotrexate and its antitumor activity

    NASA Astrophysics Data System (ADS)

    Wojtoniszak, M.; Urbas, K.; Perużyńska, M.; Kurzawski, M.; Droździk, M.; Mijowska, E.

    2013-05-01

    Here, we have functionalized graphene oxide with anticancer drug methotrexate through amide bonding. A kinetics of the drug release from graphene oxide in physiological solution - phosphate buffered saline (PBS) containing different biocompatible polymers have been investigated. Dispersion of MTX-GO in poly sodium-4-styrene sulfonate and poly ethylene glycol resulted in increase of the release time. The material was characterized with transmission electron microscopy, atomic force microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, antineoplastic action against human breast adenocarcinoma cell line MCF7 of MTX-GO and empty graphene oxide was explored.

  14. Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles.

    PubMed

    Kamińska, I; Sikora, B; Fronc, K; Dziawa, P; Sobczak, K; Minikayev, R; Paszkowicz, W; Elbaum, D

    2013-05-15

    A facile sol-gel synthesis of novel ZnO/MgO/Fe2O3 nanoparticles (NPs) is reported and their performance is compared to that of ZnO/MgO. Powder x-ray diffraction (XRD) patterns reveal the crystal structure of the prepared samples. The average particle size of the sample was found to be 4.8 nm. The optical properties were determined by UV-vis absorption and fluorescence measurements. The NPs are stable in biologically relevant solutions (phosphate buffered saline (PBS), 20 mM, pH = 7.0) contrary to ZnO/MgO NPs which degrade in the presence of inorganic phosphate. Superparamagnetic properties were determined with a superconducting quantum interference device (SQUID). Biocompatible and stable in PBS ZnO/MgO/Fe2O3 core/shell composite nanocrystals show luminescent and magnetic properties confined to a single NP at room temperature (19-24 ° C), which may render the material to be potentially useful for biomedical applications.

  15. Development of Pinhole-Free Amorphous Aluminum Oxide Protective Layers for Biomedical Device Applications

    PubMed Central

    Litvinov, Julia; Wang, Yi-Ju; George, Jinnie; Chinwangso, Pawilai; Brankovic, Stanko; Willson, Richard C.; Litvinov, Dmitri

    2013-01-01

    This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processing. Deposition parameters were optimized to achieve the best corrosion protection of lithographically defined device structures. Electrochemical deposition of copper through the aluminum oxide layers was used to detect the presence (or absence) of pinholes. FTIR, XPS, and spectroscopic ellipsometry were used to characterize the material properties of the protective layers. Electrical resistance of the copper device structures protected by the aluminum oxide layers and exposed to a PBS solution was used as a metric to evaluate the long-term stability of these device structures. PMID:23682201

  16. Effect of bioactive glass-containing resin composite on dentin remineralization.

    PubMed

    Lee, Myoung Geun; Jang, Ji-Hyun; Ferracane, Jack L; Davis, Harry; Bae, Han Eul; Choi, Dongseok; Kim, Duck-Su

    2018-05-25

    The purpose of this study was to evaluate the effect of bioactive glass (BAG)-containing composite on dentin remineralization. Sixty-six dentin disks with 3 mm thickness were prepared from thirty-three bovine incisors. The following six experimental groups were prepared according to type of composite (control and experimental) and storage solutions (simulated body fluid [SBF] and phosphate-buffered saline [PBS]): 1 (undemineralized); 2 (demineralized); 3 (demineralized with control in SBF); 4 (demineralized with control in PBS); 5 (demineralized with experimental composite in SBF); and 6 (demineralized with experimental composite in PBS). BAG65S (65% Si, 31% Ca, and 4% P) was prepared via the sol-gel method. The control composite was made with a 50:50 Bis-GMA:TEGDMA resin matrix, 57 wt% strontium glass, and 15 wt% aerosol silica. The experimental composite had the same resin and filler, but with 15 wt% BAG65S replacing the aerosol silica. For groups 3-6, composite disks (20 × 10 × 2 mm) were prepared and approximated to the dentin disks and stored in PBS or SBF for 2 weeks. Micro-hardness measurements, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and field-emission scanning electron microscopy (FE-SEM) was investigated. The experimental BAG-containing composite significantly increased the micro-hardness of the adjacent demineralized dentin. ATR-FTIR revealed calcium phosphate peaks on the surface of the groups which used experimental composite. FE-SEM revealed surface deposits partially occluding the dentin surface. No significant difference was found between SBF and PBS storage. BAG-containing composites placed in close proximity can partially remineralize adjacent demineralized dentin. Copyright © 2018. Published by Elsevier Ltd.

  17. Comparative Evaluation of Three Homogenization Methods for Isolating Middle East Respiratory Syndrome Coronavirus Nucleic Acids From Sputum Samples for Real-Time Reverse Transcription PCR.

    PubMed

    Sung, Heungsup; Yong, Dongeun; Ki, Chang Seok; Kim, Jae Seok; Seong, Moon Woo; Lee, Hyukmin; Kim, Mi Na

    2016-09-01

    Real-time reverse transcription PCR (rRT-PCR) of sputum samples is commonly used to diagnose Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Owing to the difficulty of extracting RNA from sputum containing mucus, sputum homogenization is desirable prior to nucleic acid isolation. We determined optimal homogenization methods for isolating viral nucleic acids from sputum. We evaluated the following three sputum-homogenization methods: proteinase K and DNase I (PK-DNase) treatment, phosphate-buffered saline (PBS) treatment, and N-acetyl-L-cysteine and sodium citrate (NALC) treatment. Sputum samples were spiked with inactivated MERS-CoV culture isolates. RNA was extracted from pretreated, spiked samples using the easyMAG system (bioMérieux, France). Extracted RNAs were then subjected to rRT-PCR for MERS-CoV diagnosis (DiaPlex Q MERS-coronavirus, SolGent, Korea). While analyzing 15 spiked sputum samples prepared in technical duplicate, false-negative results were obtained with five (16.7%) and four samples (13.3%), respectively, by using the PBS and NALC methods. The range of threshold cycle (Ct) values observed when detecting upE in sputum samples was 31.1-35.4 with the PK-DNase method, 34.7-39.0 with the PBS method, and 33.9-38.6 with the NALC method. Compared with the control, which were prepared by adding a one-tenth volume of 1:1,000 diluted viral culture to PBS solution, the ranges of Ct values obtained by the PBS and NALC methods differed significantly from the mean control Ct of 33.2 (both P<0.0001). The PK-DNase method is suitable for homogenizing sputum samples prior to RNA extraction.

  18. Comparative Evaluation of Three Homogenization Methods for Isolating Middle East Respiratory Syndrome Coronavirus Nucleic Acids From Sputum Samples for Real-Time Reverse Transcription PCR

    PubMed Central

    Yong, Dongeun; Ki, Chang-Seok; Kim, Jae-Seok; Seong, Moon-Woo; Lee, Hyukmin

    2016-01-01

    Background Real-time reverse transcription PCR (rRT-PCR) of sputum samples is commonly used to diagnose Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Owing to the difficulty of extracting RNA from sputum containing mucus, sputum homogenization is desirable prior to nucleic acid isolation. We determined optimal homogenization methods for isolating viral nucleic acids from sputum. Methods We evaluated the following three sputum-homogenization methods: proteinase K and DNase I (PK-DNase) treatment, phosphate-buffered saline (PBS) treatment, and N-acetyl-L-cysteine and sodium citrate (NALC) treatment. Sputum samples were spiked with inactivated MERS-CoV culture isolates. RNA was extracted from pretreated, spiked samples using the easyMAG system (bioMérieux, France). Extracted RNAs were then subjected to rRT-PCR for MERS-CoV diagnosis (DiaPlex Q MERS-coronavirus, SolGent, Korea). Results While analyzing 15 spiked sputum samples prepared in technical duplicate, false-negative results were obtained with five (16.7%) and four samples (13.3%), respectively, by using the PBS and NALC methods. The range of threshold cycle (Ct) values observed when detecting upE in sputum samples was 31.1–35.4 with the PK-DNase method, 34.7–39.0 with the PBS method, and 33.9–38.6 with the NALC method. Compared with the control, which were prepared by adding a one-tenth volume of 1:1,000 diluted viral culture to PBS solution, the ranges of Ct values obtained by the PBS and NALC methods differed significantly from the mean control Ct of 33.2 (both P<0.0001). Conclusions The PK-DNase method is suitable for homogenizing sputum samples prior to RNA extraction. PMID:27374711

  19. Urethral hydrodistension for management of urethral hypoplasia in prune belly syndrome: long-term results.

    PubMed

    Kajbafzadeh, Abdol-Mohammad; Rasouli, Mohammad Reza; Dianat, SeyedSaeid; Nezami, Behtash G; Mahboubi, Amir Hassan; Sina, Alireza

    2010-11-01

    The aim of the study was to evaluate the efficacy and safety of urethral hydrodistension for management of urethral hypoplasia in prune belly syndrome (PBS). During a 10-year period, 7 infants with PBS and urethral hypoplasia presented either with open urachus or surgically created urinary diversion referred to our hospital. Five milliliters of normal saline was pushed via a 22-gauge plastic angiocatheter into the urethra with simultaneous finger pressure on the perineum to occlude the proximal urethra that was repeated with higher volumes of the solution (up to 20 mL). The procedure was continued until a 6F or 8F feeding tube catheter confirmed the urethral patency. Hydrodistension was repeated in 3-month intervals till complete patency was confirmed by imaging. Median age of the infants was 6 (1-8) months. All urethral hydrodistension were successful after 1 to 3 sessions. Follow-up imaging studies showed significant improvement in all patients except one. Natural and surgically created urinary diversions were closed in 6 infants. The hydrodistension create an equal and constant pressure into the urethral wall without any urethral damage. This technique can be considered along with the other available methods for management of urethral hypoplasia in selected cases of PBS. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models.

    PubMed

    Anders, Catherine B; Chess, Jordan J; Wingett, Denise G; Punnoose, Alex

    2015-12-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.

  1. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models

    NASA Astrophysics Data System (ADS)

    Anders, Catherine B.; Chess, Jordan J.; Wingett, Denise G.; Punnoose, Alex

    2015-11-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.

  2. Corrosion behavior of pristine and added MgB2 in Phosphate Buffered Saline Solution

    NASA Astrophysics Data System (ADS)

    Batalu, D.; Bojin, D.; Ghiban, B.; Aldica, G.; Badica, P.

    2012-09-01

    We have obtained by Spark Plasma Sintering (SPS), dense samples of MgB2 added with Ho2O3. Starting composition was (MgB2)0.975(HoO1.5)0.025 and we used addition powders with an average particle size below and above 100 nm. For Mg, pristine and added MgB2 samples we measured potentiodynamic polarization curves in Phosphate Buffered Saline (PBS) solution media at room temperature. MgB2 based composites show corrosion/ degradation effects. This behavior is in principle similar to Mg based alloys in the same media. Our work suggests that the different morphologies and phase compositions of the SPS-ed samples influence the interaction with corrosion medium; hence additions can play an important role in controlling the corrosion rate. Pristine MgB2 show a significant improvement of the corrosion resistance, if compared with Mg. The best corrosion resistance is obtained for pristine MgB2, followed by MgB2 with nano-Ho2O3 and μ-Ho2O3 additions.

  3. Confocal raman microscopy as a non-invasive tool to investigate the phase composition of frozen complex cryopreservation media.

    PubMed

    Kreiner-Møller, A; Stracke, F; Zimmermann, H

    2013-01-01

    Various cryoprotective agents (CPA) are added to cell media in order to avoid cell injury during cryo preservation. The resulting complex environment of the preserved cell, consisting of crystalline and liquid phases can however not be investigated non-invasively by established methods in cryobiology. This study shows how scanning confocal Raman microscopy can non-invasively extract information on chemical composition, phase domain and distribution at cryogenic temperatures. The formation of the salt hydrate, hydrohalite NaCl∙H2O, in solutions comprised of phosphate buffered saline (PBS) and dimethyl sulphoxide (DMSO) is studied in particular. Scanning confocal Raman microscopy can be used to unambiguously identify hydrohalite in a medium containing DMSO and saline. The confocal Raman microscopy imaging along with differential scanning calorimetric measurements further show that the hydrohalite is formed without eutectic formation. This method also allows for discrimination between closely packed hydrohalite crystals that are oriented differently.

  4. Transmission of Microsporidian Parasites of Mosquitoes.

    DTIC Science & Technology

    1982-01-01

    finely drawn capillary tube calibrated to approximately 1 il. Cholesterol and 20-hydroxyecdysone were dissolved in insect saline with 10% ethanol... saline . Sharpened jeweler’s forceps were then used to remove the ovaries through single ventral incisions between the 6th and 7th abdominal sternites... saline (PBS) in a tissue grinder and then subjected to 2 cycles of differential centrifugation. The spores are then layered onto 0-10% Ludox IIS-40

  5. Hypoxia-induced angiogenesis is increased by the controlled release of deferoxiamine from gelatin hydrogels.

    PubMed

    Saito, Takashi; Tabata, Yasuhiko

    2014-08-01

    The objective of this study is to design biodegradable hydrogels for the controlled release of deferoxiamine (DFO) and evaluate their biological activity. When the DFO was added to human umbilical vein endothelial cells cultured in 5.0% O2, the level of hypoxia-inducible factor-1α and vascular endothelial growth factor significantly increased compared with that without DFO. The expression of angiogenesis-related genes was accordingly increased by the DFO addition. An aqueous solution of mixed gelatin and DFO was freeze-dried, and dehydrothermally treated at 140°C for 24h to prepare a gelatin hydrogel incorporating DFO. In the release test with phosphate-buffered saline solution (PBS) at 37°C, an initial DFO release of 60% was observed, followed by no release. When placed in PBS containing collagenase, the hydrogel was enzymatically degraded with time, and consequently released DFO in a degradation-dependent manner. After the hydrogel incorporating DFO was injected intramuscularly into a mouse model of hind limb ischemia, the number of new blood vessels formed was significantly higher than that with free DFO and DFO-free hydrogel. It is concluded that the DFO-containing hydrogel shows promising for inducing angiogenesis locally. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. A Novel Protocol for Decoating and Permeabilizing Bacterial Spores for Epifluorescent Microscopy

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Mohapatra, Bidyut

    2014-01-01

    Based on previously reported procedures for permeabilizing vegetative bacterial cells, and numerous trial-and-error attempts with bacterial endospores, a protocol was developed for effectively permeabilizing bacterial spores, which facilitated the applicability of fluorescent in situ hybridization (FISH) microscopy. Bacterial endospores were first purified from overgrown, sporulated suspensions of B. pumilus SAFR-032. Purified spores at a concentration of approx equals 10 million spores/mL then underwent proteinase-K treatment, in a solution of 468.5 µL of 100 mM Tris-HCl, 30 µL of 10% SDS, and 1.5 microL of 20 mg/mL proteinase-K for ten minutes at 35 ºC. Spores were then harvested by centrifugation (15,000 g for 15 minutes) and washed twice with sterile phosphate-buffered saline (PBS) solution. This washing process consisted of resuspending the spore pellets in 0.5 mL of PBS, vortexing momentarily, and harvesting again by centrifugation. Treated and washed spore pellets were then resuspended in 0.5 mL of decoating solution, which consisted of 4.8 g urea, 3 mL Milli-Q water, 1 mL 0.5M Tris, 1 mL 1M dithiothreitol (DTT), and 2 mL 10% sodium-dodecylsulfate (SDS), and were incubated at 65 ºC for 15 minutes while being shaken at 165 rpm. Decoated spores were then, once again, washed twice with sterile PBS, and subjected to lysozyme/mutanolysin treatment (7 mg/mL lysozyme and 7U mutanolysin) for 15 minutes at 35 C. Spores were again washed twice with sterile PBS, and spore pellets were resuspended in 1-mL of 2% SDS. This treatment, facilitating inner membrane permeabilization, lasted for ten minutes at room temperature. Permeabilized spores were washed two final times with PBS, and were resuspended in 200 mkcroL of sterile PBS. At this point, the spores were permeable and ready for downstream processing, such as oligonucleotideprobe infiltration, hybridization, and microscopic evaluation. FISH-microscopic imagery confirmed the effective and efficient (˜50% successful permeabilization and recovery) permeabilization of numerous spore preparations. The novelty of the technology developed here is in its applicability to bacterial endospores. While protocols abound for the effective permeabilization of bacterial, archaeal, and eukaryotic vegetative cells, there are no such reliable methods for decoating and permeabilizing bacterial endospores in a manner that is amenable to downstream FISH microscopic analyses. This innovation enables the direct visualization and enumeration of spores via FISH-based microscopic techniques, circumventing the complications that accompany previously required germination regimes. The synergistic enzymatic weakening of the many spore layers facilitates a structural compromise that is just enough to render the spores permeable without degrading the spore to a level, which precludes it from recognition.

  7. Clarification of the recovery mechanism of Escherichia coli after hydrostatic pressure treatment

    NASA Astrophysics Data System (ADS)

    Ohshima, Shuto; Nomura, Kazuki; Iwahashi, Hitoshi

    2013-06-01

    High hydrostatic pressure (HP) technology has gained more attention as a non-thermal food pasteurization technology. Recently, a limitation of the HP technology was reported by Koseki and Yamamoto [Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Int. J. Food Microbiol. 2006;110:108-111], who completely recovered Escherichia coli species after HP treatment. We investigated the recovery mechanism of E. coli after HP treatment. The cells were treated with 200-300 MPa at 0-25°C for 24 h. The HP-treated E. coli was recovered in phosphate-buffered saline (PBS) during 120 h of incubation at 25°C, confirming the results reported by them. However, E. coli did not grow in PBS but grew with inactivated cells in PBS. In addition, the results of our "population size experiments" demonstrated that the recovery of E. coli cells depended on both the degree of pressure and the population size. These results suggest that some portion of cells recovered from the damage and then grew by using inactivated cells.

  8. Aggregation and Particle Formation of Therapeutic Proteins in Contact With a Novel Fluoropolymer Surface Versus Siliconized Surfaces: Effects of Agitation in Vials and in Prefilled Syringes.

    PubMed

    Teska, Brandon M; Brake, Jeffrey M; Tronto, Gregory S; Carpenter, John F

    2016-07-01

    We examined the effects of an accelerated agitation protocol on 2 protein therapeutics, intravenous immunoglobulin (IVIG) and Avastin (bevacizumab), in contact with a novel fluoropolymer surface and more typical siliconized surfaces. The fluoropolymer surface provides "solid-phase" lubrication for the syringe plunger-obviating the need for silicone oil lubrication in prefilled syringes. We tested the 2 surfaces in a vial system and in prefilled glass syringes. We also examined the effects of 2 buffers, phosphate-buffered saline (PBS) and 0.2-M glycine, with and without the addition of polysorbate 20, on agitation-induced aggregation of IVIG. Aggregation was monitored by measuring subvisible particle formation and soluble protein loss. In both vials and syringes, protein particle formation was much lower during agitation with the fluoropolymer surface than with the siliconized surface. Also, particle formation was greater in PBS than in glycine buffer, an effect attributed to lower colloidal stability of IVIG in PBS. Polysorbate 20 in the formulation greatly inhibited protein particle formation. Overall, the fluoropolymer plunger surface in an unsiliconized glass barrel was demonstrated to be a viable solution for eliminating silicone oil droplets from prefilled syringe formulations and providing a consistent system for rationale formulation development and simplified particle analysis. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Cullin 5 Expression in the Rat: Cellular and Tissue Distribution, and Changes in Response to Water Deprivation and Hemorrhagic Shock

    DTIC Science & Technology

    2003-02-28

    of Health p53 tumor suppressor PBS phosphate buffered saline PCO2 partial pressure of carbon dioxide PO2 partial pressure of oxygen PCR...buffered saline TTBS tween-20 tris buffered saline TonEBP tonicity-response enhancer binding protein TSNRP TriService Nursing Research Program...growth and metabolism (Hochstrasser, 1995; Deshaies, 1999). Although traditionally seen as no more than a means of eliminating no longer needed

  10. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications.

    PubMed

    Rondelli, G; Torricelli, P; Fini, M; Giardino, R

    2005-03-01

    The electrochemical impedance spectroscopy (EIS) technique was used for the study of the electrochemical behaviour of Ni-free austenitic stainless steel for orthopaedic applications. Experiments were carried out using four different test solutions: (i) phosphate-buffered saline (PBS), (ii) minimum essential medium (MEM), (iii) MEM + 10% fetal calf serum (FCS), (iv) MEM + 10% fetal calf serum + L929 fibroblast cell line (Cell). Bode-phase spectra showed the presence of two maxima and were fitted with an equivalent circuit characterized by two parallel combinations (Resistance, Constant Phase Element). The (R(1), CPE(1)) branch was assigned to the inner compact passive film and the (R(2), CPE(2)) branch to the external porous film. The resistance of the inner film R(1), here directly related to the material's uniform corrosion resistance, raised with the immersion time and increased in the following order: PBS

  11. Gold nanoparticle incorporated polymer/bioactive glass composite for controlled drug delivery application.

    PubMed

    Jayalekshmi, A C; Sharma, Chandra P

    2015-02-01

    The present study discusses the development of a biodegradable polymer encapsulated-nanogold incorporated-bioactive glass composite (AuPBG) by a low-temperature method. The composite was analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG), fluorescence and dissolution analysis. The composite exhibited aggregation behaviour in solid and solution states and exhibited negative zeta potential (-13.3 ± 1.4 mV). The composite exhibited fast degradation starting from the 5(th) day onwards in phosphate buffered saline (PBS) for a period of 14 days. The composite showed fluorescence quenching effect at pH 7 and the fluorescence recovered at pH 5. The composite has been found to be suitable for the release of doxorubicin at high rates at acidic pH (∼ 5) which is the intracellular pH of tumour cells. The drug loading ratio is also high and it exhibited a controlled release for a period of 8 days in PBS. The system serves as a promising material for targeted drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Electrospun PVA/Bentonite Nanocomposites Mats for Drug Delivery

    PubMed Central

    Ferrández-Rives, Mariola; Gómez Ribelles, José Luis

    2017-01-01

    Electrospun mats and films of polyvinyl alcohol (PVA) hydrogel are produced for drug delivery. To provide mechanical consistency to the gel a reinforcement by nanoclays is introduced in the polymer matrix. Four different suspensions of nanoparticles in the polymer solution are prepared in an adequate solvent. These suspensions are subjected to an electrospinning process to produce the nanofiber mat, while films are produced by casting. The influence of the process parameters over the nanofibers microstructure is analyzed by scanning electron microscopy (SEM). The effectiveness of nanoclay encapsulation in the nanocomposites is tested by a thermogravimetric analysis. A crosslinking reaction in solution is carried out to prevent the dissolution of the nanocomposites in aqueous media. A model protein (bovine serum albumin, BSA) is absorbed in the nanocomposites to characterize the release kinetics in phosphate-buffered saline (PBS). PMID:29261123

  13. Influence of silica nanospheres on corrosion behavior of magnesium matrix syntactic foam

    NASA Astrophysics Data System (ADS)

    Qureshi, W.; Kannan, S.; Vincent, S.; Eddine, N. N.; Muhammed, A.; Gupta, M.; Karthikeyan, R.; Badari, V.

    2018-04-01

    Over the years, the development of Magnesium alloys as biodegradable implants has seen significant advancements. Magnesium based materials tend to provide numerous advantages in the field of biomedical implants over existing materials such as titanium or stainless steel. The present research focuses on corrosive behavior of Magnesium reinforced with different volume percentages of Hollow Silica Nano Spheres (HSNS). These behaviors were tested in two different simulated body fluids (SBF) namely, Hank’s Buffered Saline Solution (HBSS) and Phosphate Buffered Solution (PBS). This corrosion study was done using the method of electrochemical polarization with a three-electrode configuration. Comparative studies were established by testing pure Mg which provided critical information on the effects of the reinforcing material. The HSNS reinforced Mg displayed desirable characteristics after corrosion experiments; increased corrosion resistance was witnessed with higher volume percentage of HSNS.

  14. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.

    PubMed

    Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2005-09-01

    Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.

  15. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer.

    PubMed

    Drake, Andrew C; Lee, Youngjoo; Burgess, Emma M; Karlsson, Jens O M; Eroglu, Ali; Higgins, Adam Z

    2018-01-01

    Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg) of mixtures of sugars (trehalose or raffinose), polymers (polyvinylpyrrolidone or Ficoll), penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide), and phosphate buffered saline (PBS) solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants.

  16. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer

    PubMed Central

    Burgess, Emma M.; Karlsson, Jens O. M.; Eroglu, Ali

    2018-01-01

    Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg) of mixtures of sugars (trehalose or raffinose), polymers (polyvinylpyrrolidone or Ficoll), penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide), and phosphate buffered saline (PBS) solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants. PMID:29304068

  17. Microfluidic Fabrication of Cell Adhesive Chitosan Microtubes

    PubMed Central

    Oh, Jonghyun; Kim, Keekyoung; Won, Sung Wook; Cha, Chaenyung; Gaharwar, Akhilesh; Selimović, Šeila; Bae, Hojae; Lee, Kwang Ho; Lee, Dong Hwan; Lee, Sang-Hoon; Khademhosseini, Ali

    2013-01-01

    Chitosan has been used as a scaffolding material in tissue engineering due to its mechanical properties and biocompatibility. With increased appreciation of the effect of micro- and nanoscale environments on cellular behavior, there is increased emphasis on generating microfabricated chitosan structures. Here we employed a microfluidic coaxial flow-focusing system to generate cell adhesive chitosan microtubes of controlled sizes by modifying the flow rates of a chitosan pre-polymer solution and phosphate buffered saline (PBS). The microtubes were extruded from a glass capillary with a 300 μm inner diameter. After ionic crosslinking with sodium tripolyphosphate (TPP), fabricated microtubes had inner and outer diameter ranges of 70-150 μm and 120-185 μm. Computational simulation validated the controlled size of microtubes and cell attachment. To enhance cell adhesiveness on the microtubes, we mixed gelatin with the chitosan pre-polymer solution and adjusted the pH values of the chitosan pre-polymer solution with gelatin and TPP. During the fabrication of microtubes, fibroblasts suspended in core PBS flow adhered to the inner surface of chitosan-gelatin microtubes. To achieve physiological pH values, we adjusted pH values of chiotsan pre-polymer solution and TPP. In particular, we were able to improve cell viability to 92% with pH values of 5.8 and 7.4 for chitosan and TPP solution respectively. Cell culturing for three days showed that the addition of the gelatin enhanced cell spreading and proliferation inside the chitosan-gelatin microtubes. The microfluidic fabrication method for ionically crosslinked chitosan microtubes at physiological pH can be compatible with a variety of cells and used as a versatile platform for microengineered tissue engineering. PMID:23355068

  18. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    PubMed

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. High-molecular-weight polyethylene glycol inhibits myocardial ischemia-reperfusion injury in vivo.

    PubMed

    Xu, Xianyao; Philip, Jennifer L; Razzaque, Md Abdur; Lloyd, James W; Muller, Charlie M; Akhter, Shahab A

    2015-02-01

    Cardiac ischemia-reperfusion (I-R) injury remains a significant problem as there are no therapies available to minimize the cell death that can lead to impaired function and heart failure. We have shown that high-molecular-weight polyethylene glycol (PEG) (15-20 kD) can protect cardiac myocytes in vitro from hypoxia-reoxygenation injury. In this study, we investigated the potential protective effects of PEG in vivo. Adult rats underwent left anterior descending artery occlusion for 60 minutes followed by 48 hours or 4 weeks of reperfusion. One milliliter of 10% PEG solution or phosphate-buffered saline (PBS) control (n = 10 per group) was administered intravenously (IV) immediately before reperfusion. Fluorescein-labeled PEG was robustly visualized in the myocardium 1 hour after IV delivery. The PEG group had significant recovery of left ventricular ejection fraction at 4 weeks versus a 25% decline in the PBS group (P < .01). There was 50% less LV fibrosis in the PEG group versus PBS with smaller peri-infarct and remote territory fibrosis (P < .01). Cell survival signaling was upregulated in the PEG group with increased Akt (3-fold, P < .01) and ERK (4-fold, P < .05) phosphorylation compared to PBS controls at 48 hours. PEG also inhibited apoptosis as measured by TUNEL-positive nuclei (56% decrease, P < .02) and caspase 3 activity (55% decrease, P < .05). High-molecular-weight PEG appears to have a significant protective effect from I-R injury in the heart when administered IV immediately before reperfusion. This may have important clinical translation in the setting of acute coronary revascularization and myocardial protection in cardiac surgery. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  20. The effect of the plasma needle on the human keratinocytes related to the wound healing process

    NASA Astrophysics Data System (ADS)

    Korolov, Ihor; Fazekas, Barbara; Széll, Márta; Kemény, Lajos; Kutasi, Kinga

    2016-01-01

    In the present study we aim to verify the influence of a non-thermal atmospheric pressure plasma on the wound healing process. In this process the major contributors are the keratinocytes, which migrate to fill in the gap created by the wound. Therefore, we performed the direct treatment of HPV-immortalized human keratinocytes, protected by a layer of phosphate buffered saline (PBS) solution, with the glow discharge generated in flowing helium by a plasma needle. To mimick a wound, a 4 mm scratch was performed on the cell culture (scratch assay). We conducted two types of experiments: (i) cell proliferation and (ii) wound-healing model experiments. The plasma needle configuration, the plasma treatment conditions and the thickness of the protecting PBS layer were set based on viability experiments. The proliferation studies showed that short, 5-10 s, and low power treatments, such as 18 W and 20 W input power, could positively influence the cell proliferation when keratinocytes were protected by PBS. On the other hand, the plasma treatment of cell medium covered keratinocytes resulted in the decrease of proliferation. The wound-healing model (scratch assay) studies showed, that there was a maximum in the wound reduction as a function of the input power and treatment time, namely, at 18 W and 5 s. Furthermore, the wound reduction strongly depended on the treated cell—PBS interaction time. To mimic an infected wound, the scratch assay was covered with a 1× {{10}9} cfu ml-1 Propionibacterium acnes suspension. The plasma treatment of this infected assay resulted in closing of the scratch, while in the non-treated assay the wound did not close at all.

  1. Evaluation of Commercially Available Cold Chain Shipping Systems

    DTIC Science & Technology

    2015-03-19

    instructions for the maceration of heart tissue. Briefly, 10 g of ground beef was placed alone or with 40 mL 4°C phosphate buffered saline (PBS) in...room temperature (25°C) raw ground beef was placed in a 50-mL IKA Turrax tube with rotor-stator elements and 40 mL of 4°C PBS. Temperature probes...were placed in the center of the ground beef to record the starting temperature and removed during the homogenization process. Turrax homogenization

  2. Innovative Microsystems: Novel Nanostructures to Capture Circulating Breast Cancer Cells

    DTIC Science & Technology

    2009-05-01

    temperature to promote a Schiff-base reaction. Recombinant protein G from E . coli (Zymed Lab Inc.) 50 μg/ml in Ca- and Mg-free phosphate-buffered...recombinant protein G from E . coli (Zymed Lab Inc.), at a concentration of 50 mg ml1 in 1 PBS, is incubated on the activated surface overnight at 4 C...reaction. Recombinant protein G from E . coli (Zymed Lab Inc.) 50 μg/ml in Ca- and Mg-free phosphate-buffered saline (CMF-PBS), is incubated on the

  3. Plasma Jet (V)UV-Radiation Impact on Biologically Relevant Liquids and Cell Suspension

    NASA Astrophysics Data System (ADS)

    Tresp, H.; Bussiahn, R.; Bundscherer, L.; Monden, A.; Hammer, M. U.; Masur, K.; Weltmann, K.-D.; Woedtke, Th. V.; Reuter, S.

    2014-10-01

    In this study the generation of radicals in plasma treated liquids has been investigated. To quantify the contribution of plasma vacuum ultraviolet (VUV) and ultraviolet (UV) radiation on the species investigated, three cases have been studied: UV of plasma jet only, UV and VUV of plasma jet combined, and the plasma effluent including all reactive components. The emitted VUV has been observed by optical emission spectroscopy and its effect on radical formation in liquids has been analyzed by electron spin resonance spectroscopy. Radicals have been determined in ultrapure water (dH2O), as well as in more complex, biorelevant solutions like phosphate buffered saline (PBS) solution, and two different cell culture media. Various compositions lead to different reactive species formation, e.g. in PBS superoxide anion and hydroxyl radicals have been detected, in cell suspension also glutathione thiyl radicals have been found. This study highlights that UV has no impact on radical generation, whereas VUV is relevant for producing radicals. VUV treatment of dH2O generates one third of the radical concentration produced by plasma-effluent treatment. It is relevant for plasma medicine because although plasma sources are operated in open air atmosphere, still VUV can lead to formation of biorelevant radicals. This work is funded by German Federal Ministry of Education a Research (BMBF) (Grant # 03Z2DN12+11).

  4. Investigation of Fragment Antibody Stability and Its Release Mechanism from Poly(Lactide-co-Glycolide)-Triacetin Depots for Sustained-Release Applications.

    PubMed

    Chang, Debby P; Garripelli, Vivek Kumar; Rea, Jennifer; Kelley, Robert; Rajagopal, Karthikan

    2015-10-01

    Achieving long-term drug release from polymer-based delivery systems continues to be a challenge particularly for the delivery of large hydrophilic molecules such as therapeutic antibodies and proteins. Here, we report on the utility of an in situ-forming and injectable polymer-solvent system for the long-term release of a model antibody fragment (Fab1). The delivery system was prepared by dispersing a spray-dried powder of Fab1 within poly(lactide-co-glycolide) (PLGA)-triacetin solution. The formulation viscosity was within the range 1.0 ± 0.3 Pa s but it was injectable through a 27G needle. The release profile of Fab1, measured in phosphate-buffered saline (PBS), showed a lag phase followed by sustained-release phase for close to 80 days. Antibody degradation during its residence within the depot was comparable to its degradation upon long-term incubation in PBS. On the basis of temporal changes in surface morphology, stiffness, and depot mass, a mechanism to account for the drug release profile has been proposed. The unprecedented release profile and retention of greater than 80% of antigen-binding capacity even after several weeks demonstrates that PLGA-triacetin solution could be a promising system for the long-term delivery of biologics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Microbiological Investigations of ReNu Plastic Bottles and the 2004 to 2006 ReNu With MoistureLoc-Related Worldwide Fusarium Keratitis Event.

    PubMed

    Bullock, John D; Warwar, Ronald E; Elder, B Laurel; Khamis, Harry J

    2016-05-01

    The purposes of this study were to determine whether the contact lens solution RevitaLens Ocutec (containing the antimicrobial agents alexidine and polyquaternium-1) would inhibit Fusarium organisms when heated in ReNu plastic bottles; whether alexidine would inhibit Fusarium organisms when heated in non-ReNu plastic bottles; and whether an alexidine-neutralizing compound leaches from heated ReNu bottles. RevitaLens and an alexidine solution (0.00045%), previously stored in ReNu bottles at room temperature (RT) and 56°C, were incubated with 7 different Fusarium organisms. The alexidine solution was similarly stored in seven non-ReNu plastic bottles and incubated with these same organisms. To determine if an alexidine-neutralizing compound might be leaching from heated ReNu bottles, phosphate-buffered saline (PBS) was incubated at RT and 56°C in ReNu bottles, combined with alexidine, and then tested for anti-Fusarium capability. After being heated in ReNu bottles, RevitaLens retained its anti-Fusarium capability, whereas the alexidine solution did not. The alexidine solution heated in seven non-ReNu plastic bottles retained its anti-Fusarium capability. The alexidine solution retained its anti-Fusarium capability when incubated with a PBS solution that had been heated in ReNu bottles, indicating, microbiologically, that an alexidine-neutralizing compound did not leach from the heated ReNu bottle. Alexidine uniquely fails to inhibit Fusarium organisms when heated in a plastic ReNu bottle, but not in seven other plastic bottles, whereas the anti-Fusarium capability of RevitaLens (containing the antimicrobial agents alexidine and polyquaternium-1) is unaffected by heating in a ReNu bottle. There does not seem to be an alexidine-neutralizing compound leaching from heated ReNu bottles. An interaction between alexidine and its heated ReNu bottle may have been a critical factor in the worldwide ReNu with MoistureLoc-related Fusarium keratitis event of 2004 to 2006.

  6. Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys.

    PubMed

    Muñoz, A Igual; Mischler, S

    2011-03-01

    The corrosion behaviour and the wear ranking of biomedical high carbon (HC) and low carbon (LC) CoCrMo alloys sliding against an alumina ball in four different simulated body fluids [NaCl and phosphate buffered solutions (PBS) with and without albumin] has been analyzed by tribocorrosion and electrochemical techniques. The effects of alloy and of albumin on corrosion depend on the base electrolyte: differences between LC and HC alloy were only observed in NaCl solutions but not in PBS. Albumin increased significantly corrosion of both alloys in PBS solutions while its effect in NaCl was smaller. The wear ranking of the HC and LC alloys also depends on the environment. In the present study, HC CoCrMo alloy had lower wear resistance in NaCl and PBS + albumin than the LC alloy, while no differences between both alloys were found in the other solutions. This was attributed to surface chemical effects affecting third body behaviour.

  7. Bactericidal Effects of HVOF-Sprayed Nanostructured TiO2 on Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Jeffery, B.; Peppler, M.; Lima, R. S.; McDonald, A.

    2010-01-01

    Titanium dioxide (TiO2) has been shown to exhibit photocatalytic bactericidal activity. This preliminary study focused on examining the photocatalytic activity of high-velocity oxy-fuel (HVOF) sprayed nanostructured TiO2 coatings to kill Pseudomonas aeruginosa. The surfaces of the nanostructured TiO2 coatings were lightly polished before addition of the bacterial solution. Plates of P. aeruginosa were grown, and then suspended in a phosphate buffer saline (PBS) solution. The concentration of bacteria used was determined by a photo-spectrometer, which measured the amount of light absorbed by the bacteria-filled solution. This solution was diluted and pipetted onto the coating, which was exposed to white light in 30-min intervals, up to 120 min. It was found that on polished HVOF-sprayed coatings exposed to white light, 24% of the bacteria were killed after exposure for 120 min. On stainless steel controls, approximately 6% of the bacteria were not recovered. These preliminary results show that thermal-sprayed nanostructured TiO2 coatings exhibited photocatalytic bactericidal activity with P. aeruginosa.

  8. Evaluation of BSA protein release from hollow hydroxyapatite microspheres into PEG hydrogel

    PubMed Central

    Fu, Hailuo; Rahaman, Mohamed N.; Brown, Roger F.; Day, Delbert E.

    2013-01-01

    Implants that simultaneously function as an osteoconductive matrix and as a device for local drug or growth factor delivery could provide an attractive system for bone regeneration. In our previous work, we prepared hollow hydroxyapatite (abbreviated HA) microspheres with a high surface area, mesoporous shell wall and studied the release of a model protein, bovine serum albumin (BSA), from the microspheres into phosphate-buffered saline (PBS). The present work is an extension of our previous work to study the release of BSA from similar HA microspheres into a biocompatible hydrogel, poly(ethylene glycol) (PEG). BSA-loaded HA microspheres were placed in a PEG solution which was rapidly gelled using ultraviolet radiation. The BSA release rate into the PEG hydrogel, measured using a spectrophotometric method, was slower than into PBS, and it was dependent on the initial BSA loading and on the microstructure of the microsphere shell wall. A total of 35–40% of the BSA initially loaded into the microspheres was released into PEG over ~14 days. The results indicate that these hollow HA microspheres have promising potential as an osteoconductive device for local drug or growth factor delivery in bone regeneration and in the treatment of bone diseases. PMID:23498254

  9. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys.

    PubMed

    Zhen, Zhen; Liu, Xiaoli; Huang, Tao; Xi, TingFei; Zheng, Yufeng

    2015-01-01

    Good hemocompatibility and cell compatibility are essential requirements for coronary stents, especially for biodegradable magnesium alloy stents, which could change the in situ environment after implanted. In this work, the effects of magnesium ion concentration and pH value on the hemolysis and cytotoxicity have been evaluated. Solution with different Mg(2+) concentration gradients and pH values of normal saline and cell culture media DMEM adjusted by MgCl2 and NaOH respectively were tested for the hemolysis and cell viability. Results show that even when the concentration of Mg(2+) reaches 1000 μg/mL, it has little destructive effect on erythrocyte, and the high pH value over 11 caused by the degradation is the real reason for the high hemolysis ratio. Low concentrations of Mg(2+) (<100 μg/mL) cause no cytotoxicity to L929 cells, of which the cell viability is above 80%, while high concentrations of Mg(2+) (>300 μg/mL) could induce obvious death of the L929 cells. The pH of the extract plays a synergetic effect on cytotoxicity, due to the buffer action of the cell culture medium. To validate this conclusion, commercial pure Mg using normal saline and PBS as extract was tested with the measurement of pH and Mg(2+) concentration. Pure Mg leads to a higher hemolysis ratio in normal saline (47.76%) than in buffered solution (4.38%) with different pH values and low concentration of Mg(2+). The Mg extract culture media caused no cytotoxicity, with pH=8.44 and 47.80 μg/mL Mg(2+). It is suggested that buffered solution and dynamic condition should be adopted in the hemolysis evaluation. Copyright © 2014. Published by Elsevier B.V.

  10. Effect of Biomineralization Ability on Push-out Strength of Proroot Mineral Trioxide Aggregate, Mineral Trioxide Aggregate Branco, and Calcium Phosphate Cement on Dentin: An In vitro Evaluation.

    PubMed

    Revankar, Vanita D; Prathap, M S; Shetty, K Harish Kumar; Shahul, Azmin; Sahana, K

    2017-11-01

    Biomineralization is a process which leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface. It is due to interaction of mineral trioxide aggregate (MTA) and Portland cement with dentin in phosphate-buffered solution (PBS). This study is aimed to evaluate the effect of influence of biomineralization process on push-out bond strength of ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK, USA), MTA Branco (Angelus Soluc¸o˜es Odontolo´gicas, Londrina, PR, Brazil) and calcium phosphate cement (BioGraft CPC). The aim of this study was to evaluate the effect of biomineralization process on the push-out strength of ProRoot MTA, MTA Branco, and CPC after mixing with 0.2% chlorhexidine gluconate solution (0.2% CHX) and 2% lidocaine solution (2% LA) on the bond strength of MTA-dentin. Dentin discs with uniform cavities were restored with ProRoot MTA, MTA Branco, and calcium phosphate cement after mixing with 0.2% CHX solution and 2% lidocaine solution. The samples were uniformly distributed into two groups. Experimental group being immersed in PBS solution and control group being immersed in saline for 2 months. Instron testing machine (Model 4444; Instron Corp., Canton, MA, USA) was used to determine the bond strength. A two-way analysis of variance and post hoc analysis by Bonferroni test. All samples immersed in experimental group displayed a significantly greater resistance to displacement than that observed for the samples in control group ( P < 0.05). MTAs displayed a significantly greater resistance to displacement than calcium phosphate cements. The main conclusion of this study was that the push-out bond strength of the cements, mainly the MTA groups, was positively influenced by the biomineralization process.

  11. Formulation and synthesis of hydrogels having lower critical solution temperature near body temperature

    NASA Astrophysics Data System (ADS)

    Abidin, A. Z.; Graha, H. P. R.; Trirahayu, D. A.

    2017-07-01

    Copolymerization between bacterial cellulose nanocrystal (CN) and methyl cellulose (MC) was carried out using UV light to produce a biocompatible hydrogel at body temperature and liquid at room temperature. Viscosity and salt effect of the MC and copolymer solution at room temperature and its Lower Critical Solution Temperature (LCST) were evaluated. The analysis showed that the higher concentration of methyl cellulose and salt content in the solution produced lower LCST and higher solution viscosity. All samples of polymer solution with MC concentrations of 1 and 2% have a viscosity less than 5000 cP at room temperature. The solutions with MC concentration of 1, 2, and 3% have respectively LCST of 59, 58, and 57°C, while its copolymer solutions with CN concentration of 0.1, 0.3, and 0.5% have respectively LCST of 55, 51, and 41°C. The salt addition to the solution of MC-CN copolymer with concentrations of 1x and 1.5x Phosphat Buffered Saline (PBS) produces respectively LCST of 47 and 38°C. The results suggest that the copolymer solution of MC-CN could produce a lower LCST and the addition of salt could amplify the effect of LCST decrease that can be used to produce a biocompatible hydrogel with LCST as close as body temperature.

  12. Automatic assessment of dynamic contrast-enhanced MRI in an ischemic rat hindlimb model: an exploratory study of transplanted multipotent progenitor cells.

    PubMed

    Hsu, Li-Yueh; Wragg, Andrew; Anderson, Stasia A; Balaban, Robert S; Boehm, Manfred; Arai, Andrew E

    2008-02-01

    This study presents computerized automatic image analysis for quantitatively evaluating dynamic contrast-enhanced MRI in an ischemic rat hindlimb model. MRI at 7 T was performed on animals in a blinded placebo-controlled experiment comparing multipotent adult progenitor cell-derived progenitor cell (MDPC)-treated, phosphate buffered saline (PBS)-injected, and sham-operated rats. Ischemic and non-ischemic limb regions of interest were automatically segmented from time-series images for detecting changes in perfusion and late enhancement. In correlation analysis of the time-signal intensity histograms, the MDPC-treated limbs correlated well with their corresponding non-ischemic limbs. However, the correlation coefficient of the PBS control group was significantly lower than that of the MDPC-treated and sham-operated groups. In semi-quantitative parametric maps of contrast enhancement, there was no significant difference in hypo-enhanced area between the MDPC and PBS groups at early perfusion-dependent time frames. However, the late-enhancement area was significantly larger in the PBS than the MDPC group. The results of this exploratory study show that MDPC-treated rats could be objectively distinguished from PBS controls. The differences were primarily determined by late contrast enhancement of PBS-treated limbs. These computerized methods appear promising for assessing perfusion and late enhancement in dynamic contrast-enhanced MRI.

  13. [Studies for analyzing restricted ingredients such as phenylbenzoimidazole sulfonic acid].

    PubMed

    Tokunaga, Hiroshi; Mori, Kenichiro; Onuki, Nahomi; Nosaka, Tomio; Doi, Kayo; Sakaguchi, Hiroshi; Fujii, Makiko; Takano, Katuhiro; Hayashi, Masato; Yoshizawa, Kenichi; Shimamura, Kimio; Sato, Nobuo

    2006-01-01

    Phenylbenzoimidazol sulfonic acid (PBS) is a kind of sunscreens in cosmetics and is nominated as the restricted ingredients in cosmetics in Japanese Pharmaceutical Affairs Act. So the analytical method for PBS was investigated by HPLC. 1.0 g of the lotions with 1.0% PBS was exactly weighed, put into a 50-mL volumetric flask. Water was added to make exactly 50 mL and this mixture was used as the sample solution. On the other hand, 1.0 g of the creams with 1.0% PBS was exactly weighed, put into a beaker. After adding 1 mL of tetrahydrofuran and dissolving the cream, that mixture was transferred to a 50-mL volumetric flask. And then the beaker was rinsed with 1 mL of tetrahydrofuran and the rinsed solution was put together into the volumetric flask. After adding water to the volumetric flask to make exactly 50 mL, this mixture was used as the sample solution. If necessary, the mixture was filtrated with a membrane filter (0.45 microm). 5.0 mL of the sample solution was pipetted and put into a 200-mL volumetric flask. After adding water to make exactly 200 mL, 20 microL of this solution was analyzed by HPLC using the ODS column (CAPCELL PAK C18 column, 4.6 mm i.d. x 250 mm), the mixture of 40 mmol/L acetic buffer (pH 3.4) and acetonitrile (3:1) with 0.8 mmol/L dodecyltrimethyl ammonium bromide and the detection wavelength of 305 nm. The working curve from 0.5 to 20.0 microg/mL showed a linear line between the concentrations of PBS and the peak areas. There was no interference of peak of PBS from the lotion and cream.

  14. A simple biofuel cell cathode with human red blood cells as electrocatalysts for oxygen reduction reaction.

    PubMed

    Ayato, Yusuke; Sakurai, Kenichiro; Fukunaga, Saori; Suganuma, Takuya; Yamagiwa, Kiyofumi; Shiroishi, Hidenobu; Kuwano, Jun

    2014-05-15

    A red blood cell (RBC) from human exhibited direct electron transfer (DET) activity on a bare indium tin oxide (ITO) electrode. A formal potential of -0.152 V vs. a silver-silver chloride saturated potassium chloride (Ag|AgCl|KCl(satd.)) was estimated for the human RBC (type AB) from a pair of redox peaks at around 0.089 and -0.215 V (vs. Ag|AgCl|KCl(satd.)) on cyclic voltammetric (CV) measurements in a phosphate buffered saline (PBS; 39 mM; pH 7.4) solution. The results agreed well with those of a redox couple for iron-bearing heme groups in hemoglobin molecules (HbFe(II)/HbFe(III)) on the bare ITO electrodes, indicated that DET active species were hemoglobin (Hb) molecules encapsulated by a phospholipid bilayer membrane of the human RBC. The quantity of electrochemically active Hb in the human RBC was estimated to be 30 pmol cm(-2). In addition, the human RBC exhibited oxygen reduction reaction (ORR) activity in the dioxygen (O2) saturated PBS solution at the negative potential from ca. -0.15 V (vs. Ag|AgCl|KCl(satd.)). A single cell test proved that a biofuel cell (BFC) with an O2|RBC|ITO cathode showed the open-circuit voltage (OCV) of ca. 0.43 V and the maximum power density of ca. 0.68 μW cm(-2). © 2013 Published by Elsevier B.V.

  15. Poisson-Box Sampling algorithms for three-dimensional Markov binary mixtures

    NASA Astrophysics Data System (ADS)

    Larmier, Coline; Zoia, Andrea; Malvagi, Fausto; Dumonteil, Eric; Mazzolo, Alain

    2018-02-01

    Particle transport in Markov mixtures can be addressed by the so-called Chord Length Sampling (CLS) methods, a family of Monte Carlo algorithms taking into account the effects of stochastic media on particle propagation by generating on-the-fly the material interfaces crossed by the random walkers during their trajectories. Such methods enable a significant reduction of computational resources as opposed to reference solutions obtained by solving the Boltzmann equation for a large number of realizations of random media. CLS solutions, which neglect correlations induced by the spatial disorder, are faster albeit approximate, and might thus show discrepancies with respect to reference solutions. In this work we propose a new family of algorithms (called 'Poisson Box Sampling', PBS) aimed at improving the accuracy of the CLS approach for transport in d-dimensional binary Markov mixtures. In order to probe the features of PBS methods, we will focus on three-dimensional Markov media and revisit the benchmark problem originally proposed by Adams, Larsen and Pomraning [1] and extended by Brantley [2]: for these configurations we will compare reference solutions, standard CLS solutions and the new PBS solutions for scalar particle flux, transmission and reflection coefficients. PBS will be shown to perform better than CLS at the expense of a reasonable increase in computational time.

  16. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits

    PubMed Central

    Liang, H.; Brignole-Baudouin, F.; Rabinovich-Guilatt, L.; Mao, Z.; Riancho, L.; Faure, M.O.; Warnet, J.M.; Lambert, G.

    2008-01-01

    Purpose To evaluate and compare the toxicological profiles of two quaternary ammonium compounds (QAC), benzalkonium chloride (BAK), and cetalkonium chloride (CKC), in standard solution or cationic emulsion formulations in rabbit eyes using newly developed in vivo and ex vivo experimental approaches. Methods Seventy eyes of 35 adult male New Zealand albino rabbits were used in this study. They were randomly divided into five groups: 50 µl of phosphate-buffered saline (PBS), PBS containing 0.02% BAK or 0.002% CKC (BAK Sol and CKC Sol, respectively), and emulsion containing 0.02% BAK or 0.002% CKC (BAK Em and CKC Em, respectively) were applied to rabbit eyes 15 times at 5-min intervals. The ocular surface changes induced by these eye drops were investigated using slit-lamp examination, flow cytometry (FCM), impression cytology (IC) on conjunctiva, and corneal in vivo confocal microscopy (IVCM). Standard immunohistology in cryosections was also examined for cluster of differentiation (CD) 45+ infiltrating and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL)+ apoptotic cells. Results Clinical observations and IVCM showed that the highest toxicity was induced by BAK Sol, characterized by damaged corneal epithelium and a high level of inflammatory infiltration. BAK Em and CKC Sol presented moderate effects, and CKC Em showed the lowest toxicity with results similar to those of PBS. Conjunctival imprints analyzed by FCM showed a higher expression of RLA-DR and TNFR1 markers in BAK Sol-instilled eyes than in all other groups, especially at 4 h. Immunohistology was correlated with in vivo and ex vivo findings and confirmed this toxicity profile. A high level of infiltration of CD45+ inflammatory cells and TUNEL+ apoptotic cells was observed in limbus and conjunctiva, especially in QAC solution-receiving eyes compared to QAC emulsion-instilled eyes. Conclusions The acute administration of 15 instillations at 5 min intervals was a rapid and efficient model to assess quaternary ammonium toxicity profiles. This model showed the highest toxicity, induced by the BAK solution, and the lowest level of toxicity, induced by the CKC emulsion. These in vivo and ex vivo experimental approaches demonstrated that ocular surface toxicity was reduced by using an emulsion instead of a traditional solution and that a CKC emulsion was safe for future ocular administration. PMID:18347566

  17. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits.

    PubMed

    Liang, H; Brignole-Baudouin, F; Rabinovich-Guilatt, L; Mao, Z; Riancho, L; Faure, M O; Warnet, J M; Lambert, G; Baudouin, C

    2008-01-31

    To evaluate and compare the toxicological profiles of two quaternary ammonium compounds (QAC), benzalkonium chloride (BAK), and cetalkonium chloride (CKC), in standard solution or cationic emulsion formulations in rabbit eyes using newly developed in vivo and ex vivo experimental approaches. Seventy eyes of 35 adult male New Zealand albino rabbits were used in this study. They were randomly divided into five groups: 50 microl of phosphate-buffered saline (PBS), PBS containing 0.02% BAK or 0.002% CKC (BAK Sol and CKC Sol, respectively), and emulsion containing 0.02% BAK or 0.002% CKC (BAK Em and CKC Em, respectively) were applied to rabbit eyes 15 times at 5-min intervals. The ocular surface changes induced by these eye drops were investigated using slit-lamp examination, flow cytometry (FCM), impression cytology (IC) on conjunctiva, and corneal in vivo confocal microscopy (IVCM). Standard immunohistology in cryosections was also examined for cluster of differentiation (CD) 45+ infiltrating and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL)+ apoptotic cells. Clinical observations and IVCM showed that the highest toxicity was induced by BAK Sol, characterized by damaged corneal epithelium and a high level of inflammatory infiltration. BAK Em and CKC Sol presented moderate effects, and CKC Em showed the lowest toxicity with results similar to those of PBS. Conjunctival imprints analyzed by FCM showed a higher expression of RLA-DR and TNFR1 markers in BAK Sol-instilled eyes than in all other groups, especially at 4 h. Immunohistology was correlated with in vivo and ex vivo findings and confirmed this toxicity profile. A high level of infiltration of CD45+ inflammatory cells and TUNEL+ apoptotic cells was observed in limbus and conjunctiva, especially in QAC solution-receiving eyes compared to QAC emulsion-instilled eyes. The acute administration of 15 instillations at 5 min intervals was a rapid and efficient model to assess quaternary ammonium toxicity profiles. This model showed the highest toxicity, induced by the BAK solution, and the lowest level of toxicity, induced by the CKC emulsion. These in vivo and ex vivo experimental approaches demonstrated that ocular surface toxicity was reduced by using an emulsion instead of a traditional solution and that a CKC emulsion was safe for future ocular administration.

  18. Evaluating the ototoxicity of an anti-MRSA peptide KR-12-a2.

    PubMed

    Sung, Chung Man; Kim, Hong Chan; Cho, Yong Beom; Shin, Song Yub; Jang, Chul Ho

    2017-05-31

    Methicillin-resistant staphylococcus aureus is an emerging problem for the treatment of chronic suppurative otitis media, and also for pediatric tympanostomy tube otorrhea. To date, there are no effective topical antibiotic drugs to treat methicillin-resistant staphylococcus aureus otorrhea. In this study, we evaluated the ototoxicity of topical KR-12-a2 solution on the cochlea when it is applied topically in the middle ear of guinea pigs. The antimicrobial activity of KR-12-a2 against methicillin-resistant staphylococcus aureus strains was examined by using the inhibition zone test. Topical application of KR-12-a2 solution, Gentamicin and Phosphate Buffered Saline were applied in the middle ear of the guinea pigs after inserting ventilation tubes. Ototoxicity was assessed by Auditory Brainstem Evoked Response and Scanning Electron Microscope examination. KR-12-a2 produced an inhibition zone against methicillin-resistant staphylococcus aureus from 6.25 μg. Hearing threshold in the KR-12-a2 and PBS groups were similar to that before ventilation tube insertion. However, the Gentamicin group showed elevation of the hearing threshold and there were statistically significant differences compared to the PBS or the KR-12-a2 group. In the SEM findings, the KR-12-a2 group showed intact outer hair cells. However, the GM group showed total loss of outer hair cells. In our experiment, topically applied KR-12-a2 solution did not cause hearing loss or cochlear damage in guinea pigs. In our experiment, topically applied KR-12-a2 solution did not cause hearing loss or cochlear damage in guinea pigs. The KR-12-a2 solution can be used as ototopical drops for treating methicillin-resistant staphylococcus aureus otorrhea; however, further evaluations, such as the definition of optimal concentration and combination, are necessary. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Bacterial entombment by intratubular mineralization following orthograde mineral trioxide aggregate obturation: a scanning electron microscopy study

    PubMed Central

    Yoo, Jun Sang; Chang, Seok-Woo; Oh, So Ram; Perinpanayagam, Hiran; Lim, Sang-Min; Yoo, Yeon-Jee; Oh, Yeo-Rok; Woo, Sang-Bin; Han, Seung-Hyun; Zhu, Qiang; Kum, Kee-Yeon

    2014-01-01

    The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate (MTA) was studied by scanning electron microscopy (SEM). Single-rooted human premolars (n=60) were instrumented to an apical size #50/0.06 using ProFile and treated as follows: Group 1 (n=10) was filled with phosphate buffered saline (PBS); Group 2 (n=10) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS; Group 3 (n=20) was obturated orthograde with a paste of OrthoMTA (BioMTA, Seoul, Korea) and PBS; and Group 4 (n=20) was incubated with E. faecalis for 3 weeks and then obturated with OrthoMTA–PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material (IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoMTA-filled roots (Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots (Group 4). Therefore, the orthograde obturation of root canals with OrthoMTA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization. PMID:25012869

  20. Direct, rapid, and label-free detection of enzyme-substrate interactions in physiological buffers using CMOS-compatible nanoribbon sensors.

    PubMed

    Mu, Luye; Droujinine, Ilia A; Rajan, Nitin K; Sawtelle, Sonya D; Reed, Mark A

    2014-09-10

    We demonstrate the versatility of Al2O3-passivated Si nanowire devices ("nanoribbons") in the analysis of enzyme-substrate interactions via the monitoring of pH change. Our approach is shown to be effective through the detection of urea in phosphate buffered saline (PBS), and penicillinase in PBS and urine, at limits of detection of <200 μM and 0.02 units/mL, respectively. The ability to extract accurate enzyme kinetics and the Michaelis-Menten constant (Km) from the acetylcholine-acetylcholinesterase reaction is also demonstrated.

  1. Study of structural and optical properties of PbS thin films

    NASA Astrophysics Data System (ADS)

    Homraruen, T.; Sudswasd, Y.; Sorod, R.; Kayunkid, N.; Yindeesuk, W.

    2018-03-01

    This research aimed to synthesize lead sulfide (PbS) thin films on glass slides using the successive ion layer absorption and reaction (SILAR) method. We studied the optical properties and structure of PbS thin films by changing the number of dipping cycles and the concentration of precursor solution. The results of this experiment show that different conditions have a considerable influence on the thickness and absorbance of the films. When the number of dipping cycles and the concentration of the solution are increased, film thickness and absorbance tend to become higher. The xrays diffraction pattern showed all the diffraction peaks which confirmed the face center cubic and the structure of PbS had identified. Grain size computation was used to confirm how much these conditions could be affected.

  2. SU-F-T-676: Measurement of Hydroxyl Radicals in Radiolized Water Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Z; Ngwa, W; Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA

    2016-06-15

    Purpose: Hydroxyl radicals can be produced within tissue by radiation therapy, and they are largely responsible for DNA damage and cell killing. Coumarin-3-carboxylic acid (3-CCA) and crystal violet are reported to react with hydroxyl radicals and can be used for fluorescence and absorbance measurements, respectively. This study assesses the ability of hydroxyl measurement for both 3-CCA and crystal violet in radiolized water systems in order to provide dosimetric information in radiation chemistry and radiation biology experiments. Methods: 3-CCA and crystal violet were both dissolved in phosphate buffered saline (PBS, pH 7.4) with final concentrations 0.5 mg/mL and 0.05 mg/mL. 3-CCAmore » and control solutions (PBS only) were loaded in black bottom 96-well plates. Crystal violet and control solutions were loaded in clear bottom 96-well plates. The prepared solutions were irradiated at 2 Gy using a small animal radiation research platform. Fluorescence reading with 360 nm excitation wavelength and 485 nm emission wavelength was done for 3-CCA, and absorbance reading at wavelength 580 nm was done for crystal violet before and after radiation. Results: 3-CCA showed clear difference in fluorescence before and after radiation, which suggested hydroxyl production during radiation. However, crystal violet absorbance at 580 nm was not changed significantly by radiation. Conclusion: The overall conclusion is that 3-CCA can be used for hydroxyl measurement in radiolized water systems, while crystal violet cannot, although crystal violet is reported widely to react with hydroxyl radicals produced in Fenton reactions. Possible reasons could relate to reaction pH.« less

  3. Extra- and intracellular ice formation in mouse oocytes.

    PubMed

    Mazur, Peter; Seki, Shinsuke; Pinn, Irina L; Kleinhans, F W; Edashige, Keisuke

    2005-08-01

    The occurrence of intracellular ice formation (IIF) during freezing, or the lack there of, is the single most important factor determining whether or not cells survive cryopreservation. One important determinant of IIF is the temperature at which a supercooled cell nucleates. To avoid intracellular ice formation, the cell must be cooled slowly enough so that osmotic dehydration eliminates nearly all cell supercooling before reaching that temperature. This report is concerned with factors that determine the nucleation temperature in mouse oocytes. Chief among these is the concentration of cryoprotective additive (here, glycerol or ethylene glycol). The temperature for IIF decreases from -14 degrees C in buffered isotonic saline (PBS) to -41 degrees C in 1M glycerol/PBS and 1.5M ethylene glycol/PBS. The latter rapidly permeates the oocyte; the former does not. The initial extracellular freezing at -3.9 to -7.8 degrees C, depending on the CPA concentration, deforms the cell. In PBS that deformation often leads to IIF; in CPA it does not. The oocytes are surrounded by a zona pellucida. That structure appears to impede the growth of external ice through it, but not to block it. In most cases, IIF is characterized by an abrupt blackening or flashing during cooling. But in some cases, especially with dezonated oocytes, a pale brown veil abruptly forms during cooling followed by slower blackening during warming. Above -30 degrees C, flashing occurs in a fraction of a second. Below -30 degrees C, it commonly occurs much more slowly. We have observed instances where flashing is accompanied by the abrupt ejection of cytoplasm. During freezing, cells lie in unfrozen channels between the growing external ice. From phase diagram data, we have computed the fraction of water and solution that remains unfrozen at the observed flash temperatures and the concentrations of salt and CPA in those channels. The results are somewhat ambiguous as to which of these characteristics best correlates with IIF.

  4. Knot Security of 5 Metric (USP 2) Sutures: Influence of Knotting Technique, Suture Material, and Incubation Time for 14 and 28 Days in Phosphate Buffered Saline and Inflamed Equine Peritoneal Fluid.

    PubMed

    Sanders, Ruth E; Kearney, Clodagh M; Buckley, Conor T; Jenner, Florien; Brama, Pieter A

    2015-08-01

    To evaluate knot security for 3 knot types created in 3 commonly used 5 metric suture materials incubated in physiological and pathological fluids. In vitro mechanical study. Knotted suture loops (n = 5/group). Loops of 3 different suture materials (glycolide/lactide copolymer; polyglactin 910; polydioxanone) were created around a 20 mm rod using 3 knot types (square [SQ], surgeon's [SK], and triple knot [TK]) and were tested to failure in distraction (6 mm/min) after tying (day 0) and after being incubated for 14 and 28 days in phosphate buffered saline (PBS) or inflamed peritoneal fluid. Failure load (N) and mode were recorded and compared. For polydioxanone, significant differences in force to knot failure were found between SQ and SK/TK but not between SK and TK. The force required to break all constructs increased after incubation in phosphate buffered saline (PBS). With glycolide/lactide copolymer no differences in force to knot failure were observed. With polyglactin 910, a significant difference between SQ and TK was observed, which was not seen between the other knot types. Incubation in inflamed peritoneal fluid caused a larger and more rapid decrease in force required to cause knot failure than incubation in PBS. Mechanical properties of suture materials have significant effects on knot security. For polydioxanone, SQ is insufficient to create a secure knot. Additional wraps above a SK confer extra stability in some materials, but this increase may not be clinically relevant or justifiable. Glycolide/lactide copolymer had excellent knot security. © Copyright 2015 by The American College of Veterinary Surgeons.

  5. Enhanced Biocompatibility of Porous Nitinol

    PubMed Central

    Munroe, Norman; Pulletikurthi, Chandan; Haider, Waseem

    2009-01-01

    Porous Nitinol (PNT) has found vast applications in the medical industry as interbody fusion devices, synthetic bone grafts, etc. However, the tendency of the PNT to corrode is anticipated to be greater as compared to solid nitinol since there is a larger surface area in contact with body fluids. In such cases, surface preparation is known to play a major role in a material’s biocompatibility. In an effort to check the effect of surface treatments on the in vitro corrosion properties of PNT, in this investigation, they were subjected to different surface treatments such as boiling in water, dry heating, and passivation. The localized corrosion resistance of alloys before and after each treatment was evaluated in phosphate buffer saline solution (PBS) using cyclic polarization tests in accordance with ASTM F 2129-08. PMID:19956797

  6. Enhanced Biocompatibility of Porous Nitinol

    NASA Astrophysics Data System (ADS)

    Munroe, Norman; Pulletikurthi, Chandan; Haider, Waseem

    2009-08-01

    Porous Nitinol (PNT) has found vast applications in the medical industry as interbody fusion devices, synthetic bone grafts, etc. However, the tendency of the PNT to corrode is anticipated to be greater as compared to solid nitinol since there is a larger surface area in contact with body fluids. In such cases, surface preparation is known to play a major role in a material’s biocompatibility. In an effort to check the effect of surface treatments on the in vitro corrosion properties of PNT, in this investigation, they were subjected to different surface treatments such as boiling in water, dry heating, and passivation. The localized corrosion resistance of alloys before and after each treatment was evaluated in phosphate buffer saline solution (PBS) using cyclic polarization tests in accordance with ASTM F 2129-08.

  7. Short-Term Deposition of PM2.5 Particles on Contact Lens Surfaces: Effect on Oxygen Permeability and Refractive Index.

    PubMed

    Dong, Zhizhang; Ding, Xiaoyan; Li, Yong; Gan, Yifeng; Wang, Yanhui; Xu, Libin; Wang, Yahong; Zhou, Ying; Li, Juan

    2018-05-22

    To identify the deposition of fine (≤2.5 μm diameter) particulate matter (PM) particles (PM 2.5 ) on contact lens surfaces and to investigate the effects of such deposition on the oxygen permeability (OP) and refractive index (RI) of contact lenses. A total of 36 contact lenses, including rigid gas permeable (RGP) lens and soft contact lens (SCL), were investigated. RGP lens (n=12) and SCL (n=12) (experimental group) were incubated in a PM 2.5 solution for 24 h, after which PM 2.5 -treated RGP lens (n=6) and SCL (n=6) were further washed for 1 h in phosphate-buffered saline (PBS). All lenses were examined by field emission scanning electron microscopy. OP and RI of all lenses were measured. Average-sized PM 2.5 particles deposited on RGP contact lens and SCL surfaces after immersion in the PM 2.5 solution were 3.192 ± 1.637 and 2.158 ± 1.187/100 μm 2 , respectively. On RGP lens surfaces, we observed both large (≥2.5 µm diameter) and small (PM 2.5 ) particles. PM 2.5 particles were deposited in diffuse patterns, primarily along the honeycomb structural border of SCL, while no PM 2.5 particles were found in the honeycomb hole of SCL surfaces. Washing in PBS removed the larger PM particles from RGP lens surfaces, but left copious amounts of PM 2.5 particles. In contrast, nearly all PM particles were removed from SCL surfaces after PBS washing. OP values of RGP lens and SCL appeared to be unchanged by PM 2.5 deposition. RI values increased in both RGP lens and SCL groups after PM 2.5 deposition. However, these increases were not statistically significant, suggesting that PM 2.5 deposition itself does not cause fluctuations in contact lens RI. Deposition of PM 2.5 particles on contact lens surfaces varies according to lens material. PM 2.5 particles deposited on SCL, but only large particles on RGP surfaces were able to be removed by washing in PBS and did not appear to alter OP and RI of either lens type.

  8. The effects of dietary chromium(III) picolinate on growth performance, vital signs, and blood measurements of pigs during immune stress.

    PubMed

    Kim, Beob G; Lindemann, Merlin D; Cromwell, Gary L

    2010-06-01

    This experiment used 24 pigs (26.0 kg) to investigate the effects of dietary chromium (Cr) on pigs challenged with lipopolysaccharide (LPS). Following 35 days of diet exposure, the immune stress treatments were: (1) phosphate-buffered saline (PBS) injection and no Cr, (2) LPS injection and no Cr, (3) LPS injection and Cr 1,000 ppb, and (4) LPS injection and Cr 2,000 ppb. At 0 h, PBS or LPS was injected intraperitoneally in each pig. During the first 12 h post-injection, pigs challenged with LPS lost 951 g, while the PBS group gained 170 g (p < 0.001). Compared with the PBS group, LPS-challenged pigs consumed less feed (p < 0.01) during the first 24 h. The LPS group had higher rectal temperature at 2 and 4 h and higher respiratory rate at 1.3 and 8.5 h than the PBS group (p < 0.05). Plasma collected at 3 h had higher cortisol (p < 0.001) and lower glucose (p < 0.05) concentrations in the LPS group than the PBS group. However, supplemental Cr did not affect the response variables. Overall, the LPS challenge affects growth performance, vital signs, and plasma variables, but dietary Cr is unable to moderate stress-related effects associated with an LPS challenge.

  9. Chitosan adsorption on nanofibrillated cellulose with different aldehyde content and interaction with phosphate buffered saline.

    PubMed

    Ondaral, Sedat; Çelik, Elif; Kurtuluş, Orçun Çağlar; Aşıkuzun, Elif; Yakın, İsmail

    2018-04-15

    The chitosan adsorption on films prepared using nanofibrillated cellulose (NFC) with different content of aldehyde group was studied by means of Quartz Crystal Microbalance with Dissipation (QCM-D). Results showed that frequency change (Δf) was higher when the chitosan adsorbed on NFC film consisting more aldehyde group indicating the higher adsorption. The (Δf) and dissipation (ΔD) factors completely changed during adsorption of chitosan pre-treated with acetic acid: Δf increased and ΔD decreased, oppositely to un-treated chitosan adsorption. After acid treatment, molecular weight and crystallinity index of chitosan decreased addition to change in chemical structure. It was found that more phosphate buffered saline (PBS), as a model liquid for wound exudate, adsorbed to acid treated chitosan-NFC film, especially to film having more aldehyde groups. Comparing with bare NFC film, chitosan-NFC films adsorbed less PBS because chitosan crosslinked the NFC network and blocked the functional groups of NFC and thus, preventing swelling film. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    PubMed

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates

    NASA Astrophysics Data System (ADS)

    Zanini, S.; Orlandi, M.; Colombo, C.; Grimoldi, E.; Riccardi, C.

    2009-08-01

    A detailed study of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) substrates (membranes and films) is presented. The process consists of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency evaluated in terms of amount of grafted polymer, coverage uniformity and substrates wettability, are investigated. The plasma-induced graft-polymerization of PEGA is then followed by sample weighting, water droplet adsorption time and contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in phosphate buffer saline (PBS) at 37 °C. Results clearly indicates that plasma-induced graft-polymerization of PEGA is a practical methodology for anti-fouling surface modification of materials.

  12. Induced synthesis of toroid-like lead sulfide nanocomposites in ethanol solution through a protein templating route

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Qin, Dezhi; Yang, Guangrui; Du, Xian; Zhang, Qiuxia; Li, Feng

    2015-09-01

    The toroid-like PbS nanocrystals have been prepared in zein ethanol solution based on self-assembly template of protein molecules. From transmission electron microscopy observation, the obtained samples were monodispersed with an average size of about 47 nm. The chemical composition and crystal structure of nanocomposites were determined by X-ray diffraction and energy-dispersive X-ray spectrum measurements. The interaction between PbS and zein was investigated through Fourier transform infrared, photoluminescence, circular dichroism (CD) spectra, and thermogravimetric analysis. The PbS nanocrystals could react with nitrogen and oxygen atoms of zein molecules through coordination and electrostatic force. The CD spectra results suggested that PbS nanocrystals induced the conformational transition of protein from α-helix to β-sheet and then self-assembled into ring or toroid nanostructure. The quenching of zein fluorescence induced by PbS nanocrystals also showed the change in the chemical microenvironments of the fluorescent amino acid residues in the protein structure. The key step of this facile, biomimetic route was the formation of self-assembly nanostructure of zein, which could regulate the nucleation and growth of toroid-like PbS nanocrystals.

  13. Tetracycline impregnation affects degradation of porcine collagen matrix in healthy and diabetic rats.

    PubMed

    Tal, Haim; Weinreb, Miron; Shely, Asaf; Nemcovsky, Carlos E; Moses, Ofer

    2016-07-01

    The present study evaluated the degradation of collagen matrix (CM) immersed in tetracycline (TTC) or phosphate-buffered saline (PBS) in diabetic and normoglycemic rats. Diabetes was induced in 15 rats by systemic streptozotocin (STZ) (experimental); 15 healthy rats served as controls. One day before implantation 60 CM disks, 5 mm in diameter, were labeled with biotin: 30 were immersed in tetracycline (TTC) and 30 in PBS. One disk of each type was implanted subdermally in each rat. Animals were euthanized after 3 weeks, and tissue specimens containing the disks were prepared for histologic analysis. Horseradish peroxidase (HRP)-conjugated streptavidin was used to detect the remaining biotinylated collagen. Residual collagen area within the CM disks was analyzed and compared to baseline. Diabetes significantly increased the CM degradation. Immersion of the CM disks in a 50-mg/mL TTC solution before implantation decreased its degradation both in diabetic and normoglycemic rats. Diabetes significantly increases collagen matrix degradation; immersion of collagen matrix in TTC before implantation decreases its degradation in both diabetic and normoglycemic conditions. Immersion of medical collagen devices in TTC may be an effective means to decrease their resorption rate and increase their effectiveness, especially in situations with increased degradation such as diabetes.

  14. Nanoribbon field-effect transistors as direct and label-free sensors of enzyme-substrate interactions

    NASA Astrophysics Data System (ADS)

    Mu, Luye; Droujinine, Ilia; Rajan, Nitin; Sawtelle, Sonya; Reed, Mark

    2015-03-01

    The ability to measure enzyme-substrate interactions is essential in areas such as diagnostics, treatment, and biochemical screens. Many enzymatic reactions alter the pH of its environment, suggesting of a simple and direct method for detection. We show the ability of Al2O3-coated Si nanoribbon field-effect transistor biosensors to sensitively measure various aspects of enzyme-substrate interactions through measuring the pH. Urea in phosphate buffered saline (PBS) and penicillinase in PBS and urine were measured to limits of <200 μM and 0.02 units/mL, respectively. We also show the ability to extract accurate kinetics from the interaction of acetylcholine and its esterase. Prior work on FET sensors has been limited by the use of surface functionalization, which not only alters enzyme-substrate affinity, but also makes enzyme activity quantification difficult. Our method involves direct detection of reactions in solution without requiring alteration to the reactants, allowing us to obtain repeatable results and sensitive limits of detection. This method is a simple, inexpensive, and effective platform for detection of enzymatic reactions, and can be readily generalized to many unrelated classes of reactants. This work was supported in part by U.S. Army Research Office and Air Force Research Laboratory.

  15. Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm.

    PubMed

    Gosau, Martin; Hahnel, Sebastian; Schwarz, Frank; Gerlach, Till; Reichert, Torsten E; Bürgers, Ralf

    2010-08-01

    The aim of this human in vivo pilot study was to evaluate the efficacy of six antimicrobial agents on the surface decontamination of an oral biofilm attached to titanium implants. For in vivo biofilm formation, we fixed titanium specimens to individual removable acrylic upper jaw splints (14 specimens in every splint), which were worn by four volunteers overnight for 12 h. The specimens were then treated with different antimicrobial agents for 1 min (Sodium hypochlorite, Hydrogen peroxide 3%, Chlorhexidingluconate 0.2%, Plax, Listerine, citric acid 40%). Afterwards, we quantified the total bacterial load and the viability of adhering bacteria by live or dead cell labelling in combination with fluorescence microscopy. The total bacterial load on the titanium surfaces was significantly higher after incubation in the control solution phosphate-buffered saline (PBS) than after disinfection in sodium hypochlorite, hydrogen peroxide, chlorhexidine, Plax, Listerine, and citric acid. Furthermore, a significantly lower ratio between dead and total adhering bacteria (bactericidal effect) was found after incubation in control PBS, Plax mouth rinse, and citric acid than after incubation in sodium hypochlorite, hydrogen peroxide, chlorhexidine, and Listerine. All tested antiseptics seem to be able to reduce the total amount of microorganisms accumulating on titanium surfaces. Furthermore, sodium hypochlorite, hydrogen peroxide, chlorhexidine, and Listerine showed a significant bactericidal effect against adhering bacteria.

  16. Composite chitosan hydrogels for extended release of hydrophobic drugs.

    PubMed

    Delmar, Keren; Bianco-Peled, Havazelet

    2016-01-20

    A composite chitosan hydrogel durable in physiological conditions intended for sustained release of hydrophobic drugs was investigated. The design is based on chitosan crosslinked with genipin with embedded biocompatible non-ionic microemulsion (ME). A prolonged release period of 48 h in water, and of 24h in phosphate buffer saline (PBS) of pH 7.4 was demonstrated for Nile red and curcumin. The differences in release patterns in water and PBS were attributed to distinct dissimilarities in the swelling behaviors; in water, the hydrogels swell enormously, while in PBS they expel water and shrink. The release mechanism dominating this system is complex due to intermolecular bonding between the oil droplets and the polymeric network, as confirmed by Fourier transform infrared spectroscopy (FTIR) experiments. This is the first time that oil in water microemulsions were introduced into a chitosan hydrogels for the creation of a hydrophobic drug delivery system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Comparative analysis of toxin detection in biological and enviromental samples

    NASA Astrophysics Data System (ADS)

    Ogert, Robert A.; Burans, James; O'Brien, Tom; Ligler, Frances S.

    1994-03-01

    The basic recognition schemes underlying the principles of standard enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) protocols are increasingly being adapted for use with new detection devices. A direct comparison was made using a fiber optic biosensor that employs evanescent wave detection and an ELISA using avidin-biotin. The assays were developed for the detection of Ricinus communis agglutinin II, also known as ricin or RCA60. Detection limits between the two methods were comparable for ricin in phosphate buffered saline (PBS), however results in complex samples differed slightly. In PBS, sensitivity for ricin was 1 ng/ml using the fiber optic device and 500 pg/ml using the ELISA. The fiber optic sensor could not detect ricin directly in urine or serum spiked with 5 ng/ml ricin, however, the ELISA showed detection but at reduced levels to the PBS control.

  18. Evaluation of PBS Treatment and PEI Coating Effects on Surface Morphology and Cellular Response of 3D-Printed Alginate Scaffolds.

    PubMed

    Mendoza García, María A; Izadifar, Mohammad; Chen, Xiongbiao

    2017-11-01

    Three-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular response of the printed scaffolds. In our study, sterile alginate was prepared by means of the freeze-drying method and then, used to prepare the hydrogel for 3D printing into calcium chloride, forming 3D scaffolds. Scaffolds were treated with PBS for a time period of two days and seven days, respectively, and PEI coating; then they were seeded with Schwann cells (RSC96) for the examination of cellular response (proliferation and differentiation). In addition, swelling and stiffness (Young's modulus) of the treated scaffolds was evaluated, while their surface morphology was assessed using scanning electron microscopy (SEM). SEM images revealed significant changes in scaffold surface morphology due to degradation caused by the PBS treatment over time. Our cell proliferation assessment over seven days showed that a two-day PBS treatment could be more effective than seven-day PBS treatment for improving cell attachment and elongation. While PEI coating of alginate scaffolds seemed to contribute to cell growth, Schwann cells stayed round on the surface of alginate over the period of cell culture. In conclusion, PBS-treatment may offer the potential to induce surface physical cues due to degradation of alginate, which could improve cell attachment post cell-seeding of 3D-printed alginate scaffolds.

  19. Characterizing fretting damage in different test media for cardiovascular device durability testing.

    PubMed

    Weaver, J D; Ramirez, L; Sivan, S; Di Prima, M

    2018-06-01

    In vitro durability tests of cardiovascular devices are often used to evaluate the potential for fretting damage during clinical use. Evaluation of fretting damage is important because severe fretting can concentrate stress and lead to the loss of structural integrity. Most international standards call for the use of phosphate buffered saline (PBS) for such tests although there has been little evidence to date that the use of PBS is appropriate in terms of predicting the amount of fretting damage that would occur in vivo. In order to determine an appropriate test media for in vitro durability tests where fretting damage is being evaluated, we utilized an in vitro test that is relevant to cardiovascular devices both in terms of dimensions and materials (nitinol, cobalt-chromium, and stainless steel) to characterize fretting damage in PBS, deionized water (DIW), and heparinized porcine blood. Overall, tests conducted in blood were found to have increased levels of fretting damage over tests in DIW or PBS, although the magnitude of this difference was smaller than the variability for each test media. Tests conducted in DIW and PBS led to mostly similar amounts of fretting damage with the exception of one material combination where DIW had greatly reduced damage compared to PBS and blood. Differences in fretting damage among materials were also observed with nitinol having less fretting damage than stainless steel or cobalt-chromium. In general, evaluating fretting damage in PBS or DIW may be appropriate although caution should be used when selecting test media and interpreting results given some of the differences observed across different materials. Published by Elsevier Ltd.

  20. Long term in vitro stability of fully integrated wireless neural interfaces based on Utah slant electrode array

    NASA Astrophysics Data System (ADS)

    Sharma, Asha; Rieth, Loren; Tathireddy, Prashant; Harrison, Reid; Solzbacher, Florian

    2010-02-01

    We herein report in vitro functional stability and recording longevity of a fully integrated wireless neural interface (INI). The INI uses biocompatible Parylene-C as an encapsulation layer, and was immersed in phosphate buffered saline (PBS) for a period of over 150 days. The full functionality (wireless radio-frequency power, command, and signal transmission) and the ability of INI to record artificial action potentials even after 150 days of PBS soaking without any change in signal/noise amplitude constitutes a major milestone in long term stability, and evaluate the encapsulation reliability, functional stability, and potential usefulness for future chronic implants.

  1. All-solution-processed PbS quantum dot solar modules.

    PubMed

    Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee

    2015-05-21

    A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm(2), exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm(2) unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.

  2. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free solution

    NASA Astrophysics Data System (ADS)

    Shen, H.; Anastasio, C.

    2011-06-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97 ± 6) % when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity.

  3. Apoptosis and Tumor Progressionin Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    control. Proc Natl Acad Sci USA 94: 10057- 10062 . 5. Colombel M, Symmans F, et al. (1993): Detection of the apoptosis-suppressing oncoprotein bcl-2 in...hours prior to treatment. After treatment, cells were washed with phosphate buffered saline ( PBS ) and fixed in 500 [tL 0.2% glutaraldehyde in water for

  4. Therapeutic efficacy of fibroblast growth factor 10 in a rabbit model of dry eye.

    PubMed

    Zheng, Wenjing; Ma, Mingming; Du, Ergang; Zhang, Zhengwei; Jiang, Kelimu; Gu, Qing; Ke, Bilian

    2015-11-01

    The aim of the present study was to investigate the therapeutic efficacy of fibroblast growth factor 10 (FGF10) in the promotion of healing, survival and expression of mucin in corneal epithelial cells in a rabbit dry eye model. A total of 12 healthy female New Zealand white rabbits were divided randomly into three groups. The lacrimal glands were injected with saline either alone (normal control group) or with concanavalin A (Con A), with either topical phosphate‑buffered saline (PBS; PBS control group) or 25 µg/ml FGF10 (FGF10 treatment group). Lacrimal gland inflammation, tear function, corneal epithelial cell integrity, cell apoptosis and mucin expression were subsequently assessed. Lacrimal gland tissue biopsies were performed in conjunction with histology and electron microscopy observations. Tear meniscus height (TMH) and tear meniscus area (TMA) were measured using Fourier domain‑optical coherence tomography. Tear membrane break‑up time (TBUT) was also assessed and corneal fluorescein staining was performed. The percentages of apoptotic corneal and conjunctival (Cj) epithelial cells (ECs) were counted using a terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling method. The mRNA expression levels of Muc1 were determined using reverse transcription‑quantitative polymerase chain reaction analyses. The TMH and TMA values of the PBS and treatment groups were found to be significantly reduced, compared with those of the normal control group 3 days after Con A injection. However, the TMH and TMA of the FGF10 treatment group were higher, compared with those of the PBS group 3 and 7 days after treatment, respectively. Furthermore, the FGF10 treatment group exhibited prolonged TBUT, reduced corneal fluorescein staining and repaired epithelial cell ultrastructure7 days after treatment. The percentages of apoptotic corneal‑ and Cj‑ECs in the FGF10 treatment group were significantly reduced, compared with those in the PBS group. FGF10 significantly induced the mRNA expression of Muc1 in the corneal epithelial cells, compared with the normal control group, and induced higher mRNA expression levels of Muc1 in the Cj‑ECs, compared with the PBS control group. In the present study, the rabbit dry eye model was successfully established 3 days after lacrimal gland Con A injection. FGF10 eye drops increased TMH and TMA, promoted corneal epithelial healing, reduced apoptosis of the corneal- and Cj-ECs and led to increased expression of Muc1.

  5. All-solution-processed PbS quantum dot solar modules

    NASA Astrophysics Data System (ADS)

    Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee

    2015-05-01

    A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01508a

  6. Cryopreservation of mouse spermatozoa. I. Effect of seeding on fertilizing ability of cryopreserved spermatozoa.

    PubMed

    Songsasen, N; Leibo, S P

    1997-11-01

    To examine the effect of seeding to induce ice formation during cryopreservation on their survival, spermatozoa from B6D2F1 mice were cooled to and held at -4 degrees C for 30 min in phosphate-buffered saline (PBS) alone, in egg yolk-supplemented PBS, or in PBS with raffinose + glycerol as cryoprotective additives (CPAs). Seeding and holding spermatozoa at -4 degrees C did not affect their viability as judged by vital staining. Egg yolk protected spermatozoa against chilling injury, as cooling them to -4 degrees C in the presence of egg yolk yielded higher survivals than those cooled without egg yolk (34.4 +/- 3.4 v 9.0 +/- 1.3% in three replicates of >400 spermatozoa/replicate). To study effects of seeding on their fertilizing ability, spermatozoa in the raffinose-glycerol-egg yolk solution were frozen to -196 degrees C either without seeding or after seeding at -4 degrees C. Development of 222 oocytes into two-cell embryos after in vitro fertilization (IVF) with spermatozoa frozen without seeding was 43%; development rates of 186, 186, and 207 oocytes after IVF with spermatozoa frozen after seeding and being held at -4 degrees C for 5, 10, or 30 min were 46, 44, and 9%, respectively. In a direct comparison, after IVF with seeded or unseeded spermatozoa the respective cleavage rates into two-cell embryos were 83% of 275 oocytes and 69% of 304 oocytes, a difference that was small but significant by chi2 analysis. An additional 925 oocytes were fertilized with spermatozoa after being seeded and frozen to -196 degrees C in four separate batches of CPA solutions. Overall, after IVF with frozen sperm, 68% of those oocytes cleaved into two-cell embryos and 59% developed into 544 blastocysts. Based on these results, we concluded that embryo production by IVF seemed to be improved using spermatozoa frozen after being seeded. Mouse spermatozoa cryopreserved by the method described here are capable of fertilizing oocytes at a rather high rate. Copyright 1997 Academic Press.

  7. Combining essential oils and olive extract for control of multi-drug resistant Salmonella enterica on organic leafy greens

    USDA-ARS?s Scientific Manuscript database

    We investigated the combined antimicrobial effects of plant essential oils and olive extract. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with the pathogen and then dip-treated in phosphate buffered saline (PBS) control, 3.0% hydrogen peroxide, a 0.1% ...

  8. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    NASA Astrophysics Data System (ADS)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  9. Enzyme entrapment in polyaniline films observed via fluorescence anisotropy and antiquenching

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis R.; McCaffrey, Marisa; Epstein, Arthur J.

    2014-05-01

    The facile entrapment of oxidoreductase enzymes within polyaniline polymer films by inducing hydrophobic collapse using phosphate buffered saline (PBS) has been shown to be a cost-effective method for fabricating organic biosensors. Here, we use fluorescence anisotropy measurements to verify enzyme immobilization and subsequent electron donation to the polymer matrix, both prerequisites for an effective biosensor. Specifically, we measure a three order of magnitude decrease in the ratio of the fluorescence to rotational lifetimes. In addition, the observed fluorescence antiquenching supports the previously proposed model that the polymer chain assumes a severely coiled conformation when exposed to PBS. These results help to empirically reinforce the theoretical basis previously laid out for this biosensing platform.

  10. [The corrosion of pure iron in five different mediums].

    PubMed

    Xu, Li; Zhu, Shengfa; Huang, Nan; Li, Xinchang; Zhang, Yu

    2009-08-01

    The sectional test was adopted in this study to investigate the corrosion of pure iron in 0.15 mol/L NaCl solution, Ringer solution, PBS(-) solution, SBF solution and M199 cell culture medium at three different times. The result shows that different mediums have different corrosion effects on pure iron. The arrangement according to the medium's corrosion ability from the strongest to weakest is 0.15 mol/L NaCl solution (Ringer solution), PBS(-) solution, SBF solution and M199 cell culture medium. The results of scanning electron microscopy and energy dispersive X-ray spectrum analyses show that the addition of HPO4(2-), H2POC4-, Ca2+, Mg2+, SO4(2-) and the organic component can inhibit the corrosion to some degree.

  11. Effect of 5% Chlorine Dioxide Irrigant on Micro Push Out Bond Strength of Resin Sealer to Radicular Dentin: An In Vitro Study

    PubMed Central

    Devarasanahalli, Swapna V; Aswathanarayana, Ranjini M; Rashmi, K; Gowda, Yashwanth; Nadig, Roopa R

    2017-01-01

    Introduction Chlorine dioxide (ClO2) has been recently investigated as a possible root canal irrigant due to its broad spectrum of antimicrobial action, tissue dissolution and smear layer removal properties. Literature is scarce on the effect of chlorine dioxide irrigation on the resin sealer dentin bond strength. Aim To compare 5% chlorine dioxide (ClO2) with or without Ethylene Diamine Tetra Acetic acid (EDTA) with 3% Sodium hypochlorite (NaOCl) and EDTA combination as endodontic irrigants on the adhesion of AH Plus sealer to radicular dentin using micro- Push out Bond Strength (µPBS) test. Materials and Methods Forty freshly extracted central incisors were decoronated and randomly divided into four groups based on the different irrigation regimes followed during irrigation: Group I - 3% NaOCl + 17% EDTA, Group II - 5% ClO2 + 17% EDTA, Group III - 5% ClO2 and Group IV – Saline, and canal enlarged till Protaper F3. All the samples were obturated with F3 gutta-percha cones using AH Plus sealer and sectioned perpendicular to long axis to obtain 1mm thick slices from the middle and coronal portions for µPBS measurement in universal testing machine followed by assessment of failure pattern under stereomicroscope. Data was analysed using One-way analysis of variance (ANOVA), Bonferroni and t-test. Results Bond strength values were in the following order: Group I>Group II>Group III>Group IV, with no statistically significant difference amongst experimental groups on intergroup comparison, except with saline. The µPBS values were more in coronal third than middle third in all specimens, with no statistical significant difference. Mode of failure showed mixed patterns in all experimental groups except saline. Conclusion In the present study, the bond strength values of ClO2 were comparable with conventional NaOCl and EDTA combination and hence, ClO2 can be considered as an effective alternative endodontic irrigant. PMID:28658907

  12. Conjoint corrosion and wear in titanium alloys.

    PubMed

    Khan, M A; Williams, R L; Williams, D F

    1999-04-01

    When considering titanium alloys for orthopaedic applications it is important to examine the conjoint action of corrosion and wear. In this study we investigate the corrosion and wear behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in phosphate buffered saline (PBS), bovine albumin solutions in PBS and 10% foetal calf serum solutions in PBS. The tests were performed under four different conditions to evaluate the influence of wear on the corrosion and corrosion on the wear behaviour as follows: corrosion without wear, wear-accelerated corrosion, wear in a non-corrosive environment and wear in a corrosive environment. The corrosion behaviour was investigated using cyclic polarisation studies to measure the ability of the surface to repassivate following breakdown of the passive layer. The properties of the repassivated layer were evaluated by measuring changes in the surface hardness of the alloys. The amount of wear that had occurred was assessed from weight changes and measurement of the depth of the wear scar. It was found that in the presence of wear without corrosion the wear behaviour of Ti-13Nb-13Zr was greater than that of Ti-6Al-7Nb or Ti-6Al-4V and that in the presence of proteins the wear of all three alloys is reduced. In the presence of corrosion without wear Ti-13Nb-13Zr was more corrosion resistant than Ti-6Al-7Nb which was more corrosion resistant than Ti-6Al-4V without proteins whereas in the presence of protein the corrosion resistance of Ti-13Nb-13Zr and Ti-6Al-7Nb was reduced and that of Ti-6Al-4V increased. In the presence of corrosion and wear the corrosion resistance of Ti-13Nb-13Zr is higher than that of Ti-6Al-7Nb or Ti-6Al-4V in PBS but in the presence of proteins the corrosion resistance of Ti-13Nb-13Zr and Ti-6Al-7Nb are very similar but higher than that of Ti-6Al-4V. The wear of Ti-13Nb-13Zr is lower than that of Ti-6Al-7Nb and Ti-6Al-4V with or without the presence of proteins in a corrosive environment. Therefore the overall degradation when both corrosion and wear processes are occurring is lowest for Ti-13Nb-13Zr and highest for Ti-6Al-4V and the presence of proteins reduces the degradation of all three alloys.

  13. Transient bleaching of small PbS colloids. Influence of surface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenadovic, M.T.; Comor, M.I.; Vasic, V.

    1990-08-09

    Small PbS colloids with a particle diameter of 40 {angstrom} were prepared in aqueous solution, and their absorption spectra exhibit several maxima. Injection of electrons into these particles was achieved by using the pulse radiolysis technique. Excess electrons trapped on the surface lead to a blue shift in the absorption edge of colloids. The appearance of this shift depends critically on the method of colloid preparation. PbS and CdS colloids prepared at pH < 6 have long-lived bleaching, which disappears after several seconds. On the other hand, absorption bleaching does not appear after the addition of hydroxide ions to colloidalmore » solutions (pH > 8). The existence of a hydroxide ion on the particle surface most likely removes surface defects on which electrons are trapped. PbS colloids prepared in the presence of 3-mercapto-1,2-propanediol have an unstructured absorption spectrum, which is due to a wide particle size distribution (10-50 {angstrom}).« less

  14. Graphene and PbS quantum dot hybrid vertical phototransistor

    NASA Astrophysics Data System (ADS)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2017-04-01

    A field-effect phototransistor based on a graphene and lead sulfide quantum dot (PbS QD) hybrid in which PbS QDs are embedded in a graphene matrix has been fabricated with a vertical architecture through a solution process. The n-type Si/SiO2 substrate (gate), Au/Ag nanowire transparent source electrode, active layer and Au drain electrode are vertically stacked in the device, which has a downscaled channel length of 250 nm. Photoinduced electrons in the PbS QDs leap into the conduction band and fill in the trap states, while the photoinduced holes left in the valence band transfer to the graphene and form the photocurrent under biases from which the photoconductive gain is evaluated. The graphene/QD-based vertical phototransistor shows a photoresponsivity of 2 × 103 A W-1, and specific detectivity up to 7 × 1012 Jones under 808 nm laser illumination with a light irradiance of 12 mW cm-2. The solution-processed vertical phototransistor provides a new facile method for optoelectronic device applications.

  15. Assessment of the synergic effect of immunomodulation on nerve repair using multiparametric magnetic resonance imaging.

    PubMed

    Zheng, Chu-Shan; Zhang, Xiang; Chen, Yue-Yao; Zhang, Fang; Duan, Xiao-Hui; Chen, Mei-Wei; Lu, Lie-Jing; Shen, Jun

    2018-01-01

    The immune system plays a pivotal role in nerve injury. The aim of this study was to determine the role of multiparametric magnetic resonance imaging (MRI) in evaluation of the synergic effect of immunomodulation on nerve regeneration in neurotmesis. Rats with sciatic nerve neurotmesis and surgical repair underwent serial multiparametric MR examinations over an 8-week period after subepineurial microinjection of lipopolysaccharide (LPS) and subsequent subcutaneous injection of FK506 or subepineurial microinjection of LPS or phosphate-buffered saline (PBS) alone. Nerves treated with immunomodulation showed more prominent regeneration than those treated with LPS or PBS alone and more rapid restoration toward normal T2, fractional anisotropy (FA), and radial diffusivity (RD) values than nerves injected with LPS or PBS. Nerves treated with immunomodulation exert synergic beneficial effects on nerve regeneration that can be predicted by T2 measurements and FA and RD values. Muscle Nerve 57: E38-E45, 2018. © 2017 Wiley Periodicals, Inc.

  16. Evaluation of active and passive transport processes in corneas extracted from preserved rabbit eyes.

    PubMed

    Majumdar, Soumyajit; Hingorani, Tushar; Srirangam, Ramesh

    2010-04-01

    In vitro transcorneal permeability studies are an important screening tool in drug development. The objective of this research is to examine the feasibility of using corneas isolated from preserved rabbit eyes as a model for permeability evaluation. Eyes from male New Zealand White rabbits were used immediately or were stored overnight in phosphate-buffered saline (PBS) or Hanks balanced salt solution (HBSS) over wet ice. Integrity of isolated corneas was evaluated by measuring the TEER and by determining the permeability of paracellular and transcellular markers. Active transport was assessed by measuring transcorneal permeability of selected amino acids. Esterase activity was estimated using p-nitrophenyl assay. In all cases, corneas from freshly enucleated eyes were compared to those isolated from the day-old preserved eyes. Transcellular and paracellular passive diffusion was not affected by the storage medium and observed to be similar in the fresh and preserved eye models. However, amino acid transporters demonstrated lower functional activity in corneas excised from eyes preserved in PBS. Moreover, preserved eyes displayed almost 1.5-fold lower esterase activity in the corneal tissue. Thus, corneas isolated from day-old eyes, preserved in HBSS, closely mimics freshly excised rabbit corneas in terms of both active and passive transport characteristics but possesses slightly reduced enzymatic activity. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  17. Assessment of in vitro temporal corrosion and cytotoxicity of AZ91D alloy.

    PubMed

    Del Gaudio, Costantino; Bagalà, Paolo; Venturini, Marco; Grandi, Claudio; Parnigotto, Pier Paolo; Bianco, Alessandra; Montesperelli, Giampiero

    2012-10-01

    Magnesium alloys represent a valuable option for the production of bioresorbable implantable medical devices aimed to improve the therapeutic approach and minimize the potential risks related to biostable materials. In this regard, the degradation process needs to be carefully evaluated in order to assess the effectiveness of the regenerative support and the eventual toxic effects induced by the released corrosion products. Aluminium is one of the most common alloying element that raised several safety concerns, contributing to shift the investigation toward Al-free alloys. To delve into this issue, a long-term investigation (up to 28 days) was performed using AZ91D alloy, due to its relevant Al content. Immersion tests in phosphate buffered saline (PBS) solution was performed following the ASTM standards and the corrosion behaviour was evaluated at fixed time points by means of electrochemical techniques. Cytotoxic effects were assessed by culturing human neuroblastoma cells with conditioned medium derived from immersion tests at different dilution degree. An increase in the resistance corrosion with the time was observed. In all the investigated cases the presence of Al in the conditioned media did not induce significant toxic effects directly correlated to its content. A decrease of cell viability was only observed in the case of 50 % dilution of PBS conditioned for the longest immersion period (i.e., 28 days).

  18. Size-dependent ROS production by palladium and nickel nanoparticles in cellular and acellular environments - An indication for the catalytic nature of their interactions.

    PubMed

    Neubauer, Nicole; Palomaeki, Jaana; Karisola, Piia; Alenius, Harri; Kasper, Gerhard

    2015-01-01

    Palladium and nickel nanoparticles with variable but narrowly defined primary particle sizes in the range of 4-27 nm were investigated toward their catalytic activity and their ability to produce reactive oxygen species (ROS). The agglomerate size in the gas phase was between 50 and 150 nm, after transfer into solution probably larger. The catalytic activity was measured on the basis of CO oxidation to CO2. The formation of ROS was determined after transferring the particles into phosphate buffered saline (PBS), via the 2',7'-dichlorofluorescein method in a cell-free environment and with THP-1 cells. Activities were normalized with regard to catalyst surface area to enable a meaningful comparison of size effects. The solubility was measured for both materials and found to be 2 µg/ml for Ni and below the detection limit of 0.8 µg/ml for Pd. In the concentration range of about 4-250 µg/ml both materials induced a significant production of ROS in both acellular and cellular environments, with palladium being more active than nickel by several orders of magnitude. On an equal surface area concentration basis, both acellular and cellular ROS production showed a pronounced dependence on the primary particle size, with a maximum in the vicinity of 12 nm. The surface-specific catalytic activity also had a maximum at that size range. The correlation of these size effects is both surprising and - in combination with the poor solubility of palladium and nickel in PBS solution - a strong argument in favor of a particulate, catalytic mechanism for ROS production.

  19. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.

    PubMed

    Han, Gyeo-Re; Jang, Chang-Hyun

    2014-10-01

    Herein, we demonstrated a simple, sensitive, and rapid label-free detection method for heavy-metal (HM) ions using liquid crystal (LC) droplet patterns on a solid surface. Stearic-acid-doped LC droplet patterns were spontaneously generated on an n-octyltrichlorosilane (OTS)-treated glass substrate by evaporating a solution of the nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), dissolved in heptane. The optical appearance of the droplet patterns was a dark crossed texture when in contact with air, which represents the homeotropic orientation of the LC. This was caused by the steric interaction between the LC molecules and the alkyl chains of the OTS-treated surface. The dark crossed appearance of the acid-doped LC patterns was maintained after the addition of phosphate buffered saline (PBS) solution (pH 8.1 at 25°C). The deprotonated stearic-acid molecules self-assembled through the LC/aqueous interface, thereby supporting the homeotropic anchoring of 5CB. However, the optical image of the acid-doped LC droplet patterns incubated with PBS containing HM ions appeared bright, indicating a planar orientation of 5CB at the aqueous/LC droplet interface. This dark to bright transition of the LC patterns was caused by HM ions attached to the deprotonated carboxylate moiety, followed by the sequential interruption of the self-assembly of the stearic acid at the LC/aqueous interface. The results showed that the acid-doped LC pattern system not only enabled the highly sensitive detection of HM ions at a sub-nanomolar concentration but it also facilitated rapid detection (<10 min) with simple procedures. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Quantitative determination of enzyme activity in single cells by scanning microelectrode coupled with a nitrocellulose film-covered microreactor by means of a scanning electrochemical microscope.

    PubMed

    Zhang, Xiaoli; Sun, Fuchan; Peng, Xuewei; Jin, Wenrui

    2007-02-01

    An electrochemical method for quantitative determination of enzyme activity in single cells was developed by scanning a microelectrode (ME) over a nitrocellulose film-covered microreactor with micropores by means of a scanning electrochemical microscope (SECM). Peroxidase (PO) in neutrophils was chosen as the model system. The microreactor consisted of a microwell with a solution and a nitrocellulose film with micropores. A single cell perforated by digitonin was injected into the microwell. After the perforated cell was lysed and allowed to dry, physiological buffer saline (PBS) containing hydroquinone (H2Q) and H2O2 as substrates of the enzyme-catalyzed reaction was added in the microwell. The microwell containing the extract of the lysed cell and the enzyme substrates was covered with Parafilm to prevent evaporation. The solution in the microwell was incubated for 20 min. In this case, the released PO from the cell converted H2Q into benzoquinone (BQ). Then, the Parafilm was replaced by a nitrocellulose film with micropores to fabricate the microreactor. The microreactor was placed in an electrochemical cell containing PBS, H2Q, and H2O2. After a 10-microm-radius Au ME was inserted into the electrochemical cell and approached down to the microreactor, the ME was scanned along the central line across the microreactor by means of a SECM. The scan curve with a peak was obtained by detecting BQ that diffused out from the microreactor through the micropores on the nitrocellulose film. PO activity could be quantified on the basis of the peak current on the scan curve using a calibration curve. This method had two obvious advantages: no electrode fouling and no oxygen interference.

  1. Innovative research of plasma physics for life sciences

    NASA Astrophysics Data System (ADS)

    Boonyawan, D.

    2017-06-01

    In medicine, cold atmospheric plasma (CAP) for the medical treatment is a new field in plasma application, called plasma medicine. CAP contains mix of excited atoms and molecules, UV photons, charged particles as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Typical species in air-CAPs are O3, OH, NxOx, and HNOx. The current developments in this field have fuelled the hope that CAP could be an interesting new therapeutic approach in the treatment of cancer. CAP apparently demonstrated effect on cancer cell apoptosis which did not induce cell necrosis or disruption. Moreover, CAP seemed to be selective for cancer cells since it was more effective in tumor cells than in normal non-neoplastic cells. In bioscience, dentistry and veterinary medicine : Since CAP, is delivered at room temperature, which results in less damaging effects on living tissue, while still has the efficiency in disinfection and sterilization. Recent studies proved that it is able to inactivate gram-negative and gram-positive bacteria, fungi, virus, spore, various parasites, and foreign organisms or pathogens without harming tissue. Moreover, cold plasma has been used effectively in medical field such as dental use, inducing apoptosis of malignant cells, stopping bleeding, promoting wound healing and tissue regeneration. Sericin hydrolysates, originating from silkworm is found support cell proliferation, expand cell adhesion and increase cell yield. The covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer can slow down the release rate of protein compound into the phosphate buffer saline (PBS) solution. We found that a-C films and a-C:N2 films show good attachment of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). All of carbon modified-Polystyrene(PS) dishes revealed the less release rate of sericin molecules into PBS solution than PS control.

  2. Fully Enzymatic Membraneless Glucose|Oxygen Fuel Cell That Provides 0.275 mA cm(-2) in 5 mM Glucose, Operates in Human Physiological Solutions, and Powers Transmission of Sensing Data.

    PubMed

    Ó Conghaile, Peter; Falk, Magnus; MacAodha, Domhnall; Yakovleva, Maria E; Gonaus, Christoph; Peterbauer, Clemens K; Gorton, Lo; Shleev, Sergey; Leech, Dónal

    2016-02-16

    Coimmobilization of pyranose dehydrogenase as an enzyme catalyst, osmium redox polymers [Os(4,4'-dimethoxy-2,2'-bipyridine)2(poly(vinylimidazole))10Cl](+) or [Os(4,4'-dimethyl-2,2'-bipyridine)2(poly(vinylimidazole))10Cl](+) as mediators, and carbon nanotube conductive scaffolds in films on graphite electrodes provides enzyme electrodes for glucose oxidation. The recombinant enzyme and a deglycosylated form, both expressed in Pichia pastoris, are investigated and compared as biocatalysts for glucose oxidation using flow injection amperometry and voltammetry. In the presence of 5 mM glucose in phosphate-buffered saline (PBS) (50 mM phosphate buffer solution, pH 7.4, with 150 mM NaCl), higher glucose oxidation current densities, 0.41 mA cm(-2), are obtained from enzyme electrodes containing the deglycosylated form of the enzyme. The optimized glucose-oxidizing anode, prepared using deglycosylated enzyme coimmobilized with [Os(4,4'-dimethyl-2,2'-bipyridine)2(poly(vinylimidazole))10Cl](+) and carbon nanotubes, was coupled with an oxygen-reducing bilirubin oxidase on gold nanoparticle dispersed on gold electrode as a biocathode to provide a membraneless fully enzymatic fuel cell. A maximum power density of 275 μW cm(-2) is obtained in 5 mM glucose in PBS, the highest to date under these conditions, providing sufficient power to enable wireless transmission of a signal to a data logger. When tested in whole human blood and unstimulated human saliva maximum power densities of 73 and 6 μW cm(-2) are obtained for the same fuel cell configuration, respectively.

  3. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes.

    PubMed

    Zhu, Yunxiao; Hoshi, Ryan; Chen, Siyu; Yi, Ji; Duan, Chongwen; Galiano, Robert D; Zhang, Hao F; Ameer, Guillermo A

    2016-09-28

    Diabetic foot ulcers (DFUs) are a severe complication of diabetes mellitus. Altered cell migration due to microcirculatory deficiencies as well as excessive and prolonged reactive oxygen species production are implicated in the delayed healing of DFUs. The goal of this research was to assess whether sustained release of SDF-1, a chemokine that promotes endothelial progenitor cell homing and angiogenesis, from a citrate-based antioxidant thermoresponsive polymer would significantly improve impaired dermal wound healing in diabetes. Poly (polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) was synthesized via sequential polycondensation and free radical polymerization reactions. SDF-1 was entrapped via gelation of the PPCN+SDF-1 solution above its lower critical solution temperature (LCST) and its release and bioactivity was measured. The effect of sustained release of SDF-1 from PPCN (PPCN+SDF-1) versus a bolus application of SDF-1 in phosphate buffered saline (PBS) on wound healing was evaluated in a diabetic murine splinted excisional dermal wound model using gross observation, histology, immunohistochemistry, and optical coherence tomography microangiography. Increasing PPCN concentration decreased SDF-1 release rate. The time to 50% wound closure was 11days, 16days, 14days, and 17days for wounds treated with PPCN+SDF-1, SDF-1 only, PPCN only, and PBS, respectively. Wounds treated with PPCN+SDF-1 had the shortest time for complete healing (24days) and exhibited accelerated granulation tissue production, epithelial maturation, and the highest density of perfused blood vessels. In conclusion, sustained release of SDF-1 from PPCN is a promising and easy to use therapeutic strategy to improve the treatment of chronic non-healing DFUs. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Flexible, Low-Cost Sensor Based on Electrolyte Gated Carbon Nanotube Field Effect Transistor for Organo-Phosphate Detection

    PubMed Central

    Bhatt, Vijay Deep; Joshi, Saumya; Becherer, Markus; Lugli, Paolo

    2017-01-01

    A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a sensor for the neurotransmitter acetylcholine, with a sensitivity of 5.7 μA/decade, and demonstrated excellent specificity when tested against interfering analytes present in the body. As the flexible sensor is supposed to suffer mechanical deformations, the endurance of the sensor was measured by putting it under extensive mechanical stress. The enzymatic activity was inhibited by more than 70% when the phosphate-buffered saline (PBS) buffer was spiked with 5 mg/mL malathion (an organophosphate) solution. The biosensor was successfully challenged with tap water and strawberry juice, demonstrating its usefulness as an analytical tool for organophosphate detection. PMID:28524071

  5. The effect of the type of HA on the degradation of PLGA/HA composites.

    PubMed

    Naik, Ashutosh; Shepherd, David V; Shepherd, Jennifer H; Best, Serena M; Cameron, Ruth E

    2017-01-01

    The aim of this study is to explore the importance of the potentially competing effects of buffering effects of the calcium phosphate filler and particle-mediated water sorption on the degradation products of poly(d,l lactide-co-glycolide (50:50))(PLGA)/hydroxyapatite(HA) composites. Further the influence of type of HA on the mechanical properties of the composites was investigated. Phase pure HA was synthesised via a reaction between aqueous solutions of calcium hydroxide and orthophosphoric acid. The powder produced was either used as produced (uncalcined) or calcined in air or calcined in a humidified argon atmosphere. An in-vitro degradation study was carried out in phosphate buffered saline (PBS). The results obtained indicated that the degradation rate of the composite might be better understood if both the buffering effects and the rate of water sorption by the composites are considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Dorniani, Dena; Saifullah, Bullo; Barahuie, Farahnaz; Arulselvan, Palanisamy; Hussein, Mohd Zobir Bin; Fakurazi, Sharida; Twyman, Lance J.

    2016-11-01

    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies.

  7. Dominant Negative Mutants of the Estrogen Receptor as Probes of Estrogen Action and Inhibitors of Breast Cancer Growth

    DTIC Science & Technology

    1996-07-01

    tetrazolium, inner salt; MTS; Promega], 1.9 mg/ml, and an electron coupling reagent ( phenazine methosulfate; PMS; Sigma), 0.044 mg/ml, in Dulbecco’s...acids PBS, phosphate buffered saline PCR, polymerase chain reaction PMS, phenazine methosulfate poly A, polyadenylation s.e., standard error TAE, tris

  8. The attachment of V79 and human periodontal ligament fibroblasts on periodontally involved root surfaces following treatment with EDTA, citric acid, or tetracycline HCL: an SEM in vitro study.

    PubMed

    Chandra, R Viswa; Jagetia, Ganesh Chandra; Bhat, K Mahalinga

    2006-02-15

    The present in vitro study has been designed to establish and compare the effects of citric acid, EDTA, and tetracycline HCl on human periodontally diseased roots on the structure, attachment, and orientation of V79 (primary Chinese hamster lung fibroblasts) cells and human periodontal ligament fibroblasts (HPDL). Commercially available V79 cells and HPDL derived from healthy human third molars were used in this study. These fibroblasts were left in solution for seven days in order to attain confluence. Forty single-rooted teeth were obtained from patients diagnosed with periodontitis. The crown part was removed under constant irrigation and the root was split vertically into two equal halves, thus, yielding 80 specimens. Following scaling and root planing, the specimens were washed with phosphate buffered saline (PBS) and kept in 50 microg/ml gentamycin sulphate solution for 24 hours. The root pieces were then treated as follows: citric acid at pH 1, 24% EDTA, or with a 10% solution of tetracycline HCl and were then placed in V79 fibroblast cultures and HPDL cultures. The specimens were harvested after four weeks and were fixed in 2.5% glutaraldehyde in PBS before preparation for scanning electron microscopy (SEM). The behavior of V79 cells was similar to that of human periodontal ligament cells on root conditioned surfaces. V79 and HPDL showed a healthy morphology on root surfaces treated with citric acid and EDTA and a relatively unhealthy appearance on root surfaces treated with tetracycline HCl and distilled water (control group). The results suggest the use of citric acid and EDTA as root conditioning agents favorably affects the migration, attachment, and morphology of fibroblasts on human root surfaces, which may play a significant role in periodontal healing and regeneration.

  9. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid

    NASA Astrophysics Data System (ADS)

    Shen, H.; Anastasio, C.

    2011-09-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e. with diameters of 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97 ± 6) % when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity.

  10. Optofluidic intracavity spectroscopy for spatially, temperature, and wavelength dependent refractometry

    NASA Astrophysics Data System (ADS)

    Kindt, Joel D.

    A microfluidic refractometer was designed based on previous optofluidic intracavity spectroscopy (OFIS) chips utilized to distinguish healthy and cancerous cells. The optofluidic cavity is realized by adding high reflectivity dielectric mirrors to the top and bottom of a microfluidic channel. This creates a plane-plane Fabry-Perot optical cavity in which the resonant wavelengths are highly dependent on the optical path length inside the cavity. Refractometry is a useful method to determine the nature of fluids, including the concentration of a solute in a solvent as well as the temperature of the fluid. Advantages of microfluidic systems are the easy integration with lab-on-chip devices and the need for only small volumes of fluid. The unique abilities of the microfluidic refractometer in this thesis include its spatial, temperature, and wavelength dependence. Spatial dependence of the transmission spectrum is inherent through a spatial filtering process implemented with an optical fiber and microscope objective. A sequence of experimental observations guided the change from using the OFIS chip as a cell discrimination device to a complimentary refractometer. First, it was noted the electrode structure within the microfluidic channel, designed to trap and manipulate biological cells with dielectrophoretic (DEP) forces, caused the resonant wavelengths to blue-shift when the electrodes were energized. This phenomenon is consistent with the negative dn/dT property of water and water-based solutions. Next, it was necessary to develop a method to separate the optical path length into physical path length and refractive index. Air holes were placed near the microfluidic channel to exclusively measure the cavity length with the known refractive index of air. The cavity length was then interpolated across the microfluidic channel, allowing any mechanical changes to be taken into account. After the separation of physical path length and refractive index, it was of interest to characterize the temperature dependent refractive index relationship, n(T), for phosphate buffered saline. Phosphate buffered saline (PBS) is a water-based solution used with our biological cells because it maintains an ion concentration similar to that found in body fluids. The n(T) characterization was performed using a custom-built isothermal apparatus in which the temperature could be controlled. To check for the accuracy of the PBS refractive index measurements, water was also measured and compared with known values in the literature. The literature source of choice has affiliations to NIST and a formulation of refractive index involving temperature and wavelength dependence, two parameters which are necessary for our specialized infrared wavelength range. From the NIST formula, linear approximations were found to be dn/dT = -1.4x10-4 RIU °C-1 and dn/dlambda = -1.5x10-5 RIU nm-1 for water. A comparison with the formulated refractive indices of water indicated the measured values were off. This was attributed to the fact that light penetration into the HfO2/SiO2 dielectric mirrors had not been considered. Once accounted for, the refractive indices of water were consistent with the literature, and the values for PBS are believed to be accurate. A further discovery was the refractive index values at the discrete resonant wavelengths were monotonically decreasing, such that the dn/dlambda slope for water was considerably close to the NIST formula. Thus, n(T,lambda) was characterized for both water and PBS. A refractive index relationship for PBS with spatial, temperature, and wavelength dependence is particularly useful for non-uniform temperature distributions caused by DEP electrodes. First, a maximum temperature can be inferred, which is the desired measurement for cell viability concerns. In addition, a lateral refractive index distribution can be measured to help quantify the gradient index lenses that are formed by the energized electrodes. The non-uniform temperature distribution was also simulated with a finite element analysis software package. This simulated temperature distribution was converted to a refractive index distribution, and focal lengths were calculated for positive and negative gradient index lenses to a smallest possible length of about 10mm.

  11. The effect of ICG on mitomycin C cytotoxicity in human tenon fibroblasts.

    PubMed

    Reeves, Graham; Wallis, Richard; Crowston, Jonathan G; Small, Keith M; Wells, Anthony P

    2007-08-01

    To examine the effects of indocyanine green (ICG) with and without mitomycin C (MMC) on proliferation of cultured human Tenon fibroblasts. Fibroblast monolayers were exposed to either MMC [0.4 mg/mL in phosphate buffered saline (PBS)] or PBS containing ICG (0.0625%, 0.125%, 0.25%, and 0.5% in 200 microL PBS) or a combination of MMC (0.4 mg/mL in PBS) and ICG (0.25% and 0.5%) for 5 minutes. Controls were exposed for 5 minutes to MMC, PBS, or culture medium containing no ICG. After treatment, the monolayers were washed and incubated in culture medium for 24, 48, 72 hours, and 1 week periods after which the number of viable cells was quantified. The presence of ICG alone, at concentrations ranging from 0.0625% to 0.5%, had no effect on the rate of fibroblast proliferation measured at any of the incubation periods. As expected, MMC treatment resulted in a significant reduction in viable fibroblast number (8.4+/-0.13x10(3)). ICG in combination with MMC did not significantly alter fibroblast numbers (8.5+/-0.05x10(3)) up to 1 week compared with MMC alone (8.4+/-0.12x10(3)). ICG at concentrations of 0.5% and below do not reduce proliferation of Tenon capsule fibroblasts. ICG did not potentiate or diminish the effect of MMC on Tenon capsule fibroblast proliferation.

  12. Efficacy of disinfecting solutions in removing biofilms from polyvinyl chloride tracheostomy tubes.

    PubMed

    Silva, Rodrigo C; Carver, Ryan A; Ojano-Dirain, Carolyn P; Antonelli, Patrick J

    2013-01-01

    Bacterial biofilms are prevalent in pediatric tracheostomy tubes (TTs) and are not completely cleared by standard cleaning with gauze and household detergents. We aimed to examine the effectiveness of different disinfecting solutions to remove Staphylococcus aureus (SA) and Pseudomonas aerginosa (PA) biofilms from TTs. Prospective, controlled, in vitro microbiologic study. Uniform coupons obtained from polyvinyl chloride (PVC) pediatric TTs were briefly exposed to human plasma. The samples were incubated in growth media with either PA or SA for 7 days, and total bacterial growth was monitored by media turbidity. Five sets of 18 coupons each were exposed for 5 minutes to one of five different solutions: 2% aqueous chlorhexidine gluconate solution, 0.3% aqueous sodium hypochlorite, Polident denture cleanser, 3% hydrogen peroxide, or preservative-free phosphate-buffered saline (PBS) as a negative control. Biofilm presence was measured with bacterial counts, and surface integrity was assessed with scanning electron microscopy (SEM). All treatments significantly reduced mean SA counts (P = <.001). Sodium hypochlorite and chlorhexidine were more effective than peroxide and Polident. Chlorhexidine, sodium hypochlorite, and peroxide reduced PA counts (P = .001, .001, and .002, respectively), but Polident tabs had no significant effect. SEM revealed preserved TT surface integrity after exposure to all solutions. Disinfection with sodium hypochlorite or chlorhexidine solutions significantly reduces SA and PA biofilms on PVC TTs. Standard home care of reusable pediatric TTs may be improved by use of these readily available solutions. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  13. Protective effects of systemic treatment with methylprednisolone in a rodent model of non-arteritic anterior ischemic optic neuropathy (rAION).

    PubMed

    Huang, Tzu-Lun; Huang, Shun-Ping; Chang, Chung-Hsing; Lin, Kung-Hung; Chang, Shu-Wen; Tsai, Rong-Kung

    2015-02-01

    This study investigated the protective effects of the administration of steroids on optic nerves (ON) and retinal ganglion cells (RGCs) in a rodent model of non-arteritic anterior ischemic optic neuropathy (rAION). We induced rAION using rose bengal and argon laser irradiation in a photodynamic procedure on the optic discs of rats. The treated groups received methylprednisolone (MP) via peritoneal injection for 2 weeks. The control group received intraperitoneal injections of phosphate-buffered saline (PBS) post-rAION. At the 4th week post-infarct, MP treatments significantly rescued the RGCs (mm(2)) in the central retinas (1920 ± 210, p < 0.001) and mid-peripheral retinas (950 ± 240, respectively, p = 0.018) compared with those of the PBS-treated rats (central: 900 ± 210 and mid-peripheral: 440 ± 180). Functional assessment with flash visual-evoked potentials demonstrated that P1 latency (ms) was shortened in the MP group compared to the PBS group (108 ± 14 and 147 ± 9, respectively, p < 0.001). In addition, the P1 amplitude (uV) was enhanced in the MP group compared to the PBS group (55 ± 12 and 41 ± 13, respectively, p < 0.05). TUNEL assays showed a decrease in the number of apoptotic cells in the RGC layers of MP-treated retinas compared to the PBS-treated group (p < 0.05). ED1 positive cells (/HPF) were significantly decreased in the ONs of the MP group compared to the PBS group (p < 0.001). In conclusion, systemic administration of MP had neuroprotective effects on RGC survival and ON function in the rAION animal model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats.

    PubMed

    Takahashi, Shinya; Nakagawa, Kei; Tomiyasu, Mayumi; Nakashima, Ayumu; Katayama, Keijiro; Imura, Takeshi; Herlambang, Bagus; Okubo, Tomoe; Arihiro, Koji; Kawahara, Yumi; Yuge, Louis; Sueda, Taijiro

    2018-05-01

    Spinal cord ischemia is a devastating complication after thoracic and thoracoabdominal aortic operations. In this study, we aimed to investigate the effects of mesenchymal stem cells (MSCs), which have regenerative capability and exert paracrine actions on damaged tissues, injected into rat models of spinal cord ischemia-reperfusion injury. Forty-five Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), and MSC groups. Spinal cord ischemia was induced in the latter two groups by balloon occlusion of the thoracic aorta. MSCs and PBS were then immediately injected into the left carotid artery of the MSC and PBS groups, respectively. Hindlimb motor function was evaluated at 6 and 24 hours. The spinal cord was removed at 24 hours after ischemia-reperfusion injury, and histologic and immunohistochemical analyses and real-time polymerase chain reaction assessments were performed. Rats in the MSC and PBS groups showed flaccid paraparesis/paraplegia postoperatively. Hindlimb function was significantly better at 6 and 24 hours after ischemia-reperfusion injury in the MSC group than in the PBS group (p < 0.05). The number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive neuron cells in the spinal cord and the ratio of Bax to Bcl2 were significantly larger (p < 0.05) in the PBS group than in the MSC group. The injected MSCs were observed in the spinal cord 24 hours after ischemia-reperfusion injury. The MSC therapy by transarterial injection immediately after spinal cord ischemia-reperfusion injury may improve lower limb function by preventing apoptosis of neuron cells in the spinal cord. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae.

    PubMed

    Konte, Tilen; Terpitz, Ulrich; Plemenitaš, Ana

    2016-01-01

    The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.

  16. Solution-processed nanocrystalline PbS on paper substrate with pencil traced electrodes as visible photodetector

    NASA Astrophysics Data System (ADS)

    Vankhade, Dhaval; Chaudhuri, Tapas K.

    2018-04-01

    Paper-based PbS photodetector sensitive in the visible spectrum is reported. Nanocrystalline PbS-on-paper devices are fabricated by a spin coating method on white paper (300 GSM) from a methanolic precursor solution. Photodetector cells of gap 0.2 cm and length 0.5 cm are prepared by drawing contacts by monolithic cretacolor 8B pencil. X-ray diffractometer confirmed the deposition of nanocrystalline PbS films with 14 nm crystallites. The SEM illustrated the uniform coating of nanocrystalline PbS thin films on cellulose fibres of papers having an average thickness of fibres are 10 µm. The linear J-V characteristics in dark and under illumination of light using graphite trace on nanocrystalline PbS-on-paper shows good ohmic contact. The resistivity of pencil trace is 30 Ω.cm. Spectral response measurements of photodetector reveal the excellent sensitivity from 400 to 700 nm with a peak at 550 nm. The best responsivity anddetectivity are 0.7 A/W and 1.4 × 1012 Jones respectively. These paper-based low-cost photodetectors devices have fast photoresponse and recovery without baseline deviation.

  17. Neurobehavioral toxicity of carbon nanotubes in mice.

    PubMed

    Gholamine, Babak; Karimi, Isaac; Salimi, Amir; Mazdarani, Parisa; Becker, Lora A

    2017-04-01

    The aim of this study was to evaluate neurobehavioral toxicity of single-walled (SWNTs) and multiwalled carbon nanotubes (MWNTs) in mice. Male NMRI mice were randomized into 5 groups ( n = 10 each): Normal control (NC) group was injected intraperitoneally (i.p.) with phosphate-buffered saline (PBS) solution (pH 7.8; ca. 1 mL), MW80 and MW800 groups were injected with either i.p. 80 or 800 mg kg -1 MWNTs suspended in 1 mL of PBS and SW80 and SW800 groups were injected with either i.p. 80 or 800 mg kg -1 SWNTs suspended in 1 mL of PBS. After 2 weeks, five mice from each group were evaluated for brain-derived neurotrophic factor (BDNF) messenger RNA expression and protein content of brain tissues. Locomotion, anxiety, learning and memory, and depression were measured by open field test (OFT), elevated plus-maze (EPM), object recognition test (ORT), and forced swimming test (FST), respectively. Ambulation time and center arena time in the OFT did not change among groups. In the EPM paradigm, SWNTs (800 mg kg -1 ) and MWNTs (80 and 800 mg kg -1 ) showed an anxiogenic effect. In ORT, MWNTs (80 mg kg -1 ) increased the discrimination ratio while in FST, MWNTs showed a depressant effect as compared to vehicle. The BDNF gene expression in mice treated with 80 and 800 mg kg -1 SWNTs or 80 mg kg -1 MWNTs decreased as compared to NC mice although BDNF gene expression increased in mice that were treated with 800 mg kg -1 MWNTs. The whole brain BDNF protein content did not change among groups. Our study showed that i.p. exposure to carbon nanotubes (CNTs) may result in behavioral toxicity linked with expression of depression or anxiety that depends on the type of CNTs. In addition, exposure to CNTs changed BDNF gene expression.

  18. Long-Term In Vitro Degradation of a High-Strength Brushite Cement in Water, PBS, and Serum Solution

    PubMed Central

    Ajaxon, Ingrid; Öhman, Caroline; Persson, Cecilia

    2015-01-01

    Bone loss and fractures may call for the use of bone substituting materials, such as calcium phosphate cements (CPCs). CPCs can be degradable, and, to determine their limitations in terms of applications, their mechanical as well as chemical properties need to be evaluated over longer periods of time, under physiological conditions. However, there is lack of data on how the in vitro degradation affects high-strength brushite CPCs over longer periods of time, that is, longer than it takes for a bone fracture to heal. This study aimed at evaluating the long-term in vitro degradation properties of a high-strength brushite CPC in three different solutions: water, phosphate buffered saline, and a serum solution. Microcomputed tomography was used to evaluate the degradation nondestructively, complemented with gravimetric analysis. The compressive strength, chemical composition, and microstructure were also evaluated. Major changes from 10 weeks onwards were seen, in terms of formation of a porous outer layer of octacalcium phosphate on the specimens with a concomitant change in phase composition, increased porosity, decrease in object volume, and mechanical properties. This study illustrates the importance of long-term evaluation of similar cement compositions to be able to predict the material's physical changes over a relevant time frame. PMID:26587540

  19. Letrozole dispersed on poly (vinyl alcohol) anchored maleic anhydride grafted low density polyethylene: a controlled drug delivery system for treatment of breast cancer.

    PubMed

    Siddiqa, Akhtar Jahan; Chaudhury, Koel; Adhikari, Basudam

    2014-04-01

    The present work focuses on the design of a drug delivery system for systemic, controlled release of the poorly soluble breast cancer drug, letrozole. The drug delivery system was prepared in two steps: a low density polyethylene (LDPE) substrate surface was grafted with maleic anhydride (MA) via solution grafting technique. Next, the grafted substrate was used to anchor a hydrophilic polymeric drug release system consisting of poly (vinyl alcohol) (PVA). The PVA anchored MA grafted LDPE (PVA/MA-g-LDPE) drug release system was used for the controlled release of letrozole. This system was characterized using ATR-FTIR spectrophotometry, surface profilometry, and scanning electron microscopy. Biocompatibility studies were also carried out. In vitro release studies of letrozole from the system were performed in distilled water and phosphate buffer saline (PBS) at 37°C. Release of ∼90% letrozole from hydrophilic PVA matrix was observed within a period of 35 days. A high correlation coefficient (R(2)=0.99) was seen between the release of letrozole in distilled water and PBS. Cytotoxicity studies using MTT colorimetric assay suggested that all samples were biocompatible. It is concluded that the letrozole delivery system appears to overcome the limitations associated with letrozole by providing enhanced drug dissolution rate, controlled release and improved bioavailability of the incorporated drug and, therefore, seems to have extended therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Degradation Characterization of Aliphatic POLYESTERS—IN Vitro Study

    NASA Astrophysics Data System (ADS)

    Vieira, A. C.; Vieira, J. C.; Guedes, R. M.; Marques, A. T.

    2008-08-01

    The most popular and important biodegradable polymers are aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polyhydoxyalkanoates (PHA's) and polyethylene oxide (PEO). However, each of these has some shortcomings which restrict its applications. Blending techniques are an extremely promising approach which can improve or tune the original properties of the polymers[1]. Aliphatic polyesters are a central class of biodegradable polymers, because hydrolytic and/or enzymatic chain cleavage of these materials leads to α-hydroxyacids, which in most cases are ultimately metabolized in human body. This is particularly useful for controlled release devices and for other biomedical applications like suture fibers and ligaments. For aliphatic polyesters, hydrolysis rates are affected by the temperature, molecular structure, and ester group density as well as by the species of enzyme used. The degree of crystallinity may be a crucial factor, since enzymes attack mainly the amorphous domains of a polymer. Four different aliphatic polyesters were characterized in terms of degradation. Sutures fibers of PGA-PCL, PGA, PLA-PCL and PDO were used in this study. Weight loss, pH, molecular weight, crystallinity and strength were measured after six stages of incubation in distilled water, physiological saline and phosphate buffer solution (PBS). Degradation rate was determined, using a first order kinetic equation for all materials in the three incubation media. A relatively wide range of mechanical properties and degradation rates were observed among the materials studied. PBS was the most aggressive environment for the majority of cases.

  1. Structure–mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model

    PubMed Central

    Andriotis, O. G.; Chang, S. W.; Vanleene, M.; Howarth, P. H.; Davies, D. E.; Shefelbine, S. J.; Buehler, M. J.; Thurner, P. J.

    2015-01-01

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. PMID:26468064

  2. Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model.

    PubMed

    Andriotis, O G; Chang, S W; Vanleene, M; Howarth, P H; Davies, D E; Shefelbine, S J; Buehler, M J; Thurner, P J

    2015-10-06

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. © 2015 The Authors.

  3. Use of fibrin sealants for the localized, controlled release of cefazolin

    PubMed Central

    Tredwell, Stephen; Jackson, John K.; Hamilton, Donald; Lee, Vivian; Burt, Helen M.

    2006-01-01

    Background Fibrin sealants are used increasingly in surgery to reduce bleeding and improve wound healing. They have great potential as biocompatible, biodegradable drug delivery systems, because the sealant may adhere to the target tissue and allow controlled release of the drug over an extended period. We investigated the encapsulation, stability and controlled release of erythromycin and cefazolin from Beriplast fibrin sealants (Aventis Behring Canada). Methods Drug-loaded clots were cast in glass vials and allowed to set. We observed the clots for drug precipitation and aggregation, and we assessed the effect of drug encapsulation on clot strength. Drug stability and release from the clots in phosphate buffered saline (PBS) was quantified by ultraviolet and visible violet absorbance spectroscopy and high-performance liquid chromatography. Results Erythromycin was found to release slowly from the fibrin clots over the first 2 hours but then degrade rapidly. Cefazolin was found to be very stable in clots in PBS (97% stable at 2 d and 93% stable at 5 d). The drug released in a controlled manner over 2 days, with most being released during the first day. The dose of drug released could be varied by changing the amount placed in the thrombin solution. Clot thickness had no effect on the rate of cefazolin release. Conclusion Overall, the 2-day release profile and the excellent stability of the drug suggest that cefazolin-loaded fibrin sealants may offer an effective route of postoperative antibiotic delivery. PMID:17152573

  4. Preparation and release characteristics of polymer-coated and blended alginate microspheres.

    PubMed

    Lee, D W; Hwang, S J; Park, J B; Park, H J

    2003-01-01

    To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.

  5. SoyCaP: Soy and Prostate Cancer Prevention

    DTIC Science & Technology

    2006-11-01

    2:16-hydroxyestrone ratio in postmenopausal women depends on equol production status but is not influenced by probiotic consumption. J Nutr 2005 Mar...their habitual diets, and received detailed instructions to exclude soy products in order to minimize isoflavone consumption from other sources...deparaffinized in AmeriClear (Scientific Products , Stockton, CA), rehydrated in graded alcohol, and transferred to phosphate buffered saline (PBS) (pH

  6. Single-Beam Acoustic Trapping of Red Blood Cells and Polystyrene Microspheres in Flowing Red Blood Cell Saline and Plasma Suspensions.

    PubMed

    Liu, Hsiao-Chuan; Li, Ying; Chen, Ruimin; Jung, Hayong; Shung, K Kirk

    2017-04-01

    Single-beam acoustic tweezers (SBATs) represent a new technology for particle and cell trapping. The advantages of SBATs are their deep penetration into tissues, reduction of tissue damage and ease of application to in vivo studies. The use of these tools for applications in drug delivery in vivo must meet the following conditions: large penetration depth, strong trapping force and tissue safety. A reasonable penetration depth for SBATs in the development of in vivo applications was established in a previous study conducted in water with zero velocity. However, capturing objects in flowing fluid can provide more meaningful results. In this study, we investigated the capability of SBATs to trap red blood cells (RBCs) and polystyrene microspheres in flowing RBC suspensions. Two different types of RBC suspension were prepared in this work: an RBC phosphate-buffered saline (PBS) suspension and an RBC plasma suspension. The results indicated that SBATs successfully trapped RBCs and polystyrene microspheres in a flowing RBC PBS suspension with an average steady velocity of 1.6 cm/s in a 2-mm-diameter polyimide. Furthermore, SBATs were found able to trap RBCs in a flowing RBC PBS suspension at speeds as high as 7.9 cm/s in a polyimide tube, which is higher than the velocity in capillaries (0.03 cm/s) and approaches the velocity in arterioles and venules. Moreover, the results also indicated that polystyrene microspheres can be trapped in an RBC plasma suspension, where aggregation is observed. This work represents a step forward in using this tool in actual in vivo experimentation. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen.

    PubMed

    Ingavle, Ganesh C; Baillie, Les W J; Zheng, Yishan; Lis, Elzbieta K; Savina, Irina N; Howell, Carol A; Mikhalovsky, Sergey V; Sandeman, Susan R

    2015-05-01

    Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0.05) decreased relative to the amount of PA remained in the solution after passing through unmodified as well as protein A modified poly(AAm-AGE) cryogel columns, indicates efficient PA removal from spiked PBS over 60 min of circulation. The high adsorption capacity towards anthrax toxin PA of the cryogel adsorbents indicated potential application of these materials for treatment of Bacillus anthracis infection. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Sodium hydroxide based non-detergent decellularizing solution for rat lung.

    PubMed

    Sengyoku, Hideyori; Tsuchiya, Tomoshi; Obata, Tomohiro; Doi, Ryoichiro; Hashimoto, Yasumasa; Ishii, Mitsutoshi; Sakai, Hiromi; Matsuo, Naoto; Taniguchi, Daisuke; Suematsu, Takashi; Lawn, Murray; Matsumoto, Keitaro; Miyazaki, Takuro; Nagayasu, Takeshi

    2018-06-11

    Lung transplantation is the last option for the treatment of end stage chronic lung disorders. Because the shortage of donor lung organs represents the main hurdle, lung regeneration has been considered to overcome this hurdle. Recellularization of decellularized organ scaffold is a promising option for organ regeneration. Although detergents are ordinarily used for decellularization, other approaches are possible. Here we used high alkaline (pH12) sodium hydroxide (NaOH)-PBS solution without detergents for lung decellularization and compared the efficacy on DNA elimination and ECM preservation with detergent based decellularization solutions CHAPS and SDS. Immunohistochemical image analysis showed that cell components were removed by NaOH solution as well as other detergents. A Collagen and GAG assay showed that the collagen reduction of the NaOH group was comparable to that of the CHAPS and SDS groups. However, DNA reduction was more significant in the NaOH group than in other groups (p < 0.0001). The recellularization of HUVEC revealed cell attachment was not inferior to that of the SDS group. Ex vivo functional analysis showed 100% oxygen ventilation increased oxygen partial pressure as artificial hemoglobin vesicle-PBS solution passed through regenerated lungs in the SDS or NaOH group. It was concluded that the NaOH-PBS based decellularization solution was comparable to ordinal decellularizaton solutions and competitive in cost effectiveness and residues in the decellularized scaffold negligible, thus providing another potential option to detergent for future clinical usage.

  9. Analysis of the Postoperative Periarticular Environment and Influence on Sustained Drug Delivery from a Gel Formulation.

    PubMed

    Svirskis, Darren; Martis, Waldron; Bhusal, Prabhat; Sharma, Manisha; Stowers, Renus; Young, Simon W

    2018-05-16

    Regional intraarticular delivery of local anaesthetics is effective in treating postoperative pain following total knee or hip replacement. Recent research efforts have been only partially successful in achieving sustained release of the analgesic agent, in part due to limited understanding of the biological environment into which these formulations are administered. This study aimed to detail the composition and properties of postoperative periarticular fluid (PO-PAF). PO-PAF was collected from 8 patients and the composition and physicochemical properties determined. A number of components were identified which are lacking from phosphate buffered saline (PBS) or other synthetic media. The differences in composition led to variation in the physicochemical properties of PO-PAF compared with PBS. Notably, significantly lower surface tension (p<0.05) and higher buffer capacity (p<0.05) were observed in the biological fluid. We demonstrated the solubility of lidocaine is almost double in PO-PAF compared to PBS (p<0.05) and that lidocaine release from a poloxamer gelling system occurred faster into PO-PAF under both sink and non-sink conditions. Collectively, these data indicate PBS is inappropriate for the in-vitro evaluation of intraarticular drug delivery systems. The presented data describes PO-PAF and will support the future development of biorelevant media to ultimately improve in-vivo in-vitro correlation. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Chronic methamphetamine exposure induces cardiac fas-dependent and mitochondria-dependent apoptosis.

    PubMed

    Liou, Cher-Ming; Tsai, Shiow-Chwen; Kuo, Chia-Hua; Williams, Timothy; Ting, Hua; Lee, Shin-Da

    2014-06-01

    Very limited information regarding the influence of chronic methamphetamine exposure on cardiac apoptosis is available. In this study, we evaluate whether chronic methamphetamine exposure will increase cardiac Fas-dependent (type I) and mitochondria-dependent (type II) apoptotic pathways. Thirty-two male Wistar rats at 3-4 months of age were randomly divided into a vehicle-treated group [phosphate-buffered saline (PBS) 0.5 ml SQ per day] and a methamphetamine-treated group (MA 10 mg/kg SQ per day) for 3 months. We report that after 3 months of exposure, abnormal myocardial architecture, more minor cardiac fibrosis and cardiac TUNEL-positive apoptotic cells were observed at greater frequency in the MA group than in the PBS group. Protein levels of TNF-α, Fas ligand, Fas receptor, Fas-associated death domain, activated caspase-8, and activated caspase-3 (Fas-dependent apoptosis) extracted from excised hearts were significantly increased in the MA group, compared to the PBS group. Protein levels of cardiac Bak, t-Bid, Bak to Bcl-xL ratio, activated caspase-9, and activated caspase-3 (mitochondria-dependent apoptosis) were significantly increased in the MA group, compared with the PBS group. The results from this study reveal that chronic methamphetamine exposure will activate cardiac Fas-dependent and mitochondria-dependent apoptotic pathways, which may indicate a possible mechanism for developing cardiac abnormalities in humans with chronic methamphetamine abuse.

  11. Sorption of Cationic Surfactants to Artificial Cell Membranes: Comparing Phospholipid Bilayers with Monolayer Coatings and Molecular Simulations.

    PubMed

    Timmer, Niels; Droge, Steven T J

    2017-03-07

    This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (D MW,PBS ) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log D MW values above 4. Renewal of the medium resulted in linear sorption isotherms. D MW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed D MW,PBS . Log D MW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the D MW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.

  12. Local versus systemic effect of ovulation-inducing factor in the seminal plasma of alpacas

    PubMed Central

    Ratto, Marcelo H; Huanca, Wilfredo; Singh, Jaswant; Adams, Gregg P

    2005-01-01

    Background Camelids are induced (reflex) ovulators. We have recently documented the presence of an ovulation-inducing factor (OIF) in the seminal plasma of alpacas and llamas. The objective was to test the hypothesis that OIF exerts its effect via a systemic rather than a local route and that endometrial curettage will enhance the ovulatory response to intrauterine deposition of seminal plasma in alpacas. Methods Female alpacas were assigned randomly to 6 groups (n = 15 to 17 per group) in a 2 × 3 factorial design to test the effect of seminal plasma versus phosphate-buffered saline (PBS) given by intramuscular injection, by intrauterine infusion, or by intrauterine infusion after endometrial curettage. Specifically, alpacas in the respective groups were given 1) 2 ml of alpaca seminal plasma intramuscularly, 2) 2 ml of PBS intramuscularly (negative control group), 3) 2 ml of alpaca seminal plasma by intrauterine infusion, 4) 2 ml of PBS by intrauterine infusion (negative control group), 5) 2 ml of alpaca seminal plasma by intrauterine infusion after endometrial curettage, or 6) 2 ml of PBS by intrauterine infusion after endometrial curettage (negative control group). The alpacas were examined by transrectal ultrasonography to detect ovulation and measure follicular and luteal diameters. Results Intramuscular administration of seminal plasma resulted in a higher ovulation rate than intrauterine administration of seminal plasma (93% versus 41%; P < 0.01), while intrauterine seminal plasma after endometrial curettage was intermediate (67%). None of the saline-treated controls ovulated. The diameter of the CL after treatment-induced ovulation was not affected by the route of administration of seminal plasma. Conclusion We conclude that 1) OIF in seminal plasma effects ovulation via a systemic rather than a local route, 2) disruption of the endometrial mucosa by curettage facilitated the absorption of OIF and increased the ovulatory effect of seminal plasma, and 3) ovulation in alpacas is not associated with a physical stimulation of the genital tract, and 4) the alpaca represents an excellent biological model to evaluate the bioactivity of OIF. PMID:16018817

  13. PbS nanosculptured thin film for phase retarder, anti-reflective, excellent absorber, polarizer and sensor applications

    NASA Astrophysics Data System (ADS)

    Chaudhary, Ashok; Klebanov, Matvey; Abdulhalim, Ibrahim

    2015-11-01

    Lead-sulphide (PbS) nanosculptured thin film (nSTF) is prepared using a glancing angle deposition (GLAD) technique and the physical vapour deposition (PVD) process. The morphology of the GLAD films clearly shows that an anisotropic structure is obtained and is composed of micro-sheets with sharp top edges (a few tens of nanometres tip width). Due to this anisotropy, optical birefringence is induced in the nSTF as well as linear dichroism. The structural and optical properties of the PbS nSTF have been characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy and transmission measurements. The Raman spectra of PbS nSTF exhibit sharp peaks representative of vibrations in nano-crystalline PbS. Due to the absorption of PbS the nSTF is found to act as a linear polarizer with good extinction and contrast in the near infra-red range. Due to its porosity this nSTF also has the ability to sense fluids, which we demonstrate using ethanol-water solution at different concentrations. The combination of these effects in PbS nSTF is believed to constitute a prime candidate for many desirable device applications in different aspects with the low cost of production in large areas.

  14. The antimicrobial potential of stevia in an in vitro microbial caries model.

    PubMed

    Kishta-; Derani, Maryam; Neiva, Gisele F; Boynton, James R; Kim, Youngjoo E; Fontana, Margherita

    2016-04-01

    To determine the effect of stevia on caries development when incorporated into a cariogenic diet in a controlled microbial caries model. 56 bovine tooth specimens (4 x 4 mm) were divided into four groups, each secured in a caries-forming vessel. All vessels were placed on an electric stirrer inside a 37°C incubator. The specimens were inoculated with Streptococcus mutans, and exposed for 4 days to circulating cycles of tryptic soy broth supplemented with 5% sucrose-TSBS (three x/day), and a mineral wash solution. Between TSBS cycles (three x/day), each group received one of four experimental solutions: phosphate buffer (PBS-negative control), 0.5% stevia solution, 5% stevia solution, or 5% xylitol solution. Development of caries lesions was analyzed using enamel surface hardness. Difference in Vickers Hardness between pre and post-treatment was calculated to determine caries development. Plaque was dislodged from six specimens per group, and the CFU/ml calculated. Data were analyzed using ANOVA at 95% confidence level, and individual group differences calculated using Tukey's test. 5% xylitol resulted in significantly less plaque at the end of the study compared to PBS and 5% stevia, but not significantly different than 0.5% stevia. 5% stevia had significantly softer lesions than the other groups, while there was no significant difference in hardness scores between 5% xylitol, 0.5% stevia and PBS.

  15. Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions

    NASA Astrophysics Data System (ADS)

    Tao, Yinglei; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.

  16. Leakage of Intracellular UV Materials of High Hydrostatic Pressure-Injured Escherichia Coli O157:H7 Strains in Tomato Juice

    USDA-ARS?s Scientific Manuscript database

    The effect of high hydrostatic pressure (HHP) treatment on inactivation, injury and recovery of Salmonella Enteritidis and Escherichia coli O157:H7 cocktail inoculated in tomato juice (pH 4.1) and phosphate buffer saline (PBS. pH 7.2) at 8.0 log CFU/ml and treated at 350, 400, 450 MPa for 20 min at ...

  17. Promotor Regions Determining Over-Expression of Metalloproteinase Genes in Breast Cancer

    DTIC Science & Technology

    1999-06-01

    G., Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION REPORT NUMBER Royal Prince Alfred Hospital Camperdown, NSW...2050, Australia 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER U.S. Army Medical Research...BioTechniques 3 Research Reports satec , Adelaidetusralia) per reaction. Plasmids ItL of phosphate-buffered saline (PBS)When included,- co petor

  18. Immunobiological Aspects of erbB Receptors in Breast Cancer

    DTIC Science & Technology

    2000-08-01

    receptor . The proliferation of cells expressing these chimeric receptors was EGF-dependent, and cells expressing EGFR/Y882F chimeric receptors were...determine Cells were washed twice with cold phosphate-buffered saline which cellular substrates couple with the receptor complex. (PBS) and lysed with 1...turnover, receptor proteins suggests that these substrates are properly lo- and cellular transformation in NEN757 cells (Qian et al., cated for

  19. Influence of sample preparation and identification of subcelluar structures in quantitative holographic phase contrast microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Schmidt, Lisa; Przibilla, Sabine; Rommel, Christina; Vollmer, Angelika; Ketelhut, Steffi; Schnekenburger, Jürgen; von Bally, Gert

    2010-04-01

    Digital holographic microscopy (DHM) provides label-free quantitative phase contrast with low demands on sample preparation. Nevertheless, for DHM measurements on fixed cells the mounting medium has to be considered while the phase contrast of living cells may be influenced by the used buffer solution. To quantify these effects, the maximum cell caused phase contrast and the visibility of the nucleoli were analyzed. A second aim of the study was to identify subcellular components in DHM phase contrast images. Therefore, comparative investigations using bright field imaging, DHM and fluorescence microscopy with 4',6- Diamidino-2-phenylindol (DAPI) staining were performed. DAPI-staining visualizes cell components containing DNA. The obtained results demonstrate exemplarily for two tumor cell lines that from DHM phase contrast images of fixed cells in phosphate buffer saline (PBS) cell thickness values are obtained which are comparable to living cells. Furthermore, it is shown that in many cases nucleus components can be identified only by DHM phase contrast.

  20. Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release.

    PubMed

    Hedberg, Y; Wang, X; Hedberg, J; Lundin, M; Blomberg, E; Wallinder, I Odnevall

    2013-04-01

    Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed.

  1. The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release.

    PubMed

    Giammarco, James; Mochalin, Vadym N; Haeckel, James; Gogotsi, Yury

    2016-04-15

    The unique properties and tailorable surface of detonation nanodiamonds have given rise to an abundance of potential biomedical applications. Very little is known about the details of adsorption/desorption equilibria of drugs on/from nanodiamonds with different purity, surface chemistry, and agglomeration state. The studies presented here delve into the details of adsorption and desorption of tetracycline (TET) and vancomycin (VAN) on nanodiamond, which are critically important for the rational design of the nanodiamond drug delivery systems. The nanodiamonds studied in these experiments were as-received (ND), purified and carboxyl terminated (ND-COOH), and aminated (ND-NH2). The monolayer capacities of the drugs loaded onto the nanodiamonds are reported herein using Langmuir and Freundlich isotherm models. The results from the desorption studies demonstrate that, by changing the pH environment of drug loaded nanodiamond using buffers of pH 4.09, 7.45, 8.02, and a phosphate buffered saline (PBS) solution, the drug release can effectively be triggered. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Lead(II) Complex Formation with L-cysteine in Aqueous Solution

    PubMed Central

    Jalilehvand, Farideh; Sisombath, Natalie S.; Schell, Adam C.; Facey, Glenn A.

    2015-01-01

    The lead(II) complexes formed with the multidentate chelator L-cysteine (H2Cys) in alkaline aqueous solution were studied using 207Pb, 13C and 1H NMR, Pb LIII-edge X-ray absorption and UV-vis. spectroscopic techniques, complemented by electro-spray ion mass spectrometry (ESI-MS). The H2Cys/Pb(II) mole ratios were varied from 2.1 to 10.0 for two sets of solutions with CPb(II) = 0.01 and 0.1 M, respectively, prepared at pH values (9.1 – 10.4) for which precipitates of Pb(II)-cysteine dissolved. At low H2Cys/Pb(II) mole ratios (2.1 – 3.0) a mixture of the dithiolate [Pb(S,N-Cys)2]2− and [Pb(S,N,O-Cys)(S-HCys)]− complexes with the average Pb-(N/O) and Pb-S distances 2.42 ± 0.04 Å and 2.64 ± 0.04 Å, respectively, was found to dominate. At high concentration of free cysteinate (> 0.7 M) a significant amount converts to the trithiolate [Pb(S,N-Cys)(S-HCys)2]2−, including a minor amount of a PbS3 coordinated [Pb(S-HCys)3]− complex. The coordination mode was evaluated by fitting linear combinations of EXAFS oscillations to the experimental spectra, and by the 207Pb NMR signals in the chemical shift range δPb = 2006 – 2507 ppm, which became increasingly deshielded with increasing free cysteinate concentration. One-pulse magic angle spinning (MAS) 207Pb NMR spectra of crystalline Pb(aet)2 (Haet = 2-aminoethanethiol or cysteamine) with PbS2N2 coordination were measured for comparison (δiso = 2105 ppm). The UV-vis. spectra displayed absorption maxima at 298 – 300 nm (S− → PbII charge transfer) for the dithiolate PbS2N(N/O) species; with increasing ligand excess a shoulder appeared at ∼ 330 nm for the trithiolate PbS3N and PbS3 (minor) complexes. The results provide spectroscopic fingerprints for structural models for Pb(II) coordination modes to proteins and enzymes. PMID:25695880

  3. A cohabitation challenge to compare the efficacies of vaccines for bacterial kidney disease (BKD) in chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Alcorn, S.; Murray, A.L.; Pascho, R.J.; Varney, J.

    2005-01-01

    The relative efficacies of 1 commercial and 5 experimental vaccines for bacterial kidney disease (BKD) were compared through a cohabitation waterborne challenge. Groups of juvenile chinook salmon Oncorhynchus tshawytscha were vaccinated with one of the following: (1) killed Renibacterium salmoninarum ATCC 33209 (Rs 33209) cells; (2) killed Rs 33209 cells which had been heated to 37??C for 48 h, a process that destroys the p57 protein; (3) killed R. salmoninarum MT239 (Rs MT239) cells; (4) heated Rs MT239 cells; (5) a recombinant version of the p57 protein (r-p57) emulsified in Freund's incomplete adjuvant (FIA); (6) the commercial BKD vaccine Renogen; (7) phosphate-buffered saline (PBS) emulsified with an equal volume of FIA; or (8) PBS alone. Following injection, each fish was marked with a subcutaneous fluorescent latex tag denoting its treatment group and the vaccinated fish were combined into sham and disease challenge tanks. Two weeks after these fish were vaccinated, separate groups of fish were injected with either PBS or live R. salmoninarum GL64 and were placed inside coated-wire mesh cylinders (liveboxes) in the sham and disease challenge tanks, respectively. Mortalities in both tanks were recorded for 285 d. Any mortalities among the livebox fish were replaced with an appropriate cohort (infected with R. salmoninarum or healthy) fish. None of the bacterins evaluated in this study induced protective immunity against the R. salmoninarum shed from the infected livebox fish. The percentage survival within the test groups in the R. salmoninarum challenge tank ranged from 59% (heated Rs MT239 bacterin) to 81 % (PBS emulsified with FIA). There were no differences in the percentage survival among the PBS-, PBS/FIA-, r-p57-and Renogen-injected groups. There also were no differences in survival among the bacterin groups, regardless of whether the bacterial cells had been heated or left untreated prior to injection. ?? Inter-Research 2005.

  4. Scavenging dissolved oxygen via acoustic droplet vaporization.

    PubMed

    Radhakrishnan, Kirthi; Holland, Christy K; Haworth, Kevin J

    2016-07-01

    Acoustic droplet vaporization (ADV) of perfluorocarbon emulsions has been explored for diagnostic and therapeutic applications. Previous studies have demonstrated that vaporization of a liquid droplet results in a gas microbubble with a diameter 5-6 times larger than the initial droplet diameter. The expansion factor can increase to a factor of 10 in gassy fluids as a result of air diffusing from the surrounding fluid into the microbubble. This study investigates the potential of this process to serve as an ultrasound-mediated gas scavenging technology. Perfluoropentane droplets diluted in phosphate-buffered saline (PBS) were insonified by a 2 MHz transducer at peak rarefactional pressures lower than and greater than the ADV pressure amplitude threshold in an in vitro flow phantom. The change in dissolved oxygen (DO) of the PBS before and after ADV was measured. A numerical model of gas scavenging, based on conservation of mass and equal partial pressures of gases at equilibrium, was developed. At insonation pressures exceeding the ADV threshold, the DO of air-saturated PBS decreased with increasing insonation pressures, dropping as low as 25% of air saturation within 20s. The decrease in DO of the PBS during ADV was dependent on the volumetric size distribution of the droplets and the fraction of droplets transitioned during ultrasound exposure. Numerically predicted changes in DO from the model agreed with the experimentally measured DO, indicating that concentration gradients can explain this phenomenon. Using computationally modified droplet size distributions that would be suitable for in vivo applications, the DO of the PBS was found to decrease with increasing concentrations. This study demonstrates that ADV can significantly decrease the DO in an aqueous fluid, which may have direct therapeutic applications and should be considered for ADV-based diagnostic or therapeutic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice.

    PubMed

    Zeng, Peng; Pi, Rong-biao; Li, Peng; Chen, Rong-xin; Lin, Li-mian; He, Hong; Zhou, Shi-you

    2015-01-01

    To investigate the effects and mechanisms of fasudil hydrochloride (fasudil) on and in alkali burn-induced corneal neovascularization (CNV) in mice. To observe the effect of fasudil, mice with alkali-burned corneas were treated with either fasudil eye drops or phosphate-buffered saline (PBS) four times per day for 14 consecutive days. After injury, CNV and corneal epithelial defects were measured. The production of reactive oxygen species (ROS) and heme oxygenase-1(HO-1) was measured. The infiltration of polymorphonuclear neutrophils (PMNs) and the mRNA expressions of CNV-related genes were analyzed on day 14. The incidence of CNV was significantly lower after treatment with 100 μM and 300 μM fasudil than with PBS, especially with 100 μM fasudil. Meanwhile, the incidences of corneal epithelial defects was lower (n=15, all p<0.01). After treatment with 100 μM fasudil, the intensity of DHE fluorescence was reduced in the corneal epithelium and stroma than with PBS treatment (n=5, all p<0.01), and the number of filtrated PMNs decreased. There were significant differences between the expressions of VEGF, TNF-a, MMP-8, and MMP-9 in the 100 μM fasudil group and the PBS group (n=8, all p<0.05). The production of HO-1 protein in the 100 μM fasudil group was 1.52±0.34 times more than in the PBS group (n=5 sample, p<0.05). 100 μM fasudil eye drops administered four times daily can significantly inhibit alkali burn-induced CNV and promote the healing of corneal epithelial defects in mice. These effects are attributed to a decrease in inflammatory cell infiltration, reduction of ROS, and upregulation of HO-1 protein after fasudil treatment.

  6. Perfluorocarbon emulsion therapy attenuates pneumococcal infection in sickle cell mice.

    PubMed

    Helmi, Nawal; Andrew, Peter W; Pandya, Hitesh C

    2015-05-15

    Impaired immunity and tissue hypoxia-ischemia are strongly linked with Streptococcus pneumoniae pathogenesis in patients with sickle cell anemia. Perfluorocarbon emulsions (PFCEs) have high O2-dissolving capacity and can alleviate tissue hypoxia. Here, we evaluate the effects of intravenous PFCE therapy in transgenic sickle cell (HbSS) mice infected with S. pneumoniae. HbSS and C57BL/6 (control) mice intravenously infected with S. pneumoniae were treated intravenously with PFCE or phosphate-buffered saline (PBS) and then managed in either air/O2 (FiO2 proportion, 50%; hereafter referred to as the PFCE-O2 and PBS-O2 groups) or air only (hereafter, the PFCE-air and PBS-air groups) gas mixtures. Lungs were processed for leukocyte and bacterial counts and cytokine measurements. HbSS mice developed severe pneumococcal infection significantly faster than C57BL/6 mice (Kaplan-Maier analysis, P < .05). PFCE-O2-treated HbSS mice had significantly better survival at 72 hours than HBSS mice treated with PFCE-air, PBS-O2, or PBS-air (P < .05). PFCE-O2-treated HbSS mice also had significantly lower pulmonary leukocyte counts, lower interleukin 1β and interferon γ levels, and higher interleukin 10 levels than PFCE-air-treated HbSS mice. Clearance of S. pneumoniae from lungs of HbSS mice or C57BL/6 mice was not altered by PFCE treatment. Improved survival of PFCE-O₂-treated HbSS mice infected with S. pneumoniae is associated with altered pulmonary inflammation but not enhanced bacterial clearance. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Scavenging dissolved oxygen via acoustic droplet vaporization

    PubMed Central

    Radhakrishnan, Kirthi; Holland, Christy K.; Haworth, Kevin J.

    2016-01-01

    Acoustic droplet vaporization (ADV) of perfluorocarbon emulsions has been explored for diagnostic and therapeutic applications. Previous studies have demonstrated that vaporization of a liquid droplet results in a gas microbubble with a diameter 5 to 6 times larger than the initial droplet diameter. The expansion factor can increase to a factor of 10 in gassy fluids as a result of air diffusing from the surrounding fluid into the microbubble. This study investigates the potential of this process to serve as an ultrasound-mediated gas scavenging technology. Perfluoropentane droplets diluted in phosphate-buffered saline (PBS) were insonified by a 2 MHz transducer at peak rarefactional pressures lower than and greater than the ADV pressure amplitude threshold in an in vitro flow phantom. The change in dissolved oxygen (DO) of the PBS before and after ADV was measured. A numerical model of gas scavenging, based on conservation of mass and equal partial pressures of gases at equilibrium, was developed. At insonation pressures exceeding the ADV threshold, the DO of air-saturated PBS decreased with increasing insonation pressures, dropping as low as 25% of air saturation within 20 s. The decrease in DO of the PBS during ADV was dependent on the volumetric size distribution of the droplets and the fraction of droplets transitioned during ultrasound exposure. Numerically predicted changes in DO from the model agreed with the experimentally measured DO, indicating that concentration gradients can explain this phenomenon. Using computationally modified droplet size distributions that would be suitable for in vivo applications, the DO of the PBS was found to decrease with increasing concentrations. This study demonstrates that ADV can significantly decrease the DO in an aqueous fluid, which may have direct therapeutic applications and should be considered for ADV-based diagnostic or therapeutic applications. PMID:26964964

  8. A novel recombinant bivalent outer membrane protein of Vibrio vulnificus and Aeromonas hydrophila as a vaccine antigen of American eel (Anguilla rostrata).

    PubMed

    SongLin, Guo; PanPan, Lu; JianJun, Feng; JinPing, Zhao; Peng, Lin; LiHua, Duan

    2015-04-01

    The immogenicity of a novel vaccine antigen was evaluated after immunized American eels (Anguilla rostrata) with a recombinant bivalent expressed outer membrane protein (OMP) of Vibrio vulnificus and Aeromonas hydrophila. Three groups of eels were intraperitoneal (i.p) injected with phosphate-buffered saline (PBS group), formaline-killed-whole-cell (FKC) of A. hydrophila and V. vulnificus (FKC group) or the bivalent OMP (OMP group). On 14, 21, 28 and 42 days post-vaccination respectively, proliferation of the whole blood cells, titers of specific antibody and lysozyme activities of experimental eels were detected. On 28 day post-vaccination, eels from three groups were challenged by i.p injection of live A. hydrophila or V. vulnificus. The results showed that, compared with the PBS group, proliferation of whole blood cells in OMP group was significant enhanced on 28 days, and the serum titers of anti-A.hydrophila and anti-V. vulnificus antibody in eels of FKC and OMP group were significant increased on 14, 21 and 28d. Lysozyme Activities in serum, skin mucus, liver and kidney were significant changed between the three groups. Relative Percent Survival (RPS) after challenged A. hydrophila in KFC vs. PBS group and OMP vs. PBS group were 62.5% and 50% respectively, and the RPS challenged V. vulnificus in FKC and OMP vs. PBS group were 37.5% and 50% respectively. These results suggest that American eels immunized with the bivalent OMP would positively affect specific as well as non-specific immune parameters and protect against infection by the two pathogens in fresh water farming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cross-reactive protection against enterohemorrhagic Escherichia coli infection by enteropathogenic E. coli in a mouse model.

    PubMed

    Calderon Toledo, Carla; Arvidsson, Ida; Karpman, Diana

    2011-06-01

    Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are related attaching and effacing (A/E) pathogens. The genes responsible for the A/E pathology are carried on a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Both pathogens share a high degree of homology in the LEE and additional O islands. EHEC prevalence is much lower in areas where EPEC is endemic. This may be due to the development of antibodies against common EPEC and EHEC antigens. This study investigated the hypothesis that EPEC infections may protect against EHEC infections. We used a mouse model to inoculate BALB/c mice intragastrically, first with EPEC and then with EHEC (E. coli O157:H7). Four control groups received either a nonpathogenic E. coli (NPEC) strain followed by EHEC (NPEC/EHEC), phosphate-buffered saline (PBS) followed by EHEC (PBS/EHEC), EPEC/PBS, or PBS/PBS. Mice were monitored for weight loss and symptoms. EPEC colonized the intestine after challenge, and mice developed serum antibodies to intimin and E. coli secreted protein B (encoded in the LEE). Prechallenge with an EPEC strain had a protective effect after EHEC infection, as only a few mice developed mild symptoms, from which they recovered. These mice had an increase in body weight similar to that in control animals, and tissue morphology exhibited mild intestinal changes and normal renal histology. All mice that were not prechallenged with the EPEC strain developed mild to severe symptoms after EHEC infection, with weight loss as well as intestinal and renal histopathological changes. These data suggest that EPEC may protect against EHEC infection in this mouse model.

  10. Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films

    PubMed Central

    Fortunati, Elena; Iannoni, Antonio; Terenzi, Andrea; Torre, Luigi

    2017-01-01

    Poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) based films containing two different plasticizers [Acetyl Tributyl Citrate (ATBC) and isosorbide diester (ISE)] at three different contents (15 wt %, 20 wt % and 30 wt %) were produced by extrusion method. Thermal, morphological, mechanical and wettability behavior of produced materials was investigated as a function of plasticizer content. Filmature parameters were also adjusted and optimized for different formulations, in order to obtain similar thickness for different systems. Differential scanning calorimeter (DSC) results and evaluation of solubility parameter confirmed that similar miscibility was obtained for ATBC and ISE in PLA, while the two selected plasticizers resulted as not efficient for plasticization of PBS, to the limit that the PBS–30ATBC resulted as not processable. On the basis of these results, isosorbide-based plasticizer was considered a suitable agent for modification of a selected blend (PLA/PBS 80:20) and two mixing approaches were used to identify the role of ISE in the plasticization process: results from mechanical analysis confirmed that both produced PLA–PBS blends (PLA85–ISE15)–PBS20 and (PLA80–PBS20)–ISE15 could guarantee advantages in terms of deformability, with respect to the PLA80–PBS20 reference film, suggesting that the promising use of these stretchable PLA–PBS based films plasticized with isosorbide can provide novel solutions for food packaging applications. PMID:28773168

  11. Multilayered Electrospun Scaffolds for Tendon Tissue Engineering

    PubMed Central

    Chainani, Abby; Hippensteel, Kirk J.; Kishan, Alysha; Garrigues, N. William; Ruch, David S.; Guilak, Farshid

    2013-01-01

    Full-thickness rotator cuff tears are one of the most common causes of shoulder pain in people over the age of 65. High retear rates and poor functional outcomes are common after surgical repair, and currently available extracellular matrix scaffold patches have limited abilities to enhance new tendon formation. In this regard, tissue-engineered scaffolds may provide a means to improve repair of rotator cuff tears. Electrospinning provides a versatile method for creating nanofibrous scaffolds with controlled architectures, but several challenges remain in its application to tissue engineering, such as cell infiltration through the full thickness of the scaffold as well as control of cell growth and differentiation. Previous studies have shown that ligament-derived extracellular matrix may enhance differentiation toward a tendon or ligament phenotype by human adipose stem cells (hASCs). In this study, we investigated the use of tendon-derived extracellular matrix (TDM)-coated electrospun multilayered scaffolds compared to fibronectin (FN) or phosphate-buffered saline (PBS) coating for use in rotator cuff tendon tissue engineering. Multilayered poly(ɛ-caprolactone) scaffolds were prepared by sequentially collecting electrospun layers onto the surface of a grounded saline solution into a single scaffold. Scaffolds were then coated with TDM, FN, or PBS and seeded with hASCs. Scaffolds were maintained without exogenous growth factors for 28 days in culture and evaluated for protein content (by immunofluorescence and biochemical assay), markers of tendon differentiation, and tensile mechanical properties. The collagen content was greatest by day 28 in TDM-scaffolds. Gene expression of type I collagen, decorin, and tenascin C increased over time, with no effect of scaffold coating. Sulfated glycosaminoglycan and dsDNA contents increased over time in culture, but there was no effect of scaffold coating. The Young's modulus did not change over time, but yield strain increased with time in culture. Histology demonstrated cell infiltration through the full thickness of all scaffolds and immunofluorescence demonstrated greater expression of type I, but not type III collagen through the full thickness of the scaffold in TDM-scaffolds compared to other treatment groups. Together, these data suggest that nonaligned multilayered electrospun scaffolds permit tenogenic differentiation by hASCs and that TDM may promote some aspects of this differentiation. PMID:23808760

  12. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid

    PubMed Central

    Shen, H.; Anastasio, C.

    2011-01-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e. with diameters of 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97±6)% when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity. PMID:22121357

  13. Effects of starvation on the transport of Escherichia coli K12 in saturated porous media are dependent on pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Xu, S.; Walczak, J. J.; Wang, L.; Bardy, S. L.; Li, J.

    2010-12-01

    In this research, we investigate the effects of starvation on the transport of E. coli K12 in saturated porous media. Particularly, we examine the relationship between such effects and the pH and ionic strength of the electrolyte solutions that were used to suspend bacterial cells. E. coli K12 (ATCC 10798) cells were cultured using either Luria-Bertani Miller (LB-Miller) broth (10 g trypton, 5 g yeast extract and 10 g NaCl in 1 L of deionized water) or LB-Luria broth (10 g tryptone, 5 g yeast extract and 0.5 g NaCl in 1 L of deionized water). Both broths had similar pH (~7.1) but differed in ionic strength (LB-Miller: ~170 mM, LB-Luria: ~ 8 mM). The bacterial cells were then harvested and suspended using one of the following electrolyte solutions: phosphate buffered saline (PBS) (pH ~7.2; ionic strength ~170 mM), 168 mM NaCl (pH ~5.7), 5% of PBS (pH ~ 7.2; ionic strength ~ 8 mM) and 8 mM NaCl (pH ~ 5.7). Column transport experiments were performed at 0, 21 and 48 hours following cell harvesting to evaluate the change in cell mobility over time under “starvation” conditions. Our results showed that 1) starvation increased the mobility of E. coli K12 cells; 2) the most significant change in mobility occurred when bacterial cells were suspended in an electrolyte solution that had different pH and ionic strength (i.e., LB-Miller culture suspended in 8 mM NaCl and LB-Luria culture suspended in 168 mM Nacl); and 3) the change in cell mobility primarily occurred within the first 21 hours. The size of the bacterial cells was measured and the surface properties (e.g., zeta potential, hydrophobicity, cell-bound protein, LPS sugar content, outer membrane protein profiles) of the bacterial cells were characterized. We found that the measured cell surface properties could not fully explain the observed changes in cell mobility caused by starvation.

  14. The effect of passive ultrasonic activation of 2% chlorhexidine or 5.25% sodium hypochlorite irrigant on residual antimicrobial activity in root canals.

    PubMed

    Weber, Carol Diener; McClanahan, Scott B; Miller, Glenn A; Diener-West, Marie; Johnson, James D

    2003-09-01

    Ninety-four single-canal roots were prepared using the step-down technique. Forty-two canals were irrigated with 2% chlorhexidine, 42 canals with 5.25% sodium hypochlorite (NaOCl), and 10 control canals with phosphate-buffered saline (PBS). The chlorhexidine and NaOCl groups were each then equally divided into a final irrigation group and a 1-min passive ultrasonic irrigation group. Canals were enlarged with a Parapost drill. The apical 3-5 mm was covered with nail polish. Canals were rinsed with PBS, dried, refilled with PBS, and stored. At 6 h, 20 microl of fluid was pipetted from each canal and placed into wells on agar plates, which were inoculated with Streptococcus sanguinis. The plates were incubated, and zones of inhibition were measured. Sampling was repeated at 24, 48, 72, 96, 120, 144, and 168 h. Residual antimicrobial activity with 2% chlorhexidine was statistically significantly superior to 5.25% NaOCl with irrigation alone and with final passive ultrasonic activation (p < 0.001). Chlorhexidine experimental groups demonstrated residual antimicrobial activity for as long as 168 h.

  15. Effect of Fasciola gigantica excretory secretory antigen on rat hematological indices

    PubMed Central

    Ganga, G.; Sharma, R. L.

    2006-01-01

    The present study was undertaken to investigate the effect of Fasciola gigantica excretory secretory antigen (Fg-ESA) on rat hematological indices. Fg-ESA was prepared by keeping thoroughly washed 40 F. gigantica flukes in 100 ml phosphate buffer saline (PBS) for 2 h at 37℃, and centrifuging the supernatant at 12,000 g at 4℃ for 30 min. The protein content of Fg-ESA was adjusted to 1.8 mg/ml. The rats were randomly divided into two groups of six rats each. Rats in group A received 0.5 ml of Fg-ESA intraperitoneally (i.p.) for 7 days, whereas control rats in group B received 0.5 ml of PBS i.p. for 7 days. Hemograms of both groups were studied initially and on days 0, 2, 4, 14 and 21 after the final injection of Fg-ESA or PBS. Progressive and significant (p < 0.01) declines in the values of hemoglobin, hematocrit, and total erythrocyte count were observed without significant (p > 0.05) changes in the values of mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, or mean corpuscular volume in group A. Thus, we conclude that Fg-ESA induces normocytic normochromic anemia in rats. PMID:16645335

  16. Effect of alternative peritoneal dialysis solutions on cell viability, apoptosis/necrosis and cytokine expression in human monocytes.

    PubMed

    Plum, J; Lordnejad, M R; Grabensee, B

    1998-07-01

    Cellular function, cell viability and the cytokine network of human monocytes are influenced by the specific composition of peritoneal dialysis (PD) fluids. In an in vitro study using isolated human blood monocytes, we investigated the effect of peritoneal dialysates containing amino acids (Amino) or glucose polymer (Glu-poly) instead of glucose (Glu) as the osmotic agent, and bicarbonate (Bic) or PBS instead of lactate (Lac) as a buffer. The following parameters were studied: mitochondrial dehydrogenase activity (using the MTT assay), interleukin (IL)-6 and IL-8 release (ELISA) and cellular IL-6 mRNA expression after lipopolysaccharide (LPS) stimulation (using RT-PCR). FACS flow cytometry with annexin V and propidium iodide as markers and fluorescence microscopic methods were used to study the effects of the test fluids on cell necrosis and apoptosis. Glu/Lac pH 5.5 and Glu-poly/PBS pH 7.4 both significantly reduced mitochondrial dehydrogenase activity by more than 50% after 60 minutes of incubation (30.5 +/- 7.6%, 42.5 +/- 6.5%, referred to RPMI 1640 as 100%). Amino/Bic and Glu/Bic were both superior (Mtt assay > 63%). The rate of necrotic cells after 15 minutes of incubation measured by FACS was mostly increased with Glu/Lac pH 5.5 (29.9 +/- 4.0%). The rate of apoptotic cells, however, was not significantly different between the test solutions. The concentration of IL-6 in the supernatant of stimulated monocytes was highest with Glu/Bic (1023 +/- 278 pg/ml) and Amino/Bic (776 +/- 296 pg/ml) an lowest with Glu/lac pH 5.5 (46 +/- 22 pg/ml) and Glu-poly/PBS (32 +/- 13 pg/ml). IL-8 release from stimulated monocytes showed a similar pattern. Glu-poly/PBS showed a suppressive effect on IL-6 mRNA expression (ratio IL-6/beta-Actin, 0.4 +/- 0.25 vs. RPMI 1.5 +/- 3.6). Bicarbonate buffered solutions both with glucose or amino acids as osmotic agents were superior when regarding cell metabolism, viability and cytokine release, while lactate buffered solutions and Glu-poly/PBS showed some reduced biocompatibility pattern for monocytes in vitro.

  17. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    NASA Astrophysics Data System (ADS)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-10-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiOx films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV-vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of sbnd NH2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  18. Development of a novel immunoassay for herbal cannabis using a new fluorescent antibody probe, "Ultra Quenchbody".

    PubMed

    Tsujikawa, Kenji; Saiki, Fujio; Yamamuro, Tadashi; Iwata, Yuko T; Abe, Ryoji; Ohashi, Hiroyuki; Kaigome, Rena; Yamane, Kyosuke; Kuwayama, Kenji; Kanamori, Tatsuyuki; Inoue, Hiroyuki

    2016-09-01

    We developed a novel immunoassay for herbal cannabis based on a new immunoassay principle that uses Ultra Quenchbody ("UQ-body"), a recombinant antibody Fab fragment fluorolabeled at the N-terminal regions. When the antigen binds to anti-Δ(9)-tetrahydrocannabinol (THC) UQ-body, the fluorescence intensity (FI) decreases. The analytical conditions of the immunoassay were optimized based on the FI reduction rate (FIRR). Following are the steps in the final analytical procedure: (1) 10mg of samples were extracted with 1ml of a 60:40 mixture of methanol and phosphate-buffered saline (PBS); (2) the extract was filtered through a centrifugal 0.2-μm polytetrafluoroethylene membrane filter; (3) the filtrate was diluted 100 times with extraction solvent; (4) 6-μl diluted solution was mixed with 19-μl PBS and 75-μl UQ-body solution; and (5) FIRR was measured under 275-mV excitation light. Herbal cannabis samples containing ≥4.0-mg/g THC gave FIRRs of ≥5.2%. FIRRs of negative samples (cigarette, tea, spice, and so-called "synthetic marijuana") were ≤3.1%. When setting the FIRR threshold to 5.0%, cannabis samples containing ≥4.0-mg/g THC were correctly judged as positive without being affected by false positives caused by the negative samples. This detection limit was lower than total THC level (10-200mg/g) in most herbal cannabis samples seized in Japan. In seven of the 10 cannabis samples, the results of the UQ-body test were comparable with those of the Duquenois-Levine test. Thus, the UQ-body-based immunoassay is presumed to be an effective and objective drug screening method for herbal cannabis; however, to show the true usefulness, it is necessary to test a number of real case samples in the field situation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials.

    PubMed

    Jing, Linjing; Chen, Li; Peng, Haitao; Ji, Mizhi; Xiong, Yi; Lv, Guoyu

    2017-12-01

    Owing to the good degradability and biocompatibility of polyphosphoesters (PPEs), the aim of the current study was to investigate a novel degradable composite of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) with cyclophosphate (CPE) via in situ melting polymerization to improve the degradation of n-HA/PAA. The structure of each composite was characterized via Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The degradation properties were studied in terms of the weight loss and pH in a phosphate-buffered saline (PBS) solution, while the surface morphology was examined using a scanning electron microscope-energy dispersive spectrometer (SEM-EDS) after soaking the surface in simulated body fluid (SBF). The cell proliferation, cell adhesion, and alkaline phosphatase (ALP) activity were used for the analysis of cytocompatibility. The weight loss results showed that the n-HA/PAA composite was 9.98 wt%, weighed after soaking in the PBS solution for 12 weeks, whereas the nano-hydroxyapatite/polyphosphoester-amino acid (n-HA/PPE-AA) composite was 46.94 wt%. The pH of the composites was in a suitable range between 6.64 to 7.06 and finally stabilized at 7.39. The SEM and EDS results revealed the formation of an apatite-like layer on the surface of the n-HA/PPE-AA composites after soaking in SBF for one week. The cell counting Kit 8 (CCK-8) assay of the cell culture in the leaching liquid of the n-HA/PPE-AA composites exhibited non-cytotoxicity and high-proliferation, and the cell adhesion showed the well spreading and normal phenotype extension of the cells on the n-HA/PPE-AA composites surface. Concurrently, the co-culture results of the composites and cells confirmed that the n-HA/PPE-AA composites exhibited a higher ALP activity. In summary, the results demonstrated that the n-HA/PPE-AA composites had a controllable degradation property, good bioactivity, and cytocompatibility.

  20. PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants

    PubMed Central

    Jogawat, Abhimanyu; Vadassery, Jyothilakshmi; Verma, Nidhi; Oelmüller, Ralf; Dua, Meenakshi; Nevo, Eviatar; Johri, Atul Kumar

    2016-01-01

    In this study, yeast HOG1 homologue from the root endophyte Piriformospora indica (PiHOG1) was isolated and functionally characterized. Functional expression of PiHOG1 in S. cerevisiae ∆hog1 mutant restored osmotolerance under high osmotic stress. Knockdown (KD) transformants of PiHOG1 generated by RNA interference in P. indica showed that genes for the HOG pathway, osmoresponse and salinity tolerance were less stimulated in KD-PiHOG1 compared to the wild-type under salinity stress. Furthermore, KD lines are impaired in the colonization of rice roots under salinity stress of 200 mM NaCl, and the biomass of the host plants, their shoot and root lengths, root number, photosynthetic pigment and proline contents were reduced as compared to rice plants colonized by WT P. indica. Therefore, PiHOG1 is critical for root colonisation, salinity tolerance and the performance of the host plant under salinity stress. Moreover, downregulation of PiHOG1 resulted not only in reduced and delayed phosphorylation of the remaining PiHOG1 protein in colonized salinity-stressed rice roots, but also in the downregulation of the upstream MAP kinase genes PiPBS2 and PiSSK2 involved in salinity tolerance signalling in the fungus. Our data demonstrate that PiHOG1 is not only involved in the salinity response of P. indica, but also helping host plant to overcome salinity stress. PMID:27849025

  1. Band-structure tailoring and surface passivation for highly efficient near-infrared responsive PbS quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhou, Ru; Niu, Haihong; Ji, Fengwei; Wan, Lei; Mao, Xiaoli; Guo, Huier; Xu, Jinzhang; Cao, Guozhong

    2016-11-01

    PbS is a promising light harvester for near-infrared (NIR) responsive quantum dot (QD) photovoltaics due to its narrow bulk band gap (0.41 eV) and large exciton Bohr radius (18 nm). However, the relatively low conduction band (CB) and high-density surface defects of PbS as two major drawbacks for its use in solar cells severely hamper the photovoltaic performance enhancement. In this work, a modified solution-based successive ionic layer adsorption and reaction (SILAR) utilizing mixed cationic precursors of Pb2+ and Cd2+ is explored, and such a scheme offers two benefits, band-structure tailoring and surface passivation. In-situ deposited CdS suppresses the excessive growth of PbS in the mesopores, thereby facilitating the favorable electron injection from PbS to TiO2 in view of the up-shifted CB level of QDs; the intimate interpenetration of two sulfides with each other leads to superior passivation of trap state defects on PbS, which suppresses the interfacial charge recombination. With the construction of photovoltaics based on such a hybrid (Pb,Cd)S/CdS configuration, impressive power conversion efficiency up to 4.08% has been reached, outperforming that of the conventional PbS/CdS pattern (2.95%). This work highlights the great importance of band-structure tailoring and surface passivation for constructing highly efficient PbS QD photovoltaics.

  2. Characterization of drug release from liposomal formulations in ocular fluid.

    PubMed

    Jafari, M R; Jones, A B; Hikal, A H; Williamson, J S; Wyandt, C M

    1998-01-01

    The successful application of liposomes in topical ophthalmic drug delivery requires knowledge of vesicle stabilization in the presence of tear fluid. The release of procaine hydrochloride (PCH) from large unilamellar liposomes in the presence of simulated tear fluid was studied in vitro as a function of bilayer lipid content and tear protein composition. Reverse-phase evaporation vesicles were prepared from egg phosphatidylcholine, stearylamine or dicetyl phosphate, and cholesterol. The relationship between lipid composition and encapsulation efficiency, vesicle size, drug leakage upon storage at 4 degrees C, and the release of PCH-loaded liposomes was studied. The encapsulation efficiency was found to be dependent upon the lipid composition used in the liposome preparation. In particular, phosphatidylcholine vesicles containing cholesterol and/or charged lipids had a lower entrapment efficiency than liposomes prepared with phosphatidylcholine alone. However, the drug release rate was reduced significantly by inclusion of cholesterol and/or charged lipids in the liposomes. The release kinetics of the entrapped agent seemed to be a biphasic process and the drug-release in both simulated tear fluid (STF) and pH 7.4 phosphate buffered saline (PBS) solutions followed pseudo first-order kinetics in the early stage of the release profile. The drug-release appeared to be diffusion and/or partition controlled. Drug release from liposomes into STF, pH 7.4 PBS, and five different modified tear formulations was also evaluated. While serum-induced leakage is attributed to high-density lipoprotein-mediated destabilization, it was determined that lactoferrin might be the protein component in tear fluid that has the primary influence on the liposome-entrapped drug release rate. Five local anesthetics, benoxinate, proparacaine, procaine, tetracaine, and benzocaine were entrapped in liposomal vesicles by a reverse-phase evaporation (REV) technique. The release of these structurally similar topical anesthetics entrapped in positively charged liposomes (egg phosphatidylcholine, stearylamine, and cholesterol in a 7:2:1 molar ratio) was evaluated in a simulated tear fluid and pH 7.4 phosphate buffered saline solution. The liposomes appeared to be useful carriers for these drugs to retard their in vitro release in tear fluid and perhaps sustain or control their release in the eye for better therapeutic efficacy. An analysis of the release data demonstrated that for this series of drugs, drug partition coefficient has the largest effect on release rate, with molecular weight exhibiting a smaller effect. Release rate was found to decrease with increased lipophilicity or increased molecular weight.

  3. Possible Mechanism of Action of the Antiallergic Effect of an Aqueous Extract of Heliotropium indicum L. in Ovalbumin-Induced Allergic Conjunctivitis

    PubMed Central

    Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Abokyi, Samuel; Wiredu, Eric Addo

    2015-01-01

    Heliotropium indicum is used traditionally as a remedy for conjunctivitis in Ghana. This study therefore evaluated the antiallergic potential of an aqueous whole plant extract of Heliotropium indicum (HIE) in ovalbumin-induced allergic conjunctivitis and attempted to predict its mode of action. Clinical scores for allergic conjunctivitis induced by intraperitoneal ovalbumin sensitization (100 : 10 μg OVA/Al(OH)3 in phosphate-buffered saline [PBS]) and topical conjunctival challenge (1.5 mg OVA in 10 μL PBS) in Dunkin-Hartley guinea pigs were estimated after a week's daily treatment with 30–300 mg kg−1 HIE, 30 mg kg−1 prednisolone, 10 mg kg−1 chlorpheniramine, or 10 mL kg−1 PBS. Ovalbumin-specific IgG and IgE and total IgE in serum were estimated using Enzyme-Linked Immunosorbent Assay. Histopathological assessment of the exenterated conjunctivae was also performed. The 30 and 300 mg kg−1 HIE treatment resulted in a significantly (p ≤ 0.001) low clinical score of allergic conjunctivitis. Ovalbumin-specific IgG and IgE as well as total serum IgE also decreased significantly (p ≤ 0.01–0.001). The conjunctival tissue in HIE treated guinea pigs had mild mononuclear infiltration compared to the PBS-treated ones, which had intense conjunctival tissue inflammatory infiltration. HIE exhibited antiallergic effect possibly by immunomodulation or immunosuppression. PMID:26681960

  4. Possible Mechanism of Action of the Antiallergic Effect of an Aqueous Extract of Heliotropium indicum L. in Ovalbumin-Induced Allergic Conjunctivitis.

    PubMed

    Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Abokyi, Samuel; Owusu-Afriyie, Osei; Wiredu, Eric Addo

    2015-01-01

    Heliotropium indicum is used traditionally as a remedy for conjunctivitis in Ghana. This study therefore evaluated the antiallergic potential of an aqueous whole plant extract of Heliotropium indicum (HIE) in ovalbumin-induced allergic conjunctivitis and attempted to predict its mode of action. Clinical scores for allergic conjunctivitis induced by intraperitoneal ovalbumin sensitization (100 : 10 μg OVA/Al(OH)3 in phosphate-buffered saline [PBS]) and topical conjunctival challenge (1.5 mg OVA in 10 μL PBS) in Dunkin-Hartley guinea pigs were estimated after a week's daily treatment with 30-300 mg kg(-1) HIE, 30 mg kg(-1) prednisolone, 10 mg kg(-1) chlorpheniramine, or 10 mL kg(-1) PBS. Ovalbumin-specific IgG and IgE and total IgE in serum were estimated using Enzyme-Linked Immunosorbent Assay. Histopathological assessment of the exenterated conjunctivae was also performed. The 30 and 300 mg kg(-1) HIE treatment resulted in a significantly (p ≤ 0.001) low clinical score of allergic conjunctivitis. Ovalbumin-specific IgG and IgE as well as total serum IgE also decreased significantly (p ≤ 0.01-0.001). The conjunctival tissue in HIE treated guinea pigs had mild mononuclear infiltration compared to the PBS-treated ones, which had intense conjunctival tissue inflammatory infiltration. HIE exhibited antiallergic effect possibly by immunomodulation or immunosuppression.

  5. Effects of diluting medium and holding time on sperm motility analysis by CASA in ram.

    PubMed

    Mostafapor, Somayeh; Farrokhi Ardebili, Farhad

    2014-01-01

    The aim of this study was to evaluate the effects of dilution rate and holding time on various motility parameters using computer-assisted sperm analysis (CASA). The semen samples were collected from three Ghezel rams. Samples were diluted in seminal plasma (SP), phosphate-buffered saline (PBS) containing 1% bovine serum albumin (BSA) and Bioexcell. The motility parameters that computed and recorded by CASA include curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP), straightness (STR), linearity (LIN), amplitude of lateral head displacement (ALH), and beat cross frequency (BCF). In all diluters, there was a decrease in the average of all three parameters of sperms movement velocity as the time passed, but density of this decrease was more intensive in SP. The average of ALH between diluters indicated a significant difference, as it was more in Bioexcell in comparison with the similar amount in SP and PBS. The average of LIN in the diluted sperms in Bioexcell was less than two other diluters in all three times. The motility parameters of the diluted sperms in Bioexcell and PBS indicated an important and considerable difference with the diluted sperms in SP. According to the gained results, the Bioexcell has greater ability in preserving motility of sperm in comparison with the other diluters but as SP is considered as physiological environment for sperm. It seems that the evaluation of the motility parameters in Bioexcell and PBS cannot be an accurate and comparable evaluation with SP.

  6. Dialysis buffer with different ionic strength affects the antigenicity of cultured nervous necrosis virus (NNV) suspensions.

    PubMed

    Gye, Hyun Jung; Nishizawa, Toyohiko

    2016-09-02

    Nervous necrosis virus (NNV) belongs to the genus Betanodavirus (Nodaviridae). It is highly pathogenic to various marine fishes. Here, we investigated the antigenicity changes of cultured NNV suspensions during 14days of dialyses using a dialysis tube at 1.4×10(4) molecular weight cut off (MWCO) in three different buffers (Dulbecco's phosphate buffered saline (D-PBS), 15mM Tris-HCl (pH 8.0), and deionized water (DIW)). Total NNV antigen titers of cultured NNV suspension varied depending on different dialysis buffers. For example, total NNV antigen titer during D-PBS dialysis was increased once but then decreased. During Tris-HCl dialysis, it was relatively stable. During dialysis in DIW, total NNV antigen titer was increased gradually. These antigenicity changes in NNV suspension might be due to changes in the aggregation state of NNV particles and/or coat proteins (CPs). ELISA values of NNV suspension changed due to changing aggregates state of NNV antigens. NNV particles in suspension were aggregated at a certain level. These aggregates were progressive after D-PBS dialysis, but regressive after Tris-HCl dialysis. The purified NNV particles self-aggregated after dialysis in D-PBS or in Tris-HCl containing 600mM NaCl, but not after dialysis in Tris-HCl or DIW. Quantitative analysis is merited to determine NNV antigens in the highly purified NNV particles suspended in buffer at low salt condition. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Lubricin: A novel means to decrease bacterial adhesion and proliferation

    PubMed Central

    Aninwene, George E.; Abadian, Pegah N.; Ravi, Vishnu; Taylor, Erik N.; Hall, Douglas M.; Mei, Amy; Jay, Gregory D.; Goluch, Edgar D.; Webster, Thomas J.

    2015-01-01

    This study investigated the ability of lubricin (LUB) to prevent bacterial attachment and proliferation on model tissue culture polystyrene surfaces. The findings from this study indicated that LUB was able to reduce the attachment and growth of Staphylococcus aureus on tissue culture polystyrene over the course of 24 h by approximately 13.9% compared to a phosphate buffered saline (PBS)-soaked control. LUB also increased S. aureus lag time (the period of time between the introduction of bacteria to a new environment and their exponential growth) by approximately 27% compared to a PBS-soaked control. This study also indicated that vitronectin (VTN), a protein homologous to LUB, reduced bacterial S. aureus adhesion and growth on tissue culture polystyrene by approximately 11% compared to a PBS-soaked control. VTN also increased the lag time of S. aureus by approximately 43%, compared to a PBS-soaked control. Bovine submaxillary mucin was studied because there are similarities between it and the center mucin-like domain of LUB. Results showed that the reduction of S. aureus and Staphylococcus epidermidis proliferation on mucin coated surfaces was not as substantial as that seen with LUB. In summary, this study provided the first evidence that LUB reduced the initial adhesion and growth of both S. aureus and S. epidermidis on a model surface to suppress biofilm formation. These reductions in initial bacteria adhesion and proliferation can be beneficial for medical implants and, although requiring more study, can lead to drastically improved patient outcomes. PMID:24737699

  8. Targeted Ablation of CML Stem Cells

    DTIC Science & Technology

    2007-01-01

    centuries .12 More recently, PTL has been found to have several other properties, including antitumor activity, inhibition of DNA synthesis, and...as a chemopreventive agent in a UVB-induced skin cancer animal model. 21 PTL is a potent inhibitor of NF-B activation and has been shown to directly...diluted in phosphate buffer saline (PBS). Ara-C was obtained from Sigma ( St Louis, MO). Total cell numbers were determined before and after culture for

  9. Plasma-Mediated Release of Morphine from Synthesized Prodrugs

    DTIC Science & Technology

    2013-01-01

    UPLC )9 (Waters Inc.) was utilized for measurements of morphine, PDA and PDB. UPLC has the capability to perform rapid (< 10 min) and reproducible...for UPLC versus ~30-50 µL for HPLC. The term “morphine” refers to the free morphine alkaloid base (Malinkrodt, etc.) unless otherwise stated...Baseline UPLC profiles were obtained for phosphate buffered saline (PBS), morphine and PDA in esterase de-activated plasma. Plasma was precipitated by the

  10. The Limitations of Diazepam as a Treatment for Nerve Agent-Induced Seizures and Neuropathology in Rats: Comparison with UBP302

    DTIC Science & Technology

    2014-11-01

    to nerve agents induces prolonged status epilepticus (SE), causing brain damage or death. Diazepam (DZP) is the cur- rent US Food and Drug... status epilepticus (SE), which are initiated by the excessive stimulation of cholinergic receptors. If immediate death is prevented by adequate...5-yl)ethyl] decahydroisoquinoline-3-carboxylic acid; PBS, phosphate-buffered saline; SE, status epilepticus ; UBP302, (S)-3-(2-carboxybenzyl

  11. Evaluation of cell-mediated immune responses against porcine circovirus type 2 (PCV2) Cap and Rep proteins after vaccination with a commercial PCV2 sub-unit vaccine.

    PubMed

    Fort, Maria; Sibila, Marina; Nofrarías, Miquel; Pérez-Martín, Eva; Olvera, Alex; Mateu, Enric; Segalés, Joaquim

    2012-11-15

    This study investigated the development of cellular immunity to Porcine circovirus type 2 (PCV2) Cap and Rep proteins in pigs vaccinated with a commercial PCV2 genotype a (PCV2a) based sub-unit vaccine, before and after a heterologous challenge with a PCV2b isolate. At three weeks of age, 20 pigs were inoculated intramuscularly with either the vaccine product (V group, n=9) or phosphate buffered saline solution (PBS) (NV group, n=11). Three weeks after vaccination, pigs were challenged intranasally with PCV2b (V-C and NV-C groups) or PBS (V-NC and NV-NC groups). None of the pigs developed clinical signs during the whole experiment, but all NV-C and 3/5 V-C pigs developed viraemia. Vaccination induced the development IFN-γ-secreting cells in response to the Cap protein of PCV2, which appeared three weeks post-vaccination and increased after challenge. By that time, no significant differences were detected on PCV2 antibody titres between vaccinated and non-vaccinated pigs, although there were significant differences on day 7 post-challenge. PCV2-inoculation induced a cellular response against the Rep protein. Such response was significantly reduced or even absent in PCV2-inoculated pigs that were previously vaccinated (V-C group), presumably as a result of a lower PCV2 replication in vaccinated animals compared to non-vaccinated ones. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity.

    PubMed

    Zuldesmi, Mansjur; Waki, Atsushi; Kuroda, Kensuke; Okido, Masazumi

    2015-04-01

    The surface wettability of implants is a crucial factor in their osteoconductivity because it influences the adsorption of cell-attached proteins onto the surface. In this study, a single-step hydrothermal surface treatment using distilled water at a temperature of 180°C for 3h was applied to titanium (Ti) and its alloys (Ti-6Al-4V, Ti-6Al-7Nb, Ti-29Nb-13Ta-4.6Zr, Ti-13Cr-1Fe-3Al; mass%) and compared with as-polished Ti implants and with implants produced by anodizing Ti in 0.1M of H3PO4 with applied voltages from 0V to 150V at a scanning rate of 0.1Vs(-1). The surface-treated samples were stored in a five time phosphate buffered saline (×5 PBS(-)) solution to prevent increasing the water contact angle (WCA) with time. The surface characteristics were evaluated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy, surface roughness, and contact angle measurement using a 2μL droplet of distilled water. The relationship between WCA and osteoconductivity at various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA≤10° and a high osteoconductivity (RB-I) of up to 50% in the cortical bone part, about four times higher than the as-polished Ti and Ti alloys, were provided by the combination of the hydrothermal surface treatment and storage in ×5 of PBS(-). Copyright © 2015 Elsevier B.V. All rights reserved.

  13. In vitro modifications of the scala tympani environment and the cochlear implant array surface.

    PubMed

    Kontorinis, Georgios; Scheper, Verena; Wissel, Kirsten; Stöver, Timo; Lenarz, Thomas; Paasche, Gerrit

    2012-09-01

    To investigate the influence of alterations of the scala tympani environment and modifications of the surface of cochlear implant electrode arrays on insertion forces in vitro. Research experimental study. Fibroblasts producing neurotrophic factors were cultivated on the surface of Nucleus 24 Contour Advance electrodes. Forces were recorded by an Instron 5542 Force Measurement System as three modified arrays were inserted into an artificial scala tympani model filled with phosphate-buffered saline (PBS). The recorded forces were compared to control groups including three unmodified electrodes inserted into a model filled with PBS (unmodified environment) or Healon (current practice). Fluorescence microscopy was used before and after the insertions to identify any remaining fibroblasts. Additionally, three Contour Advance electrodes were inserted into an artificial model, filled with alginate/barium chloride solution at different concentrations, while insertion forces were recorded. Modification of the scala tympani environment with 50% to 75% alginate gel resulted in a significant decrease in the insertion forces. The fibroblast-coated arrays also led to decreased forces comparable to those recorded with Healon. Fluorescence microscopy revealed fully cell-covered arrays before and partially covered arrays after the insertion; the fibroblasts on the arrays' modiolar surface remained intact. Modifications of the scala tympani's environment with 50% to 75% alginate/barium chloride and of the cochlear implant electrode surface with neurotrophic factor-producing fibroblasts drastically reduce the insertion forces. As both modifications may serve future intracochlear therapies, it is expected that these might additionally reduce possible insertion trauma. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  14. Experimental studies on soft contact lenses for controlled ocular delivery of pirfinedone: in vitro and in vivo.

    PubMed

    Yang, Mei; Yang, Yangfan; Lei, Ming; Ye, Chengtian; Zhao, Chunshun; Xu, Jiangang; Wu, Kaili; Yu, Minbin

    2016-11-01

    Pirfinedone (PFD) is a novel agent which has the potential to prevent scarring in the eyes. The 0.5% PFD eye drops exhibits poor bioavailability. Whereas, the feasibility of using contact lens as ocular drug delivery device initiated novel possibilities. To evaluate the delivery of PFD by soft contact lens (SCL) in vivo, we screened the most suitable lens material for PFD among various commercially available SCL materials in vitro. Firstly, 11 different SCLs (-1.00 diopter) were respectively soaked in 2 ml of 0.05% PFD-loading solution for 24 h to fully absorb drug, and then placed in fresh phosphate buffered saline (PBS) to release the drug. PFD concentration in PBS was determined by ultraviolet absorbance at 310 nm. Secondly, by immersing in 2 ml of 0.5% PFD eye drops for 24 h, the polymacon lens (0.00 diopter) was then placed on the cornea of New Zealand rabbits. PFD concentrations were detected by high performance liquid chromatography (HPLC) in tears, aqueous humor, conjunctiva, cornea, and sclera at different time points. PFD showed some affinity for pHEMA-based lenses and the polymacon lens more slowly released more amount of PFD than any other lens in vitro (p < 0.001). Compared with eye drops, drug-loaded SCLs greatly enhanced the retention time and concentrations of PFD in cornea and aqueous humor and consequently improved the bioavailability of PFD. Polymacon-based SCL is probably a promising vehicle to be an effective ophthalmic delivery system for PFD.

  15. Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field

    NASA Astrophysics Data System (ADS)

    Jabbari, Esmaiel; Tavakoli, Javad; Sarvestani, Alireza S.

    2007-10-01

    A novel application of environmentally sensitive polyelectrolytes is in the fabrication of BioMEMS devices as sensors and actuators. Poly(acrylic acid) (PAA) gels are anionic polyelectrolyte networks that exhibit volume expansion in aqueous physiological environments. When an electric field is applied to PAA polyelectrolyte gels, the fixed anionic polyelectrolyte charges and the requirement of electro-neutrality in the network generate an osmotic pressure, above that in the absence of the electric field, to expand the network. The objective of this research was to investigate the effect of an externally applied dc electric field on the volume expansion of the PAA polyelectrolyte gel in a simulated physiological solution of phosphate buffer saline (PBS). For swelling studies in the electric field, two platinum-coated plates, as electrodes, were wrapped in a polyethylene sheet to protect the plates from corrosion and placed vertically in a vessel filled with PBS. The plates were placed on a rail such that the distance between the two plates could be adjusted. The PAA gel was synthesized by free radical crosslinking of acrylic acid monomer with ethylene glycol dimethacrylate (EGDMA) crosslinker. Our results demonstrate that volume expansion depends on the intensity of the electric field, the PAA network density, network homogeneity, and the position of the gel in the field relative to positive/negative electrodes. Our model predictions for PAA volume expansion, based on the dilute electrolyte concentration in the gel network, is in excellent agreement with the experimental findings in the high-electric-field regime (250-300 Newton/Coulomb).

  16. Novel integrated microdialysis-amperometric system for in vitro detection of dopamine secreted from PC12 cells: design, construction, and validation.

    PubMed

    Migheli, Rossana; Puggioni, Giulia; Dedola, Sonia; Rocchitta, Gaia; Calia, Giammario; Bazzu, Gianfranco; Esposito, Giovanni; Lowry, John P; O'Neill, Robert D; Desole, M S; Miele, Egidio; Serra, Pier A

    2008-09-15

    A novel dual channel in vitro apparatus, derived from a previously described design, has been coupled with dopamine (DA) microsensors for the flow-through detection of DA secreted from PC12 cells. The device, including two independent microdialysis capillaries, was loaded with a solution containing PC12 cells while a constant phosphate-buffered saline (PBS) medium perfusion was carried out using a dual channel miniaturized peristaltic pump. One capillary was perfused with normal PBS, whereas extracellular calcium was removed from extracellular fluid of the second capillary. After a first period of stabilization and DA baseline recording, KCl (75 mM) was added to the perfusion fluid of both capillaries. In this manner, a simultaneous "treatment-control" experimental design was performed to detect K+-evoked calcium-dependent DA secretion. For this purpose, self-referencing DA microsensors were developed, and procedures for making, testing, and calibrating them are described in detail. The electronic circuitry was derived from previously published schematics and optimized for dual sensor constant potential amperometry applications. The microdialysis system was tested and validated in vitro under different experimental conditions, and DA secretion was confirmed by high-performance liquid chromatography with electrochemical detection (HPLC-EC). PC12 cell viability was quantified before and after each experiment. The proposed apparatus serves as a reliable model for studying the effects of different drugs on DA secretion through the direct comparison of extracellular DA increase in treatment-control experiments performed on the same initial PC12 cell population.

  17. On the hydrophilicity of polyzwitterion poly (N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions.

    PubMed

    Hildebrand, Viet; Laschewsky, André; Zehm, Daniel

    2014-01-01

    A series of zwitterionic model polymers with defined molar masses up to 150,000 Da and defined end groups are prepared from sulfobetaine monomer N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropanesulfonate (SPP). Polymers are synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) using a functional chain transfer agent labeled with a fluorescent probe. Their upper critical solution temperature-type coil-to-globule phase transition in water, deuterated water, and various salt solutions is studied by turbidimetry. Cloud points increase with polyzwitterion concentration and molar mass, being considerably higher in D2O than in H2O. Moreover, cloud points are strongly affected by the amount and nature of added salts. Typically, they increase with increasing salt concentration up to a maximum value, whereas further addition of salt lowers the cloud points again, mostly down to below freezing point. The different salting-in and salting-out effects of the studied anions can be correlated with the Hofmeister series. In physiological sodium chloride solution and in phosphate buffered saline (PBS), the cloud point is suppressed even for high molar mass samples. Accordingly, SPP-polymers behave strongly hydrophilic under most conditions encountered in biomedical applications. However, the direct transfer of results from model studies in D2O, using, e.g. (1)H NMR or neutron scattering techniques, to 'normal' systems in H2O is not obvious.

  18. Macrophage Biocompatibility of CoCr Wear Particles Produced under Polarization in Hyaluronic Acid Aqueous Solution

    PubMed Central

    Perez-Maceda, Blanca Teresa; López-Fernández, María Encarnación; Díaz, Iván; Kavanaugh, Aaron; Billi, Fabrizio; Escudero, María Lorenza; García-Alonso, María Cristina; Lozano, Rosa María

    2018-01-01

    Macrophages are the main cells involved in inflammatory processes and in the primary response to debris derived from wear of implanted CoCr alloys. The biocompatibility of wear particles from a high carbon CoCr alloy produced under polarization in hyaluronic acid (HA) aqueous solution was evaluated in J774A.1 mouse macrophages cultures. Polarization was applied to mimic the electrical interactions observed in living tissues. Wear tests were performed in a pin-on-disk tribometer integrating an electrochemical cell in phosphate buffer solution (PBS) and in PBS supplemented with 3 g/L HA, an average concentration that is generally found in synovial fluid, used as lubricant solution. Wear particles produced in 3 g/L HA solution showed a higher biocompatibility in J774A.1 macrophages in comparison to those elicited by particles obtained in PBS. A considerable enhancement in macrophages biocompatibility in the presence of 3 g/L of HA was further observed by the application of polarization at potentials having current densities typical of injured tissues suggesting that polarization produces an effect on the surface of the metallic material that leads to the production of wear particles that seem to be macrophage-biocompatible and less cytotoxic. The results showed the convenience of considering the influence of the electric interactions in the chemical composition of debris detached from metallic surfaces under wear corrosion to get a better understanding of the biological effects caused by the wear products. PMID:29738506

  19. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deli, Martin, E-mail: martin.deli@web.de; Fritz, Jan, E-mail: jfritz9@jhmi.edu; Mateiescu, Serban, E-mail: mateiescu@microtherapy.de

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 withmore » gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 {+-} 9 min in the gadolinium-enhanced saline solution group and 22 {+-} 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.« less

  20. Conserved Receptor-Binding Domains of Lake Victoria Marburgvirus and Zaire Ebolavirus Bind a Shared Receptor

    DTIC Science & Technology

    2006-04-14

    virion, because of the functional importance of and limited variation in this region (44, 45). In some cases, such as murine and feline leukemia viruses ...murine leukemia virus ; PBS, phos- phate-buffered saline; RBD, receptor-binding domain; SARS, severe acute respiratory syndrome; VSV, vesicular stomatitis...entryofpseudotypedret- roviruses. A Moloney murine leukemia virus vector expressing GFP was pseudotyped with the GP1,2 of MARV-Mus (MARV/MLV), a mucin-like

  1. CF3 Derivatives of the Anticancer Ru(III) Complexes KP1019, NKP-1339, and Their Imidazole and Pyridine Analogues Show Enhanced Lipophilicity, Albumin Interactions, and Cytotoxicity.

    PubMed

    Chang, Stephanie W; Lewis, Andrew R; Prosser, Kathleen E; Thompson, John R; Gladkikh, Margarita; Bally, Marcel B; Warren, Jeffrey J; Walsby, Charles J

    2016-05-16

    The Ru(III) complexes indazolium [trans-RuCl4(1H-indazole)2] (KP1019) and sodium [trans-RuCl4(1H-indazole)2] (NKP-1339) are leading candidates for the next generation of metal-based chemotherapeutics. Trifluoromethyl derivatives of these compounds and their imidazole and pyridine analogues were synthesized to probe the effect of ligand lipophilicity on the pharmacological properties of these types of complexes. Addition of CF3 groups also provided a spectroscopic handle for (19)F NMR studies of ligand exchange processes and protein interactions. The lipophilicities of the CF3-functionalized compounds and their unsubstituted parent complexes were quantified by the shake-flask method to give the distribution coefficient D at pH 7.4 (log D7.4). The solution behavior of the CF3-functionalized complexes was characterized in phosphate-buffered saline (PBS) using (19)F NMR, electron paramagnetic resonance (EPR), and UV-vis spectroscopies. These techniques, along with fluorescence competition experiments, were also used to characterize interactions with human serum albumin (HSA). From these studies it was determined that increased lipophilicity correlates with reduced solubility in PBS but enhancement of noncoordinate interactions with hydrophobic domains of HSA. These protein interactions improve the solubility of the complexes and inhibit the formation of oligomeric species. EPR measurements also demonstrated the formation of HSA-coordinated species with longer incubation. (19)F NMR spectra show that the trifluoromethyl complexes release axial ligands in PBS and in the presence of HSA. In vitro testing showed that the most lipophilic complexes had the greatest cytotoxic activity. Addition of CF3 groups enhances the activity of the indazole complex against A549 nonsmall cell lung carcinoma cells. Furthermore, in the case of the pyridine complexes, the parent compound was inactive against the HT-29 human colon carcinoma cell line but showed strong cytotoxicity with CF3 functionalization. Overall, these studies demonstrate that lipophilicity may be a determining factor in the anticancer activity and pharmacological behavior of these types of Ru(III) complexes.

  2. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound.

    PubMed

    Abdul Latip, Ahmad Faiz; Hussein, Mohd Zobir; Stanslas, Johnson; Wong, Charng Choon; Adnan, Rohana

    2013-01-01

    Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems.

  3. Comparison of the in vitro effects of saline, hypertonic hydroxyethyl starch, hypertonic saline, and two forms of hydroxyethyl starch on whole blood coagulation and platelet function in dogs.

    PubMed

    Wurlod, Virginie A; Howard, Judith; Francey, Thierry; Schweighauser, Ariane; Adamik, Katja N

    2015-01-01

    To compare the in vitro effects of hypertonic solutions and colloids to saline on coagulation in dogs. In vitro experimental study. Veterinary teaching hospital. Twenty-one adult dogs. Blood samples were diluted with saline, 7.2% hypertonic saline solution with 6% hydroxyethylstarch with an average molecular weight of 200 kDa and a molar substitution of 0.4 (HH), 7.2% hypertonic saline (HTS), hydroxyethyl starch (HES) 130/0.4 or hydroxyethyl starch 600/0.75 at ratios of 1:22 and 1:9, and with saline and HES at a ratio of 1:3. Whole blood coagulation was analyzed using rotational thromboelastometry (extrinsic thromboelastometry-cloting time (ExTEM-CT), maximal clot firmness (MCF) and clot formation time (CFT) and fibrinogen function TEM-CT (FibTEM-CT) and MCF) and platelet function was analyzed using a platelet function analyzer (closure time, CTPFA ). All parameters measured were impaired by saline dilution. The CTPFA was prolonged by 7.2% hypertonic saline solution with 6% hydroxyethylstarch with an average molecular weight of 200 kDa and a molar substitution of 0.4 (HH) and HTS but not by HES solutions. At clinical dilutions equivalent to those generally administered for shock (saline 1:3, HES 1:9, and hypertonic solutions 1:22), CTPFA was more prolonged by HH and HTS than other solutions but more by saline than HES. No difference was found between the HES solutions or the hypertonic solutions. ExTEM-CFT and MCF were impaired by HH and HTS but only mildly by HES solutions. At clinically relevant dilutions, no difference was found in ExTEM-CFT between HTS and saline or in ExTEM-MCF between HH and saline. No consistent difference was found between the 2 HES solutions but HH impaired ExTEM-CFT and MCF more than HTS. At high dilutions, FibTEM-CT and -MCF and ExTEM-CT were impaired by HES. Hypertonic solutions affect platelet function and whole blood coagulation to a greater extent than saline and HES. At clinically relevant dilutions, only CTPFA was markedly more affected by hypertonic solutions than by saline. At high dilutions, HES significantly affects coagulation but to no greater extent than saline at clinically relevant dilutions. © Veterinary Emergency and Critical Care Society 2015.

  4. Variations in peak nasal inspiratory flow among healthy students after using saline solutions.

    PubMed

    Olbrich Neto, Jaime; Olbrich, Sandra Regina Leite Rosa; Mori, Natália Leite Rosa; Oliveira, Ana Elisa de; Corrente, José Eduardo

    2016-01-01

    Nasal hygiene with saline solutions has been shown to relieve congestion, reduce the thickening of the mucus and keep nasal cavity clean and moist. Evaluating whether saline solutions improve nasal inspiratory flow among healthy children. Students between 8 and 11 years of age underwent 6 procedures with saline solutions at different concentrations. The peak nasal inspiratory flow was measured before and 30 min after each procedure. Statistical analysis was performed by means of t test, analysis of variance, and Tukey's test, considering p<0.05. We evaluated 124 children at all stages. There were differences on the way a same concentration was used. There was no difference between 0.9% saline solution and 3% saline solution by using a syringe. The 3% saline solution had higher averages of peak nasal inspiratory flow, but it was not significantly higher than the 0.9% saline solution. It is important to offer various options to patients. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  5. The effect of vascular endothelial growth factor on a rat model of traumatic arteriogenic erectile dysfunction.

    PubMed

    Lee, Ming-Chan; El-Sakka, Ahmed I; Graziottin, Tulio M; Ho, Hao-Chung; Lin, Ching-Shwun; Lue, Tom F

    2002-02-01

    We tested the hypothesis that intracavernous injection of vascular endothelial growth factor (VEGF) can restore erectile function in a rat model of traumatic arteriogenic erectile dysfunction. Exploration of bilateral internal iliac arteries was performed in 50, 3-month-old male rats. A total of 44 rats underwent bilateral ligation of the internal iliac arteries and 6 that underwent exploration only served as the sham operated group. Minutes later intracavernous injection of phosphate buffered saline (PBS) plus bovine serum albumin in 16 rats, 2 microg. VEGF plus PBS plus BSA in 12 and 4 microg. VEGF plus PBS plus BSA in 16 was performed. At weeks 1, 2 and 6 about a third of the rats in each group underwent electrostimulation of the cavernous nerves to assess erectile function and were then sacrificed. Penile tissues were collected for histochemical and electron microscopy examinations. No impairment of erectile function was noted in sham operated rats. Immediately after arterial ligation all rats showed little or no erectile response to neurostimulation. In PBS treated rats modest recovery of erectile function was noted at week 6. Significant recovery of erectile function was noted in VEGF treated rats at weeks 1 and 2 in the 4 microg. group only and at week 6 in the 2 and 4 microg. groups. Neuronal nitric oxide synthase staining showed a reduction in neuronal nitric oxide synthase positive nerve fibers in the dorsal or intracavernous nerves at week 1. Moderate recovery of neuronal nitric oxide synthase positive nerve fibers was noted in the 2 and 4microg. VEGF treated groups but not in the PBS treated group. Electron microscopy revealed no pathological change in sham operated rats. In dorsal nerves the atrophy of myelinated and nonmyelinated nerve fibers was noted in ligated plus PBS treated rats. Partial recovery was observed in VEGF treated rats. Scattered atrophic smooth muscle cells were seen in PBS and occasionally in VEGF treated rats but not in the sham operated group. The most dramatic findings in VEGF treated rats were hypertrophy and hyperplasia of the endothelial cells, especially those lining the small capillaries. Ligation of bilateral internal iliac arteries produced a reliable animal model of traumatic arteriogenic erectile dysfunction. Intracavernous injection of VEGF minutes after arterial ligation facilitated the recovery of erectile function.

  6. A comparison of hydroxyl radical and hydrogen peroxide generation in ambient particle extracts and laboratory metal solutions

    NASA Astrophysics Data System (ADS)

    Shen, Huiyun; Anastasio, Cort

    2012-01-01

    Generation of reactive oxygen species (ROS) - including superoxide ( rad O 2-), hydrogen peroxide (HOOH), and hydroxyl radical ( rad OH) - has been suggested as one mechanism underlying the adverse health effects caused by ambient particulate matter (PM). In this study we compare HOOH and rad OH production from fine and coarse PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California, as well as from laboratory solutions containing dissolved copper or iron. Samples were extracted in a cell-free, phosphate-buffered saline (PBS) solution containing 50 μM ascorbate (Asc). In our laboratory solutions we find that Cu is a potent source of both HOOH and rad OH, with approximately 90% of the electrons that can be donated from Asc ending up in HOOH and rad OH after 4 h. In contrast, in Fe solutions there is no measurable HOOH and only a modest production of rad OH. Soluble Cu in the SJV PM samples is also a dominant source of HOOH and rad OH. In both laboratory copper solutions and extracts of ambient particles we find much more production of HOOH compared to rad OH: e.g., HOOH generation is approximately 30-60 times faster than rad OH generation. The formation of HOOH and rad OH are positively correlated, with roughly 3% and 8% of HOOH converted to rad OH after 4 and 24 h of extraction, respectively. Although the SJV PM produce much more HOOH than rad OH, since rad OH is a much stronger oxidant it is unclear which species might be more important for oxidant-mediated toxicity from PM inhalation.

  7. A Comparison of Hydroxyl Radical and Hydrogen Peroxide Generation in Ambient Particle Extracts and Laboratory Metal Solutions

    PubMed Central

    Shen, Huiyun; Anastasio, Cort

    2011-01-01

    Generation of reactive oxygen species (ROS) – including superoxide (•O2−), hydrogen peroxide (HOOH), and hydroxyl radical (•OH) – has been suggested as one mechanism underlying the adverse health effects caused by ambient particulate matter (PM). In this study we compare HOOH and •OH production from fine and coarse PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California, as well as from laboratory solutions containing dissolved copper or iron. Samples were extracted in a cell-free, phosphate-buffered saline (PBS) solution containing 50 μM ascorbate (Asc). In our laboratory solutions we find that Cu is a potent source of both HOOH and •OH, with approximately 90% of the electrons that can be donated from Asc ending up in HOOH and •OH after 4 h. In contrast, in Fe solutions there is no measurable HOOH and only a modest production of •OH. Soluble Cu in the SJV PM samples is also a dominant source of HOOH and •OH. In both laboratory copper solutions and extracts of ambient particles we find much more production of HOOH compared to •OH: e.g., HOOH generation is approximately 30 – 60 times faster than •OH generation. The formation of HOOH and •OH are positively correlated, with roughly 3 % and 8 % of HOOH converted to •OH after 4 and 24 hr of extraction, respectively. Although the SJV PM produce much more HOOH than •OH, since •OH is a much stronger oxidant it is unclear which species might be more important for oxidant-mediated toxicity from PM inhalation. PMID:22267949

  8. Optimising methods of red cell sedimentation from cord blood to maximise nucleated cell recovery prior to cryopreservation.

    PubMed

    Madkaikar, M; Gupta, M; Ghosh, K; Swaminathan, S; Sonawane, L; Mohanty, D

    2007-01-01

    Human cord blood is now an established source of stem cells for haematopoietic reconstitution. Red blood cell (RBC) depletion is required to reduce the cord blood unit volume for commercial banking. Red cell sedimentation using hydroxy ethyl starch (HES) is a standard procedure in most cord blood banks. However, while standardising the procedure for cord blood banking, a significant loss of nucleated cells (NC) may be encountered during standard HES sedimentation protocols. This study compares four procedures for cord blood processing to obtain optimal yield of nucleated cells. Gelatin, dextran, 6% HES and 6% HES with an equal volume of phosphate-buffered saline (PBS) were compared for RBC depletion and NC recovery. Dilution of the cord blood unit with an equal volume of PBS prior to sedimentation with HES resulted in maximum NC recovery (99% [99.5 +/- 1.3%]). Although standard procedures using 6% HES are well established in Western countries, they may not be applicable in India, as a variety of factors that can affect RBC sedimentation (e.g., iron deficiency, hypoalbuminaemia, thalassaemia trait, etc.) may reduce RBC sedimentation and thus reduce NC recovery. While diluting cord blood with an equal volume of PBS is a simple method to improve the NC recovery, it does involve an additional processing step.

  9. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components.

    PubMed

    Li, Mei; Zhu, Lizhong; Lin, Daohui

    2011-03-01

    Water chemistry can be a major factor regulating the toxicity mechanism of ZnO nanoparticles (nano-ZnO) in water. The effect of five commonly used aqueous media with various chemical properties on the toxicity of nano-ZnO to Escherichia coli O111 (E. coli) was investigated, including ultrapure water, 0.85% NaCl, phosphate-buffered saline (PBS), minimal Davis (MD), and Luria-Bertani (LB). Combined results of physicochemical characterization and antibacterial tests of nano-ZnO in the five media suggest that the toxicity of nano-ZnO is mainly due to the free zinc ions and labile zinc complexes. The toxicity of nano-ZnO in the five media deceased as follows: ultrapure water > NaCl > MD > LB > PBS. The generation of precipitates (Zn(3)(PO(4))(2) in PBS) and zinc complexes (of zinc with citrate and amino acids in MD and LB, respectively) dramatically decreased the concentration of Zn(2+) ions, resulting in the lower toxicity in these media. Additionally, the isotonic and rich nutrient conditions improved the tolerance of E. coli to toxicants. Considering the dramatic difference of the toxicity of nano-ZnO in various aqueous media, the effect of water chemistry on the physicochemical properties of nanoparticles should be paid more attention in future nanotoxicity evaluations.

  10. Resuscitation of acid-injured Salmonella in enrichment broth, in apple juice and on the surfaces of fresh-cut cucumber and apple.

    PubMed

    Liao, C-H; Fett, W F

    2005-01-01

    To investigate the resuscitation of acid-injured Salmonella enterica in selected enrichment broths, in apple juice and on cut surfaces of apple and cucumber slices. Following exposure to 2.4% acetic acid for 7 min, S. enterica (serovars Mbandaka, Chester and Newport) cells were used to inoculate enrichment broths, phosphate-buffered saline (PBS), apple juice and fruit slices. Injured Salmonella cells resuscitated and regained the ability to form colonies on selective agar (Xylose-Lysine-Tergitol 4) if they were incubated in lactose broth (LB), universal pre-enrichment broth (UPB) or buffered peptone water (BPW), but not in tetrathionate broth, PBS or apple juice. The resuscitation occurred at a significantly (P > 0.05) faster rate in UPB than in LB or BPW. The resuscitation also occurred on the surfaces of fresh-cut cucumber at 20 degrees C, but not at 4 degrees C. Acid-injured Salmonella cells resuscitated in nonselective enrichment broths at different rates, but not in selective enrichment broth, apple juice, PBS or on fresh-cut apple. Pre-enrichment of food samples in UPB prior to selective enrichment is recommended. Injured Salmonella cells have the ability to resuscitate on fresh-cut surfaces of cucumber when stored at abusive temperatures.

  11. Snow leopard (Panthera uncia) spermatozoa are sensitive to alkaline pH, but motility in vitro is not influenced by protein or energy supplements.

    PubMed

    Roth, T L; Swanson, W F; Collins, D; Burton, M; Garell, D M; Wildt, D E

    1996-01-01

    To better understand the biology of snow leopard spermatozoa and to facilitate developing assisted reproduction, a series of studies was conducted to: 1) identify the component(s) of complex culture media responsible for the detrimental effect on sperm survival in vitro, 2) optimize medium for supporting sperm viability, and 3) evaluate sperm capacitation in vitro. Constituents of complex media were added systematically to phosphate-buffered saline (PBS) to isolate the factor(s) influencing snow leopard sperm motility in vitro. Sperm capacitation was also assessed following incubation in PBS with bovine serum albumin (BSA), fetal calf serum (FCS), or heparin. For maintaining sperm motility, there was no benefit (P > or = 0.05) to supplementing PBS with low (5%) or high (20%) concentrations of snow leopard serum (SLS) versus FCS or BSA. Likewise, adding supplemental energy substrates (pyruvate, glucose, lactate, or glutamine) did not enhance or hinder (P > or = 0.05) sperm motility. However, motility rapidly decreased (P < 0.05) with the addition of NaHCO3 to PBS or Ham's F10 nutrient mixture. Surprisingly, Ham's F10 with no buffering component or with both NaHCO3 and N-Z-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) maintained sperm motility at levels similar (P > or = 0.05) to PBS. Although sperm motility in all treatments decreased with time, there was a strong inverse relationship (P < 0.01; r = 0.90) between motility and sample pH at 6 hours. Spermatozoa incubated in PBS containing FCS, BSA, or heparin did not undergo the acrosome reaction when exposed to calcium ionophore. In summary, alkaline pH has a profound detrimental effect on snow leopard sperm motility, and capacitation does not occur under conditions that normally promote this event in other felid species. These results clearly demonstrate a high degree of interspecific variation among felids in fundamental sperm function, and they provide evidence for the necessity of basic research when developing assisted reproduction in little-studied nondomestic species.

  12. The effects of chemical and physical penetration enhancers on the percutaneous permeation of lidocaine through equine skin

    PubMed Central

    2014-01-01

    Background The effect of physical and chemical permeation enhancers on in vitro transdermal permeation of lidocaine was investigated in the horse. Therefore, the effect of six vehicles (phosphate-buffered saline (PBS), 50% ethanol, 50% propylene glycol, 50% isopropylalcohol, 50% isopropylalcohol/isopropylmyristate and 50% dimethylsulfoxide) was examined as well as the effect of microneedle pretreatment with different needle lengths on transdermal drug delivery of lidocaine. The skin was obtained from the thorax of six Warmblood horses and was stored up to two weeks at - 20°C. Franz-type diffusion cells were used to study the transdermal permeation through split skin (600 μm thickness). The amount of lidocaine in the receptor fluid was determined by UV–VIS high-performance liquid chromatography. Results All investigated vehicle supplementations diminished the transdermal flux of lidocaine through equine skin in comparison to pure PBS except dimethylsulfoxide, which resulted in comparable permeation rates to PBS. The maximum flux (Jmax) was 1.6-1.8 fold lower for lidocaine applied in 50% ethanol, propylene glycol, isopropylalcohol and isopropylalcohol/isopropylmyristate. A significant higher Jmax of lidocaine was observed when lidocaine was applied in PBS onto microneedle pretreated skin with similar permeation rates in both needle lengths. After 6 hours, 1.7 fold higher recovery rates were observed in the microneedle pretreated skin samples than in the untreated control samples. The lagtimes were reduced to 20–50% in the microneedle pretreated skin samples. Conclusion Microneedles represent a promising tool for transdermal lidocaine application in the horse with a rapid systemic bioavailability. PMID:24950611

  13. Ferrous ion as a reducing agent in the generation of antibiofilm nitric oxide from a copper-based catalytic system.

    PubMed

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2018-05-01

    The work found that the electron-donating properties of ferrous ions (Fe 2+ ) can be used for the conversion of nitrite (NO 2 - ) into the biofilm-dispersing signal nitric oxide (NO) by a copper(II) complex (CuDTTCT) catalyst, a potentially applicable biofilm control technology for the water industries. The availability of Fe 2+ varied depending on the characteristics of the aqueous systems (phosphate- and carbonate-containing nitrifying bacteria growth medium, NBGM and phosphate buffered saline, PBS at pH 6 to 8, to simulate conditions typically present in the water industries) and was found to affect the production of NO from nitrite by CuDTTCT (casted into PVC). Greater amounts of NO were generated from the CuDTTCT-nitrite-Fe 2+ systems in PBS compared to those in NBGM, which was associated with the reduced extent of Fe 2+ -to-Fe 3+ autoxidation by the iron-precipitating moieties phosphates and carbonate in the former system. Further, acidic conditions at pH 6.0 were found to favor NO production from the catalytic system in both PBS and NBGM compared to neutral or basic pH (pH 7.0 or 8.0). Lower pH was shown to stabilize Fe 2+ and reduce its autoxidation to Fe 3+ . These findings will be beneficial for the potential implementation of the NO-generating catalytic technology and indeed, a 'non-killing' biofilm dispersal activity of CuDTTCT-nitrite-Fe 2+ was observed on nitrifying bacteria biofilms in PBS at pH 6. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    PubMed Central

    Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296

  15. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells

    PubMed Central

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying

    2015-01-01

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021

  16. The photobleaching of the free and encapsulated metallic phthalocyanine and its effect on the photooxidation of simple molecules.

    PubMed

    Fanchiotti, Brenda Gomes; Machado, Marcella Piffer Zamprogno; de Paula, Letícia Camilato; Durmuş, Mahmut; Nyokong, Tebello; da Silva Gonçalves, Arlan; da Silva, André Romero

    2016-12-01

    The photobleaching of an unsubstituted phthalocyanine (gallium(III) phthalocyanine chloride (GaPc)) and a substituted phthalocyanine (1,4-(tetrakis[4-(benzyloxy)phenoxy]phthalocyaninato) indium(III) chloride (InTBPPc)) was monitored for the free photosensitizers and for the phthalocyanines encapsulated into nanoparticles of PEGylated poly(D,L-lactide-co-glycolide) (PLGA-PEG). Phosphate-buffered solutions (PBS) and organic solutions of the free GaPc or the free InTBPPc, and suspensions of each encapsulated photosensitizer (2-15μmol/L) were irradiated using a laser diode of 665nm with a power of 1-104mW and a light dose of 7.5J/cm 2 . The relative absorbance (RA) of the free GaPc dissolved in 1-methyl-2-pyrrolidone (MP) decreased 8.4 times when the laser power increased from 1mW to 104mW. However, the free or encapsulated GaPc did not suffer the photobleaching in PBS solution. The RA values decreased 2.4 times and 22.2 times for the free InTBPPc dissolved in PBS solution and in dimethylformamide (DMF), respectively, but the encapsulated InTBPPc was only photobleached when the laser power was 104mW at 8μmol/L. The increase of the free GaPc concentration favored the photobleaching in MP until 8μmol/L while the increase from 2μmol/L to 5μmol/L reduced the photodegradation in PBS solution. However, the photobleaching of the free InTBPPc in DMF or in PBS solution, and of each encapsulated photosensitizer was not influenced by increasing the concentration. The influence of the photobleaching on the capability of the free and encapsulated GaPc and InTBPPc to photooxidate the simple molecules was investigated monitoring the fluorescence of dimethylanthracene (DMA) and the tryptophan (Trp). Free InTBPPc was 2.0 and 1.8 times faster to photooxidate the DMA and Trp than it was the free GaPc, but the encapsulated GaPc was 3.4 times more efficient to photooxidize the Trp than it was the encapsulated InTBPPc due to the photodegradation suffered by the encapsulated InTBPPc. The participation of the singlet oxygen was confirmed with the sodium azide in the photobleaching of all free and encapsulated photosensitizer, and in the photooxidation of the DMA and Trp. The asymmetry of InTBPPc increased the solubility of the free compound, decreasing the aggregation state of the photosensitizer and favoring the photobleaching process. The encapsulation shows capability in decreasing the photobleaching of both photosensitizers but the confocal micrographs showed that the increase of the solubility favored the InTBPPc photobleaching during the acquisition of optical cross section. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marín-Moreno, Alba; Espinosa, Juan-Carlos; Fernánd

    The environment plays a key role in horizontal transmission of prion diseases, since prions are extremely resistant to classical inactivation procedures. In prior work, we observed the high stability of bovine spongiform encephalopathy (BSE) infectivity when these prions were incubated in aqueous media such as phosphate-buffered saline (PBS) or wastewater for nearly nine months. As a continuation of this experiment, the same samples were maintained in PBS or wastewater for five additional years and residual BSE infectivity was assessed in bovine PrP{sup C} transgenic mice. Over this long time period (more than six years), BSE infectivity was reduced by threemore » and one orders of magnitude in wastewater and PBS respectively. To rule out a possible agent specific effect, sheep scrapie prions were subjected to the same experimental protocol, using eight years as the experimental end-point. No significant reduction in scrapie infectivity was observed over the first nine months of wastewater incubation while PBS incubation for eight years only produced a two logarithmic unit reduction in infectivity. By contrast, the dynamics of PrP{sup Res} persistence was different, disappearing progressively over the first year. The long persistence of prion infectivity observed in this study for two different agents provides supporting evidence of the assumed high stability of these agents in aquatic environments and that environmental processes or conventional wastewater treatments with low retention times would have little impact on prion infectivity. These results could have great repercussions in terms of risk assessment and safety for animals and human populations. - Highlights: • Prion infectivity resists long term incubations in aquatic environments. • Infectivity persistence in wastewater is reduced when compared to PBS. • In this study PrPRes fails as a marker for prion detection. • Mice bioassay is the most powerful tool for assessing prion presence. • Wastewater conventional treatment would not eliminate prion infectivity.« less

  18. Material Properties of a Tricalcium Silicate-containing, a Mineral Trioxide Aggregate-containing, and an Epoxy Resin-based Root Canal Sealer.

    PubMed

    Prüllage, Raquel-Kathrin; Urban, Kent; Schäfer, Edgar; Dammaschke, Till

    2016-12-01

    The aim was to compare the solubility, radiopacity, and setting times of a tricalcium silicate-containing (BioRoot RCS; Septodont, St Maur-des-Fossés, France) and a mineral trioxide aggregate-containing sealer (MTA Fillapex; Angelus, Londrina, Brazil) with an epoxy resin-based sealer (AH Plus; Dentsply DeTrey, Konstanz, Germany). Solubility in distilled water, radiopacity, and setting time were evaluated in accordance with ISO 6876:2012. The solubility was also measured after soaking the materials in phosphate-buffered saline buffer (PBS). All data were analyzed using 1-way analysis of variance and the Student-Newman-Keuls test. After immersion for 1 minute in distilled water, BioRoot RCS was significantly less soluble than AH Plus and MTA Fillapex (P < .05). At all other exposure times, AH Plus was significantly less soluble than BioRoot RCS, whereas BioRoot RCS was significantly more soluble than the other 2 sealers (P < .05). All sealers had the same solubility in PBS and distilled water, except for BioRoot RCS after 28 days. At this exposure time, BioRoot RCS was significantly less soluble in PBS than in distilled water and less soluble than MTA Fillapex (P < .05). All BioRoot RCS specimens immersed in PBS had a surface precipitate after 14 and 28 days. The radiopacity of all sealers was greater than 3 mm aluminum with no statistical significant difference between the sealers (P > .05). The final setting time was 324 (±1) minutes for BioRoot RCS and 612 (±4) minutes for AH Plus. The difference was statistically significant (P < .05). MTA Fillapex did not set completely even after 1 week. The solubility and radiopacity of the sealers were in accordance with ISO 6876:2012. PBS decreased the solubility of BioRoot RCS. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Remote-loading labeling of liposomes with (99m)Tc-BMEDA and its stability evaluation: effects of lipid formulation and pH/chemical gradient.

    PubMed

    Li, Shihong; Goins, Beth; Phillips, William T; Bao, Ande

    2011-03-01

    Efficient, convenient, and stable radiolabeling plays a critical role for the monitoring of liposome behavior via either blood sampling, organ distribution, or noninvasive nuclear imaging. The direct labeling of liposome-carrying drugs without any prior modification undoubtedly is convenient and optimal for liposomal drug testing. In this article, we investigated the effect of various lipid formulations and pH/chemical gradients on the radiolabeling efficiency and entrapment stability of technetium-99m ((99m)Tc) remotely loaded into liposomes, using (99m)Tc-N,N-bis(2-mercaptoethyl)-N',N'-diethyl-ethylenediamine ((99m)Tc-BMEDA) complex. The tested liposomes either contained unsaturated lipid or possessed various surface charges. (99m)Tc could be efficiently loaded into various premanufactured liposomes containing either an ammonium sulfate pH, citrate pH, or glutathione (GSH) chemical gradient. (99m)Tc-entrapment stabilities of these liposomes in phosphate-buffered saline (PBS; pH 7.4) buffer at 25°C were mainly dependent on the pH/chemical gradient, but not lipid formulation. Stability sequence was ammonium sulfate pH-gradient>citrate pH-gradient>GSH-gradient. Stabilities of (99m)Tc-liposomes in 50% fetal bovine serum (FBS)/PBS (pH 7.4) buffer at 37°C are dependent on both lipid formulation and pH/chemical gradient. Specifically, (99m)Tc labeling of the ammonium sulfate pH-gradient liposomes were less stable in 50% FBS/PBS than in PBS, whereas noncationic liposomes with citrate pH- or GSH-gradient displayed higher stability, except that anionic citrate pH-gradient liposomes showed no stability difference in these two media. Cationic liposomes aggregated in 50% FBS/PBS, forming a new discrete fraction with larger particle sizes. These in vitro characterization results have indicated the optimism of using (99m)Tc-BMEDA for labeling pH/GSH gradient liposomes without the requirement of modifying lipid formulation for liposomal therapeutic-agent development.

  20. Multi-scale Structural and Tensile Mechanical Response of Annulus Fibrosus to Osmotic Loading

    PubMed Central

    Han, Woojin M.; Nerurkar, Nandan L.; Smith, Lachlan J.; Jacobs, Nathan T.; Mauck, Robert L.; Elliott, Dawn M.

    2012-01-01

    This study investigates differential multi-scale structure and function relationships of the outer and inner annulus fibrosus (AF) to osmotic swelling in different buffer solutions by quantifying tensile mechanics, GAG content, water content and tissue swelling, and collagen fibril ultrastructure. In the outer AF, the tensile modulus decreased by over 70% with 0.15M PBS treatment but was unchanged with 2M PBS treatment. Moreover, the modulus loss following 0.15M PBS treatment was reversed when followed by 2M PBS treatment, potentially from increased interfibrillar and interlamellar shearing associated with fibril swelling. In contrast, the inner AF tensile modulus was unchanged by 0.15M PBS treatment and increased following 2M treatment. Transmission electron microscopy revealed that the mean collagen fibril diameters of the untreated outer and inner AF were 87.8 ± 27.9 and 71.0 ± 26.9 nm, respectively. In the outer AF, collagen fibril swelling was observed with both 0.15M and 2M PBS treatments, but inherently low GAG content remained unchanged. In the inner AF, 2M PBS treatment caused fibril swelling and GAG loss, suggesting that GAG plays a role in maintaining the structure of collagen fibrils leading to modulation of the native tissue mechanical properties. These results demonstrate important regional variations in structure and composition, and their influence on the heterogeneous mechanics of the AF. Moreover, because the composition and structure is altered as a consequence of progressive disc degeneration, quantification of these interactions is critical for study of the AF pathogenesis of degeneration and tissue engineering. PMID:22314837

  1. Lead(II) complex formation with l-cysteine in aqueous solution

    DOE PAGES

    Jalilehvand, Farideh; Sisombath, Natalie S.; Schell, Adam C.; ...

    2015-02-19

    The lead(II) complexes formed with the multidentate chelator l-cysteine (H 2Cys) in an alkaline aqueous solution were studied using 207Pb, 13C, and 1H NMR, Pb L III-edge X-ray absorption, and UV–vis spectroscopic techniques, complemented by electrospray ion mass spectrometry (ESI-MS). The H 2Cys/Pb II mole ratios were varied from 2.1 to 10.0 for two sets of solutions with C PbII = 0.01 and 0.1 M, respectively, prepared at pH values (9.1–10.4) for which precipitates of lead(II) cysteine dissolved. At low H 2Cys/Pb II mole ratios (2.1–3.0), a mixture of the dithiolate [Pb(S,N-Cys) 2] 2– and [Pb(S,N,O-Cys)(S-HCys)] – complexes with averagemore » Pb–(N/O) and Pb–S distances of 2.42 ± 0.04 and 2.64 ± 0.04 Å, respectively, was found to dominate. At high concentration of free cysteinate (>0.7 M), a significant amount converts to the trithiolate [Pb(S,N-Cys)(S-HCys) 2] 2–, including a minor amount of a PbS 3-coordinated [Pb(S-HCys) 3] – complex. The coordination mode was evaluated by fitting linear combinations of EXAFS oscillations to the experimental spectra and by examining the 207Pb NMR signals in the chemical shift range δ Pb = 2006–2507 ppm, which became increasingly deshielded with increasing free cysteinate concentration. One-pulse magic-angle-spinning (MAS) 207Pb NMR spectra of crystalline Pb(aet) 2 (Haet = 2-aminoethanethiol or cysteamine) with PbS 2N 2 coordination were measured for comparison (δ iso = 2105 ppm). The UV–vis spectra displayed absorption maxima at 298–300 nm (S – → Pb II charge transfer) for the dithiolate PbS 2N(N/O) species; with increasing ligand excess, a shoulder appeared at ~330 nm for the trithiolate PbS 3N and PbS 3 (minor) complexes. Finally, the results provide spectroscopic fingerprints for structural models for lead(II) coordination modes to proteins and enzymes.« less

  2. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.

    PubMed

    Mendes, Ana C; Gorzelanny, Christian; Halter, Natalia; Schneider, Stefan W; Chronakis, Ioannis S

    2016-08-20

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248±94nm to 600±201nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair.

    PubMed

    Beladi, Faranak; Saber-Samandari, Samaneh; Saber-Samandari, Saeed

    2017-06-01

    In the past few decades, artificial graft materials for bone tissue engineering have gained much importance. In this study, novel porous 3D nanocomposite scaffolds composed of polyacrylamide grafted cellulose and hydroxyapatite were proposed. They were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD). The swelling behavior of the scaffolds was examined in both water and phosphate buffer saline (PBS) solution. The cytotoxicity of the scaffolds was determined by MTT assays on human fibroblast gum (HuGu) cells. Results showed that the nanocomposite scaffolds were highly porous with maximum porosity of 85.7% interconnected with a pore size of around 72-125μm. The results of cell culture experiments showed that the scaffolds extracts do not have cytotoxicity in any concentration. Obtained results suggested that the introduced scaffolds are comparable with the trabecular bone from the compositional, structural, and mechanical perspectives and have a great potential as a bone substitute. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate.

    PubMed

    Jeong, Jinmo; Chou, Namsun; Kim, Sohee

    2016-06-01

    This study investigates the mechanical and long-term electrical properties of parylene-caulked polydimethylsiloxane (PDMS) as a substrate for implantable electrodes. The parylene-caulked PDMS is a structure where particles of parylene fill the porous surface of PDMS. This material is expected to have low water absorption and desirable mechanical properties such as flexibility and elasticity that are beneficial in many biomedical applications. To evaluate the mechanical property and electrical stability of parylene-caulked PDMS for potential in-vivo uses, tensile tests were conducted firstly, which results showed that the mechanical strength of parylene-caulked PDMS was comparable to that of native PDMS. Next, surface electrodes based on parylene-caulked PDMS were fabricated and their impedance was measured in phosphate-buffered saline (PBS) solution at 36.5 °C over seven months. The electrodes based on parylene-caulked PDMS exhibited the improved stability in impedance over time than native PDMS. Thus, with improved electrical stability in wet environment and preserved mechanical properties of PDMS, the electrodes based on parylene-caulked PDMS are expected to be suitable for long-term in-vivo applications.

  5. Wettability of magnesium based alloys

    NASA Astrophysics Data System (ADS)

    Ornelas, Victor Manuel

    The premise of this project was to determine the wettability behavior of Mg-based alloys using three different liquids. Contact angle measurements were carried out along with utilizing the Zisman method for obtaining values for the critical surface tension. Adhesion energy values were also found through the use of the Young-Dupre equation. This project utilized the Mg-based alloy Mg-2Zn-2Gd with supplemented alpha-Minimum Essential Medium (MEM), Phosphate Buffer Saline solution (PBS), and distilled water. These three liquids are commonly used in cell cultivation and protein adsorption studies. Supplemented alpha-MEM consisted of alpha-MEM, fetal bovine serum, and penicillin-streptomycin. Mg-2Zn-2Gd was used because of observed superior mechanical properties and better corrosion resistance as compared to conventional Mg-alloys. These attractive properties have made it possible for this alloy to be used in biomedical devices within the human body. However, the successful use of this alloy system in the human body requires knowledge in the response of protein adsorption on the alloy surface. Protein adsorption depends on many parameters, but one of the most important factors is the wettability behavior at the surface.

  6. Enhanced Bioavailability and Anticancer Effect of Curcumin-Loaded Electrospun Nanofiber: In Vitro and In Vivo Study

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Ma, Chao; Wu, Zhenkai; Liang, He; Yan, Peng; Song, Jia; Ma, Nan; Zhao, Qinghua

    2015-11-01

    Nanofibers have attracted increasing attention in drug delivery and other biomedical applications due to their some special properties. The present study aims to prepare a fiber-based nanosolid dispersion system to enhance the bioavailability of curcumin (CUR). CUR-loaded polyvinyl pyrrolidone (CUR@PVP) nanofibers were successfully prepared via electrospinning. Scanning electron microscopy (SEM) was employed to observe the morphology of the nanofibers, and the SEM image showed that the drug-loaded nanofibers were smooth, and no CUR clusters were found on the surface of the nanofibers. The results of X-ray diffraction (XRD) demonstrated that the CUR was evenly distributed in the nanofibers in an amorphous state. Fourier transform infrared (FTIR) spectroscopy analysis indicated that intermolecular hydrogen bonding occurred between the CUR and the polymer matrix. In vitro dissolution profiles showed that CUR@PVP nanofiber could be quickly dissolved in phosphate-buffered saline (PBS) solution, while negligible dissolution was observed in pure CUR sample. Importantly, in vitro cell viability assays and in vivo animal tests revealed that the nanosolid dispersion system dramatically enhanced the bioavailability and showed effective anticancer effect of the CUR.

  7. Simple Reversed-Phase HPLC Method with Spectrophotometric Detection for Measuring Acetaminophen-Protein Adducts in Rat Liver Samples

    PubMed Central

    Acharya, Miteshkumar; Lau-Cam, Cesar A.

    2012-01-01

    A simple reversed-phase HPLC method for measuring hepatic levels of acetaminophen- (APAP-) protein adduct following an overdose of APAP was developed. An aliquot of liver homogenate in phosphate-buffered saline pH 7.4 (PBS) was placed on a Nanosep centrifugal device, which was centrifuged to obtain a protein residue. This residue was incubated with a solution of p-aminobenzoic acid (PABA), the internal standard, and bacterial protease in PBS, transferred to a Nanosep centrifugal device, and centrifuged. A 100 μL portion of the filtrate was analyzed on a YMC-Pack ODS-AMQ C18 column, using 100 mM potassium dihydrogen phosphate-methanol-acetic acid (100 : 0.6 : 0.1) as the mobile phase, a flow rate of 1 mL/min, and photometric detection at 254 nm. PABA and APAP-cystein-S-yl (APAP-Cys) eluted at ~14.7 min and 22.7 min, respectively. Method linearity, based on on-column concentrations of APAP-Cys, was observed over the range 0.078–40 μg. Recoveries of APAP-Cys from spiked blank liver homogenates ranged from ~83% to 91%. Limits of detection and of quantification of APAP-Cys, based on column concentrations, were 0.06 μg and 0.14 μg, respectively. RSD values for interday and intraday analyses of a blank liver homogenate spiked with APAP-Cyst at three levels were, in all cases, ≤1.0% and <1.5%, respectively. The proposed method was found appropriate for comparing the antidotal properties of N-acetylcysteine and taurine in a rat model of APAP poisoning. PMID:22619591

  8. Behavioral characteristics of capsaicin mediated cutaneous, myogenic, and arthrogenic orofacial nociception in rats.

    PubMed

    Rohrs, Eric L; Neubert, John K; Caudle, Robert M; Allen, Kyle D

    2018-04-30

    To assess changes in orofacial tactile sensitivity and gnawing related to capsaicin-mediated cutaneous, myogenic, and arthrogenic nociception in the rat. After recovery from anesthesia, orofacial tactile sensitivity and gnawing were assessed using operant testing methods following capsaicin application. Twenty female CD-Hairless rats were tested with bilateral capsaicin cream application to the cheek or with isoflurane anesthesia alone. Following several weeks of recovery, animals (n = 20) received either 10 μL unilateral masseter injections of vehicle, or phosphate buffered saline (PBS) to assess injection sensitization. After several weeks, masseter capsaicin (1.0%) injections (10 μL) were assessed compared to vehicle and PBS (n = 13). Weeks later capsaicin TMJ injections were evaluated. Animals (n = 11) received either 10 μL unilateral TMJ injections of capsaicin solution (1%) or vehicle. Capsaicin cream to the skin significantly altered gnawing activity (increased puncture time by 248 s (p = 0.0002)) and tactile sensitivity (decreased tolerated bottle distance by 0.980 cm compared to isoflurane only (p = 0.0001)). Similarly, capsaicin masseter injection increased puncture time (339.6 s, p = 0.07) and decreased tolerated bottle distance (1.04 cm, p = 0.005) compared to vehicle. However, intra-articular capsaicin in the TMJ only modified gnawing (increased puncture time by 133 s), with no changes found in tactile sensitivity compared to vehicle. Application of capsaicin to the skin and masseter had similar behavioral effects; however, intra-articular injections to the TMJ only affected gnawing. These data indicate the behavioral changes in rodent models of myogenic and cutaneous pain may be markedly different than models of arthrogenic pain originating from the TMJ. Copyright © 2018. Published by Elsevier Ltd.

  9. Ascorbic acid as a free radical scavenger in porcine and bovine aqueous humour.

    PubMed

    Erb, Carl; Nau-Staudt, Kerstin; Flammer, Josef; Nau, Werner

    2004-01-01

    To study the antioxidant activity, UV absorption, concentration and stability of ascorbic acid (AA) in porcine and bovine aqueous humour (AH). Porcine and bovine AH was taken within 5 min after death and frozen at -70 degrees C. The characteristic UV absorption band of AA and the concentration of AA in AH was determined by UV spectrophotometry. The antioxidant activity of AA to serve as a free radical scavenger in AH has been determined by using a novel fluorescent probe for antioxidants, the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO). The fluorescence lifetime and intensity of this probe reflect the concentration of dissolved antioxidants. The time-resolved fluorescence of DBO (laser excitation at 351 nm) in AH and in a neutral phosphate-buffered saline (PBS) solution containing only the natural amount of AA as an additive were measured. The characteristic UV absorption band of AA has its maximum at 266 nm in AH. The concentration of AA in porcine and bovine AH was found to be 0.547 +/- 0.044 and 1.09 +/- 0.16 mM, respectively, by spectrophotometry. The fluorescence lifetime of the probe DBO was reduced from 320 +/- 5 ns in pure aerated PBS to 205 +/- 5 ns in porcine AH and 165 +/- 3 ns in bovine AH. A detailed kinetic analysis of the lifetime shortening suggests that AA contributes approximately 75 and 85% to the antioxidant activity of porcine and bovine AH, respectively. Our experiments suggest that AA is the major contributor to the antioxidant activity of porcine and bovine AH. The role of AA to serve as an antioxidant in AH is discussed. In addition, UV spectrophotometry is established as an alternative method to determine the concentration of AA in AH. Copyright 2004 S. Karger AG, Basel

  10. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe–ZnO Tunnel Junction

    DOE PAGES

    Crisp, Ryan W.; Pach, Gregory F.; Kurley, J. Matthew; ...

    2017-01-10

    Here, we developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ~1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%.more » But, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. Furthermore, we examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm 2 in prototype devices.« less

  11. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction.

    PubMed

    Crisp, Ryan W; Pach, Gregory F; Kurley, J Matthew; France, Ryan M; Reese, Matthew O; Nanayakkara, Sanjini U; MacLeod, Bradley A; Talapin, Dmitri V; Beard, Matthew C; Luther, Joseph M

    2017-02-08

    We developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ∼1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%. However, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. We examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm 2 in prototype devices.

  12. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus.

    PubMed

    Price, Daniel L; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G; Yu, Yong A; Szalay, Aladar A; Cappello, Joseph; Fong, Yuman; Wong, Richard J

    2016-02-01

    Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. © 2014 Wiley Periodicals, Inc.

  13. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.).

    PubMed

    Wang, Huailing; Guo, Xinbo; Hu, Xiaodan; Li, Tong; Fu, Xiong; Liu, Rui Hai

    2017-02-15

    Numerous reports have demonstrated that the consumption of fruits and vegetables is beneficial for the human health. Blueberries, in particular, are rich in phytochemicals including free and bound forming. Phytochemical profiles of 14 varieties of blueberry were compared in this study. 12 compounds were analyzed and had significant changes in blueberry fruits. Total antioxidant activities in different blueberry varieties varied about 2.6times by oxygen radical absorbance capacity (ORAC) assay, and 2times by peroxyl radical scavenging capacity (PSC) assay. The cellular antioxidant activities (CAA) in different varieties varied about 3.9times without phosphate buffer saline (PBS) wash, and 4.7times with PBS wash by CAA assay. Blueberry extracts had potent antiproliferative activities against HepG2 human liver cancer cells, indicating the potential protective benefits associated with their use as functional foods. The anti-proliferative activity was observed to be dose-dependent in blueberry extracts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus

    PubMed Central

    Price, Daniel L.; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G.; Yu, Yong A.; Szalay, Aladar A.; Cappello, Joseph; Fong, Yuman; Wong, Richard J.

    2016-01-01

    Background Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Methods Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. Results GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. Conclusion The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. PMID:25244076

  15. [A simple and efficient method for establishing a mouse model of orthotopic MB49 bladder cancer].

    PubMed

    Liang, Zhong-kun; Zhang, Lin; Hu, Zhi-ming; Chen, Zhong; Huang, Xin; Shi, Xiang-hua; Tan, Wan-long; Gao, Ji-min

    2009-04-01

    To establish a simple and efficient method for establishing a mouse model of orthotopic superficial bladder cancer. C57BL/6 mice were anesthetized with sodium pentobarbital and catheterized with modified IV catheter (24 G). The mice were intravesically pretreated with HCl and then with NaOH, and after washing the bladders with phosphate-buffered saline (PBS), 100 microl (1 x 10(7)) MB49 cells were infused and allowed to incubate in the bladder for 2 h followed intravesical mitomycin C (MMC) administration. The tumor formation rate, survival, gross hematuria, and bladder weight were determined as the outcome variables, and the pathology of the bladders was observed. Instillation of MB49 tumor cells resulted in a tumor formation rates of 100% in all the pretreated groups while 0% in the control group without pretreatment. MMC significantly reduced the bladder weight as compared to PBS. We have successfully established a stable, reproducible, and reliable orthotopic bladder cancer model in mice.

  16. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    PubMed

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  17. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids.

    PubMed

    Roosjen, Astrid; de Vries, Joop; van der Mei, Henny C; Norde, Willem; Busscher, Henk J

    2005-05-01

    Poly(ethylene oxide) (PEO) coatings have been shown to reduce the adhesion of different microbial strains and species and thus are promising as coatings to prevent biomaterial-centered infection of medical implants. Clinically, however, PEO coatings are not yet applied, as little is known about their stability and effectiveness in biological fluids. In this study, PEO coatings coupled to a glass substratum through silyl ether bonds were exposed for different time intervals to saliva, urine, or phosphate-buffered saline (PBS) as a reference at 37 degrees C. After exposure, the effectiveness of the coatings against bacterial adhesion was assessed in a parallel plate flow chamber. The coatings appeared effective against Staphylococcus epidermidis adhesion for 24, 48, and 0.5 h in PBS, urine, and saliva, respectively. Using XPS and contact-angle measurements, the variations in effectiveness could be attributed to conditioning film formation. The overall short stability results from hydrolysis of the coupling of the PEO chains to the substratum. (c) 2005 Wiley Periodicals, Inc.

  18. Antibacterial Effects of Toothpastes Evaluated in an 
In Vitro Biofilm Model.

    PubMed

    Fernández, Eva; Sánchez, María Del Carmen; Llama-Palacios, Arancha; Sanz, Mariano; Herrera, David

    To test the antibacterial effects of different toothpastes with the slurry method of toothpaste application in an in vitro oral biofilm model including relevant periodontal pathogens. Four commercially available toothpastes, two containing sodium fluoride (NaF) at different concentrations (1450 and 2500 ppm), two NaF with either triclosan or stannous fluoride, and a control phosphate-buffered saline (PBS) were used. Multispecies biofilms containing 6 species of oral bacteria were grown on hydroxyapatite disks for 72 h and then exposed for 2 min to the toothpaste slurries or phosphate buffer saline (PBS) by immersion, under continuous agitation at 37°C. Biofilms were then analysed by means of real-time polymerase chain reaction (PCR), combined with propidium monoazide (PMA). Statistical evaluation was performed using ANOVA and Student's t-test, with Bonferroni correction for multiple comparisons. The toothpastes containing NaF and stannous fluoride demonstrated superior antimicrobial activity for A. actinomycetencomitans, P. gingivalis and F. nucleatum when compared to those containing NaF and triclosan, 1450 ppm NaF or 2500 ppm NaF in this multispecies biofilm model. The proposed model for the evaluation of toothpastes in the form of slurries detected significant differences in the antimicrobial effects among the tested NaF-containing toothpastes, with the stannous fluoride-based formulation achieving better results than the other formulations. The use of toothpaste as slurries and real-time PCR with PMA is an adequate method for comparing the in vitro antimicrobial effect of different toothpastes.

  19. Enhanced performance of solution-processed broadband photodiodes by epitaxially blending MAPbBr3 quantum dots and ternary PbSxSe1-x quantum dots as the active layer.

    PubMed

    Sulaman, Muhammad; Yang, Shengyi; Jiang, Yurong; Tang, Yi; Zou, Bingsuo

    2017-12-15

    Organic-inorganic hybrid photodetectors attract more and more interest, since they can combine the advantages of both organic and inorganic materials into one device, and broadband photodetectors are widely used in many scientific and industrial fields. In this work, we demonstrate the enhanced-performance solution-processed broadband photodiodes by epitaxially blending organo-lead halide perovskite (MAPbBr 3 ) colloidal quantum dots (CQDs) with ternary PbS x Se 1-x CQDs as the active layer. As a result, the interfacial features of the hetero-epitaxial nanocomposite MAPbBr 3 :PbS x Se 1-x enables the design and perception of functionalities that are not available for the single-phase constituents or layered devices. By combining the high electrical transport properties of MAPbBr 3 QDs with the highly radiative efficiency of PbS 0.4 Se 0.6 QDs, the photodiodes ITO/ZnO/PbS 0.4 Se 0.6 :MAPbBr 3 /Au exhibit a maximum photoresponsivity and specific detectivity of 21.48 A W -1 and 3.59 × 10 13 Jones, 22.16 A W -1 and 3.70 × 10 13 Jones at room temperature under 49.8 μW cm -2 532 nm laser and 62 μW cm -2 980 nm laser, respectively. This is higher than that of the layered photodiodes ITO/ZnO/PbS 0.4 Se 0.6 /MAPbBr 3 /Au, pure perovskite (MAPbBr 3 ) (or PbS 0.4 Se 0.6 ) QD-based photodiodes reported previously, and it is also better than the traditional inorganic semiconductor-based photodetectors. Our experimental results indicate that epitaxially-aligned nanocomposites (MAPbBr 3 :PbS x Se 1-x ) exhibit remarkable optoelectronic properties that are traceable to their atomic-scale crystalline coherence, and one can utilize the excellent photocarrier diffusion from PbS x Se 1-x into the perovskite to enhance the device performance from the UV-visible to infrared region.

  20. Induction of AhR-Mediated Gene Transcription by Coffee

    PubMed Central

    Ishikawa, Toshio; Takahashi, Satoshi; Morita, Koji; Okinaga, Hiroko; Teramoto, Tamio

    2014-01-01

    Background Aryl hydrocarbon receptor (AhR) is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs). Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells. Methods HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS) or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses. Results All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum. Conclusions By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health. PMID:25007155

  1. Corrosion of Tungsten Microelectrodes used in Neural Recording Applications

    PubMed Central

    Patrick, Erin; Orazem, Mark E.; Sanchez, Justin C.; Nishida, Toshikazu

    2011-01-01

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the benchtop electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300–700 µm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H2O2 is accelerated to 10,000–20,000 µm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O2 and H2O2). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 µm/yr. The reduced in vivo corrosion rate as compared to the benchtop rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. PMID:21470563

  2. Antioxidant effects of Lycium barbarum polysaccharides on photoreceptor degeneration in the light-exposed mouse retina.

    PubMed

    Tang, Liujiu; Bao, Shuyin; Du, Yu; Jiang, Zengyan; Wuliji, A O; Ren, Xiang; Zhang, Chenghong; Chu, Haiying; Kong, Li; Ma, Haiying

    2018-04-20

    We assessed the neuroprotective effects of Lycium barbarum Polysaccharides (LBP) on photoreceptor degeneration and the mechanisms involved in oxidative stress in light-exposed mouse retinas. Mice were given a gavage of LBP (150 mg/kg or 300 mg/kg) or phosphate buffered saline (PBS) for 7 days before exposure to light (5000 lx for 24 h). We found that LBP significantly improved the electroretinography (ERG) amplitudes of the a- and b-waves that had been attenuated by light exposure. In addition, changes caused by light exposure including photoreceptor cell loss, nuclear condensation, an increased number of mitochondria vacuoles, outer membrane disc swelling and cristae fractures were distinctly ameliorated by LBP. LBP treatment also significantly prevented the generation of reactive oxygen species (ROS) compared with PBS treatment. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and thioredoxin reductase (TrxR1) mRNA were decreased in PBS-treated mice compared with controls but increased remarkably in LBP-treated mice. The mRNA levels of the DNA repair gene Poly (ADP-ribose) polymerase (PARP14) was increased in PBS-treated mice but decreased significantly in the LBP-treated mice. Our findings indicate that pretreatment with LBP effectively protected photoreceptor cells against light-induced retinal damage probably through the up-regulation of the antioxidative genes Nrf2 and TrxR1, the elimination of oxygen free radicals, and the subsequent reduction in the mitochondrial reaction to oxidative stress and enhancement in antioxidant capacity. In addition, the decreased level of PARP14 mRNA in LBP-treated mice also indicated a protective effect of LBP on delaying photoreceptor in the light-damaged retina. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration.

    PubMed

    Zhang, S; Chu, W C; Lai, R C; Lim, S K; Hui, J H P; Toh, W S

    2016-12-01

    Clinical and animal studies have demonstrated the efficacy of mesenchymal stem cell (MSC) therapies in cartilage repair. As the efficacy of many MSC-based therapies has been attributed to paracrine secretion, particularly extracellular vesicles/exosomes, we determine here if weekly intra-articular injections of human embryonic MSC-derived exosomes would repair and regenerate osteochondral defects in a rat model. In this study, osteochondral defects were created on the trochlear grooves of both distal femurs in 12 adult rats. In each animal, one defect was treated with 100 μg exosomes and the contralateral defect treated with phosphate buffered saline (PBS). Intra-articular injections of exosomes or PBS were administered after surgery and thereafter weekly for a period of 12 weeks. Three unoperated age-matched animals served as native controls. Analyses were performed by histology, immunohistochemistry, and scoring at 6 and 12 weeks after surgery. Generally, exosome-treated defects showed enhanced gross appearance and improved histological scores than the contralateral PBS-treated defects. By 12 weeks, exosome-treated defects displayed complete restoration of cartilage and subchondral bone with characteristic features including a hyaline cartilage with good surface regularity, complete bonding to adjacent cartilage, and extracellular matrix deposition that closely resemble that of age-matched unoperated control. In contrast, there were only fibrous repair tissues found in the contralateral PBS-treated defects. This study demonstrates for the first time the efficacy of human embryonic MSC exosomes in cartilage repair, and the utility of MSC exosomes as a ready-to-use and 'cell-free' therapeutic alternative to cell-based MSC therapy. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Corrosion of tungsten microelectrodes used in neural recording applications.

    PubMed

    Patrick, Erin; Orazem, Mark E; Sanchez, Justin C; Nishida, Toshikazu

    2011-06-15

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the bench-top electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300-700 μm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H₂O₂ is accelerated to 10,000-20,000 μm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O₂ and H₂O₂). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 μm/yr. The reduced in vivo corrosion rate as compared to the bench-top rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Effects of transplantation of adipose tissue-derived stem cells on prostate tumor.

    PubMed

    Lin, Guiting; Yang, Rong; Banie, Lia; Wang, Guifang; Ning, Hongxiu; Li, Long-Cheng; Lue, Tom F; Lin, Ching-Shwun

    2010-07-01

    Obesity is a risk factor for prostate cancer development, but the underlying mechanism is unknown. The present study tested the hypothesis that stromal cells of the adipose tissue might be recruited by cancer cells to help tumor growth. PC3 prostate cancer cells were transplanted into the subcutaneous space of the right flank of athymic mice. One week later, adipose tissue-derived stromal or stem cells (ADSC) or phosphate-buffered saline (PBS, as control) was transplanted similarly to the left flank. Tumor size was monitored for the next 34 days; afterwards, the mice were sacrificed and their tumors harvested for histological examination. The ability of PC3 cells to attract ADSC was tested by migration assay. The involvement of the CXCL12/CXCR4 axis was tested by migration assay in the presence of a specific inhibitor AMD3100. Throughout the entire course, the average size of PC3 tumors in ADSC-treated mice was larger than in PBS-treated mice. ADSC were identified inside the tumors of ADSC-treated mice; CXCR4 expression was also detected. Migration assay indicated the involvement of the CXCL12/CXCR4 axis in the migration of ADSC toward PC3 cells. Capillary density was twice as high in the tumors of ADSC-treated mice than in the tumors of PBS-treated mice. VEGF expression was similar but FGF2 expression was significantly higher in tumors of ADSC-treated mice than in the tumors of PBS-tread mice. Prostate cancer cells recruited ADSC by the CXCL12/CXCR4 axis. ADSC helps tumor growth by increasing tumor vascularity, and which was mediated by FGF2.

  6. Improved electrical performance and bias stability of solution-processed active bilayer structure of indium zinc oxide based TFT.

    PubMed

    Seo, Jin-Suk; Bae, Byeong-Soo

    2014-09-10

    We fabricated active single- and bilayer structure thin film transistors (TFTs) with aluminum or gallium doped (IZO:Al or IZO:Ga) and undoped indium zinc oxide (IZO) thin film layers using an aqueous solution process. The electrical performance and bias stability of these active single- and bilayer structure TFTs were investigated and compared to reveal the effects of Al/Gal doping and bilayer structure. The single-layer structure IZO TFT shows a high mobility of 19 cm(2)/V · s with a poor positive bias stability (PBS) of ΔVT + 3.4 V. However, Al/Ga doped in IZO TFT reduced mobility to 8.5-9.9 cm(2)/V · s but improved PBS to ΔVT + 1.6-1.7 V due to the reduction of oxygen vacancy. Thus, it is found the bilayer structure TFTs with a combination of bottom- and top-layer compositions modify both the mobility and bias stability of the TFTs to be optimized. The bilayer structure TFT with an IZO:X bottom layer possess high mobility and an IZO bottom layer improves the PBS.

  7. Candidate's thesis: Platelet-activating factor-induced hearing loss: mediated by nitric oxide?

    PubMed

    Rhee, Chung-Ku

    2003-12-01

    Platelet-activating factor (PAF)in middle ear effusion is thought to induce hearing loss. The purpose of this study is to investigate the role of nitric oxide (NO) in the mechanism of PAF-induced hearing loss by studying the effects of PAF application on the round window membrane (RWM) with and without PAF-antagonist NO-blocker. Longitudinal study on randomized guinea pigs using PAF to induce hearing loss. METHODS Guinea pigs were divided into four groups: PBS, PAF, PAF-antagonist, and L-NAME. The PBS group received phosphate buffered saline (PBS) and the PAF groups received 10, 20, and 40 microg of PAF soaked into gelfoam and placed on the RWM. PAF-antagonist (WEB 2170) and NOS inhibitor NG-nitro-l-arginine-methylester (L-NAME) were injected intraperitoneally prior to PAF 20 microg application on the RWM. The following three tests were performed on each animal group: Hearing was tested with an auditory brainstem response (ABR) test over 24 hours. At the end of 24 hours, cochlear hair cells were examined by scanning electron microscopy (SEM) and immunohistochemistry was carried out on the cochlea to test the expression of inducible nitric oxide synthase (iNOS). The PAF group developed significant elevation of ABR threshold and cochlear hair cell damage in the SEM group as compared with the PBS control group. The PAF-antagonist (WEB 2170) and the L-NAME groups did not show significant elevation of ABR threshold and cochlear hair cell damage compared with the group administered PAF 20 microg, but in the PAF-antagonist group, the elevation of ABR threshold was significant compared with that of the PBS control group, whereas it was not significant compared with the PBS group in the L-NAME group. Strong expression of iNOS on cochlea was observed in the PAF group and lighter expression was seen in PBS, WEB 2170, and L-NAME groups. This study demonstrated that PAF placed on the RWM induced hearing loss and cochlear hair cell damage. The PAF-antagonists and L-NAME prevented the PAF-induced hearing loss and inhibited iNOS expression in the cochlea. These findings suggest that the PAF-induced hearing loss caused by cochlear hair cell damage may have been mediated by NO. PAF-antagonists and L-NAME may have future therapeutic implications in preventing sensorineural hearing loss associated with chronic otitis media. The results of this study have significant potential clinical application.

  8. Fluorescence lifetimes of anthracycline drugs in phospholipid bilayers determined by frequency-domain fluorometry

    NASA Astrophysics Data System (ADS)

    Burke, Thomas G.; Malak, Henryk M.; Doroshow, James H.

    1990-05-01

    Time-resolved fluorescence intensity decay data from anthracycline anticancer drugs present in model membranes were obtained using a gigahertz frequency-domain fluorometer [Lakowicz et al. (1986) Rev. Sci. Instrum. 57, 2499-2506]. Exciting light of 290 nm, modulated at multiple frequencies from 8 MHz to 400 MHz, was used to study the interactions of Adriamycin, daunomycin and related antibiotics with small unilamellar vesicles composed of dimyristoylphosphatidylcholine (DMPC) at 28°C. Fluorescence decay data for drug molecules free in solution as well as bound to membranes were best fit by exponentials requiring two terms rather than by single exponential decays. For example, one-component analysis of the decay data for Adriamycin free in phosphate buffered saline (PBS) solution resulted in a reduced x2 value of 140 ((tau) = 0.88 ns), while a two-component fit resulted in a substantially smaller reduced x2 value of 2.6 ((tau)1 = 1.13 ns, (alpha)1 = 0.60, (tau)2 = 0.30 ns). Upon association with membranes, each of the anthracyclines studied displayed a larger r1 value while the r2 value remained the same or increased (for example, DMPC-bound Adriamycin showed r1 = 1.68 ns , a1 = 0 . 64 , r2 = 0 . 33 ns) . Analyses of the fluorescence emission decays of anthracyclines were also made assuming each decay is composed of a single Lorentzian distribution of lifetimes. Data taken on Adriamycin in PBS, when fit using one continuous component, displayed (tau), (alpha), w, and reduced x2 values of 0.68 ns, 1, 0.60 ns, and 9.1, respectively. The distribution became quite broad upon drug association with membrane (DMPCbound Adriamycin: (tau) = 0.75 ns, (alpha) = 1, w = 2.24 ns, x2 = 13). For each anthracycline studied, continuous component fits showed significant broadening in the distributions upon drug association with membrane. Relatively large shifts in lifetime values were observed for the carminomycin and 4-demethoxydaunomycin analogues upon binding model lipid membranes, making these agents good candidates to employ in future studies on anthracycline interactions with more environmentally-complex biological membranes.

  9. The entrapment of corrosion products from CoCr implant alloys in the deposits of calcium phosphate: a comparison of serum, synovial fluid, albumin, EDTA, and water.

    PubMed

    Lewis, A C; Kilburn, M R; Heard, P J; Scott, T B; Hallam, K R; Allen, G C; Learmonth, I D

    2006-08-01

    Physical wear of orthopedic implants is inevitable. CoCr alloy samples, typically used in joint reconstruction, corrode rapidly after removal of the protective oxide layer. The behavior of CoCr pellets immersed in human serum, foetal bovine serum (FBS), synovial fluid, albumin in phosphate-buffered saline (PBS), EDTA in PBS, and water were studied using X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). The difference in the corrosive nature of human serum, water, albumin in PBS and synovial fluid after 5 days of immersion was highlighted by the oxide layer, which was respectively 15, 3.5, 1.5, and 1.5 nm thick. The thickness of an additional calcium phosphate deposit from human serum and synovial fluid was 40 and 2 nm, respectively. Co and Cr ions migrated from the bulk metal surface and were trapped in this deposit by the phosphate anion. This may account for the composition of wear debris from CoCr orthopedic implants, which is known to consist predominantly of hydroxy-phosphate compounds. Known components of synovial fluid including proteoglycans, pyrophosphates, phospholipids, lubricin, and superficial zone protein (SZP), have been identified as possible causes for the lack of significant calcium phosphate deposition in this environment. Circulation of these compounds around the whole implant may inhibit calcium phosphate deposition.

  10. Antibacterial Effect of Autologous Platelet-Rich Gel Derived from Subjects with Diabetic Dermal Ulcers In Vitro

    PubMed Central

    Chen, Lihong; Wang, Chun; Liu, Hengchuan; Liu, Guanjian; Ran, Xingwu

    2013-01-01

    Background. Autologous platelet-rich gel (APG) is an effective method to improve ulcer healing. However, the mechanisms are not clear. This study aimed to investigate the antibacterial effect of APG in vitro. Methods. Platelet-rich plasma (PRP), platelet-poor plasma (PPP) and APG were prepared from whole blood of sixteen diabetic patients with dermal ulcers. Antibacterial effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were evaluated by bacteriostasis assay of APG, PRP, and APG-APO (APG combined with apocynin), with phosphate-buffered saline (PBS) and PPP as the control group. Results. (1) Compared to the PBS and PPP, the APG and APG-APO groups showed strong antibacterial activity against Staphylococcus aureus. There was no significant difference (P > 0.05) between APG and APG-APO. (2) Compared to PBS, APG, APG-APO, and PRP showed obvious antibacterial effects against Escherichia coli and Pseudomonas aeruginosa. No significant difference (P > 0.05) was revealed among the three groups. Compared to the PPP group, they did not show antibacterial effect against Escherichia coli and Pseudomonas aeruginosa (P > 0.05). Conclusions. APG has antibacterial effect against Staphylococcus aureus mediated by platelet activation in the diabetic patients with dermal ulcer, and does not present obvious antibacterial effect against Escherichia coli or Pseudomonas aeruginosa. Combination of APG and antibiotics may have synergistic antibacterial effect. PMID:23671863

  11. Antibacterial effect of autologous platelet-rich gel derived from subjects with diabetic dermal ulcers in vitro.

    PubMed

    Chen, Lihong; Wang, Chun; Liu, Hengchuan; Liu, Guanjian; Ran, Xingwu

    2013-01-01

    Background. Autologous platelet-rich gel (APG) is an effective method to improve ulcer healing. However, the mechanisms are not clear. This study aimed to investigate the antibacterial effect of APG in vitro. Methods. Platelet-rich plasma (PRP), platelet-poor plasma (PPP) and APG were prepared from whole blood of sixteen diabetic patients with dermal ulcers. Antibacterial effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were evaluated by bacteriostasis assay of APG, PRP, and APG-APO (APG combined with apocynin), with phosphate-buffered saline (PBS) and PPP as the control group. Results. (1) Compared to the PBS and PPP, the APG and APG-APO groups showed strong antibacterial activity against Staphylococcus aureus. There was no significant difference (P > 0.05) between APG and APG-APO. (2) Compared to PBS, APG, APG-APO, and PRP showed obvious antibacterial effects against Escherichia coli and Pseudomonas aeruginosa. No significant difference (P > 0.05) was revealed among the three groups. Compared to the PPP group, they did not show antibacterial effect against Escherichia coli and Pseudomonas aeruginosa (P > 0.05). Conclusions. APG has antibacterial effect against Staphylococcus aureus mediated by platelet activation in the diabetic patients with dermal ulcer, and does not present obvious antibacterial effect against Escherichia coli or Pseudomonas aeruginosa. Combination of APG and antibiotics may have synergistic antibacterial effect.

  12. Results of endovesical hyaluronic acid/chondroitin sulfate in the treatment of Interstitial Cystitis/Painful Bladder Syndrome.

    PubMed

    Porru, D; Cervigni, M; Nasta, L; Natale, F; Lo Voi, R; Tinelli, C; Gardella, B; Anghileri, A; Spinillo, A; Rovereto, B

    2008-05-01

    The aim of our study was to test the effect of a more viscous compound than existent hyaluronic acid formulation in helping to restore a defective glycosaminoglycan layer, and therefore in improving Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS) symptoms when administered intravesically in IC/PBS patients. A total of 23 female patients completed the study. Patients received endovesical administration of hyaluronic acid and chondroitin sulfate in normal saline, 40 ml, weekly for 12 weeks and then bi-weekly for 6 months, if there was initial response. After 12 weeks treatment both Interstitial Cystitis Symptom and Problem Index (ICSI/ICPI), pelvic pain and Urgency/Frequency Symptom Scale (PUF) showed a mean significant improvement, which was maintained thereafter. The average number of voidings and mean voiding volumes revealed significant improvement after the 12 weeks' treatment period, with a significant reduction and increase, respectively. Mean voiding volume increased from 143 ml to 191, which apparently was not reflected in a corresponding reduction of number of daily voids (from 15,5 to 14). VAS values decreased from 5,4 to 3,6 (pain) and from 6,0 to 3,5 (urgency) after the treatment cycle, showing a significant improvement. In our preliminary experience, the administration of intravesical hyaluronic acid plus chondroitine sulphate appears to be a safe and efficacious method of treatment in IC/PBS.

  13. Growth-inhibitory effects of the red alga Gelidium amansii on cultured cells.

    PubMed

    Chen, Yue-Hwa; Tu, Ching-Jung; Wu, Hsiao-Ting

    2004-02-01

    The objective of this study was to investigate the effects of Gelidium amansii, an edible red agar cultivated off the northeast coast of Taiwan, on the growth of two lines of cancer cells, murine hepatoma (Hepa-1) and human leukemia (HL-60) cells, as well as a normal cell line, murine embryo fibroblast cells (NIH-3T3). The potential role of G. amansii on the induction of apoptosis was also examined. The results indicated that all extracts from G. amansii, including phosphate-buffered saline (PBS) and methanol extracts from dried algae as well as the dimethyl sulfoxide (DMSO) extract from freeze-dried G. amansii agar, inhibited the growth of Hepa-1 and NIH-3T3 cells, but not the growth of HL-60 cells. Annexin V-positive cells were observed in methanol and DMSO extract-treated, but not PBS extract-treated Hepa-1 and NIH-3T3 cells, suggesting that the lipid-soluble extracts of G. amansii induced apoptosis. In summary, extracts of G. amansii from various preparations exhibited antiproliferative effects on Hepa-1 and NIH-3T3 cells, and apoptosis may play a role in the methanol and DMSO extract-induced inhibitory effects. However, the antiproliferative effects of PBS extracts was not through apoptosis. Moreover, the growth-inhibitory effects of G. amansii were not specific to cancer cells.

  14. Cationic, anionic and neutral dyes: effects of photosensitizing properties and experimental conditions on the photodynamic inactivation of pathogenic bacteria.

    PubMed

    Sabbahi, Sonia; Ben Ayed, Layla; Boudabbous, Abdellatif

    2013-12-01

    The aim of this study was to evaluate the photobactericidal effect of four photosensitizers (PSs) with different structural and physico-photochemical properties, namely mesotetracationic porphyrin (T4MPyP), dianionic rose Bengal (RB), monocationic methylene blue (MB) and neutral red (NR). Their photokilling activity was tested in vitro on pathogenic bacteria such as Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) suspended in nutrient broth (NB) and in phosphate buffered saline (PBS) through following their influence on the PSs antimicrobial efficacy. Photodynamic inactivation (PDI) experiments were performed using visible light (L) and different PSs concentrations (20-70 μM). The ability of these PSs to mediate bacterial photodynamic inactivation was investigated as a function of type of PS and its concentrations, spectral and physico-chemical properties, bacterial strain, irradiation time and suspending medium. Indeed, they showed antibacterial effects against S. aureus and P. aeruginosa with significant difference in potency. Staphylococcus aureus suspended in NB showed 0.92 log units reduction in viable count in the presence of T4MPyP at 20 μM. Changing the suspending medium from NB to PBS, S. aureus was successfully photoinactivated by T4MPyP (20 μM) when suspended in PBS at least time exposure (10 and 30 min), followed by MB and RB.

  15. Short-term storage of canine preantral ovarian follicles using a powdered coconut water (ACP)-based medium.

    PubMed

    Lima, G L; Costa, L L M; Cavalcanti, D M L P; Rodrigues, C M F; Freire, F A M; Fontenele-Neto, J D; Silva, A R

    2010-07-01

    The objective was to investigate the use of powdered coconut water (ACP)-based medium for short-term preservation of canine preantral follicles. Pairs of ovaries from mongrel bitches (n=9) were divided into fragments. One ovarian fragment, treated as a fresh control, was immediately fixed for histological analysis, whereas the other six ovarian fragments were stored either in phosphate-buffered saline (PBS; control group) or ACP medium in isothermal Styrofoam boxes containing biological ice packs. The boxes were sealed and opened only after 12, 24, or 36h. After opening each box, the ovarian fragments were submitted to histological analysis. In total, 12,302 preantral follicles were evaluated, with 64.5% primordial, 33.3% primary, and 2.3% secondary follicles. There were multiple oocytes in 1.3% of the follicles analyzed. At 24h, ACP was more efficient in preserving follicular morphology than PBS (P<0.05). Compared with the fresh control group, a significant reduction in the percentage of morphologically normal ovarian follicles was observed for PBS, starting at 24h; however, the decline started only at 36h for the ACP medium. During the experiment, the temperature inside the isothermal boxes increased from 3 to 9 degrees C (P<0.05), despite a constant room temperature. In conclusion, powdered coconut water (ACP) was an appropriate medium for short-term storage of canine preantral ovarian follicles.

  16. Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Grant, David M; Palmer, Graham; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2015-10-01

    Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period. © 2014 Wiley Periodicals, Inc.

  17. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution

    PubMed Central

    Molazemhosseini, Alireza; Liu, Chung Chiun

    2018-01-01

    A cuprous oxide (Cu2O) thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV) measurement. An X-ray photoelectron spectroscopy (XPS) study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS) and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum), interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O) thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated. PMID:29316652

  18. Characterization of Screen-Printed Organic Electrochemical Transistors to Detect Cations of Different Sizes.

    PubMed

    Contat-Rodrigo, Laura; Pérez-Fuster, Clara; Lidón-Roger, José Vicente; Bonfiglio, Annalisa; García-Breijo, Eduardo

    2016-09-28

    A novel screen-printing fabrication method was used to prepare organic electrochemical transistors (OECTs) based on poly(3,4-ethylenedioxythiophene) doped with polysterene sulfonate (PEDOT:PSS). Initially, three types of these screen-printed OECTs with a different channel and gate areas ratio were compared in terms of output characteristics, transfer characteristics, and current modulation in a phosphate buffered saline (PBS) solution. Results confirm that transistors with a gate electrode larger than the channel exhibit higher modulation. OECTs with this geometry were therefore chosen to investigate their ion-sensitive properties in aqueous solutions of cations of different sizes (sodium and rhodamine B). The effect of the gate electrode was additionally studied by comparing these all-PEDOT:PSS transistors with OECTs with the same geometry but with a non-polarizable metal gate (Ag). The operation of the all-PEDOT:PSS OECTs yields a response that is not dependent on a Na⁺ or rhodamine concentration. The weak modulation of these transistors can be explained assuming that PEDOT:PSS behaves like a supercapacitor. In contrast, the operation of Ag-Gate OECTs yields a response that is dependent on ion concentration due to the redox reaction taking place at the gate electrode with Cl - counter-ions. This indicates that, for cation detection, the response is maximized in OECTs with non-polarizable gate electrodes.

  19. A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer

    PubMed Central

    Park, Daewon; Wu, Wei; Wang, Yadong

    2010-01-01

    Injectable reverse thermal gels have great potentials as biomaterials for tissue engineering and drug delivery. However, most existing gels lack functional groups that can be modified with biomolecules that can guide cell/material interactions. We created an amine-functionalized ABA block copolymer, poly(ethylene glycol)-poly(serinol hexamethylene urethane), or ESHU. This reverse thermal gel consists of a hydrophobic block (B): poly(serinol hexamethylene urethane) and a hydrophilic block (A): poly(ethylene glycol). The polymer was characterized by GPC, FTIR and 1H FTNMR. Rheological study demonstrated that ESHU solution in phosphate-buffered saline initiated phase transition at 32°C and reached maximum elastic modulus at 37°C. The in vitro degradation tests performed in PBS and cholesterol esterase solutions revealed that the polymer was hydrolyzable and the presence of cholesterol esterase greatly accelerated the hydrolysis. The in vitro cytotoxicity tests carried out using baboon smooth muscle cells demonstrated that ESHU had good cytocompatibility with cell viability indistinguishable from tissue culture treated polystyrene. Subcutaneous implantation in rats revealed well tolerated accurate inflammatory response with moderate ED-1 positive macrophages in the early stages, which largely resolved 4 weeks post-implantation. We functionalized ESHU with a hexapeptide, Ile-Lys-Val-Ala-Val-Ser (IKVAVS), which gelled rapidly at body temperature. We expect this new platform of functionalizable reverse thermal gels to provide versatile biomaterials in tissue engineering and regenerative medicine. PMID:20937526

  20. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound

    PubMed Central

    2013-01-01

    Background Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Results Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Conclusions Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems. PMID:23849189

  1. Genotoxicity Assessment of Chlorotrifluoroethylene Trimer Acid Using a Battery of In Vitro and In Vivo/In Vitro Assays

    DTIC Science & Technology

    1990-12-01

    in liquid nitrogen. Laboratory cultures were maintained as monolayers at 37 t 1.50C in a humidified atmosphere containing 5 t 1.5% CO2 and were... atmosphere containing 5% CO2. The cells were then washed twice with Dulbecco’s phosphate buffered saline (PBS) and incubated in F12 culture medium for six...time cell cultures ware treated with test or control material for 4 h at 37 t 1.SIA in a humidified atmosphere with 5% CO2 . After treatment, the

  2. The involvement of the cysteine proteases of Clonorchis sinensis metacercariae in excystment.

    PubMed

    Li, Shunyu; Chung, Young-Bae; Chung, Byung-Suk; Choi, Min-Ho; Yu, Jae-Ran; Hong, Sung-Tae

    2004-05-01

    The effects of trypsin, bile, trypsin-bile, pepsin, dithiothreitol (DTT) and metacercarial excretory-secretory product (ESP) on the in vitro excystment of Clonorchis sinensis metacercariae were investigated. The majority of metacercariae excysted immediately in trypsin-bile in PBS solution, a process which was complete after 30 min of incubation. When incubated in metacercarial ESP in PBS, excystment was potentiated in the presence of 5 mM DTT, but was inhibited dose-dependently by a cysteine protease inhibitor, iodoacetic acid. Two active protease bands of 28 and 40 kDa were identified in the ESP of metacercariae by gelatin substrate SDS-PAGE. Scanning electron microscopy demonstrated that the larvae in solutions of DTT and ESP migrated through a small hole on the metacercarial wall, whereas larvae were liberated by entire wall disruption in trypsin solution. These results suggest that trypsin is a major extrinsic factor of the rapid excystment of C. sinensis metacercariae, and that endogenous cysteine proteases are also involved in metacercarial excystment. Copyright 2004 Springer-Verlag

  3. Intravenous dextrose for children with gastroenteritis and dehydration: a double-blind randomized controlled trial.

    PubMed

    Levy, Jason A; Bachur, Richard G; Monuteaux, Michael C; Waltzman, Mark

    2013-03-01

    We seek to determine whether an initial intravenous bolus of 5% dextrose in normal saline solution compared with normal saline solution will lead to a lower proportion of hospitalized patients and a greater reduction in serum ketone levels in children with gastroenteritis and dehydration. We enrolled children aged 6 months to 6 years in a double-blind, randomized controlled trial of patients presenting to a pediatric emergency department. Subjects were randomized to receive a 20 mL/kg infusion of either 5% dextrose in normal saline solution or normal saline solution. Serum ketone levels were measured before and at 1- and 2-hour intervals after the initial study fluid bolus administration. Primary outcome was the proportion of children hospitalized. Secondary outcome was change in serum ketone levels over time. One hundred eighty-eight children were enrolled. The proportion of children hospitalized did not differ between groups (35% in the 5% dextrose in normal saline solution group versus 44% in the normal saline solution group; risk difference 9%; 95% confidence interval [CI] -5% to 22%). Compared with children who received normal saline solution, those who received 5% dextrose in normal saline solution had a greater reduction in mean serum ketone levels at both 1 hour (mean Δ 1.2 versus 0.1 mmol/L; mean difference 1.1 mmol/L; 95% CI 0.4 to 1.9 mmol/L) and 2 hours (mean Δ 1.9 versus 0.3 mmol/L; mean difference 1.6 mmol/L; 95% CI 0.9 to 2.3 mmol/L). Administration of a dextrose-containing bolus compared with normal saline did not lead to a lower rate of hospitalization for children with gastroenteritis and dehydration. There was, however, a greater reduction in serum ketone levels in patients who received 5% dextrose in normal saline solution. Copyright © 2012. Published by Mosby, Inc.

  4. Investigations in structural morphological and optical properties of Bi-Pb-S system thin films

    NASA Astrophysics Data System (ADS)

    Malika, Boukhalfa; Noureddine, Benramdane; Mourad, Medles; Abdelkader, Outzourhit; Attouya, Bouzidi; Hind, Tabet-derraz

    Bi2S3, PbS and Bi-Pb-S system thin films were grown on glass substrates by the spray pyrolysis technique. The films growth was realized by the reaction of aqueous solutions of bismuth trichloride (BiCl3) and trihydrate Lead Acetate (TLA) (Pb(CH3COO)2.3H2O) with thiourea on heated substrates. The films study was performed as a function of the TLA volume ratio (TLA vol. ratio) in the solution obtained by the mixture of BiCl3 and thiourea used as precursor solution (PrS). X-ray diffraction (XRD), field emitting scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) were used for structural and compositional analysis of the as deposited films. With the structural investigations, Bi2S3, PbS thin films and PbS-Bi2S3 composite thin films formation was confirmed. Optical properties of the deposited films were obtained using transmittance and reflectance measurements in the wavelength range [200-2500 nm]. The absorption edge shows a shift towards low energy with the increase of the TLA vol. ratio.The optical bandgaps for the films with various TLA vol. ratio are found to lie between those of the Bi2S3 and PbS ones. The optical parameters (extinction coefficient, refractive index, real and imaginary parts if the complex dielectric constant) of the thin films are also investigated. These are found to be dependent on the TLA vol. ratio.

  5. Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long

    2017-07-01

    Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm-2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open-circuit voltage of 0.52 V, a short-circuit photocurrent density of 13.56 mA cm-2 and a fill factor of 0.58.

  6. Use of PLGA 90:10 scaffolds enriched with in vitro-differentiated neural cells for repairing rat sciatic nerve defects.

    PubMed

    Luís, Ana L; Rodrigues, Jorge M; Geuna, Stefano; Amado, Sandra; Shirosaki, Yuki; Lee, Jennifer M; Fregnan, Federica; Lopes, Maria A; Veloso, Antonio P; Ferreira, Antonio J; Santos, Jose D; Armada-Da-silva, Paulo A S; Varejão, Artur S P; Maurício, Ana Colette

    2008-06-01

    Poly(lactic-co-glycolic acid) (PLGA) nerve tube guides, made of a novel proportion (90:10) of the two polymers, poly(L-lactide): poly(glycolide) and covered with a neural cell line differentiated in vitro, were tested in vivo for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve. Before in vivo testing, the PLGA 90:10 tubes were tested in vitro for water uptake and mass loss and compared with collagen sheets. The water uptake of the PLGA tubes was lower, and the mass loss was more rapid and higher than those of the collagen sheets when immersed in phosphate-buffered saline (PBS) solution. The pH values of immersing PBS did not change after soaking the collagen sheets and showed to be around 7.4. On the other hand, the pH values of PBS after soaking PLGA tubes decreased gradually during 10 days reaching values around 3.5. For the in vivo testing, 22 Sasco Sprague adult rats were divided into four groups--group 1: gap not reconstructed; group 2: gap reconstructed using an autologous nerve graft; group 3: gap reconstructed with PLGA 90:10 tube guides; group 4: gap reconstructed with PLGA 90:10 tube guides covered with neural cells differentiated in vitro. Motor and sensory functional recovery was evaluated throughout a healing period of 20 weeks using sciatic functional index, static sciatic index, extensor postural thrust, withdrawal reflex latency, and ankle kinematics. Stereological analysis was carried out on regenerated nerve fibers. Both motor and sensory functions improved significantly in the three experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the group where the gap was reconstructed using the autologous graft. The presence of neural cells covering the inside of the PLGA tube guides did not make any difference in the functional recovery. By contrast, morphometric analysis showed that the introduction of N1E-115 cells inside PLGA 90:10 tube guides led to a significant lower number and size of regenerated nerve fibers, suggesting thus that this approach is not adequate for promoting peripheral nerve repair. Further studies are warranted to assess the role of other cellular systems as a foreseeable therapeutic strategy in peripheral nerve regeneration.

  7. Role of medullary astroglial glutamine synthesis in tooth pulp hypersensitivity associated with frequent masseter muscle contraction.

    PubMed

    Watase, Tetsuro; Shimizu, Kohei; Ohara, Kinuyo; Komiya, Hiroki; Kanno, Kohei; Hatori, Keisuke; Noma, Noboru; Honda, Kuniya; Tsuboi, Yoshiyuki; Katagiri, Ayano; Shinoda, Masamichi; Ogiso, Bunnai; Iwata, Koichi

    2018-01-01

    Background The mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle hyperalgesia remain largely underinvestigated. In the present study, we aimed to determine whether masseter muscle contraction induced by daily electrical stimulation influences the mechanical head-withdrawal threshold and genioglossus electromyography activity caused by the application of capsaicin to the upper first molar tooth pulp. We further investigated whether astroglial glutamine synthesis is involved in first molar tooth pulp hypersensitivity associated with masseter muscle contraction. Methods The first molar tooth pulp was treated with capsaicin or vehicle in masseter muscle contraction or sham rats, following which the astroglial glutamine synthetase inhibitor methionine sulfoximine or Phosphate buffered saline (PBS) was applied. Astroglial activation was assessed via immunohistochemistry. Results The mechanical head-withdrawal threshold of the ipsilateral masseter muscle was significantly decreased in masseter muscle contraction rats than in sham rats. Genioglossus electromyography activity was significantly higher in masseter muscle contraction rats than sham rats. Glial fibrillary acidic protein-immunoreactive cell density was significantly higher in masseter muscle contraction rats than in sham rats. Administration of methionine sulfoximine induced no significant changes in the density of glial fibrillary acidic protein-immunoreactive cells relative to PBS treatment. However, mechanical head-withdrawal threshold was significantly higher in masseter muscle contraction rats than PBS-treated rats after methionine sulfoximine administration. Genioglossus electromyography activity following first molar tooth pulp capsaicin treatment was significantly lower in methionine sulfoximine-treated rats than in PBS-treated rats. In the ipsilateral region, the total number of phosphorylated extracellular signal-regulated protein kinase immunoreactive cells in the medullary dorsal horn was significantly smaller upon first molar tooth pulp capsaicin application in methionine sulfoximine-treated rats than in PBS-treated rats. Conclusions Our results suggest that masseter muscle contraction induces astroglial activation, and that this activation spreads from caudal to the obex in the medullary dorsal horn, resulting in enhanced neuronal excitability associated with astroglial glutamine synthesis in medullary dorsal horn neurons receiving inputs from the tooth pulp. These findings provide significant insight into the mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle contraction.

  8. Photophysical investigations of squaraine and cyanine dyes and their interaction with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Saikiran, M.; Sato, D.; Pandey, S. S.; Kato, T.

    2016-04-01

    A model far-red sensitive symmetrical squaraine dye (SQ-3) and unsymmetrical near infra-red sensitive cyanine dye (UCD-1) bearing direct-COOH functionalized indole ring were synthesized, characterized and subjected to photophysical investigations including their interaction with bovine serum albumin (BSA) as a model protein in phosphate buffer solution (PBS). Both of the dyes exhibit strong interaction with BSA in phosphate buffer with high apparent binding constant. A judicious tuning of hydrophobic main backbone with reactive functionality for associative interaction with active site of BSA has been found to be necessary for BSA detection in PBS.

  9. Activities in Cu2S-FeS-PbS melts at 1200 °C

    NASA Astrophysics Data System (ADS)

    Eriç, H.; Timuçin, M.

    1981-09-01

    The dew-point method was used to determine the vapor pressures of PbS over liquid sulfides of the system Cu2S-FeS-PbS at 1200 °C. From the PbS activity data, activities of Cu2S and FeS were evaluated both in binary and ternary melts by Gibbs-Duhem calculations. The systems Cu2S-PbS and Cu2S-FeS exhibit negative departures from ideal behavior, while the FeS-PbS melts are ideal solutions at 1200 °C.

  10. Localized Surface Plasmon Resonance (LSPR)-Coupled Fiber-Optic Nanoprobe for the Detection of Protein Biomarkers.

    PubMed

    Wei, Jianjun; Zeng, Zheng; Lin, Yongbin

    2017-01-01

    Here is presented a miniaturized, fiber-optic (FO) nanoprobe biosensor based on the localized surface plasmon resonance (LSPR) at the reusable dielectric-metallic hybrid interface with a robust, gold nano-disk array at the fiber end facet. The nanodisk array is directly fabricated using electron beam lithography (EBL) and metal lift-off process. The free prostate-specific antigen (f-PSA) has been detected with a mouse anti-human prostate-specific antigen (PSA) monoclonal antibody (mAb) as a specific receptor linked with a self-assembled monolayer (SAM) at the LSPR-FO facet surfaces. Experimental investigation and data analysis found near field refractive index (RI) sensitivity at ~226 nm/RIU with the LSPR-FO nanoprobe, and demonstrated the lowest limit of detection (LOD) at 100 fg/mL (~3 fM) of f-PSA in PBS solutions. The SAM shows insignificant nonspecific binding to the target biomarkers in the solution. The control experimentation using 5 mg/mL bovine serum albumin in PBS and nonspecific surface test shows the excellent specificity and selectivity in the detection of f-PSA in PBS. These results indicate important progress toward a miniaturized, multifunctional fiber-optic technology that integrates informational communication and sensing function for developing a high-performance, label-free, point-of-care (POC) device.

  11. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    PubMed

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.

  12. Reduction of allergenicity of irradiated ovalbumin in ovalbumin-allergic mice

    NASA Astrophysics Data System (ADS)

    Seo, Ji-Hyun; Lee, Ju-Woon; Kim, Jae-Hun; Byun, Eui-Baek; Lee, Soo-Young; Kang, Il-Jun; Byun, Myung-Woo

    2007-11-01

    Egg allergy is one of the most serious of the immediate hypersensitivity reactions to foods. Such an allergic disorder is mediated by IgE antibodies stimulated by T-helper type 2 (Th2) lymphocytes. This study was undertaken to evaluate changes of allergenicity and cytokine profiles by exposure of irradiated ovalbumin (OVA), a major allergen of egg white, in the OVA-allergic mice model. OVA solutions (2 mg/ml in 0.01 M phosphate buffered saline (PBS) were gamma-irradiated to 50 and 100 kGy. The allergenicity in the OVA-allergy-induced mice model was remarkably reduced when challenged with irradiated OVA. Cultures of spleen cells harvested from OVA-sensitized mice showed a significant decrease in Th2 cytokine levels of ILs-4 and -5 with a concomitant increase in Th1 cytokine levels of IL-12 when co-cultured with irradiated OVA. However, IFN- γ level decreased dependant on the radiation dose of co-cultured OVA. The levels of IgEs and Th2-cytokine were reduced dependant on the radiation dose. These data show that the irradiated OVA could downregulate the activity of Th2 lymphocytes in OVA-sensitized mice.

  13. Development of solid dispersions of artemisinin for transdermal delivery.

    PubMed

    Shahzad, Yasser; Sohail, Sadia; Arshad, Muhammad Sohail; Hussain, Talib; Shah, Syed Nisar Hussain

    2013-11-30

    Solid dispersions of the poorly soluble drug artemisinin were developed using polymer blends of polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) with the aim of enhancing solubility and in vitro permeation of artemisinin through skin. Formulations were characterised using a combination of molecular dynamics (MD) simulations, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Solubility of artemisinin was determined in two solvents: de-ionised water and phosphate buffered saline (PBS; pH 7.4), while in vitro drug permeation studies were carried out using rabbit skin as a model membrane. MD simulations revealed miscibility between the drug and polymers. DSC confirmed the molecular dispersion of the drug in the polymer blend. Decrease in crystallinity of artemisinin with respect to polymer content and the absence of specific drug-polymer interactions were confirmed using XRD and FT-IR, respectively. The solubility of artemisinin was dramatically enhanced for the solid dispersions, as was the permeation of artemisinin from saturated solid-dispersion vehicles relative to that from saturated solutions of the pure drug. The study suggests that high energy solid forms of artemisinin could possibly enable transdermal delivery of artemisinin. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Preparation of Cu₂O-Reduced Graphene Nanocomposite Modified Electrodes towards Ultrasensitive Dopamine Detection.

    PubMed

    He, Quanguo; Liu, Jun; Liu, Xiaopeng; Li, Guangli; Deng, Peihong; Liang, Jing

    2018-01-12

    Cu₂O-reduced graphene oxide nanocomposite (Cu₂O-RGO) was used to modify glassy carbon electrodes (GCE), and applied for the determination of dopamine (DA). The microstructure of Cu₂O-RGO nanocomposite material was characterized by scanning electron microscope. Then the electrochemical reduction condition for preparing Cu₂O-RGO/GCE and experimental conditions for determining DA were further optimized. The electrochemical behaviors of DA on the bare electrode, RGO- and Cu₂O-RGO-modified electrodes were also investigated using cyclic voltammetry in phosphate-buffered saline solution (PBS, pH 3.5). The results show that the oxidation peaks of ascorbic acid (AA), dopamine (DA), and uric acid (UA) could be well separated and the peak-to-peak separations are 204 mV (AA-DA) and 144 mV (DA-UA), respectively. Moreover, the linear response ranges for the determination of 1 × 10 -8 mol/L~1 × 10 -6 mol/L and 1 × 10 -6 mol/L~8 × 10 -5 mol/L with the detection limit 6.0 × 10 -9 mol/L (S/N = 3). The proposed Cu₂O-RGO/GCE was further applied to the determination of DA in dopamine hydrochloride injections with satisfactory results.

  15. Stability of polymer encapsulated quantum dots in cell culture media

    NASA Astrophysics Data System (ADS)

    Ojea-Jiménez, I.; Piella, J.; Nguyen, T.-L.; Bestetti, A.; Ryan, A. D.; Puntes, V.

    2013-04-01

    The unique optical properties of Quantum Dots have attracted a great interest to use these nanomaterials in diverse biological applications. The synthesis of QDs by methods from the literature permits one to obtain nanocrystals coated by hydrophobic alkyl coordinating ligands and soluble in most of the cases in organic solvents. The ideal biocompatible QD must be homogeneously dispersed and colloidally stable in aqueous solvents, exhibit pH and salt stability, show low levels of nonspecific binding to biological components, maintain a high quantum yield, and have a small hydrodynamic diameter. Polymer encapsulation represents an excellent scaffold on which to build additional biological function, allowing for a wide range of grafting approaches for biological ligands. As these QD are functionalized with poly(ethylene)glycol (PEG) derivatives on their surface, they show long term stability without any significant change in the optical properties, and they are also highly stable in the most common buffer solutions such as Phosphate Buffer Saline (PBS) or borate. However, as biological studies are normally done in more complex biological media which contain a mixture of amino acids, salts, glucose and vitamins, it is essential to determine the stability of our synthesized QDs under these conditions before tackling biological studies.

  16. Differential-Mode Biosensor Using Dual Extended-Gate Metal-Oxide-Semiconductor Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Choi, Jinhyeon; Lee, Hee Ho; Ahn, Jungil; Seo, Sang-Ho; Shin, Jang-Kyoo

    2012-06-01

    In this paper, we present a differential-mode biosensor using dual extended-gate metal-oxide-semiconductor field-effect transistors (MOSFETs), which possesses the advantages of both the extended-gate structure and the differential-mode operation. The extended-gate MOSFET was fabricated using a 0.6 µm standard complementary metal oxide semiconductor (CMOS) process. The Au extended gate is the sensing gate on which biomolecules are immobilized, while the Pt extended gate is the dummy gate for use in the differential-mode detection circuit. The differential-mode operation offers many advantages such as insensitivity to the variation of temperature and light, as well as low noise. The outputs were measured using a semiconductor parameter analyzer in a phosphate buffered saline (PBS; pH 7.4) solution. A standard Ag/AgCl reference electrode was used to apply the gate bias. We measured the variation of output voltage with time, temperature, and light intensity. The bindings of self-assembled monolayer (SAM), streptavidin, and biotin caused a variation in the output voltage of the differential-mode detection circuit and this was confirmed by surface plasmon resonance (SPR) experiment. Biotin molecules could be detected up to a concentration of as low as 0.001 µg/ml.

  17. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering.

    PubMed

    Cochis, Andrea; Bonetti, Lorenzo; Sorrentino, Rita; Contessi Negrini, Nicola; Grassi, Federico; Leigheb, Massimiliano; Rimondini, Lia; Farè, Silvia

    2018-04-10

    A possible strategy in regenerative medicine is cell-sheet engineering (CSE), i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS). The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC)-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na₂SO₄ and PBS). MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3) and endothelial murine cells (MS1), and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues.

  18. Tribological behavior of Ti6Al4V cellular structures produced by Selective Laser Melting.

    PubMed

    Bartolomeu, F; Sampaio, M; Carvalho, O; Pinto, E; Alves, N; Gomes, J R; Silva, F S; Miranda, G

    2017-05-01

    Additive manufacturing (AM) technologies enable the fabrication of innovative structures with complex geometries not easily manufactured by traditional processes. Regarding metallic cellular structures with tailored/customized mechanical and wear performance aiming to biomedical applications, Selective Laser Melting (SLM) is a remarkable solution for their production. Focusing on prosthesis and implants, in addition to a suitable Young's modulus it is important to assess the friction response and wear resistance of these cellular structures in a natural environment. In this sense, five cellular Ti6Al4V structures with different open-cell sizes (100-500µm) were designed and produced by SLM. These structures were tribologicaly tested against alumina using a reciprocating sliding ball-on-plate tribometer. Samples were submerged in Phosphate Buffered Saline (PBS) fluid at 37°C, in order to mimic in some extent the human body environment. The results showed that friction and wear performance of Ti6Al4V cellular structures is influenced by the structure open-cell size. The higher wear resistance was obtained for structures with 100µm designed open-cell size due to the higher apparent area of contact to support tribological loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fabrication and Characterization of Electrospun PCL-MgO-Keratin-Based Composite Nanofibers for Biomedical Applications

    PubMed Central

    Boakye, Maame A. D.; Rijal, Nava P.; Adhikari, Udhab; Bhattarai, Narayan

    2015-01-01

    Polymeric nanofibers are of great interest in biomedical applications, such as tissue engineering, drug delivery and wound healing, due to their ability to mimic and restore the function of natural extracellular matrix (ECM) found in tissues. Electrospinning has been heavily used to fabricate nanofibers because of its reliability and effectiveness. In our research, we fabricated poly(ε-caprolactone)-(PCL), magnesium oxide-(MgO) and keratin (K)-based composite nanofibers by electrospinning a blend solution of PCL, MgO and/or K. The electrospun nanofibers were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), mechanical tensile testing and inductively-coupled plasma optical emission spectroscopy (ICP-OES). Nanofibers with diameters in the range of 0.2–2.2 µm were produced by using different ratios of PCL/MgO and PCL-K/MgO. These fibers showed a uniform morphology with suitable mechanical properties; ultimate tensile strength up to 3 MPa and Young’s modulus 10 MPa. The structural integrity of nanofiber mats was retained in aqueous and phosphate buffer saline (PBS) medium. This study provides a new composite material with structural and material properties suitable for potential application in tissue engineering. PMID:28793426

  20. Rebamipide suppresses TNF-α production and macrophage infiltration in the conjunctiva.

    PubMed

    Tajima, Kazuki; Hattori, Takaaki; Takahashi, Hiroki; Katahira, Haruki; Narimatsu, Akitomo; Kumakura, Shigeto; Goto, Hiroshi

    2017-12-18

    To evaluate the anti-inflammatory effect of rebamipide during corneal epithelial wound healing using a mouse wound repair model. A 2-mm circular disc of the central cornea was demarcated in the right eye of C57BL/6 mice and the epithelium removed. Rebamipide 2% eyedrop was instilled onto the wounded eye 5 times a day (n = 26). Phosphate-buffered saline (PBS) was used in the control group (n = 26). Corneal and conjunctival IL-1β and TNF-α levels were measured at 6 h and 24 h postinjury by ELISA. The wounded area was evaluated by fluorescein staining at 24 h postinjury. Macrophage infiltration was assessed immunohistochemically, and TNF-α secretion from macrophages was examined in vitro. Conjunctival IL-1β and corneal IL-1β levels were not significantly different between PBS-treated and rebamipide-treated groups. However, conjunctival TNF-α level was significantly lower in the rebamipide-treated group compared with the PBS-treated group. Macrophage migration into the conjunctiva, but not into the cornea, was suppressed by rebamipide treatment. In addition, TNF-α secretion from cultured macrophages was suppressed by rebamipide in a concentration-dependent manner. Rebamipide treatment significantly accelerated corneal epithelial wound healing at 24 h postinjury. In a mouse corneal epithelial wound model, rebamipide suppressed TNF-α secretion and macrophage infiltration in the conjunctiva, which might have contributed to accelerated corneal epithelial wound healing in the first 24 h following injury. © 2017 American College of Veterinary Ophthalmologists.

  1. In vitro evaluation of antibiotic diffusion from antibiotic-impregnated biodegradable beads and polymethylmethacrylate beads.

    PubMed Central

    Mader, J T; Calhoun, J; Cobos, J

    1997-01-01

    Antibiotic-impregnated beads are used in the dead bone space following debridement surgery to deliver local, high concentrations of antibiotics. Polymethylmethacrylate (PMMA), 2,000-molecular-weight (MW) polylactic acid (PLA), Poly(DL-lactide)-coglycolide (PL:CG; 90:10, 80:20, and 70:30), and the combination 2,000-MW PLA-70:20 PL:CG were individually mixed with clindamycin, tobramycin, or vancomycin. Beads were placed in 1 ml of phosphate-buffered saline (PBS) and incubated at 37 degrees C. The PBS was changed daily, and the removed PBS samples were stored at -70 degrees C until the antibiotic in each sample was determined by microbiological disk diffusion assay. Nondissolving PMMA beads with tobramycin and clindamycin had concentrations well above breakpoint sensitivity concentrations (i.e., the antibiotic concentrations at the transition point between bacterial killing and resistance to the antibiotic) for more than 90 days, but vancomycin concentrations dropped by day 12. ALl PLA, PL:CG, and the 2,000-MW PLA-70:30 PL:CG biodegradable beads release high concentrations of all the antibiotics in vitro for the period of time needed to treat bone infections (i.e., 4 to 8 weeks). Antibiotic-loaded PLA and PL:CG beads have the advantage of better antibiotic elution and the ability to biodegradable (thereby averting the need for secondary surgery for bead removal) compared to the PMMA beads presently used in the clinical setting. PMID:9021200

  2. A Simple and Rapid Method for Standard Preparation of Gas Phase Extract of Cigarette Smoke

    PubMed Central

    Higashi, Tsunehito; Mai, Yosuke; Noya, Yoichi; Horinouchi, Takahiro; Terada, Koji; Hoshi, Akimasa; Nepal, Prabha; Harada, Takuya; Horiguchi, Mika; Hatate, Chizuru; Kuge, Yuji; Miwa, Soichi

    2014-01-01

    Cigarette smoke consists of tar and gas phase: the latter is toxicologically important because it can pass through lung alveolar epithelium to enter the circulation. Here we attempt to establish a standard method for preparation of gas phase extract of cigarette smoke (CSE). CSE was prepared by continuously sucking cigarette smoke through a Cambridge filter to remove tar, followed by bubbling it into phosphate-buffered saline (PBS). An increase in dry weight of the filter was defined as tar weight. Characteristically, concentrations of CSEs were represented as virtual tar concentrations, assuming that tar on the filter was dissolved in PBS. CSEs prepared from smaller numbers of cigarettes (original tar concentrations ≤15 mg/ml) showed similar concentration-response curves for cytotoxicity versus virtual tar concentrations, but with CSEs from larger numbers (tar ≥20 mg/ml), the curves were shifted rightward. Accordingly, the cytotoxic activity was detected in PBS of the second reservoir downstream of the first one with larger numbers of cigarettes. CSEs prepared from various cigarette brands showed comparable concentration-response curves for cytotoxicity. Two types of CSEs prepared by continuous and puff smoking protocols were similar regarding concentration-response curves for cytotoxicity, pharmacology of their cytotoxicity, and concentrations of cytotoxic compounds. These data show that concentrations of CSEs expressed by virtual tar concentrations can be a reference value to normalize their cytotoxicity, irrespective of numbers of combusted cigarettes, cigarette brands and smoking protocols, if original tar concentrations are ≤15 mg/ml. PMID:25229830

  3. Functional recovery of neuronal activity in rat whisker-barrel cortex sensory pathway from freezing injury after transplantation of adult bone marrow stromal cells.

    PubMed

    Mori, Kentaro; Iwata, Junko; Miyazaki, Masahiro; Nakao, Yasuaki; Maeda, Minoru

    2005-07-01

    The effect of transplantation of adult bone marrow stromal cells (MSCs) into the freeze-lesioned left barrel field cortex in the rat was investigated by measurement of local cerebral glucose utilization (lCMR(glc)) in the anatomic structures of the whisker-to-barrel cortex sensory pathway. Bone marrow stromal cells or phosphate-buffered saline (PBS) were injected intracerebrally into the boundary zone 1 h after induction of the freezing cortical lesion. Three weeks after surgery, the 2-[(14)C]deoxyglucose method was used to measure lCMR(glc) during right whisker stimulation. The volume of the primary necrotic freezing lesion was significantly reduced (P<0.05), and secondary retrograde degeneration in the left ventral posteromedial (VPM) thalamic nucleus was diminished in the MSC-treated group. Local cerebral glucose utilization measurements showed that the freezing cortical lesion did not alter the metabolic responses to stimulation in the brain stem trigeminal nuclei, but eliminated the responses in the left VPM nucleus and periphery of the barrel cortex in the PBS-treated group. The left/right (stimulated/unstimulated) lCMR(glc) ratios were significantly improved in both the VPM nucleus and periphery of the barrel cortex in the MSC-treated group compared with the PBS-treated group (P<0.05). These results indicate that MSC transplantation in adults may stimulate metabolic and functional recovery in injured neuronal pathways.

  4. Biocompatible polymeric implants for controlled drug delivery produced by MAPLE

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Dinescu, Maria

    2011-10-01

    Implants consisting of drug cores coated with polymeric films were developed for delivering drugs in a controlled manner. The polymeric films were produced using matrix assisted pulsed laser evaporation (MAPLE) and consist of poly(lactide-co-glycolide) (PLGA), used individually as well as blended with polyethylene glycol (PEG). Indomethacin (INC) was used as model drug. The implants were tested in vitro (i.e. in conditions similar with those encountered inside the body), for predicting their behavior after implantation at the site of action. To this end, they were immersed in physiological media (i.e. phosphate buffered saline PBS pH 7.4 and blood). At various intervals of PBS immersion (and respectively in blood), the polymeric films coating the drug cores were studied in terms of morphology, chemistry, wettability and blood compatibility. PEG:PLGA film exhibited superior properties as compared to PLGA film, the corresponding implant being thus more suitable for internal use in the human body. In addition, the implant containing PEG:PLGA film provided an efficient and sustained release of the drug. The kinetics of the drug release was consistent with a diffusion mediated mechanism (as revealed by fitting the data with Higuchi's model); the drug was gradually released through the pores formed during PBS immersion. In contrast, the implant containing PLGA film showed poor drug delivery rates and mechanical failure. In this case, fitting the data with Hixson-Crowell model indicated a release mechanism dominated by polymer erosion.

  5. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism.

    PubMed

    Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M

    2016-05-30

    The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of inflammatory challenge on hypothalamic neurons expressing orexinergic and melanin-concentrating hormone.

    PubMed

    Palomba, Maria; Seke Etet, Paul Faustin; Veronesi, Carlo

    2014-06-06

    Neurons containing the hypothalamic peptides orexin-A (hypocretin 1) and melanin-concentrating hormone (MCH) have been reported numerous roles in the regulation of the sleep-wake cycle, energy balance and feeding behavior. We investigated the response of these cells to repeated administration of low doses of endotoxin lipopolysaccharide (LPS) in mice. Adult male C57/6J mice where intraperitoneally (i.p.) injected with either LPS or phosphate-buffered saline (PBS) weekly for either 4 or 8 weeks, and afterwards were sacrificed at different time intervals from last injection. A significant drop in orexin-containing neuron number, but not in numbers of MCH or neuronal nuclear antigen (NeuN)-immunoreactive neurons, was observed after 8 weeks of LPS treatment, as compared to PBS treatment. Orexin expression entirely returned to control levels 30 days after the last LPS injection in mice treated for 8 weeks. These data strongly suggest the occurrence of selective alterations of orexinergic system, reversible over time, following repeated and intermittent systemic inflammatory challenge in mice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Preparation of Robust Metal-Free Magnetic Nanoemulsions Encapsulating Low-Molecular-Weight Nitroxide Radicals and Hydrophobic Drugs Directed Toward MRI-Visible Targeted Delivery.

    PubMed

    Nagura, Kota; Takemoto, Yusa; Moronaga, Satori; Uchida, Yoshiaki; Shimono, Satoshi; Shiino, Akihiko; Tanigaki, Kenji; Amano, Tsukuru; Yoshino, Fumi; Noda, Yohei; Koizumi, Satoshi; Komatsu, Naoki; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui

    2017-11-07

    With a view to developing a theranostic nanomedicine for targeted drug delivery systems visible by magnetic resonance (MR) imaging, robust metal-free magnetic nanoemulsions (mean particle size less than 20 nm) consisting of a biocompatible surfactant and hydrophobic, low molecular weight 2,2,5-trimethyl-5-(4-alkoxy)phenylpyrrolidine-N-oxyl radicals were prepared in pH 7.4 phosphate-buffered saline (PBS). The structure of the nanoemulsions was characterized by electron paramagnetic resonance spectroscopy, and dynamic light scattering and small-angle neutron-scattering measurements. The nanoemulsions showed high colloidal stability, low cytotoxicity, enough reduction resistance to excess ascorbic acid, and sufficient contrast enhancement in the proton longitudinal relaxation time (T 1 ) weighted MR images in PBS in vitro (and preliminarily in vivo). Furthermore, the hydrophobic anticancer drug paclitaxel could be encapsulated inside the nanoparticles, and the resulting paclitaxel-loaded nanoemulsions were efficiently incorporated into HeLa cells to suppress cell growth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors

    PubMed Central

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  9. Infectivity of Theileria parva sporozoites following cryopreservation in four suspension media and multiple refreezing: evaluation by in vitro titration.

    PubMed

    Mbao, V; Berkvens, D; Dolan, T; Speybroeck, N; Brandt, J; Dorny, P; Van den Bossche, P; Marcotty, T

    2006-09-01

    Theileria parva sporozoite stabilates are used for immunizing cattle against East Coast fever and in in vitro sporozoite neutralization assays. In this study, we attempted to identify a cheaper freezing medium and quantified the infectivity loss of sporozoites due to refreezing of stabilates, using an in vitro technique. Pools of stabilates prepared using Minimum Essential Medium (MEM), Roswell Park Memorial Institute (RPMI 1640), foetal calf serum (FCS) and phosphate-buffered saline (PBS) were compared. All were supplemented with bovine serum albumin except the FCS. RPMI 1640 was as effective as MEM in maintaining sporozoite infectivity while the infectivity in PBS and FCS reached only 59% and 67%, respectively. In a second experiment, a stabiiate based on MEM was subjected to several freeze-thaw cycles including various holding times on ice between thawing and refreezing. Refrozen stabilate gave an average sporozoite infectivity loss of 35% per cycle. The results indicate that RPMI can be used as a cheaper freezing medium for T. parva stabilates and that refrozen stabilate doses need to be adjusted for the 35% loss of infectivity.

  10. MAPLE deposition of PLGA:PEG films for controlled drug delivery: Influence of PEG molecular weight

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Staicu, Angela; Dinescu, Maria

    2012-09-01

    Implantable devices consisting of indomethacin (INC) cores coated with poly(lactide-co-glycolide):polyethylene glycol films (i.e. PLGA:PEG films) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) were produced. To predict their behavior after implantation inside the body, the implants were studied in vitro, in media similar with those encountered inside the body (phosphate buffered saline (PBS) pH 7.4 and blood). The influence of the molecular weight of PEG (i.e. low (1450 Da) versus high (10 kDa) molecular weights) on the characteristics of the implants was investigated, in terms of morphology, blood compatibility and kinetics of the drug release. The use of PEG of high molecular weight resulted in larger pores on the implants surfaces, enhanced blood compatibility of the implants and higher drug delivery rates. For both molecular weights PEGs, sustained release of INC was maintained over a three weeks interval. Theoretical fitting of the drug release data with Higuchi's model indicated that the INC was released mainly by diffusion, most probably through the pores formed in PLGA:PEG films during PBS immersion.

  11. Human oocyte cryopreservation: 5-year experience with a sodium-depleted slow freezing method.

    PubMed

    Boldt, Jeffrey; Tidswell, Non; Sayers, Amy; Kilani, Rami; Cline, Donald

    2006-07-01

    A slow freezing/rapid thawing method for the cryopreservation of human oocytes has been employed using a sodium-depleted culture media. In 53 frozen egg-embryo transfer (FEET) cycles, a 60.4% survival rate post-thaw was obtained and a 62.0% fertilization rate following intracytoplasmic sperm injection. Overall pregnancy rates were 26.4% per thaw attempt, 30.4% per patient, and 32.6% per embryo transfer. Pregnancy rates using sodium-depleted phosphate-buffered saline (PBS) as the base medium were 20.0% per thaw, 21.7% per patient, and 26.3% per transfer. With sodium-depleted modified human tubal fluid (mHTF) as the base for the cryopreservation medium, rates were 32.1% per thaw attempt, 39.1% per patient, 37.5% per transfer. The overall implantation rates were 4.2% per thawed oocyte and 13.6% per embryo, (PBS: 3.0% per egg, 10.6% per embryo; mHTF:5.3% per oocyte; 15.9% per embryo). These data indicate that the use of a sodium-depleted media with slow freezing and rapid thawing can yield acceptable pregnancy rates after FEET.

  12. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid.

    PubMed

    Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko

    2013-04-01

    Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  13. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid

    NASA Astrophysics Data System (ADS)

    Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko

    2013-04-01

    Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  14. Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria.

    PubMed

    Cruz, Andreia; Oliveira, Vanessa; Baptista, Inês; Almeida, Adelaide; Cunha, Angela; Suzuki, Satoru; Mendo, Sónia

    2012-01-01

    The effect of tributyltin (TBT) on growth and metabolic activity of three estuarine bacteria with different TBT resistance profiles was investigated in an organic-rich culture medium (TSB) and in phosphate buffered saline (PBS) buffer. Exposure to TBT was assessed by determining its effect on growth (OD(600 nm) measurement), bacterial productivity (leucine incorporation), viability (CFU counts), aggregation and cell size (from Live/Dead analysis), ATP and NADH concentrations. TBT exposure resulted in decrease of bacterial density, cell size, and metabolic activity. In addition, cell aggregates were observed in the TBT-treated cultures. TBT strongly affected bacterial cell metabolism and seemed to exert an effect on its equilibrium, interfering with cell activity. Also, TBT toxicity was lower when cells were grown in TSB than in PBS, suggesting that a nutrient-rich growth medium can protect cells from TBT toxicity. This study contributes to our understanding of the TBT-resistant cell behavior reflected in its physiology and metabolic activity. This information is of utmost importance for further studies of TBT bioremediation. Copyright © 2010 Wiley Periodicals, Inc.

  15. A prospective randomized trial of two solutions for intrapartum amnioinfusion: effects on fetal electrolytes, osmolality, and acid-base status.

    PubMed

    Pressman, E K; Blakemore, K J

    1996-10-01

    Our purpose was to compare the effects of intrapartum amnioinfusion with normal saline solution versus lactated Ringer's solution plus physiologic glucose on neonatal electrolytes and acid-base balance. Patients undergoing amnioinfusion for obstetric indications were randomized to receive normal saline solution or lactated Ringer's solution plus physiologic glucose at standardized amnioinfusion rates. Data were collected prospectively on maternal demographics, course of labor, and maternal and neonatal outcome. Arterial cord blood was obtained for analysis of electrolytes, glucose, osmolality, lactic acid, and blood gases. Control subjects with normal fetal heart rate patterns, and clear amniotic fluid not receiving amnioinfusion were studied concurrently. Data were collected on 59 patients (21 normal saline solution, 18 lactated Ringer's solution plus physiologic glucose, and 20 controls). Maternal demographics, course of labor, and neonatal outcome were similar in all three groups. Cesarean sections were performed more often in the amnioinfusion groups (33.3% for normal saline solution, 38.9% for lactated Ringer's solution plus physiologic glucose) than in the control group (5.0%), p < 0.05. Cord arterial electrolytes, glucose, osmolality, lactic acid, and blood gases were not altered by amnioinfusion with either solution. Intrapartum amnioinfusion with normal saline solution or lactated Ringer's solution plus physiologic glucose has no effect on neonatal electrolytes or acid-base balance.

  16. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Firdaus, Yuliar; Vandenplas, Erwin; Justo, Yolanda; Gehlhaar, Robert; Cheyns, David; Hens, Zeger; Van der Auweraer, Mark

    2014-09-01

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sainato, Michela; Shevitski, Brian; Sahu, Ayaskanta

    Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2- 3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mmmore » × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Furthemore, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.« less

  18. Long-Range Order in Nanocrystal Assemblies Determines Charge Transport of Films

    DOE PAGES

    Sainato, Michela; Shevitski, Brian; Sahu, Ayaskanta; ...

    2017-07-18

    Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2- 3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mmmore » × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Furthemore, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.« less

  19. Hyaluronic acid improves "pleasantness" and tolerability of nebulized hypertonic saline in a cohort of patients with cystic fibrosis.

    PubMed

    Buonpensiero, Paolo; De Gregorio, Fabiola; Sepe, Angela; Di Pasqua, Antonio; Ferri, Pasqualina; Siano, Maria; Terlizzi, Vito; Raia, Valeria

    2010-11-01

    Inhaled hypertonic saline improves lung function and decreases pulmonary exacerbations in people with cystic fibrosis. However, side effects such as cough, narrowing of airways and saltiness cause intolerance of the therapy in 8% of patients. The aim of our study was to compare the effect of an inhaled solution of hyaluronic acid and hypertonic saline with hypertonic solution alone on safety and tolerability. A total of 20 patients with cystic fibrosis aged 6 years and over received a single treatment regimen of 7% hypertonic saline solution or hypertonic solution with 0.1% hyaluronate for 2 days nonconsecutively after a washout period in an open crossover study. Cough, throat irritation, and salty taste were evaluated by a modified ordinal score for assessing tolerability; "pleasantness" was evaluated by a five-level, Likert-type scale. Forced expiratory volume in 1 second was registered before and after the end of the saline inhalations. All 20 patients (nine males, 11 females, mean age 13 years, range 8.9-17.7) completed the study. The inhaled solution of 0.1% hyaluronic acid and hypertonic saline significantly improved tolerability and pleasantness compared to hypertonic saline alone. No major adverse effects were observed. No difference was documented in pulmonary function tests between the two treatments. Hyaluronic acid combined with hypertonic saline solution may contribute to improved adherence to hypertonic saline therapy. Further clinical trials are needed to confirm our findings. Considering the extraordinary versatility of hyaluronic acid in biological reactions, perspective studies could define its applicability to halting progression of lung disease in cystic fibrosis.

  20. Enhanced Performance of PbS-quantum-dot-sensitized Solar Cells via Optimizing Precursor Solution and Electrolytes

    NASA Astrophysics Data System (ADS)

    Tian, Jianjun; Shen, Ting; Liu, Xiaoguang; Fei, Chengbin; Lv, Lili; Cao, Guozhong

    2016-03-01

    This work reports a PbS-quantum-dot-sensitized solar cell (QDSC) with power conversion efficiency (PCE) of 4%. PbS quantum dots (QDs) were grown on mesoporous TiO2 film using a successive ion layer absorption and reaction (SILAR) method. The growth of QDs was found to be profoundly affected by the concentration of the precursor solution. At low concentrations, the rate-limiting factor of the crystal growth was the adsorption of the precursor ions, and the surface growth of the crystal became the limiting factor in the high concentration solution. The optimal concentration of precursor solution with respect to the quantity and size of synthesized QDs was 0.06 M. To further increase the performance of QDSCs, the 30% deionized water of polysulfide electrolyte was replaced with methanol to improve the wettability and permeability of electrolytes in the TiO2 film, which accelerated the redox couple diffusion in the electrolyte solution and improved charge transfer at the interfaces between photoanodes and electrolytes. The stability of PbS QDs in the electrolyte was also improved by methanol to reduce the charge recombination and prolong the electron lifetime. As a result, the PCE of QDSC was increased to 4.01%.

  1. Enhanced Performance of PbS-quantum-dot-sensitized Solar Cells via Optimizing Precursor Solution and Electrolytes.

    PubMed

    Tian, Jianjun; Shen, Ting; Liu, Xiaoguang; Fei, Chengbin; Lv, Lili; Cao, Guozhong

    2016-03-15

    This work reports a PbS-quantum-dot-sensitized solar cell (QDSC) with power conversion efficiency (PCE) of 4%. PbS quantum dots (QDs) were grown on mesoporous TiO2 film using a successive ion layer absorption and reaction (SILAR) method. The growth of QDs was found to be profoundly affected by the concentration of the precursor solution. At low concentrations, the rate-limiting factor of the crystal growth was the adsorption of the precursor ions, and the surface growth of the crystal became the limiting factor in the high concentration solution. The optimal concentration of precursor solution with respect to the quantity and size of synthesized QDs was 0.06 M. To further increase the performance of QDSCs, the 30% deionized water of polysulfide electrolyte was replaced with methanol to improve the wettability and permeability of electrolytes in the TiO2 film, which accelerated the redox couple diffusion in the electrolyte solution and improved charge transfer at the interfaces between photoanodes and electrolytes. The stability of PbS QDs in the electrolyte was also improved by methanol to reduce the charge recombination and prolong the electron lifetime. As a result, the PCE of QDSC was increased to 4.01%.

  2. Pleiotrophin as a Growth Factor and Therapeutic Target in Breast Cancer

    DTIC Science & Technology

    1997-10-01

    novel phospholipase A2 related gene. Nucl Acid Res 21:135-143. 11. Gattoni-Celli, S., K . Kirsch, S. Kalled , and K . J. Isselbacher. 1986. Expression...clone (G11-F7) is enlarged. Genomic Southern blot probes (a,b,c) and restriction sites are shown (B=BamHI, H=HindIII, Sc=ScaI, K =KpnI). 10WJ 3fr 4&V...otherwise in 25 mM Tris pH8.3/200 mM glycine/20% methanol. The membrane was blocked in PBS (phospate-buffered saline )/0.1% Tween 20/5% powdered milk and

  3. Zinc oxide nano-rods based glucose biosensor devices fabrication

    NASA Astrophysics Data System (ADS)

    Wahab, H. A.; Salama, A. A.; El Saeid, A. A.; Willander, M.; Nur, O.; Battisha, I. K.

    2018-06-01

    ZnO is distinguished multifunctional material that has wide applications in biochemical sensor devices. For extracellular measurements, Zinc oxide nano-rods will be deposited on conducting plastic substrate with annealing temperature 150 °C (ZNRP150) and silver wire with annealing temperature 250 °C (ZNRW250), for the extracellular glucose concentration determination with functionalized ZNR-coated biosensors. It was performed in phosphate buffer saline (PBS) over the range from 1 μM to 10 mM and on human blood plasma. The prepared samples crystal structure and surface morphologies were characterized by XRD and field emission scanning electron microscope FESEM respectively.

  4. Rheological and Tribological Properties of Complex Biopolymer Solutions

    NASA Astrophysics Data System (ADS)

    Klossner, Rebecca Reese

    2011-12-01

    The rheological and tribological properties of an experimental synovial fluid model were investigated in order to determine the solution dynamics of the three most abundant macromolecules present in synovial fluid, the fluid that lubricates freely moving (synovial) joints. These components, hyaluronic acid (HA) and the plasma proteins, albumin and gamma-globulins are combined in a phosphate buffered saline solution (PBS) and subjected to steady shear rheology testing, as well as nanoindenter-based scratch testing, which allows for the study of the lubrication properties of the experimental synovial fluid model. Steady shear experiments, where the shear rate was increased from low to high, and then decreased from high to low, showed hysteresis in only protein containing solutions, whereas samples of HA in PBS behaved as a "typical" polyelectrolyte in solution. Subsequent rheological experiments on the synovial fluid model exhibited an increase in viscosity at low shear stresses, indicating that a structure was present at these low shear stresses, which was not found at higher shear stresses. This result is in agreement with studies conducted on the same model which show unusual rheological behavior at low shear rates. Low shear stresses can cause modifications to the external protein surface, resulting in their unfolding and creating many opportunities for the molecules to reorder themselves. As the proteins reorder themselves, the newly exposed hydrophobic patches will have a tendency to aggregate together, creating a network within the fluid, and, in turn causing the observed increased viscosity at low shear stresses. Additionally, an anti-inflammatory drug, hydroxychloroquine (HCQ) was added to the solutions. This addition diminishes the protein aggregation process substantially. Finally, the HA component of the synovial fluid model was replaced with a neutral polymer in order to examine the role of HA in synovial fluid. As suspected, the HA appears to have little impact on the actual aggregation process. Additionally, the relationship between the rheology and tribology of the SFM was studied through a series of nanoscratch tests using a Hysitron nanoindenter. The nanoindenter has the ability to measure both normal and lateral forces simultaneously, which gives an indication of the lubricity of the solution. The coefficient of friction values for solutions of varying protein concentrations were determined by dividing the lateral force by the normal force. Tribological testing of the synovial fluid model and modified solutions were carried out on spin-cast polyethylene and ultra high molecular weight polyethylene sheets. At lower molecular weight substrates, the film thickness limited the validity of the generated data, and with higher molecular weight surfaces, surface roughness effects were found to dominate the tribological response. Finally, the addition of HCQ does not have a large impact on the tribological data, indicating that the anti-inflammatory drug does not significantly impact the lubrication properties within the synovial fluid model. Finally, additional rheological studies of biopolymer solutions were conducted in which solutions containing chitosan, a natural, bioactive polymer, were characterized to determine their fitness for the electropsinning process. Chitosan fibers are difficult to electrospin, and through these studies, the entanglement concentration, a critical parameter for electrospinning, was determined. The generated rheological data provided a means to predict the morphology of the resulting nanofibers, and aspects of the difficulty in electrospinning chitosan were revealed.

  5. Anodic stripping voltammetry of nickel ions and nickel hydroxide nanoparticles at boron-doped diamond electrodes

    NASA Astrophysics Data System (ADS)

    Musyarofah, N. R. R.; Gunlazuardi, J.; Einaga, Y.; Ivandini, T. A.

    2017-04-01

    Anodic stripping voltammetry (ASV) of nickel ions in phosphate buffer solution (PBS) have been investigated at boron-doped diamond (BDD) electrodes. The deposition potential at 0.1 V (vs. Ag/AgCl) for 300 s in 0.1 M PBS pH 3 was found as the optimum condition. The condition was applied for the determination of nickel contained in nickel hydroxide nanoparticles. A linear calibration curve can be achieved of Ni(OH)2-NPs in the concentration range of x to x mM with an estimated limit of detection (LOD) of 5.73 × 10-6 mol/L.

  6. Vein Graft Preservation Solutions, Patency, and Outcomes After Coronary Artery Bypass Graft Surgery

    PubMed Central

    Harskamp, Ralf E.; Alexander, John H.; Schulte, Phillip J.; Brophy, Colleen M.; Mack, Michael J.; Peterson, Eric D.; Williams, Judson B.; Gibson, C. Michael; Califf, Robert M.; Kouchoukos, Nicholas T.; Harrington, Robert A.; Ferguson, T. Bruce; Lopes, Renato D.

    2015-01-01

    IMPORTANCE In vitro and animal model data suggest that intraoperative preservation solutions may influence endothelial function and vein graft failure (VGF) after coronary artery bypass graft (CABG) surgery. Clinical studies to validate these findings are lacking. OBJECTIVE To evaluate the effect of vein graft preservation solutions on VGF and clinical outcomes in patients undergoing CABG surgery. DESIGN, SETTING, AND PARTICIPANTS Data from the Project of Ex-Vivo Vein Graft Engineering via Transfection IV (PREVENT IV) study, a phase 3, multicenter, randomized, double-blind, placebo-controlled trial that enrolled 3014 patients at 107 US sites from August 1, 2002, through October 22, 2003, were used. Eligibility criteria for the trial included CABG surgery for coronary artery disease with at least 2 planned vein grafts. INTERVENTIONS Preservation of vein grafts in saline, blood, or buffered saline solutions. MAIN OUTCOMES AND MEASURES One-year angiographic VGF and 5-year rates of death, myocardial infarction, and subsequent revascularization. RESULTS Most patients had grafts preserved in saline (1339 [44.4%]), followed by blood (971 [32.2%]) and buffered saline (507 [16.8%]). Baseline characteristics were similar among groups. One-year VGF rates were much lower in the buffered saline group than in the saline group (patient-level odds ratio [OR], 0.59 [95% CI, 0.45-0.78; P < .001]; graft-level OR, 0.63 [95% CI, 0.49-0.79; P < .001]) or the blood group (patient-level OR, 0.62 [95% CI, 0.46-0.83; P = .001]; graft-level OR, 0.63 [95% CI, 0.48-0.81; P < .001]). Use of buffered saline solution also tended to be associated with a lower 5-year risk for death, myocardial infarction, or subsequent revascularization compared with saline (hazard ratio, 0.81 [95% CI, 0.64-1.02; P = .08]) and blood (0.81 [0.63-1.03; P = .09]) solutions. CONCLUSIONS AND RELEVANCE Patients undergoing CABG whose vein grafts were preserved in a buffered saline solution had lower VGF rates and trends toward better long-term clinical outcomes compared with patients whose grafts were preserved in saline- or blood-based solutions. PMID:25073921

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalilehvand, Farideh; Sisombath, Natalie S.; Schell, Adam C.

    The lead(II) complexes formed with the multidentate chelator l-cysteine (H 2Cys) in an alkaline aqueous solution were studied using 207Pb, 13C, and 1H NMR, Pb L III-edge X-ray absorption, and UV–vis spectroscopic techniques, complemented by electrospray ion mass spectrometry (ESI-MS). The H 2Cys/Pb II mole ratios were varied from 2.1 to 10.0 for two sets of solutions with C PbII = 0.01 and 0.1 M, respectively, prepared at pH values (9.1–10.4) for which precipitates of lead(II) cysteine dissolved. At low H 2Cys/Pb II mole ratios (2.1–3.0), a mixture of the dithiolate [Pb(S,N-Cys) 2] 2– and [Pb(S,N,O-Cys)(S-HCys)] – complexes with averagemore » Pb–(N/O) and Pb–S distances of 2.42 ± 0.04 and 2.64 ± 0.04 Å, respectively, was found to dominate. At high concentration of free cysteinate (>0.7 M), a significant amount converts to the trithiolate [Pb(S,N-Cys)(S-HCys) 2] 2–, including a minor amount of a PbS 3-coordinated [Pb(S-HCys) 3] – complex. The coordination mode was evaluated by fitting linear combinations of EXAFS oscillations to the experimental spectra and by examining the 207Pb NMR signals in the chemical shift range δ Pb = 2006–2507 ppm, which became increasingly deshielded with increasing free cysteinate concentration. One-pulse magic-angle-spinning (MAS) 207Pb NMR spectra of crystalline Pb(aet) 2 (Haet = 2-aminoethanethiol or cysteamine) with PbS 2N 2 coordination were measured for comparison (δ iso = 2105 ppm). The UV–vis spectra displayed absorption maxima at 298–300 nm (S – → Pb II charge transfer) for the dithiolate PbS 2N(N/O) species; with increasing ligand excess, a shoulder appeared at ~330 nm for the trithiolate PbS 3N and PbS 3 (minor) complexes. Finally, the results provide spectroscopic fingerprints for structural models for lead(II) coordination modes to proteins and enzymes.« less

  8. Quantifying the degradation of TNT and RDX in a saline environment with and without UV-exposure.

    PubMed

    Sisco, Edward; Najarro, Marcela; Bridge, Candice; Aranda, Roman

    2015-06-01

    Terrorist attacks in a maritime setting, such as the bombing of the USS Cole in 2000, or the detection of underwater mines, require the development of proper protocols to collect and analyse explosive material from a marine environment. In addition to proper analysis of the explosive material, protocols must also consider the exposure of the material to potentially deleterious elements, such as UV light and salinity, time spent in the environment, and time between storage and analysis. To understand how traditional explosives would be affected by such conditions, saline solutions of explosives were exposed to natural and artificial sunlight. Degradation of the explosives over time was then quantified using negative chemical ionization gas chromatography mass spectrometry (GC/NCI-MS). Two explosives, trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX), were exposed to different aqueous environments and light exposures with salinities ranging from freshwater to twice the salinity of ocean water. Solutions were then aged for up to 6 months to simulate different conditions the explosives may be recovered from. Salinity was found to have a negligible impact on the degradation of both RDX and TNT. RDX was stable in solutions of all salinities while TNT solutions degraded regardless of salinity. Solutions of varying salinities were also exposed to UV light, where accelerated degradation was seen for both explosives. Potential degradation products of TNT were identified using electrospray ionization mass spectrometry (ESI-MS), and correspond to proposed degradation products discussed in previously published works [1]. Published by Elsevier Ireland Ltd.

  9. Neuroprotective Effects of Omega-3 Polyunsaturated Fatty Acids in a Rat Model of Anterior Ischemic Optic Neuropathy.

    PubMed

    Georgiou, Tassos; Wen, Yao-Tseng; Chang, Chung-Hsing; Kolovos, Panagiotis; Kalogerou, Maria; Prokopiou, Ekatherine; Neokleous, Anastasia; Huang, Chin-Te; Tsai, Rong-Kung

    2017-03-01

    The purpose of this study was to investigate the therapeutic effect of omega-3 polyunsaturated fatty acid (ω-3 PUFA) administration in a rat model of anterior ischemic optic neuropathy (rAION). The level of blood arachidonic acid/eicosapentaenoic acid (AA/EPA) was measured to determine the suggested dosage. The rAION-induced rats were administered fish oil (1 g/day EPA) or phosphate-buffered saline (PBS) by daily gavage for 10 consecutive days to evaluate the neuroprotective effects. Blood fatty acid analysis showed that the AA/EPA ratio was reduced from 17.6 to ≤1.5 after 10 days of fish oil treatment. The retinal ganglion cell (RGC) densities and the P1-N2 amplitude of flash visual-evoked potentials (FVEP) were significantly higher in the ω-3 PUFA-treated group, compared with the PBS-treated group (P < 0.05). The number of apoptotic cells in the RGC layer of the ω-3 PUFA-treated rats was significantly decreased (P < 0.05) compared with that of the PBS-treated rats. Treatment with ω-3 PUFAs reduced the macrophage recruitment at the optic nerve (ON) by 3.17-fold in the rAION model. The M2 macrophage markers, which decrease inflammation, were induced in the ω-3 PUFA-treated group in contrast to the PBS-treated group. In addition, the mRNA levels of tumor necrosis factor-alpha, interleukin-1 beta, and inducible nitric oxide synthase were significantly reduced in the ω-3 PUFA-treated group. The administration of ω-3 PUFAs has neuroprotective effects in rAION, possibly through dual actions of the antiapoptosis of RGCs and anti-inflammation via decreasing inflammatory cell infiltration, as well as the regulation of macrophage polarization to decrease the cytokine-induced injury of the ON.

  10. Effects of Quercetin in a Mouse Model of Experimental Dry Eye.

    PubMed

    Oh, Ha Na; Kim, Chae Eun; Lee, Ji Hyun; Yang, Jae Wook

    2015-09-01

    To evaluate the effect of treatment with quercetin in a mouse model of dry eye. 0.5% quercetin eye drops were prepared and an experimental dry eye model was induced in NOD.B10.H2(b) mice through desiccation stress. The mice were divided into 3 groups according to the treatment regimen: the DS 10D group (desiccation stress for 10 days), the phosphate buffered saline (PBS) group, and the quercetin group. Tear volumes and corneal irregularity scores were measured at 3, 5, 7, and 10 days after treatment. Hematoxylin and eosin staining, periodic acid-Schiff staining, and immunohistochemistry were performed at the end of the experiment. The quercetin group had increased tear volumes (0.2 ± 0.03 μm, P < 0.05) and decreased corneal irregularity scores (0.7 ± 0.6, P < 0.05) compared with those of the PBS group. On histological examination, the quercetin group exhibited restored smooth corneal surfaces without detaching corneal epithelial cells and had significantly increased goblet cell density (13.8 ± 0.8 cells/0.1 mm², P < 0.05) compared with the PBS group. The quercetin group also exhibited significant declines of MMP-2 (5.1-fold of control, P < 0.01), MMP-9 (2.5-fold of control, P < 0.01), ICAM-1 (2.2-fold of control, P < 0.01), and VCAM-1 (2.3-fold of control, P < 0.01) levels in the lacrimal gland than did the PBS group. Topical application of quercetin can help to improve ocular surface disorders of dry eye not only by decreasing the corneal surface irregularity but also by increasing the tear volume and goblet cell density. Moreover, quercetin has the potential for use in eye drops as a treatment for dry eye disease with antiinflammatory effects on the lacrimal functional unit.

  11. [Two Outbreaks of Yersinia enterocolitica O:8 Infections in Tokyo and the Characterization of Isolates].

    PubMed

    Konishi, Noriko; Ishitsuka, Rie; Yokoyama, Keiko; Saiki, Dai; Akase, Satoru; Monma, Chie; Hirai, Akihiko; Sadamasu, Kenji; Kai, Akemi

    2016-01-01

    Although the number of outbreaks caused by Yersinia enterocolitica has been very small in Japan, 4 outbreaks were occurred during the 2 years between 2012 and 2013. We describe herein 2 outbreaks which were examined in Tokyo in the present study. Outbreak 1: A total of 39 people (37 high school students and 2 staff) stayed at a hotel in mountain area in Japan had experienced abdominal pain, diarrhea and fever in August, 2012. The Y. enterocolitica serogroup O:8 was isolated from 18 (64.3%) out of 28 fecal specimens of 28 patients. The infection roots could not be revealed because Y. enterocolitica was not detected from any meals at the hotel or its environment. Outbreak 2: A total of 52 students at a dormitory had diarrhea and fever in April, 2013. The results of the bacteriological and virological examinations of fecal specimens of patients showed that the Y. enterocolitica serogroup O:8 was isolated from 24 fecal specimens of 21 patients and 3 kitchen staff. We performed bacteriological and virological examination of the stored and preserved foods at the kitchen of the dormitory to reveal the suspect food. For the detection of Y. enterocolitica, food samples. together with phosphate buffered saline (PBS) were incubated at 4 degrees C for 21 days. Then, a screening test for Y. enterocolitica using realtime-PCR targeting the ail gene was performed against the PBS culture. One sample (fresh vegetable salad) tested was positive on realtime-PCR. No Y. enterocolitica was isolated on CIN agar from the PBS culture because many bacteria colonies other than Y. enterocolitica appeared on the CIN agar. After the alkaline-treatments of the culture broth or the immunomagnetic beads concentration method using anti-Y. enterocolitica O:8 antibodies, Y. enterocolitica O:8 which was the same serogroup as the patients' isolates was successfully isolated from the PBS culture. The fresh vegetable salad was confirmed as the incrimination food of this outbreak.

  12. The effect of fatigue on the corrosion resistance of common medical alloys.

    PubMed

    Di Prima, Matthew; Gutierrez, Erick; Weaver, Jason D

    2017-10-01

    The effect of mechanical fatigue on the corrosion resistance of medical devices has been a concern for devices that experience significant fatigue during their lifespan and devices made from metallic alloys. The Food and Drug Administration had recommended in some instances for corrosion testing to be performed on post-fatigued devices [Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. 2005: Food and Drug Administration, Center for Devices and Radiological Health], although the need for this has been debated [Nagaraja S, et al., J Biomed Mater Res Part B: Appl Biomater 2016, 8.] This study seeks to evaluate the effect of fatigue on the corrosion resistance of 5 different materials commonly used in medical devices: 316 LVM stainless steel, MP35N cobalt chromium, electropolished nitinol, mechanically polished nitinol, and black oxide nitinol. Prior to corrosion testing per ASTM F2129, wires of each alloy were split into subgroups and subjected to either nothing (that is, as received); high strain fatigue for less than 8 min; short-term phosphate buffered saline (PBS) soak for less than 8 min; low strain fatigue for 8 days; or long-term PBS soak for 8 days. Results from corrosion testing showed that the rest potential trended to an equilibrium potential with increasing time in PBS and that there was no statistical (p > 0.05) difference in breakdown potential between the fatigued and matching PBS soak groups for 9 out of 10 test conditions. Our results suggest that under these nonfretting conditions, corrosion susceptibility as measured by breakdown potential per ASTM F2129 was unaffected by the fatigue condition. 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2019-2026, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  13. On the flocculation and settling characteristics of low- and high-concentration sediment suspensions: effects of particle concentration and salinity conditions.

    PubMed

    Zhu, Zhongfan; Xiong, Xiangzhong; Liang, Chaohuang; Zhao, Ming

    2018-05-01

    It remains unclear how the primary particle concentration and salinity conditions influence the flocculation and settling characteristics of water-sediment suspensions. In this study, two sets of experiments were performed to examine the flocculation and settling properties of low- and high-concentration sediment suspensions. In low-concentration suspensions, the sediment concentration undergoes a rapid initial decrease followed by a slow decrease until it approaches zero with increasing flocculation time. Increases in salinity or the valence of cations from the saline solution added to the suspension lead to a more rapidly decreasing sediment concentration with flocculation time. The valence of cations from the saline solution has a larger influence on the flocculation-settling behaviours of the suspension than the salinity. In high-concentration sediment suspensions, the height of the clear water-turbid water interface in the water-sediment suspension experiences an initial, rapidly decreasing phase followed by a slowly decreasing phase with increasing flocculation time. Increasing the primary particle concentration, salinity or valence of cations from the saline solution added to the suspension causes the height reduction of the clear water-turbid water interface to become gentler. Finally, the valence of cations from the saline solution has a greater influence on the settling characteristics of the high-concentration water-sediment suspension than the salinity.

  14. Adsorption of Hydrophobin-Protein Mixtures at the Air-Water Interface: The Impact of pH and Electrolyte.

    PubMed

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Cox, Andrew R; Hedges, Nick

    2015-09-15

    The adsorption of the proteins β-casein, β-lactoglobulin, and hydrophobin, and the protein mixtures of β-casein/hydrophobin and β-lactoglobulin/hydrophobin have been studied at the air-water interface by neutron reflectivity, NR. Changing the solution pH from 7 to 2.6 has relatively little impact on the adsorption of hydrophobin or β-lactoglobulin, but results in a substantial change in the structure of the adsorbed layer of β-casein. In β-lactoglobulin/hydrophobin mixtures, the adsorption is dominated by the hydrophobin adsorption, and is independent of the hydrophobin or β-lactoglobulin concentration and solution pH. At pH 2.6, the adsorption of the β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption over the range of β-casein concentrations studied. At pH 4 and 7, the adsorption of β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption at low β-casein concentrations. At higher β-casein concentrations, β-casein is adsorbed onto the surface monolayer of hydrophobin, and some interpenetration between the two proteins occurs. These results illustrate the importance of pH on the intermolecular interactions between the two proteins at the interface. This is further confirmed by the impact of PBS, phosphate buffered saline, buffer and CaCl2 on the coadsorption and surface structure. The results provide an important insight into the adsorption properties of protein mixtures and their application in foam and emulsion stabilization.

  15. Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer.

    PubMed

    Jung, Jaehyo; Lee, Jihoon; Shin, Siho; Kim, Youn Tae

    2017-10-23

    In this research, we developed a portable, three-electrode electrochemical amperometric analyzer that can transmit data to a PC or a tablet via Bluetooth communication. We performed experiments using an indium tin oxide (ITO) glass electrode to confirm the performance and reliability of the analyzer. The proposed analyzer uses a current-to-voltage (I/V) converter to convert the current generated by the reduction-oxidation (redox) reaction of the buffer solution to a voltage signal. This signal is then digitized by the processor. The configuration of the power and ground of the printed circuit board (PCB) layer is divided into digital and analog parts to minimize the noise interference of each part. The proposed analyzer occupies an area of 5.9 × 3.25 cm² with a current resolution of 0.4 nA. A potential of 0~2.1 V can be applied between the working and the counter electrodes. The results of this study showed the accuracy of the proposed analyzer by measuring the Ruthenium(III) chloride ( Ru III ) concentration in 10 mM phosphate-buffered saline (PBS) solution with a pH of 7.4. The measured data can be transmitted to a PC or a mobile such as a smartphone or a tablet PC using the included Bluetooth module. The proposed analyzer uses a 3.7 V, 120 mAh lithium polymer battery and can be operated for 60 min when fully charged, including data processing and wireless communication.

  16. Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer

    PubMed Central

    Lee, Jihoon; Shin, Siho; Kim, Youn Tae

    2017-01-01

    In this research, we developed a portable, three-electrode electrochemical amperometric analyzer that can transmit data to a PC or a tablet via Bluetooth communication. We performed experiments using an indium tin oxide (ITO) glass electrode to confirm the performance and reliability of the analyzer. The proposed analyzer uses a current-to-voltage (I/V) converter to convert the current generated by the reduction-oxidation (redox) reaction of the buffer solution to a voltage signal. This signal is then digitized by the processor. The configuration of the power and ground of the printed circuit board (PCB) layer is divided into digital and analog parts to minimize the noise interference of each part. The proposed analyzer occupies an area of 5.9 × 3.25 cm2 with a current resolution of 0.4 nA. A potential of 0~2.1 V can be applied between the working and the counter electrodes. The results of this study showed the accuracy of the proposed analyzer by measuring the Ruthenium(III) chloride (RuIII) concentration in 10 mM phosphate-buffered saline (PBS) solution with a pH of 7.4. The measured data can be transmitted to a PC or a mobile such as a smartphone or a tablet PC using the included Bluetooth module. The proposed analyzer uses a 3.7 V, 120 mAh lithium polymer battery and can be operated for 60 min when fully charged, including data processing and wireless communication. PMID:29065534

  17. The characterisation and design improvement of a paper-based E.coli impedimetric sensor

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, P.; Kumar, S.; Wiederoder, M.; Schoeman, J.; Land, K.; Joubert, T.-H.

    2016-02-01

    This paper describes the development and optimisation of a paper-based E. coli impedimetric biosensor for water quality monitoring. Impedimetric biosensing is advantageous because it is a highly sensitive, label-free, real-time method for the detection of biological species. An impedimetric biosensor measures the change in impedance caused by specific capture of a target on the sensor surface. Each biosensor consists of a pair of photo paper-based inkjet printed electrodes. An impedance analyser was used to measure the impedance at frequencies ranging from 1 kHz to 1 MHz at 1V. The parameters that were investigated to achieve enhanced sensor performance were buffer type, antibody attachment method, measurement frequency, electrode layout, and conductive material. A 0.04M PBS (phosphate buffered saline) solution achieves better results compared to a less conductive 0.04M PB (potassium phosphate dibasic) solution. The direct adsorption of anti-E. coli antibodies onto the sensor surface yielded better results than attaching the sensor to a lateral flow test. The resistive component had a greater impact on the detected impedance, therefore an optimal frequency of 1 MHz was identified. Geometrical electrode designs that maximise the resistive change between the electrodes were utilised. Both lower cost silver and bio-compatible gold ink were validated as electrode materials. The impedance change generated by the selective capture of E. coli K-12, ranging in concentration from 103 to 107 colony forming units per millilitre (cfu/ml), showed a detection limit of 105 cfu/ml.

  18. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats.

    PubMed

    Lambertucci, Adriana C; Lambertucci, Rafael H; Hirabara, Sandro M; Curi, Rui; Moriscot, Anselmo S; Alba-Loureiro, Tatiana C; Guimarães-Ferreira, Lucas; Levada-Pires, Adriana C; Vasconcelos, Diogo A A; Sellitti, Donald F; Pithon-Curi, Tania C

    2012-01-01

    In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.

  19. Glutamine Supplementation Stimulates Protein-Synthetic and Inhibits Protein-Degradative Signaling Pathways in Skeletal Muscle of Diabetic Rats

    PubMed Central

    Lambertucci, Adriana C.; Lambertucci, Rafael H.; Hirabara, Sandro M.; Curi, Rui; Moriscot, Anselmo S.; Alba-Loureiro, Tatiana C.; Guimarães-Ferreira, Lucas; Levada-Pires, Adriana C.; Vasconcelos, Diogo A. A.; Sellitti, Donald F.; Pithon-Curi, Tania C.

    2012-01-01

    In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes. PMID:23239980

  20. Influence of Root Exudates and Soil on Attachment of Pasteuria penetrans to Meloidogyne arenaria

    PubMed Central

    Liu, Chang; Ji, Pingsheng; Mekete, Tesfamariam; Joseph, Soumi

    2017-01-01

    The bacterium Pasteuria penetrans is a parasite of root-knot nematodes (Meloidogyne spp.). Endospores of P. penetrans attach to the cuticle of second-stage juveniles (J2) and subsequently sterilize infected females. When encumbered by large numbers of spores, juveniles are less mobile and their ability to infect roots is reduced. This study looked at different factors that influence spore attachment of P. penetrans to the root-knot nematode Meloidogyne arenaria. Pretreatment of J2 with root exudates of eggplant (Solanum melongena cv. Black beauty) reduced spore attachment compared with pretreatment with phosphate-buffered saline (PBS), suggesting that the nematode surface coat was altered or the spore recognition domains on the nematode surface were blocked. Spore attachment was equally reduced following exposure to root exudates from both host and nonhost plants for M. arenaria, indicating a common signal that affects spore attachment. Although phytohormones have been shown to influence the lipophilicity of the nematode surface coat, auxins and kinetins did not affect spore attachment compared with PBS. Root exudates reduced spore attachment more in sterilized soil than in natural soil. Sterilization may have eliminated microbes that consume root exudates, or altered the chemical components of the soil solution or root exudates. Root exudates caused a greater decrease in spore attachment in loamy sand than in a sandy loam soil. The sandy loam had higher clay content than the loamy sand, which may have resulted in more adsorption of compounds in the root exudates that affect spore attachment. The components of the root exudates could have also been modified by soil type. The results of this study demonstrate that root exudates can decrease the attachment of P. penetrans endospores to root-knot nematodes, indicating that when these nematodes enter the root zone their susceptibility to spore attachment may decrease. PMID:29062153

  1. Influence of Root Exudates and Soil on Attachment of Pasteuria penetrans to Meloidogyne arenaria.

    PubMed

    Liu, Chang; Timper, Patricia; Ji, Pingsheng; Mekete, Tesfamariam; Joseph, Soumi

    2017-09-01

    The bacterium Pasteuria penetrans is a parasite of root-knot nematodes ( Meloidogyne spp.). Endospores of P. penetrans attach to the cuticle of second-stage juveniles (J2) and subsequently sterilize infected females. When encumbered by large numbers of spores, juveniles are less mobile and their ability to infect roots is reduced. This study looked at different factors that influence spore attachment of P. penetrans to the root-knot nematode Meloidogyne arenaria . Pretreatment of J2 with root exudates of eggplant ( Solanum melongena cv. Black beauty) reduced spore attachment compared with pretreatment with phosphate-buffered saline (PBS), suggesting that the nematode surface coat was altered or the spore recognition domains on the nematode surface were blocked. Spore attachment was equally reduced following exposure to root exudates from both host and nonhost plants for M. arenaria , indicating a common signal that affects spore attachment. Although phytohormones have been shown to influence the lipophilicity of the nematode surface coat, auxins and kinetins did not affect spore attachment compared with PBS. Root exudates reduced spore attachment more in sterilized soil than in natural soil. Sterilization may have eliminated microbes that consume root exudates, or altered the chemical components of the soil solution or root exudates. Root exudates caused a greater decrease in spore attachment in loamy sand than in a sandy loam soil. The sandy loam had higher clay content than the loamy sand, which may have resulted in more adsorption of compounds in the root exudates that affect spore attachment. The components of the root exudates could have also been modified by soil type. The results of this study demonstrate that root exudates can decrease the attachment of P. penetrans endospores to root-knot nematodes, indicating that when these nematodes enter the root zone their susceptibility to spore attachment may decrease.

  2. Investigation of drug loading and in vitro release mechanisms of insulin-lauryl sulfate complex loaded PLGA nanoparticles.

    PubMed

    Shi, K; Cui, F; Yamamoto, H; Kawashima, Y

    2008-12-01

    Insulin, a water soluble peptide hormone, was hydrophobically ion-paired with sodium lauryl sulfate (SDS) at the stoichiometric molar ratio of 6:1. The obtained insulin-SDS complex precipitation was subsequently formulated in biodegradable poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles by a modified spontaneous emulsion solvent diffusion method. Compared with a conventional method for free insulin encapsulation, direct dissolution of SDS-paired insulin in the non-aqueous organic phase led to an increase in drug recovery from 42.5% to 89.6%. The more hydrophobic complex contributes to the improved affinity of insulin to the polymer matrix, resulting in a higher drug content in the nanoparticles. The drug loading was investigated by determining initial burst release at the first 30 min. The results showed that 64.8% of recovered drug were preferentially surface bound on complex loaded nanoparticles. The in vitro drug release was characterized by an initial burst and subsequent delayed release in dissolution media of deionized water and phosphate buffer saline (PBS). Compared with that in PBS, nanoparticles in deionized water medium presented very low initial burst release (15% vs. 65%) and incomplete cumulative release (25% vs. 90%) of the drug. In addition, dialysis experiments were performed to clarify the form of the released insulin in the dissolution media. The results suggested that the ion-pair complex was sensitive to ionic strength, insulin was released from the particular matrix as complex form and subsequently suffered dissociation from SDS in buffer saline. Moreover, the in vivo bioactivity of the SDS-paired insulin and nanoparticulate formulations were evaluated in mice by estimation of their blood sugar levels. The results showed that the bioactivity of insulin was unaltered after the ion-pairing process.

  3. Validation of dilution of plasma samples with phosphate buffered saline to eliminate the problem of small volumes associated with children infected with HIV-1 for viral load testing using Cobas AmpliPrep/COBAS TaqMan HIV-1 test, version 2.0 (CAP CTM HIV v2.0).

    PubMed

    Mine, Madisa; Nkoane, Tapologo; Sebetso, Gaseene; Sakyi, Bright; Makhaola, Kgomotso; Gaolathe, Tendani

    2013-12-01

    The sample requirement of 1 mL for the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 test, version 2.0 (CAP CTM HIV v2.0) limits its utility in measuring plasma HIV-1 RNA levels for small volume samples from children infected with HIV-1. Viral load monitoring is the standard of care for HIV-1-infected patients on antiretroviral therapy in Botswana. The study aimed to validate the dilution of small volume samples with phosphate buffered saline (1× PBS) when quantifying HIV-1 RNA in patient plasma. HIV RNA concentrations were determined in undiluted and diluted pairs of samples comprising panels of quality assessment standards (n=52) as well as patient samples (n=325). There was strong correlation (R(2)) of 0.98 and 0.95 within the dynamic range of the CAP CTM HIV v2.0 test between undiluted and diluted samples from quality assessment standards and patients, respectively. The difference between viral load measurements of diluted and undiluted pairs of quality assessment standards and patient samples using the Altman-Bland test showed that the 95% limits of agreement were between -0.40 Log 10 and 0.49 Log 10. This difference was within the 0.5 Log 10 which is generally considered as normal assay variation of plasma RNA levels. Dilution of samples with 1× PBS produced comparable viral load measurements to undiluted samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Pretreatment with intravenous lipid emulsion reduces mortality from cocaine toxicity in a rat model.

    PubMed

    Carreiro, Stephanie; Blum, Jared; Hack, Jason B

    2014-07-01

    We compare the effects of intravenous lipid emulsion and normal saline solution pretreatment on mortality and hemodynamic changes in a rat model of cocaine toxicity. We hypothesize that intravenous lipid emulsion will decrease mortality and hemodynamic changes caused by cocaine administration compared with saline solution. Twenty male Sprague-Dawley rats were sedated and randomized to receive intravenous lipid emulsion or normal saline solution, followed by a 10 mg/kg bolus of intravenous cocaine. Continuous monitoring included intra-arterial blood pressure, pulse rate and ECG tracing. Endpoints included a sustained undetectable mean arterial pressure (MAP) or return to baseline MAP for 5 minutes. The log-rank test was used to compare mortality. A mixed-effect repeated-measures ANOVA was used to estimate the effects of group (intravenous lipid emulsion versus saline solution), time, and survival on change in MAP, pulse rate, or pulse pressure. In the normal saline solution group, 7 of 10 animals died compared with 2 of 10 in the intravenous lipid emulsion group. The survival rate of 80% (95% confidence interval 55% to 100%) for the intravenous lipid emulsion rats and 30% (95% confidence interval 0.2% to 58%) for the normal saline solution group was statistically significant (P=.045). Intravenous lipid emulsion pretreatment decreased cocaine-induced cardiovascular collapse and blunted hypotensive effects compared with normal saline solution in this rat model of acute lethal cocaine intoxication. Intravenous lipid emulsion should be investigated further as a potential adjunct in the treatment of severe cocaine toxicity. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  5. Accelerometric comparison of the locomotor pattern of horses sedated with xylazine hydrochloride, detomidine hydrochloride, or romifidine hydrochloride.

    PubMed

    López-Sanromán, F Javier; Holmbak-Petersen, Ronald; Varela, Marta; del Alamo, Ana M; Santiago, Isabel

    2013-06-01

    To evaluate the duration of effects on movement patterns of horses after sedation with equipotent doses of xylazine hydrochloride, detomidine hydrochloride, or romifidine hydrochloride and determine whether accelerometry can be used to quantify differences among drug treatments. 6 healthy horses. Each horse was injected IV with saline (0.9% NaCl) solution (10 mL), xylazine diluted in saline solution (0.5 mg/kg), detomidine diluted in saline solution (0.01 mg/kg), or romifidine diluted in saline solution (0.04 mg/kg) in random order. A triaxial accelerometric device was used for gait assessment 15 minutes before and 5, 15, 30, 45, 60, 75, 90, 105, and 120 minutes after each treatment. Eight variables were calculated, including speed, stride frequency, stride length, regularity, dorsoventral power, propulsive power, mediolateral power, and total power; the force of acceleration and 3 components of power were then calculated. Significant differences were evident in stride frequency and regularity between treatments with saline solution and each α2-adrenoceptor agonist drug; in speed, dorsoventral power, propulsive power, total power, and force values between treatments with saline solution and detomidine or romifidine; and in mediolateral power between treatments with saline solution and detomidine. Stride length did not differ among treatments. Accelerometric evaluation of horses administered α2-adrenoceptor agonist drugs revealed more prolonged sedative effects of romifidine, compared with effects of xylazine or detomidine. Accelerometry could be useful in assessing the effects of other sedatives and analgesics. Accelerometric data may be helpful in drug selection for situations in which a horse's balance and coordination are important.

  6. Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: pharmacokinetic, toxicity and pharmacodynamic evaluation.

    PubMed

    Pawar, Smita; Shevalkar, Ganesh; Vavia, Pradeep

    2016-09-01

    Efficacy of anticancer drug is limited due to non-selectivity and toxicities allied with the drug; therefore the heart of the present work is to formulate drug delivery systems targeted selectively towards cancer cells with minimal toxicity to normal cells. Targeted drug delivery system of doxorubicin (DOX)-loaded niosomes using synthesized N-lauryl glucosamine (NLG) as a targeting ligand. NLG-anchored DOX niosomes were developed using ethanol injection method. Developed niosomes had particle size <150 nm and high entrapment efficiency ∼90%. In vivo pharmacokinetics exhibited long circulating nature of targeted niosomes with improved bioavailability, which significantly reduced CL and Vd than DOX solution and non-targeted niosomes (35 fold and 2.5 fold, respectively). Tissue-distribution study and enzymatic assays revealed higher concentration of DOX solution in heart while no toxicity to major organs with developed targeted niosomes was observed. Solid skin melanoma tumor model in mice manifested the commendable targeting potential of targeted niosomes with significant reduction in tumor volume and high % survival rate without drop in body weight in comparison with DOX solution and non-targeted niosomes of DOX. The glucosamine-anchored DOX-loaded targeted niosomes showed its potential in cancer targeted drug therapy with reduced toxicity. Abbreviations ALT alanine transaminase CL clearance CPK creatinine phosphokinase DOX doxorubicin EDC.HCL ethyl carbidimide hydrochloride GLUT glucose transporter GSH glutathione S-transferase LDH lactate dehydrogenase LHRH luteinizing hormone-releasing hormone MDA malonaldehyde NHS N-hydroxy succinimide NLG N-lauryl glucosamine NTAR DoxNio non-targeted doxorubicin niosomes PBS phosphate buffer saline RGD argynyl glycyl aspartic acid SGOT serum glutamate oxaloacetate transaminase SGPT serum glutamate pyruvate transaminase SOD superoxide dismutase TAR DoxNio targeted doxorubicin niosomes Vd volume of distribution.

  7. Using Lanthanide Nanoparticles as Isotopic Tags for Biomarker Detection by Mass Cytometry

    NASA Astrophysics Data System (ADS)

    Cao, Pengpeng

    The development of robust, versatile, and high-throughput biosensing techniques has widespread implications for early disease detection and accurate diagnosis. An innovative technology, mass cytometry, has been developed to use isotopically-labelled antibodies to simultaneously study multiple parameters of single cells. The current detection sensitivity of mass cytometry is limited by the number of copies of a given isotope that can be attached to a given antibody. This thesis describes research on the synthesis, characterization, and bioconjugation of a new class of nanoparticle-based labelling agents to be employed for the detection of low-abundance biomarkers by mass cytometry. Hydrophobic lanthanide nanoparticles (Ln NPs) have been prepared by the Winnik group. To render the NPs water-soluble for biological applications, we coated the NP surface with a first generation of multidentate poly(ethylene glycol) (PEG)-based ligands via ligand exchange. We measured the size, morphology, and polydispersity of these hydrophilic NPs by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The colloidal stability of the NPs was determined at various pH and in phosphate buffered saline (PBS) solutions. Tetradentate-PEG-coated NPs (Tetra-NPs) exhibited the best stability at pH 3 to 9, and in PBS. However, when cells were treated with Tetra-NPs in preliminary in vitro studies, significant undesirable non-specific binding (NSB) was observed. In order to tackle the NSB issue presented in the Tetra-NPs, we prepared a second generation of polymer-based ligands using ring-opening metathesis polymerization (ROMP). A small library of ROMP polymers was synthesized, characterized, and used to stabilize NPs in aqueous solutions. The ROMP-NPs were found to have significantly reduced NSB to cells by inductively coupled plasma-mass spectrometry (ICP-MS). To further modify the NPs, amine groups were introduced as functional handles to both the tetradentate-PEG and ROMP polymer ligands. These amine groups on the NP surface were used to conjugate to the antibodies via maleimide-thiol chemistry. The antigen-recognizing abilities of the antibody-NP conjugates were assessed using two cell lines (CD34-positive KG1a and CD34-negative HL60 cells) by ICP-MS and mass cytometry. It is hoped that the lessons learned from these studies will ultimately support the development of a new biosensing technique for early disease detection.

  8. Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell.

    PubMed

    Tulsani, Srikanth Reddy; Rath, Arup Kumar

    2018-07-15

    The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A novel submucosal injection solution for endoscopic resection of large colorectal lesions: a randomized, double-blind trial.

    PubMed

    Repici, Alessandro; Wallace, Michael; Sharma, Prateek; Bhandari, Pradeep; Lollo, Gianluca; Maselli, Roberta; Hassan, Cesare; Rex, Douglas K

    2018-05-08

    SIC-8000 (Eleview) is a new FDA-approved solution for submucosal injection developed to provide long-lasting cushion to facilitate endoscopic resection maneuvers. Our aim was to compare the efficacy and safety of SIC-8000 with those of saline solution, when performing endoscopic mucosal resection (EMR) of large colorectal lesions. In a randomized double-blind trial, patients undergoing EMR for ≥20 mm colorectal non-pedunculated lesions were randomized in a 1:1 ratio between SIC-8000 and saline solution as control solution in 5 tertiary centers. Endoscopists and patients were blinded to the type of submucosal solution used. Total volume to complete EMR and per lesion size and time of resection were primary end-points, whereas the Sydney Resection Quotient (SRQ), as well as other EMR outcomes, and the rate of adverse events were secondary. A 30-day telephone follow up was performed. An alpha level <0.05 was considered as statistically significant (NCT 02654418). Of the 327 patients screened, 226 (mean age: 66±10; males: 56%) were enrolled in the study and randomized between the 2 submucosal agents. Of these, 211 patients (mean size of the lesions 33±13 mm; I-s: 36%; proximal colon: 74%) entered in the final analysis (SIC-8000: 102; saline solution: 109). EMR was complete in all cases. The total volume needed for EMR was significantly less in the SIC-8000 arm compared with saline solution (16.1±9.8 mL vs 31.6±32.0 mL; p<0.001). This corresponded to an average volume per lesion size of 0.5±0.3 mL/mm and 0.9±0.6 mL/mm with SIC-8000 and saline solution, respectively, (p<0.001). The mean time to completely resect the lesion tended to be lower with SIC-8000 as compared with saline solution (19.1±16.8 minutes vs 29.7±68.9 minutes; p=0.1). The SRQ was significantly higher with SIC-8000 as compared with saline solution (10.3±8.1 vs 8.0±5.7; p=0.04) with a trend for a lower number of resected pieces (5.7±6.0 vs 6.5±5.04; p=0.052) and a higher rate of en bloc resections (19/102, 18.6% vs 12/111, 11.0%; p=0.1). The rate of adverse events was similar between the 2 arms (SIC-8000: 18.6%, saline solution: 17%), and none of the serious adverse events (SIC-8000: 8.8%; saline solution: 10.7%) was related with study treatment. In a double-blind, randomized clinical trial, a new FDA approved agent for sub-mucosal injection appeared to be a more effective and equally safe submucosal agent for EMR injection than saline solution. Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  10. Evaluation of a Novel Artificial Tear in the Prevention and Treatment of Dry Eye in an Animal Model.

    PubMed

    She, Yujing; Li, Jinyang; Xiao, Bing; Lu, Huihui; Liu, Haixia; Simmons, Peter A; Vehige, Joseph G; Chen, Wei

    2015-11-01

    To evaluate effects of a novel multi-ingredient artificial tear formulation containing carboxymethylcellulose (CMC) and hyaluronic acid (HA) in a murine dry eye model. Dry eye was induced in mice (C57BL/6) using an intelligently controlled environmental system (ICES). CMC+HA (Optive Fusion™), CMC-only (Refresh Tears(®)), and HA-only (Hycosan(®)) artificial tears and control phosphate-buffered saline (PBS) were administered 4 times daily and compared with no treatment (n = 64 eyes per group). During regimen 1 (prevention regimen), mice were administered artificial tears or PBS for 14 days (starting day 0) while they were exposed to ICES, and assessed on days 0 and 14. During regimen 2 (treatment regimen), mice exposed to ICES for 14 days with no intervention were administered artificial tears or PBS for 14 days (starting day 14) while continuing exposure to ICES, and assessed on days 0, 14, and 28. Corneal fluorescein staining and conjunctival goblet cell density were measured. Artificial tear-treated mice had significantly better outcomes than control groups on corneal staining and goblet cell density (P < 0.01). Mice administered CMC+HA also showed significantly lower corneal fluorescein staining and higher goblet cell density, compared with CMC (P < 0.01) and HA (P < 0.05) in both regimens 1 and 2. The artificial tear formulation containing CMC and HA was effective in preventing and treating environmentally induced dry eye. Improvements observed for corneal fluorescein staining and conjunctival goblet cell retention suggest that this combination may be a viable treatment option for dry eye disease.

  11. In vivo photoacoustic imaging of chorioretinal oxygen gradients

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Wang, Junxin; Kim, Yeji; Jhunjhunwala, Anamik; Chao, Daniel L.; Jokerst, Jesse V.

    2018-03-01

    Chorioretinal imaging has a crucial role for the patients with chorioretinal vascular diseases, such as neovascular age-related macular degeneration. Imaging oxygen gradients in the eye could better diagnose and treat ocular diseases. Here, we describe the use of photoacoustic ocular imaging (PAOI) in measuring chorioretinal oxygen saturation (CR - sO2) gradients in New Zealand white rabbits (n = 5) with ocular ischemia. We observed good correlation (R2 = 0.98) between pulse oximetry and PAOI as a function of different oxygen percentages in inhaled air. We then used an established ocular ischemia model in which intraocular pressure is elevated to constrict ocular blood flow, and notice a positive correlation (R2 = 0.92) between the injected volume of phosphate buffered saline (PBS) and intraocular pressure (IOP) as well as a negative correlation (R2 = 0.98) between CR - sO2 and injected volume of PBS. The CR - sO2 was measured before (baseline), during (ischemia), and after the infusion (600-μL PBS). The ischemia-reperfusion model did not affect the measurement of the sO2 using a pulse oximeter on the animal's paw, but the chorioretinal PAOI signal showed a nearly sixfold decrease in CR - sO2 (n = 5, p = 0.00001). We also observe a sixfold decrease in CR - sO2 after significant elevation of IOP during ischemia, with an increase close to baseline during reperfusion. These data suggest that PAOI can detect changes in chorioretinal oxygenation and may be useful for application to imaging oxygen gradients in ocular disease.

  12. Development of three-dimensional integrated microchannel-electrode system to understand the particles' movement with electrokinetics

    PubMed Central

    Obara, H.; Sapkota, A.; Takei, M.

    2016-01-01

    An optical transparent 3-D Integrated Microchannel-Electrode System (3-DIMES) has been developed to understand the particles' movement with electrokinetics in the microchannel. In this system, 40 multilayered electrodes are embedded at the 2 opposite sides along the 5 square cross-sections of the microchannel by using Micro Electro-Mechanical Systems technology in order to achieve the optical transparency at the other 2 opposite sides. The concept of the 3-DIMES is that the particles are driven by electrokinetic forces which are dielectrophoretic force, thermal buoyancy, electrothermal force, and electroosmotic force in a three-dimensional scope by selecting the excitation multilayered electrodes. As a first step to understand the particles' movement driven by electrokinetic forces in high conductive fluid (phosphate buffer saline (PBS)) with the 3-DIMES, the velocities of particles' movement with one pair of the electrodes are measured three dimensionally by Particle Image Velocimetry technique in PBS; meanwhile, low conductive fluid (deionized water) is used as a reference. Then, the particles' movement driven by the electrokinetic forces is discussed theoretically to estimate dominant forces exerting on the particles. Finally, from the theoretical estimation, the particles' movement mainly results from the dominant forces which are thermal buoyancy and electrothermal force, while the velocity vortex formed at the 2 edges of the electrodes is because of the electroosmotic force. The conclusions suggest that the 3-DIMES with PBS as high conductive fluid helps to understand the three-dimensional advantageous flow structures for cell manipulation in biomedical applications. PMID:27042247

  13. Evaluation of the use of a needle-free injection syringe as a cause of non-specific reactions in the intradermal tuberculin test used for the diagnosis of bovine tuberculosis.

    PubMed

    Díez-Guerrier, A; Roy, A; de la Cruz, M L; Sáez, J L; Sanz, C; Boschiroli, M L; Romero, B; de Juan, L; Domínguez, L; Bezos, J

    2018-05-24

    The objective of the study was to elucidate whether the use of the needle-free Dermojet syringe, which is based on a high pressure inoculation and is used to inject tuberculin in cattle in several countries, may, in itself, cause skin reactions that can be interpreted as positive reactions to the intradermal tests that are not, in fact, related to the real infection status of the animals. Forty-four cattle from an officially tuberculosis-free (OTF) herd were selected, and four single intradermal tuberculin (SIT) tests were performed on each animal, two on each side of the neck. Three different Dermojet (D1, D2 and D3) and one McLintock (M4) syringes were used to carry out sterile phosphate buffer saline (PBS) with 10% of glycerol and bovine PPD injections. No positive reactions to the SIT test were observed when using the D1-D3 syringes in the case of either bovine PPD or PBS. With regard to M4 (PBS), all the tests were negative when using a standard interpretation but three were positive in the case of the severe interpretation. Significant differences (p < 0.05) in the skin fold thickness measured were found only between certain Dermojet and McLintock syringes at certain inoculation sites. The results showed that the needle-free Dermojet syringe used for PPD intradermal testing in cattle did not cause significant reactions that could be misunderstood as positives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Lubrication of chocolate during oral processing.

    PubMed

    Rodrigues, S A; Selway, N; Morgenstern, M P; Motoi, L; Stokes, J R; James, B J

    2017-02-22

    The structure of chocolate is drastically transformed during oral processing from a composite solid to an oil/water fluid emulsion. Using two commercial dark chocolates varying in cocoa solids content, this study develops a method to identify the factors that govern lubrication in molten chocolate and saliva's contribution to lubrication following oral processing. In addition to chocolate and its individual components, simulated boluses (molten chocolate and phosphate buffered saline), in vitro boluses (molten chocolate and whole human saliva) and ex vivo boluses (chocolate expectorated after chewing till the point of swallow) were tested. The results reveal that the lubrication of molten chocolate is strongly influenced by the presence of solid sugar particles and cocoa solids. The entrainment of particles into the contact zone between the interacting surfaces reduces friction such that the maximum friction coefficient measured for chocolate boluses is much lower than those for single-phase Newtonian fluids. The addition of whole human saliva or a substitute aqueous phase (PBS) to molten chocolate dissolves sugar and decreases the viscosity of molten chocolate so that thinner films are achieved. However, saliva is more lubricating than PBS, which results in lower friction coefficients for chocolate-saliva mixtures when compared to chocolate-PBS mixtures. A comparison of ex vivo and in vitro boluses also suggests that the quantity of saliva added and uniformity of mixing during oral processing affect bolus structure, which leads to differences in measured friction. It is hypothesized that inhomogeneous mixing in the mouth introduces large air bubbles and regions of non-emulsified fat into the ex vivo boluses, which enhance wetting and lubrication.

  15. Immunogenicity and efficacy of a bivalent DNA vaccine containing LeIF and TSA genes against murine cutaneous leishmaniasis.

    PubMed

    Maspi, Nahid; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhossein; Dayer, Mohammad Saaid

    2017-03-01

    There is no effective vaccine for the prevention and elimination of leishmaniasis. For this reason, we assessed the protective effects of DNA vaccines containing LeIF, TSA genes alone, or LeIF-TSA fusion against cutaneous leishmaniasis pEGFP-N1 plasmid (empty vector) and phosphate buffer saline (PBS) were used as control groups. Therefore, cellular and humoral immune responses were evaluated before and after the challenge with Leishmania major. Lesion diameter was also measured 3-12 weeks after challenge. All immunized mice with plasmid DNA encoding Leishmania antigens induced the partial immunity characterized by increased IFN-γ and IgG2a levels compared with control groups (p < 0.001). Furthermore, the immunized mice showed significant reduction in mean lesion sizes compared with mice in empty vector and PBS groups (p < 0.05). The reduction in lesion diameter was 29.3%, 34.1%, and 46.2% less in groups vaccinated with LeIF, TSA, and LeIF-TSA, respectively, than in PBS group at 12th week post infection. IFN/IL-4 and IgG2a/IgG1 ratios indicated that group receiving LeIF-TSA fusion had the highest IFN-γ and IgG2a levels. In this study, DNA immunization promoted Th1 immune response characterized by higher IFN-γ and IgG2a levels and also reduction in lesion size. These results showed that a bivalent vaccine containing two distinct antigens may induce more potent immune responses against leishmaniasis. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  16. Elution of Clindamycin and Enrofloxacin From Calcium Sulfate Hemihydrate Beads In Vitro.

    PubMed

    Phillips, Heidi; Boothe, Dawn M; Bennett, R Avery

    2015-11-01

    To compare the in vitro elution characteristics of clindamycin and enrofloxacin from calcium sulfate hemihydrate beads containing a single antibiotic, both antibiotics, and each antibiotic incubated in the same eluent well. Experimental in vitro study. Calcium sulfate hemihydrate beads were formed by mixing with clindamycin and/or enrofloxacin to create 4 study groups: (1) 160 mg clindamycin/10 beads; (2) 160 mg enrofloxacin/10 beads; (3) 160 mg clindamycin + 160 mg enrofloxacin/10 beads; and (4) 160 mg clindamycin/5 beads and 160 mg enrofloxacin/5 beads. Chains of beads were formed in triplicate and placed in 5 mL phosphate buffered saline (PBS; pH 7.4 and room temperature) with constant agitation. Antibiotic-conditioned PBS was sampled at 14 time points from 1 hour to 30 days. Clindamycin and enrofloxacin concentrations in PBS were determined using high-performance liquid chromatography. Eluent concentrations from clindamycin-impregnated beads failed to remain sufficiently above minimum inhibitory concentration (MIC) for common infecting bacteria over the study period. Enrofloxacin eluent concentrations remained sufficiently above MIC for common wound pathogens of dogs and cats and demonstrated an atypical biphasic release pattern. No significant differences in elution occurred as a result of copolymerization of the antibiotics into a single bead or from individual beads co-eluting in the same eluent well. Clindamycin-impregnated beads cannot be recommended for treatment of infection at the studied doses; however, use of enrofloxacin-impregnated beads may be justified when susceptible bacteria are cultured. © Copyright 2015 by The American College of Veterinary Surgeons.

  17. Characterization of long-term elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate beads in vitro by two distinct sample collection methods.

    PubMed

    Tulipan, Rachel J; Phillips, Heidi; Garrett, Laura D; Dirikolu, Levent; Mitchell, Mark A

    2017-05-01

    OBJECTIVE To characterize long-term elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate (CI-CSH) beads in vitro by comparing 2 distinct sample collection methods designed to mimic 2 in vivo environments. SAMPLES 162 CI-CSH beads containing 4.6 mg of carboplatin (2.4 mg of platinum/bead). PROCEDURES For method 1, which mimicked an in vivo environment with rapid and complete fluid exchange, each of 3 plastic 10-mL conical tubes contained 3 CI-CSH beads and 5 mL of PBS solution. Eluent samples were obtained by evacuation of all fluid at 1, 2, 3, 6, 9, and 12 hours and 1, 2, 3, 6, 9, 12, 15, 18, 22, 26, and 30 days. Five milliliters of fresh PBS solution was then added to each tube. For method 2, which mimicked an in vivo environment with no fluid exchange, each of 51 tubes (ie, 3 tubes/17 sample collection times) contained 3 CI-CSH beads and 5 mL of PBS solution. Eluent samples were obtained from the assigned tubes for each time point. All samples were analyzed for platinum content by inductively coupled plasma-mass spectrometry. RESULTS Platinum was released from CI-CSH beads for 22 to 30 days. Significant differences were found in platinum concentration and percentage of platinum eluted from CI-CSH beads over time for each method. Platinum concentrations and elution percentages in method 2 samples were significantly higher than those of method 1 samples, except for the first hour measurements. CONCLUSIONS AND CLINICAL RELEVANCE Sample collection methods 1 and 2 may provide estimates of the minimum and maximum platinum release, respectively, from CI-CSH beads in vivo.

  18. Swabs as a tool for monitoring the presence of norovirus on environmental surfaces in the food industry.

    PubMed

    Rönnqvist, Maria; Rättö, Marjaana; Tuominen, Pirkko; Salo, Satu; Maunula, Leena

    2013-08-01

    Human norovirus (HuNoV), which causes gastroenteritis, can be transmitted to food and food contact surfaces via viruscontaminated hands. To investigate this transmission in food processing environments, we developed a swabbing protocol for environmental samples, evaluated the stability of HuNoV in the swabs, and applied the method in the food industry. Swabs made of polyester, flocked nylon, cotton wool, and microfiber were moistened in either phosphate-buffered saline (PBS) or glycine buffer (pH 9.5) and used to swab four surfaces (latex, plastic, stainless steel, and cucumber) inoculated with HuNoV. HuNoV was eluted with either PBS or glycine buffer and detected with quantitative reverse transcription PCR. HuNoV recoveries were generally higher with an inoculation dose of 100 PCR units than 1,000 PCR units. The highest recoveries were obtained when surfaces were swabbed with microfiber cloth moistened in and eluted with glycine buffer after a HuNoV inoculation dose of 100 PCR units: 66% ± 18% on latex, 89% ±2% on plastic, and 79% ±10% on stainless steel. The highest recovery for cucumber, 45% ±5%, was obtained when swabbing the surface with microfiber cloth and PBS. The stability of HuNoV was tested in microfiber cloths moistened in PBS or glycine buffer. HuNoV RNA was detected from swabs after 3 days at 4 and 22°C, although the RNA levels decreased more rapidly in swabs moistened with glycine buffer than in those moistened with PBS at 22°C. In the field study, 172 microfiber and 45 cotton wool swab samples were taken from environmental surfaces at three food processing companies. Five (5.6%) of 90 swabs collected in 2010 and 7 (8.5%) of 82 swabs collected in 2012 were positive for HuNoV genogroup II; all positive samples were collected with microfiber swabs. Three positive results were obtained from the production line and nine were obtained from the food workers' break room and restroom areas. Swabbing is a powerful tool for HuNoV RNA detection from environmental surfaces and enables investigation of virus transmission during food processing.

  19. Sub-lethal heat treatment affects the tolerance of Cronobacter sakazakii BCRC 13988 to various organic acids, simulated gastric juice and bile solution.

    PubMed

    Hsiao, Wan-Ling; Ho, Wei-Li; Chou, Cheng-Chun

    2010-12-15

    Cronobacter spp., formerly Enterobacter sakazakii, are considered emerging opportunistic pathogens and the etiological agent of life-threatening bacterial infections in infants. In the present study, C. sakazakii BCRC 13988 was first subjected to sub-lethal heat treatment at 47°C for 15min. Survival rates of the heat-shocked and non-shocked C. sakazakii cells in phosphate buffer solution (PBS, pH 4.0) containing organic acids (e.g. acetic, propionic, citric, lactic or tartaric acid), simulated gastric juice (pH 2.0-4.0), and bile solution (0.5 and 2.0%) were examined. Results revealed that sub-lethal heat treatment enhanced the test organism's tolerance to organic acids, although the extent of increased acid tolerance varied with the organic acid examined. Compared with the control cells, heat-shocked C. sakazakii cells after 120-min of exposure, exhibited the largest increase in tolerance in the lactic acid-containing PBS. Furthermore, although heat shock did not affect the behavior of C. sakazakii in bile solution, it increased the test organism's survival when exposed to simulated gastric juice with a pH of 3.0-4.0. Copyright © 2010. Published by Elsevier B.V.

  20. Effects of intrauterine infusion of Escherichia coli lipopolysaccharide on uterine health, resolution of purulent vaginal discharge, and reproductive performance of lactating dairy cows.

    PubMed

    Moraes, João G N; Silva, Paula R B; Mendonça, Luís G D; Scanavez, Alexandre A; Silva, Joseane C C; Chebel, Ricardo C

    2017-06-01

    The objectives of the current experiment were to evaluate the effects of intrauterine infusion of Escherichia coli lipopolysaccharide (LPS) in cows diagnosed with purulent vaginal discharge (PVD) on intrauterine cell population, resolution of PVD, uterine health, and reproductive performance. Jersey cows (n = 3,084) were examined using the Metricheck device to diagnose PVD at 35 ± 6 d postpartum. Purulent vaginal discharge was defined as the presence of purulent (≥50% pus) discharge detectable in the vagina. Of the 310 cows positive for PVD, 267 cows were enrolled in the current experiment. To ensure proper timing of treatment and collection of samples, only 9 PVD-positive cows were treated per day. Selected cows were balanced at 35 ± 6 d postpartum for lactation number, body condition score, and milk yield and were randomly assigned to receive an intrauterine infusion of 20 mL of phosphate-buffered saline (PBS; control, n = 87), 20 mL of PBS with 150 µg LPS (LPS150, n = 91), or 20 mL of PBS with 300 µg of LPS (LPS300, n = 89). Uterine cytology was performed immediately before treatment and 1, 2, and 7 d after treatment to evaluate the effect of LPS treatment on intrauterine cell population. Cows were examined with the Metricheck device at 7 and 28 d after treatment to evaluate the effects of treatment on resolution of PVD. Reproductive status was recorded up to 200 d postpartum. Cows diagnosed with PVD had greater incidence of twinning, dystocia, retained placenta, and metritis after calving than cows without PVD. Count of polymorphonuclear leukocytes (PMNL) in uterine cytology 1, 2, and 7 d after intrauterine infusion was not statistically different among treatments. From d 0 to 1, however, PMNL count in uterine cytology of PBS cows increased by 5%, whereas the PMNL count in uterine cytology of LPS150 and LPS300 cows increased by 54 and 48%, respectively. Treatment did not affect the likelihood of cows being diagnosed with PVD 7 and 28 d after intrauterine infusion. Cows without PVD and LPS150 cows were more likely to be pregnant after the first postpartum AI than PBS cows. After the second postpartum AI, cows without PVD were more likely to be pregnant than PBS and LPS300 cows. Hazard of pregnancy up to 200 d postpartum was decreased for PBS and LPS300 cows compared with cows without PVD, and it tended to be decreased for LPS150 cows compared with cows without PVD. Intrauterine treatment with 150 µg of E. coli LPS of cows diagnosed with PVD improved likelihood of pregnancy after the first postpartum AI, but further research is needed to elucidate the mechanism by which LPS treatment improved fertility. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. High-temperature phase relations and thermodynamics in the iron-lead-sulfur system

    NASA Astrophysics Data System (ADS)

    Eric, R. Hurman; Ozok, Hakan

    1994-01-01

    The PbS activities in FeS-PbS liquid mattes were obtained at 1100 °C and 1200 °C by the dew-point method. Negative deviations were observed, and the liquid-matte solutions were modeled by the Krupkowski formalism. The liquid boundaries of the FeS-PbS phase diagram were derived from the model equations yielding a eutectic temperature of 842 °C at X Pbs = 0.46. A phase diagram of the pseudobinary FeS-PbS was also verified experimentally by quenching samples equilibrated in evacuated and sealed silica capsules. No terminal solid solution ranges could be found. Within the Fe-Pb-S ternary system, the boundaries of the immiscibility region together with the tie-line distributions were established at 1200 °C. Activities of Pb were measured by the dew-point technique along the metal-rich boundary of the miscibility gap. Activities of Fe, Pb, and S, along the miscibility gap were also calculated by utilizing the bounding binary thermodynamics, phase equilibria, and tie-lines.

  2. Visible‐Light‐Mediated Selective Arylation of Cysteine in Batch and Flow

    PubMed Central

    Bottecchia, Cecilia; Rubens, Maarten; Gunnoo, Smita B.; Hessel, Volker; Madder, Annemieke

    2017-01-01

    Abstract A mild visible‐light‐mediated strategy for cysteine arylation is presented. The method relies on the use of eosin Y as a metal‐free photocatalyst and aryldiazonium salts as arylating agents. The reaction can be significantly accelerated in a microflow reactor, whilst allowing the in situ formation of the required diazonium salts. The batch and flow protocol described herein can be applied to obtain a broad series of arylated cysteine derivatives and arylated cysteine‐containing dipeptides. Moreover, the method was applied to the chemoselective arylation of a model peptide in biocompatible reaction conditions (room temperature, phosphate‐buffered saline (PBS) buffer) within a short reaction time. PMID:28805276

  3. Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions

    PubMed Central

    Tanti, N.C.; Jones, L.; Sheardown, H.

    2010-01-01

    Purpose Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. Methods An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate  (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Results Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of β1 and α3 integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Conclusions Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells. PMID:20169012

  4. Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions.

    PubMed

    Gorbet, M B; Tanti, N C; Jones, L; Sheardown, H

    2010-02-19

    Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of beta(1) and alpha(3) integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells.

  5. pH-Responsive Dimeric Zinc(II) Phthalocyanine in Mesoporous Silica Nanoparticles as an Activatable Nanophotosensitizing System for Photodynamic Therapy.

    PubMed

    Wong, Roy C H; Chow, Sun Y S; Zhao, Shirui; Fong, Wing-Ping; Ng, Dennis K P; Lo, Pui-Chi

    2017-07-19

    An acid-cleavable acetal-linked zinc(II) phthalocyanine dimer with an azido terminal group (cPc) was prepared and conjugated to alkyne-modified mesoporous silica nanoparticles via copper(I)-catalyzed alkyne-azide cycloaddition reaction. For comparison, an amine-linked analogue (nPc) was also prepared as a non-acid-cleavable counterpart. These dimeric phthalocyanines were significantly self-quenched due to the close proximity of the phthalocyanine units inside the mesopores, resulting in much weaker fluorescence emission and singlet oxygen generation, both in N,N-dimethylformamide and in phosphate-buffered saline (PBS), compared with the free molecular counterparts. Under acidic conditions in PBS, the cPc-encapsulated nanosystem was activated in terms of fluorescence emission and singlet oxygen production. After internalization into human colon adenocarcinoma HT29 cells, it exhibited much higher intracellular fluorescence and photocytotoxicity compared to the nanosystem entrapped with nPc. The activation of this nanosystem was also demonstrated in tumor-bearing nude mice. The intratumoral fluorescence intensity increased gradually over 24 h, while for the nPc counterpart the fluorescence remained very weak. The results suggest that this nanosystem serves as a promising activatable nanophotosensitizing agent for photodynamic therapy.

  6. Inactivation and sublethal injury of Escherichia coli and Listeria innocua by high hydrostatic pressure in model suspensions and beetroot juice

    NASA Astrophysics Data System (ADS)

    Sokołowska, Barbara; Skąpska, Sylwia; Niezgoda, Jolanta; Rutkowska, Małgorzata; Dekowska, Agnieszka; Rzoska, Sylwester J.

    2014-01-01

    Cells exposed to different physical and chemical treatments, including high hydrostatic pressure (HHP), suffer from injuries that could be reversible in food materials when stored. Escherichia coli and Listeria innocua cells suspended in phosphate-buffered saline (PBS) (model suspensions), and acidified beetroot juice were subjected to a pressure of 400 MPa at a temperature of 20°C for up to 10 min. The difference between the viable and non-injured cells was used to estimate the number of injured survivors. The reduction in E. coli cell number was 3.4-4.1 log after 10 min pressurization in model suspensions and 6.2 log in beetroot juice. Sublethally injured cells in PBS accounted for up to 2.7 log after 10 min HHP treatment and 0.8 log in beetroot juice. The reduction in L. innocua cell number after 10 min pressure treatment reached from 3.8 to 4.8 log, depending on the initial concentration in model suspensions. Among the surviving L. innocua cells, even up to 100% were injured. L. innocua cells were completely inactivated after 1 min HHP treatment in beetroot juice.

  7. Effect of Manufacturing Process on the Biocompatibility and Mechanical Properties of Ti-30Ta Alloy

    NASA Astrophysics Data System (ADS)

    Gill, P.; Munroe, N.; Pulletikurthi, C.; Pandya, S.; Haider, W.

    2011-07-01

    Ti alloys have been widely used in the aerospace, chemical, and biomedical industries for their high strength/weight ratio and corrosion resistance. However, Nitinol's usage in the latter industry has been fraught with concerns of allergic and toxic effects of Ni released from implants. Recently, much attention has been placed on the development of Ni-free Ti-Ta alloys, which are considered prime candidates for applications such as metal-on-metal spinal disk replacements, orthopedic implants, cardiovascular stents, dental posts, and guide wires. In this research, the biocompatibility of Ti-30Ta alloys manufactured by powder metallurgy (PM) and arc melting (ARC) were investigated. The corrosion resistance of each alloy was determined in accordance with ASTM F 2129-08 in phosphate buffered saline (PBS) and PBS with amino acids at 37 °C. The concentration of metal ions released during corrosion was measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Scanning Electron Microscopy (SEM) was used to assess the morphology of the alloys before and after corrosion. Vicker's hardness tests were performed to compare the hardness and tensile strength of the alloys. Human osteoblast cells were successfully grown on the surface of both alloys.

  8. Bacterial adhesion to orthopedic implant polymers.

    PubMed

    Barton, A J; Sagers, R D; Pitt, W G

    1996-03-01

    The degradable polymers poly(orthoester) (POE), poly(L-lactic acid) (PLA), and the nondegradable polymers polysulfone (PSF), polyethylene (PE), and poly(ether ether ketone) (PEEK) were exposed to cultures of Staphylococcus epidermidis, Pseudomonas aeruginosa, or Escherichia coli. Bacteria washed and resuspended in phosphate buffered saline (PBS) adhered to polymers in amounts nearly twice those of bacteria that were left in their growth medium, tryptic soy broth (TSB). In TSB, there was variation in adhesion from species to species, but no significant variation from polymer to polymer within one species. In PBS there were significant differences in the amounts of bacteria adhering to the various polymers with the exception, of S. epidermidis, which had similar adhesion to all polymers. As a whole, P. aeruginosa was the most adherent while S. epidermidis was the least adherent. The estimated values of the free energy of adhesion (delta Fadh) correlated with the amount of adherent P. aeruginosa. When POE, PLA, and PSF were exposed to hyaluronic acid (HA) before exposure to the bacteria, there was 50% more adhesion of E. coli and P. aeruginosa on POE and PLA. With respect to bacterial adhesion, the biodegradable polymers (POE and PLA) in general were not significantly different from the nondegradable polymers.

  9. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro

    NASA Astrophysics Data System (ADS)

    Li, Bo; Guo, Bo; Fan, Hongsong; Zhang, Xingdong

    2008-11-01

    To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.

  10. Nanoparticle Delivered VEGF-A siRNA Enhances Photodynamic Therapy for Head and Neck Cancer Treatment

    PubMed Central

    Lecaros, Rumwald Leo G; Huang, Leaf; Lee, Tsai-Chia; Hsu, Yih-Chih

    2016-01-01

    Photodynamic therapy (PDT) is believed to promote hypoxic conditions to tumor cells leading to overexpression of angiogenic markers such as vascular endothelial growth factor (VEGF). In this study, PDT was combined with lipid–calcium–phosphate nanoparticles (LCP NPs) to deliver VEGF-A small interfering RNA (siVEGF-A) to human head and neck squamous cell carcinoma (HNSCC) xenograft models. VEGF-A were significantly decreased for groups treated with siVEGF-A in human oral squamous cancer cell (HOSCC), SCC4 and SAS models. Cleaved caspase-3 and in situ TdT-mediated dUTP nick-end labeling assay showed more apoptotic cells and reduced Ki-67 expression for treated groups compared to phosphate buffered saline (PBS) group. Indeed, the combined therapy showed significant tumor volume decrease to ~70 and ~120% in SCC4 and SAS models as compared with untreated PBS group, respectively. In vivo toxicity study suggests no toxicity of such LCP NP delivered siVEGF-A. In summary, results suggest that PDT combined with targeted VEGF-A gene therapy could be a potential therapeutic modality to achieve enhanced therapeutic outcome for HNSCC. PMID:26373346

  11. Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined

    PubMed Central

    Malik, Al Imran; English, Jeremy Parker; Colmer, Timothy David

    2009-01-01

    Background and Aims When root-zone O2 deficiency occurs together with salinity, regulation of shoot ion concentrations is compromised even more than under salinity alone. Tolerance was evaluated amongst 34 accessions of Hordeum marinum, a wild species in the Triticeae, to combined salinity and root-zone O2 deficiency. Interest in H. marinum arises from the potential to use it as a donor for abiotic stress tolerance into wheat. Methods Two batches of 17 H. marinum accessions, from (1) the Nordic Gene Bank and (2) the wheat belt of Western Australia, were exposed to 0·2 or 200 mol m−3 NaCl in aerated or stagnant nutrient solution for 28–29 d. Wheat (Triticum aestivum) was included as a sensitive check species. Growth, root porosity, root radial O2 loss (ROL) and leaf ion (Na+, K+, Cl−) concentrations were determined. Key Results Owing to space constraints, this report is focused mainly on the accessions from the Nordic Gene Bank. The 17 accessions varied in tolerance; relative growth rate was reduced by 2–38 % in stagnant solution, by 8–42 % in saline solution (aerated) and by 39–71 % in stagnant plus saline treatment. When in stagnant solution, porosity of adventitious roots was 24–33 %; salinity decreased the root porosity in some accessions, but had no effect in others. Roots grown in stagnant solution formed a barrier to ROL, but variation existed amongst accessions in apparent barrier ‘strength’. Leaf Na+ concentration was 142–692 µmol g−1 d. wt for plants in saline solution (aerated), and only increased to 247–748 µmol g−1 d. wt in the stagnant plus saline treatment. Leaf Cl− also showed only small effects of stagnant plus saline treatment, compared with saline alone. In comparison with H. marinum, wheat was more adversely affected by each stress alone, and particularly when combined; growth reductions were greater, adventitious root porosity was 21 %, it lacked a barrier to ROL, leaf K+ declined to lower levels, and leaf Na+ and Cl− concentrations were 3·1–9-fold and 2·8–6-fold higher, respectively, in wheat. Conclusions Stagnant treatment plus salinity reduced growth more than salinity alone, or stagnant alone, but some accessions of H. marinum were still relatively tolerant of these combined stresses, maintaining Na+ and Cl− ‘exclusion’ even in an O2-deficient, saline rooting medium. PMID:18701600

  12. The Transcriptional Regulator, CosR, Controls Compatible Solute Biosynthesis and Transport, Motility and Biofilm Formation in Vibrio cholerae

    PubMed Central

    Shikuma, Nicholas J.; Davis, Kimberly R.; Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2012-01-01

    SUMMARY Vibrio cholerae inhabits aquatic environments and colonizes the human digestive tract to cause the disease cholera. In these environments, V. cholerae copes with fluctuations in salinity and osmolarity by producing and transporting small, organic, highly soluble molecules called compatible solutes, which counteract extracellular osmotic pressure. Currently, it is unclear how V. cholerae regulates the expression of genes important for the biosynthesis or transport of compatible solutes in response to changing salinity or osmolarity conditions. Through a genome-wide transcriptional analysis of the salinity response of V. cholerae, we identified a transcriptional regulator we name CosR for compatible solute regulator. The expression of cosR is regulated by ionic strength and not osmolarity. A transcriptome analysis of a ΔcosR mutant revealed that CosR represses genes involved in ectoine biosynthesis and compatible solute transport in a salinity-dependent manner. When grown in salinities similar to estuarine environments, CosR activates biofilm formation and represses motility independently of its function as an ectoine regulator. This is the first study to characterize a compatible solute regulator in V. cholerae and couples the regulation of osmotic tolerance with biofilm formation and motility. PMID:22690884

  13. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends.

    PubMed

    Zhang, Xuzhen; Zhang, Yong

    2016-04-20

    Poly(butylene succinate) (PBS)/polylactic acid (PLA) blends modified with dicumyl peroxide (DCP) were reinforced by PBS-g-cellulose nanocrystal (CNC) through melt mixing. PBS-g-CNC was prepared through in situ polymerization and its structure was confirmed by FTIR, (13)C NMR, XPS and GPC analysis after saponification. The morphological analysis of PBS/PLA/PBS-g-CNC composites before and after etched by CH2Cl2 shows that the addition of DCP and PBS-g-CNC could decrease the size of PBS as a dispersed phase in PLA matrix and improve the dispersion of PBS-g-CNC in both PBS and PLA phases, which could affect the crystallization and mechanical properties of composites. The crystallinity of PLA α'-phase crystal in PBS/PLA/PBS-g-CNC composites is increased obviously by the addition of PBS-g-CNC, leading to an increase of the crystallinity of the composites. PBS/PLA blends modified by DCP have high Notched Izod impact strength and moduli, and the values are increased by the addition of PBS-g-CNC. Both storage modulus and glass translation temperature of PBS/PLA blend are increased by DCP and PBS-g-CNC, which is proved by DMA results, showing a weak molecular segment mobility of PBS/PLA matrix. The addition of DCP decreases the crystallization temperature and crystallinity of PBS/PLA composite, but increases the thermal stability of composites, mostly because of the crosslink effect of DCP on PBS/PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The in situ synthesis of PbS nanocrystals from lead(II) n-octylxanthate within a 1,3-diisopropenylbenzene–bisphenol A dimethacrylate sulfur copolymer

    PubMed Central

    Bear, J. C.; Mayes, A. G.; Parkin, I. P.; O'Brien, P.

    2017-01-01

    The synthesis of lead sulfide nanocrystals within a solution processable sulfur ‘inverse vulcanization’ polymer thin film matrix was achieved from the in situ thermal decomposition of lead(II) n-octylxanthate, [Pb(S2COOct)2]. The growth of nanocrystals within polymer thin films from single-source precursors offers a faster route to networks of nanocrystals within polymers when compared with ex situ routes. The ‘inverse vulcanization’ sulfur polymer described herein contains a hybrid linker system which demonstrates high solubility in organic solvents, allowing solution processing of the sulfur-based polymer, ideal for the formation of thin films. The process of nanocrystal synthesis within sulfur films was optimized by observing nanocrystal formation by X-ray photoelectron spectroscopy and X-ray diffraction. Examination of the film morphology by scanning electron microscopy showed that beyond a certain precursor concentration the nanocrystals formed were not only within the film but also on the surface suggesting a loading limit within the polymer. We envisage this material could be used as the basis of a new generation of materials where solution processed sulfur polymers act as an alternative to traditional polymers. PMID:28878986

  15. CroFab reconstitution in various media: an in vitro solubility study.

    PubMed

    Vohra, Rais; Clark, Rick; Kelner, Michael

    2008-11-01

    We investigated the solubility of Crotalidae Polyvalent Ovine Immune Fab antivenom (CroFab, Savage Labs and Protherics Inc., Brentwood, TN, USA) in solutions not listed in the Food and Drug Administration (FDA)-approved product package insert. We also assessed whether adsorption to plastic tubing occurs with CroFab preparations. Nine vials of expired CroFab were divided into three groups according to the solution used for reconstitution. Assignment to the solution groups of normal saline, lactated Ringer's solution, or half-normal saline (NS, LR, 1/2NS) was blinded. The antivenom was diluted to a final volume of 75 mL of test solution. Protein concentration was measured after reconstitution, after storage at 4-6 degrees C for 4 h, and after passage through plastic intravenous (IV) tubing. Higher measured protein yields were noted when half-normal saline was used in comparison with normal saline at each step of the study. Lactated Ringer's solution yielded higher protein concentrations than normal saline only at one out of the three measurement steps. There was no adsorption effect when CroFab was infused through plastic IV tubing. These data suggest that CroFab is slightly more soluble in the hypotonic solution we tested, and the amounts of measured antivenom did not diminish after 4 h of refrigeration or passage through plastic tubing. Our study may be of relevance when clinicians or pharmacists mix CroFab into non-standard solutions.

  16. Relationship between intracellular ice formation in oocytes of the mouse and Xenopus and the physical state of the external medium--a revisit.

    PubMed

    Mazur, Peter; Kleinhans, F W

    2008-02-01

    We have previously reported that intracellular ice formation (IIF) in mouse oocytes suspended in glycerol/PBS solutions or ethylene glycol (EG)/PBS solutions and rapidly cooled to -50 degrees C or below occurs at temperatures where a critical fraction of the external water remains unfrozen [P. Mazur, S. Seki, I.L. Pinn, F.W. Kleinhans, K. Edashige, Extra- and intracellular ice formation in mouse oocytes, Cryobiology 51 (2005) 29-53; P. Mazur, I.L. Pinn, F.W. Kleinhans, The temperature of intracellular ice formation in mouse oocytes vs. the unfrozen fraction at that temperature, Cryobiology 54 (2007) 223-233]. For mouse oocytes in PBS or glycerol/PBS that fraction is 0.06; for oocytes in EG that fraction was calculated to be 0.13, more than double. The fractions unfrozen are computed from ternary phase diagrams. In the previous publication, we used the EG data of Woods et al. [E.J. Woods, M.A.J. Zieger, D.Y. Gao, J.K. Critser, Equations for obtaining melting points for the ternary system ethylene glycol/sodium chloride/Water and their application to cryopreservation., Cryobiology 38 (1999) 403-407]. Since then, we have determined that ternary phase diagrams for EG/NaCl/water synthesized by summing binary phase data for EG/water NaCl/water gives substantially different curves, which seem more realistic [F.W. Kleinhans, P. Mazur, Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest, Cryobiology 54 (2007) 212-222]. Unfrozen fractions at the temperatures of IIF computed from these synthesized phase diagrams are about half of those calculated from the Woods et al. data, and are in close agreement with the computations for glycerol; i.e., IIF occurs when about 92-94% of the external water is frozen. A parallel paper was published by Guenther et al. [J.F. Guenther, S. Seki, F.W. Kleinhans, K. Edashige, D.M. Roberts, P. Mazur, Extra-and intra-cellular ice formation in Stage I and II Xenopus laevis oocytes, Cryobiology 52 (2006) 401-416] on IIF in oocytes of the frog Xenopus. It too examined whether the temperatures of IIF were related to the unfrozen fractions at those temperatures. It also used the Woods et al. ternary phase data to calculate the unfrozen fractions for EG solutions. As reported here, once again the values of these unfrozen fractions are substantially different from those calculated using synthesized phase diagrams. With the latter, the unfrozen fractions at IIF become very similar for EG and glycerol.

  17. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering

    PubMed Central

    Cochis, Andrea; Sorrentino, Rita; Grassi, Federico; Leigheb, Massimiliano; Farè, Silvia

    2018-01-01

    A possible strategy in regenerative medicine is cell-sheet engineering (CSE), i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS). The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC)-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na2SO4 and PBS). MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3) and endothelial murine cells (MS1), and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues. PMID:29642573

  18. α-Amylase sensor based on the degradation of oligosaccharide hydrogel films monitored with a quartz crystal sensor.

    PubMed

    Gibbs, Martin John; Biela, Anna; Krause, Steffi

    2015-05-15

    α-Amylase hydrolyses starch molecules to produce smaller oligosaccharides and sugars. Amylases are of great importance in biotechnology and find application in fermentation, detergents, food and the paper industry. The measurement of α-amylase activity in serum and urine has been used in the diagnosis of acute pancreatitis. Salivary amylase has also been shown to be a stress indicator. Sensor coatings suitable for the detection of α-amylase activity have been developed. Oligosaccharides such as glycogen and amylopectin were spin-coated onto gold coated quartz crystals with a base frequency of 10 MHz. The films were subsequently cross-linked with hexamethylene diisocyanate. Film degradation was monitored with a quartz crystal microbalance (QCM) and electrochemical impedance measurements. The films were shown to be stable in phosphate buffered saline (PBS). Addition of α-amylase to the solution resulted in the rapid degradation of the films. The maximum rate of degradation was found to be strongly dependent on the amylase activity in the range typically found in serum when diagnosing pancreatitis (0.08-8 U/ml). Sensor responses in serum were found to be very similar to those obtained in buffer indicating the absence of non-specific binding. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Kidney stone erosion by micro scale hydrodynamic cavitation and consequent kidney stone treatment.

    PubMed

    Perk, Osman Yavuz; Şeşen, Muhsincan; Gozuacik, Devrim; Koşar, Ali

    2012-09-01

    The objective of this study is to reveal the potential of micro scale hydrodynamic bubbly cavitation for the use of kidney stone treatment. Hydrodynamically generated cavitating bubbles were targeted to the surfaces of 18 kidney stone samples made of calcium oxalate, and their destructive effects were exploited in order to remove kidney stones in in vitro experiments. Phosphate buffered saline (PBS) solution was used as the working fluid under bubbly cavitating conditions in a 0.75 cm long micro probe of 147 μm inner diameter at 9790 kPa pressure. The surface of calcium oxalate type kidney stones were exposed to bubbly cavitation at room temperature for 5 to 30 min. The eroded kidney stones were visually analyzed with a high speed CCD camera and using SEM (scanning electron microscopy) techniques. The experiments showed that at a cavitation number of 0.017, hydrodynamic bubbly cavitation device could successfully erode stones with an erosion rate of 0.31 mg/min. It was also observed that the targeted application of the erosion with micro scale hydrodynamic cavitation may even cause the fracture of the kidney stones within a short time of 30 min. The proposed treatment method has proven to be an efficient instrument for destroying kidney stones.

  20. Preparation of Cu2O-Reduced Graphene Nanocomposite Modified Electrodes towards Ultrasensitive Dopamine Detection

    PubMed Central

    He, Quanguo; Liu, Jun; Liu, Xiaopeng; Li, Guangli; Deng, Peihong; Liang, Jing

    2018-01-01

    Cu2O-reduced graphene oxide nanocomposite (Cu2O-RGO) was used to modify glassy carbon electrodes (GCE), and applied for the determination of dopamine (DA). The microstructure of Cu2O-RGO nanocomposite material was characterized by scanning electron microscope. Then the electrochemical reduction condition for preparing Cu2O-RGO/GCE and experimental conditions for determining DA were further optimized. The electrochemical behaviors of DA on the bare electrode, RGO- and Cu2O-RGO-modified electrodes were also investigated using cyclic voltammetry in phosphate-buffered saline solution (PBS, pH 3.5). The results show that the oxidation peaks of ascorbic acid (AA), dopamine (DA), and uric acid (UA) could be well separated and the peak-to-peak separations are 204 mV (AA-DA) and 144 mV (DA-UA), respectively. Moreover, the linear response ranges for the determination of 1 × 10−8 mol/L~1 × 10−6 mol/L and 1 × 10−6 mol/L~8 × 10−5 mol/L with the detection limit 6.0 × 10−9 mol/L (S/N = 3). The proposed Cu2O-RGO/GCE was further applied to the determination of DA in dopamine hydrochloride injections with satisfactory results. PMID:29329206

  1. Macromolecular Colloids of Diblock Poly(amino acids) That Bind Insulin.

    PubMed

    Constancis; Meyrueix; Bryson; Huille; Grosselin; Gulik-Krzywicki; Soula

    1999-09-15

    The diblock polymer poly(l-leucine-block-l-glutamate), bLE, was synthesized by acid hydrolysis of the ester poly(l-leucine-block-l-methyl glutamate). During the hydrolysis reaction the leucine block precipitates from the reaction mixture, forming nanosized particulate structures. These particles can be purified and further suspended in water or in 0.15 M phosphate saline buffer (PBS) to give stable, colloidal dispersions. TEM analysis shows the predominant particle form to be that of platelets with a diameter of 200 nm. Smaller cylindrical or spherical particles form a relatively minor fraction of the sample. After fractionation, analysis shows the platelets to be compositionally rich in leucine, while the spheres are glutamate-rich. (1)H NMR, CD, and X-ray diffraction indicate that the core of the platelets is composed of crystalline, helical leucine segments. The poly(l-glutamate) polyelectrolyte brush extending out from the two faces of the disk stabilizes individual particles from flocculation. At pH 7.4, the nanoparticles (platelets and cylinders) spontaneously adsorb proteins, such as insulin, directly from solution. Partial desorption of the protein in its native configuration can be induced by simple dilution. The reversibility of the insulin-nanoparticle complex is the basis for a potential new delivery system. Copyright 1999 Academic Press.

  2. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-05-06

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration.

  3. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells

    PubMed Central

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  4. Mechanical properties, structure, bioadhesion, and biocompatibility of pectin hydrogels.

    PubMed

    Markov, Pavel A; Krachkovsky, Nikita S; Durnev, Eugene A; Martinson, Ekaterina A; Litvinets, Sergey G; Popov, Sergey V

    2017-09-01

    The surface structure, biocompatibility, textural, and adhesive properties of calcium hydrogels derived from 1, 2, and 4% solutions of apple pectin were examined in this study. An increase in the pectin concentration in hydrogels was shown to improve their stability toward elastic and plastic deformation. The elasticity of pectin hydrogels, measured as Young's modulus, ranged from 6 to 100 kPa. The mechanical properties of the pectin hydrogels were shown to correspond to those of soft tissues. The characterization of surface roughness in terms of the roughness profile (Ra) and the root-mean-square deviation of the roughness profile (Rq) indicated an increased roughness profile for hydrogels depending on their pectin concentration. The adhesion of AU2% and AU4% hydrogels to the serosa abdominal wall, liver, and colon was higher than that of the AU1% hydrogel. The adhesion of macrophages and the non-specific adsorption of blood plasma proteins were found to increase as the pectin concentration in the hydrogels increased. The rate of degradation of all hydrogels was higher in phosphate buffered saline (PBS) than that in DMEM and a fibroblast cell monolayer. The pectin hydrogel was also found to have a low cytotoxicity. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2572-2581, 2017. © 2017 Wiley Periodicals, Inc.

  5. A Facile and Eco-friendly Route to Fabricate Poly(Lactic Acid) Scaffolds with Graded Pore Size.

    PubMed

    Scaffaro, Roberto; Lopresti, Francesco; Botta, Luigi; Maio, Andrea; Sutera, Fiorenza; Mistretta, Maria Chiara; La Mantia, Francesco Paolo

    2016-10-17

    Over the recent years, functionally graded scaffolds (FGS) gaineda crucial role for manufacturing of devices for tissue engineering. The importance of this new field of biomaterials research is due to the necessity to develop implants capable of mimicking the complex functionality of the various tissues, including a continuous change from one structure or composition to another. In this latter context, one topic of main interest concerns the design of appropriate scaffolds for bone-cartilage interface tissue. In this study, three-layered scaffolds with graded pore size were achieved by melt mixing poly(lactic acid) (PLA), sodium chloride (NaCl) and polyethylene glycol (PEG). Pore size distributions were controlled by NaCl granulometry and PEG solvation. Scaffolds were characterized from a morphological and mechanical point of view. A correlation between the preparation method, the pore architecture and compressive mechanical behavior was found. The interface adhesion strength was quantitatively evaluated by using a custom-designed interfacial strength test. Furthermore, in order to imitate the human physiology, mechanical tests were also performed in phosphate buffered saline (PBS) solution at 37 °C. The method herein presented provides a high control of porosity, pore size distribution and mechanical performance, thus offering the possibility to fabricate three-layered scaffolds with tailored properties by following a simple and eco-friendly route.

  6. Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages.

    PubMed

    Zhang, Lei; Xue, Hong; Gao, Changlu; Carr, Louisa; Wang, Jinnan; Chu, Baocheng; Jiang, Shaoyi

    2010-09-01

    Multifunctional magnetic nanoparticles (MNPs) modified by a zwitterionic polymer (pCBMA-DOPA(2)) containing one poly(carboxybetaine methacrylate) (pCBMA) chain and two 3,4-dihydroxyphenyl-L-alanine (DOPA) residue groups were developed. Results showed that MNPs modified by pCBMA were not only stable in complex media, but also provided abundant functional groups for ligand immobilization. The pCBMA-DOPA(2) MNPs had a hydrodynamic particle size of about 130 nm, a strong saturation magnetization of 110.2 emu/g Fe and a high transverse relaxivity of 428 mM(-1)s(-1). Long-term stability in phosphate-buffered saline (PBS) and 10% NaCl solution was achieved for over six months. Compared to MNPs coated with dextran, pCBMA-DOPA(2) MNPs presented better stability in 100% human blood serum at 37 degrees C. Macrophage cell uptake studies revealed that the uptake ratio of pCBMA-DOPA(2) MNPs was much lower than that of dextran MNPs. Furthermore, quantitative analysis results showed that after pCBMA-DOPA(2) MNPs were conjugated with a targeting RGD peptide, uptake by human umbilical vein endothelial cell (HUVEC) was notably increased, which was further visualized by magnetic resonance imaging (MRI). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Ultra-high-performance liquid chromatography-tandem mass spectrometry measurement of climbazole deposition from hair care products onto artificial skin and human scalp.

    PubMed

    Chen, Guoqiang; Hoptroff, Michael; Fei, Xiaoqing; Su, Ya; Janssen, Hans-Gerd

    2013-11-22

    A sensitive and specific ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the measurement of climbazole deposition from hair care products onto artificial skin and human scalp. Deuterated climbazole was used as the internal standard. Atmospheric pressure chemical ionization (APCI) in positive mode was applied for the detection of climbazole. For quantification, multiple reaction monitoring (MRM) transition 293.0>69.0 was monitored for climbazole, and MRM transition 296.0>225.1 for the deuterated climbazole. The linear range ran from 4 to 2000 ng mL(-1). The limit of detection (LOD) and the limit of quantification (LOQ) were 1 ng mL(-1) and 4 ng mL(-1), respectively, which enabled quantification of climbazole on artificial skin and human scalp at ppb level (corresponding to 16 ng cm(-2)). For the sampling of climbazole from human scalp the buffer scrub method using a surfactant-modified phosphate buffered saline (PBS) solution was selected based on a performance comparison of tape stripping, the buffer scrub method and solvent extraction in in vitro studies. Using this method, climbazole deposition in in vitro and in vivo studies was successfully quantified. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Molecular modeling and SPRi investigations of interleukin 6 (IL6) protein and DNA aptamers.

    PubMed

    Rhinehardt, Kristen L; Vance, Stephen A; Mohan, Ram V; Sandros, Marinella; Srinivas, Goundla

    2018-06-01

    Interleukin 6 (IL6), an inflammatory response protein has major implications in immune-related inflammatory diseases. Identification of aptamers for the IL6 protein aids in diagnostic, therapeutic, and theranostic applications. Three different DNA aptamers and their interactions with IL6 protein were extensively investigated in a phosphate buffed saline (PBS) solution. Molecular-level modeling through molecular dynamics provided insights of structural, conformational changes and specific binding domains of these protein-aptamer complexes. Multiple simulations reveal consistent binding region for all protein-aptamer complexes. Conformational changes coupled with quantitative analysis of center of mass (COM) distance, radius of gyration (R g ), and number of intermolecular hydrogen bonds in each IL6 protein-aptamer complex was used to determine their binding performance strength and obtain molecular configurations with strong binding. A similarity comparison of the molecular configurations with strong binding from molecular-level modeling concurred with Surface Plasmon Resonance imaging (SPRi) for these three aptamer complexes, thus corroborating molecular modeling analysis findings. Insights from the natural progression of IL6 protein-aptamer binding modeled in this work has identified key features such as the orientation and location of the aptamer in the binding event. These key features are not readily feasible from wet lab experiments and impact the efficacy of the aptamers in diagnostic and theranostic applications.

  9. Intel Parallel Studio on the Peregrine System | High-Performance Computing

    Science.gov Websites

    given below: #!/bin/bash --login #PBS -N #PBS -q #PBS -l nodes=<N> ;:ppn=<n> #PBS -l walltime=00:30:00 #PBS -A # set your tmpdir, and don't collect MPI communication data: #!/bin/bash --login #PBS -N #PBS -q #PBS -l

  10. Lead Sulfide Cathode for Quantum Dot Solar Cells: Electrosynthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Van Le, Nghiem; Nguyen, Hoang Thai; Le, Hai Viet; Nguyen, Thoa Thi Phuong

    2017-01-01

    Deposition of lead sulfide (PbS) nanocrystalline thin films onto conducting fluorine-doped tin oxide (FTO) glass has been performed by cyclic voltammetry (CV) in 1.5 mM solution of lead nitrate and sodium thiosulfate at 100 mV s-1 scan rate in the potential range of -1.0 V to 0.0 V versus saturated calomel electrode. X-ray diffraction analysis and scanning electron microscopy revealed formation of cubic PbS crystals with size of 100 nm to 150 nm after 50 cycles. High electrocatalytic activity of the synthesized PbS film for the S2-/S n 2- redox couple, used as a mediator for quantum dot solar cells (QDSCs), was demonstrated by electrochemical impedance spectroscopy and CV measurements. The prepared PbS/FTO was used as a counterelectrode to fabricate PbS-QDSCs with a photoanode consisting of CdS/CdSe quantum dots adsorbed on mesoporous TiO2 film and a polysulfide solution electrolyte. The performance of the PbS-QDSC was compared with a QDSC with a platinum counterelectrode (Pt-QDSC). It was found that, using the same fabrication conditions, the performance of the PbS-QDSC was better than that of the Pt-QDSC. At 1 sun (100 mW cm-2) simulated light, average energy conversion efficiency of 2.14%, short-circuit current of 9.22 mA cm-2, open-circuit potential of 0.50 V, and fill factor of 0.47 were achieved by the fabricated PbS-QDSC.

  11. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology].

    PubMed

    Cai, Xiao-Bo; Yang, Yi; Sun, Yan-Ping; Zhang, Liang; Xiao, Yao; Zhao, Hai

    2010-10-01

    Air cathode microbial fuel cell (MFC) were investigated for electricity production from sweet potato fuel ethanol wastewater containing 5000 mg/L of chemical oxygen demand (COD). Maximum power density of 334.1 mW/m2, coulombic efficiency (CE) of 10.1% and COD removal efficiency of 92.2% were approached. The effect of phosphate buffer solution (PBS) and COD concentration on the performance of MFC was further examined. The addition of PBS from 50 mmol/L to 200 mmol/L increased the maximum power density and CE by 33.4% and 26.0%, respectively. However, the COD removal efficiency was not relative to PBS concentration in the wastewater. When the COD increased from 625 mg/L to 10 000 mg/L, the maximum value of COD removal efficiency and the maximum power density were gained at the wastewater strength of 5 000 mg/L. But the CE ranged from 28.9% to 10.3% with a decreasing trend. These results demonstrate that sweet potato fuel ethanol wastewater can be used for electricity generation in MFC while at the same time achieving wastewater treatment. The increasing of PBS concentration can improve the power generation of MFC. The maximum power density of MFC increases with the rise of COD concentration, but the electricity generation will decrease for the acidification of high wastewater concentration.

  12. Heat aggregation studies of phycobilisomes, ferritin, insulin, and immunoglobulin by dynamic light scattering.

    PubMed

    Singh, B P; Bohidar, H B; Chopra, S

    1991-10-15

    Dynamic laser light scattering studies on the heat aggregation behavior of phycobilisomes (PBS), ferritin, insulin, and immunoglobulin (IgG) in dilute aqueous solutions has been reported. Except for PBS, results are reported for heat aggregation trends in these proteins for three different pH environments (4.0, 7.5, 9.1). For PBS, studies were performed only in the neutral buffer medium (pH 7.5). The experiments were performed in the very dilute concentration regime (between 0.23 and 1.8 gL-1). For all these samples heat aggregation and dissociation trends were found to be linear with temperature. Upon temperature reversal (self-cooling), hysteresis-like behavior observed in insulin was found to be predominantly large at pH 7.5. PBS, ferritin, and IgG showed no such behavior at any of three pH values, and retraced their path of aggregation while dissociating on temperature reversal. Heat aggregation and dissociation processes in ferritin were found to be independent of pH. The IgG samples showed smooth aggregation tendency only up to 35 degrees C in the buffer media pH 4.0 and 9.1, whereas for pH 7.0 the same could be observed until 60 degrees C. Low polydispersity in the correlation spectra was observed in case of all these samples.

  13. Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyekyoung; Lee, Jong-Gun; Mai, Xuan Dung

    Controlling the thickness of quantum dot (QD) films is difficult using existing film formation techniques, which employ pre-ligand-exchanged PbS QD inks, because of several issues: 1) poor colloidal stability, 2) use of high-boiling-point solvents for QD dispersion, and 3) limitations associated with one-step deposition. Here in this paper, we suggest a new protocol for QD film deposition using electrical double-layered PbS QD inks, prepared by solution-phase ligand exchange using methyl ammonium lead iodide (MAPbI 3). The films are deposited by the supersonic spraying technique, which facilitates the rapid evaporation of the solvent and the subsequent deposition of the PbS QDmore » ink without requiring a post-deposition annealing treatment for solvent removal. The film thickness could be readily controlled by varying the number of spraying sweeps made across the substrate. This spray deposition process yields high-quality n-type QD films quickly (within 1 min) while minimizing the amount of the PbS QD ink used to less than 5 mg for one device (300-nm-thick absorbing layer, 2.5 x 2.5 cm 2). Further, the formation of an additional p-layer by treatment with mercaptopropionic acid allows for facile hole extraction from the QD films, resulting in a power conversion efficiency of 3.7% under 1.5 AM illumination.« less

  14. Measuring Psychobiosocial States in Sport: Initial Validation of a Trait Measure

    PubMed Central

    Bertollo, Maurizio; Ruiz, Montse C.; Bortoli, Laura

    2016-01-01

    We examined the item characteristics, the factor structure, and the concurrent validity of a trait measure of psychobiosocial states. In Study 1, Italian athletes (N = 342, 228 men, 114 women, Mage = 23.93, SD = 6.64) rated the intensity, the frequency, and the perceived impact dimensions of a psychobiosocial states scale, trait version (PBS-ST), which is composed of 20 items (10 functional and 10 dysfunctional) referring to how they usually felt before an important competition. In Study 2, the scale was cross validated in an independent sample (N = 251, 181 men, 70 women, Mage = 24.35, SD = 7.25). The concurrent validity of the PBS-ST scale scores were also examined in comparison with two sport-specific emotion-related measures and a general measure of affect. Exploratory structural equation modeling and confirmatory factor analysis of the data of Study 1 showed that a 2-factor, 15-item solution of the PBS-ST scale (8 functional items and 7 dysfunctional items) reached satisfactory fit indices for the three dimensions (i.e., intensity, frequency, and perceived impact). Results of Study 2 provided evidence of substantial measurement and structural invariance of all dimensions across samples. The low association of the PBS-ST scale with other measures suggests that the scale taps unique constructs. Findings of the two studies offer initial validity evidence for a sport-specific tool to measure psychobiosocial states. PMID:27907111

  15. Reaction mechanism of a PbS-on-ZnO heterostructure and enhanced photovoltaic diode performance with an interface-modulated heterojunction energy band structure.

    PubMed

    Li, Haili; Jiao, Shujie; Ren, Jinxian; Li, Hongtao; Gao, Shiyong; Wang, Jinzhong; Wang, Dongbo; Yu, Qingjiang; Zhang, Yong; Li, Lin

    2016-02-07

    A room temperature successive ionic layer adsorption and reaction (SILAR) method is introduced for fabricating quantum dots-on-wide bandgap semiconductors. Detailed exploration of how SILAR begins and proceeds is performed by analyzing changes in the electronic structure of related elements at interfaces by X-ray photoelectric spectroscopy, together with characterization of optical properties and X-ray diffraction. The distribution of PbS QDs on ZnO, which is critical for optoelectrical applications of PbS with a large dielectric constant, shows a close relationship with the dipping order. A successively deposited PbS QDs layer is obtained when the sample is first immersed in Na2S solution. This is reasonable because the initial formation of different chemical bonds on ZnO nanorods is closely related to dangling bonds and defect states on surfaces. Most importantly, dipping order also affects their optoelectrical characteristics greatly, which can be explained by the heterojunction energy band structure related to the interface. The formation mechanism for PbS QDs on ZnO is confirmed by the fact that the photovoltaic diode device performance is closely related to the dipping order. Our atomic-scale understanding emphasises the fundamental role of surface chemistry in the structure and tuning of optoelectrical properties, and consequently in devices.

  16. Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells

    DOE PAGES

    Choi, Hyekyoung; Lee, Jong-Gun; Mai, Xuan Dung; ...

    2017-04-04

    Controlling the thickness of quantum dot (QD) films is difficult using existing film formation techniques, which employ pre-ligand-exchanged PbS QD inks, because of several issues: 1) poor colloidal stability, 2) use of high-boiling-point solvents for QD dispersion, and 3) limitations associated with one-step deposition. Here in this paper, we suggest a new protocol for QD film deposition using electrical double-layered PbS QD inks, prepared by solution-phase ligand exchange using methyl ammonium lead iodide (MAPbI 3). The films are deposited by the supersonic spraying technique, which facilitates the rapid evaporation of the solvent and the subsequent deposition of the PbS QDmore » ink without requiring a post-deposition annealing treatment for solvent removal. The film thickness could be readily controlled by varying the number of spraying sweeps made across the substrate. This spray deposition process yields high-quality n-type QD films quickly (within 1 min) while minimizing the amount of the PbS QD ink used to less than 5 mg for one device (300-nm-thick absorbing layer, 2.5 x 2.5 cm 2). Further, the formation of an additional p-layer by treatment with mercaptopropionic acid allows for facile hole extraction from the QD films, resulting in a power conversion efficiency of 3.7% under 1.5 AM illumination.« less

  17. High-performance PbS quantum dot vertical field-effect phototransistor using graphene as a transparent electrode

    NASA Astrophysics Data System (ADS)

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2016-12-01

    Solution processed photoactive PbS quantum dots (QDs) were used as channel in high-performance near-infrared vertical field-effect phototransistor (VFEpT) where monolayer graphene embedded as transparent electrode. In this vertical architecture, the PbS QD channel was sandwiched and naturally protected between the drain and source electrodes, which made the device ultrashort channel length (110 nm) simply the thickness of the channel layer. The VFEpT exhibited ambipolar operation with high mobilities of μe = 3.5 cm2/V s in n-channel operation and μh = 3.3 cm2/V s in p-channel operation at low operation voltages. By using the photoactive PbS QDs as channel material, the VFEpT exhibited good photoresponse properties with a responsivity of 4.2 × 102 A/W, an external quantum efficiency of 6.4 × 104% and a photodetectivity of 2.1 × 109 Jones at the light irradiance of 36 mW/cm2. Additionally, the VFEpT showed excellent on/off switching with good stability and reproducibility and fast response speed with a short rise time of 12 ms in n-channel operation and 10.6 ms in p-channel operation. These high mobilities, good photoresponse properties and simplistic fabrication of our VFEpTs provided a facile route to the high-performance inorganic photodetectors.

  18. Diluted povidone-iodine versus saline for dressing metal-skin interfaces in external fixation.

    PubMed

    Chan, C K; Saw, A; Kwan, M K; Karina, R

    2009-04-01

    To compare infection rates associated with 2 dressing solutions for metal-skin interfaces. 60 patients who underwent distraction osteogenesis with external fixators were equally randomised into 2 dressing solution groups (diluted povidone-iodine vs. saline). Fixations were attained using either rigid stainless steel 5-mm diameter half pins or smooth stainless steel 1.8-mm diameter wires. Half-pin fixation had one metal-skin interface, whereas wire fixation had 2 interfaces. Patients were followed up every 2 weeks for 6 months. Of all 788 metal-skin interfaces, 143 (18%) were infected: 72 (19%) of 371 in the diluted povidone-iodine group and 71 (17%) of 417 in the saline group. Dressing solution and patient age did not significantly affect infection rates. Half-pin fixation was more likely to become infected than wire fixation (25% vs 15%). Saline is as effective as diluted povidone-iodine as a dressing solution for metal-skin interfaces of external fixators. Saline is recommended in view of its easy availability and lower costs.

  19. Assessment on Experimental Bacterial Biofilms and in Clinical Practice of the Efficacy of Sampling Solutions for Microbiological Testing of Endoscopes

    PubMed Central

    Aumeran, C.; Thibert, E.; Chapelle, F. A.; Hennequin, C.; Lesens, O.

    2012-01-01

    Opinions differ on the value of microbiological testing of endoscopes, which varies according to the technique used. We compared the efficacy on bacterial biofilms of sampling solutions used for the surveillance of the contamination of endoscope channels. To compare efficacy, we used an experimental model of a 48-h Pseudomonas biofilm grown on endoscope internal tubing. Sampling of this experimental biofilm was performed with a Tween 80-lecithin-based solution, saline, and sterile water. We also performed a randomized prospective study during routine clinical practice in our hospital sampling randomly with two different solutions the endoscopes after reprocessing. Biofilm recovery expressed as a logarithmic ratio of bacteria recovered on bacteria initially present in biofilm was significantly more effective with the Tween 80-lecithin-based solution than with saline solution (P = 0.002) and sterile water (P = 0.002). There was no significant difference between saline and sterile water. In the randomized clinical study, the rates of endoscopes that were contaminated with the Tween 80-lecithin-based sampling solution and the saline were 8/25 and 1/25, respectively (P = 0.02), and the mean numbers of bacteria recovered were 281 and 19 CFU/100 ml (P = 0.001), respectively. In conclusion, the efficiency and therefore the value of the monitoring of endoscope reprocessing by microbiological cultures is dependent on the sampling solutions used. A sampling solution with a tensioactive action is more efficient than saline in detecting biofilm contamination of endoscopes. PMID:22170930

  20. Cerebral effects of resuscitation with hypertonic saline and a new low-sodium hypertonic fluid in hemorrhagic shock and head injury.

    PubMed

    Sheikh, A A; Matsuoka, T; Wisner, D H

    1996-07-01

    A 2400-mOsm/L hypertonic solution (isosal) with a lower sodium content, compared with conventional 7.5% hypertonic saline, was formulated using a mixture of sodium chloride, glucose, and mixed amino acids. This solution was developed to minimize hypernatremia during resuscitation. We assessed the effects of isosal on hemodynamics, brain edema, and plasma sodium concentration after head injury associated with hemorrhagic shock. DESIGN. Prospective, randomized laboratory study. University research laboratory. Twenty-one adult female Suffolk sheep, weighing 39 to 49 kg. Animals were subjected to a 2-hr period of hemorrhagic shock to a mean arterial pressure (MAP) of 40 to 45 mm Hg in the presence of a freeze injury to the cerebral cortex. The hemorrhagic shock/head injury phase was followed by 2 hrs of resuscitation with isosal, a new 2400-mosm/L low-sodium hypertonic fluid, 2400 mosm/L of 7.5% hypertonic saline, or lactated Ringer's solution. Initial resuscitation was with a bolus injection of 8 mL/kg of the study solution; subsequent resuscitation in all three groups was with lactated Ringer's solution as needed to maintain baseline cardiac output. Serial hemodynamics, intracranial pressure, electrolytes, and osmolarity were measured. AT the end of resuscitation, the animals were killed and brain water content (mL H2O/g dry weight) of the injured and uninjured areas was determined. Resuscitation volumes were significantly lower in the isosal (19 +/- 5 mL/kg) and 7.5% hypertonic saline (14 +/- 2 mL/mg) groups compared with the lactated Ringer's solution (35 +/- 5 mL/kg) group. Intracranial pressure after 2 hrs of resuscitation was significantly lower in the isosal (7 +/- 1 mm Hg) and hypertonic saline groups (4 +/- 1 mm Hg). Water content in all areas of the brain was significantly lower in the hypertonic saline group compared with the lactated Ringer's solution group. Brain water content in the isosal group was lower than in the lactated Ringer's solution group only in the cerebellum. Plasma sodium content was lower in the isosal group than in the hypertonic saline group. After combined head injury and shock, isosal and 7.5% hypertonic saline have similar effects on hemodynamics and intracranial pressure. Hypertonic saline induces a greater degree of brain dehydration; isosal resuscitation results in smaller increases in plasma sodium.

  1. Particle Size/ Grain Size Correlation and Mechanical Properties of Spark Plasma Sintered 8Y-ZrO2, MgAl2O4, and Al2O3 Based Composites

    NASA Astrophysics Data System (ADS)

    Karandikar, Keyur Kashinath

    Solution-processed nanomaterials such as lead sulfide (PbS) colloidal quantum dots (CQDs) combine various manufacturing benefits and facile spectral tunability. However, the low mobility of CQD films limits its power conversion efficiency in photovoltaic cells. Here, I employ a novel femtosecond transient absorption (fs-TA) technique to determine the mobility of PbS CQD films that have undergone state of the art surface treatments. A significant mobility increase from 3 x 10-2 to 5 x 10 -1 cm2 V-1 s-1 was determined for iodide passivated and novel perovskite-shelled PbS CQDs, respectively. I performed, for the first time, temperature-dependent ultrafast carrier dynamics in perovskite-shelled CQDs using fs-TA, and determined an activation energy of 14 meV required for carrier hopping. Complementary studies that used time-of-flight measurements to determine the mobility in solar cell configuration corroborated the fs-TA method. Taken together, these results indicate a promising avenue toward improved CQD solar cells.

  2. Positive Strategies for Students with Behavior Problems

    ERIC Educational Resources Information Center

    Crimmins, Daniel; Farrell, Anne F.; Smith, Philip W.; Bailey, Alison

    2007-01-01

    When a student's challenging behavior can not be resolved through either traditional disciplinary approaches or schoolwide positive behavior support (PBS), what can a teacher do next? This manual has effective solutions for educators from grades K-12. Developed specifically for use with children with persistent or severe behavior problems, this…

  3. Sample Batch Scripts for Running Jobs on the Peregrine System |

    Science.gov Websites

    script for a serial job in the debug queue #!/bin/bash #PBS -lnodes=1:ppn=1,walltime=500 #PBS -N test1 limit #PBS -l nodes=1 # one node #PBS -N test1 # Name of job #PBS -A CSC001 # project handle cd #PBS -q short # short queue #PBS -l nodes=4:ppn=24 # Number of nodes, put 24 processes on each #PBS -N

  4. Salinity index determination of porous materials using open-ended probes

    NASA Astrophysics Data System (ADS)

    Szypłowska, Agnieszka; Kafarski, Marcin; Wilczek, Andrzej; Lewandowski, Arkadiusz; Skierucha, Wojciech

    2017-01-01

    The relations among soil water content, bulk electrical conductivity and electrical conductivity of soil solution can be described by a number of theoretical and empirical models. The aim of the paper is to examine the performance of open-ended coaxial probes with and without a short antenna in determination of complex dielectric permittivity spectra, moisture and salinity of porous materials using the salinity index approach. Glass beads of 0.26 and 1.24 mm average diameters moistened to various water contents with distilled water and KCl solutions were used to model the soil material. Due to the larger sensitivity zone, only the probe with the antenna enabled determination of bulk electrical conductivity and salinity index of the samples. The relations between bulk electrical conductivity and dielectric permittivity of the samples were highly linear, which was consistent with the salinity index model. The slope of the relation between salinity index and electrical conductivity of moistening solutions closely matched the value for 100 % sand presented in literature.

  5. The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae.

    PubMed

    Shikuma, Nicholas J; Davis, Kimberly R; Fong, Jiunn N C; Yildiz, Fitnat H

    2013-05-01

    Vibrio cholerae inhabits aquatic environments and colonizes the human digestive tract to cause the disease cholera. In these environments, V. cholerae copes with fluctuations in salinity and osmolarity by producing and transporting small, organic, highly soluble molecules called compatible solutes, which counteract extracellular osmotic pressure. Currently, it is unclear how V. cholerae regulates the expression of genes important for the biosynthesis or transport of compatible solutes in response to changing salinity or osmolarity conditions. Through a genome-wide transcriptional analysis of the salinity response of V. cholerae, we identified a transcriptional regulator we name CosR for compatible solute regulator. The expression of cosR is regulated by ionic strength and not osmolarity. A transcriptome analysis of a ΔcosR mutant revealed that CosR represses genes involved in ectoine biosynthesis and compatible solute transport in a salinity-dependent manner. When grown in salinities similar to estuarine environments, CosR activates biofilm formation and represses motility independently of its function as an ectoine regulator. This is the first study to characterize a compatible solute regulator in V. cholerae and couples the regulation of osmotic tolerance with biofilm formation and motility. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Carbon nanotube mat as mediator-less glucose sensor electrode.

    PubMed

    Ryu, Jongeun; Kim, Hansang; Lee, Sangeui; Hahn, H Thomas; Lashmore, David

    2010-02-01

    In this paper, the direct electron transfer of glucose oxidase (GOx) on carbon nanotube (CNT) mat electrode is demonstrated. Because of the electrical conductivity and mechanical strength of CNT mat, it can be used as an electrode as well as a catalyst support. Therefore, the preparation process for the CNT mat based sensor electrode is simpler than that of the conventional CNT dispersed sensor electrodes. GOx was covalently immobilized on the oxidized CNT mat, which is connected to a wire by using silver paste and epoxy glue. Attenuated Total Reflectance Fourier Transform-Infrared (ATR-FTIR) result shows transmittance peaks at 1637 cm(-1) and 1525 cm(-1) which are corresponding to the band I and II of amide. Cyclic voltammetric shows a pair of well-defined redox peaks with the average formal potential of -0.425 V (vs. Ag/AgCl reference electrode) in the phosphate buffered saline solution (1 x PBS, pH 7.4). Calculated electron transfer rate constant and the surface density of GOx were 1.71 s(-1) and (3.27 +/- 0.20) x 10(-13) mol/cm2, respectively. Cyclic voltammograms of GOx-CNT mat in glucose solution show that the immobilized GOx retains its catalytic activity to glucose. The amperometric sensor response showed a linear dependence on the glucose concentration in the range of 0.2 mM to 2.18 mM with a detection sensitivity of 4.05 microA mM(-1) cm(-2). The Michaelis-Menten constant of the immobilized GOx was calculated to be 2.18 mM.

  7. Blood and urine responses to ingesting fluids of various salt and glucose concentrations. [to combat orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Frey, Mary A.; Riddle, Jeanne; Charles, John B.; Bungo, Michael W.

    1991-01-01

    To compensate for the reduced blood and fluid volumes that develop during weightlessness, the Space Shuttle crewmembers consume salt tablets and water equivalent to 1 l of normal saline, about 2 hrs before landing. This paper compares the effects on blood, urine, and cardiovascular variables of the ingestion of 1 l of normal (0.9 percent) saline with the effects of distilled water, 1 percent glucose, 0.74 percent saline with 1 percent glucose, 0.9 percent saline with 1 percent glucose, and 1.07 percent saline. It was found that the expansion of plasma volume and the concentration of urine were greater 4 hrs after ingestion of 1.07 percent saline solution than after ingestion of normal saline and that the solutions containig glucose did not enhance any variables as compared with normal saline.

  8. Early metabolite changes after melatonin treatment in neonatal rats with hypoxic-ischemic brain injury studied by in-vivo 1H MR spectroscopy

    PubMed Central

    Nyman, Axel K. G.; Morken, Tora Sund; Vettukattil, Riyas; Brubakk, Ann-Mari; Widerøe, Marius

    2017-01-01

    Melatonin is a promising neuroprotective agent after perinatal hypoxic-ischemic (HI) brain injury. We used in-vivo 1H magnetic resonance spectroscopy to investigate effects of melatonin treatment on brain metabolism after HI. Postnatal day 7 Sprague-Dawley rats with unilateral HI brain injury were treated with either melatonin 10 mg/kg dissolved in phosphate-buffered saline (PBS) with 5% dimethyl sulfoxide (DMSO) or vehicle (5% DMSO and/or PBS) directly and at 6 hours after HI. 1H MR spectra from the thalamus in the ipsilateral and contralateral hemisphere were acquired 1 day after HI. Our results showed that injured animals had a distinct metabolic profile in the ipsilateral thalamus compared to sham with low concentrations of total creatine, choline, N-acetyl aspartate (NAA), and high concentrations of lipids. A majority of the melatonin-treated animals had a metabolic profile characterized by higher total creatine, choline, NAA and lower lipid levels than other HI animals. When comparing absolute concentrations, melatonin treatment resulted in higher glutamine levels and lower lipid concentrations compared to DMSO treatment as well as higher macromolecule levels compared to PBS treatment day 1 after HI. DMSO treated animals had lower concentrations of glucose, creatine, phosphocholine and macromolecules compared to sham animals. In conclusion, the neuroprotective effects of melatonin were reflected in a more favorable metabolic profile including reduced lipid levels that likely represents reduced cell injury. Neuroprotective effects may also be related to the influence of melatonin on glutamate/glutamine metabolism. The modulatory effects of the solvent DMSO on cerebral energy metabolism might have masked additional beneficial effects of melatonin. PMID:28934366

  9. Variables that affect the mechanism of drug release from osmotic pumps coated with acrylate/methacrylate copolymer latexes.

    PubMed

    Jensen, J L; Appel, L E; Clair, J H; Zentner, G M

    1995-05-01

    The feasibility of using modified Eudragit acrylic latexes as microporous coatings for osmotic devices was investigated. Potassium chloride tablets were coated with mixtures of Eudragit RS30D and RL30D acrylic latexes that also contained a plasticizer (triethyl citrate or acetyl tributyl citrate) and a pore-forming agent (urea). A 2(5-1) fractional factorial experimental design was employed to determine the effect of five formulation variables (RS30D:RL30D polymer ratio plasticizer type, plasticizer level, urea level, and cure) on the in vitro release rate of KCl in deionized water (di water), lag time, and coat burst strength. The RS30D:RL30D polymer ratio had the greatest effect on the release rate, and both lag time and burst strength were most affected by the urea level. Statistical optimization was performed, and a coat formulation with predicted desirable in vitro performance was prepared and tested. The in vitro release rate (di water), lag time, and coat burst strength agreed well with the prediction. Dissolutions were also performed in phosphate buffered saline (PBS; pH 7.4); several formulations released markedly slower in PBS than in di water. This discrepancy was dependent on the type of plasticizer and the amount of pore former. Only those coat formulations containing acetyl tributyl citrate as the plasticizer and a 100% urea [(g urea/g polymer solids) x 100] level exhibited similar release rates in di water and PBS. The mechanism of release from these devices was primarily osmotic, whereas the release from devices coated with a formulation containing triethyl citrate and 50% urea was not dependent on the osmotic pressure difference. Devices with an osmotic release mechanism behaved similarly in vivo and in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Myricetin Prevents Alveolar Bone Loss in an Experimental Ovariectomized Mouse Model of Periodontitis

    PubMed Central

    Huang, Jialiang; Wu, Chuanlong; Tian, Bo; Zhou, Xiao; Ma, Nian; Qian, Yufen

    2016-01-01

    Periodontitis is a common chronic inflammatory disease, which leads to alveolar bone resorption. Healthy and functional alveolar bone, which can support the teeth and enable their movement, is very important for orthodontic treatment. Myricetin inhibited osteoclastogenesis by suppressing the expression of some genes, signaling pathways, and cytokines. This study aimed to investigate the effects of myricetin on alveolar bone loss in an ovariectomized (OVX) mouse model of periodontitis as well as in vitro osteoclast formation and bone resorption. Twenty-four healthy eight-week-old C57BL/J6 female mice were assigned randomly to four groups: phosphate-buffered saline (PBS) control (sham) OVX + ligature + PBS (vehicle), and OVX + ligature + low or high (2 or 5 mg∙kg−1∙day−1, respectively) doses of myricetin. Myricetin or PBS was injected intraperitoneally (i.p.) every other day for 30 days. The maxillae were collected and subjected to further examination, including micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, and tartrate-resistant acid phosphatase (TRAP) staining; a resorption pit assay was also performed in vitro to evaluate the effects of myricetin on receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclastogenesis. Myricetin, at both high and low doses, prevented alveolar bone resorption and increased alveolar crest height in the mouse model and inhibited osteoclast formation and bone resorption in vitro. However, myricetin was more effective at high dose than at low dose. Our study demonstrated that myricetin had a positive effect on alveolar bone resorption in an OVX mouse model of periodontitis and, therefore, may be a potential agent for the treatment of periodontitis and osteoporosis. PMID:27011174

  11. TH17-induced neutrophils enhance the pulmonary allergic response following BALB/c exposure to house dust mite allergen and fine particulate matter from California and China.

    PubMed

    Zhang, Jingjing; Fulgar, Ciara C; Mar, Tiffany; Young, Dominique E; Zhang, Qi; Bein, Keith J; Cui, Liangliang; Castañeda, Alejandro; Vogel, Christoph F A; Sun, Xiaolin; Li, Wei; Smiley-Jewell, Suzette; Zhang, Zunzhen; Pinkerton, Kent E

    2018-05-28

    Asthma is a global and increasingly prevalent disease. According to the World Health Organization, approximately 235 million people suffer from asthma. Studies suggest that fine particulate matter (PM2.5) can induce innate immune responses, promote allergic sensitization, and exacerbate asthmatic symptoms and airway hyper-responsiveness. Recently, severe asthma and allergic sensitization have been associated with T-helper cell type 17 (TH17) activation. Few studies have investigated the links between PM2.5 exposure, allergic sensitization, asthma, and TH17 activation. This study aimed to determine whether 1) low-dose extracts of PM2.5 from California (PMCA) or China (PMCH) enhance allergic sensitization in mice following exposure to house dust mite (HDM) allergen; 2) eosinophilic or neutrophilic inflammatory responses result from PM and HDM exposure; and 3) TH17-associated cytokines are increased in the lung following exposure to PM and/or HDM.Ten-week old male BALB/c mice (n = 6-10/group) were intranasally instilled with phosphate-buffered saline (PBS), PM+PBS, HDM, or PM+HDM, on Days 1, 3, and 5 (sensitization experiments), and PBS or HDM on Days 12-14 (challenge experiments). Pulmonary function, bronchoalveolar lavage cell differentials, plasma immunoglobulin (Ig) protein levels, and lung tissue pathology, cyto-/chemo-kine proteins, and gene expression were assessed on Day 15.Results indicated low-dose PM2.5 extracts can enhance allergic sensitization and TH17-associated responses. While PMCA+HDM significantly decreased pulmonary function, and significantly increased neutrophils, Igs, and TH17-related protein and gene levels compared to HDM, there were no significant differences between HDM and PMCH+HDM treatments. This may result from greater copper and oxidized organic content in PMCA versus PMCH.

  12. Preconditioning methods influence tumor property in an orthotopic bladder urothelial carcinoma rat model

    PubMed Central

    MIYAZAKI, KOZO; MORIMOTO, YUJI; NISHIYAMA, NOBUHIRO; SATOH, HIROYUKI; TANAKA, MASAMITSU; SHINOMIYA, NARIYOSHI; ITO, KEIICHI

    2014-01-01

    Urothelial carcinoma (UC) is an extremely common type of cancer that occurs in the bladder. It has a particularly high rate of recurrence. Therefore, preclinical studies using animal models are essential to determine effective forms of treatment. In the present study, in order to establish an orthotopic bladder UC animal model with clinical relevance, the effects of preconditioning methods on properties of the developed tumor were evaluated. The bladder cavity was pretreated with phosphate-buffered saline (PBS), acid-base, trypsin (TRY) or poly (L-lysine) (PLL) and then rat UC cells (AY-27) (4×106 cells) were inoculated. The results demonstrated that, two weeks later, the tumorigenic rate (88%) and tumor count (2.3 per rat) were not significantly different among the preconditioning methods, whereas tumor volume and invasion depth into bladder tissue were significantly different. Average tumor volumes were >50 mm3 in the PBS and acid-base-treated groups and <10 mm3 in the TRY- and PLL-treated groups. The percentage of invasive tumors (T2 or more advanced stage) was ∼75% of total tumors in the PBS- and acid-base-treated groups, whereas the percentages were reduced in the TRY- and PLL-treated groups (58 and 32%, respectively). Non-invasive tumors (Ta or T1) accounted for 54% of tumors in the PLL-treated group, which was 2-5-fold higher than the percentages in the remaining groups. Properties of the developed tumor in the rat orthotopic UC model were different depending on preconditioning methods. Therefore, different animal models suitable for a discrete preclinical examination may be established by using the appropriate preconditioning condition. PMID:24649309

  13. Dietary Quercetin Reduces Chemotherapy-Induced Fatigue in Mice

    PubMed Central

    Mahoney, Sara E.; Davis, J. Mark; Murphy, E. Angela; McClellan, Jamie L.; Pena, Marjory M.

    2014-01-01

    Purpose While fatigue is the most commonly reported symptom of chemotherapy, there are currently no effective treatments for chemotherapy-induced fatigue (CIF). We used a mouse model to examine the benefits of quercetin on CIF as measured by voluntary wheel running activity and sought to determine whether quercetin may be associated with a decrease in inflammation and/or anemia. Methods Mice were assigned to 1 of 4 groups: placebo-vehicle (Plac-PBS), placebo-5-fluorouracil (Plac-5FU), quercetin-vehicle (Quer-PBS), or quercetin-5-fluorouracil (Quer-5FU). All mice were given a daily injection of either 60 mg/kg of 5-FU or phosphate buffered saline (PBS) for 5 days. Quercetin (0.02%) treatment was administered in the food 3 days prior to 5-FU administration and for the duration of the experiment (ie, days −2 to 14). A second group of mice was sacrificed at 5 and 14 days post initial injection for assessment of monocyte chemoattractant protein-1 (MCP-1) and anemia. Results Voluntary wheel running was reduced in both the Plac-5FU and Quer-5FU groups following 5-FU injection (P < .05). However, the Quer-5FU group recovered to baseline levels by approximately day 7, whereas the Plac-5FU group remained suppressed. MCP-1 was significantly elevated at 14 days in Plac-5FU (P < .001), but no changes were seen with Quer-5FU. Treatment with 5-FU resulted in anemia at both 5 days and 14 days; however, quercetin blocked this effect at 14 days (P < .001). Conclusion These results demonstrate the beneficial effect of quercetin on improving recovery of voluntary physical activity following 5-FU treatment, which may be linked to a decrease in inflammation and anemia. PMID:24626097

  14. Effect of trapping vascular endothelial growth factor-A in a murine model of dry eye with inflammatory neovascularization.

    PubMed

    Kwon, Jin Woo; Choi, Jin A; Shin, Eun Young; La, Tae Yoon; Jee, Dong Hyun; Chung, Yeon Woong; Cho, Yang Kyung

    2016-01-01

    To evaluate whether trapping vascular endothelial growth factor A (VEGF-A) would suppress angiogenesis and inflammation in dry eye corneas in a murine corneal suture model. We established two groups of animals, one with non-dry eyes and the other with induced dry eyes. In both groups, a corneal suture model was used to induce inflammation and neovascularization. Each of two groups was again divided into three subgroups according to the treatment; subgroup I (aflibercept), subgroup II (dexamethasone) and subgroup III (phosphate buffered saline, PBS). Corneas were harvested and immunohistochemical staining was performed to compare the extents of neovascularization and CD11b+ cell infiltration. Real-time polymerase chain reaction was performed to quantify the expression of inflammatory cytokines and VEGF-A in the corneas. Trapping VEGF-A with aflibercept resulted in significantly decreased angiogenesis and inflammation compared with the dexamethasone and PBS treatments in the dry eye corneas (all P <0.05), but with no such effects in non-dry eyes. The anti-inflammatory and anti-angiogenic effects of VEGF-A trapping were stronger than those of dexamethasone in both dry eye and non-dry eye corneas (all P <0.05). The levels of RNA expression of VEGF-A, TNF-alpha, and IL-6 in the aflibercept subgroup were significantly decreased compared with those in the PBS subgroup in the dry eye group. Compared with non-dry eye corneas, dry eye corneas have greater amounts of inflammation and neovascularization and also have a more robust response to anti-inflammatory and anti-angiogenic agents after ocular surface surgery. Trapping VEGF-A is effective in decreasing both angiogenesis and inflammation in dry eye corneas after ocular surface surgery.

  15. Acinetobacter baumannii Infection Inhibits Airway Eosinophilia and Lung Pathology in a Mouse Model of Allergic Asthma

    PubMed Central

    Qiu, Hongyu; KuoLee, Rhonda; Harris, Greg; Zhou, Hongyan; Miller, Harvey; Patel, Girishchandra B.; Chen, Wangxue

    2011-01-01

    Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen. PMID:21789200

  16. Effect of trapping vascular endothelial growth factor-A in a murine model of dry eye with inflammatory neovascularization

    PubMed Central

    Kwon, Jin Woo; Choi, Jin A; Shin, Eun Young; La, Tae Yoon; Jee, Dong Hyun; Chung, Yeon Woong; Cho, Yang Kyung

    2016-01-01

    AIM To evaluate whether trapping vascular endothelial growth factor A (VEGF-A) would suppress angiogenesis and inflammation in dry eye corneas in a murine corneal suture model. METHODS We established two groups of animals, one with non-dry eyes and the other with induced dry eyes. In both groups, a corneal suture model was used to induce inflammation and neovascularization. Each of two groups was again divided into three subgroups according to the treatment; subgroup I (aflibercept), subgroup II (dexamethasone) and subgroup III (phosphate buffered saline, PBS). Corneas were harvested and immunohistochemical staining was performed to compare the extents of neovascularization and CD11b+ cell infiltration. Real-time polymerase chain reaction was performed to quantify the expression of inflammatory cytokines and VEGF-A in the corneas. RESULTS Trapping VEGF-A with aflibercept resulted in significantly decreased angiogenesis and inflammation compared with the dexamethasone and PBS treatments in the dry eye corneas (all P<0.05), but with no such effects in non-dry eyes. The anti-inflammatory and anti-angiogenic effects of VEGF-A trapping were stronger than those of dexamethasone in both dry eye and non-dry eye corneas (all P<0.05). The levels of RNA expression of VEGF-A, TNF-alpha, and IL-6 in the aflibercept subgroup were significantly decreased compared with those in the PBS subgroup in the dry eye group. CONCLUSION Compared with non-dry eye corneas, dry eye corneas have greater amounts of inflammation and neovascularization and also have a more robust response to anti-inflammatory and anti-angiogenic agents after ocular surface surgery. Trapping VEGF-A is effective in decreasing both angiogenesis and inflammation in dry eye corneas after ocular surface surgery. PMID:27990354

  17. ISSLS PRIZE IN BASIC SCIENCE 2018: Growth differentiation factor-6 attenuated pro-inflammatory molecular changes in the rabbit anular-puncture model and degenerated disc-induced pain generation in the rat xenograft radiculopathy model.

    PubMed

    Miyazaki, Shingo; Diwan, Ashish D; Kato, Kenji; Cheng, Kevin; Bae, Won C; Sun, Yang; Yamada, Junichi; Muehleman, Carol; Lenz, Mary E; Inoue, Nozomu; Sah, Robert L; Kawakami, Mamoru; Masuda, Koichi

    2018-04-01

    To elucidate the effects of growth differentiation factor-6 (GDF6) on: (i) gene expression of inflammatory/pain-related molecules and structural integrity in the rabbit intervertebral disc (IVD) degeneration model, and (ii) sensory dysfunction and changes in pain-marker expression in dorsal nerve ganglia (DRGs) in the rat xenograft radiculopathy model. Forty-six adolescent rabbits received anular-puncture in two non-consecutive lumbar IVDs. Four weeks later, phosphate-buffered saline (PBS) or GDF6 (1, 10 or 100 µg) was injected into the nucleus pulposus (NP) of punctured discs and followed for 4 weeks for gene expression analysis and 12 weeks for structural analyses. For pain assessment, eight rabbits were sacrificed at 4 weeks post-injection and NP tissues of injected discs were transplanted onto L5 DRGs of 16 nude rats to examine mechanical allodynia. The rat DRGs were analyzed immunohistochemically. In GDF6-treated rabbit NPs, gene expressions of interleukin-6, tumor necrosis factor-α, vascular endothelial growth factor, prostaglandin-endoperoxide synthase 2, and nerve growth factor were significantly lower than those in the PBS group. GDF6 injections resulted in partial restoration of disc height and improvement of MRI disc degeneration grades with statistical significance in rabbit structural analyses. Allodynia induced by xenograft transplantation of rabbit degenerated NPs onto rat DRGs was significantly reduced by GDF6 injection. Staining intensities for ionized calcium-binding adaptor molecule-1 and calcitonin gene-related peptide in rat DRGs of the GDF6 group were significantly lower than those of the PBS group. GDF6 injection may change the pathological status of degenerative discs and attenuate degenerated IVD-induced pain.

  18. Boxb mediate BALB/c mice corneal inflammation through a TLR4/MyD88-dependent signaling pathway in Aspergillus fumigatus keratitis.

    PubMed

    Liu, Min; Li, Cui; Zhao, Gui-Qiu; Lin, Jing; Che, Cheng-Ye; Xu, Qiang; Wang, Qian; Xu, Rui; Niu, Ya-Wen

    2018-01-01

    To investigate whether high-mobility group box 1 (HMGB1) Boxb exacerbates BALB/c mice corneal immune responses and inflammatory through the Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)-dependent signaling pathway in Aspergillus fumigatus ( A. fumigatus ) keratitis. The mice corneas were pretreated with phosphate buffer saline (PBS), Boxb before A. fumigatus infection. The abdominal cavity extracted macrophages were pretreated with PBS, Boxb, TLR4 inhibitor (CLI-095), Dimethyl sulfoxide (DMSO) separately before A. fumigatus hyphae stimulation. HMGB1 was detected in normal and infected mice corneas and macrophages by real-time reverse transcriptase polymerase chain reaction (RT-PCR), the TLR4, MyD88, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) were detected by Western blot and PCR. In BALB/c mice corneas, the expressions of TLR4, HMGB1, IL-1β, TNF-α were increased after A. fumigatus infection. While pretreatment with Boxb significantly increased the expressions of TLR4, HMGB1, MyD88, IL-1β, TNF-α compared with PBS control after infection. In BALB/c mice abdominal cavity extracted macrophages, pretreatment with Boxb increased the expressions of TLR4, HMGB1, MyD88, IL-1β, TNF-α, while pretreatment with CLI-095 and Boxb significantly decreased the expressions of TLR4, HMGB1, MyD88, IL-1β, TNF-α. In A. fumigatus keratitis, Boxb play a pro-inflammatory role in corneal anti-fungi immune response through the HMGB1-TLR4-MyD88 signal pathway.

  19. The effect of topically administered latanoprost on the cochlear blood flow and hearing.

    PubMed

    Jang, Chul Ho; Cho, Yong Beom; Choi, Cheol Hee; Um, Jae-Young; Wang, Pa-Chun; Pak, Sok Cheon

    2013-06-01

    The application of intratympanic latanoprost (PGF2α analog) has been recently used to alleviate vertigo, disequilibrium and to improve hearing in Meniere's disease patients. However, there is no known report on the effect of topically applied latanoprost on hearing and cochlear hemodynamic parameters including cochlear blood flow (CBF) and vascular conductance. Our goal was to assess the influence of topically applied latanoprost on cochlear blood flow (CBF) and hearing. Twenty male Sprague-Dawley rats were randomly divided into the group A, 50 μl of latanoprost (1 ml containing 50 μg, n=10) and group B, 100 μl (1 ml containing 50 μg, n=10). Topical application of latanoprost was performed at the right side, and the left side was applied with phosphate buffered saline (PBS) as a negative control. Five rats at each group were used to measure cochlear blood flow (CBF). And the others at each group were used for hearing test by auditory brainstem response (ABR). After physiological examination, bullas were extracted. The changes of cochlear hair cells were observed by performing the field emission-scanning electron microscopy (FE-SEM). The CBF of both groups was found to be decreased compared to the PBS applied left side. Significant decrement of CBF was observed in group B compared to the group A. Significant elevation of hearing threshold at high frequencies was observed in both groups compared to the PBS applied group. However, inner and outer hair cells were intact. Topically administered latanoprost decreased the CBF and impaired hearing. Based on our findings, additional studies are required to evaluate the side effects of intratympanic latanoprost before its use in clinical practice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Analytical ultracentrifugation with fluorescence detection system reveals differences in complex formation between recombinant human TNF and different biological TNF antagonists in various environments

    PubMed Central

    Krayukhina, Elena; Noda, Masanori; Ishii, Kentaro; Maruno, Takahiro; Wakabayashi, Hirotsugu; Tada, Minoru; Suzuki, Takuo; Ishii-Watabe, Akiko; Kato, Masahiko; Uchiyama, Susumu

    2017-01-01

    ABSTRACT A number of studies have attempted to elucidate the binding mechanism between tumor necrosis factor (TNF) and clinically relevant antagonists. None of these studies, however, have been conducted as close as possible to physiologic conditions, and so the relationship between the size distribution of TNF-antagonist complexes and the antagonists' biological activity or adverse effects remains elusive. Here, we characterized the binding stoichiometry and sizes of soluble TNF-antagonist complexes for adalimumab, infliximab, and etanercept that were formed in human serum and in phosphate-buffered saline (PBS). Fluorescence-detected sedimentation velocity analytical ultracentrifugation analyses revealed that adalimumab and infliximab formed a range of complexes with TNF, with the major complexes consisting of 3 molcules of the respective antagonist and one or 2 molcules of TNF. Considerably greater amounts of high-molecular-weight complexes were detected for infliximab in human serum. The emergence of peaks with higher sedimentation coefficients than the adalimumab monomer as a function of added human serum albumin (HSA) concentration in PBS suggested weak reversible interactions between HSA and immunoglobulins. Etanerept exclusively formed 1:1 complexes with TNF in PBS, and a small amount of complexes with higher stoichiometry was detected in human serum. Consistent with these biophysical characterizations, a reporter assay showed that adalimumab and infliximab, but not etanercept, exerted FcγRIIa- and FcγRIIIa-mediated cell signaling in the presence of TNF and that infliximab exhibited higher potency than adalimumab. This study shows that assessing distribution profiles in serum will contribute to a more comprehensive understanding of the in vivo behavior of therapeutic proteins. PMID:28387583

  1. Differential activation of peritoneal cells by subcutaneous treatment of rats with cryptococcal antigens.

    PubMed

    Baronetti, José L; Chiapello, Laura S; Garro, Ana P; Masih, Diana T

    2009-08-01

    Previous studies in our laboratory have shown that the subcutaneous pretreatment of rats with heat-killed cells (HKC) of Cryptococcus neoformans emulsified in complete Freund adjuvant (CFA) promotes protective immunity against an intraperitoneal challenge with C. neoformans. In contrast, subcutaneous treatment with the capsular polysaccharide (PSC) emulsified in CFA exacerbates the cryptococcal infection. The purpose of this study was to analyze the mechanisms involved in these phenomena. Adherent peritoneal cells from rats treated with HKC-CFA showed upregulated ED2, CD80, and CD86 expression; an increase in the level of production of anticryptococcal metabolites; and the enhanced production of interleukin-12 (IL-12) in comparison with the findings for cells from rats treated with CFA-phosphate-buffered saline (PBS). Adherent peritoneal cells from rats treated with PSC-CFA, however, also presented upregulated ED2, CD80, and CD86 expression compared to the level of expression for peritoneal cells from controls, but these cells showed an increase in arginase activity and decreased levels of production of IL-12 and tumor necrosis factor (TNF) compared with the activity and levels of production by peritoneal cells from CFA-PBS-treated rats. In addition, treatment with HKC-CFA resulted in a rise in the phagocytic and anticryptococcal activities of adherent peritoneal cells compared to those for control rats. However, adherent peritoneal cells from rats treated with PSC-CFA presented a reduction in anticryptococcal activity in comparison with that for cells from animals treated with CFA-PBS. These results show the differential activation between adherent peritoneal cells from HKC-CFA- and PSC-CFA-treated rats, with this differential activation at the primary site of infection possibly being responsible, at least in part, for the phenomena of protection and exacerbation observed in our model.

  2. In Vitro and In Vivo Effectiveness of an Innovative Silver-Copper Nanoparticle Coating of Catheters To Prevent Methicillin-Resistant Staphylococcus aureus Infection

    PubMed Central

    Ballo, Myriam K. S.; Pulgarin, César; Hopf, Nancy; Berthet, Aurélie; Kiwi, John; Moreillon, Philippe; Bizzini, Alain

    2016-01-01

    In this study, silver/copper (Ag/Cu)-coated catheters were investigated for their efficacy in preventing methicillin-resistant Staphylococcus aureus (MRSA) infection in vitro and in vivo. Ag and Cu were sputtered (67/33% atomic ratio) on polyurethane catheters by direct-current magnetron sputtering. In vitro, Ag/Cu-coated and uncoated catheters were immersed in phosphate-buffered saline (PBS) or rat plasma and exposed to MRSA ATCC 43300 at 104 to 108 CFU/ml. In vivo, Ag/Cu-coated and uncoated catheters were placed in the jugular vein of rats. Directly after, MRSA (107 CFU/ml) was inoculated in the tail vein. Catheters were removed 48 h later and cultured. In vitro, Ag/Cu-coated catheters preincubated in PBS and exposed to 104 to 107 CFU/ml prevented the adherence of MRSA (0 to 12% colonization) compared to uncoated catheters (50 to 100% colonization; P < 0.005) and Ag/Cu-coated catheters retained their activity (0 to 20% colonization) when preincubated in rat plasma, whereas colonization of uncoated catheters increased (83 to 100%; P < 0.005). Ag/Cu-coating protection diminished with 108 CFU/ml in both PBS and plasma (50 to 100% colonization). In vivo, Ag/Cu-coated catheters reduced the incidence of catheter infection compared to uncoated catheters (57% versus 79%, respectively; P = 0.16) and bacteremia (31% versus 68%, respectively; P < 0.05). Scanning electron microscopy of explanted catheters suggests that the suboptimal activity of Ag/Cu catheters in vivo was due to the formation of a dense fibrin sheath over their surface. Ag/Cu-coated catheters thus may be able to prevent MRSA infections. Their activity might be improved by limiting plasma protein adsorption on their surfaces. PMID:27353266

  3. Kinetics of Innate Immune Response to Yersinia pestis after Intradermal Infection in a Mouse Model

    PubMed Central

    Jarrett, Clayton O.; Gardner, Donald; Hinnebusch, B. Joseph

    2012-01-01

    A hallmark of Yersinia pestis infection is a delayed inflammatory response early in infection. In this study, we use an intradermal model of infection to study early innate immune cell recruitment. Mice were injected intradermally in the ear with wild-type (WT) or attenuated Y. pestis lacking the pYV virulence plasmid (pYV−). The inflammatory responses in ear and draining lymph node samples were evaluated by flow cytometry and immunohistochemistry. As measured by flow cytometry, total neutrophil and macrophage recruitment to the ear in WT-infected mice did not differ from phosphate-buffered saline (PBS) controls or mice infected with pYV−, except for a transient increase in macrophages at 6 h compared to the PBS control. Limited inflammation was apparent even in animals with high bacterial loads (105 to 106 CFU). In addition, activation of inflammatory cells was significantly reduced in WT-infected mice as measured by CD11b and major histocompatibility complex class II (MHC-II) expression. When mice infected with WT were injected 12 h later at the same intradermal site with purified LPS, Y. pestis did not prevent recruitment of neutrophils. However, significant reduction in neutrophil activation remained compared to that of PBS and pYV− controls. Immunohistochemistry revealed qualitative differences in neutrophil recruitment to the skin and draining lymph node, with WT-infected mice producing a diffuse inflammatory response. In contrast, focal sites of neutrophil recruitment were sustained through 48 h postinfection in pYV−-infected mice. Thus, an important feature of Y. pestis infection is reduced activation and organization of inflammatory cells that is at least partially dependent on the pYV virulence plasmid. PMID:22966041

  4. Angiotensin II improves random-flap viability in a rat model.

    PubMed

    Okuyama, N; Roda, N; Sherman, R; Guerrero, A; Dougherty, W; Nguyen, T; diZerega, G; Rodgers, K

    1999-03-01

    Angiotensin II (AII) is a naturally occurring peptide that has been shown to be angiogenic, cause the proliferation of several primary cell types (including endothelial cells), accelerate the repair of dermal injuries, and increase production of growth factors and extracellular matrix. The effect of a single administration of AII on the viability and vascularity of a random flap was assessed in a rat model. In the control model, the viability of the distal portion of the flap was reduced consistently by postoperative day 8. Initially, AII was administered in an aqueous vehicle (phosphate-buffered saline [PBS]) and a viscous vehicle (10% carboxymethyl cellulose [CMC]). Administration of 1 mg per milliliter AII in PBS did not affect the viability of random flaps (1.2 x 7 cm) in this animal model. However, a single administration of a higher dose of AII in PBS (10 mg per milliliter) or 1 mg per milliliter AII in the CMC vehicle resulted in 67% of the grafts being fully viable at postsurgical day 12, in contrast to vehicle-treated control flaps, none of which were fully viable at day 12. Furthermore, the portion of the flap that was viable was increased significantly (p < or = 0.05). Subsequently, a study was conducted to assess the dose-response curve for AII in a CMC vehicle in this rat model. As the dose of AII was reduced, the percentage of animals with fully viable flaps and the percentage of the flap that was viable decreased correspondingly. Administration of 0.03 mg per milliliter AII and greater increased significantly (p < or = 0.05) the viability of the flaps. In conclusion, AII appears to be highly efficacious in increasing the percentage of distal flap surface area survival when administered as a single topical dose to the wound bed.

  5. In vitro and ex vivo characterisation of an in situ gelling formulation for sustained lidocaine release with potential use following knee arthroplasty.

    PubMed

    Sharma, Manisha; Chandramouli, Kaushik; Curley, Louise; Pontre, Beau; Reilly, Keryn; Munro, Jacob; Hill, Andrew; Young, Simon; Svirskis, Darren

    2018-06-01

    Sustained lidocaine release via a thermoresponsive poloxamer-based in situ gelling system has the potential to alleviate pain following knee arthroplasty. A previously developed formulation showed a promising drug release profile in synthetic phosphate-buffered saline (PBS). To support the translation of this formulation, ex vivo characterisation was warranted. This study therefore aimed (1) to modify the previously developed formulation to reduce the burst release, (2) to compare the release behaviour into ex vivo human intra-articular fluid (IAF) and PBS and (3) to determine the formulation spread in an ex vivo human knee using magnetic resonance imaging (MRI). All formulations provided sustained release out to 72 h; polyvinyl pyrrolidone was the most effective additive yielding a small yet significant decrease (p < 0.05) in the burst release. Release of lidocaine from the formulation occurred significantly faster into IAF compared to PBS (1.4 times greater release in the first 24 h), correlating with faster rates of gel erosion in IAF. Injection was easily achieved through a 21-gauge (G) needle into the synovial space of a human cadaveric knee, and MRI scans revealed effective spreading of the formulation throughout the joint cavity. The pattern of spread is promising for the drug to reach the widespread nerve endings in the joint capsule; the effect of this spread on release in an in vivo setting will be the subject of future studies. The demonstrated properties indicate that the in situ gelling formulation has the potential to be used clinically to treat post-operative pain following knee arthroplasty.

  6. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  7. Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly(4-vinylbenzylphosphonate)

    NASA Astrophysics Data System (ADS)

    Kamimura, Masao; Kanayama, Naoki; Tokuzen, Kimikazu; Soga, Kohei; Nagasaki, Yukio

    2011-09-01

    A novel poly(ethylene glycol) (PEG)-based block copolymer possessing a 4-vinylbenzylphosphonate repeating unit in another segment (PEG-block-poly(4-vinylbenzylphosphonate)) (PEG-b-PVBP) was designed and successfully synthesized. As a control, an end-functionalized PEG possessing a mono-phosphonate group (PEG-PO3H2) was also synthesized. The surface of near-infrared (NIR) phosphors (i.e., ytterbium (Yb) and erbium (Er) ion-codoped Y2O3 nanoparticles (YNPs)) were modified with PEG-b-PVBP (PEG-YNP(b)s) and PEG-PO3H2 (PEG-YNP(1)s). The adsorption of PEG-b-PVBP and PEG-PO3H2 was estimated by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The physicochemical characteristics of the obtained YNP samples were analyzed by ζ-potential and dynamic light scattering (DLS) measurements. The ζ-potentials of YNPs modified by these polymers were close to zero, indicating the effective coverage of the YNP surface by our new PEG derivatives. However, the dispersion stability of the PEGylated YNPs was strongly affected by the structure of the PEG terminus. The average diameter of the PEG-YNP(1)s increased, and aggregates precipitated after less than 1 h in phosphate buffer saline (PBS). In contrast, the size did not change at all in the case of PEG-YNP(b)s and the dispersion in PBS was stable for over 1 week. PEG-YNP(b)s also showed high erosion resistance under acidic conditions. The multiple coordinated PVBP segment of the block copolymer on the YNP surface plays a substantial role in improving such dispersion stability. The excellent dispersion stability and strong NIR luminescence of the obtained PEG-YNP(b)s were also confirmed in fetal bovine serum (FBS) solution over 1 week. Furthermore, in vivo NIR imaging of live mice was performed, and the 1550 nm NIR emission of PEG-YNP(b)s from the organ of live mice was confirmed without dissection.A novel poly(ethylene glycol) (PEG)-based block copolymer possessing a 4-vinylbenzylphosphonate repeating unit in another segment (PEG-block-poly(4-vinylbenzylphosphonate)) (PEG-b-PVBP) was designed and successfully synthesized. As a control, an end-functionalized PEG possessing a mono-phosphonate group (PEG-PO3H2) was also synthesized. The surface of near-infrared (NIR) phosphors (i.e., ytterbium (Yb) and erbium (Er) ion-codoped Y2O3 nanoparticles (YNPs)) were modified with PEG-b-PVBP (PEG-YNP(b)s) and PEG-PO3H2 (PEG-YNP(1)s). The adsorption of PEG-b-PVBP and PEG-PO3H2 was estimated by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The physicochemical characteristics of the obtained YNP samples were analyzed by ζ-potential and dynamic light scattering (DLS) measurements. The ζ-potentials of YNPs modified by these polymers were close to zero, indicating the effective coverage of the YNP surface by our new PEG derivatives. However, the dispersion stability of the PEGylated YNPs was strongly affected by the structure of the PEG terminus. The average diameter of the PEG-YNP(1)s increased, and aggregates precipitated after less than 1 h in phosphate buffer saline (PBS). In contrast, the size did not change at all in the case of PEG-YNP(b)s and the dispersion in PBS was stable for over 1 week. PEG-YNP(b)s also showed high erosion resistance under acidic conditions. The multiple coordinated PVBP segment of the block copolymer on the YNP surface plays a substantial role in improving such dispersion stability. The excellent dispersion stability and strong NIR luminescence of the obtained PEG-YNP(b)s were also confirmed in fetal bovine serum (FBS) solution over 1 week. Furthermore, in vivo NIR imaging of live mice was performed, and the 1550 nm NIR emission of PEG-YNP(b)s from the organ of live mice was confirmed without dissection. Electronic supplementary information (ESI) available: 1H-NMR spectra of PEG-b-PCMS, PEG-b-PDEVBP and PEG-b-PVBP, 31P-NMR spectra of PEG-b-PDEVBP and PEG-b-PVBP, schematic representation of PEG-PO3H2 synthesis, 1H-NMR spectra of PEG-PO3Et2 and PEG-PO3H2, FT-IR spectra of YNP samples, PEG brush density on the YNP surface, and size distribution of YNP samples under acidic conditions are described. See DOI: 10.1039/c1nr10466g

  8. One-pot synthesis and lubricity of fluorescent carbon dots applied on PCL-PEG-PCL hydrogel.

    PubMed

    Guo, Junde; Mei, Tangjie; Li, Yue; Hafezi, Mahshid; Lu, Hailin; Li, Jianhui; Dong, Guangneng

    2018-06-12

    This work presents a method for one-pot synthesis of N-doped nanometer-size carbon dots, which can be assembled with thermosensitive poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) hydrogel to achieve slow-release lubricity. The typical property of this green production was studied by fourier transform infrared (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). The photoluminescence of composite PCEC/CDs hydrogel and its released solutions were characterized by ultraviolet spectrum, and the rheological properties were tested by rotary rheometer. Tribological performance of the released solution from composite PCEC/CDs hydrogel was obtained to compare with PBS and pure CDs solution. The experimental results reveal that the CDs contain the chemical groups of N-H, C-OH/C-O-C and -COOH, etc. In addition, the diameter of the CDs is in the range of 6~8 nm. The phase transition behavior of PCEC/CDs hydrogel can be still kept and its viscoelasticity hydrogel is improved by approximatively 7%. Furthermore, friction coefficient of the released solution from composite PCEC/CDs hydrogel decreases by about 70% than that of PBS. Besides, the wear condition can be improved by a lubricating transfer film formed by released CDs. This novel strategy for slow-release application is valuable for drug delivery and bio-tribology.

  9. Evaluation of intervertebral disc regeneration with implantation of bone marrow mesenchymal stem cells (BMSCs) using quantitative T2 mapping: a study in rabbits.

    PubMed

    Cai, Feng; Wu, Xiao-Tao; Xie, Xin-Hui; Wang, Feng; Hong, Xin; Zhuang, Su-Yang; Zhu, Lei; Rui, Yun-Feng; Shi, Rui

    2015-01-01

    The aim of the study was to investigate the curative effects of transplantation of bone marrow mesenchymal stem cells (BMSCs) on intervertebral disc regeneration and to investigate the feasibility of the quantitative T2 mapping method for evaluating repair of the nucleus pulposus after implantation of BMSCs. Forty-eight New Zealand white rabbits were used to establish the lumber disc degenerative model by stabbing the annulus fibrosus and then randomly divided into four groups, i.e. two weeks afterwards, BMSCs or phosphate-buffered saline (PBS) were transplanted into degenerative discs (BMSCs group and PBS group), while the operated rabbits without implantation of BMSCs or PBS served as the sham group and the rabbits without operation were used as the control group. At weeks two, six and ten after operation, the T2 values and disc height indices (DHI) were calculated by magnetic resonance imaging (MRI 3.0 T), and the gene expressions of type II collagen (COL2) and aggrecan (ACAN) in degenerative discs were evaluated by real-time reverse transcription polymerase chain reaction (RT-PCR). T2 values for the nucleus pulposus were correlated with ACAN or COL2 expression by regression analysis. Cell clusters, disorganised fibres, interlamellar glycosaminoglycan (GAG) matrix and vascularisation were observed in lumber degenerative discs. BMSCs could be found to survive in intervertebral discs and differentiate into nucleus pulposus-like cells expressing COL2 and ACAN. The gene expression of COL2 and ACAN increased during ten weeks after transplantation as well as the T2 signal intensity and T2 value. The DHI in the BMSCs group decreased more slowly than that in PBS and sham groups. The T2 value correlated significantly with the gene expression of ACAN and COL2 in the nucleus pulposus. Transplantation of BMSCs was able to promote the regeneration of degenerative discs. Quantitative and non-invasive T2 mapping could be used to evaluate the regeneration of the nucleus pulposus with good sensitivity.

  10. TH-CD-201-11: Optimizing the Response and Cost of a DNA Double-Strand Break Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obeidat, M; Cline, K; Stathakis, S

    Purpose: A DNA double-strand break (DSB) dosimeter was developed to measure the biological effect of radiation. The goal here is to refine the fabrication method of this dosimeter to reproducibly create a low coefficient of variation (CoV) and reduce the cost for the dosimeter. Methods: Our dosimeter consists of 4 kilo-base pair DNA strands (labeled on one end with biotin and on the other with fluorescein) attached to streptavidin magnetic beads. The final step of the DNA dosimeter fabrication is to suspend these attached beads in phosphate-buffered saline (PBS). The amount of PBS used to suspend the attached beads andmore » the relative volume of the DNA strands to the beads both affect the CoV and dosimeter cost. We diluted the beads attached with DNA in different volumes of PBS (100, 200, and 400 µL) to create different concentrations of the DNA dosimeter. Then we irradiated these dosimeters (50 µL samples) in a water-equivalent plastic phantom at 25 and 50 Gy (three samples per dose) and calculated the CoV for each dosimeter concentration. Also, we used different masses of DNA strands (1, 2, 8, 16, 24, and 32 µg) to attach to the same volume of magnetic beads (100 µL) to explore how this affects the cost of the dosimeter. Results: The lowest CoV was produced for the highest concentration of dosimeter (100 µL of PBS), which created CoV of 2.0 and 1.0% for 25 and 50 Gy, respectively. We found that the lowest production cost for the dosimeter occurs by attaching 16 µg of DNA strands with 100 µL of beads. Conclusion: : We optimized the fabrication of the DNA dosimeter to produce low CoV and cost, but we still need to explore ways to further improve the dosimeter for use at lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)« less

  11. Zoledronic acid increases the circulating soluble RANKL level in mice, with a further increase in lymphocyte-derived soluble RANKL in zoledronic acid- and glucocorticoid-treated mice stimulated with bacterial lipopolysaccharide.

    PubMed

    Abe, Takahiro; Sato, Tsuyoshi; Kokabu, Shoichiro; Hori, Naoko; Shimamura, Yumiko; Sato, Tomoya; Yoda, Tetsuya

    2016-07-01

    The nitrogen-containing bisphosphonate (BP) zoledronic acid (ZA) is a potent antiresorptive drug used in conjunction with standard cancer therapy to treat osteolysis or hypercalcemia due to malignancy. However, it is unclear how ZA influences the circulating levels of bone remodeling factors. The aim of this study was to evaluate the effects of ZA on the serum levels of soluble receptor activator of NF-kB ligand (sRANKL) and osteoprotegerin (OPG). The following four groups of C57BL/6 mice were used (five mice per group): (1) the placebo+phosphate-buffered saline (PBS) group, in which placebo-treated mice were injected once weekly with PBS for 4weeks; (2) the placebo+ZA group, in which placebo-treated mice were injected once weekly with ZA for 4weeks; (3) the prednisolone (PSL)+PBS group, in which PSL-treated mice were injected once weekly with PBS for 4weeks; and (4) the PSL+ZA group, in which PSL-treated mice were injected once weekly with ZA for 4weeks. At the 3-week time point, all mice were subjected to oral inflammatory stimulation with bacterial lipopolysaccharide (LPS). The sera of these mice were obtained every week and the levels of sRANKL and OPG were measured using enzyme-linked immunosorbent assay. At the time of sacrifice, femurs were prepared for micro-computed tomography (micro-CT), histological, and histomorphometric analyses. Our data indicated that ZA administration remarkably reduced bone turnover and significantly increased the basal level of sRANKL. Interestingly, the PSL+ZA group showed a dramatically elevated sRANKL level after LPS stimulation. In contrast, the PSL+ZA group in nonobese diabetic mice with severe combined immunodeficiency disease (NOD-SCID mice), which are characterized by the absence of functional T- and B-lymphocytes, showed no increase in the sRANKL level. Our data suggest that, particularly with combination treatment of ZA and glucocorticoids, surviving lymphocytes might be the source of inflammation-induced sRANKL. Thus, circulating sRANKL levels might be modulated by ZA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Reduction of friction by recombinant human proteoglycan 4 in IL-1α stimulated bovine cartilage explants.

    PubMed

    Larson, Katherine M; Zhang, Ling; Elsaid, Khaled A; Schmidt, Tannin A; Fleming, Braden C; Badger, Gary J; Jay, Gregory D

    2017-03-01

    A boundary lubricant attaches and protects sliding bearing surfaces by preventing interlocking asperity-asperity contact. Proteoglycan-4 (PRG4) is a boundary lubricant found in the synovial fluid that provides chondroprotection to articular surfaces. Inflammation of the diarthrodial joint modulates local PRG4 concentration. Thus, we measured the effects of inflammation, with Interleukin-1α (IL-1α) incubation, upon boundary lubrication and PRG4 expression in bovine cartilage explants. We further aimed to determine whether the addition of exogenous human recombinant PRG4 (rhPRG4) could mitigate the effects of inflammation on boundary lubrication and PRG4 expression in vitro. Cartilage explants, following a 7 day incubation with IL-1α, were tested in a disc-on-disc configuration using either rhPRG4 or saline (PBS control) as a lubricant. Following mechanical testing, explants were studied immunohistochemically or underwent RNA extraction for real-time polymerase chain reaction (RT-PCR). We found that static coefficient of friction (COF) significantly decreased to 0.14 ± 0.065 from 0.21 ± 0.059 (p = 0.014) in IL-1α stimulated explants lubricated with rhPRG4, as compared to PBS. PRG4 expression was significantly up regulated from 30.8 ± 19 copies in control explants lubricated with PBS to 3330 ± 1760 copies in control explants lubricated with rhPRG4 (p < 0.001). Explants stimulated with IL-1α displayed no increase in PRG4 expression upon lubrication with rhPRG4, but with PBS as the lubricant, IL-1α stimulation significantly increased PRG4 expression compared to the control condition from 30.8 ± 19 copies to 401 ± 340 copies (p = 0.015). Overall, these data suggest that exogenous rhPRG4 may provide a therapeutic option for reducing friction in transient inflammatory conditions and increasing PRG4 expression. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:580-589, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Bromelain limits airway inflammation in an ovalbumin-induced murine model of established asthma.

    PubMed

    Secor, Eric R; Shah, Sonali J; Guernsey, Linda A; Schramm, Craig M; Thrall, Roger S

    2012-01-01

    Allergic asthma continues to increase despite new pharmacological advances for both acute treatment and chronic-disease management. Asthma is a multifactorial disease process with genetic, allergic, infectious, environmental, and dietary origins. Researchers are investigating the benefits of lifestyle changes and alternative asthma treatments, including the ability of bromelain to inhibit inflammation. Bromelain is a commonly used, proteolytically active pineapple extract. The present study intended to determine the ability of bromelain to reduce the inflammation of preexisting asthma via an ovalbumin (OVA)-induced murine model of allergic airway disease (AAD). The research team designed a study examining the effects of bromelain in a control group of mice that received phosphate buffered saline (PBS) only and in an intervention group that received bromelain in PBS. Setting The study took place in the Department of Immunology at the University of Connecticut's School of Medicine, Farmington. Intervention The research team sensitized female C57BL/6J mice with intraperitoneal OVA/alum and then challenged them with OVA aerosolization for 10 consecutive days. On day 4, the team began administering daily doses of PBS to the control group (n = 10) and bromelain (6mg/kg) in PBS to the bromelain (intervention) group (n = 10). The primary measures included bronchoalveolar lavage (BAL) cellular differential, cellular phenotype via flow cytometry, and lung histology. Additional outcomes included testing for serum cytokines and immunoglobulin. Bromelain treatment of AAD mice (bromelain group) resulted in significant anti-inflammatory activity as indicated by reduced BAL total leukocytes (P < .05), eosinophils (P < .05), and cellular infiltrates via lung pathology (P < .005), as compared to the control group. In addition, bromelain significantly reduced BAL CD4+ and CD8+ T cells without affecting cell numbers in the spleen or hilar lymph node. The study found decreased interleukins IL-4, IL-12, IL-17, as well as IFN-α in the serum of bromelain-treated animals. The results suggest that bromelain has a therapeutic effect in established AAD, which may translate into an effective adjunctive therapy in patients with similar conditions, such as allergic asthma, who have chosen to initiate treatment after the onset of symptoms.

  14. Effects of a Single Intra-Articular Injection of a Microsphere Formulation of Triamcinolone Acetonide on Knee Osteoarthritis Pain: A Double-Blinded, Randomized, Placebo-Controlled, Multinational Study.

    PubMed

    Conaghan, Philip G; Hunter, David J; Cohen, Stanley B; Kraus, Virginia B; Berenbaum, Francis; Lieberman, Jay R; Jones, Deryk G; Spitzer, Andrew I; Jevsevar, David S; Katz, Nathaniel P; Burgess, Diane J; Lufkin, Joelle; Johnson, James R; Bodick, Neil

    2018-04-18

    Intra-articular corticosteroids relieve osteoarthritis pain, but rapid systemic absorption limits efficacy. FX006, a novel, microsphere-based, extended-release triamcinolone acetonide (TA) formulation, prolongs TA joint residence and reduces systemic exposure compared with standard TA crystalline suspension (TAcs). We assessed symptomatic benefits and safety of FX006 compared with saline-solution placebo and TAcs. In this Phase-3, multicenter, double-blinded, 24-week study, adults ≥40 years of age with knee osteoarthritis (Kellgren-Lawrence grade 2 or 3) and average-daily-pain (ADP)-intensity scores of ≥5 and ≤9 (0 to 10 numeric rating scale) were centrally randomized (1:1:1) to a single intra-articular injection of FX006 (32 mg), saline-solution placebo, or TAcs (40 mg). The primary end point was change from baseline to week 12 in weekly mean ADP-intensity scores for FX006 compared with saline-solution placebo. Secondary end points were area-under-effect (AUE) curves of the change in weekly mean ADP-intensity scores from baseline to week 12 for FX006 compared with saline-solution placebo, AUE curves of the change in weekly mean ADP-intensity scores from baseline to week 12 for FX006 compared with TAcs, change in weekly mean ADP-intensity scores from baseline to week 12 for FX006 compared with TAcs, and AUE curves of the change in weekly mean ADP-intensity scores from baseline to week 24 for FX006 compared with saline-solution placebo. Exploratory end points included week-12 changes in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Knee Injury and Osteoarthritis Outcome Score Quality of Life (KOOS-QOL) subscale scores for FX006 compared with saline-solution placebo and TAcs. Adverse events were elicited at each inpatient visit. The primary end point was met. Among 484 treated patients (n = 161 for FX006, n = 162 for saline-solution placebo, and n = 161 for TAcs), FX006 provided significant week-12 improvement in ADP intensity compared with that observed for saline-solution placebo (least-squares mean change from baseline: -3.12 versus -2.14; p < 0.0001) indicating ∼50% improvement. FX006 afforded improvements over saline-solution placebo for all secondary and exploratory end points (p < 0.05). Improvements in osteoarthritis pain were not significant for FX006 compared with TAcs using the ADP-based secondary measures. Exploratory analyses of WOMAC-A, B, and C and KOOS-QOL subscales favored FX006 (p ≤ 0.05). Adverse events were generally mild, occurring at similar frequencies across treatments. FX006 provided significant, clinically meaningful pain reduction compared with saline-solution placebo at week 12 (primary end point). Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.

  15. Effects of a Single Intra-Articular Injection of a Microsphere Formulation of Triamcinolone Acetonide on Knee Osteoarthritis Pain

    PubMed Central

    Conaghan, Philip G.; Hunter, David J.; Cohen, Stanley B.; Kraus, Virginia B.; Berenbaum, Francis; Lieberman, Jay R.; Jones, Deryk G.; Spitzer, Andrew I.; Jevsevar, David S.; Katz, Nathaniel P.; Burgess, Diane J.; Lufkin, Joelle; Johnson, James R.; Bodick, Neil

    2018-01-01

    Background: Intra-articular corticosteroids relieve osteoarthritis pain, but rapid systemic absorption limits efficacy. FX006, a novel, microsphere-based, extended-release triamcinolone acetonide (TA) formulation, prolongs TA joint residence and reduces systemic exposure compared with standard TA crystalline suspension (TAcs). We assessed symptomatic benefits and safety of FX006 compared with saline-solution placebo and TAcs. Methods: In this Phase-3, multicenter, double-blinded, 24-week study, adults ≥40 years of age with knee osteoarthritis (Kellgren-Lawrence grade 2 or 3) and average-daily-pain (ADP)-intensity scores of ≥5 and ≤9 (0 to 10 numeric rating scale) were centrally randomized (1:1:1) to a single intra-articular injection of FX006 (32 mg), saline-solution placebo, or TAcs (40 mg). The primary end point was change from baseline to week 12 in weekly mean ADP-intensity scores for FX006 compared with saline-solution placebo. Secondary end points were area-under-effect (AUE) curves of the change in weekly mean ADP-intensity scores from baseline to week 12 for FX006 compared with saline-solution placebo, AUE curves of the change in weekly mean ADP-intensity scores from baseline to week 12 for FX006 compared with TAcs, change in weekly mean ADP-intensity scores from baseline to week 12 for FX006 compared with TAcs, and AUE curves of the change in weekly mean ADP-intensity scores from baseline to week 24 for FX006 compared with saline-solution placebo. Exploratory end points included week-12 changes in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Knee Injury and Osteoarthritis Outcome Score Quality of Life (KOOS-QOL) subscale scores for FX006 compared with saline-solution placebo and TAcs. Adverse events were elicited at each inpatient visit. Results: The primary end point was met. Among 484 treated patients (n = 161 for FX006, n = 162 for saline-solution placebo, and n = 161 for TAcs), FX006 provided significant week-12 improvement in ADP intensity compared with that observed for saline-solution placebo (least-squares mean change from baseline: −3.12 versus −2.14; p < 0.0001) indicating ∼50% improvement. FX006 afforded improvements over saline-solution placebo for all secondary and exploratory end points (p < 0.05). Improvements in osteoarthritis pain were not significant for FX006 compared with TAcs using the ADP-based secondary measures. Exploratory analyses of WOMAC-A, B, and C and KOOS-QOL subscales favored FX006 (p ≤ 0.05). Adverse events were generally mild, occurring at similar frequencies across treatments. Conclusions: FX006 provided significant, clinically meaningful pain reduction compared with saline-solution placebo at week 12 (primary end point). Level of Evidence: Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence. PMID:29664853

  16. Effect of perfusion of bile salts solutions into the oesophagus of hiatal hernia patients and controls.

    PubMed Central

    Bachir, G S; Collis, J L

    1976-01-01

    Tests of the response to perfusion of the oesophagus were made in 54 patients divided into three groups. Group I consisted of patients with symptomatic hiatal hernia, group II hiatal hernia patients with peptic stricture, and group III normal individuals. Each individual oesophagus was perfused at a rate of 45-65 drops per minute over 25 minutes with six solutions: normal saline, N/10 HCl, taurine conjugates of bile salts in normal saline, taurine conjugates of bile salts in N/10 HCl, glycine conjugates of bile salts in normal saline, and taurine and glycine conjugates in a ratio of 1 to 2 in normal saline. It was found that acidified taurine solutions were more irritating than acid alone. With a 2mM/l solution of taurine in acid, symptoms are produced even in controls. With a 1 mM/l solution of the same conjugates, the majority of normal people feel slight heartburn or nothing, and therefore perfusion into the oesophagus of such a solution could be used as a test for oesophagitis. PMID:941112

  17. Evaluating Battery-like Reactions to Harvest Energy from Salinity Differences using Ammonium Bicarbonate Salt Solutions.

    PubMed

    Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A

    2016-05-10

    Mixing entropy batteries (MEBs) are a new approach to generate electricity from salinity differences between two aqueous solutions. To date, MEBs have only been prepared from solutions containing chloride salts, owing to their relevance in natural salinity gradients created from seawater and freshwater. We hypothesized that MEBs could capture energy using ammonium bicarbonate (AmB), a thermolytic salt that can be used to convert waste heat into salinity gradients. We examined six battery electrode materials. Several of the electrodes were unstable in AmB solutions or failed to produce expected voltages. Of the electrode materials tested, a cell containing a manganese oxide electrode and a metallic lead electrode produced the highest power density (6.3 mW m(-2) ). However, this power density is still low relative to previously reported NaCl-based MEBs and heat recovery systems. This proof-of-concept study demonstrated that MEBs could indeed be used to generate electricity from AmB salinity gradients. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Acid-base and hemodynamic status of patients with intraoperative hemorrhage using two solution types: Crystalloid Ringer lactate and 1.3% sodium bicarbonate in half-normal saline solution.

    PubMed

    Hashemi, Sayed Jalal; Heidari, Sayed Morteza; Yaraghi, Ahmad; Seirafi, Reza

    2016-01-01

    Intraoperative hemorrhage is one of the problems during surgery and, if it happens in a high volume without an immediate action to control, it can be fatal. Nowadays, various injectable solutions are used. The aim of this study was to compare the acid-base and hemodynamic status of the patient using two solutions, Ringer lactate and 1.3% sodium bicarbonate, in half saline solution. This clinical trial was performed at the Al-Zahra Hospital in 2013 on 66 patients who were randomly selected and put in two studied groups at the onset of hemorrhage. For the first group, crystalloid Ringer lactate solution and for the second group, 1.3% sodium bicarbonate in half-normal saline solution was used. Electrocardiogram, heart rate, O2 saturation non-invasive blood pressure and end-tidal CO2 were monitored. The arterial blood gas, blood electrolytes, glucose and blood urea nitrogen were measured before serum and blood injection. After the infusion of solutions and before blood transfusions, another sample was sent for measurement of blood parameters. Data were analyzed using SPSS software. The mean arterial pressure was significantly higher in the second group than in the first group at some times after the infusion of solutions. pHh levels, base excess, bicarbonate, sodium, strong ion differences and osmolarity were significantly greater and potassium and chloride were significantly lower in the second group than in the first group after the infusion of solutions. 1.3% sodium bicarbonate in half-normal saline solution can lead to a proper correction of hemodynamic instability. By maintaining hemodynamic status, osmolarity and electrolytes as well as better balance of acid-base, 1.3% sodium bicarbonate solution in half-normal saline solution can be more effective than Ringer lactate solution during intraoperative bleeding.

  19. Preservative-free 0.9% sodium chloride for flushing and locking peripheral intravenous access device: a prospective controlled trial.

    PubMed

    Wang, Rui; Luo, Ou; He, Liu; Li, Jia-Xin; Zhang, Ming-Guang

    2012-11-01

    In Mainland China, heparin saline solution is commonly used for flushing and locking peripheral intravenous access devices in clinical practice for a long time. We conducted a prospective controlled trial to compare the effectiveness and safety of preservative-free 0.9% sodium chloride solution versus heparin saline solution as flushing and locking solution for peripheral intravenous access devices. Patients with gastroenterological or hepatic diseases were enrolled for this study from August 2011 to October 2011. After non-randomized allocation, preservative-free 0.9% sodium chloride was used as flushing and locking solution in the sodium chloride solution group, while hepatic solution (10 U/mL) was given in the heparin saline solution group. The device related complications and its maintenance duration were compared between two groups. One-way ANOVA, Chi(2), or Mantel-Haenszel test were performed using SPSS 13.0 and RevMan 5.0. Totally, 181 and 178 peripheral intravenous access devices in the sodium chloride solution and heparin saline solution groups were included and analyzed. Results indicated than sodium chloride solution did not increase the risks of occlusion (7.7% vs. 7.9%) and other adverse events of peripheral intravenous access devices (P = 0.163). Sodium chloride solution neither shortened the duration of peripheral intravenous access devices maintenance (3.6 ± 1.1 days vs. 3.7 ± 1.2 days, P = 0.651), nor increased the proportion of abnormal withdrawal (29.3% vs. 31.5%, P = 0.654). Sodium chloride solution is as effective and safe as conventional heparin saline solution for flushing and locking peripheral intravenous access devices, which results from our evidence-based study and should be transferred to other nurses in China. © 2012 Wiley Publishing Asia Pty Ltd and Chinese Cochrane Center, West China Hospital of Sichuan University.

  20. Possible Courses for News and Public Affairs

    ERIC Educational Resources Information Center

    Wald, Richard C.

    1978-01-01

    Live programming, regular daily news programs, and documentary series, which are suggested as solutions to the limited scope of news and public affairs air time, would enable PBS to increase its coverage of news and public affairs. Some suggestions are also made for restructuring the functions of stations within the system to facilitate this…

  1. Low temperature cured poly-siloxane passivation for highly reliable a-InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu

    2018-05-01

    Low temperature processable passivation materials are necessary to fabricate highly reliable amorphous InGaZnO (a-IGZO) thin-film transistors (TFT) on organic substrates for flexible device applications. We investigated 3 types of poly-siloxane (Poly-SX) passivation layers fabricated by a solution process and cured at low temperatures (180 °C) for a-IGZO TFTs. This passivation layer greatly improves the stability of the a-IGZO device even after being subjected to positive (PBS) and negative bias stress (NBS). The field effect mobility (μ) of MePhQ504010 passivated on the TFT reached 8.34 cm2/Vs and had a small threshold voltage shift of 0.9 V after PBS, -0.8 V after NBS without the hump phenomenon. Furthermore, we analyzed the hydrogen and hydroxide states in the a-IGZO layer by secondary ion mass spectrometry and X-ray photoelectron spectroscopy to determine the cause of excellent electrical properties despite the curing performed at a low temperature. These results show the potential of the solution processed Poly-SX passivation layer for flexible devices.

  2. Studies on Poly(propylene fumarate-co-caprolactone diol) Thermoset Composites towards the Development of Biodegradable Bone Fixation Devices

    PubMed Central

    Jayabalan, M.

    2009-01-01

    The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus. PMID:20126578

  3. Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers.

    PubMed

    Hyun, Byung-Ryool; Choi, Joshua J; Seyler, Kyle L; Hanrath, Tobias; Wise, Frank W

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Room-temperature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures.

  4. Mechanical properties and corrosion behavior of Mg-HAP composites.

    PubMed

    Campo, R Del; Savoini, B; Muñoz, A; Monge, M A; Garcés, G

    2014-11-01

    Mg and Mg-HAP composites containing 5, 10 and 15 wt% of hydroxyapatite have been produced following a powder metallurgy route that consists of mixing raw powders and consolidation by extrusion. The microstructure, texture, mechanical behavior and resistance to corrosion under a PBS solution have been studied. Addition of HAP increases the microhardness of the composites, however the yield strength under compression slightly decreases. Texture analyses reveal a fiber texture for pure Mg that is weakened increasing the HAP fraction. This texture promotes twinning and softening of Mg and Mg-5HAP during the initial deformation stages. Mg-10HAP and Mg-15HAP present a strain-hardening dependence showing no softening. The volume fraction of HAP particles weakens the texture and favors the activation of secondary slip systems. Corrosion experiments in PBS solution have shown that Mg-5HAP exhibits the best resistance to corrosion. Texture and porosity appear to be the main material features controlling the corrosion rates of Mg-HAP composites under the present conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Studies on Poly(propylene fumarate-co-caprolactone diol) Thermoset Composites towards the Development of Biodegradable Bone Fixation Devices.

    PubMed

    Jayabalan, M

    2009-01-01

    The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus.

  6. Extracting renewable energy from a salinity difference using a capacitor.

    PubMed

    Brogioli, Doriano

    2009-07-31

    Completely renewable energy can be produced by using water solutions of different salinity, like river water and sea water. Many different methods are already known, but development is still at prototype stage. Here I report a novel method, based on electric double-layer capacitor technology. Two porous electrodes, immersed in the salt solution, constitute a capacitor. It is first charged, then the salt solution is brought into contact with fresh water. The electrostatic energy increases as the salt concentration of the solution is reduced due to diffusion. This device can be used to turn sources of salinity difference into completely renewable sources of energy. An experimental demonstration is given, and performances and possible improvements are discussed.

  7. Comparison of Irrigation Solutions and Devices in a Contaminated Musculoskeletal Wound Survival Model

    DTIC Science & Technology

    2009-01-01

    greatest reduction was seen with castile soap, which lowered the photon count to 13% of the pretreatment level. This was followed by benzalkonium chloride ...castile soap was significantly greater than that with the normal saline solution (p = 0.0069), while the reductions with benzalkonium chloride (p...the goats were assigned to four treatment groups: normal saline solution, bacitracin solution, castile soap, and benzalkonium chloride . All wounds

  8. Antibody-Functionalized Carbon Nanotube Transistors as Biosensors for the Detection of Prostate Cancer

    DTIC Science & Technology

    2013-09-01

    nearly identical responses to the chemically similar odorants 2-heptanone and n-amyl acetate. The molecules differ only by a single oxygen atom in...briefly bathed in activation buffer and placed in a solution of 11.3 mM NR,NR-bis(carboxymethyl)-L-lysine hydrate (NTA- NH2) prepared with PBS (0.1 M...purity nitrogen or argon gas. A solution containing mORs in digitonin micelles or nanodiscs, prepared as described above, was de- posited on the

  9. Influence of hydroxyapatite on the corrosion resistance of the Ti-13Nb-13Zr alloy.

    PubMed

    Duarte, Laís T; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2009-05-01

    Electrochemical analyses on the biocompatible alloy Ti-13Nb-13Zr wt% in an electrolyte simulating physiological medium (PBS solution) are reported. Hydroxyapatite (HA) films were obtained on the alloy by electrodeposition at constant cathodic current. Samples of the alloy covered with an anodic-oxide film or an anodic-oxide/HA film were analyzed by open circuit potential and electrochemical impedance spectroscopy measurements during 180 days in the PBS electrolyte. Analyses of the open-circuit potential (E (oc)) values indicated that the oxide/HA film presents better protection characteristics than the oxide only. This behavior was corroborated by the higher film resistances obtained from impedance data, indicating that, besides improving the alloy osteointegration, the hydroxyapatite film may also increase the corrosion protection of the biomaterial.

  10. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation

    PubMed Central

    Yun, Joho; Kim, Hyeon Woo; Lee, Jong-Hyun

    2016-01-01

    A micro electrical impedance spectroscopy (EIS)-on-a-needle for depth profiling (μEoN-DP) with a selective passivation layer (SPL) on a hypodermic needle was recently fabricated to measure the electrical impedance of biotissues along with the penetration depths. The SPL of the μEoN-DP enabled the sensing interdigitated electrodes (IDEs) to contribute predominantly to the measurement by reducing the relative influence of the connection lines on the sensor output. The discrimination capability of the μEoN-DP was verified using phosphate-buffered saline (PBS) at various concentration levels. The resistance and capacitance extracted through curve fitting were similar to those theoretically estimated based on the mixing ratio of PBS and deionized water; the maximum discrepancies were 8.02% and 1.85%, respectively. Depth profiling was conducted using four-layered porcine tissue to verify the effectiveness of the discrimination capability of the μEoN-DP. The magnitude and phase between dissimilar porcine tissues (fat and muscle) were clearly discriminated at the optimal frequency of 1 MHz. Two kinds of simulations, one with SPL and the other with complete passivation layer (CPL), were performed, and it was verified that the SPL was advantageous over CPL in the discrimination of biotissues in terms of sensor output. PMID:28009845

  11. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation.

    PubMed

    Yun, Joho; Kim, Hyeon Woo; Lee, Jong-Hyun

    2016-12-21

    A micro electrical impedance spectroscopy (EIS)-on-a-needle for depth profiling (μEoN-DP) with a selective passivation layer (SPL) on a hypodermic needle was recently fabricated to measure the electrical impedance of biotissues along with the penetration depths. The SPL of the μEoN-DP enabled the sensing interdigitated electrodes (IDEs) to contribute predominantly to the measurement by reducing the relative influence of the connection lines on the sensor output. The discrimination capability of the μEoN-DP was verified using phosphate-buffered saline (PBS) at various concentration levels. The resistance and capacitance extracted through curve fitting were similar to those theoretically estimated based on the mixing ratio of PBS and deionized water; the maximum discrepancies were 8.02% and 1.85%, respectively. Depth profiling was conducted using four-layered porcine tissue to verify the effectiveness of the discrimination capability of the μEoN-DP. The magnitude and phase between dissimilar porcine tissues (fat and muscle) were clearly discriminated at the optimal frequency of 1 MHz. Two kinds of simulations, one with SPL and the other with complete passivation layer (CPL), were performed, and it was verified that the SPL was advantageous over CPL in the discrimination of biotissues in terms of sensor output.

  12. Protective effect of a lipid-based preparation from Mycobacterium smegmatis in a murine model of progressive pulmonary tuberculosis.

    PubMed

    García, Maria de los Angeles; Borrero, Reinier; Lanio, Maria E; Tirado, Yanely; Alvarez, Nadine; Puig, Alina; Aguilar, Alicia; Canet, Liem; Mata Espinoza, Dulce; Barrios Payán, Jorge; Sarmiento, María Elena; Hernández-Pando, Rogelio; Norazmi, Mohd-Nor; Acosta, Armando

    2014-01-01

    A more effective vaccine against tuberculosis (TB) is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb), the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms), could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL) or nonadjuvanted (LMs) showed significant reductions in bacterial load (P < 0.01) compared to the negative control group (animals immunized with phosphate buffered saline (PBS)). Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG). Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P < 0.01) and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB.

  13. Ex vivo biomechanical characterization of syringe-needle ejections for intracerebral cell delivery.

    PubMed

    Wahlberg, Brendon; Ghuman, Harmanvir; Liu, Jessie R; Modo, Michel

    2018-06-15

    Intracerebral implantation of cell suspensions is finding its clinical translation with encouraging results in patients with stroke. However, the survival of cells in the brain remains poor. Although the biological potential of neural stem cells (NSCs) is widely documented, the biomechanical effects of delivering cells through a syringe-needle remain poorly understood. We here detailed the biomechanical forces (pressure, shear stress) that cells are exposed to during ejection through different sized needles (20G, 26G, 32G) and syringes (10, 50, 250 µL) at relevant flow rates (1, 5, 10 µL/min). A comparison of 3 vehicles, Phosphate Buffered Saline (PBS), Hypothermosol (HTS), and Pluronic, indicated that less viscous vehicles are favorable for suspension with a high cell volume fraction to minimize sedimentation. Higher suspension viscosity was associated with greater shear stress. Higher flow rates with viscous vehicle, such as HTS reduced viability by ~10% and also produced more apoptotic cells (28%). At 5 µL/min ejection using a 26G needle increased neuronal differentiation for PBS and HTS suspensions. These results reveal the biological impact of biomechanical forces in the cell delivery process. Appropriate engineering strategies can be considered to mitigate these effects to ensure the efficacious translation of this promising therapy.

  14. Reduction-sensitive micelles self-assembled from amphiphilic chondroitin sulfate A-deoxycholic acid conjugate for triggered release of doxorubicin.

    PubMed

    Liu, Hongxia; Wu, Shuqin; Yu, Jingmou; Fan, Dun; Ren, Jin; Zhang, Lei; Zhao, Jianguo

    2017-06-01

    Reduction-sensitive chondroitin sulfate A (CSA)-based micelles were developed. CSA was conjugated with deoxycholic acid (DOCA) via a disulfide linkage. The bioreducible conjugate (CSA-ss-DOCA) can form self-assembled micelles in aqueous medium. The critical micelle concentration (CMC) of CSA-ss-DOCA conjugate is 0.047mg/mL, and its mean diameter is 387nm. The anticancer drug doxorubicin (DOX) was chosen as a model drug, and was effectively encapsulated into the micelles with high loading efficiency. Reduction-sensitive micelles and reduction-insensitive control micelles displayed similar DOX release behavior in phosphate buffered saline (PBS, pH7.4). Notably, DOX release from the reduction-sensitive micelles in vitro was accelerated in the presence of 20mM glutathione-containing PBS environment. Moreover, DOX-loaded CSA-ss-DOCA (CSA-ss-DOCA/DOX) micelles exhibited intracellular reduction-responsive characteristics in human gastric cancer HGC-27 cells determined by confocal laser scanning microscopy (CLSM). Furthermore, CSA-ss-DOCA/DOX micelles demonstrated higher antitumor efficacy than reduction-insensitive control micelles in HGC-27 cells. These results suggested that reduction-sensitive CSA-ss-DOCA micelles had the potential as intracellular targeted carriers of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media.

    PubMed

    Ishihara, Hisashi; Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Maeda, Yukihide; Nishizaki, Kazunori

    2016-10-01

    Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.

  16. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens.

    PubMed

    Kim, Tae-Hyeong; Park, Juhee; Kim, Chi-Ju; Cho, Yoon-Kyoung

    2014-04-15

    This paper describes a micro total analysis system for molecular analysis of Salmonella, a major food-borne pathogen. We developed a centrifugal microfluidic device, which integrated the three main steps of pathogen detection, DNA extraction, isothermal recombinase polymerase amplification (RPA), and detection, onto a single disc. A single laser diode was utilized for wireless control of valve actuation, cell lysis, and noncontact heating in the isothermal amplification step, thereby yielding a compact and miniaturized system. To achieve high detection sensitivity, rare cells in large volumes of phosphate-buffered saline (PBS) and milk samples were enriched before loading onto the disc by using antibody-coated magnetic beads. The entire procedure, from DNA extraction through to detection, was completed within 30 min in a fully automated fashion. The final detection was carried out using lateral flow strips by direct visual observation; detection limit was 10 cfu/mL and 10(2) cfu/mL in PBS and milk, respectively. Our device allows rapid molecular diagnostic analysis and does not require specially trained personnel or expensive equipment. Thus, we expect that it would have an array of potential applications, including in the detection of food-borne pathogens, environmental monitoring, and molecular diagnostics in resource-limited settings.

  17. Entrapment of ovalbumin into liposomes--factors affecting entrapment efficiency, liposome size, and zeta potential.

    PubMed

    Brgles, Marija; Jurasin, Darija; Sikirić, Maja Dutour; Frkanec, Ruza; Tomasić, Jelka

    2008-01-01

    Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.

  18. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    PubMed

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection.

  19. [Regeneration of the ciliary beat of human ciliated cells].

    PubMed

    Wolf, G; Koidl, B; Pelzmann, B

    1991-10-01

    The influence of an isotonic, alkaline saline solution (diluted "Emser Sole" or brine from the spa of Bad Ems) on the ciliary beat of isolated cultured human ciliated cells of the upper respiratory tract was investigated. The ciliary beat was observed via an inverted phase contrast microscope (Zeiss Axiomat IDPC) and measured microphotometrically under physiological conditions and after the damaging influence of 1% propanal solution. Under physiological conditions the saline solution had a positive, although statistically not significant influence on the frequency of the ciliary beat. After damage of the cultivated cells by 1% propanal solution, the saline solution had a significant better influence on the regeneration of the cultured cells than a physiological sodium chloride solution. It is concluded that diluted brine from Bad Ems has a positive effect on the ciliary beat of the respiratory epithelium and accelerates its regeneration after damage by viral and bacterial infections, surgery or inhaled noxae.

  20. A New Method to Determine the Half-Life for Penicillin Using Microcalorimeter

    NASA Astrophysics Data System (ADS)

    Li, Z. X.; Zhao, W. W.

    2015-01-01

    The dissolution process of penicillin in normal saline and isotonic glucose solution was reported using a microcalorimeter. Both the integral and differential heats of solution were measured. The quantitative relationships between the amount of heat released and the quantity of dissolved penicillin were established. Meanwhile, the kinetics and the half-life of the dissolution processes as well as the enthalpy of solution, the entropy of dissolution, and the free energy of dissolution were determined. The results showed that a change of the solvent from normal saline to isotonic glucose solution had little effect on the half-life of penicillin in the dissolution process, and there was no significant difference between the stabilities of penicillin in isotonic glucose solution and normal saline. Moreover, the dissolution process of penicillin in isotonic glucose solution followed the first-order kinetics. These results could provide a theoretical basis for the clinical applications of penicillin.

  1. The effect of propofol infusion with topical epinephrine on cochlear blood flow and hearing: An experimental study.

    PubMed

    Jang, Chul Ho; Cho, Yong Beom; Lee, Jun Sik; Kim, Geun Hyung; Jung, Won-Kyo; Pak, Sok Cheon

    2016-12-01

    Propofol is the most commonly used intravenous (IV) anesthetic agent and is associated with hypotension upon induction of anesthesia. Intravenous propofol infusion has several properties that may be beneficial to patients undergoing middle ear surgery. Topical application of concentrated epinephrine is a valuable tool for achieving hemostasis in the middle ear and during mastoid surgery. The purpose of the present study was to determine the effects of propofol infusion with topical epinephrine on cochlear blood flow (CBF) and hearing in rats. Twenty one male Sprague-Dawley rats were divided into three groups. The rate of intravenous infusion of propofol was 4-6 ml/kg/hour. The first group (control group, n = 7) was given IV infusion of phosphate buffered saline (PBS) with topical application of PBS in the round window. In study group A (n = 7), the effect of topical phosphate buffered saline with IV infusion of propofol on CBF and hearing was evaluated. In study group B (n = 7), additional effects of topical epinephrine with IV infusion of propofol on CBF and hearing were evaluated. The laser Doppler blood flowmeter, CBF, and the mean arterial blood pressure (MAP) were measured and analyzed. Additionally, hearing test using auditory brainstem response (ABR) was performed in both groups. In both groups, infusion of propofol induced a time-dependent decrease in MAP. Approximately 30 min after the start of the propofol infusion, the CBF started to decrease slowly. The decrease in CBF was significantly greater in the study group compared to the control group. The threshold was elevated in the study group relative to the control group. During middle ear surgery, use of IV infusion of propofol with topical epinephrine cotton ball or cottonoid application is not recommended. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel.

    PubMed

    Wang, Tao; Jiang, Xue-Jun; Lin, Tao; Ren, Shan; Li, Xiao-Yan; Zhang, Xian-Zheng; Tang, Qi-zhu

    2009-09-01

    Erythropoietin (EPO) can protect myocardium from ischemic injury, but it also plays an important role in promoting polycythaemia, the potential for thrombo-embolic complications. Local sustained delivery of bioactive agents directly to impaired tissues using biomaterials is an approach to limit systemic toxicity and improve the efficacy of therapies. The present study was performed to investigate whether local intramyocardial injection of EPO with hydrogel could enhance cardioprotective effect without causing polycythaemia after myocardial infarction (MI). To test the hypothesis, phosphate buffered solution (PBS), alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel, recombined human erythropoietin (rhEPO) in PBS, or rhEPO in hydrogel were injected into the infarcted area immediately after MI in rats. The hydrogel allowed a sustained release of EPO, which inhibited cell apoptosis and increased neovasculature formation, and subsequently reduced infarct size and improved cardiac function compared with other groups. Notably, there was no evidence of polycythaemia from this therapy, with no differences in erythrocyte count and hematocrit compared with the animals received PBS or hydrogel blank injection. In conclusion, intramyocardial delivery of rhEPO with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel may lead to cardiac performance improvement after MI without apparent adverse effect.

  3. Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly(4-vinylbenzylphosphonate).

    PubMed

    Kamimura, Masao; Kanayama, Naoki; Tokuzen, Kimikazu; Soga, Kohei; Nagasaki, Yukio

    2011-09-01

    A novel poly(ethylene glycol) (PEG)-based block copolymer possessing a 4-vinylbenzylphosphonate repeating unit in another segment (PEG-block-poly(4-vinylbenzylphosphonate)) (PEG-b-PVBP) was designed and successfully synthesized. As a control, an end-functionalized PEG possessing a mono-phosphonate group (PEG-PO(3)H(2)) was also synthesized. The surface of near-infrared (NIR) phosphors (i.e., ytterbium (Yb) and erbium (Er) ion-codoped Y(2)O(3) nanoparticles (YNPs)) were modified with PEG-b-PVBP (PEG-YNP(b)s) and PEG-PO(3)H(2) (PEG-YNP(1)s). The adsorption of PEG-b-PVBP and PEG-PO(3)H(2) was estimated by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The physicochemical characteristics of the obtained YNP samples were analyzed by ζ-potential and dynamic light scattering (DLS) measurements. The ζ-potentials of YNPs modified by these polymers were close to zero, indicating the effective coverage of the YNP surface by our new PEG derivatives. However, the dispersion stability of the PEGylated YNPs was strongly affected by the structure of the PEG terminus. The average diameter of the PEG-YNP(1)s increased, and aggregates precipitated after less than 1 h in phosphate buffer saline (PBS). In contrast, the size did not change at all in the case of PEG-YNP(b)s and the dispersion in PBS was stable for over 1 week. PEG-YNP(b)s also showed high erosion resistance under acidic conditions. The multiple coordinated PVBP segment of the block copolymer on the YNP surface plays a substantial role in improving such dispersion stability. The excellent dispersion stability and strong NIR luminescence of the obtained PEG-YNP(b)s were also confirmed in fetal bovine serum (FBS) solution over 1 week. Furthermore, in vivo NIR imaging of live mice was performed, and the 1550 nm NIR emission of PEG-YNP(b)s from the organ of live mice was confirmed without dissection.

  4. Nano-particle enhanced impedimetric biosensor for detedtion of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Kim, G.; Om, A. S.; Mun, J. H.

    2007-03-01

    Recent outbreaks of foodborne illness have been increased the need for rapid and sensitive methods for detection of these pathogens. Conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Even though some immunological rapid assays are available, these assays still need enrichment steps result in delayed detection. Biosensors have shown great potential for rapid detection of foodborne pathogens. They are capable of direct monitoring the antigen-antibody reactions in real time. Among the biosensors, impedimetric biosensors have been widely adapted as an analysis tool for the study of various biological binding reactions because of their high sensitivity and reagentless operation. In this study a nanoparticle-enhanced impedimetric biosensor for Salmonella enteritidis detection was developed which detected impedance changes caused by the attachment of the cells to the anti-Salmonella antibodies immobilized on interdigitated gold electrodes. Successive immobilization of neutravidin followed by anti-Salmonella antibodies was performed to the sensing area to create a biological detection surface. To enhance the impedance responses generated by antigen-antibody reactions, anti-Salmonella antibody conjugated nanoparticles were introduced on the sensing area. Using a portable impedance analyzer, the impedance across the interdigital electrodes was measured after the series of antigen-antibody bindings. Bacteria cells present in solution attached to capture antibodies and became tethered to the sensor surface. Attached bacteria cells changed the dielectric constant of the media between the electrodes thereby causing a change in measured impedance. Optimum input frequency was determined by analyzing frequency characteristics of the biosensor over ranges of applied frequencies from 10 Hz to 400 Hz. At 100 Hz of input frequency, the biosensor was most sensitive to the changes of the bacteria concentration and this frequency was used for the detection experiments. The biosensor was able to detect 106 CFU/mL in phosphate buffered saline (PBS) with a detection time of 3 minutes. Additional use of nanoparticles significantly enhanced the detection performance. By using the nanoparticles the biosensor could detect 104 CFU/mL of Salmonella enteritidis in PBS and 105 CFU/mL of cells in milk.

  5. Deciphering the protective role of spermidine against saline-alkaline stress at physiological and proteomic levels in tomato.

    PubMed

    Zhang, Yi; Zhang, Hao; Zou, Zhi-Rong; Liu, Yi; Hu, Xiao-Hui

    2015-02-01

    In this research, the protective effect of spermidine (Spd) in mitigating saline-alkaline stress in tomato (Solanum lycopersicum L.) at physiological and proteomic levels were examined. The results showed that saline-alkaline stress induced accumulation of H2O2 and O2(-*), and increased the activities of antioxidase (SOD, CAT, and POD). Spermidine efficiently alleviated the inhibitory role of saline-alkaline on plant growth and inhibited saline-alkaline stress-induced H2O2 and O2(-*) accumulation. Proteomics investigations of the leaves of tomato seedlings, responding to a 75 mM saline-alkaline solution and 0.25 mM Spd, were performed. Maps of the proteome of leaf extracts were obtained by two-dimensional gel electrophoresis. An average of 49, 47 and 34 spots, which appeared repeatedly and that significantly altered the relative amounts of polypeptides by more than twofold, were detected for seedlings treated with saline-alkaline solution (S) compared to normal solution (CK), saline-alkaline plus spermidine (MS) compared to CK, or S versus MS, respectively. Thirty-nine of these proteins were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and were classified into five functional categories, including energy and metabolism, signal transduction, amino acid metabolism, protein metabolism, and stress-defense response. Proteomics analysis coupled with bioinformatics indicated that Spd treatment helps tomato seedlings combat saline-alkaline stress by modulating the defense mechanism of plants and activating cellular detoxification, which protect plants from oxidative damage induced by saline-alkaline stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    PubMed

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P < 0.001). However, by day 35, the groundwater salinity and height above the water table remained significant factors, but the root fresh mass density was no longer significant. Regression of data from the 200 and 400 mM NaCl treatments showed that the rate of Na + accumulation in the soil increased until the Na + concentration reached ~250 mM within the root zone; subsequent decreases in accumulation were associated with decreases in stomatal conductance. Salinization of the soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  7. The effects of heated and room-temperature abdominal lavage solutions on core body temperature in dogs undergoing celiotomy.

    PubMed

    Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K

    2005-01-01

    To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.

  8. Umbilical vein injection for management of retained placenta.

    PubMed

    Nardin, Juan Manuel; Weeks, Andrew; Carroli, Guillermo

    2011-05-11

    If a retained placenta is left untreated, there is a high risk of maternal death. However, manual removal of the placenta is an invasive procedure with serious complications of haemorrhage, infection or genital tract trauma. To assess the use of umbilical vein injection (UVI) of saline solution alone or with oxytocin in comparison either with expectant management or with an alternative solution or other uterotonic agent for retained placenta. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (28 February 2011). Randomized trials comparing UVI of saline or other fluids, with or without oxytocics, either with expectant management or with an alternative solution or other uterotonic agent, in the management of retained placenta. Two review authors assessed the methodological quality of the studies and extracted the data. We included 15 trials (1704 women). The trials were of variable quality. Compared with expectant management, UVI of saline solution alone did not show any significant difference in the incidence of manual removal of the placenta (risk ratio (RR) 0.99; 95% confidence interval (CI) 0.84 to 1.16). UVI of oxytocin solution compared with expectant management showed no reduction in the need for manual removal (RR 0.87; 95% CI 0.74 to 1.03).Oxytocin solution compared with saline solution alone showed a reduction in manual removal of the placenta, but this was not statistically significant (RR 0.91; 95% CI 0.82 to 1.00). When only high-quality studies were assessed, there was no statistical difference (RR 0.92; 95% CI 0.83 to 1.01). We detected no differences in any of the other outcomes.UVI of oxytocin solution compared with UVI of plasma expander showed no statistically significant difference in the outcomes assessed by the only one small trial included. Prostaglandin solution compared with saline solution alone was associated with a statistically significant lower incidence in manual removal of placenta (RR 0.42; 95% CI 0.22 to 0.82) but we observed no difference in the other outcomes evaluated. Prostaglandin plus saline solution showed a statistically significant reduction in manual removal of placenta when compared with oxytocin plus saline solution (RR 0.43; 95% CI 0.25 to 0.75), and we also observed a small reduction in time from injection to placental delivery (mean difference -6.00; 95% CI -8.78 to -3.22). However, there were only two small trials contributing to this meta-analysis. UVI of oxytocin solution is an inexpensive and simple intervention that could be performed while placental delivery is awaited. However, high-quality randomized trials show that the use of oxytocin has little or no effect. Further research into the optimal timing of manual removal and into UVI of prostaglandins or plasma expander is warranted.

  9. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    NASA Astrophysics Data System (ADS)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical oceanography. The other two salinity variables provide alternative measures of the mass fraction of dissolved material in seawater. "Solution Salinity", denoted SAsoln, is the most obvious extension of Reference Salinity to allow for composition anomalies; it provides a direct estimate of the mass fraction of dissolved material in solution. "Added-Mass Salinity", denoted SAadd, is motivated by a method used to report laboratory experiments; it represents the component of dissolved material added to Standard Seawater in terms of the mass of material before it enters solution. We also discuss a constructed conservative variable referred to as "Preformed Salinity", denoted S∗, which will be useful in process-oriented numerical modelling studies. Finally, a conceptual framework for the incorporation of composition anomalies in numerical models is presented that builds from studies in which composition anomalies are simply ignored up to studies in which the influences of composition anomalies are accounted for using the results of biogeochemical models. 1TEOS-10: international Thermodynamic Equation of Seawater 2010, http://www.teos-10.org/.

  10. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    NASA Astrophysics Data System (ADS)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical oceanography. The other two salinity variables provide alternative measures of the mass fraction of dissolved material in seawater. "Solution Salinity", denoted SAsoln, is the most obvious extension of Reference Salinity to allow for composition anomalies; it provides a direct estimate of the mass fraction of dissolved material in solution. "Added-Mass Salinity", denoted SAadd, is motivated by a method used to report laboratory experiments; it represents the component of dissolved material added to Standard Seawater in terms of the mass of material before it enters solution. We also discuss a constructed conservative variable referred to as "Preformed Salinity", denoted S*, which will be useful in process-oriented numerical modelling studies. Finally, a conceptual framework for the incorporation of composition anomalies in numerical models is presented that builds from studies in which composition anomalies are simply ignored up to studies in which the influences of composition anomalies are accounted for using the results of biogeochemical models. 1TEOS-10: international thermodynamic equation of seawater 2010, http://www.teos-10.org.

  11. Urinary composition predicts diuretic efficiency of hypertonic saline solution with furosemide therapy and heart failure prognosis.

    PubMed

    Ando, Tomotaka; Okuhara, Yoshitaka; Orihara, Yoshiyuki; Nishimura, Koichi; Yamamoto, Kyoko; Masuyama, Tohru; Hirotani, Shinichi

    2018-03-19

    Recently, we and other group have reported that furosemide administration along with hypertonic saline solution enhanced diuretic efficiency of furosemide. However, little is known about factors which associated with high diuretic efficiency by hypertonic saline solution with furosemide therapy. To identify predictors of diuretic efficiency in the hypertonic saline solution with furosemide therapy, we recruited 30 consecutive hospitalized heart failure (HF) patients with volume overload (77 ± 10 years, systolic blood pressure > 90 mmHg, and estimated glomerular filtration rate > 15 ml/min/1.73 m 2 ). Hypertonic saline with furosemide solution, consisting of 500 ml of 1.7% hypertonic saline solution with 40 mg of furosemide, was administered continuously over 24 h. The patients were divided into two groups on the basis of 24-h urine volume (UV) after initiation of diuretic treatment ≥ 2000 ml (high urine volume: HUV) and < 2000 ml (low urine volume: LUV). The basal clinical characteristics of both groups were analyzed and the predictors of HUV after receiving the treatment were identified. There were not significant differences between two groups in baseline clinical characteristics and medication. Univariate logistic analysis revealed that blood urea nitrogen/creatinine ratio, urine urea nitrogen/creatinine ratio (UUN/UCre), fractional excretion of sodium, and tricuspid annular plane systolic excursion positively associated with HUV. Multivariate logistic regression analysis revealed that UUN/UCre at baseline was independently associated with HUV, and UUN/UCre best predicts HUV by the therapy with a cut-off value of 6.16 g/dl/g Cre (AUC 0.910, 95% CI 0.696-0.999, sensitivity 80%, specificity 87%). The Kaplan-Meier curves revealed significant difference for HF rehospitalization and death rate at 180 days between patients with UUN/UCre ≥ 6.16 g/dl/g Cre and those with UUN/UCre < 6.16 g/dl/g Cre (log-rank P = 0.0489). UUN/UCre at baseline strongly predicted of diuretic efficiency in the hypertonic saline solution with furosemide therapy, and was associated with HF prognosis.

  12. Reexamining ultrafiltration and solute transport in groundwater

    NASA Astrophysics Data System (ADS)

    Neuzil, C. E.; Person, Mark

    2017-06-01

    Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ˜3 g L-1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.

  13. Reexamining ultrafiltration and solute transport in groundwater

    USGS Publications Warehouse

    Neuzil, Christopher E.; Person, Mark

    2017-01-01

    Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ∼3 g L−1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.

  14. pH Sensing Properties of Flexible, Bias-Free Graphene Microelectrodes in Complex Fluids: From Phosphate Buffer Solution to Human Serum.

    PubMed

    Ping, Jinglei; Blum, Jacquelyn E; Vishnubhotla, Ramya; Vrudhula, Amey; Naylor, Carl H; Gao, Zhaoli; Saven, Jeffery G; Johnson, Alan T Charlie

    2017-08-01

    Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (<5 s), very-low-power (femtowatt) detection of the pH of complex biofluids by measuring real-time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current-pH dependence is well described by a hybrid analytical-computational model, where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (<20 s) response to pH. By combining the Faradaic current and real-time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Decalcification by ascorbic acid for immuno- and affinohistochemical techniques on the inner ear.

    PubMed

    Merchán-Pérez, A; Gil-Loyzaga, P; Bartolomé, M V; Remezal, M; Fernández, P; Rodríguez, T

    1999-08-01

    An ascorbic acid decalcifying solution was applied to immuno- and affinohistochemical studies on the inner ear. Rat inner ears fixed in 4% paraformaldehyde in PBS or in 2% acetic acid in ethanol solutions were adequately decalcified in an ascorbic acid solution, at a temperature of 4 degrees C. The decalcifying solution was prepared with 1% ascorbic acid and 0.84% sodium chloride in distilled water (pH 2.5-2.6). The decalcification time was in a direct relationship to the specimen calcification. In this study, two neuroactive substances (gamma-aminobutyric acid and calcitonin gene-related peptide), neurofilaments, and the galectine endogenous lectin were successfully detected immunohistochemically.

  16. Common toads (Bufo arenarum) learn to anticipate and avoid hypertonic saline solutions.

    PubMed

    Daneri, M Florencia; Papini, Mauricio R; Muzio, Rubén N

    2007-11-01

    Toads (Bufo arenarum) were exposed to pairings between immersion in a neutral saline solution (i.e., one that caused no significant variation in fluid balance), followed by immersion in a highly hypertonic saline solution (i.e., one that caused water loss). In Experiment 1, solutions were presented in a Pavlovian conditioning arrangement. A group receiving a single neutral-highly hypertonic pairing per day exhibited a greater conditioned increase in heart rate than groups receiving either the same solutions in an explicitly unpaired fashion, or just the neutral solution. Paired toads also showed a greater ability to compensate for water loss across trials than that of the explicitly unpaired group. Using the same reinforcers and a similar apparatus, Experiment 2 demonstrated that toads learn a one-way avoidance response motivated by immersion in the highly hypertonic solution. Cardiac and avoidance conditioning are elements of an adaptive system for confronting aversive situations involving loss of water balance. Copyright 2007 APA.

  17. Development of a Highly Biocompatible Antituberculosis Nanodelivery Formulation Based on Para-Aminosalicylic Acid—Zinc Layered Hydroxide Nanocomposites

    PubMed Central

    Arulselvan, Palanisamy; El Zowalaty, Mohamed Ezzat; Fakurazi, Sharida; Webster, Thomas J.; Geilich, Benjamin; Hussein, Mohd Zobir

    2014-01-01

    Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS) and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) found to be at 1.40 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells-3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS) solution at pH values of 7.4 and 4.8. Most importantly the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies. PMID:25050392

  18. Specific binding of antigen-antibody in physiological environments: Measurement, force characteristics and analysis

    NASA Astrophysics Data System (ADS)

    Gu, Xin; Zhou, Jun; Zhou, Lu; Xie, Shusen; Petti, Lucia; Wang, Shaomin; Wang, Fuyan

    2018-05-01

    The specific recognition of the antigen by the antibody is the crucial step in immunoassays. Measurement and analysis of the specific recognition, including the ways in which it is influenced by external factors are of paramount significance for the quality of the immunoassays. Using prostate-specific antigen (PSA)/anti-PSA antibody and α-fetoprotein (AFP) /anti-AFP antibody as examples, we have proposed a novel solution for measuring the binding forces between the antigens and their corresponding antibodies in different physiological environments by combining laminar flow control technology and optical tweezers technology. On the basis of the experimental results, the different binding forces of PSA/anti-PSA antibody and AFP/anti-AFP antibody in the same phosphate-buffered saline (PBS) environments are analysed by comparing the affinity constant of the two antibodies and the number of antigenic determinants of the two antigens. In different electrolyte environments, the changes of the binding force of antigens-antibodies are explained by the polyelectrolyte effect and hydrophobic interaction. Furthermore, in different pH environments, the changes of binding forces of antigens-antibodies are attributed to the role of the denaturation of protein. The study aims to recognise the antigen-antibody immune mechanism, thus ensuring further understanding of the biological functions of tumour markers, and it promises to be very useful for the clinical diagnosis of early-stage cancer.

  19. Effect of in vitro degradation of poly(D,L-lactide)/beta-tricalcium composite on its shape-memory properties.

    PubMed

    Zheng, Xiaotong; Zhou, Shaobing; Yu, Xiongjun; Li, Xiaohong; Feng, Bo; Qu, Shuxin; Weng, Jie

    2008-07-01

    The in vitro degradation characteristic and shape-memory properties of poly(D,L-lactide) (PDLLA)/beta-tricalcium phosphate (beta-TCP) composites were investigated because of their wide application in biomedical fields. In this article, PDLLA and crystalline beta-TCP were compounded and interesting shape-memory behaviors of the composite were first investigated. Then, in vitro degradation of the PDLLA/beta-TCP composites with weight ratios of 1:1, 2:1, and 3:1 was performed in phosphate buffer saline solution (PBS) (154 mM, pH 7.4) at 37 degrees C. The effect of in vitro degradation time for PDLLA/beta-TCP composites on shape-memory properties was studied by scanning electron microscopy, differential scanning calorimetry, gel permeation chromatography, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The changes of structural morphology, glass transition temperature (T(g)), molecular weight, and weight loss of composites matrix and pH change of degradation medium indicated that shape-memory effects at different degradation time were nonlinearly influenced because of the breaking down of polymer chain and the formation of degradation products. Furthermore, the results from XRD and FTIR implied that the degradation products, for example, hydroxyapatite (HA), calcium hydrogen phosphate (CaHPO(4)), and calcium pyrophosphate (Ca(2)P(2)O(7)) phases also had some effects on shape-memory properties during the degradation. 2007 Wiley Periodicals, Inc.

  20. Novel Bifunctional Cyclic Chelator for 89Zr Labeling–Radiolabeling and Targeting Properties of RGD Conjugates

    PubMed Central

    2015-01-01

    Within the last years 89Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with 89Zr. In vitro stability, biodistribution, and microPET/CT imaging were evaluated using [89Zr]FSC-RGD conjugates or [89Zr]triacetylfusarinine C (TAFC). Quantitative 89Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [89Zr]DFO, [89Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA), and human serum for up to 7 days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [89Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of 89Zr-based PET imaging agents. PMID:25941834

  1. Facilitation of facial nerve regeneration using chitosan-β-glycerophosphate-nerve growth factor hydrogel.

    PubMed

    Chao, Xiuhua; Xu, Lei; Li, Jianfeng; Han, Yuechen; Li, Xiaofei; Mao, YanYan; Shang, Haiqiong; Fan, Zhaomin; Wang, Haibo

    2016-06-01

    Conclusion C/GP hydrogel was demonstrated to be an ideal drug delivery vehicle and scaffold in the vein conduit. Combined use autologous vein and NGF continuously delivered by C/GP-NGF hydrogel can improve the recovery of facial nerve defects. Objective This study investigated the effects of chitosan-β-glycerophosphate-nerve growth factor (C/GP-NGF) hydrogel combined with autologous vein conduit on the recovery of damaged facial nerve in a rat model. Methods A 5 mm gap in the buccal branch of a rat facial nerve was reconstructed with an autologous vein. Next, C/GP-NGF hydrogel was injected into the vein conduit. In negative control groups, NGF solution or phosphate-buffered saline (PBS) was injected into the vein conduits, respectively. Autologous implantation was used as a positive control group. Vibrissae movement, electrophysiological assessment, and morphological analysis of regenerated nerves were performed to assess nerve regeneration. Results NGF continuously released from C/GP-NGF hydrogel in vitro. The recovery rate of vibrissae movement and the compound muscle action potentials of regenerated facial nerve in the C/GP-NGF group were similar to those in the Auto group, and significantly better than those in the NGF group. Furthermore, larger regenerated axons and thicker myelin sheaths were obtained in the C/GP-NGF group than those in the NGF group.

  2. Protective behavioral strategies and negative alcohol-related consequences in college students.

    PubMed

    Araas, Teresa E; Adams, Troy B

    2008-01-01

    Alcohol abuse among college students is associated with a quality of life burden. The current study replicated and extended previous research on protective behavioral strategies (PBS) by examining relationships between PBS use and negative alcohol-related consequences. A national sample of 29,792 U.S. college students who completed the National College Health Assessment during spring 2004 was included. Using a retrospective analysis of cross-sectional data, relationships between PBS use and negative alcohol-related consequences were examined. Greater PBS use was associated with fewer negative alcohol-related consequences, while less frequent use of PBS was correlated with increased negative alcohol-related consequences. The current study findings strongly support expanded educational alcohol-intervention programs promoting greater PBS use aimed at reducing or completely alleviating negative alcohol-related consequences (e.g., BASICS, ASTP). Future research should further investigate such PBS-based intervention programs, examine the existence of latent PBS, and study use of combined PBS.

  3. Use of Alcohol Protective Behavioral Strategies among College Students: A Critical Review

    PubMed Central

    Pearson, Matthew R.

    2013-01-01

    Protective behavioral strategies (PBS) are specific behaviors one can utilize to minimize the harmful consequences of alcohol consumption. Recently, there has been an increasing amount of interest in use of PBS among college students, especially as an intervention target. The purpose of the present comprehensive review of the PBS literature was to examine the measurement of PBS and summarize the quantitative relationships between PBS use and other variables. The review found inconsistency across studies in terms of how use of PBS is operationalized and found only two PBS measures with good psychometric properties that have been replicated. Although several antecedents to PBS use were identified, most were only examined in single studies. Moderators of the predictive effects of PBS use on outcomes have similarly suffered from a lack of replication in the literature. Of all 62 published reports reviewed, 80% reported only cross-sectional data, which is unfortunate given that PBS use may change over time and in different contexts. In addition, only two attempted to minimize potential recall biases associated with retrospective assessment of PBS use, and only two used an approach that allowed the examination of both within-subject and between-subject effects. In terms of the gaps in the literature, there is a dearth of longitudinal studies of PBS use, especially intensive longitudinal studies, which are integral to identifying more specifically how, when, and for whom use of PBS can be protective. PMID:24036089

  4. Use of alcohol protective behavioral strategies among college students: a critical review.

    PubMed

    Pearson, Matthew R

    2013-12-01

    Protective behavioral strategies (PBS) are specific behaviors one can utilize to minimize the harmful consequences of alcohol consumption. Recently, there has been an increasing amount of interest in use of PBS among college students, especially as an intervention target. The purpose of the present comprehensive review of the PBS literature was to examine the measurement of PBS and summarize the quantitative relationships between PBS use and other variables. The review found inconsistency across studies in terms of how the use of PBS is operationalized and found only two PBS measures with good psychometric properties that have been replicated. Although several antecedents to PBS use were identified, most were only examined in single studies. Moderators of the predictive effects of PBS use on outcomes have similarly suffered from lack of replication in the literature. Of all 62 published reports reviewed, 80% reported only cross-sectional data, which is unfortunate given that PBS use may change over time and in different contexts. In addition, only two attempted to minimize potential recall biases associated with retrospective assessment of PBS use, and only two used an approach that allowed the examination of both within-subject and between-subject effects. In terms of the gaps in the literature, there is a dearth of longitudinal studies of PBS use, especially intensive longitudinal studies, which are integral to identifying more specifically how, when, and for whom use of PBS can be protective. © 2013.

  5. Antiangiogenic activity of a bevacizumab-loaded polyurethane device in animal neovascularization models.

    PubMed

    Ferreira, A E R; Castro, B F M; Vieira, L C; Cassali, G D; Souza, C M; Fulgêncio, G O; Ayres, E; Oréfice, R L; Jorge, R; Silva-Cunha, A; Fialho, S L

    2017-03-01

    To evaluate the antiangiogenic activity of bevacizumab-loaded polyurethane using two animal models of neovascularization. The percentage of blood vessels was evaluated in a chicken chorioallantoic membrane model (n=42) and in the rabbit cornea (n=24) with neovascularization induced by alkali injury. In each model, the animals were randomly divided into the groups treated with the bevacizumab-loaded polyurethane device, phosphate-buffered-saline (negative control) and bevacizumab commercial solution (positive control). Clinical examination, as well as histopathological and immunohistochemical evaluation, were performed in the rabbit eyes. Microvascular density in hot spot areas was determined in semi-thin sections of corneal tissue by hematoxylin-eosin staining and factor VIII immunohistochemistry. Immunohistochemical analysis was also performed to evaluate VEGF expression. In the evaluated models, the use of bevacizumab (Avastin ® ) and the bevacizumab-loaded polyurethane device led to similar results with regard to inhibition of neovascularization. In the chorioallantoic membrane model, the bevacizumab-loaded polyurethane device reduced angiogenesis by 50.27% when compared to the negative control group. In the rabbit model of corneal neovascularization, the mean density of vessels/field was reduced by 46.87% on analysis of factor VIII immunohistochemistry photos in the bevacizumab-loaded polyurethane device group as compared to the negative control (PBS) sections. In both models, no significant difference could be identified between the bevacizumab-loaded polyurethane device and the positive control group, leading to similar results with regard to inhibition of neovascularization. The present study shows that the bevacizumab-loaded polyurethane device may release bevacizumab and inhibit neovascularization similarly to commercial bevacizumab solution in the short-term. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Viscosity reduction of isotonic solutions of the photosensitizer TPCS2a by cyclodextrin complexation.

    PubMed

    Tovsen, Marianne Lilletvedt; Tho, Ingunn; Tønnesen, Hanne Hjorth

    2018-02-01

    Meso-tetraphenyl chlorin disulphonate (TPCS 2a ) is a photosensitizer (PS) particularly developed and patented for use in the technology of photochemical internalization (PCI) against cancer. TPCS 2a is known to aggregate in aqueous media even at low concentrations (≥0.1 µM) and to form a high-viscosity network at clinically relevant concentrations (mM). The aim of this work was to evaluate the effect of two hydroxypropylated cyclodextrin derivatives of beta and gamma type, respectively i.e. HPβCD and HPγCD, on the aggregation and solubilization of TPCS 2a in isotonic solutions. Samples containing micromolar concentrations of TPCS 2a were studied spectrophotometrically, while samples containing a clinical relevant concentration (10 mM = 9 mg/ml) of TPCS 2a were evaluated by dynamic viscosity measurements. HPβCD was determined to be a more suitable solubilizer of TPCS 2a than HPγCD in aqueous media both in the absence and presence of salt. The complexation stoichiometry between TPCS 2a /HPβCD at micromolar to millimolar concentrations of TPCS 2a was determined to be 1:3 and 1:2 in the absence and presence of isotonic NaCl, respectively. The network of TPCS 2a (10 mM) was broken down in the presence of 3% w/v (= 20 mM) HPβCD, i.e. a 1:2 molar ratio between TPCS 2a and the cyclodextrin. Formation of the inclusion complex resulted in low viscosity samples both in water and in the presence of isotonic NaCl or phosphate buffered saline (PBS) at 25 °C and 37 °C.

  7. Enhancement of nitrate uptake and growth of barley seedlings by calcium under saline conditions

    NASA Technical Reports Server (NTRS)

    Ward, M. R.; Aslam, M.; Huffaker, R. C.

    1986-01-01

    The effect of Ca2+ on NO3- assimilation in young barley (Hordeum vulgare L. var CM 72) seedlings in the presence and absence of NaCl was studied. Calcium increased the activity of the NO3- transporter under saline conditions, but had little effect under nonsaline conditions. Calcium decreased the induction period for the NO3- transporter under both saline and nonsaline conditions but had little effect on its apparent Km for NO3- both in the presence and absence of NaCl. The enhancement of NO3- transport by Ca2+ under saline conditions was dependent on the presence of Ca2+ in the uptake solution along with the salt, since Ca2+ had no effect when supplied before or after salinity stress. Although Mn2+ and Mg2+ enhanced NO3- uptake under saline conditions, neither was as effective as Ca2+. In longer studies, increasing the Ca2+ concentration in saline nutrient solutions resulted in increases in NO3- assimilation and seedling growth.

  8. Asymmetric reduction of benzil to (S)-benzoin with whole cells of Bacillus cereus.

    PubMed

    Saito, Tomoya; Maruyama, Reiji; Ono, Shin; Yasukawa, Nobuo; Kodaira, Ken-ichi; Nishizawa, Mikio; Ito, Seiji; Inoue, Masami

    2003-12-01

    Benzil (1) was selectively reduced to (S)-benzoin (2) in the presence of a wild-type Bacillus cereus Tim-r01. A 92% yield of 2 with 94% enantiomeric excess ratio was attained in phosphate-buffered saline (PBS) (pH 7.5) by using glucose as a nutrient at 37 degrees C for 12 h. Compound 2 was not reduced further to hydrobenzoin (3) at all. The reduction activity differed greatly depending on the strain of B. cereus. Under these conditions the B. cereus strains IFO3001, IFO15305, IAM1110, IAM1229, IAM1656, and IAM1729 gave 2 in yields ranging from 23 to 46% and the configuration of 2 was (S)-form (7 to 86% ee).

  9. A novel nanofiber Cur-loaded polylactic acid constructed by electrospinning

    NASA Astrophysics Data System (ADS)

    Thu Trang Mai, Thi; Thu Thuy Nguyen, Thi; Duong Le, Quang; Ngoan Nguyen, Thi; Cham Ba, Thi; Binh Nguyen, Hai; Bich Hoa Phan, Thi; Tran, Dai Lam; Phuc Nguyen, Xuan; Park, Jun Seo

    2012-06-01

    Curcumin (Cur), extracted from the Curcuma longa L. plant, is well known for its anti-tumor, anti-oxidant, anti-inflammatory and anti-bacterial properties. Nanofiber mats of polylactic acid (PLA) loading Cur (5 wt%) were fabricated by electrospinning (e-spinning). Morphology and structure of the fibers were characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR) spectroscopy, respectively. The diameters of the obtained fibers varied from 200 to 300 nm. The release capacity of curcumin from curcumin-loaded PLA fibers was investigated in phosphate buffer saline (PBS) containing ethanol. After 24 h, 50% of the curcumin was released from curcumin-loaded PLA fibers. These results of electrospun (e-spun) fibers exhibit the potential for biomedical application.

  10. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with l-ascorbic acid, as materials for soft tissue regeneration.

    PubMed

    Kucinska-Lipka, J; Gubanska, I; Strankowski, M; Cieśliński, H; Filipowicz, N; Janik, H

    2017-06-01

    In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4'-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with l-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy ( 1 HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test with human blood. Microbiological tests were carried out to indicate the microbiological sensitivity of obtained PURs. Results of performed studies showed that obtained AA-modified PUR materials may find an application in soft tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Biodegradation of Poly(butylene succinate) Powder in a Controlled Compost at 58 °C Evaluated by Naturally-Occurring Carbon 14 Amounts in Evolved CO2 Based on the ISO 14855-2 Method

    PubMed Central

    Kunioka, Masao; Ninomiya, Fumi; Funabashi, Masahiro

    2009-01-01

    The biodegradabilities of poly(butylene succinate) (PBS) powders in a controlled compost at 58 °C have been studied using a Microbial Oxidative Degradation Analyzer (MODA) based on the ISO 14855-2 method, entitled “Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions—Method by analysis of evolved carbon dioxide—Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test”. The evolved CO2 was trapped by an additional aqueous Ba(OH)2 solution. The trapped BaCO3 was transformed into graphite via a serial vaporization and reduction reaction using a gas-tight tube and vacuum manifold system. This graphite was analyzed by accelerated mass spectrometry (AMS) to determine the percent modern carbon [pMC (sample)] based on the 14C radiocarbon concentration. By using the theory that pMC (sample) was the sum of the pMC (compost) (109.87%) and pMC (PBS) (0%) as the respective ratio in the determined period, the CO2 (respiration) was calculated from only one reaction vessel. It was found that the biodegradabilities determined by the CO2 amount from PBS in the sample vessel were about 30% lower than those based on the ISO method. These differences between the ISO and AMS methods are caused by the fact that part of the carbons from PBS are changed into metabolites by the microorganisms in the compost, and not changed into CO2. PMID:20057944

  12. Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy.

    PubMed

    Chembath, Manju; Balaraju, J N; Sujata, M

    2015-11-01

    The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in Hanks' solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.

    2016-09-01

    Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.

  14. Discoloration of titanium alloy in acidic saline solutions with peroxide.

    PubMed

    Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The objective of this study was to compare corrosion behavior in several titanium alloys with immersion in acidulated saline solutions containing hydrogen peroxide. Seven types of titanium alloy were immersed in saline solutions with varying levels of pH and hydrogen peroxide content, and resulting differences in color and release of metallic elements determined in each alloy. Some alloys were characterized using Auger electron spectroscopy. Ti-55Ni alloy showed a high level of dissolution and difference in color. With immersion in solution containing hydrogen peroxide at pH 4, the other alloys showed a marked difference in color but a low level of dissolution. The formation of a thick oxide film was observed in commercially pure titanium showing discoloration. The results suggest that discoloration in titanium alloys immersed in hydrogen peroxide-containing acidulated solutions is caused by an increase in the thickness of this oxide film, whereas discoloration of Ti-55Ni is caused by corrosion.

  15. Fully integrated physically-based numerical modelling of impacts of groundwater extraction on surface and irrigation-induced groundwater interactions: case study Lower River Murray, Australia

    NASA Astrophysics Data System (ADS)

    Alaghmand, S.; Beecham, S.; Hassanli, A.

    2013-07-01

    Combination of reduction in the frequency, duration and magnitude of natural floods, rising saline water-table in floodplains and excessive evapotranspiration have led to an irrigation-induced groundwater mound forced the naturally saline groundwater onto the floodplain in the Lower River Murray. It is during the attenuation phase of floods that these large salt accumulations are likely to be mobilised and will discharge into the river. The Independent Audit Group for Salinity highlighted this as the most significant risk in the Murray-Darling Basin. South Australian government and catchment management authorities have developed salt interception schemes (SIS). This is to pump the highly saline groundwater from the floodplain aquifer to evaporation basins in order to reduce the hydraulic gradient that drives the regional saline groundwater towards the River Murray. This paper investigates the interactions between a river (River Murray in South Australia) and a saline semi-arid floodplain (Clarks Floodplain) significantly influenced by groundwater lowering (Bookpurnong SIS). Results confirm that groundwater extraction maintain a lower water-table and more fresh river water flux to the saline floodplain aquifer. In term of salinity, this may lead to less amount of solute stored in the floodplain aquifer. This occurs through two mechanisms; extracting some of the solute mass from the system and changing the floodplain groundwater regime from a losing to gaining one. Finally, it is shown that groundwater extraction is able to remove some amount of solute stored in the unsaturated zone and mitigate the floodplain salinity risk.

  16. A simple route for making surfactant free lead sulfide (PbS) quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Firoz; Kumar, Neetesh; Dutta, Viresh, E-mail: vdutta@ces.iitd.ac.in

    2015-05-15

    Highlights: • Surfactant free PbS NCs were successfully synthesised using CoSP technique. • The technique eliminates the requirements of washing to remove the ligands. • Grinding using mortar and pestle creates well separated PbS QDs. • Surfactant free PbS NCs are stable and do not show any degradation with time. - Abstract: An efficient, cost effective and less time consuming method suitable for mass production of surfactant free quantum dots (QDs) of lead sulfide (PbS) is reported. PbS nanocrystals (NCs) are first synthesised by continuous spray pyrolysis (CoSP) technique and de-agglomeration into PbS quantum dots (QDs) is achieved by vigorousmore » mechanical grinding using mortar and pestle. Lead acetate and thiourea were used as the precursor materials for preparation of surfactant free PbS NCs. The broadening in XRD peaks of ground NCs as compared to as synthesized PbS NCs clearly indicated the reduction in particle size to be QDs of PbS. The TEM images also showed that ground PbS NCs were nearly spherical in shape having an average diameter in the range of 4–6 nm. The shift in optical gap from 0.41 eV to 1.47 eV supported the QD formation.« less

  17. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2010-10-01

    frequency changes were related to the apparent mass changes that were measured using the electrochemical quartz crystal nanobalance (EQCN) which is...and water, the amount of adsorbed AHT was estimated from the net mass change: Δm = 32.9 (25.4) 6 ng/QC corresponding to mass density mAHT = 128.9...nanogravimetric mass transient, recorded after the injection of monoclonal anti-GSH antibody solution (10 μL of 1 mg/mL IgG solution to 1 mL of PBS + 0.5 mL of

  18. Evaporation of NaCl solution from porous media with mixed wettability

    NASA Astrophysics Data System (ADS)

    Bergstad, Mina; Shokri, Nima

    2016-05-01

    Evaporation of saline water from porous media is ubiquitous in many processes including soil salinization, crop production, and CO2 sequestration in deep saline acquirer. It is controlled by the transport properties of porous media, atmospheric conditions, and properties of the evaporating saline solution. In the present study, the effects of mixed wettability conditions on the general dynamics of water evaporation from porous media saturated with NaCl solution were investigated. To do so, we conducted a comprehensive series of evaporation experiments using sand mixtures containing different fractions of hydrophobic grains saturated with NaCl solutions. Our results showed that increasing fraction of hydrophobic grains in the mixed wettability sand pack had minor impact on the evaporative mass losses due to the presence of salt whose precipitation patterns were significantly influenced by the mixed wettability condition. Through macroscale and microscale investigations, we found formation of patchy efflorescence in the case of mixed wettability sand pack as opposed to crusty efflorescence in the case of completely hydrophilic porous media. Furthermore, the presence of salty water and hydrophobic grains in the sand pack significantly influenced the general dynamics and morphology of the receding drying front. Our results extend the understanding of the saline water evaporation from porous media with direct applications to various hydrological and engineering processes.

  19. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment.

    PubMed

    Lashari, Muhammad Siddique; Ye, Yingxin; Ji, Haishi; Li, Lianqing; Kibue, Grace Wanjiru; Lu, Haifei; Zheng, Jufeng; Pan, Genxing

    2015-04-01

    Salinity is a major stress threatening crop production in dry lands. A 2-year field experiment was conducted to assess the potential of a biochar product to alleviate salt-stress to a maize crop in a saline soil. The soil was amended with a compost at 12 t ha(-1) of wheat straw biochar and poultry manure compost (BPC), and a diluted pyroligneous solution (PS) at 0.15 t ha(-1) (BPC-PS). Changes in soil salinity and plant performance, leaf bioactivity were examined in the first (BPC-PS1) and second (BPC-PS2) year following a single amendment. While soil salinity significantly decreased, there were large increases in leaf area index, plant performance, and maize grain yield, with a considerable decrease in leaf electrolyte leakage when grown in amendments. Maize leaf sap nitrogen, phosphorus and potassium increased while sodium and chloride decreased, leaf bioactivity related to osmotic stress was significantly improved following the treatments. These effects were generally greater in the second than in the first year. A combined amendment of crop straw biochar with manure compost plus pyroligneous solution could help combat salinity stress to maize and improve productivity in saline croplands in arid/semi-arid regions threatened increasingly by global climate change. © 2014 Society of Chemical Industry.

  20. Effects of Salinity and Confining Pressure on Hydration-Induced Fracture Propagation and Permeability of Mancos Shale

    NASA Astrophysics Data System (ADS)

    Zhang, Shifeng; Sheng, James J.

    2017-11-01

    Low-salinity water imbibition was considered an enhanced recovery method in shale oil/gas reservoirs due to the resulting hydration-induced fractures, as observed at ambient conditions. To study the effect of confining pressure and salinity on hydration-induced fractures, time-elapsed computerized tomography (CT) was used to obtain cross-sectional images of shale cores. Based on the CT data of these cross-sectional images, cut faces parallel to the core axial in the middle of the core and 3D fracture images were also reconstructed. To study the effects of confining pressure and salinity on shale pore fluid flowing, shale permeability was measured with Nitrogen (N2), distilled water, 4% KCl solution, and 8% KCl solution. With confining pressures increased to 2 MPa or more, either in distilled water or in KCl solutions of different salinities, fractures were observed to close instead to propagate at the end of the tests. The intrinsic permeabilities of #1 and #2 Mancos shale cores were 60.0 and 7000 nD, respectively. When tested with distilled water, the permeability of #1 shale sample with 20.0 MPa confining pressure loaded, and #2 shale sample with 2.5 MPa confining pressure loaded, decreased to 0.45 and 15 nD, respectively. Using KCl can partly mitigate shale permeability degradation. Compared to 4% KCl, 8% KCl can decrease more permeability damage. From this point of view, high salinity KCl solution should be required for the water-based fracturing fluid.

Top