Sample records for salinity control act

  1. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ...] Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L.93-320) (Act) to...

  2. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  3. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  4. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Public Law 93-320) (Act) to receive reports and advise Federal agencies on...

  5. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  6. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  7. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory...: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal...

  8. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    USGS Publications Warehouse

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  9. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control [[Page 25878

  10. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... Basin Salinity Control Advisory Council (Council) will meet as detailed below. The meeting of the... INFORMATION: The Colorado River Basin Salinity Control Advisory Council was established by the Colorado River...

  11. Combined effects of seawater acidification and salinity changes in Ruditapes philippinarum.

    PubMed

    Velez, Catia; Figueira, Etelvina; Soares, Amadeu M V M; Freitas, Rosa

    2016-07-01

    Due to human activities, predictions for the coming years indicate increasing frequency and intensity of extreme weather events (rainy and drought periods) and pollution levels, leading to salinity shifts and ocean acidification. Therefore, several authors have assessed the effects of seawater salinity shifts and pH decrease on marine bivalves, but most of these studies evaluated the impacts of both factors independently. Since pH and salinity may act together in the environment, and their impacts may differ from their effects when acting alone, there is an urgent need to increase our knowledge when these environmental changes act in combination. Thus, the present study assessed the effects of seawater acidification and salinity changes, both acting alone and in combination, on the physiological (condition index, Na and K concentrations) and biochemical (oxidative stress related biomarkers) performance of Ruditapes philippinarum. For that, specimens of R. philippinarum were exposed for 28days to the combination of different pH levels (7.8 and 7.3) and salinities (14, 28 and 35). The results obtained showed that under control pH (7.8) and low salinity (14) the physiological status and biochemical performance of clams was negatively affected, revealing oxidative stress. However, under the same pH and at salinities 28 and 35 clams were able to maintain/regulate their physiological status and biochemical performance. Moreover, our findings showed that clams under low pH (7.3) and different salinities were able to maintain their physiological status and biochemical performance, suggesting that the low pH tested may mask the negative effects of salinity. Our results further demonstrated that, in general, at each salinity, similar physiological and biochemical responses were found in clams under both tested pH levels. Also, individuals under low pH (salinities 14, 28 and 25) and exposed to pH 7.8 and salinity 28 (control) tend to present a similar response pattern. These

  12. Salinity controls on plant transpiration and soil water balance

    NASA Astrophysics Data System (ADS)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  13. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    PubMed

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  14. Saline as a vehicle control does not alter ventilation in male CD-1 mice.

    PubMed

    Receno, Candace N; Glausen, Taylor G; DeRuisseau, Lara R

    2018-05-01

    Saline (0.9% NaCl) is used in clinical and research settings as a vehicle for intravenous drug administration. While saline is a standard control in mouse studies, there are reports of hyperchloremic metabolic acidosis in high doses. It remains unknown if metabolic acidosis occurs in mice and/or if compensatory increases in breathing frequency and tidal volume accompany saline administration. It was hypothesized that saline administration alters blood pH and the pattern of breathing in conscious CD-1 male mice exposed to air or hypoxia (10% O 2 , balanced N 2 ). Unrestrained barometric plethysmography was used to quantify breathing frequency (breaths/min; bpm), tidal volume (VT; mL/breath/10 g body weight (BW)), and minute ventilation (VE; mL/min/10 g BW) in two designs: (1) 11-week-old mice with no saline exposure (n = 11) compared to mice with 7 days of 0.9% saline administration (intraperitoneal, i.p.; 10 mL/kg body mass; n = 6). and (2) 17-week-old mice tested before (PRE) and after 1 day (POST1, n = 6) or 7 days (POST7, n = 5) of saline (i.p.; 10 mL/kg body mass). There were no differences when comparing frequency, VT, or VE between groups for either design with room air or hypoxia exposures. Hypoxia increased frequency, VT, and VE compared to room air. Moreover, conscious blood sampling showed no differences in pH, p a CO 2 , p aO2 , or HCO3- in mice without or with 7 days of saline. These findings reveal no differences in ventilation following 1 and/or 7 days of saline administration in mice. Therefore, the use of 0.9% saline as a control is supported for studies evaluating the control of breathing in mice. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  16. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes.

    PubMed

    Cooper, Ryan N; Wissel, Björn

    2012-11-27

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes.

  17. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes

    PubMed Central

    2012-01-01

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes. PMID:23186395

  18. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic.

    PubMed

    Thornalley, David J R; Elderfield, Harry; McCave, I Nick

    2009-02-05

    The Atlantic meridional overturning circulation (AMOC) transports warm salty surface waters to high latitudes, where they cool, sink and return southwards at depth. Through its attendant meridional heat transport, the AMOC helps maintain a warm northwestern European climate, and acts as a control on the global climate. Past climate fluctuations during the Holocene epoch ( approximately 11,700 years ago to the present) have been linked with changes in North Atlantic Ocean circulation. The behaviour of the surface flowing salty water that helped drive overturning during past climatic changes is, however, not well known. Here we investigate the temperature and salinity changes of a substantial surface inflow to a region of deep-water formation throughout the Holocene. We find that the inflow has undergone millennial-scale variations in temperature and salinity ( approximately 3.5 degrees C and approximately 1.5 practical salinity units, respectively) most probably controlled by subpolar gyre dynamics. The temperature and salinity variations correlate with previously reported periods of rapid climate change. The inflow becomes more saline during enhanced freshwater flux to the subpolar North Atlantic. Model studies predict a weakening of AMOC in response to enhanced Arctic freshwater fluxes, although the inflow can compensate on decadal timescales by becoming more saline. Our data suggest that such a negative feedback mechanism may have operated during past intervals of climate change.

  19. Groundwater-saline lakes interaction - The contribution of saline groundwater circulation to solute budget of saline lakes: a lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Weinstein, Yishai; Starinsky, Abraham; Yechieli, Yoseph

    2013-04-01

    Saline lakes act as base level for both surface water and groundwater. Thus, a change in lake levels is expected to result in changes in the hydrogeological system in its vicinity, exhibited in groundwater levels, location of the fresh-saline water interface, sub-lacustrine groundwater discharge (SGD) and saline water circulation. All these processes were observed in the declining Dead Sea system, whose water level dropped by ~35 meters in the last 50 years. This work focuses mainly on the effect of circulation of Dead Sea water in the aquifer, which continues even in this very rapid base level drop. In general, seawater circulation in coastal aquifers is now recognized as a major process affecting trace element mass balances in coastal areas. Estimates of submarine groundwater discharge (SGD) vary over several orders of magnitude (1-1000000 m3/yr per meter shoreline). These estimates are sensitive to fresh-saline SGD ratios and to the temporal and spatial scales of the circulation. The Dead Sea system is an excellent natural field lab for studying seawater-groundwater interaction and large-scale circulation due to the absence of tides and to the minor role played by waves. During Dead Sea water circulation in the aquifer several geochemical reactions occur, ranging from short-term adsorption-desorption reactions and up to long-term precipitation and dissolution reactions. These processes affect the trace element distribution in the saline groundwater. Barite and celestine, which are supersaturated in the lake water, precipitate during circulation in the aquifer, reducing barium (from 5 to 1.5 mg/L), strontium (from 350 to 300 mg/L) and the long-lived 226Ra (from 145 to 60 dpm/L) in the saline groundwater. Redox-controlled reactions cause a decrease in uranium from 2.4 to 0.1 μg/L, and an increase in iron from 1 to 13 mg/L. 228Ra (t1/2=5.75 yr) activity in the Dead Sea is ~1 dpm/L and increase gradually as the saline water flows further inland until reaching

  20. Integration of herbicides with manual weeding for controlling the weeds in rice under saline environment.

    PubMed

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Rafii, Mohd Y; Ismail, Mohd Razi; Karim, S M Rezaul; Kausar, H

    2015-11-01

    The pot experiment was conducted to select appropriate integrated weed management method in rice under different salinity levels (0, 4 and 8 dS m(-1)). All the parameters including rice and weed measured were significantly influenced by weed control treatments at all salinity levels. Treatments including weed-free condition, Pretilachlor @0.375 kg ai ha(-1) + hand weeding, Propanil + Thiobencarb @ 0.9 kg ai ha(-1) and 1.8 kg ai ha(-1)+ hand weeding performed better under all salinity levels. Pretilachlor @ 0.375 kg ai ha(-1) with one round of hand weeding and propanil + thiobencarb 0.9 kg ai ha(-1) + 1.8 kg ai ha(-1) with one round of hand weeding were comparable to weed-free yields, and were superior to other treatments under salinity condition. Considering all the parameters, pretilachlor @ 0.375 kg ai ha(-1) + one round of hand weeding (at 65 DAT), propanil + thiobencarb 0.9 kg ai ha(-1) +1.8 kg ai ha(-1) + one round of hand weeding (at 65 DAT) gave the most effective control of weeds in rice under saline environments.

  1. Mapping deep aquifer salinity trends in the southern San Joaquin Valley using borehole geophysical data constrained by chemical analyses

    NASA Astrophysics Data System (ADS)

    Gillespie, J.; Shimabukuro, D.; Stephens, M.; Chang, W. H.; Ball, L. B.; Everett, R.; Metzger, L.; Landon, M. K.

    2016-12-01

    The California State Water Resources Control Board and the California Division of Oil, Gas and Geothermal Resources are collaborating with the U.S. Geological Survey to map groundwater resources near oil fields and to assess potential interactions between oil and gas development and groundwater resources. Groundwater resources having salinity less than 10,000 mg/L total dissolved solids may be classified as Underground Sources of Drinking Water (USDW) and subject to protection under the federal Safe Drinking Water Act. In this study, we use information from oil well borehole geophysical logs, oilfield produced water and groundwater chemistry data, and three-dimensional geologic surfaces to map the spatial distribution of salinity in aquifers near oil fields. Salinity in the southern San Joaquin Valley is controlled primarily by depth and location. The base of protected waters occurs at very shallow depths, often < 300 meters, in the western part of the valley where aquifer recharge is low in the rain shadow of the Coast Ranges. The base of protected water is much deeper, often >1,500 meters, in the eastern part of the San Joaquin Valley where higher runoff from the western slopes of the Sierra Nevada provide relatively abundant aquifer recharge. Stratigraphy acts as a secondary control on salinity within these broader areas. Formations deposited in non-marine environments are generally fresher than marine deposits. Layers isolated vertically between confining beds and cut off from recharge sources may be more saline than underlying aquifers that outcrop in upland areas on the edge of the valley with more direct connection to regional recharge areas. The role of faulting is more ambiguous. In some areas, abrupt changes in salinity may be fault controlled but, more commonly, the faults serve as traps separating oil-bearing strata that are exempt from USDW regulations, from water-bearing strata that are not exempt.

  2. New techniques to control salinity-wastewater reuse interactions in golf courses of the Mediterranean regions

    NASA Astrophysics Data System (ADS)

    Beltrao, J.; Costa, M.; Rosado, V.; Gamito, P.; Santos, R.; Khaydarova, V.

    2003-04-01

    Due to the lack water around the Mediterranean regions, potable water luxurious uses - as in golf courses - are increasingly contested. In order to solve this problem, non conventional water resources (effluent, gray, recycled, reclaimed, brackish), like treated wastewater, for irrigation gained increasing role in the planning and development of additional water supplies in golf courses. In most cases, the intense use of effluent for irrigation attracted public awareness in respect of contaminating pathogens and heavy metals. The contaminating effect of salinity in soil and underground water is very often neglected. The objective of this work is to present the conventional techniques to control salinity of treated wastewater and to present some results on new clean techniques to solve this problem, in the framework of the INCO-COPERNICUS project (no. IC-15CT98-0105) "Adaptation of Efficient Water Use Criteria in Marginal Regions of Europe and Middle Asia with Scarce Sources Subject to Environmental Control, Climate Change and Socio-Economic Development" and of the INCO-DC project (no. IC18-CT98-0266) "Control of Salination and Combating Desertification Effects in the Mediterranean Region. Phase II". Saline water is the most common irrigation water in arid climates. Moreover, for each region treated wastewater is always more saline than tap water, and therefore, when treated wastewater is reused in golf courses, more salinity problems occur. Conventional techniques to combat the salination process in golf courses can be characterized by four generations: 1) Problem of root zone salination by soil leaching - two options can occur - when there is an impermeable layer, salts will be concentrated above this layer; on the other hand, when there is no impermeable layer, aquifers contamination can be observed; 2) Use of subsurface trickle irrigation - economy of water, and therefore less additional salts; however the problem of groundwater contamination due to natural rain

  3. Osmoregulation and muscle water control in vitro facing salinity stress of the Amazon fish Oscar Astronotus ocellatus (Cichlidae)

    USGS Publications Warehouse

    Gutierre, Silvia M. M.; Schulte, Jessica M.; Schofield, Pam; Prodocimo, Viviane

    2017-01-01

    Specimens of Oscar Astronotus ocellatus from a fish farm were abruptly submitted to salt stress of 14 ppt and 20 ppt, for 3 and 8 h to determine their plasma osmolality. Muscle wet body mass change in vitro was analyzed from control freshwater animals. Fish in 14 ppt presented no osmolality distress even after 8 h. In 20 ppt, a slight increase (10%) in plasma osmolality was observed for both times of exposure when compared to control fish. Muscle slices submitted in vitro to hyper-osmotic saline displayed decreased body mass after 75 min, and slices submitted to hypo-osmotic saline displayed increased body mass after 45 min when compared to control (isosmotic saline). These results reinforce A. ocellatus’s euryhalinity. The fish were able to regulate its internal medium and tolerate 14 ppt, but presented an intense osmotic challenge and low muscle hydration control when facing salinities of 20 ppt.

  4. Hydrogen saline prevents selenite-induced cataract in rats

    PubMed Central

    Yang, Chun-xiao; Ding, Tian-bing

    2013-01-01

    Purpose The aim of this study was to investigate the potential antioxidative effect and mechanism for the protective effects of hydrogen saline on selenite-induced cataract in rats. Methods Sprague-Dawley rat pups were divided into the following groups: control (Group A), selenite induced (Group B), and selenite plus hydrogen saline treated (Group C). Rat pups in Groups B and C received a single subcutaneous injection of sodium selenite (25 μmol/kg bodyweight) on postnatal day 12. Group C also received an intraperitoneal injection of H2 saline (5 ml/kg bodyweight) daily from postnatal day 8 to postnatal day 17. The development of cataract was assessed weekly by slit-lamp examination for 2 weeks. After sacrifice, extricated lenses were analyzed for activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, levels of malondialdehyde, reduced glutathione (GSH), and total sulfhydryl contents. Results The magnitude of lens opacification in Group B was significantly higher than in Group A (p<0.05), while Group C had less opacification than Group B (p<0.05). Compared with Group B, the mean activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, levels of GSH, and total sulfhydryl contents were higher, whereas the level of malondialdehyde was lower following treatment with hydrogen saline(p<0.05). Conclusions This is an initial report showing that hydrogen saline can prevent selenite-induced cataract in rats. It acts via maintaining antioxidant enzymes and GSH, protecting the sulfhydryl group, and inhibiting lipid peroxidation. PMID:23922487

  5. Role of warm saline mouth rinse in prevention of alveolar osteitis: a randomized controlled trial.

    PubMed

    Osunde, Otasowie Daniel; Bassey, Godwin Obi

    2015-01-01

    The present study was aimed at determining the role warm saline rinse in the prevention of alveolar osteitis following dental extractions. Apparently patients aged 16 and above who were referred to the Oral Surgery Clinic of our institution, with an indication for non-surgical extraction of pathologic teeth were prospectively and uniformly randomized into warm saline group and control. The experimental group (n = 80) were instructed to gargle 6 times daily with warm saline and no such instructions were given to the second group (n = 80) to serve as controls. Information on demographic, indications for extraction, and development of alveolar osteitis were obtained and analyzed. Comparative statistics were done using Pearson's chi square or Fisher's exact test as appropriate. A p value of less than 0.05 was considered significant. The demographic and other baseline parameters such as indications for extractions were comparable among the study groups (p > 0.05). The overall prevalence of alveolar osteitis was 13.7%. There was a statistical significant difference between the study groups with respect to development of alveolar osteitis (X2 = 15.00, df = 1, p = 0.001).The risk of development of alveolar osteitis was 4 times higher in the control group (OR = 4.33, P = 0.001). Warm saline mouth rinse instruction is beneficial in the prevention of development of alveolar osteitis after dental extractions.

  6. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  7. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Mezger, E. M.; de Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  8. Could high salinity be used to control bullfrogs in small ponds?

    USGS Publications Warehouse

    Ward, David L.; Finch, Colton; Blasius, Heidi

    2015-01-01

    We examined survival of bullfrog (Rana catesbeiana) eggs and tadpoles at 3 ppt and 6 ppt salinity in the laboratory to determine if low-level salinity could be used to eradicate bullfrogs from small ponds that contain native fishes. Bullfrog eggs and tadpoles <10 days old experienced 100% mortality when held at 6 ppt salinity for 10 days. Bullfrog tadpoles 10–15 days old experienced significantly reduced survival when exposed to salinity of 6 ppt for 10 days. Older bullfrog tadpoles (>9 months old) appeared unaffected by 14 days of 6 ppt salinity. Salinity of 3 ppt did not impact survival of bullfrog tadpole eggs or tadpoles at any of the life stages we tested. Adding salt to ponds in the early spring to increase salinity to 6 ppt may be a cost effective way to eradicate bullfrogs from small ponds without harming native fishes.

  9. Control of invasive marine invertebrates: an experimental evaluation of the use of low salinity for managing pest corals (Tubastraea spp.).

    PubMed

    Moreira, Patrícia L; Ribeiro, Felipe V; Creed, Joel C

    2014-01-01

    This study investigated the use of low salinity as a killing agent for the invasive pest corals Tubastraea coccinea and Tubastraea tagusensis (Dendrophylliidae). Experiments investigated the efficacy of different salinities, the effect of colony size on susceptibility and the influence of length of exposure. Experimental treatments of colonies were carried out in aquaria. Colonies were then fixed onto experimental plates and monitored in the field periodically over a period of four weeks. The killing effectiveness of low salinity depended on the test salinity and the target species, but was independent of colony size. Low salinity was fast acting and prejudicial to survival: discoloration, necrosis, fragmenting and sloughing, exposure of the skeleton and cover by biofoulers occurred post treatment. For T. tagusensis, 50% mortality (LC50) after three days occurred at eight practical salinity units (PSU); for T. coccinea the LC50 was 2 PSU. Exposure to freshwater for 45-120 min resulted in 100% mortality for T. tagusensis, but only the 120 min period was 100% effective in killing T. coccinea. Freshwater is now routinely used for the post-border management of Tubastraea spp. This study also provides insights as to how freshwater may be used as a routine biosecurity management tool when applied pre-border to shipping vectors potentially transporting non-indigenous marine biofouling species.

  10. Salinity Management in Agriculture

    USDA-ARS?s Scientific Manuscript database

    Existing guidelines and standards for reclamation of saline soils and management to control salinity exist but have not been updated for over 25 years. In the past few years a looming water scarcity has resulted in questioning of the long term future of irrigation projects in arid and semi arid regi...

  11. Nasal saline for chronic sinonasal symptoms: a randomized controlled trial.

    PubMed

    Pynnonen, Melissa A; Mukerji, Shraddha S; Kim, H Myra; Adams, Meredith E; Terrell, Jeffrey E

    2007-11-01

    To determine if isotonic sodium chloride (hereinafter "saline") nasal irrigations performed with large volume and delivered with low positive pressure are more effective than saline sprays at improving quality of life and decreasing medication use. A prospective, randomized controlled trial. Community. A total of 127 adults with chronic nasal and sinus symptoms. Patients were randomly assigned to irrigation performed with large volume and delivered with low positive pressure (n = 64) or spray (n = 63) for 8 weeks. Change in symptom severity measured by mean 20-Item Sino-Nasal Outcome Test (SNOT-20) score; change in symptom frequency measured with a global question; and change in medication use. A total of 121 patients were evaluable. The irrigation group achieved lower SNOT-20 scores than the spray group at all 3 time points: 4.4 points lower at 2 weeks (P = .02); 8.2 points lower at 4 weeks (P < .001); and 6.4 points lower at 8 weeks (P = .002). When symptom frequency was analyzed, 40% of subjects in the irrigation group reported symptoms "often or always" at 8 weeks compared with 61% in the spray group (absolute risk reduction, 0.2; 95% confidence interval, 0.02-0.38 (P = .01). No significant differences in sinus medication use were seen between groups. Nasal irrigations performed with large volume and delivered with low positive pressure are more effective than saline sprays for treatment of chronic nasal and sinus symptoms in a community-based population.

  12. 23 CFR 633.211 - Implementation of the Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Water Pollution Control Act. 633.211 Section 633.211 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT... Pollution Control Act. Pursuant to regulations of the Environmental Protection Agency (40 CFR part 15) implementing requirements with respect to the Clean Air Act and the Federal Water Pollution Control Act are...

  13. 23 CFR 633.211 - Implementation of the Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Water Pollution Control Act. 633.211 Section 633.211 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT... Pollution Control Act. Pursuant to regulations of the Environmental Protection Agency (40 CFR part 15) implementing requirements with respect to the Clean Air Act and the Federal Water Pollution Control Act are...

  14. 23 CFR 633.211 - Implementation of the Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Water Pollution Control Act. 633.211 Section 633.211 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT... Pollution Control Act. Pursuant to regulations of the Environmental Protection Agency (40 CFR part 15) implementing requirements with respect to the Clean Air Act and the Federal Water Pollution Control Act are...

  15. 23 CFR 633.211 - Implementation of the Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Water Pollution Control Act. 633.211 Section 633.211 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT... Pollution Control Act. Pursuant to regulations of the Environmental Protection Agency (40 CFR part 15) implementing requirements with respect to the Clean Air Act and the Federal Water Pollution Control Act are...

  16. Surface-water salinity in the Gunnison River Basin, Colorado, water years 1989 through 2007

    USGS Publications Warehouse

    Schaffrath, Keelin R.

    2012-01-01

    Elevated levels of dissolved solids in water (salinity) can result in numerous and costly issues for agricultural, industrial, and municipal water users. The Colorado River Basin Salinity Control Act of 1974 (Public Law 93-320) authorized planning and construction of salinity-control projects in the Colorado River Basin. One of the first projects was the Lower Gunnison Unit, a project to mitigate salinity in the Lower Gunnison and Uncompahgre River Basins. In cooperation with the Bureau of Reclamation (USBR), the U.S. Geological Survey conducted a study to quantify changes in salinity in the Gunnison River Basin. Trends in salinity concentration and load during the period water years (WY) 1989 through 2004 (1989-2004) were determined for 15 selected streamflow-gaging stations in the Gunnison River Basin. Additionally, trends in salinity concentration and load during the period WY1989 through 2007 (1989-2007) were determined for 5 of the 15 sites for which sufficient data were available. Trend results also were used to identify regions in the Lower Gunnison River Basin (downstream from the Gunnison Tunnel) where the largest changes in salinity loads occur. Additional sources of salinity, including residential development (urbanization), changes in land cover, and natural sources, were estimated within the context of the trend results. The trend results and salinity loads estimated from trends testing also were compared to USBR and Natural Resources Conservation Service (NRCS) estimates of off-farm and on-farm salinity reduction from salinity-control projects in the basin. Finally, salinity from six additional sites in basins that are not affected by irrigated agriculture or urbanization was monitored from WY 2008 to 2010 to quantify what portion of salinity may be from nonagricultural or natural sources. In the Upper Gunnison area, which refers to Gunnison River Basin above the site located on the Gunnison River below the Gunnison Tunnel, estimated mean annual

  17. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  18. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  19. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  20. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    PubMed

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Fructans of the saline world.

    PubMed

    Kırtel, Onur; Versluys, Maxime; Van den Ende, Wim; Öner, Ebru Toksoy

    2018-06-20

    Saline and hypersaline environments make up the largest ecosystem on earth and the organisms living in such water-restricted environments have developed unique ways to cope with high salinity. As such these organisms not only carry significant industrial potential in a world where freshwater supplies are rapidly diminishing, but they also shed light upon the origins and extremes of life. One largely overlooked and potentially important feature of many salt-loving organisms is their ability to produce fructans, fructose polymers widely found in various mesophilic Eubacteria and plants, with potential functions as storage carbohydrates, aiding stress tolerance, and acting as virulence factors or signaling molecules. Intriguingly, within the whole archaeal domain of life, Archaea possessing putative fructan biosynthetic enzymes were found to belong to the extremely halophilic class of Halobacteria only, indicating a strong, yet unexplored link between the fructan syndrome and salinity. In fact, this link may indeed lead to novel strategies in fighting the global salinization problem. Hence this review explores the unknown world of fructanogenic salt-loving organisms, where water scarcity is the main stress factor for life. Within this scope, prokaryotes and plants of the saline world are discussed in detail, with special emphasis on their salt adaptation mechanisms, the potential roles of fructans and fructosyltransferase enzymes in adaptation and survival as well as future aspects for all fructanogenic salt-loving domains of life. Copyright © 2018. Published by Elsevier Inc.

  2. The Role of Bolus Injection of Saline with Arm Elevation on Rocuronium onset Time: A Randomized Control Study

    PubMed Central

    Kulkarni, Malavika; Chuchendra, L. S.; Bhavya, P. J.

    2018-01-01

    Background: The onset time of neuromuscular blockade is a crucial time associated with the risk of hypoxia and pulmonary aspiration. Various strategies have been undertaken to shorten this onset time. Therefore, we investigated the effects of bolus of 20 ml saline followed by limb elevation after administration of rocuronium in a dose of 0.6 mg/kg to study the onset time. Methodology: Thirty patients were randomly allocated to the bolus saline group or control group. General anesthesia was induced and maintained with fentanyl and propofol. Rocuronium 0.6 mg/kg intravenous (IV) was administered followed by 20 ml saline bolus and limb elevation in the study group compared to administration of 0.6 mg/kg in a running drip only in the control. Onset of neuromuscular block was assessed by acceleromyography at the adductor pollicis muscle with train-of-four stimulation. Results: The lag time was shorter in bolus group (34 s median) than in control group (45 s median), P < 0.017. The onset time was shorter in bolus group (55 s median) than in control group (110 s median), P < 0.001. The T1 recovery to 25% was longer in bolus group (42 min median) than in control group (39 min median) which was statistically not significant. Conclusion: Rocuronium 0.6 mg/kg IV followed by bolus 20 ml saline and concomitant limb elevation resulted in shorter lag time, faster onset of neuromuscular blockade, good intubating conditions without prolonging clinical duration of action when compared to the control. PMID:29628555

  3. Control of Sulfide Production in High Salinity Bakken Shale Oil Reservoirs by Halophilic Bacteria Reducing Nitrate to Nitrite.

    PubMed

    An, Biwen A; Shen, Yin; Voordouw, Gerrit

    2017-01-01

    Microbial communities in shale oil fields are still poorly known. We obtained samples of injection, produced and facility waters from a Bakken shale oil field in Saskatchewan, Canada with a resident temperature of 60°C. The injection water had a lower salinity (0.7 Meq of NaCl) than produced or facility waters (0.6-3.6 Meq of NaCl). Salinities of the latter decreased with time, likely due to injection of low salinity water, which had 15-30 mM sulfate. Batch cultures of field samples showed sulfate-reducing and nitrate-reducing bacteria activities at different salinities (0, 0.5, 0.75, 1.0, 1.5, and 2.5 M NaCl). Notably, at high salinity nitrite accumulated, which was not observed at low salinity, indicating potential for nitrate-mediated souring control at high salinity. Continuous culture chemostats were established in media with volatile fatty acids (a mixture of acetate, propionate and butyrate) or lactate as electron donor and nitrate or sulfate as electron acceptor at 0.5 to 2.5 M NaCl. Microbial community analyses of these cultures indicated high proportions of Halanaerobium, Desulfovermiculus, Halomonas , and Marinobacter in cultures at 2.5 M NaCl, whereas Desulfovibrio, Geoalkalibacter , and Dethiosulfatibacter were dominant at 0.5 M NaCl. Use of bioreactors to study the effect of nitrate injection on sulfate reduction showed that accumulation of nitrite inhibited SRB activity at 2.5 M but not at 0.5 M NaCl. High proportions of Halanaerobium and Desulfovermiculus were found at 2.5 M NaCl in the absence of nitrate, whereas high proportions of Halomonas and no SRB were found in the presence of nitrate. A diverse microbial community dominated by the SRB Desulfovibrio was observed at 0.5 M NaCl both in the presence and absence of nitrate. Our results suggest that nitrate injection can prevent souring provided that the salinity is maintained at a high level. Thus, reinjection of high salinity produced water amended with nitrate maybe be a cost effective method

  4. Precessional control of Sr ratios in marginal basins during the Messinian Salinity Crisis?

    NASA Astrophysics Data System (ADS)

    Topper, R. P. M.; Lugli, S.; Manzi, V.; Roveri, M.; Meijer, P. Th.

    2014-05-01

    Based on 87Sr/86Sr data of the Primary Lower Gypsum (PLG) deposits in the Vena del Gesso basin—a marginal basin of the Mediterranean during the Messinian Salinity Crisis—a correlation between 87Sr/86Sr values and precessional forcing has recently been proposed but not yet confirmed. In this study, a box model is set up to represent the Miocene Mediterranean deep basin and a connected marginal basin. Measurements of 87Sr/86Sr in the Vena del Gesso and estimated salinity extrema are used to constrain model results. In an extensive analysis with this model, we assess whether coeval 87Sr/86Sr and salinity fluctuations could have been forced by precession-driven changes in the fresh water budget. A comprehensive set of the controlling parameters is examined to assess the conditions under which precession-driven 87Sr/86Sr variations occur and to determine the most likely setting for PLG formation. Model results show that precession-driven 87Sr/86Sr and salinity fluctuations in marginal basins are produced in settings within a large range of marginal basin sizes, riverine strontium characteristics, amplitudes of precessional fresh water budget variation, and average fresh water budgets of both the marginal and deep basin. PLG deposition most likely occurred when the Atlantic-Mediterranean connection was restricted, and the average fresh water budget in the Mediterranean was significantly less negative than at present day. Considering the large range of settings in which salinities and 87Sr/86Sr fluctuate on a precessional timescale, 87Sr/86Sr variations are expected to be a common feature in PLG deposits in marginal basins of the Mediterranean.

  5. Evolution of Planetary Ice-Ocean Systems: Effects of Salinity

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2015-12-01

    Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state

  6. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton.

    PubMed

    Luo, Jun-Yu; Zhang, Shuai; Peng, Jun; Zhu, Xiang-Zhen; Lv, Li-Min; Wang, Chun-Yi; Li, Chun-Hua; Zhou, Zhi-Guo; Cui, Jin-Jie

    2017-01-01

    An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.

  7. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton

    PubMed Central

    Luo, Jun-Yu; Zhang, Shuai; Peng, Jun; Zhu, Xiang-Zhen; Lv, Li-Min; Wang, Chun-Yi; Li, Chun-Hua; Zhou, Zhi-Guo; Cui, Jin-Jie

    2017-01-01

    An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels. PMID:28099508

  8. Salinity management in the Rio Grande Bosque

    Treesearch

    Jan M. H. Hendrickx; J. Bruce J. Harrison; Jelle Beekma; Graciela Rodriguez-Marin

    1999-01-01

    This paper discusses management options for salinity control in the Rio Grande Bosque. First, salt sources are identified and quantified. Capillary rise of ground water is the most important cause for soil salinization in the bosque. Next, a riparian salt balance is presented to explain the different mechanisms for soil salinization. Finally, the advantages and...

  9. Numerical Study of Groundwater Flow and Salinity Distribution Cycling Controlled by Seawater/Freshwater Interaction in Karst Aquifer Using SEAWAT

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Hu, B.

    2017-12-01

    The interest to predict seawater intrusion and salinity distribution in Woodville Karst Plain (WKP) has increased due to the huge challenge on quality of drinkable water and serious environmental problems. Seawater intrudes into the conduit system from submarine karst caves at Spring Creek Spring due to density difference and sea level rising, nowadays the low salinity has been detected at Wakulla Spring which is 18 km from coastal line. The groundwater discharge at two major springs and salinity distribution in this area is controlled by the seawater/freshwater interaction under different rainfall conditions: during low rainfall periods, seawater flow into the submarine spring through karst windows, then the salinity rising at the submarine spring leads to seawater further intrudes into conduit system; during high rainfall periods, seawater is pushed out by fresh water discharge at submarine spring. The previous numerical studies of WKP mainly focused on the density independent transport modeling and seawater/freshwater discharge at major karst springs, in this study, a SEAWAT model has been developed to fully investigate the salinity distribution in the WKP under repeating phases of low rainfall and high rainfall periods, the conduit system was simulated as porous media with high conductivity and porosity. The precipitation, salinity and discharge at springs were used to calibrate the model. The results showed that the salinity distribution in porous media and conduit system is controlled by the rainfall change, in general, the salinity distribution inland under low rainfall conditions is much higher and wider than the high rainfall conditions. The results propose a prediction on the environmental problem caused by seawater intrusion in karst coastal aquifer, in addition, provide a visual and scientific basis for future groundwater remediation.

  10. 14 CFR § 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean Air-Water Pollution Control Acts. Â...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  11. Control of Sulfide Production in High Salinity Bakken Shale Oil Reservoirs by Halophilic Bacteria Reducing Nitrate to Nitrite

    PubMed Central

    An, Biwen A.; Shen, Yin; Voordouw, Gerrit

    2017-01-01

    Microbial communities in shale oil fields are still poorly known. We obtained samples of injection, produced and facility waters from a Bakken shale oil field in Saskatchewan, Canada with a resident temperature of 60°C. The injection water had a lower salinity (0.7 Meq of NaCl) than produced or facility waters (0.6–3.6 Meq of NaCl). Salinities of the latter decreased with time, likely due to injection of low salinity water, which had 15–30 mM sulfate. Batch cultures of field samples showed sulfate-reducing and nitrate-reducing bacteria activities at different salinities (0, 0.5, 0.75, 1.0, 1.5, and 2.5 M NaCl). Notably, at high salinity nitrite accumulated, which was not observed at low salinity, indicating potential for nitrate-mediated souring control at high salinity. Continuous culture chemostats were established in media with volatile fatty acids (a mixture of acetate, propionate and butyrate) or lactate as electron donor and nitrate or sulfate as electron acceptor at 0.5 to 2.5 M NaCl. Microbial community analyses of these cultures indicated high proportions of Halanaerobium, Desulfovermiculus, Halomonas, and Marinobacter in cultures at 2.5 M NaCl, whereas Desulfovibrio, Geoalkalibacter, and Dethiosulfatibacter were dominant at 0.5 M NaCl. Use of bioreactors to study the effect of nitrate injection on sulfate reduction showed that accumulation of nitrite inhibited SRB activity at 2.5 M but not at 0.5 M NaCl. High proportions of Halanaerobium and Desulfovermiculus were found at 2.5 M NaCl in the absence of nitrate, whereas high proportions of Halomonas and no SRB were found in the presence of nitrate. A diverse microbial community dominated by the SRB Desulfovibrio was observed at 0.5 M NaCl both in the presence and absence of nitrate. Our results suggest that nitrate injection can prevent souring provided that the salinity is maintained at a high level. Thus, reinjection of high salinity produced water amended with nitrate maybe be a cost effective

  12. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean Air-Water Pollution Control Acts. 1274... AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.926 Clean Air-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative agreement or supplement...

  13. The Role of Ethylene in Plants Under Salinity Stress

    PubMed Central

    Tao, Jian-Jun; Chen, Hao-Wei; Ma, Biao; Zhang, Wan-Ke; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Although the roles of ethylene in plant response to salinity and other stresses have been extensively studied, there are still some obscure points left to be clarified. Generally, in Arabidopsis and many other terrestrial plants, ethylene signaling is indispensable for plant rapid response and tolerance to salinity stress. However, a few studies showed that functional knock-out of some ACSs increased plant salinity-tolerance, while overexpression of them caused more sensitivity. This seems to be contradictory to the known opinion that ethylene plays positive roles in salinity response. Differently, ethylene in rice may play negative roles in regulating seedling tolerance to salinity. The main positive ethylene signaling components MHZ7/OsEIN2, MHZ6/OsEIL1, and OsEIL2 all negatively regulate the salinity-tolerance of rice seedlings. Recently, several different research groups all proposed a negative feedback mechanism of coordinating plant growth and ethylene response, in which several ethylene-inducible proteins (including NtTCTP, NEIP2 in tobacco, AtSAUR76/77/78, and AtARGOS) act as inhibitors of ethylene response but activators of plant growth. Therefore, in addition to a summary of the general roles of ethylene biosynthesis and signaling in salinity response, this review mainly focused on discussing (i) the discrepancies between ethylene biosynthesis and signaling in salinity response, (ii) the divergence between rice and Arabidopsis in regulation of salinity response by ethylene, and (iii) the possible negative feedback mechanism of coordinating plant growth and salinity response by ethylene. PMID:26640476

  14. The effect of nebulized salbutamol or isotonic saline on exercise-induced bronchoconstriction in elite skaters following a 1,500-meter race: study protocol for a randomized controlled trial.

    PubMed

    Driessen, Jean M M; Gerritsma, Margryt; Westbroek, Jaap; ten Hacken, Nick H T; de Jongh, Frans H C

    2013-07-09

    Prevalence of exercise-induced bronchoconstriction (EIB) is high in elite athletes, especially after many years training in cold and dry air conditions. The primary treatment of EIB is inhaling a short-acting beta-2-agonist such as salbutamol. However, professional speed skaters also inhale nebulized isotonic saline or tap water before and after a race or intense training. The use of nebulized isotonic saline or tap water to prevent EIB has not been studied before, raising questions about safety and efficacy. The aim of this study is to analyze the acute effect of nebulized isotonic saline or salbutamol on EIB in elite speed skaters following a 1,500-meter race. This randomized controlled trial compares single dose treatment of 1 mg nebulized salbutamol in 4 mL of isotonic saline, or with 5 mL of isotonic saline. A minimum of 13 participants will be allocated in each treatment group. Participants should be between 18 and 35 years of age and able to skate 1,500 m in less than 2 min 10 s (women) or 2 min 05 s (men). Repeated measurements of spirometry, forced oscillation technique, and electromyography will be performed before and after an official 1,500-m race. Primary outcome of the study is the difference in fall in FEV1 after exercise in the different treatment groups. The trial is currently enrolling participants. Elite athletes run the risk of pulmonary inflammation and remodeling as a consequence of their frequent exercise, and thus increased ventilation in cold and dry environments. Although inhalation of nebulized isotonic saline is commonplace, no study has ever investigated the safety or efficacy of this treatment. This trial protocol was registered with the Dutch trial registration for clinical trials under number NTR3550.

  15. Principal processes within the estuarine salinity gradient: a review.

    PubMed

    Telesh, Irena V; Khlebovich, Vladislav V

    2010-01-01

    The salinity gradient is one of the main features characteristic of any estuarine ecosystem. Within this gradient in a critical salinity range of 5-8 PSU the major biotic and abiotic processes demonstrate non-linear dynamics of change in rates and directions. In estuaries, this salinity range acts as both external ecological factor and physiological characteristics of internal environment of aquatic organisms; it divides living conditions appropriate for freshwater and marine faunas, separates invertebrate communities with different osmotic regulation types, and defines the distribution range of high taxa. In this paper, the non-linearity of biotic processes within the estuarine salinity gradient is illustrated by the data on zooplankton from the Baltic estuaries. The non-tidal Baltic Sea provides a good demonstration of the above phenomena due to gradual changes of environmental factors and relatively stable isohalines. The non-linearity concept coupled with the ecosystem approach served the basis for a new definition of an estuary proposed by the authors. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. [Investigation and canonical correspondence analysis of salinity contents in secondary salinization greenhouse soils in Shanghai suburb].

    PubMed

    Tang, Dong; Mao, Liang; Zhi, Yue-e; Zhang, Jin-Zhong; Zhou, Pei; Chai, Xiao-Tong

    2014-12-01

    The salinity characteristics of greenhouse soils with cropping obstacles in Shanghai suburb were investigated and analyzed. The salinity contents of the salinization greenhouse soils showed a trend of first increasing and then decreasing with the increasing cropping duration. The salinized soils mainly included slightly salted, mildly salted and salted soils, which accounted for 17.39%, 56.52% and 13.04%, respectively. Among them, the degree of salinity in greenhouse soil planted with asparagus in Chongming County was the highest. Among the salt ions in greenhouse soils, the cations were mainly Ca2+ and Na+, while the anions were mainly NO3- and SO4(2-). The degree of salinity was mainly influenced by fertilization mode, cropping duration, crop type and management level, which led to the great variation in the salinity contents and salt ions. Canonical correspondence analysis found that the contents of Ca2+, Mg2+ and NO3- in greenhouse soils were greatly affected by cropping duration, and the degree of salinity would be enhanced and attenuated with long-term application of single fertilizer and mixed application of chemical fertilizer and organic manure, respectively. The greenhouse soils in Shanghai suburb could be classified as four patterns influenced by the relationship between salinity ions and samples, and the most soils were influenced by Ca2+, Mg2+, NO3- and Cl-, which required to be primarily controlled.

  17. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  18. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  19. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  20. Aquatic Plant Control Research Program: Effects of Salinity and Irradiance Conditions on the Growth, Morphology and Chemical Composition of Submersed Aquatic Macrophytes

    DTIC Science & Technology

    1990-07-01

    L , AQUATIC PLANT CONTROL RESEARCH PROGRAM * * TECHNICAL REPORT A-90-5 EFFECTS OF SALINITY AND IRRADIANCE CONDITIONS ON THE GROWTH, MORPHOLOGY AND...UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Indude Security Classification) Effects of Salinity and Irradiance Conditions on the Growth...Dr. Robert W. Whalin. This report should be cited as follows: Twilley, Robert R., and Barko, John W. 1990. " Effects of Salinity and Irradiance

  1. ACTS TDMA network control. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Campanella, S. J.

    1984-01-01

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  2. Estuarine Salinity Mapping From Airborne Radiometry

    NASA Astrophysics Data System (ADS)

    Walker, J. P.; Gao, Y.; Cook, P. L. M.; Ye, N.

    2016-12-01

    Estuaries are critical ecosystems providing both ecological habitat and human amenity including boating and recreational fishing. Salinity gradients, caused by the mixing of fresh and salt water, exert an overwhelming control on estuarine ecology and biogeochemistry as well as being a key tracer for model calibration. At present, salinity monitoring within estuaries typically uses point measurements or underway boat-based methods, which makes sensing of localised phenomena such as upwelling of saline bottom water difficult. This study has pioneered the use of airborne radiometry (passive microwave) sensing as a new method to remotely quantify estuarine salinity, allowing rapid production of high resolution surface salinity maps. The airborne radiometry mapping was conducted for the Gippsland Lakes, the largest estuary in Australia, in February, July, October and November of 2015, using the Polarimetric L-band Microwave Radiometer (PLMR). Salinity was retrieved from the brightness temperature collected by PLMR with results validated against boat sampling conducted concurrently with each flight. Results showed that the retrieval accuracy of the radiative transfer model was better than 5 ppt for most flights. The spatial, temporal and seasonal variations of salinity observed in this study are also analysed and discussed.

  3. Hormonal control of euryhalinity

    USGS Publications Warehouse

    Takei, Yoshio; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  4. Intravenous versus intramuscular cobinamide compared to intravenous saline (control) in the treatment of acute, survivable, mitochondrial toxins in swine (Sus Scrofa): a pilot study

    DTIC Science & Technology

    2018-04-10

    Type of Research: Animal Research 3. Title: Intravenous versus intramuscular cobinamide compared to intravenous saline ( control ) in the treatment...the hyperkalemia under control and in our upcoming protocol we feel we will finally be able to induce apnea with the toxin and calcium channel...intramuscular cobinamide compared to intravenous saline ( control ) in the treatment of acute, survivable, mitochondrial toxins in swine (Sus Scrofa): a pilot

  5. Physiological and morphological investigation of Arctic grayling (Thymallus arcticus) gill filaments with high salinity exposure and recovery

    PubMed Central

    Blair, Salvatore D.; Matheson, Derrick

    2017-01-01

    Abstract Freshwater environments are at risk of increasing salinity due to multiple anthropogenic forces including current oil and gas extraction practices that result in large volumes of hypersaline water. Unintentional releases of hypersaline water into freshwater environments act as an osmoregulatory stressor to many aquatic organisms including native salmonids like the Arctic grayling (Thymallus arcticus). Compared to more euryhaline salmonids, Arctic grayling have a reduced salinity tolerance and develop an elevated interlamellar cell mass (ILCM) in response to salinity exposure (17 ppt). In this study, we described the gill morphology and cell types characterizing the ICLM. Further, we investigated whether Arctic grayling could recover in freshwater following a short-term (<48 h) salinity exposure. Arctic grayling were exposed to 17 ppt saline water for 12, 24 and 48 h. Following the 24 and 48 h salinity exposure, Arctic grayling were returned to freshwater for 24 h to assess their ability to recover from, and reverse, the osmotic disturbances. Physiological serum [Na+], [Cl–] and total osmolality were significantly elevated and progressively increased at 12, 24 and 48 h salinity exposures. The 24 h post-exposure recovery period resulted in Arctic grayling serum ion concentrations and total osmolality returning to near normal levels. Similar recovery patterns were observed in the salinity-induced ILCM, which developed as early as 12 h of exposure to 17 ppt, and then reverted to control levels following 24 h in freshwater. Gill histology indicates an increased number of apically located mucous cells in the interlamellar space following salinity exposure of Arctic grayling. The scanning electron microscopy and transmission electron microscopy data show the presence of granule containing eosinophil-like cells infiltrating the ILCM suggesting a salinity-induced immune response by the Arctic grayling. PMID:28680637

  6. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE PAGES

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.; ...

    2016-07-18

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  7. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  8. Palaeohydrological evolution of the late Cenozoic saline lake in the Qaidam Basin, NE Tibetan Plateau: Tectonic vs. climatic control

    NASA Astrophysics Data System (ADS)

    Guo, Pei; Liu, Chiyang; Huang, Lei; Yu, Mengli; Wang, Peng; Zhang, Guoqing

    2018-06-01

    As the largest Cenozoic terrestrial intermountain basin on the Tibetan Plateau, the Qaidam Basin is an ideal setting to understand the coupled controls of tectonics and climate on hydrological evolution. In this study, we used 47,846 data of carbonate and chloride contents from 146 boreholes to reconstruct the Neogene-Quaternary basin-wide hydrological evolution of the Qaidam Basin. Our results show that during the early Miocene (22-15 Ma), the palaeolake in the Qaidam Basin was mainly situated in the southwestern part of the basin, and its water was mostly brackish. From then on, this palaeolake progressively migrated southeastward, and its salinity increased from late Miocene saline water to Quaternary brines. This generally increasing trend of the water palaeosalinity during the late Cenozoic corresponded with regional and global climate changes at that time, suggesting the dominance of climatic control. However, the paces of the salinity increase from sediments in front of the three basin-bounding ranges were not the same, indicating that extra tectonic controls occurred. Sediments in front of the Eastern Kunlun Shan to the southwest and the Altyn Shan to the northwest showed an abrupt, dramatic increase in salinity at 15 Ma and 8 Ma, respectively; sediments in front of the Qilian Shan to the northeast showed steady increase without prominent, abrupt changes, indicating the occurrence of asynchronous tectonic controls from the basin-bounding ranges. The late Miocene depocentre migration was synchronous with the hydrological changes in front of the Altyn Shan, while the more significant migration during the Quaternary was consistent with the pulsing, intense extrabasinal and intrabasinal tectonic movements along the Tibetan Plateau.

  9. Fever control and application of hypothermia using intravenous cold saline

    PubMed Central

    Fink, Ericka L.; Kochanek, Patrick M.; Clark, Robert S. B.; Bell, Michael J.

    2013-01-01

    Objective To describe the use and feasibility of cold saline to decrease body temperature in pediatric neurocritical care. Design Retrospective chart review. Setting Pediatric tertiary care university hospital. Patients Children between 1 week and 17 yrs of age admitted to the pediatric intensive care unit with acute brain injury and having received intravenous cold saline between June-August 2009. Intervention(s) None. Measurements and Main Results Eighteen subjects accounted for 20 infusions with mean infusion volume 18 ± 10 cc/kg. Eight subjects had traumatic brain injury (TBI), 2 had intracranial hemorrhage, 6 had cardiac arrest, and one each had ischemic stroke and status epilepticus. The mean age was 9.5 ± 4.8 yrs. Temperature decreased from 38.7 ± 1.1°C to 37.7 ± 1.2°C and 37.0 ± 2.0 to 35.3 ± 1.6°C one h after infusion for fever (n=14, p<.05) or hypothermia (HT) induction (n=6, p=.05), respectively. Cold saline was not bolused, rather infused over 10–15 minutes. Mean arterial blood pressure and oxygenation parameters (PaO2/FiO2 ratio, mean airway pressure) were unchanged, but heart rate decreased in HT subjects (121 ± 4 vs. 109 ± 12; p<.05). Serum sodium concentration and International normalized ratio were significantly increased after cold saline infusion. There were no differences between pre- and post-infusion serum glucose and hematocrit, nor cerebral perfusion pressure or intracranial pressure in TBI patients. Conclusions Cold saline was an effective method of reducing temperature in children with acute brain injury. This approach can be considered to treat fever or to induce HT. Prospective study comparing safety and efficacy versus other cooling measures should be considered. PMID:21037507

  10. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a... or control of acid or other mine water pollution; and (2) That the State shall provide legal and...

  11. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a... or control of acid or other mine water pollution; and (2) That the State shall provide legal and...

  12. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a... or control of acid or other mine water pollution; and (2) That the State shall provide legal and...

  13. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a... or control of acid or other mine water pollution; and (2) That the State shall provide legal and...

  14. Control of xylem Na+ loading and transport to the shoot in rice and barley as a determinant of differential salinity stress tolerance.

    PubMed

    Ishikawa, Tetsuya; Shabala, Sergey

    2018-05-15

    Control of xylem Na + loading has often been named as the essential components of salinity tolerance mechanism. However, it is less clear to what extent the difference in this trait may determine differential salinity tolerance between species. In this study barley (Hordeum vulgare L. cv. CM72) and rice (Oryza sativa L. cv Dongjin) plants were grown under two levels of salinity. Na + and K + concentrations in the xylem sap, and shoot and root tissues were measured at different time points after stress onset. Salt-exposed rice plants prevented xylem Na + loading for several days, but failed to control this process in the longer term, ultimately resulting in a massive Na + shoot loading. Barley plants quickly increased xylem Na + concentration and its delivery to the shoot (most likely for the purpose of osmotic adjustment) but were able to reduce this process later on, keeping most of accumulated Na + in the root, thus maintaining non-toxic shoot Na + level. Rice plants increased shoot K + concentration, while barley plants maintained higher root K + concentration. Control of xylem Na + loading is remarkably different between rice and barley; this difference may differentiate the extent of the salinity tolerance between species. This trait should be investigated in more details to be used in the breeding programs aimed to improve salinity tolerance in crops. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Umbilical vein injection of misoprostol versus normal saline for the treatment of retained placenta: intrapartum placebo-controlled trial.

    PubMed

    Rajab, Sheelan S; Alalaf, Shahla K

    2014-01-21

    The third stage of labour may be complicated by retained placenta, which should be managed promptly because it may cause severe bleeding and infection, with a potentially fatal outcome. This study evaluated the effectiveness of umbilical vein injection of misoprostol for the treatment of retained placenta in a hospital setting. This hospital-based placebo-controlled trial was conducted at the Maternity Teaching Hospital, Erbil City, Kurdistan region, Northern Iraq from April 2011 to February 2012. The inclusion criteria were: gestational age of at least 28 weeks, vaginal delivery, and failure of the placenta to separate within 30 minutes after delivery of the infant despite active management of the third stage of labour. Forty-six women with retained placentas were eligible for inclusion. After informed consent was obtained, the women were alternately allocated to receive umbilical vein injection of either 800 mcg misoprostol dissolved in 20 mL of normal saline (misoprostol group) or 20 mL of normal saline only (saline group). The women were blinded to the group allocation, but the investigator who administered the injection was not. The trial was registered by the Research Ethics Committee of Hawler Medical University. After umbilical vein injection, delivery of the placenta occurred in 91.3% of women in the misoprostol group and 69.5% of women in the saline group, which was not a significant difference between the two groups. The median vaginal blood loss from the time of injection until delivery of the placenta was significantly less in the misoprostol group (100 mL) than in the saline group (210 mL) (p value < 0.001). Umbilical vein injection of misoprostol is an effective treatment for retained placenta, and reduces the volume of vaginal blood loss with few adverse effects. Current Controlled Trial HMU: N252.1.2011.

  16. Umbilical vein injection of misoprostol versus normal saline for the treatment of retained placenta: intrapartum placebo-controlled trial

    PubMed Central

    2014-01-01

    Background The third stage of labour may be complicated by retained placenta, which should be managed promptly because it may cause severe bleeding and infection, with a potentially fatal outcome. This study evaluated the effectiveness of umbilical vein injection of misoprostol for the treatment of retained placenta in a hospital setting. Methods This hospital-based placebo-controlled trial was conducted at the Maternity Teaching Hospital, Erbil City, Kurdistan region, Northern Iraq from April 2011 to February 2012. The inclusion criteria were: gestational age of at least 28 weeks, vaginal delivery, and failure of the placenta to separate within 30 minutes after delivery of the infant despite active management of the third stage of labour. Forty-six women with retained placentas were eligible for inclusion. After informed consent was obtained, the women were alternately allocated to receive umbilical vein injection of either 800 mcg misoprostol dissolved in 20 mL of normal saline (misoprostol group) or 20 mL of normal saline only (saline group). The women were blinded to the group allocation, but the investigator who administered the injection was not. The trial was registered by the Research Ethics Committee of Hawler Medical University. Results After umbilical vein injection, delivery of the placenta occurred in 91.3% of women in the misoprostol group and 69.5% of women in the saline group, which was not a significant difference between the two groups. The median vaginal blood loss from the time of injection until delivery of the placenta was significantly less in the misoprostol group (100 mL) than in the saline group (210 mL) (p value < 0.001). Conclusion Umbilical vein injection of misoprostol is an effective treatment for retained placenta, and reduces the volume of vaginal blood loss with few adverse effects. Clinical Trial Registration Current Controlled Trial HMU: N252.1.2011 PMID:24444360

  17. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Clean Air Act and the Federal Water Pollution Control Act. 2543.86 Section 2543.86 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT...

  18. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Clean Air Act and the Federal Water Pollution Control Act. 2543.86 Section 2543.86 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT...

  19. On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments

    PubMed Central

    Dvořák, Jan; Edge, Mark; Ross, Kathleen

    1988-01-01

    Most species of the genus Lophopyrum Löve (Agropyron Geartn.) grow in saline environments and are more tolerant of saline stress than the species of the related genus Triticum L. A 56-chromosome amphiploid from the cross Triticum aestivum cv. Chinese Spring × Lophopyrum elongatum exceeded Chinese Spring in salt tolerance, measured as plant dry-matter production and seed yield in solution cultures with 250 mM NaCl. Thus, the adaptation of Lophopyrum to saline environments is expressed in the wheat genetic background. None of the disomic additions or substitutions of L. elongatum chromosomes in Chinese Spring showed a similar level of saline stress tolerance, which indicates that the trait depends on the activity of genes on more than one chromosome. Comparisons of disomic additions, double monosomic additions from half-diallel crosses among disomic additions, and disomic substitutions of L. elongatum chromosomes in Chinese Spring with Chinese Spring indicated that the enhanced salt tolerance of the amphiploid is primarily controlled by genes with minor effects on three of the seven chromosomes, 3E, 4E, and 7E, interacting in a largely additive manner. The salt tolerance of L. elongatum additionally depends on several minor nonadditive gene interactions. It is concluded that the adaptation of L. elongatum to growth in saline environments evolved by accumulation of new alleles in a number of loci, each with a relatively small effect on salt tolerance. It is further inferred that most of these new alleles were codominant to the original alleles and were able to act independently in enhancing salt tolerance. PMID:16593932

  20. Fast-acting nuclear reactor control device

    DOEpatents

    Kotlyar, Oleg M.; West, Phillip B.

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  1. Hurricane-induced failure of low salinity wetlands

    PubMed Central

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  2. Saltcedar and Russian olive control demonstration act science assessment

    Treesearch

    Patrick B. Shafroth; Curtis A. Brown; David M. Merritt

    2010-01-01

    The primary intent of this document is to provide the science assessment called for under The Saltcedar and Russian Olive Control Demonstration Act of 2006 (Public Law 109-320; the Act). A secondary purpose is to provide a common background for applicants for prospective demonstration projects, should funds be appropriated for this second phase of the Act. This...

  3. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a... otherwise preventing pollution by industry, which method shall have industrywide application; (b) All...

  4. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a... otherwise preventing pollution by industry, which method shall have industrywide application; (b) All...

  5. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a... otherwise preventing pollution by industry, which method shall have industrywide application; (b) All...

  6. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a... otherwise preventing pollution by industry, which method shall have industrywide application; (b) All...

  7. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient

    USGS Publications Warehouse

    Stagg, Camille L.; Baustian, Melissa M.; Perry, Carey L.; Carruthers, Tim J.B.; Hall, Courtney T.

    2018-01-01

    Coastal wetlands store more carbon than most ecosystems globally. As sea level rises, changes in flooding and salinity will potentially impact ecological functions, such as organic matter decomposition, that influence carbon storage. However, little is known about the mechanisms that control organic matter loss in coastal wetlands at the landscape scale. As sea level rises, how will the shift from fresh to salt-tolerant plant communities impact organic matter decomposition? Do long-term, plant-mediated, effects of sea-level rise differ from direct effects of elevated salinity and flooding?We identified internal and external factors that regulated indirect and direct pathways of sea-level rise impacts, respectively, along a landscape-scale salinity gradient that incorporated changes in wetland type (fresh, oligohaline, mesohaline and polyhaline marshes). We found that indirect and direct impacts of sea-level rise had opposing effects on organic matter decomposition.Salinity had an indirect effect on litter decomposition that was mediated through litter quality. Despite significant variation in environmental conditions along the landscape gradient, the best predictors of above- and below-ground litter decomposition were internal drivers, initial litter nitrogen content and initial litter lignin content respectively. Litter decay constants were greatest in the oligohaline marsh and declined with increasing salinity, and the fraction of litter remaining (asymptote) was greatest in the mesohaline marsh. In contrast, direct effects of salinity and flooding were positive. External drivers, salinity and flooding, stimulated cellulytic activity, which was highest in the polyhaline marsh.Synthesis. Our results indicate that as sea level rises, initial direct effects of salinity will stimulate decay of labile carbon, but over time as plant communities shift from fresh to polyhaline marsh, litter decay will decline, yielding greater potential for long-term carbon storage

  8. Influence of thermally activated paper sludge on the behaviour of blended cements subjected to saline and non-saline environments.

    PubMed

    García, Rosario; Rubio, Virginia; Vegas, Iñigo; Frías, Moisés

    2009-05-01

    One of the problems to affect Portland cement matrices is low resistance to aggressive agents, due principally to the presence of a high content of portlandite in the hydrated cements. Pozzolanic materials have played an important role in the improving the durability of cement-based materials for decades. This work studies the behaviour of cement mortar matrices blended with 10% calcined paper sludge (source for metakaolinite) and exposed to different environmental conditions (saline and non-saline environments) after 6 and 12 months of exposure. Two cements were studied: an ordinary Portland cement (CEM 1, 42.5R), acting as reference cement, and a blended cement formulated by mixing 90% (by mass) of CEM 1, 42.5R with 10% (by mass) of paper sludge calcined at 700 degrees C for 2 h. The specimens were exposed 1 year to saline and non-saline environments. All the mineralogy samples were studied through X-ray diffraction and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analyser. The in-depth study on ionic mobility was performed on samples subjected to natural exposure (coast and tableland) for 6 and 12 months. Portland cement was composed of quartz, calcite, calcium hydroxide and tobermorite gels. The pozzolanic cement (10% calcined paper sludge) is of the same composition but a high calcite concentration and barium carbonate. SEM analysis from coastline show deposits of variable composition. The deposits are identified on the surface of different mineral components. The minerals from tableland are much fractured, i.e. calcite and feldspars. Inside the fractures, the deposits and the ions are located and trapped superficially. SEM analysis of control cement Portland and 10% calcined paper sludge shows deposits on quartz and calcite with a very high concentration of Pb, Zn, Cl and barium sulphate. A very porous aspect is due to the presence of the different aggregate types. This porous configuration permits retention of the ion

  9. Zeta potential in oil-brine-sandstone system and its role in oil recovery during controlled salinity waterflooding

    NASA Astrophysics Data System (ADS)

    Li, S.; Jackson, M.

    2017-12-01

    Wettability alteration is widely recognised as a primary role in improved oil recovery (IOR) during controlled salinity waterflooding (CSW) by modifying brine composition. The change of wettability of core sample depends on adsorption of polar oil compounds into the mineral surface which influences its surface charge density and zeta potential. It has been proved that zeta potentials can be useful to quantify the wettability and incremental oil recovery in natural carbonates. However, the study of zeta potential in oil-brine-sandstone system has not investigated yet. In this experimental study, the zeta potential is used to examine the controlled salinity effects on IOR in nature sandstone (Doddington) aged with two types of crude oils (Oil T and Oil D) over 4 weeks at 80 °C. Results show that the zeta potential measured in the Oil T-brine-sandstone system following primary waterflooding decreases compared to that in fully water saturation, which is consistent with the negative oil found in carbonates study, and IOR response during secondary waterflooding using diluted seawater was observed. In the case of negative oil, the injected low salinity brine induces a more repulsive electrostatic force between the mineral-brine interface and oil-brine interface, which results in an increase disjoining pressure and alters the rock surface to be more water-wet. For Oil D with a positive oil-brine interface, the zeta potential becomes more positive compared to that under single phase condition. The conventional waterflooding fails to observe the IOR in Oil D-brine-sandstone system due to a less repulsive electrostatic force built up between the two interfaces. After switching the injection brine from low salinity brine to formation brine, the IOR was observed. Measured zeta potentials shed some light on the mechanism of wettability alteration in the oil-brine-sandstone system and oil recovery during CSW.

  10. Saline in acute bronchiolitis RCT and economic evaluation: hypertonic saline in acute bronchiolitis - randomised controlled trial and systematic review.

    PubMed

    Everard, Mark L; Hind, Daniel; Ugonna, Kelechi; Freeman, Jennifer; Bradburn, Mike; Dixon, Simon; Maguire, Chin; Cantrill, Hannah; Alexander, John; Lenney, Warren; McNamara, Paul; Elphick, Heather; Chetcuti, Philip Aj; Moya, Eduardo F; Powell, Colin; Garside, Jonathan P; Chadha, Lavleen Kumar; Kurian, Matthew; Lehal, Ravinderjit S; MacFarlane, Peter I; Cooper, Cindy L; Cross, Elizabeth

    2015-08-01

    Acute bronchiolitis is the most common cause of hospitalisation in infancy. Supportive care and oxygen are the cornerstones of management. A Cochrane review concluded that the use of nebulised 3% hypertonic saline (HS) may significantly reduce the duration of hospitalisation. To test the hypothesis that HS reduces the time to when infants were assessed as being fit for discharge, defined as in air with saturations of > 92% for 6 hours, by 25%. Parallel-group, pragmatic randomised controlled trial, cost-utility analysis and systematic review. Ten UK hospitals. Infants with acute bronchiolitis requiring oxygen therapy were allocated within 4 hours of admission. Supportive care with oxygen as required, minimal handling and fluid administration as appropriate to the severity of the disease, 3% nebulised HS every ± 6 hours. The trial primary outcome was time until the infant met objective discharge criteria. Secondary end points included time to discharge and adverse events. The costs analysed related to length of stay (LoS), readmissions, nebulised saline and other NHS resource use. Quality-adjusted life-years (QALYs) were estimated using an existing utility decrement derived for hospitalisation in children, together with the time spent in hospital in the trial. We searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials and other databases from inception or from 2010 onwards, searched ClinicalTrials.gov and other registries and hand-searched Chest, Paediatrics and Journal of Paediatrics to January 2015. We included randomised/quasi-randomised trials which compared HS versus saline (± adjunct treatment) or no treatment. We used a fixed-effects model to combine mean differences for LoS and assessed statistical heterogeneity using the I (2) statistic. The trial randomised 158 infants to HS (n = 141 analysed) and 159 to standard care (n = 149 analysed). There was no difference between the two arms in the time to being declared fit for

  11. The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.

    PubMed

    Friesen, Maren L; von Wettberg, Eric J B; Badri, Mounawer; Moriuchi, Ken S; Barhoumi, Fathi; Chang, Peter L; Cuellar-Ortiz, Sonia; Cordeiro, Matilde A; Vu, Wendy T; Arraouadi, Soumaya; Djébali, Naceur; Zribi, Kais; Badri, Yazid; Porter, Stephanie S; Aouani, Mohammed Elarbi; Cook, Douglas R; Strauss, Sharon Y; Nuzhdin, Sergey V

    2014-12-22

    As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress. Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils at the metapopulation level and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selection acting at these sites, saline alleles are typically rare in the range-wide species' gene pool and are also typically derived relative to the sister species M. littoralis. Candidate regions for adaptation contain genes that regulate physiological acclimation to salt stress, such as abscisic acid and jasmonic acid signaling, including a novel salt-tolerance candidate orthologous to the uncharacterized gene AtCIPK21. Unexpectedly, these regions also contain biotic stress genes and flowering time pathway genes. We show that flowering time is differentiated between saline and non-saline populations and may allow salt stress escape. This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security

  12. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Federal Water Pollution Control Act. 40.140-3 Section 40.140-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a) All applications for grants under section 105...

  13. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Federal Water Pollution Control Act. 40.145-2 Section 40.145-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a) No person in the United States shall on the...

  14. Experimental evaluation of open-loop UpLink Power Control using ACTS

    NASA Technical Reports Server (NTRS)

    Dissanayake, Asoka

    1995-01-01

    The present investigation deals with the implementation of open-loop up-link power control using a beacon signal in the down-link frequency band as the control parameter. A power control system was developed and tested using the ACTS satellite. ACTS carries beacon signals in both up- and down-link bands with which the relationship between the up- and down-link fading can be established. A power controlled carrier was transmitted to the ACTS satellite from a NASA operated ground station and the transponded signal was received at COMSAT Laboratories using a terminal that was routinely used to monitor the two ACTS beacon signals. The experiment ran for a period of approximately six months and the collected data were used to evaluate the performance of the power control system. A brief review of propagation factors involved in estimating the up-link fade using a beacon signal in the down-link band are presented. The power controller design and the experiment configuration are discussed. Results of the experiment are discussed.

  15. Mechanisms Controlling Variability of Lake Salinity in Dune Environments in a Semi-arid Climate: The Nebraska Sand Hills (Invited)

    NASA Astrophysics Data System (ADS)

    Zlotnik, V. A.; Ong, J. T.; Swinehart, J. B.; Fritz, S. C.; Lenters, J. D.; Schmieder, J. U.; Lane, J. W.; Halihan, T.

    2010-12-01

    Shallow endorheic saline lakes are common in semi-arid environments in North America, Africa, Asia, and Australia. These lakes receive minimal surface runoff and are supported by groundwater seepage. A combination of hydrologic and geologic factors (regional groundwater flow, evaporation, precipitation, lake size, groundwater recharge, and geologic setting) may preclude seepage out of these lakes, even in the presence of ambient regional flow. Solutes from groundwater are captured by these lakes and become enriched over time by evaporation. The importance of understanding lake dynamics in these arid and semi-arid systems is increasing with societal concerns, including water availability and quality, the use of aquatic ecosystems by waterfowl and other biota, and dangers of dust emissions associated with lake desiccation. We consider the salinity of shallow lakes as a useful indicator of hydroclimatic factors operating at centennial and millennial scales. The Nebraska Sand Hills cover 58 000 km2 of the central Great Plains and are the largest dunefield in the Western Hemisphere. The grass-stabilized dunes attain heights up to 130 m and have been modified by soil development and erosion. In an area <7000 km2, there are ~400 lakes with surface areas >4 ha and depths <1 m. Annual lake evaporation exceeds precipitation by 600 mm, according to some estimates. The salinity of natural lakes in the Nebraska Sand Hills ranges from fresh (~0.3 g L-1) to hypersaline (>100 g L-1), with pH values as high as ~10. We assess the mechanisms that control lake salinity in a group of lakes with different subsurface flow regimes. Our methods combine aquifer coring, electromagnetic and electrical resistivity tomography geophysics, hydraulic testing, lakebed dating using 14C and optically stimulated luminescence, energy and water balance analysis, and salt crust and dust collection. Our theory and results show that terrain and water-table topography, lithology, and climate control the

  16. Quantifying salinity-induced changes on estuarine benthic fauna: The potential implications of climate change

    NASA Astrophysics Data System (ADS)

    Little, S.; Wood, P. J.; Elliott, M.

    2017-11-01

    Coastal and estuarine systems worldwide are under threat from global climate change, with potential consequences including an increase in salinities and incursion of saltwater into areas currently subject to tidal and non-tidal freshwater regimes. It is commonly assumed that climate-driven increases in estuarine salinities and saline incursion will be directly reflected in an upstream shift in species distributions and patterns of community composition based on salinity tolerance. This study examined the responses of benthos to medium-term salinity changes in two macrotidal river-estuary systems in SE England to test whether these responses may be representative of climate-induced salinity changes over the long-term. The study reinforced the effect of salinity, related to tidal incursion, as the primary environmental driver of benthic species distribution and community composition. Salinity, however, acted within a hierarchy of factors followed by substratum type, with biotic competition and predator-prey relationships superimposed on these. The assumption that increasing salinities will be directly reflected in a shift in species distributions and patterns of community composition upstream over the long-term was shown to be over simplistic and not representative of a complex and highly variable system. Relative Sea Level Rise (RSLR) projections were predicted to increase estuarine salinities and saline incursion in the study estuaries, which together with projected reductions in river flow will have important consequences for estuarine structure and function, particularly in tidal limnetic zones, despite estuarine communities being pre-adapted to cope with fluctuating salinities. The study identified, however, that limnic-derived fauna inhabiting these zones may demonstrate greater tolerance to salinity change than is currently recognised, and may persist where salinity increases are gradual and zones unbounded.

  17. Groundwater salinity and hydrochemical processes in the volcano-sedimentary aquifer of La Aldea, Gran Canaria, Canary Islands, Spain.

    PubMed

    Cruz-Fuentes, Tatiana; Cabrera, María del Carmen; Heredia, Javier; Custodio, Emilio

    2014-06-15

    The origin of the groundwater salinity and hydrochemical conditions of a 44km(2) volcano-sedimentary aquifer in the semi-arid to arid La Aldea Valley (western Gran Canaria, Spain) has been studied, using major physical and chemical components. Current aquifer recharge is mainly the result of irrigation return flows and secondarily that of rainfall infiltration. Graphical, multivariate statistical and modeling tools have been applied in order to improve the hydrogeological conceptual model and identify the natural and anthropogenic factors controlling groundwater salinity. Groundwater ranges from Na-Cl-HCO3 type for moderate salinity water to Na-Mg-Cl-SO4 type for high salinity water. This is mainly the result of atmospheric airborne salt deposition; silicate weathering, and recharge incorporating irrigation return flows. High evapotranspiration produces significant evapo-concentration leading to relative high groundwater salinity in the area. Under average conditions, about 70% of the water used for intensive agricultural exploitation in the valley comes from three low salinity water runoff storage reservoirs upstream, out of the area, while the remaining 30% derives from groundwater. The main alluvial aquifer behaves as a short turnover time reservoir that adds to the surface waters to complement irrigation water supply in dry periods, when it reaches 70% of irrigation water requirements. The high seasonality and intra-annual variability of water demand for irrigation press on decision making on aquifer use by a large number of aquifer users acting on their own. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Factors controlling the configuration of the fresh-saline water interface in the Dead Sea coastal aquifers: Synthesis of TDEM surveys and numerical groundwater modeling

    USGS Publications Warehouse

    Yechieli, Y.; Kafri, U.; Goldman, M.; Voss, C.I.

    2001-01-01

    TDEM (time domain electromagnetic) traverses in the Dead Sea (DS) coastal aquifer help to delineate the configuration of the interrelated fresh-water and brine bodies and the interface in between. A good linear correlation exists between the logarithm of TDEM resistivity and the chloride concentration of groundwater, mostly in the higher salinity range, close to that of the DS brine. In this range, salinity is the most important factor controlling resistivity. The configuration of the fresh-saline water interface is dictated by the hydraulic gradient, which is controlled by a number of hydrological factors. Three types of irregularities in the configuration of fresh-water and saline-water bodies were observed in the study area: 1. Fresh-water aquifers underlying more saline ones ("Reversal") in a multi-aquifer system. 2. "Reversal" and irregular residual saline-water bodies related to historical, frequently fluctuating DS base level and respective interfaces, which have not undergone complete flushing. A rough estimate of flushing rates may be obtained based on knowledge of the above fluctuations. The occurrence of salt beds is also a factor affecting the interface configuration. 3. The interface steepens towards and adjacent to the DS Rift fault zone. Simulation analysis with a numerical, variable-density flow model, using the US Geological Survey's SUTRA code, indicates that interface steep- ening may result from a steep water-level gradient across the zone, possibly due to a low hydraulic conductivity in the immediate vicinity of the fault.

  19. Characterization of hydrology and salinity in the Dolores project area, McElmo Creek Region, southwest Colorado, 1978-2006

    USGS Publications Warehouse

    Richards, Rodney J.; Leib, Kenneth J.

    2011-01-01

    Increasing salinity loading in the Colorado River has become a major concern for agricultural and municipal water supplies. The Colorado Salinity Control Act was implemented in 1974 to protect and enhance the quality of water in the Colorado River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Reclamation and the Colorado River Salinity Control Forum, summarized salinity reductions in the McElmo Creek basin in southwest Colorado as a result of salinity-control modifications and flow-regime changes that result from the Dolores Project, which consists of the construction of McPhee reservoir on the Dolores River and salinity control modifications along the irrigation water delivery system. Flow-adjusted salinity trends using S-LOADEST estimations for a streamgage on McElmo Creek (site 1), that represents outflow from the basin, indicates a decrease in salinity load by 39,800 tons from water year 1978 through water year 2006, which is an average decrease of 1,370 tons per year for the 29-year period. Annual-load calculations for a streamgage on Mud Creek (site 6), that represents outflow from a tributary basin, indicate a decrease of 7,300 tons from water year 1982 through water year 2006, which is an average decrease of 292 tons per year for the 25-year period. The streamgage Dolores River at Dolores, CO (site 17) was chosen to represent a background site that is not affected by the Dolores Project. Annual load calculations for site 17 estimated a decrease of about 8,600 tons from water year 1978 through water year 2006, which is an average decrease of 297 tons per year for the 29-year period. The trend in salinity load at site 17 was considered to be representative of a natural trend in the region. Typically, salinity concentrations at outflow sites decreased from the pre-Dolores Project period (water years 1978-1984) to the post-Dolores Project period (water years 2000-2006). The median salinity concentration for site 1 (main basin outflow

  20. Physiological short-term response to sudden salinity change in the Senegalese sole (Solea senegalensis).

    PubMed

    Herrera, Marcelino; Aragão, Cláudia; Hachero, Ismael; Ruiz-Jarabo, Ignacio; Vargas-Chacoff, Luis; Mancera, Juan Miguel; Conceição, Luis E C

    2012-12-01

    The physiological responses of Senegalese sole to a sudden salinity change were investigated. The fish were first acclimated to an initial salinity of 37.5 ppt for 4 h. Then, one group was subjected to increased salinity (55 ppt) while another group was subjected to decreased salinity (5 ppt). The third group (control group) remained at 37.5 ppt. We measured the oxygen consumption rate, osmoregulatory (plasma osmolality, gill and kidney Na(+),K(+)-ATPase activities) and stress (plasma cortisol and metabolites) parameters 0.5 and 3 h after transfer. Oxygen consumption at both salinities was higher than for the control at both sampling times. Gill Na(+),K(+)-ATPase activity was significantly higher for the 55 ppt salinity at 0.5 h. Plasma osmolality decreased in the fish exposed to 5 ppt at the two sampling times but no changes were detected for high salinities. Plasma cortisol levels significantly increased at both salinities, although these values declined in the low-salinity group 3 h after transfer. Plasma glucose at 5 ppt salinity did not vary significantly at 0.5 h but decreased at 3 h, while lactate increased for both treatments at the first sampling time and returned to the control levels at 3 h. Overall, the physiological response of S. senegalensis was immediate and involved a rise in oxygen consumption and plasma cortisol values as well as greater metabolite mobilization at both salinities.

  1. Salinity Improves Performance and Alters Distribution of Soybean Aphids.

    PubMed

    Eichele-Nelson, Jaclyn; DeSutter, Thomas; Wick, Abbey F; Harmon, Erin L; Harmon, Jason P

    2018-05-24

    We know numerous abiotic factors strongly influence crop plants. Yet we often know much less about abiotic effects on closely interacting organisms including herbivorous insects. This lack of a whole-system perspective may lead to underestimating the threats from changing factors. High soil salinity is a specific example that we know threatens crop plants in many places, but we need to know much more about how other organisms are also affected. We investigated how salinity affects the soybean aphid (SBA; Aphis glycines Matsumura; Hemiptera: Aphididae) on soybean plants (Glycine max [L.] Merr.; Fabales: Fabaceae) grown across a range of saline conditions. We performed four complementary greenhouse experiments to understand different aspects of how salinity might affect SBA. We found that as salinity increased both population size and fecundity of SBA increased across electrical conductivity values ranging from 0.84 to 8.07 dS m-1. Tracking individual aphids we also found they lived longer and produced more offspring in high saline conditions compared to the control. Moreover, we found that salinity influenced aphid distribution such that when given the chance aphids accumulated more on high-salinity plants. These results suggest that SBA could become a larger problem in areas with higher salinity and that those aphids may exacerbate the negative effects of salinity for soybean production.

  2. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2012-01-01

    Salinization of coastal freshwater environments is a global issue. Increased salinity from sea level rise, storm surges, or other mechanisms is common in coastal freshwater marshes of Louisiana, USA. The effects of salinity increases on aquatic macroinvertebrates in these systems have received little attention, despite the importance of aquatic macroinvertebrates for nutrient cycling, biodiversity, and as a food source for vertebrate species. We used microcosm experiments to evaluate the effects of salinity, duration of exposure, and prey availability on the relative survival of dominant aquatic macroinvertebrates (i.e., Procambarus clarkii Girard, Cambarellus puer Hobbs, Libellulidae, Dytiscidae cybister) in a freshwater marsh of southwestern Louisiana. We hypothesized that increased salinity, absence of prey, and increased duration of exposure would decrease survival of aquatic macroinvertebrates and that crustaceans would have higher survival than aquatic insect taxon. Our first hypothesis was only partially supported as only salinity increases combined with prolonged exposure duration affected aquatic macroinvertebrate survival. Furthermore, crustaceans had higher survival than aquatic insects. Salinity stress may cause mortality when acting together with other stressful conditions.

  3. Saltcedar and Russian Olive Control Demonstration Act Science Assessment

    USGS Publications Warehouse

    Shafroth, Patrick B.; Brown, Curtis A.; Merritt, David M.

    2010-01-01

    The primary intent of this document is to provide the science assessment called for under The Saltcedar and Russian Olive Control Demonstration Act of 2006 (Public Law 109-320; the Act). A secondary purpose is to provide a common background for applicants for prospective demonstration projects, should funds be appropriated for this second phase of the Act. This document synthesizes the state-of-the-science on the following topics: the distribution and abundance (extent) of saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) in the Western United States, potential for water savings associated with controlling saltcedar and Russian olive and the associated restoration of occupied sites, considerations related to wildlife use of saltcedar and Russian olive habitat or restored habitats, methods to control saltcedar and Russian olive, possible utilization of dead biomass following removal of saltcedar and Russian olive, and approaches and challenges associated with revegetation or restoration following control efforts. A concluding chapter discusses possible long-term management strategies, needs for additional study, potentially useful field demonstration projects, and a planning process for on-the-ground projects involving removal of saltcedar and Russian olive.

  4. Pore fluids and the LGM ocean salinity-Reconsidered

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2016-03-01

    Pore fluid chlorinity/salinity data from deep-sea cores related to the salinity maximum of the last glacial maximum (LGM) are analyzed using estimation methods deriving from linear control theory. With conventional diffusion coefficient values and no vertical advection, results show a very strong dependence upon initial conditions at -100 ky. Earlier inferences that the abyssal Southern Ocean was strongly salt-stratified in the LGM with a relatively fresh North Atlantic Ocean are found to be consistent within uncertainties of the salinity determination, which remain of order ±1 g/kg. However, an LGM Southern Ocean abyss with an important relative excess of salt is an assumption, one not required by existing core data. None of the present results show statistically significant abyssal salinity values above the global average, and results remain consistent, apart from a general increase owing to diminished sea level, with a more conventional salinity distribution having deep values lower than the global mean. The Southern Ocean core does show a higher salinity than the North Atlantic one on the Bermuda Rise at different water depths. Although much more sophisticated models of the pore-fluid salinity can be used, they will only increase the resulting uncertainties, unless considerably more data can be obtained. Results are consistent with complex regional variations in abyssal salinity during deglaciation, but none are statistically significant.

  5. Improved statistical method for temperature and salinity quality control

    NASA Astrophysics Data System (ADS)

    Gourrion, Jérôme; Szekely, Tanguy

    2017-04-01

    Climate research and Ocean monitoring benefit from the continuous development of global in-situ hydrographic networks in the last decades. Apart from the increasing volume of observations available on a large range of temporal and spatial scales, a critical aspect concerns the ability to constantly improve the quality of the datasets. In the context of the Coriolis Dataset for ReAnalysis (CORA) version 4.2, a new quality control method based on a local comparison to historical extreme values ever observed is developed, implemented and validated. Temperature, salinity and potential density validity intervals are directly estimated from minimum and maximum values from an historical reference dataset, rather than from traditional mean and standard deviation estimates. Such an approach avoids strong statistical assumptions on the data distributions such as unimodality, absence of skewness and spatially homogeneous kurtosis. As a new feature, it also allows addressing simultaneously the two main objectives of an automatic quality control strategy, i.e. maximizing the number of good detections while minimizing the number of false alarms. The reference dataset is presently built from the fusion of 1) all ARGO profiles up to late 2015, 2) 3 historical CTD datasets and 3) the Sea Mammals CTD profiles from the MEOP database. All datasets are extensively and manually quality controlled. In this communication, the latest method validation results are also presented. The method has already been implemented in the latest version of the delayed-time CMEMS in-situ dataset and will be deployed soon in the equivalent near-real time products.

  6. SPURS-2: Multi-month and multi-scale observations of upper ocean salinity in a rain-dominated salinity minimum region.

    NASA Astrophysics Data System (ADS)

    Rainville, L.; Farrar, J. T.; Shcherbina, A.; Centurioni, L. R.

    2017-12-01

    The Salinity Processes in the Upper-ocean Regional Study (SPURS) is a program aimed at understanding the patterns and variability of sea surface salinity. Following the first SPURS program in an evaporation-dominated region (2012-2013), the SPURS-2 program targeted wide range of spatial and temporal scales associated with processes controlling salinity in the rain-dominated Eastern Pacific Fresh Pool. Autonomous instruments were delivered in August and September 2016 using research vessels conducted observations over one complete annual cycle. The SPURS-2 field program used coordinated observations from many different autonomous platforms, and a mix of Lagrangian and Eulerian approaches. Here we discuss the motivation, implementation, and the early of SPURS-2.

  7. Seasonal/Yearly Salinity Variations in San Francisco Bay

    USGS Publications Warehouse

    Peterson, David H.; Cayan, Daniel R.; Dettinger, Michael D.; DiLeo, Jeanne Sandra; Hager, Stephen E.; Knowles, Noah; Nichols, Frederic H.; Schemel, Laurence E.; Smith, Richard E.; Uncles, Reginald J.

    1995-01-01

    The ability of resource agencies to manage fish, wildlife and freshwater supplies of San Francisco Bay estuary requires an integrated knowledge of the relations between the biota and their physical environment. A key factor in these relations is the role of salinity in determining both the physical and the biological character of the estuary. The saltiness of the water, and particularly its seasonal and interannual patterns of variability, affects which aquatic species live where within the estuary. Salinity also determines where water can and cannot be diverted for human consumption and irrigated agriculture, and plays a role in determining the capacity of the estuary to cleanse itself of wastes. In short, salinity is a fundamental property of estuarine physics and chemistry that, in turn, determines the biological characteristics of each estuary. Freshwater is a major control on estuarine salinity. Most freshwater supplied to the Bay is from river flow through the Delta, which is primarily runoff from the Sierra Nevada. Most contaminants in San Francisco Bay are from the Sacramento/San Joaquin Valley and the local watershed around the Bay rather than the sea or atmosphere. Land is the primary source of freshwater and freshwater serves as a tracer of land-derived substances such as the trace metals (copper, lead and selenium), pesticides and plant nutrients (nitrate and phosphate). The U.S. Geological Survey is collaborating with other agencies and institutions in studying San Francisco Bay salinity using field observations and numerical simulations to define the physical processes that control salinity. The issues that arise from salinity fluctuations, however, differ in the northern and southern parts of the bay. In North Bay we need to know how salinity responds to freshwater flow through the Sacramento/San Joaquin Delta; this knowledge will benefit water managers who determine how much delta flow is needed a) to protect freshwater supplies for municipal water

  8. Toxic Substances Control Act (TSCA) and Federal Facilities

    EPA Pesticide Factsheets

    The Toxic Substances Control Act (TSCA) of 1976 provides EPA with authority to require reporting, record-keeping and testing requirements, and restrictions relating to chemical substances and/or mixtures.

  9. 46 CFR 502.991 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROVISIONS RULES OF PRACTICE AND PROCEDURE Paperwork Reduction Act § 502.991 OMB control numbers assigned pursuant to the Paperwork Reduction Act. This section displays the control numbers assigned to information... comply with the Act, which requires that agencies display a current control number assigned by the...

  10. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    NASA Astrophysics Data System (ADS)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  11. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    NASA Astrophysics Data System (ADS)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  12. Indicators: Salinity

    EPA Pesticide Factsheets

    Salinity is the dissolved salt content of a body of water. Excess salinity, due to evaporation, water withdrawal, wastewater discharge, and other sources, is a chemical sterssor that can be toxic for aquatic environments.

  13. Reconstructing Past Ocean Salinity ((delta)18Owater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilderson, T P; Pak, D K

    2005-11-23

    Temperature and salinity are two of the key properties of ocean water masses. The distribution of these two independent but related characteristics reflects the interplay of incoming solar radiation (insolation) and the uneven distribution of heat loss and gain by the ocean, with that of precipitation, evaporation, and the freezing and melting of ice. Temperature and salinity to a large extent, determine the density of a parcel of water. Small differences in temperature and salinity can increase or decrease the density of a water parcel, which can lead to convection. Once removed from the surface of the ocean where 'local'more » changes in temperature and salinity can occur, the water parcel retains its distinct relationship between (potential) temperature and salinity. We can take advantage of this 'conservative' behavior where changes only occur as a result of mixing processes, to track the movement of water in the deep ocean (Figure 1). The distribution of density in the ocean is directly related to horizontal pressure gradients and thus (geostrophic) ocean currents. During the Quaternary when we have had systematic growth and decay of large land based ice sheets, salinity has had to change. A quick scaling argument following that of Broecker and Peng [1982] is: the modern ocean has a mean salinity of 34.7 psu and is on average 3500m deep. During glacial maxima sea level was on the order of {approx}120m lower than present. Simply scaling the loss of freshwater (3-4%) requires an average increase in salinity a similar percentage or to {approx}35.9psu. Because much of the deep ocean is of similar temperature, small changes in salinity have a large impact on density, yielding a potentially different distribution of water masses and control of the density driven (thermohaline) ocean circulation. It is partly for this reason that reconstructions of past salinity are of interest to paleoceanographers.« less

  14. [Effects of Suaeda glauca planting and straw mulching on soil salinity dynamics and desalination in extremely heavy saline soil of coastal areas.

    PubMed

    Zhang, Jiao; Cui, Shi You; Feng, Zhi Xiang

    2018-05-01

    To elucidate the seasonal variations in soil salinity and its driving factors, and to explore the effects of planting Suaeda glauca and straw mulching on soil desalination and salinity controlling, a field experiment was conducted in extremely heavy saline soil of coastal areas in Rudong, Jiangsu Province. There were four treatments: control (bare land, CK), planting S. glauca (PS), straw mulching A (at 15 t·hm -2 , SM-A), straw mulching 2A (at 30 t·hm -2 , SM-2A). Climate factors (including rainfall, atmospheric temperature, sunshine duration, and atmospheric evaporation) and soil salinity dynamic changes were determined from May 2014 to May 2015. Results showed that: (1) The seasonal variation of soil salinity was obvious in the bare ground (CK), with the lowest (8.69 g·kg -1 ) during June-August and the highest (26.66 g·kg -1 ) during September-December. The changes of soil salinity in topsoil (0-20 cm) were more intense than that in sub-topsoil (20-40 cm), with the changes in sub-topsoil having somewhat time lag compared the topsoil. (2) Soil salinity in CK treatment had a significantly linear correlation with the cumulative rainfall and evaporation-precipitation ratio of the fifteen-day before sampling. The results from multifactor and interphase analysis indicated that the increases of rainfall would promote soil desalinization. The rise of atmospheric temperature could exacerbate soil salt accumulation in surface soil. The interaction between rainfall and atmospheric temperature would have a positive effect on soil salt accumulation. (3) PS treatment did not alter the seasonal variation in soil salinity, but it reduced soil salinity in topsoil. (4) In SM-A and SM-2A treatments, the relationship of soil desalinization rate (%, Y) and treatment time (days, X) was expressed as Logistic curve equation. Moreover, the soil desalination rate was over 95.0% in the topsoil after 90-100 days of straw mul-ching treatment and was over 92.0% in sub-topsoil after 120

  15. Salinity control in a clay soil beneath an orchard irrigated with treated waste water in the presence of a high water table: A numerical study

    NASA Astrophysics Data System (ADS)

    Russo, David; Laufer, Asher; Bardhan, Gopali; Levy, Guy J.

    2015-12-01

    A citrus orchard planted on a structured, clay soil associated with a high water table, irrigated by drip irrigation system using treated waste water (TWW) and local well water (LWW) was considered here. The scope of the present study was to analyze transport of mixed-ion, interacting salts in a combined vadose zone-groundwater flow system focusing on the following issues: (i) long-term effects of irrigation with TWW on the response of the flow system, identifying the main factors (e.g., soil salinity, soil sodicity) that control these effects, and (ii) salinity control aiming at improving both crop productivity and groundwater quality. To pursue this two-fold goal, 3-D numerical simulations of field-scale flow and transport were performed for an extended period of time, considering realistic features of the soil, water table, crop, weather and irrigation, and the coupling between the flow and the transport through the dependence of the soil hydraulic functions, K(ψ) and θ(ψ), on soil solution concentration C, and sodium adsorption ratio, SAR. Results of the analyses suggest that in the case studied, the long-term effect of irrigation with TWW on the response of the flow system is attributed to the enhanced salinity of the TWW, and not to the increase in soil sodicity. The latter findings are attributed to: (i) the negative effect of soil salinity on water uptake, and the tradeoff between water uptake and drainage flux, and, concurrently, solute discharge below the root zone; and, (ii) the tradeoff between the effects of C and SAR on K(ψ) and θ(ψ). Furthermore, it was demonstrated that a data-driven protocol for soil salinity control, based on alternating irrigation water quality between TWW and desalinized water, guided by the soil solution salinity at the centroid of the soil volume active in water uptake, may lead to a substantial increase in crop yield, and to a substantial decrease in the salinity load in the groundwater.

  16. Saline infusion sonohysterography.

    PubMed

    2004-01-01

    Saline infusion sonohysterography consists of ultrasonographic imaging of the uterus and uterocervical cavity, using real-time ultrasonography during injection of sterile saline into the uterus. When properly performed, saline infusion sonohysterography can provide information about the uterus and endometrium. The most common indication for sonohysterography is abnormal uterine bleeding. sonohysterography should not be performed in a woman who is pregnant or could be pregnant or in a woman with a pelvic infection or unexplained pelvic tenderness. Physicians who perform or supervise diagnostic saline infusion sonohysterograpy should have training, experience, and demonstrated competence in gynecologic ultrasonography and saline infusion sonohysterography. Portions of this document were developed jointly with the American College of Radiology and the American Institute of Ultrasound in Medicine.

  17. Warming and Inhibition of Salinization at the Ocean's Surface by Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Wurl, O.; Bird, K.; Cunliffe, M.; Landing, W. M.; Miller, U.; Mustaffa, N. I. H.; Ribas-Ribas, M.; Witte, C.; Zappa, C. J.

    2018-05-01

    This paper describes high-resolution in situ observations of temperature and, for the first time, of salinity in the uppermost skin layer of the ocean, including the influence of large surface blooms of cyanobacteria on those skin properties. In the presence of the blooms, large anomalies of skin temperature and salinity of 0.95°C and -0.49 practical salinity unit were found, but a substantially cooler (-0.22°C) and saltier skin layer (0.19 practical salinity unit) was found in the absence of surface blooms. The results suggest that biologically controlled warming and inhibition of salinization of the ocean's surface occur. Less saline skin layers form during precipitation, but our observations also show that surface blooms of Trichodesmium sp. inhibit evaporation decreasing the salinity at the ocean's surface. This study has important implications in the assessment of precipitation over the ocean using remotely sensed salinity, but also for a better understanding of heat exchange and the hydrologic cycle on a regional scale.

  18. Saline irrigation for the management of skin extravasation injury in neonates.

    PubMed

    Gopalakrishnan, P N; Goel, N; Banerjee, Sujoy

    2012-02-15

    Extravasation injury is a common complication of neonatal intensive care and can result in scarring with cosmetic and functional sequelae. A wide variety of treatments are used in practice including subcutaneous irrigation with saline (with or without hyaluronidase), liposuction, use of specific antidotes, different topical applications and normal wound care with dry or wet dressings. All such treatments aim to prevent or reduce the severity of complications. To determine the efficacy and safety of saline irrigation or saline irrigation with prior hyaluronidase infiltration on tissue healing in neonates with extravasation injury when compared to no intervention or normal wound care. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to June 2011), EMBASE (Jan 1980 to June 2011), CINAHL (Jan 1988 to June 2011) and the Web of Science (up to July 2011). Randomised controlled trials (RCT) and quasi-randomised controlled trials comparing saline irrigation with or without hyaluronidase infiltration with no intervention or normal wound care in the management of extravasation injury in neonates. Three review authors independently reviewed and identified articles for possible inclusion in this review. No eligible studies were found. There were a few case reports and case series describing successful outcomes with different interventions in this condition. To date, no randomised controlled trial is available that examines the effects of saline irrigation with or without prior hyaluronidase infiltration in the management of extravasation injury in neonates. Saline irrigation is a frequently reported intervention in the literature that is used in the management of extravasation injury in neonates. Research should be initially directed at evaluating the efficacy and safety of this intervention through randomised controlled trials. It will also be important to determine the size of the effect according to

  19. 23 CFR 633.211 - Implementation of the Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Implementation of the Clean Air Act and the Federal Water Pollution Control Act. 633.211 Section 633.211 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS REQUIRED CONTRACT PROVISIONS Federal-Aid Contracts (Appalachian Contracts) § 633.211...

  20. Postprocedural pain in shoulder arthrography: differences between using preservative-free normal saline and normal saline with benzyl alcohol as an intraarticular contrast diluent.

    PubMed

    Storey, Troy F; Gilbride, George; Clifford, Kelly

    2014-11-01

    The purpose of this study was to prospectively evaluate the effect of benzyl alcohol, a common preservative in normal saline, on postprocedural pain after intraarticular injection for direct shoulder MR arthrography. From April 2011 through January 2013, 138 patients underwent direct shoulder MR arthrography. Using the Wong-Baker Faces Pain Scale, patients were asked to report their shoulder pain level immediately before and immediately after the procedure and then were contacted by telephone 6, 24, and 48 hours after the procedure. Fourteen patients did not receive the prescribed amount of contrast agent for diagnostic reasons or did not complete follow-up. Sixty-two patients received an intraarticular solution including preservative-free normal saline (control group) and 62 patients received an intraarticular solution including normal saline with 0.9% benzyl alcohol as a contrast diluent (test group). Patients were randomized as to which intraarticular diluent they received. Fluoroscopic and MR images were reviewed for extracapsular contrast agent administration or extravasation, full-thickness rotator cuff tears, and adhesive capsulitis. The effect of preservative versus control on pain level was estimated with multiple regression, which included time after procedure as the covariate and accounted for repeated measures over patients. Pain scale scores were significantly (p = 0.0382) higher (0.79 units; 95% CI, 0.034-1.154) with benzyl alcohol preservative compared with control (saline). In both study arms, the pain scale scores decreased slightly after the procedure, increased by roughly 1 unit over baseline for the test group and 0.3 unit over baseline for the control group by 6 hours after the procedure, were 0.50 unit over baseline for the test group and 0.12 unit over baseline for the control group at 24 hours, then fell to be slightly greater than baseline at 48 hours with benzyl alcohol and slightly less than baseline without benzyl alcohol. These trends

  1. Preoperative hydration with 0.9% normal saline to prevent acute kidney injury after major elective open abdominal surgery: A randomised controlled trial.

    PubMed

    Serrano, Ana B; Candela-Toha, Angel M; Zamora, Javier; Vera, Jorge; Muriel, Alfonso; Del Rey, Jose M; Liaño, Fernando

    2016-06-01

    Postoperative acute kidney injury (AKI) is the second leading cause of hospital-acquired AKI. Although many preventive strategies have been tested, none of them has been totally effective. We investigated whether preoperative intravenous hydration with 0.9% normal saline could prevent postoperative AKI. Randomised controlled trial. University Ramón y Cajal Hospital, Spain, from June 2006 to February 2011. Total 328 inpatients scheduled for major elective open abdominal surgery. 0.9% normal saline at a dose of 1.5 ml kg h for 12 h before surgery. The primary outcome was the overall postoperative AKI incidence during the first week after surgery defined by risk, injury, failure, loss, end-stage kidney disease (RIFLE) and AKI network (AKIN) creatinine criteria. Secondary endpoints were the need for ICU admission, renal replacement therapy during the study period and adverse events and hospital mortality during hospital admission. There was no difference in the incidence of AKI between groups: 4.7% in the normal saline group versus 5.0% in the control group and 11.4% in the 0.9% normal saline group versus 7.9% in the control group as assessed by the RIFLE and AKIN creatinine criteria, respectively. Absolute risk reductions (95% confidence interval) were -0.3% (-5.3 to 4.7%) for RIFLE and 3.5% (-10.2 to 3.6%) for AKIN. ICU admission after surgery was required in 44.5% of all participants. Only 2 (0.7%) patients required renal replacement therapy during the first week after surgery. The analysis of adverse events did not show statistically significant differences between the groups except for pain. In our population, 8 (2.4%) patients died during their hospital admission. Intravenous hydration with 0.9% normal saline before major open abdominal surgery was not effective in preventing postoperative AKI. No safety concerns were identified during the trial. Clinical trials.gov: NCT00953940 and EUDRA CT: 2005-004755-35.

  2. Act-and-wait time-delayed feedback control of autonomous systems

    NASA Astrophysics Data System (ADS)

    Pyragas, Viktoras; Pyragas, Kestutis

    2018-02-01

    Recently an act-and-wait modification of time-delayed feedback control has been proposed for the stabilization of unstable periodic orbits in nonautonomous dynamical systems (Pyragas and Pyragas, 2016 [30]). The modification implies a periodic switching of the feedback gain and makes the closed-loop system finite-dimensional. Here we extend this modification to autonomous systems. In order to keep constant the phase difference between the controlled orbit and the act-and-wait switching function an additional small-amplitude periodic perturbation is introduced. The algorithm can stabilize periodic orbits with an odd number of real unstable Floquet exponents using a simple single-input single-output constraint control.

  3. Tissue damage caused by the intramuscular injection of long-acting penicillin.

    PubMed

    Schanzer, H; Jacobson, J H

    1985-04-01

    In order to elucidate whether tissue damage produced on occasion by intramuscular injection of long-acting penicillin is due to accidental intra-arterial injection or vasospasm, two types of experiments were carried out in rabbits. In the first set of experiments, six New Zealand White rabbits were given intra-arterial injections of 0.4 mL of a mixture containing 300,000 U of penicillin G benzathine and 300,000 units of penicillin procaine per milliliter (Bicillin C-R) into the left femoral artery and 0.4 mL of normal saline into the right femoral artery as autocontrol. In a second set of experiments, 0.4 mL of the same penicillin preparation was injected in the space surrounding the left femoral artery in five New Zealand rabbits, and 0.4 mL of normal saline was injected in a similar fashion around the right femoral artery as control. The legs of the rabbits that received the intra-arterial injection of penicillin invariably developed ischemic manifestations. None of the legs of rabbits given intra-arterial injections of normal saline had pathologic manifestations. None of the rabbits that received the periarterial penicillin preparation or normal saline developed abnormalities. These results strongly suggest that the tissue damage produced by penicillin is secondary to the intra-arterial administration of the drug.

  4. Moving forward on remote sensing of soil salinity at regional scale

    USDA-ARS?s Scientific Manuscript database

    Soil salinity undermines global agriculture by reducing crop yield and soil quality. Irrigation management can help control salinity levels within the root-zone. To best allocate water resources, accurate regional-scale inventories are needed. Two remote sensing approaches are currently used to moni...

  5. Potential role of salinity in ENSO and MJO predictions

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Kumar, A.; Murtugudde, R. G.; Xie, P.

    2017-12-01

    Studies have suggested that ocean salinity can vary in response to ENSO and MJO. For example, during an El Niño event, sea surface salinity decreases in the western and central equatorial Pacific, as a result of zonal advection of low salinity water by anomalous eastward surface currents, and to a lesser extent as a result of a rainfall excess associated with atmospheric convection and warm water displacements. However, the effect of salinity on ENSO and MJO evolutions and their forecasts has been less explored. In this analysis, we explored the potential role of salinity in ENSO and MJO predictions by conducting sensitivity experiments with NCEP CFSv2. Firstly, two forecasts experiments are conducted to explore its effect on ENSO predictions, in which the interannual variability of salinity in the ocean initial states is either included or excluded. Comparisons suggested that the salinity variability is essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate sustained salinity observations having large-scale spatial coverage. We also assessed the potential role of salinity in MJO by evaluating a long coupled free run that has a relatively realistic MJO simulation and a set of predictability experiment, both based on CFSv2. Diagnostics of the free run suggest that, while the intraseasonal SST variations lead convections by a quarter cycle, they are almost in phase only with changes in barrier layer thickness, thereby suggesting an active role of salinity on SST. Its effect on MJO predictions is further explored by controlling the surface salinity

  6. Practical salinity management for leachate irrigation to poplar trees.

    PubMed

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  7. Hydrologic evaluation of salinity control and reclamation projects in the Indus Plain, Pakistan--A summary

    USGS Publications Warehouse

    Mundorff, Maurice John; Carrigan, P.H.; Steele, T.D.; Randall, A.D.

    1976-01-01

    This report summarizes the observations and findings of a team of four specialists from the U.S. Geological Survey assigned to Pakistan under the auspices of the U.S. Agency for International Development during May to August 1972 for a hydrologic evaluation of Salinity Control and Reclamation Projects in the Indus Plain Individual members of the team undertook comprehensive studies related to climatology, surface-water hydrology, and the canal system; streamflow and sediment yields of the rivers; computer applications to hydrologic data; aquifer characteristics; hydrologic evaluation of Salinity Control and Reclamation Projects (SCARPs); tubewell performance; hydrology of shallow versus deep tubewells; well and well-screen design in the Indus Plain; evaluation of observed and anticipated trends in both private and public tubewell development; evaluation of water-quality programs, data analysis, and records, and computer coding of special water-quality data; and evaluation of water-level data, well discharge and specific-capacity tests and aquifer tests. The reclamation program, by pumping from tubewells, has been notably successful in lowering the water table, in providing supplemental water for irrigation and for leaching of salinized soils, and in improving crop production. Some changes in water quality have been observed in SCARP-I and the Mona Scheme of SCARP-II, but these have not as yet (1972) significantly affected the utility of the water for irrigation. Problems associated with reclamation include control of deterioration in performance of tubewells and their rehabilitation, local brackish or saline-water encroachment, and maintenance of a favorable salt balance in the ground-water system. Rapid and as yet (1972) unregulated growth of shallow private tubewell development in the past decade has introduced complicating factors to the reclamation planning of the early 1960's which had emphasized public tubewell development through the SCARP program. In

  8. Differences in salinity tolerance of genetically distinct Phragmites australis clones

    PubMed Central

    Achenbach, Luciana; Eller, Franziska; Nguyen, Loc Xuan; Brix, Hans

    2013-01-01

    Different clones of the wetland grass Phragmites australis differ in their morphology and physiology, and hence in their ability to cope with environmental stress. We analysed the responses of 15 P. australis clones with distinct ploidy levels (PLs) (4n, 6n, 8n, 10n, 12n) and geographic origins (Romania, Russia, Japan, Czech Republic, Australia) to step-wise increased salinity (8, 16, 24, 32, 40, 56 and 72 ppt). Shoot elongation rate, photosynthesis and plant part-specific ion accumulation were studied in order to assess if traits associated with salinity tolerance can be related to the genetic background and the geographic origin of the clones. Salt stress affected all clones, but at different rates. The maximum height was reduced from 1860 mm in control plants to 660 mm at 40 ppt salinity. The shoot elongation rate of salt-exposed plants varied significantly between clones until 40 ppt salinity. The light-saturated photosynthesis rate (Pmax) was stimulated by a salinity of 8 ppt, but decreased significantly at higher salinities. The stomatal conductance (gs) and the transpiration rate (E) decreased with increasing salinity. Only three clones survived at 72 ppt salinity, although their rates of photosynthesis were strongly inhibited. The roots and basal leaves of the salt-exposed plants accumulated high concentrations of water-extractable Na+ (1646 and 1004 µmol g−1 dry mass (DM), respectively) and Cl− (1876 and 1400 µmol g−1 DM, respectively). The concentrations of water-extractable Mg2+ and Ca2+ were reduced in salt-exposed plants compared with controls. The variation of all the measured parameters was higher among clones than among PLs. We conclude that the salinity tolerance of distinct P. australis clones varies widely and can be partially attributed to their longitudinal geographic origin, but not to PL. Further investigation will help in improving the understanding of this species' salt tolerance mechanisms and their connection to genetic factors.

  9. Preovulatory uterine flushing with saline as a treatment for unexplained infertility: a randomised controlled trial protocol.

    PubMed

    Maheux-Lacroix, Sarah; Dodin, Sylvie; Moore, Lynne; Bujold, Emmanuel; Lefebvre, Jessica; Bergeron, Marie-Ève

    2016-01-06

    In vitro fertilisation (IVF) is the treatment of choice for unexplained infertility. Preovulatory uterine flushing could reduce intrauterine debris and inflammatory factors preventing pregnancy and constitute an alternative to IVF. Our objective is to assess the efficacy of preovulatory uterine flushing with physiological saline for the treatment of unexplained infertility. We will perform a randomised controlled trial based on consecutive women aged between 18 and 37 years consulting for unexplained infertility for at least 1 year. On the day of their luteinising hormone surge, 192 participants will be randomised in two equal groups to either receive 20 mL of physiological saline by an intrauterine catheter or 10 mL of saline intravaginally. We will assess relative risk of live birth (primary outcome), as well as pregnancy (secondary outcome) over one cycle of treatment. We will report the side effects, complications and acceptability of the intervention. This project was approved by the Ethics committee of the Centre Hospitatlier Universitaire de Quebec (no 2015-1146). Uterine flushing is usually well tolerated by women and would constitute a simple, affordable and minimally invasive treatment for unexplained infertility. We plan to communicate the results of the review by presenting research abstracts at conferences and by publishing the results in a peer-reviewed journal. NCT02539290; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  11. Controls on the chemical composition of saline surface crusts and emitted dust from a wet playa in the Mojave Desert (USA)

    USGS Publications Warehouse

    Goldstein, Harland L.; Breit, George N.; Reynolds, Richard L.

    2017-01-01

    Saline-surface crusts and their compositions at ephemeral, dry, and drying lakes are important products of arid-land processes. Detailed understanding is lacking, however, about interactions among locally variable hydrogeologic conditions, compositional control of groundwater on vadose zone and surface salts, and dust composition. Chemical and physical data from groundwater, sediments, and salts reveal compositional controls on saline-surface crusts across a wet playa, Mojave Desert, with bearing on similar settings elsewhere. The compositions of chemically and isotopically distinctive shallow (<3 m) water masses are recorded in the composition of associated salts. In areas with deeper and more saline groundwater, however, not all ions are transported through the vadose zone. Retention of arsenic and other elements in the vadose zone diminishes the concentrations of potentially toxic elements in surface salts, but creates a reservoir of these elements that may be brought to the surface during wetter conditions or by human disturbance. Selective wind-erosion loss of sulfate salts was identified by the compositional contrast between surface salt crusts and underlying groundwater. At the sub-basin scale, compositional links exist among groundwater, salt crusts, and dust from wet playas. Across the study basin, however, lateral variations in groundwater and solid-salt compositions are produced by hydrogeologic heterogeneity.

  12. Do Patterns of Bacterial Diversity along Salinity Gradients Differ from Those Observed for Macroorganisms?

    PubMed Central

    Zhang, Yong; Shen, Ji; van der Gast, Christopher; Hahn, Martin W.; Wu, Qinglong

    2011-01-01

    It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE) with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers) of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline). For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity), the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns. PMID:22125616

  13. Microbial Fuel Cells under Extreme Salinity

    NASA Astrophysics Data System (ADS)

    Monzon del Olmo, Oihane

    I developed a Microbial Fuel Cell (MFC) that unprecedentedly works (i.e., produces electricity) under extreme salinity (≈ 100 g/L NaCl). Many industries, such as oil and gas extraction, generate hypersaline wastewaters with high organic strength, accounting for about 5% of worldwide generated effluents, which represent a major challenge for pollution control and resource recovery. This study assesses the potential for microbial fuel cells (MFCs) to treat such wastewaters and generate electricity under extreme saline conditions. Specifically, the focus is on the feasibility to treat hypersaline wastewater generated by the emerging unconventional oil and gas industry (hydraulic fracturing) and so, with mean salinity of 100 g/L NaCl (3-fold higher than sea water). The success of this novel technology strongly depends on finding a competent and resilient microbial community that can degrade the waste under extreme saline conditions and be able to use the anode as their terminal electron acceptor (exoelectrogenic capability). I demonstrated that MFCs can produce electricity at extremely high salinity (up to 250 g/l NaCl) with a power production of 71mW/m2. Pyrosequencing analysis of the anode population showed the predominance of Halanaerobium spp. (85%), which has been found in shale formations and oil reservoirs. Promoting Quorum sensing (QS, cell to cell communication between bacteria to control gene expression) was used as strategy to increase the attachment of bacteria to the anode and thus improve the MFC performance. Results show that the power output can be bolstered by adding 100nM of quinolone signal with an increase in power density of 30%, for the first time showing QS in Halanaerobium extremophiles. To make this technology closer to market applications, experiments with real wastewaters were also carried out. A sample of produced wastewater from Barnet Shale, Texas (86 g/L NaCl) produced electricity when fed in an MFC, leading to my discovery of another

  14. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project. ACT/Control/Guidance System study, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The active control technology (ACT) control/guidance system task of the integrated application of active controls (IAAC) technology project within the NASA energy efficient transport program was documented. The air traffic environment of navigation and air traffic control systems and procedures were extrapolated. An approach to listing flight functions which will be performed by systems and crew of an ACT configured airplane of the 1990s, and a determination of function criticalities to safety of flight, are the basis of candidate integrated ACT/Control/Guidance System architecture. The system mechanizes five active control functions: pitch augmented stability, angle of attack limiting, lateral/directional augmented stability, gust load alleviation, and maneuver load control. The scope and requirements of a program for simulating the integrated ACT avionics and flight deck system, with pilot in the loop, are defined, system and crew interface elements are simulated, and mechanization is recommended. Relationships between system design and crew roles and procedures are evaluated.

  15. Does increased salinity influence the competitive outcome of two producer species?

    PubMed

    Venâncio, C; Anselmo, E; Soares, A; Lopes, I

    2017-02-01

    Within the context of global climate changes, it is expected that low-lying coastal freshwater ecosystems will face seawater intrusion with concomitant increase in salinity levels. Increased salinity may provoke disruption of competitive relationships among freshwater species. However, species may be capable of acclimating to salinity, which, in turn, may influence the resilience of ecosystems. Accordingly, this work aimed at assessing the effects of multigenerational exposure to low levels of salinity in the competitive outcome of two species of green microalgae: Raphidocelis subcapitata and Chlorella vulgaris. To attain this, three specific objectives were delineated: (1) compare the toxicity of natural seawater (SW) and NaCl (as a surrogate of SW) to the two microalgae, (2) determine the capacity of the two microalgae species to acclimate to low salinity levels, and (3) assess the influence of exposure to low salinity levels in the competitive outcome of the two microalgae. Results revealed SW to be slightly less toxic than NaCl for the two microalgae. The EC 25,72 h for growth rate was 4.63 and 10.3 mS cm -1 for R. subcapitata and 6.94 and 15.4 mS cm -1 for C. vulgaris, respectively for NaCl and SW. Both algae were capable of acclimating to low levels of salinity, but C. vulgaris seemed to acclimate faster than R. subcapitata. When exposed in competition, under control conditions, the growth rates of C. vulgaris were lower than those of R. subcapitata. However, C. vulgaris was capable of acquiring competitive advantage equaling or surpassing the growth rate of R. subcapitata with the addition of NaCl or SW, respectively. The multigenerational exposure to low levels of salinity influenced the competitive outcome of the two algae both under control and salinity exposure. These results suggest that long-term exposure to low salinity stress can cause shifts in structure of algae communities and, therefore, should not be neglected since algae are at the basis

  16. Hypertonic saline or mannitol for treating elevated intracranial pressure in traumatic brain injury: a meta-analysis of randomized controlled trials.

    PubMed

    Gu, Jiajie; Huang, Haoping; Huang, Yuejun; Sun, Haitao; Xu, Hongwu

    2018-06-15

    Hyperosmolar therapy is regarded as the mainstay for treatment of elevated intracranial pressure (ICP) in traumatic brain injury (TBI). This still has been disputed as application of hypertonic saline (HS) or mannitol for treating patients with severe TBI. Thus, this meta-analysis was performed to further compare the advantages and disadvantages of mannitol with HS for treating elevated ICP after TBI. We conducted a systematic search on PubMed, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), Wan Fang Data, VIP Data, SinoMed, and China National Knowledge Infrastructure (CNKI) databases. Studies were included or not based on the quality assessment by the Jadad scale and selection criteria. Twelve RCTs with 438 patients were enrolled for the meta-analysis. The comparison of HS and mannitol indicated that they were close in field of improving function outcome (RR = 1.17, 95% CI 0.89 to 1.54, p = 0.258) and reducing intracranial pressure (MD = - 0.16, 95% CI: - 0.59 to 0.27, p = 0.473) and mortality (RR = 0.78, 95% CI 0.53 to 1.16, p = 0.216). The pooled relative risk of successful ICP control was 1.06 (95% CI: 1.00 to 1.13, p = 0.044), demonstrating that HS was more effective than mannitol in ICP management. Both serum sodium (WMD = 5.30, 95% CI: 4.37 to 6.22, p < 0.001) and osmolality (WMD = 3.03, 95% CI: 0.18 to 5.88, p = 0.037) were increased after injection of hypertonic saline. The results do not lend a specific recommendation to select hypertonic saline or mannitol as a first-line for the patients with elevated ICP caused by TBI. However, for the refractory intracranial hypertension, hypertonic saline seems to be preferred.

  17. Effects of spatiotemporal variation of soil salinity on fine root distribution in different plant configuration modes in new reclamation coastal saline field.

    PubMed

    Jiang, Hong; Du, Hongyu; Bai, Yingying; Hu, Yue; Rao, Yingfu; Chen, Chong; Cai, Yongli

    2016-04-01

    In order to study the effects of salinity on plant fine roots, we considered three different plant configuration modes (tree stand model (TSM), shrub stand model (SSM), and tree-shrub stand model (TSSM)). Soil samples were collected with the method of soil drilling. Significant differences of electrical conductivity (EC) in the soil depth of 0-60 cm were observed among the three modes (p < 0.05). In the above three modes, the variation of soil salinity among various soil layers and monthly variation of soil salinity were the highest in SSM and reached 2.30 and 2.23 mS/cm (EC1:5), respectively. Due to the effect of salinity, fine root biomass (FRB) showed significant differences in different soil depths (p < 0.05). More than 60% of FRB was concentrated in the soil depth above 30 cm. FRB showed exponential decline with soil depth (p < 0.05). FRB showed spatial heterogeneity in the 40-cm soil depth. In the above three modes, compared with FRB, specific root length (SRL) and fine root length density (FRLD) showed the similar changing trend. Fine roots showed significant seasonal differences among different modes (p < 0.05). FRB showed the bimodal variation and was the highest in July. However, we found that the high content of salts had obvious inhibitory effect on the distribution of FRB. Therefore, the salinity should be below 1.5 mS/cm, which was suitable for the growth of plant roots. Among the three modes, TSSM had the highest FRB, SRL, and FRLD and no obvious soil salt accumulation was observed. The results indicated that fine root biomass was affected by high salt and that TSSM had the strong effects of salt suppression and control. In our study, TSSM may be the optimal configuration mode for salt suppression and control in saline soil.

  18. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish

    PubMed Central

    Wang, Xiaodan; Kültz, Dietmar

    2017-01-01

    Fish respond to salinity stress by transcriptional induction of many genes, but the mechanism of their osmotic regulation is unknown. We developed a reporter assay using cells derived from the brain of the tilapia Oreochromis mossambicus (OmB cells) to identify osmolality/salinity-responsive enhancers (OSREs) in the genes of O. mossambicus. Genomic DNA comprising the regulatory regions of two strongly salinity-induced genes, inositol monophosphatase 1 (IMPA1.1) and myo-inositol phosphate synthase (MIPS), was isolated and analyzed with dual luciferase enhancer trap reporter assays. We identified five sequences (two in IMPA1.1 and three in MIPS) that share a common consensus element (DDKGGAAWWDWWYDNRB), which we named “OSRE1.” Additional OSREs that were less effective in conferring salinity-induced trans-activation and do not match the OSRE1 consensus also were identified in both MIPS and IMPA1.1. Although OSRE1 shares homology with the mammalian osmotic-response element/tonicity-responsive enhancer (ORE/TonE) enhancer, the latter is insufficient to confer osmotic induction in fish. Like other enhancers, OSRE1 trans-activates genes independent of orientation. We conclude that OSRE1 is a cis-regulatory element (CRE) that enhances the hyperosmotic induction of osmoregulated genes in fish. Our study also shows that tailored reporter assays developed for OmB cells facilitate the identification of CREs in fish genomes. Knowledge of the OSRE1 motif allows affinity-purification of the corresponding transcription factor and computational approaches for enhancer screening of fish genomes. Moreover, our study enables targeted inactivation of OSRE1 enhancers, a method superior to gene knockout for functional characterization because it confines impairment of gene function to a specific context (salinity stress) and eliminates pitfalls of constitutive gene knockouts (embryonic lethality, developmental compensation). PMID:28289196

  19. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions

    PubMed Central

    Ochsenkühn, Michael A.; Röthig, Till; D’Angelo, Cecilia; Wiedenmann, Jörg; Voolstra, Christian R.

    2017-01-01

    The endosymbiosis between Symbiodinium dinoflagellates and stony corals provides the foundation of coral reef ecosystems. The survival of these ecosystems is under threat at a global scale, and better knowledge is needed to conceive strategies for mitigating future reef loss. Environmental disturbance imposing temperature, salinity, and nutrient stress can lead to the loss of the Symbiodinium partner, causing so-called coral bleaching. Some of the most thermotolerant coral-Symbiodinium associations occur in the Persian/Arabian Gulf and the Red Sea, which also represent the most saline coral habitats. We studied whether Symbiodinium alter their metabolite content in response to high-salinity environments. We found that Symbiodinium cells exposed to high salinity produced high levels of the osmolyte 2-O-glycerol-α-d-galactopyranoside (floridoside), both in vitro and in their coral host animals, thereby increasing their capacity and, putatively, the capacity of the holobiont to cope with the effects of osmotic stress in extreme environments. Given that floridoside has been previously shown to also act as an antioxidant, this osmolyte may serve a dual function: first, to serve as a compatible organic osmolyte accumulated by Symbiodinium in response to elevated salinities and, second, to counter reactive oxygen species produced as a consequence of potential salinity and heat stress. PMID:28835914

  20. Survival and growth of invasive Indo-Pacific lionfish at low salinities

    USGS Publications Warehouse

    Schofield, Pamela J.; Huge, Dane H.; Rezek, Troy C.; Slone, Daniel H.; Morris, James A.

    2015-01-01

    Invasive Indo-Pacific lionfish [Pterois volitans (Linnaeus, 1758) and P. miles (Bennett, 1828)] are now established throughout the Western North Atlantic. Several studies have documented negative effects of lionfish on marine fauna including significant changes to reef fish community composition. Established populations of lionfish have been documented in several estuaries, and there is concern that the species may invade other low-salinity environments where they could potentially affect native fauna. To gain a better understanding of their low-salinity tolerance, we exposed lionfish to four salinities [5, 10, 20 and 34 (control)]. No lionfish mortality was observed at salinities of 34, 20 or 10, but all fish died at salinity = 5 within 12 days. Lionfish survived for at least a month at a salinity of 10 and an average of about a week at 5. Fish started the experiment at an average mass of 127.9 g, which increased at a rate of 0.55 g per day while they were alive, regardless of salinity treatment. Our research indicated lionfish can survive salinities down to 5 for short periods and thus may penetrate and persist in a variety of estuarine habitats. Further study is needed on effects of salinity levels on early life stages (eggs, larvae).

  1. Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton.

    PubMed

    DeLorenzo, Marie E; Danese, Loren E; Baird, Thomas D

    2013-07-01

    Ecological risk assessments are, in part, based on results of toxicity tests conducted under standard exposure conditions. Global climate change will have a wide range of effects on estuarine habitats, including potentially increasing water temperature and salinity, which may alter the risk assessment of estuarine pollutants. We examined the effects of increasing temperature and salinity on the toxicity of common herbicides (irgarol, diuron, atrazine, and ametryn) to the phytoplankton species Dunaliella tertiolecta. Static 96-h algal bioassays were conducted for each herbicide under four exposure scenarios: standard temperature and salinity (25°C, 20 ppt), standard temperature and elevated salinity (25°C, 40 ppt), elevated temperature and standard salinity (35°C, 20 ppt), and elevated temperature and elevated salinity (35°C, 40 ppt). The endpoints assessed were algal cell density at 96 h, growth rate, chlorophyll a content, lipid content, and starch content. Increasing exposure temperature reduced growth rate and 96-h cell density but increased the cellular chlorophyll and lipid concentrations of the control algae. Exposure condition did not alter starch content of control algae. Herbicides were found to decrease growth rate, 96 h cell density, and cellular chlorophyll and lipid concentrations, while starch concentrations increased with herbicide exposure. Herbicide effects under standard test conditions were then compared with those observed under elevated temperature and salinity. Herbicide effects on growth rate, cell density, and starch content were more pronounced under elevated salinity and temperature conditions. To encompass the natural variability in estuarine temperature and salinity, and to account for future changes in climate, toxicity tests should be conducted under a wider range of environmental conditions. Copyright © 2011 Wiley Periodicals, Inc.

  2. Remote Sensing Monitoring of Changes in Soil Salinity: A Case Study in Inner Mongolia, China.

    PubMed

    Wu, Jingwei; Vincent, Bernard; Yang, Jinzhong; Bouarfa, Sami; Vidal, Alain

    2008-11-07

    This study used archived remote sensing images to depict the history of changes in soil salinity in the Hetao Irrigation District in Inner Mongolia, China, with the purpose of linking these changes with land and water management practices and to draw lessons for salinity control. Most data came from LANDSAT satellite images taken in 1973, 1977, 1988, 1991, 1996, 2001, and 2006. In these years salt-affected areas were detected using a normal supervised classification method. Corresponding cropped areas were detected from NVDI (Normalized Difference Vegetation Index) values using an unsupervised method. Field samples and agricultural statistics were used to estimate the accuracy of the classification. Historical data concerning irrigation/drainage and the groundwater table were used to analyze the relation between changes in soil salinity and land and water management practices. Results showed that: (1) the overall accuracy of remote sensing in detecting soil salinity was 90.2%, and in detecting cropped area, 98%; (2) the installation/innovation of the drainage system did help to control salinity; and (3) a low ratio of cropped land helped control salinity in the Hetao Irrigation District. These findings suggest that remote sensing is a useful tool to detect soil salinity and has potential in evaluating and improving land and water management practices.

  3. Double acting stirling engine phase control

    DOEpatents

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  4. Re-Assessing Leaching Requirements for the Salinity Control under New Irrigation Regimes

    NASA Astrophysics Data System (ADS)

    Wu, Laosheng; Yang, Ting; Šimůnek, Jirka

    2017-04-01

    Irrigation is essential to sustain agricultural production, but it adds dissolved salts (or salinity) to croplands. Leaching is thus necessary to keep the average rootzone salinity below the plant threshold EC levels in order to sustain crop production. Current leaching requirement (LR) calculation is based on steady-state, one-dimensional (1D), and water balance approaches, which often overestimates the LRs under transient field conditions. While in recent years, surface and sprinkler irrigated fields have been largely converted to drip or micro-spray systems and deficit irrigation has become more popular, currently accepted LRs may not be appropriate for these irrigation systems. Under point or line irrigation sources (e.g., drips or drip-lines), water and salts move both downwards and laterally, which may lead to highly saline areas on the edges of the wetted area. Under such circumstances, processes such as precipitation/dissolution of mineral phases and/or cation exchange may significantly affect the leaching requirement. The overall objective of this research was to use computer simulation models (i.e., Hydrus-2D and UnsatChem) to evaluate LRs under transient conditions and new irrigation regimes. Simulations were carried out using parameters for soils, climate zones, and major crops and their corresponding fertilization practices typical for California to: (1) Assess the effects of salt precipitation/dissolution on the leaching requirement (LR); (2) Evaluate localized water movement on average rootzone salinity and the leaching requirement (LR); (3) Evaluate leaching requirements for soils under deficit irrigation; and (4) Assess the effects of rainfall on the leaching requirement. Information from this research could significantly impact water management practices in irrigated croplands.

  5. Intravenous versus intramuscular cobinamide compared to intravenous saline (control) in the treatment of acute, survivable, hydrogen sulfide toxicity in swine (Sus Scrofa).

    DTIC Science & Technology

    2017-11-09

    FWH20140070A, “Intravenous versus intramuscular // compared to intravenous saline ( control ) in the treatment of acute, survivable, hydrogen sulfide toxicity... control ) in the treatment of acute, survivable, hydrogen sulfide toxicity in swine (Sus Scrofa). 4. Principal Investigator (PI): Name Rank Date...remainder of the study. Animals were treated with IV HOC, IV Cobinamide or control (no treatment) 1 minute post apnea. There were no significant

  6. 27 CFR 479.193 - Arms Export Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Arms Export Control Act. 479.193 Section 479.193 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  7. 27 CFR 479.193 - Arms Export Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Arms Export Control Act. 479.193 Section 479.193 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  8. 27 CFR 479.193 - Arms Export Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Arms Export Control Act. 479.193 Section 479.193 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  9. 27 CFR 479.193 - Arms Export Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Arms Export Control Act. 479.193 Section 479.193 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  10. 27 CFR 479.193 - Arms Export Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Arms Export Control Act. 479.193 Section 479.193 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  11. Formulation Development of High Strength Gel System and Evaluation on Profile Control Performance for High Salinity and Low Permeability Fractured Reservoir

    PubMed Central

    Zhang, Chengli; Qu, Guodong

    2017-01-01

    For the large pores and cracks of reservoirs with low temperatures, high salinity, and low permeability, a new type of high strength gel ABP system is developed in this paper. The defects of conventional gels such as weak gel strength, no gelling, and easy dehydration are overcome under the conditions of low temperature and high salinity. The temperature and salt resistance, plugging characteristics, and EOR of the gel system are studied. Under the condition of 32°C and 29500 mg/L salinity, the ABP system formulation is for 0.3% crosslinking agent A + 0.09% coagulant B + 3500 mg/L polymer solution P. The results show that when the temperature was increased, the delayed crosslinking time of the system was shortened and the gel strength was increased. The good plugging characteristics of the ABP system were reached, and the plugging rate was greater than 99% in cores with different permeability. A good profile control performance was achieved, and the recovery rate was improved by 19.27% on the basis of water flooding. In the practical application of the gel system, the salinity of formation water and the permeability of fractures are necessary to determine the appropriate formulation. PMID:28592971

  12. Debating the Controlled Substances Act.

    PubMed

    Spillane, Joseph F

    2004-10-05

    In the United States, the basis of modern drug regulation is the Controlled Substances Act (CSA) of 1970. The CSA laid out the authority of the federal government and provided a framework within which all existing and new substances could be regulated on their abuse potential, safety, and medical utility. The debates over the CSA centered on several critical issues: where to place the authority to make scheduling designations, the impact of scheduling on drug research, and defining what constituted drug "abuse" for purposes of scheduling. Passage of the CSA was aided by broad language that provided a kind of "big tent" which could accommodate diverse points of view. A retrospective assessment of the CSA shows it to have greatly expanded federal administrative authority over the nation's drug supply, much as its authors intended. Other impacts of the CSA, however, are much less certain. This article concludes by highlighting the issues and questions that should guide future retrospective research on the efficacy of drug control regimes.

  13. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  14. NO, hydrogen sulfide does not come first during tomato response to high salinity.

    PubMed

    da-Silva, Cristiane J; Mollica, Débora C F; Vicente, Mateus H; Peres, Lázaro E P; Modolo, Luzia V

    2018-06-01

    High salinity greatly impacts agriculture, particularly in tomato (Solanum lycopersicum), a crop that is a model to study this abiotic stress. This work investigated whether hydrogen sulfide (H 2 S) acts upstream or downstream of nitric oxide (NO) in the signaling cascade during tomato response to salt stress. An NO-donor incremented H 2 S levels by 12-18.9% while an H 2 S-donor yielded 10% more NO in roots. The NO accumulated in roots one-hour after NaCl treatment while H 2 S accumulation started two-hour later. The NO stimulated H 2 S accumulation in roots/leaves, but not the opposite (i.e H 2 S was unable to stimulate NO accumulation) two-hour post NaCl treatment. Also, NO accumulation was accompanied by an increment of transcript levels of genes that encode for H 2 S-synthesizing enzymes. Our results indicate that H 2 S acts downstream of NO in the mitigation of oxidative stress, which helps tomato plants to tolerate high salinity. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage.

    PubMed

    Chen, Weiwei; Guo, Chen; Hussain, Saddam; Zhu, Bingxin; Deng, Fang; Xue, Yan; Geng, Mingjian; Wu, Lishu

    2016-01-01

    Soil salinity is a stringent abiotic constraint limiting crop growth and productivity. The present study was carried out to appraise the role of xylo-oligosaccharides (XOSs) in improving the salinity tolerance of Chinese cabbage. Salinity stress (0.5% NaCl solution) and four levels (0, 40, 80, 120 mg L(-1)) of XOSs were imposed on 20-day-old plants cultured under controlled conditions. Salinity stress decreased the aboveground fresh biomass, photosynthesis, transpiration rate, stomatal conductance, internal CO2 concentration, water use efficiency, and chlorophyll contents but increased the stomatal limitation value of Chinese cabbage compared with control. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Chinese cabbage were significantly alleviated by the addition of XOSs under salinity stress. Under salinity stress, application of XOSs significantly enhanced the activities of enzymatic (superoxide dismutase, peroxidase, catalase) and non-enzymatic (ascorbate, carotene) antioxidants and reduced the malondialdehyde content in the leaves of Chinese cabbage. The XOS-applied plants under salinity stress also recorded higher soluble sugars, proline, and soluble protein content in their leaves. Exposure of salinity stress increased the ratio of Na(+)/K(+), Na(+)/Ca(2+), and Na(+)/Mg(2+) in shoot as well as root of Chinese cabbage, however, XOS application significantly reduced these ratios particularly in shoot. Lower levels of XOSs (40 or 80 mg L(-1)) were more effective for most of the studied attributes. The greater salinity tolerance and better growth in these treatments were related with enhanced antioxidative defense system, reduced lipid peroxidation, increased osmolyte accumulation, and maintenance of ionic balance.

  16. Evaluation of medicinal plants and colloidal silver efficiency against Vibrio parahaemolyticus infection in Litopenaeus vannamei cultured at low salinity.

    PubMed

    Morales-Covarrubias, María Soledad; García-Aguilar, Noemí; Bolan-Mejía, María Del; Puello-Cruz, Ana Carmela

    2016-11-22

    In shrimp aquaculture, reduction in the use of synthetic antibiotics is a priority due to the high incidence of resistant bacteria (Vibrio) in the white shrimp Litopenaeus vannamei. An increasing number of studies show bactericidal activity of natural treatments in aquaculture. The effectiveness of neem (Azadirachta indica) and oregano (Lippia berlandieri) aqueous extracts and colloidal silver against V. parahaemolyticus were evaluated in low salinity shrimp culture. Results show that aqueous extracts of oregano and neem each present a minimum inhibitory concentration (MIC) of 62.50 mg ml-1 and inhibitory halos of 12.0 to 19.0 mm. Colloidal silver gave a MIC of 2 mg ml-1, and the inhibitory halos were found to be between 11.8 and 18.8 mm, depending on treatment concentrations. An in vivo challenge test was conducted on white shrimp postlarvae cultured at low salinity (5 practical salinity units, PSU), and a significant increase (p < 0.05) in survival was demonstrated in the presence of the aqueous extracts (oregano 64%, neem 76% and colloidal silver 90%), when compared to the control (0%) in the challenge test. However, no significant differences were observed between treatments, suggesting that they all act as alternative bactericidal source agents against V. parahaemolyticus infections for L. vannamei postlarvae when cultured at 5 PSU.

  17. Assessing secondary soil salinization risk based on the PSR sustainability framework.

    PubMed

    Zhou, De; Lin, Zhulu; Liu, Liming; Zimmermann, David

    2013-10-15

    Risk assessment of secondary soil salinization, which is caused in part by the way people manage the land, is an essential challenge to agricultural sustainability. The objective of our study was to develop a soil salinity risk assessment methodology by selecting a consistent set of risk factors based on the conceptual Pressure-State-Response (PSR) sustainability framework and incorporating the grey relational analysis and the Analytic Hierarchy Process methods. The proposed salinity risk assessment methodology was demonstrated through a case study of developing composite risk index maps for the Yinchuan Plain, a major irrigation agriculture district in northwest China. Fourteen risk factors were selected in terms of the three PSR criteria: pressure, state, and response. The results showed that the salinity risk in the Yinchuan Plain was strongly influenced by the subsoil and groundwater salinity, land use, distance to irrigation canals, and depth to groundwater. To maintain agricultural sustainability in the Yinchuan Plain, a suite of remedial and preventative actions were proposed to manage soil salinity risk in the regions that are affected by salinity at different levels and by different salinization processes. The weight sensitivity analysis results also showed that the overall salinity risk of the Yinchuan Plain would increase or decrease as the weights for pressure or response risk factors increased, signifying the importance of human activities on secondary soil salinization. Ideally, the proposed methodology will help us develop more consistent management tools for risk assessment and management and for control of secondary soil salinization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Hydrogeology and the distribution of salinity in the Floridan Aquifer system, southwestern Florida

    USGS Publications Warehouse

    Reese, R.S.

    2000-01-01

    In most of the study area, the Floridan aquifer system can be divided into a brackish-water zone, a salinity transition zone, and a saline-water zone. The brackish-water zone contains water with a dissolved-solids concentration of less than 10,000 milligrams per liter. The saline-water zone has a dissolved-solids concentration of at least 35,000 milligrams per liter and a salinity similar to that of seawater. The salinity transition zone that separates these two zones is usually 150 feet or less in thickness. The altitude of the base of the brackish-water zone was mapped primarily using geophysical logs; it ranges from as shallow as 565 feet below sea level along the coast to almost 2,200 feet below sea level inland. This mapping indicated that the boundary represents a salinity interface, the depth of which is controlled by head in the brackish-water zone. Chloride concentrations in the upper part of the brackish-water zone range from 400 to 4,000 milligrams per liter. A large area of relatively low salinity in north-central Collier County and to the northwest, as defined by a 1,200-milligram-per-liter chloride-concentration line, coincides with a high area on the basal contact of the Hawthorn Group. As this contact dips away from this high area to central Hendry and southwestern Collier Counties, chloride concentration increases to 2,000 milligrams per liter or greater. However, the increase in salinity in these areas occurs only in the basal Hawthorn unit or Suwannee Limestone, but not in deeper units. In central Hendry County, the increase occurs only in the basal Hawthorn unit in an area where the unit is well developed and thick. These areas of higher salinity could have resulted from the influx of seawater from southwestern Collier County into zones of higher permeability in the Upper Floridan aquifer during high sea-level stands. The influx may only have occurred in structurally low areas and may have experienced incomplete flushing subsequently by the

  19. Nanoscale Controls on CO2-water-rock Interactions in Saline Reservoirs

    NASA Astrophysics Data System (ADS)

    Deyoreo, J.; Depaolo, D. J.

    2009-12-01

    It is becoming increasingly widely recognized that geologic sequestration of CO2, when combined with economical means of capture, may be one of the most effective approaches to reducing net CO2 emissions to the atmosphere over the next century. Injection of CO2 into saline geologic formations involves forcing a buoyant, low-viscosity fluid into a more dense, higher viscosity fluid. The difference in wetting properties of the two fluids, their partial miscibility, the fact that CO2 and H2O form an acid, and the heterogeneity of geologic formations combine to make the flow and transport details fascinating but difficult to fully characterize and predict. A major question is whether the flow of CO2 into subsurface formations, the efficiency of pore space filling, and the trapping efficiency can be not only predicted but controlled over the decades of injection that might be associated with the life of a power plant. The major technological gaps to controlling and ultimately sequestering subsurface CO2 can be traced to far-from-equilibrum processes that originate at the molecular and nanoscale, but are expressed as complex emergent behavior at larger scales. Essential knowledge gaps involve the effects of nanoscale confinement on material properties, flow and chemical reactions, the effects of nanoparticles, mineral surface dynamics, and microbiota on mineral dissolution/precipitation and fluid flow, and the dynamics of fluid-fluid and fluid-mineral interfaces. To address these scientific and technical challenges, the Energy Frontier Research Center recently established, involving collaboration between LBNL, ORNL, MIT, UC Berkeley, UC Davis and LLNL, will attempt to bring new approaches to the study of nanoscale phenomena in fluid-rock systems to bear on the problem of CO2 behavior in saline formations. The stated goal is to use molecular, nanoscale, and pore-network scale approaches to control flow, dissolution, and precipitation in deep subsurface rock formations to

  20. 40 CFR 2.303 - Special rules governing certain information obtained under the Noise Control Act of 1972.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... information obtained under the Noise Control Act of 1972. 2.303 Section 2.303 Protection of Environment... Special rules governing certain information obtained under the Noise Control Act of 1972. (a) Definitions. For the purposes of this section: (1) Act means the Noise Control Act of 1972, 42 U.S.C. 4901 et seq...

  1. 40 CFR 2.303 - Special rules governing certain information obtained under the Noise Control Act of 1972.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information obtained under the Noise Control Act of 1972. 2.303 Section 2.303 Protection of Environment... Special rules governing certain information obtained under the Noise Control Act of 1972. (a) Definitions. For the purposes of this section: (1) Act means the Noise Control Act of 1972, 42 U.S.C. 4901 et seq...

  2. Toxic Substances Control Act Section 8(e): Frequent Questions

    EPA Pesticide Factsheets

    Section 8(e) of the Toxic Substances Control Act (TSCA) requires notification to EPA of information that reasonably supports the conclusion that their substances or mixtures presents a substantial risk of injury to health or the environment.

  3. A kinetic approach to evaluate salinity effects on carbon mineralization in a plant residue-amended soil*

    PubMed Central

    Nourbakhsh, Farshid; Sheikh-Hosseini, Ahmad R.

    2006-01-01

    The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (C 0) was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation. PMID:16972320

  4. Oxidative stress responses in gills of tilapia (Oreochromis niloticus) at different salinities

    NASA Astrophysics Data System (ADS)

    Handayani, Kiki Syaputri; Novianty, Zahra; Saputri, Miftahul Rohmah; Irawan, Bambang; Soegianto, Agoes

    2017-08-01

    The objective of present study is to evaluate the impact of different salinities on the levels of CAT, GSH and MDA of the gills of Nile tilapia (Oreochromis niloticus). Nile tilapia was treated by exposure to salinities concentration 0 ‰, 5 ‰ and 10 ‰. Research models were weakened and sacrificed, then took the left and right sides of the gills. The result of gills homogenity was centrifuged for supernatan, then supernatan was proceed with testing levels of CAT, GSH and MDA by ELISA assay methods. The levels of CAT in gills were significantly higher at 10 ‰ than at 5 ‰ and 0 ‰. The levels of GSH in gills were significantly higher at 0 ‰ than 5 ‰. The levels of GSH in gills at 5 ‰ and 10 ‰ salinities were not significantly different. The levels of MDA in gills at salinity 10 ‰ and 5 ‰ were higher than in control gills at 0 ‰ salinities. This occurs because the salinity of 10 ‰ salinity was optimal for live of fish tilapia. In conclusion, salinity impact the increasing of CAT, GSH, and MDA levels in gills of Nile tilapia.

  5. Adopting adequate leaching requirement for practical response models of basil to salinity

    NASA Astrophysics Data System (ADS)

    Babazadeh, Hossein; Tabrizi, Mahdi Sarai; Darvishi, Hossein Hassanpour

    2016-07-01

    Several mathematical models are being used for assessing plant response to salinity of the root zone. Objectives of this study included quantifying the yield salinity threshold value of basil plants to irrigation water salinity and investigating the possibilities of using irrigation water salinity instead of saturated extract salinity in the available mathematical models for estimating yield. To achieve the above objectives, an extensive greenhouse experiment was conducted with 13 irrigation water salinity levels, namely 1.175 dS m-1 (control treatment) and 1.8 to 10 dS m-1. The result indicated that, among these models, the modified discount model (one of the most famous root water uptake model which is based on statistics) produced more accurate results in simulating the basil yield reduction function using irrigation water salinities. Overall the statistical model of Steppuhn et al. on the modified discount model and the math-empirical model of van Genuchten and Hoffman provided the best results. In general, all of the statistical models produced very similar results and their results were better than math-empirical models. It was also concluded that if enough leaching was present, there was no significant difference between the soil salinity saturated extract models and the models using irrigation water salinity.

  6. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    PubMed

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  7. Ecological, biogeochemical and salinity changes in coastal lakes and wetlands over the last 200 years

    NASA Astrophysics Data System (ADS)

    Roberts, Lucy; Holmes, Jonathan; Horne, David

    2016-04-01

    reconstructions of salinity and eutrophication can aid the disentanglement of environmental drivers and increase understanding on the interactions between ecology and biogeochemical cycles within the lake. Previous palaeolimnological work on the Thurne Broads system has suggested shifts between macrophyte abundance and loss within a framework of rising salinity (varying between 1.8-8.7‰ and eutrophication (phosphorus loading greater than 100μg-1). A complex combination of salinity, eutrophication, toxicity and associated changes in habitat have acted as drivers for ecological change over the past 200 years, but these interactions have not previously been well understood. By combining reconstructions of palaeosalinity, biodiversity, food web dynamics, redox conditions and eutrophication, the interaction between and controls on long-term variations in shallow lake environments can be further explored.

  8. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.

    PubMed

    Yip, Ngai Yin; Brogioli, Doriano; Hamelers, Hubertus V M; Nijmeijer, Kitty

    2016-11-15

    Combining two solutions of different composition releases the Gibbs free energy of mixing. By using engineered processes to control the mixing, chemical energy stored in salinity gradients can be harnessed for useful work. In this critical review, we present an overview of the current progress in salinity gradient power generation, discuss the prospects and challenges of the foremost technologies - pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix) and provide perspectives on the outlook of salinity gradient power generation. Momentous strides have been made in technical development of salinity gradient technologies and field demonstrations with natural and anthropogenic salinity gradients (for example, seawater-river water and desalination brine-wastewater, respectively), but fouling persists to be a pivotal operational challenge that can significantly ebb away cost-competitiveness. Natural hypersaline sources (e.g., hypersaline lakes and salt domes) can achieve greater concentration difference and, thus, offer opportunities to overcome some of the limitations inherent to seawater-river water. Technological advances needed to fully exploit the larger salinity gradients are identified. While seawater desalination brine is a seemingly attractive high salinity anthropogenic stream that is otherwise wasted, actual feasibility hinges on the appropriate pairing with a suitable low salinity stream. Engineered solutions are foulant-free and can be thermally regenerative for application in low-temperature heat utilization. Alternatively, PRO, RED, and CapMix can be coupled with their analog separation process (reverse osmosis, electrodialysis, and capacitive deionization, respectively) in salinity gradient flow batteries for energy storage in chemical potential of the engineered solutions. Rigorous techno-economic assessments can more clearly identify the prospects of low-grade heat conversion and large-scale energy storage

  9. Finding a solution: Heparinised saline versus normal saline in the maintenance of invasive arterial lines in intensive care.

    PubMed

    Everson, Matthew; Webber, Lucy; Penfold, Chris; Shah, Sanjoy; Freshwater-Turner, Dan

    2016-11-01

    We assessed the impact of heparinised saline versus 0.9% normal saline on arterial line patency. Maintaining the patency of arterial lines is essential for obtaining accurate physiological measurements, enabling blood sampling and minimising line replacement. Use of heparinised saline is associated with risks such as thrombocytopenia, haemorrhage and mis-selection. Historical studies draw variable conclusions but suggest that normal saline is at least as effective at maintaining line patency, although recent evidence has questioned this. We conducted a prospective analysis of the use of heparinised saline versus normal saline on unselected patients in the intensive care of our hospital. Data concerning duration of 471 lines insertion and reason for removal was collected. We found a higher risk of blockage for lines flushed with normal saline compared with heparinised saline (RR = 2.15, 95% CI 1.392-3.32, p  ≤ 0.001). Of the 56 lines which blocked initially (19 heparinised saline and 37 normal saline lines), 16 were replaced with new lines; 5 heparinised saline lines and 11 normal saline lines were reinserted; 5 of these lines subsequently blocked again, 3 of which were flushed with normal saline. Our study demonstrates a clinically important reduction in arterial line longevity due to blockages when flushed with normal saline compared to heparinised saline. We have determined that these excess blockages have a significant clinical impact with further lines being inserted after blockage, resulting in increased risks to patients, wasted time and cost of resources. Our findings suggest that the current UK guidance favouring normal saline flushes should be reviewed.

  10. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    USGS Publications Warehouse

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  11. Remote sensing of salinity

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    The complex dielectric constant of sea water is a function of salinity at 21 cm wavelength, and sea water salinity can be determined by a measurement of emissivity at 21 cm along with a measurement of thermodynamic temperature. Three aircraft and one helicopter experiments using two different 21 cm radiometers were conducted under different salinity and temperature conditions. Single or multiple ground truth measurements were used to calibrate the data in each experiment. It is inferred from these experiments that accuracies of 1 to 2%/OO are possible with a single surface calibration point necessary only every two hours if the following conditions are met--water temperatures above 20 C, salinities above 10%/OO, and level plane flight. More frequent calibration, constraint of the aircraft's orientation to the same as it was during calibration, and two point calibration (at a high and low salinity level) rather than single point calibration may give even better accuracies in some instances.

  12. Saline instillation before tracheal suctioning decreases the incidence of ventilator-associated pneumonia.

    PubMed

    Caruso, Pedro; Denari, Silvia; Ruiz, Soraia A L; Demarzo, Sergio E; Deheinzelin, Daniel

    2009-01-01

    To compare the incidence of ventilator-associated pneumonia (VAP) with or without isotonic saline instillation before tracheal suctioning. As a secondary objective, we compared the incidence of endotracheal tube occlusion and atelectasis. Randomized clinical trial. The study was conducted in a medical surgical intensive care unit of an oncologic hospital. We selected consecutive patients needing mechanical ventilation for >72 hrs. Patients were allocated into two groups: a saline group that received instillation of 8 mL of saline before tracheal suctioning and a control group which did not. VAP was diagnosed based on clinical suspicion and confirmed by bronchoalveolar lavage quantitative culture. The incidence of atelectasis on daily chest radiography and endotracheal tube occlusions were recorded. The sample size was calculated to a power of 80% and a type I error probability of 5%. One hundred thirty patients were assigned to the saline group and 132 to the control group. The baseline demographic variables were similar between groups. The rate of clinically suspected VAP was similar in both groups. The incidence of microbiological proven VAP was significantly lower in the saline group (23.5% x 10.8%; p = 0.008) (incidence density/1.000 days of ventilation 21.22 x 9.62; p < 0.01). Using the Kaplan-Meier curve analysis, the proportion of patients remaining without VAP was higher in the saline group (p = 0.02, log-rank test). The relative risk reduction of VAP in the saline instillation group was 54% (95% confidence interval, 18%-74%) and the number needed to treat was eight (95% confidence interval, 5-27). The incidence of atelectases and endotracheal tube occlusion were similar between groups. Instillation of isotonic saline before tracheal suctioning decreases the incidence of microbiological proven VAP.

  13. Distribution and significance of long-chain alkenones as salinity and temperature indicators in Spanish saline lake sediments

    NASA Astrophysics Data System (ADS)

    Pearson, Emma J.; Juggins, Steve; Farrimond, Paul

    2008-08-01

    We investigated relationships between sedimentary solvent-extractable long-chain alkenone (LCA) concentration and composition and environmental factors in a suite of endorheic lakes from inland Spain. LCAs were found in 14 of the 54 lakes examined, with concentrations comparable with those from previously published lacustrine settings. The composition of LCAs in our sites, however, contrast from the majority of those previously reported from lake environments; in our study the tri-unsaturated component is the most abundant component at most sites where LCAs are detected, and C 38:3 is the most abundant LCA in the majority of sites. LCA occurrence appears to be restricted to brackish-hypersaline sites and C 37 LCAs are absent above a salinity of ˜40 g L -1 suggesting a salinity control on LCA-producing organisms in these sites. Low concentrations of C 37 LCA components means U37k and U37k temperature indices are generally not applicable. Instead we find good relationships between C 38 components and (in particular mean autumn) temperature and the strongest LCA-temperature relationships are found when using a combination of all C 37 and C 38 compounds. We propose a new alkenone temperature index for lakes with elevated salinity and where the C 38 components dominate the LCA distributions. This is expressed as U3738k=0.0464×MAutAT-0.867 ( r2 = 0.80, n = 13). In this paper, we provide the first account of sedimentary LCA distributions from lakes in inland Spain, extending the range of environments within which these compounds have been found and highlighting their significance as indicators of both salinity and temperature in saline, endorheic lake environments. This has important implications for extending the potential role of LCAs as palaeoclimatic indicators in lacustrine environments.

  14. Stochastic Modeling of Soil Salinity

    NASA Astrophysics Data System (ADS)

    Suweis, Samir; Rinaldo, Andrea; van der Zee, Sjoerd E. A. T. M.; Maritan, Amos; Porporato, Amilcare

    2010-05-01

    Large areas of cultivated land worldwide are affected by soil salinity. Estimates report that 10% of arable land in over 100 countries, and nine million km2 are salt affected, especially in arid and semi-arid regions. High salinity causes both ion specific and osmotic stress effects, with important consequences for plant production and quality. Salt accumulation in the root zone may be due to natural factors (primary salinization) or due to irrigation (secondary salinization). Simple (e.g., vertically averaged over the soil depth) coupled soil moisture and salt balance equations have been used in the past. Despite their approximations, these models have the advantage of parsimony, thus allowing a direct analysis of the interplay of the main processes. They also provide the ideal starting point to include external, random hydro-climatic fluctuations in the analysis of long-term salinization trends. We propose a minimalist stochastic model of primary soil salinity, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The long term probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equation to a stochastic differential equation driven by multiplicative Poisson noise. The novel analytical solutions provide insight on the interplay of the main soil, plant and climate parameters responsible for long-term soil salinization. In fact, soil salinity statistics are obtained as a function of climate, soil and vegetation parameters. These, in turn, can be combined with soil moisture statistics to obtain a full characterization of soil salt concentrations and the ensuing risk of primary salinization. In particular, the solutions show the existence of two quite distinct regimes, the first one where the mean salt mass remains nearly constant with increasing rainfall frequency, and the

  15. Biogeochemical and hydrological controls in mobilizing Se in a saline wetland environment

    NASA Astrophysics Data System (ADS)

    Datta, S.; Hettiarachchi, G. M.; Crawford, M.; Karna, R.; Allmendinger, N. E.; Khatiwada, R.

    2010-12-01

    Selenium (Se) contamination in watersheds remains a challenge to water and land and wildlife managers throughout the west and mid west of US. In that sense, understanding the fundamentals of Se mobilization, fixation and bioconcentration is the current research endeavor. The challenge for Se research is developing watershed-geochemical models that are well founded in Se geochemical/biologcial principles that can be applied in a wide range of situations to inform decisions. Pariette Wetlands, a 9000 acre Bureau of Land Management controlled wetland system composed of 20 ponds located at the confluence of Pariette Draw and the Green River is the present location of this study. The agricultural and irrigation practices and the water-rock interactions leading to salinization can be associated with changes in Se chemistry in the rivers. Since its inception Pariette Wetlands has been home to a rich and diverse wetland ecosystem located in the arid Uintah Basin of Northeastern Utah. Detailed sampling of surficial sediments (0-1 m) from stream banks, channel beds and for water sampling have been undergone in 2 separate field trips throughout the entire reach of the wetland. To establish Pariette Draw’s contribution of Se to the Green river, water and sediments were also sampled from the Green River up and downstream of its confluence with Pariette Draw. In situ measurements of water parameters within the wetland suggest a clear trend of increased pH from upstream, 8, to downstream, 9.2 and combined with TDS suggest a pH controlled saline environment system. The headwaters near Flood Control Dam have an added input of Se from a possible irrigation source upstream in Pleasant Valley area while Se drastically decreases downstream towards the Red Head Pond. Se fractionation in sediments is being analyzed via a sequential extraction procedure to locate the labile fractions of mostly inorganic bound Se. Solid state speciation of Se via μ-XRF aided μ-XANES is being combined

  16. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study, volume 1

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability.

  17. Adsorption and inhibitive properties of a Schiff base for the corrosion control of carbon steel in saline water.

    PubMed

    Samide, Adriana; Tutunaru, Bogdan

    2011-01-01

    A Schiff base, namely N-(2-hydroxybenzylidene) thiosemicarbazide (HBTC), was investigated as inhibitor for carbon steel in saline water (SW) using electrochemical measurements such as: potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The morphology of the surfaces before and after corrosion was examined by Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM/EDS). The results showed that HBTC acts as corrosion inhibitor in SW by suppressing simultaneously the cathodic and anodic processes via adsorption on the surface which followed the Langmuir adsorption isotherm; the polarization resistance (R(p)) and inhibition efficiency (IE) increased with each HBTC concentration increase. SEM/EDS analysis showed at this stage that the main product of corrosion is a non-stoichiometric amorphous Fe(3+) oxyhydroxide, consisting of a mixture of Fe(3+) oxyhydroxides, α-FeOOH and/or γ-FeOOH, α-FeOOH/γ-FeOOH and Fe(OH)(3).

  18. Freshwater prokaryote and virus communities can adapt to a controlled increase in salinity through changes in their structure and interactions

    NASA Astrophysics Data System (ADS)

    Marine, Combe; Thierry, Bouvier; Olivier, Pringault; Emma, Rochelle-Newall; Corinne, Bouvier; Martin, Agis; The Thu, Pham; Jean-Pascal, Torreton; Van Thuoc, Chu; Bettarel, Yvan

    2013-11-01

    Little information exists on the ecological adaptive responses of riverine microorganisms to the salinity changes that typically occur in transitional waters. This study examined the precise effects of a gradual increase in salinity (+3 units per day for 12 days) on freshwater virus and prokaryote communities collected in the Red River Delta (northern Vietnam). The abundance, activity, morphology and diversity of both communities were examined along this simulated salinity gradient (0-36). Three main successive ecological stages were observed: (1) a continuous decline in prokaryotic and viral abundance from the start of the salinization process up to salinity 12-15 together with a strong decrease in the proportion of active cells, (2) a shift in both community compositions (salinity 9-15) and (3) a marked prevalence of lysogenic over lytic cycles up to salinity 21 followed by a collapse of both types of viral infection. Finally, after salinity 21, and up to seawater salinities (i.e. 36) the prokaryotic community showed multiple signs of recovery with their abundance and function even reaching initial levels. These results suggest that most of the physiological and phylogenetic changes that occurred within the salinity range 10-20 seemed to favor the installation of osmotically adapted prokaryotes accompanied by a specific cortege of viral parasites which might both be able to survive and even proliferate in saltwater conditions.

  19. Effects of saline drinking water on early gosling development

    USGS Publications Warehouse

    Stolley, D.S.; Bissonette, J.A.; Kadlec, J.A.; Coster, D.

    1999-01-01

    Relatively high levels of saline drinking water may adversely affect the growth, development, and survival of young waterfowl. Saline drinking water was suspect in the low survival rate of Canada goose (Branta canadensis) goslings at Fish Springs National Wildlife Refuge (FSNWR) in western Utah. Hence, we investigated the effects of saline drinking water on the survival and growth of captive, wild-strain goslings from day 1-28 following hatch. We compared survival and growth (as measured by body mass, wing length, and culmen length) between a control group on tap water with a mean specific conductivity of 650 ??S/cm, and 2 saline water treatments: (1) intermediate level (12,000 ??S/cm), and (2) high level (18,000 ??S/cm). Gosling mortality occurred only in the 18,000 ??S/cm treatment group (33%; n = 9). Slopes of regressions of mean body mass, wing length, and culmen length on age were different from each other (P < 0.05), except for culmen length for the intermediate and high treatment levels. We predict that free-ranging wild goslings will experience mortality at even lower salinity levels than captive goslings because of the combined effects of depressed growth and environmental stresses, including hot desert temperatures and variable food quality over summer.

  20. Characterization of salinity loads and selenium loads in the Smith Fork Creek region of the Lower Gunnison River Basin, western Colorado, 2008-2009

    USGS Publications Warehouse

    Richards, Rodney J.; Linard, Joshua I.; Hobza, Christopher M.

    2014-01-01

    The lower Gunnison River Basin of the Colorado River Basin has elevated salinity and selenium levels. The Colorado River Basin Salinity Control Act of June 24, 1974 (Public Law 93–320, amended by Public Law 98–569), authorized investigation of the Lower Gunnison Basin Unit Salinity Control Project by the U.S. Department of the Interior. The Bureau of Reclamation (Reclamation) and the Natural Resources Conservation Service are responsible for assessing and implementing measures to reduce salinity and selenium loading in the Colorado River Basin. Cost-sharing programs help farmers, ranchers, and canal companies improve the efficiency of water delivery systems and irrigation practices. The delivery systems (irrigation canals) have been identified as potential sources of seepage, which can contribute to salinity loading. Reclamation wants to identify seepage from irrigation systems in order to maximize the effectiveness of the various salinity-control methods, such as polyacrylamide lining and piping of irrigation canals programs. The U.S. Geological Survey, in cooperation with Reclamation, developed a study to characterize the salinity and selenium loading of seven subbasins in the Smith Fork Creek region and identify where control efforts can be maximized to reduce salinity and selenium loading. Total salinity loads ranged from 27.9±19.1 tons per year (t/yr) to 87,500±80,500 t/yr. The four natural subbasins—BkKm, RCG1, RCG2, and SF1—had total salinity loads of 27.9±19.1 t/yr, 371±248 t/yr, 2,180±1,590 t/yr, and 4,200±2,720 t/yr, respectively. The agriculturally influenced sites had salinity loads that ranged from 7,580±6,900 t/yr to 87,500±80,500 t/yr. Salinity loads for the subbasins AL1, B1, CK1, SF2, and SF3 were 7,580±6,900 t/yr; 28,300±26,700 t/yr; 48,700±36,100 t/yr; 87,500±80,900 t/yr; and 52,200±31,800 t/yr, respectively. The agricultural salinity load was separated into three components: tail water, deep percolation, and canal seepage

  1. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    NASA Astrophysics Data System (ADS)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  2. Geologic effects on groundwater salinity and discharge into an estuary

    USGS Publications Warehouse

    Russonielloa, Christopher J.; Fernandeza, Cristina; Bratton, John F.; Banaszakc, Joel F.; Krantzc, David E.; Andresd, Scott; Konikow, Leonard F.; Michaela, Holly A.

    2013-01-01

    Submarine groundwater discharge (SGD) can be an important pathway for transport of nutrients and contaminants to estuaries. A better understanding of the geologic and hydrologic controls on these fluxes is critical for their estimation and management. We examined geologic features, porewater salinity, and SGD rates and patterns at an estuarine study site. Seismic data showed the existence of paleovalleys infilled with estuarine mud and peat that extend hundreds of meters offshore. A low-salinity groundwater plume beneath this low-permeability fill was mapped with continuous resistivity profiling. Extensive direct SGD measurements with seepage meters (n = 551) showed fresh groundwater discharge patterns that correlated well with shallow porewater salinity and the hydrogeophysical framework. Small-scale variability in fresh and saline discharge indicates influence of meter-scale geologic heterogeneity, while site-scale discharge patterns are evidence of the influence of the paleovalley feature. Beneath the paleovalley fill, fresh groundwater flows offshore and mixes with saltwater before discharging along paleovalley flanks. On the adjacent drowned interfluve where low-permeability fill is absent, fresh groundwater discharge is focused at the shoreline. Shallow saltwater exchange was greatest across sandy sediments and where fresh SGD was low. The geologic control of groundwater flowpaths and discharge salinity demonstrated in this work are likely to affect geochemical reactions and the chemical loads delivered by SGD to coastal surface waters. Because similar processes are likely to exist in other estuaries where drowned paleovalleys commonly cross modern shorelines, the existence and implications of complex hydrogeology are important considerations for studies of groundwater fluxes and related management decisions.

  3. The Plasma-Lyte 148 v Saline (PLUS) study protocol: a multicentre, randomised controlled trial of the effect of intensive care fluid therapy on mortality.

    PubMed

    Hammond, Naomi E; Bellomo, Rinaldo; Gallagher, Martin; Gattas, David; Glass, Parisa; Mackle, Diane; Micallef, Sharon; Myburgh, John; Saxena, Manoj; Taylor, Colman; Young, Paul; Finfer, Simon

    2017-09-01

    0.9% sodium chloride (saline) is the most commonly administered resuscitation fluid on a global basis but emerging evidence suggests that its high chloride content may have important adverse effects. To describe the study protocol for the Plasma- Lyte 148 v Saline study, which will test the hypothesis that in critically ill adult patients the use of Plasma-Lyte 148 (a buffered crystalloid solution) for fluid therapy results in different 90-day all-cause mortality when compared with saline. We will conduct this multicentre, blinded, randomised controlled trial in approximately 50 intensive care units in Australia and New Zealand. We will randomly assign 8800 patients to either Plasma-Lyte 148 or saline for all resuscitation fluid, maintenance fluid and compatible drug dilution therapy while in the ICU for up to 90 days after randomisation. The primary outcome is 90-day all-cause mortality; secondary outcomes include mean and peak creatinine concentration, incidence of renal replacement therapy, incidence and duration of vasoactive drug treatment, duration of mechanical ventilation, ICU and hospital length of stay, and quality of life and health services use at 6 months. The PLUS study will provide high-quality data on the comparative safety and efficacy of Plasma-Lyte 148 compared with saline for resuscitation and compatible crystalloid fluid therapy in critically ill adult patients.

  4. Salinity of the Delaware Estuary

    USGS Publications Warehouse

    Cohen, Bernard; McCarthy, Leo T.

    1962-01-01

    The purpose of this investigation was to obtain data on and study the factors affecting the salinity of the Delaware River from Philadelphia, Pa., to the Appoquinimink River, Del. The general chemical quality of water in the estuary is described, including changes in salinity in the river cross section and profile, diurnal and seasonal changes, and the effects of rainfall, sea level, and winds on salinity. Relationships are established of the concentrations of chloride and dissolved solids to specific conductance. In addition to chloride profiles and isochlor plots, time series are plotted for salinity or some quantity representing salinity, fresh-water discharge, mean river level, and mean sea level. The two major variables which appear to have the greatest effect on the salinity of the estuary are the fresh-water flow of the river and sea level. The most favorable combination of these variables for salt-water encroachment occurs from August to early October and the least favorable combination occurs between December and May.

  5. Responses of prophenoloxidase system and related defence parameters of Litopenaeus vannamei to low salinity

    NASA Astrophysics Data System (ADS)

    Pan, Luqing; Xie, Peng; Hu, Fawen

    2010-09-01

    In this study, we investigated the effects of low salinity (26 and 21) on the prophenoloxidase (proPO) system and related defence parameters in the shrimp Litopenaeus vannamei. The results showed that low salinity induced a significant increase of dopamine (DA) concentration in haemolymph at 6 h of the experiment; on the other hand, total haemocyte count (THC), differential haemocyte count (DHC) and PO activity decreased over time to the lowest level at 24 h and remained low thereafter. Serine Protease (SP) and Proteinase Inhibitor (PI) activity in the two lower salinity treatments decreased to the lowest level at 12 and 24 h, respectively, and both recovered to the control level at 72 h. In contrast, α2- macroglobulin (α2M) activity in the two lower salinity treatments peaked at 24 h and then decreased to the control level at 72 h. Therefore, it may be concluded that stress-induced DA plays an important temporary role in neurotransmission and causes immune response in L. vannamei in adapting to salinity changes.

  6. Measuring Salinity by Conductivity.

    ERIC Educational Resources Information Center

    Lapworth, C. J.

    1981-01-01

    Outlines procedures for constructing an instrument which uses an electrode and calibration methods to measure the salinity of waters in environments close to and affected by a saline estuary. (Author/DC)

  7. APPARATUS FOR EXPOSING ESTUARINE AQUATIC ORGANISMS TO TOXICANTS IN CONSTANT AND FLUCTUATING SALINITY REGIMES

    EPA Science Inventory

    A programmable control system for salinity has been developed and coupled with a flow-through toxicant exposure system. The resulting apparatus allow study of influences of constant and fluctuating salinity regimes on responses of One organisms exposed to selected pollutants. Con...

  8. Experimentally derived salinity tolerance of hatchling Burmese pythons (Python molurus bivittatus) from the Everglades, Florida (USA)

    USGS Publications Warehouse

    Hart, Kristen M.; Schofield, Pamela J.; Gregoire, Denise R.

    2012-01-01

    In a laboratory setting, we tested the ability of 24 non-native, wild-caught hatchling Burmese pythons (Python molurus bivittatus) collected in the Florida Everglades to survive when given water containing salt to drink. After a one-month acclimation period in the laboratory, we grouped snakes into three treatments, giving them access to water that was fresh (salinity of 0, control), brackish (salinity of 10), or full-strength sea water (salinity of 35). Hatchlings survived about one month at the highest marine salinity and about five months at the brackish-water salinity; no control animals perished during the experiment. These results are indicative of a "worst-case scenario", as in the laboratory we denied access to alternate fresh-water sources that may be accessible in the wild (e.g., through rainfall). Therefore, our results may underestimate the potential of hatchling pythons to persist in saline habitats in the wild. Because of the effect of different salinity regimes on survival, predictions of ultimate geographic expansion by non-native Burmese pythons that consider salt water as barriers to dispersal for pythons may warrant re-evaluation, especially under global climate change and associated sea-level-rise scenarios.

  9. Experimentally derived salinity tolerance of hatchling Burmese pythons (Python molurus bivittatus) from the Everglades, Florida (USA)

    USGS Publications Warehouse

    Hart, K.M.; Schofield, P.J.; Gregoire, D.R.

    2012-01-01

    In a laboratory setting, we tested the ability of 24 non-native, wild-caught hatchling Burmese pythons (Python molurus bivittatus) collected in the Florida Everglades to survive when given water containing salt to drink. After a one-month acclimation period in the laboratory, we grouped snakes into three treatments, giving them access to water that was fresh (salinity of 0, control), brackish (salinity of 10), or full-strength sea water (salinity of 35). Hatchlings survived about one month at the highest marine salinity and about five months at the brackish-water salinity; no control animals perished during the experiment. These results are indicative of a "worst-case scenario", as in the laboratory we denied access to alternate fresh-water sources that may be accessible in the wild (e.g., through rainfall). Therefore, our results may underestimate the potential of hatchling pythons to persist in saline habitats in the wild. Because of the effect of different salinity regimes on survival, predictions of ultimate geographic expansion by non-native Burmese pythons that consider salt water as barriers to dispersal for pythons may warrant re-evaluation, especially under global climate change and associated sea-level-rise scenarios. ?? 2011.

  10. Configuration of freshwater/saline-water interface and geologic controls on distribution of freshwater in a regional aquifer system, central lower peninsula of Michigan

    USGS Publications Warehouse

    Westjohn, David B.; Weaver, T.L.

    1996-01-01

    Electrical-resistivity logs and water-quality data were used to delineate the fresh water/saline-water interface in a 22,000-square-mile area of the central Michigan Basin, where Mississippian and younger geologic units form a regional system of aquifers and confining units.Pleistocene glacial deposits in the central Lower Peninsula of Michigan contain freshwater, except in a 1,600-square-mile area within the Saginaw Lowlands, where these deposits typically contain saline water. Pennsylvanian and Mississippian sandstones are freshwater bearing where they subcrop below permeable Pleistocene glacial deposits. Down regional dip from subcrop areas, salinity of ground water progressively increases in Early Pennsylvanian and Mississippian sandstones, and these units contain brine in the central part of the basin. Freshwater is present in Late Pennsylvanian sandstones in the northern and southern parts of the aquifer system. Typically, saline water is present in Pennsylvanian sandstones in the eastern and western parts of the aquifer system.Relief on the freshwater/saline-water interface is about 500 feet. Altitudes of the interface are low (300 to 400 feet above sea level) along a north-south-trending corridor through the approximate center of the area mapped. In isolated areas in the northern and western parts of the aquifer system, the altitude of the base of freshwater is less than 400 feet, but altitude is typically more than 400 feet. In the southern and northern parts of the aquifer system where Pennsylvanian rocks are thin or absent, altitudes of the base of freshwater range from 700 to 800 feet and from 500 to 700 feet above sea level, respectively.Geologic controls on distribution of freshwater in the regional aquifer system are (1) direct hydraulic connection of sandstone aquifers and freshwater-bearing, permeable glacial deposits, (2) impedance of upward discharge of saline water from sandstones by lodgement tills, (3) impedance of recharge of freshwater to

  11. An Insight into microRNA156 Role in Salinity Stress Responses of Alfalfa.

    PubMed

    Arshad, Muhammad; Gruber, Margaret Y; Wall, Ken; Hannoufa, Abdelali

    2017-01-01

    Salinity is one of the major abiotic stresses affecting alfalfa productivity. Developing salinity tolerant alfalfa genotypes could contribute to sustainable crop production. The functions of microRNA156 (miR156) have been investigated in several plant species, but so far, no studies have been published that explore the role of miR156 in alfalfa response to salinity stress. In this work, we studied the role of miR156 in modulating commercially important traits of alfalfa under salinity stress. Our results revealed that overexpression of miR156 increased biomass, number of branches and time to complete growth stages, while it reduced plant height under control and salinity stress conditions. We observed a miR156-related reduction in neutral detergent fiber under non-stress, and acid detergent fiber under mild salinity stress conditions. In addition, enhanced total Kjeldahl nitrogen content was recorded in miR156 overexpressing genotypes under severe salinity stress. Furthermore, alfalfa genotypes overexpressing miR156 exhibited an altered ion homeostasis under salinity conditions. Under severe salinity stress, miR156 downregulated SPL transcription factor family genes, modified expression of other important transcription factors, and downstream salt stress responsive genes. Taken together, our results reveal that miR156 plays a role in mediating physiological and transcriptional responses of alfalfa to salinity stress.

  12. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation.

    PubMed

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na + ) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline-alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline-alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline-alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na + concentrations under saline-alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline-alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline-alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline-alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na + accumulation.

  13. Effects of Low Salinity on Adult Behavior and Larval Performance in the Intertidal Gastropod Crepipatella peruviana (Calyptraeidae)

    PubMed Central

    Montory, Jaime A.; Pechenik, Jan A.; Diederich, Casey M.; Chaparro, Oscar R.

    2014-01-01

    Shallow-water coastal areas suffer frequent reductions in salinity due to heavy rains, potentially stressing the organisms found there, particularly the early stages of development (including pelagic larvae). Individual adults and newly hatched larvae of the gastropod Crepipatella peruviana were exposed to different levels of salinity stress (32(control), 25, 20 or 15), to quantify the immediate effects of exposure to low salinities on adult and larval behavior and on the physiological performance of the larvae. For adults we recorded the threshold salinity that initiates brood chamber isolation. For larvae, we measured the impact of reduced salinity on velar surface area, velum activity, swimming velocity, clearance rate (CR), oxygen consumption (OCR), and mortality (LC50); we also documented the impact of salinity discontinuities on the vertical distribution of veliger larvae in the water column. The results indicate that adults will completely isolate themselves from the external environment by clamping firmly against the substrate at salinities ≤24. Moreover, the newly hatched larvae showed increased mortality at lower salinities, while survivors showed decreased velum activity, decreased exposed velum surface area, and decreased mean swimming velocity. The clearance rates and oxygen consumption rates of stressed larvae were significantly lower than those of control individuals. Finally, salinity discontinuities affected the vertical distribution of larvae in the water column. Although adults can protect their embryos from low salinity stress until hatching, salinities <24 clearly affect survival, physiology and behavior in early larval life, which will substantially affect the fitness of the species under declining ambient salinities. PMID:25077484

  14. Identification of saline soils with multi-year remote sensing of crop yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobell, D; Ortiz-Monasterio, I; Gurrola, F C

    2006-10-17

    Soil salinity is an important constraint to agricultural sustainability, but accurate information on its variation across agricultural regions or its impact on regional crop productivity remains sparse. We evaluated the relationships between remotely sensed wheat yields and salinity in an irrigation district in the Colorado River Delta Region. The goals of this study were to (1) document the relative importance of salinity as a constraint to regional wheat production and (2) develop techniques to accurately identify saline fields. Estimates of wheat yield from six years of Landsat data agreed well with ground-based records on individual fields (R{sup 2} = 0.65).more » Salinity measurements on 122 randomly selected fields revealed that average 0-60 cm salinity levels > 4 dS m{sup -1} reduced wheat yields, but the relative scarcity of such fields resulted in less than 1% regional yield loss attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, because many other factors contributed to yield variability in individual years. However, temporal analysis of yield images showed a significant fraction of fields exhibited consistently low yields over the six year period. A subsequent survey of 60 additional fields, half of which were consistently low yielding, revealed that this targeted subset had significantly higher salinity at 30-60 cm depth than the control group (p = 0.02). These results suggest that high subsurface salinity is associated with consistently low yields in this region, and that multi-year yield maps derived from remote sensing therefore provide an opportunity to map salinity across agricultural regions.« less

  15. Preventive saline irrigation of the bile duct after the endoscopic removal of common bile duct stones.

    PubMed

    Jang, Sang Eon; Ahn, Dong-Won; Lee, Sang Hyub; Lee, Ban Seok; Jeong, Ji Bong; Hwang, Jin-Hyeok; Ryu, Ji Kon; Kim, Yong-Tae; Lee, Kyoung Ho; Kim, Young Hoon

    2013-08-01

    Small stone fragments after an endoscopic stone extraction for choledocholithiasis may act as the nidus for recurrent choledocholithiasis. Therefore, efforts to eliminate the nidus might reduce the recurrence of choledocholithiasis and cholangitis related to choledocholithiasis. The purpose of this study was to determine whether an additional preventive saline irrigation of the bile duct after the endoscopic removal of common bile duct stones would decrease residual stones and the recurrence of cholangitis. A retrospective analysis was performed for the consecutively collected data about the patients who underwent the complete endoscopic treatment for common bile duct stone. Among 99 patients, 45 patients underwent saline irrigation. Residual stones were detected in 18 patients (18.2 %). The incidences of residual stones were 8.9 % (4 of 45 patients) in the irrigation group and 25.9 % (14 of 54 patients) in the non-irrigation group (P = 0.037). In multivariate analysis, preventive saline irrigation was found to be the only significant factor for the decrease of residual stones (HR = 0.258, P = 0.039). When analyzing the occurrence of recurrent cholangitis and the procedure related to complications, there were no significant differences according to the performance of preventive saline irrigation of the bile duct. Preventive saline irrigation could reduce the residual common bile duct stones without complications.

  16. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    USGS Publications Warehouse

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  17. Saline irrigation for the management of skin extravasation injury in neonates.

    PubMed

    Gopalakrishnan, P N; Goel, Nitin; Banerjee, Sujoy

    2017-07-19

    Extravasation injury, a complication commonly seen in the neonatal intensive care unit, can result in scarring with cosmetic and functional sequelae. A wide variety of treatments are available, including subcutaneous irrigation with saline (with or without hyaluronidase), liposuction, use of specific antidotes, topical applications, and normal wound care with dry or wet dressings. All such treatments aim to prevent or reduce the severity of complications. Primary objective To compare the efficacy and safety of saline irrigation or saline irrigation with prior hyaluronidase infiltration versus no intervention or normal wound care for tissue healing in neonates with extravasation injury. Secondary objectives To evaluate by subgroup analysis of controlled trials the influence of type of extravasate, timing of irrigation following extravasation, and postmenstrual age (PMA) of the neonate at the time of injury on outcomes and adverse effects.Specifically, we planned to perform subgroup analysis for the primary outcome, if appropriate, by examining:1. time to irrigation from identified extravasation injury (< 1 hour or ≥ 1 hour);2. type of extravasate (parenteral nutrition fluid or other fluids or medications);3. amount of saline used (< 500 mL or ≥ 500 mL); and4. PMA at injury (< 37 completed weeks or ≥ 37 completed weeks). We used the standard search strategy of the Cochrane Neonatal Review Group to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 1), MEDLINE via PubMed (1966 to 2 February 2017), Embase (1980 to 2 February 2017), and the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1982 to 2 February 2017). We also searched clinical trial databases, conference proceedings, and reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. We used the Google Scholar search tool for reverse citations of relevant articles. Randomised controlled trials (RCTs) and quasi

  18. Effects of imidacloprid on soil microbial communities in different saline soils.

    PubMed

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  19. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte

    PubMed Central

    Hameed, Abdul; Gulzar, Salman; Aziz, Irfan; Hussain, Tabassum; Gul, Bilquees; Khan, M. Ajmal

    2015-01-01

    Salinity causes oxidative stress in plants by enhancing production of reactive oxygen species, so that an efficient antioxidant system, of which ascorbic acid (AsA) is a key component, is an essential requirement of tolerance. However, antioxidant responses of plants to salinity vary considerably among species. Limonium stocksii is a sub-tropical halophyte found in the coastal marshes from Gujarat (India) to Karachi (Pakistan) but little information exists on its salt resistance. In order to investigate the role of AsA in tolerance, 2-month-old plants were treated with 0 (control), 300 (moderate) and 600 (high) mM NaCl for 30 days with or without exogenous application of AsA (20 mM) or distilled water. Shoot growth of unsprayed plants at moderate salinity was similar to that of controls while at high salinity growth was inhibited substantially. Sap osmolality, AsA concentrations and activities of AsA-dependant antioxidant enzymes increased with increasing salinity. Water spray resulted in some improvement in growth, indicating that the growth promotion by exogenous treatments could partly be attributed to water. However, exogenous application of AsA on plants grown under saline conditions improved growth and AsA dependent antioxidant enzymes more than the water control treatment. Our data show that AsA-dependent antioxidant enzymes play an important role in salinity tolerance of L. stocksii. PMID:25603966

  20. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes

    PubMed Central

    Kumari, Asha; Das, Paromita; Parida, Asish Kumar; Agarwal, Pradeep K.

    2015-01-01

    Halophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis; stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analog (4-hydroxy-N-methyl proline), glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol, and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic, and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies. PMID:26284080

  1. Saline Sinus Rinse Recipe

    MedlinePlus

    ... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... Expert Search Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ Library ▸ Allergy Library ▸ Saline Sinus Rinse Recipe Share | Saline Sinus ...

  2. Durum wheat seedlings in saline conditions: Salt spray versus root-zone salinity

    NASA Astrophysics Data System (ADS)

    Spanò, Carmelina; Bottega, Stefania

    2016-02-01

    Salinity is an increasingly serious problem with a strong negative impact on plant productivity. Though many studies have been made on salt stress induced by high NaCl concentrations in the root-zone, few data concern the response of plants to saline aerosol, one of the main constraints in coastal areas. In order to study more in depth wheat salinity tolerance and to evaluate damage and antioxidant response induced by various modes of salt application, seedlings of Triticum turgidum ssp. durum, cv. Cappelli were treated for 2 and 7 days with salt in the root-zone (0, 50 and 200 mM NaCl) or with salt spray (400 mM NaCl + 0 or 200 mM NaCl in the root-zone). Seedlings accumulated Na+ in their leaves and therefore part of their ability to tolerate high salinity seems to be due to Na+ leaf tissue tolerance. Durum wheat, confirmed as a partially tolerant plant, shows a higher damage under airborne salinity, when both an increase in TBA-reactive material (indicative of lipid peroxidation) and a decrease in root growth were recorded. A different antioxidant response was activated, depending on the type of salt supply. Salt treatment induced a depletion of the reducing power of both ascorbate and glutathione while the highest contents of proline were detected under salt spray conditions. In the short term catalase and ascorbate peroxidase co-operated with glutathione peroxidase in the scavenging of hydrogen peroxide, in particular in salt spray-treated plants. From our data, the durum wheat cultivar Cappelli seems to be sensitive to airborne salinity.

  3. Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents

    NASA Astrophysics Data System (ADS)

    Geerken, Esmee; de Nooijer, Lennart Jan; van Dijk, Inge; Reichart, Gert-Jan

    2018-04-01

    Accurate reconstructions of seawater salinity could provide valuable constraints for studying past ocean circulation, the hydrological cycle and sea level change. Controlled growth experiments and field studies have shown the potential of foraminiferal Na / Ca as a direct salinity proxy. Incorporation of minor and trace elements in foraminiferal shell carbonate varies, however, greatly between species and hence extrapolating calibrations to other species needs validation by additional (culturing) studies. Salinity is also known to impact other foraminiferal carbonate-based proxies, such as Mg / Ca for temperature and Sr / Ca for sea water carbonate chemistry. Better constraints on the role of salinity on these proxies will therefore improve their reliability. Using a controlled growth experiment spanning a salinity range of 20 units and analysis of element composition on single chambers using laser ablation-Q-ICP-MS, we show here that Na / Ca correlates positively with salinity in two benthic foraminiferal species (Ammonia tepida and Amphistegina lessonii). The Na / Ca values differ between the two species, with an approximately 2-fold higher Na / Ca in A. lessonii than in A. tepida, coinciding with an offset in their Mg content ( ˜ 35 mmol mol-2 versus ˜ 2.5 mmol mol-1 for A. lessonii and A. tepida, respectively). Despite the offset in average Na / Ca values, the slopes of the Na / Ca-salinity regressions are similar between these two species (0.077 versus 0.064 mmol mol-1 change per salinity unit). In addition, Mg / Ca and Sr / Ca are positively correlated with salinity in cultured A. tepida but show no correlation with salinity for A. lessonii. Electron microprobe mapping of incorporated Na and Mg of the cultured specimens shows that within chamber walls of A. lessonii, Na / Ca and Mg / Ca occur in elevated bands in close proximity to the primary organic lining. Between species, Mg banding is relatively similar, even though Mg content is 10 times lower and

  4. Effect of Salinity on Biomass Yield and Physiological and Stem-Root Anatomical Characteristics of Purslane (Portulaca oleracea L.) Accessions

    PubMed Central

    Juraimi, Abdul Shukor; Rafii, M. Y.; Abdul Hamid, Azizah

    2015-01-01

    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m−1. Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m−1 salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m−1 salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession. PMID:25802833

  5. Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation.

    PubMed

    Pallarés, Susana; Botella-Cruz, María; Arribas, Paula; Millán, Andrés; Velasco, Josefa

    2017-04-01

    Exposing organisms to a particular stressor may enhance tolerance to a subsequent stress, when protective mechanisms against the two stressors are shared. Such cross-tolerance is a common adaptive response in dynamic multivariate environments and often indicates potential co-evolution of stress traits. Many aquatic insects in inland saline waters from Mediterranean-climate regions are sequentially challenged with salinity and desiccation stress. Thus, cross-tolerance to these physiologically similar stressors could have been positively selected in insects of these regions. We used adults of the saline water beetles Enochrus jesusarribasi (Hydrophilidae) and Nebrioporus baeticus (Dytiscidae) to test cross-tolerance responses to desiccation and salinity. In independent laboratory experiments, we evaluated the effects of (i) salinity stress on the subsequent resistance to desiccation and (ii) desiccation stress (rapid and slow dehydration) on the subsequent tolerance to salinity. Survival, water loss and haemolymph osmolality were measured. Exposure to stressful salinity improved water control under subsequent desiccation stress in both species, with a clear cross-tolerance (enhanced performance) in N. baeticus In contrast, general negative effects on performance were found under the inverse stress sequence. The rapid and slow dehydration produced different water loss and haemolymph osmolality dynamics that were reflected in different survival patterns. Our finding of cross-tolerance to salinity and desiccation in ecologically similar species from distant lineages, together with parallel responses between salinity and thermal stress previously found in several aquatic taxa, highlights the central role of adaption to salinity and co-occurring stressors in arid inland waters, having important implications for the species' persistence under climate change. © 2017. Published by The Company of Biologists Ltd.

  6. Modelling soil salinity in Oued El Abid watershed, Morocco

    NASA Astrophysics Data System (ADS)

    Mouatassime Sabri, El; Boukdir, Ahmed; Karaoui, Ismail; Arioua, Abdelkrim; Messlouhi, Rachid; El Amrani Idrissi, Abdelkhalek

    2018-05-01

    Soil salinisation is a phenomenon considered to be a real threat to natural resources in semi-arid climates. The phenomenon is controlled by soil (texture, depth, slope etc.), anthropogenic factors (drainage system, irrigation, crops types, etc.), and climate factors. This study was conducted in the watershed of Oued El Abid in the region of Beni Mellal-Khenifra, aimed at localising saline soil using remote sensing and a regression model. The spectral indices were extracted from Landsat imagery (30 m resolution). A linear correlation of electrical conductivity, which was calculated based on soil samples (ECs), and the values extracted based on spectral bands showed a high accuracy with an R2 (Root square) of 0.80. This study proposes a new spectral salinity index using Landsat bands B1 and B4. This hydro-chemical and statistical study, based on a yearlong survey, showed a moderate amount of salinity, which threatens dam water quality. The results present an improved ability to use remote sensing and regression model integration to detect soil salinity with high accuracy and low cost, and permit intervention at an early stage of salinisation.

  7. A global algorithm for estimating Absolute Salinity

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  8. Impact of the water salinity on the hydraulic conductivity of fen peat

    NASA Astrophysics Data System (ADS)

    Gosch, Lennart; Janssen, Manon; Lennartz, Bernd

    2017-04-01

    Coastal peatlands represent an interface between marine and terrestrial ecosystems; their hydrology is affected by salt and fresh water inflow alike. Previous studies on bog peat have shown that pore water salinity can have an impact on the saturated hydraulic conductivity (Ks) of peat because of chemical pore dilation effects. In this ongoing study, we are aiming at quantifying the impact of higher salinities (up to 3.5 %) on Ks of fen peat to get a better understanding of the water and solute exchange between coastal peatlands and the adjacent sea. Two approaches differing in measurement duration employing a constant-head upward-flow permeameter were conducted. At first, Ks was measured at an initial salinity for several hours before the salinity was abruptly increased and the measurement continued. In the second approach, Ks was measured for 15 min at the salt content observed during sampling. Then, samples were completely (de)salinized via diffusion for several days/weeks before a comparison measurement was carried out. The results for degraded fen peats show a decrease of Ks during long-term measurements which does not depend on the water salinity. A slow, diffusion-controlled change in salinity does not modify the overall outcome that the duration of measurements has a stronger impact on Ks than the salinity. Further experiments will show if fen peat soils differing in their state of degradation exhibit a different behavior. A preliminary conclusion is that salinity might have a less important effect on hydraulic properties of fen peat than it was observed for bog peat.

  9. Saline-water resources of Texas

    USGS Publications Warehouse

    Winslow, Allen George; Kister, Lester Ray

    1956-01-01

    Most of the aquifers in Texas contain saline water in some parts, and a few are capable of producing large quantities of saline water. Of the early Paleozoic formations, the Hickory sandstone member of the Riley formation of Cambrian age and the Ellenburger group of Ordovician age are potential sources of small to moderate supplies of saline water in parts of central and west-central Texas.

  10. [Validation of a Spanish version of the Childhood Asthma Control Test (Sc-ACT) for use in Spain].

    PubMed

    Pérez-Yarza, E G; Castro-Rodriguez, J A; Villa Asensi, J R; Garde Garde, J; Hidalgo Bermejo, F J

    2015-08-01

    The Childhood Asthma Control Test (c-ACT) is a validated tool for determining pediatric asthma control. However, it is not validated in the Spanish language in Spain. We evaluated the psychometric properties of the Spanish version of the Childhood Asthma Control Test (Sc-ACT) for assessing asthma control in children ages 4 to11. This national, multicentre, prospective study was conducted in Spain with asthmatic children and their caregivers. Patients were assessed at 3 visits (Baseline, 2 Weeks, and 4 Months). Clinical variables included: symptoms, exacerbations, FEV1, asthma classification, PAQLQ and PACQLQ questionnaire scores, and asthma control as perceived by physicians, patients and caregivers. The Sc-ACT feasibility, validity, reliability, and sensitivity to change were assessed. A total of 394 children were included; mean (SD) time to complete the Sc-ACT was 5.3 (4.4) minutes. Sc-ACT score was correlated with asthma control as perceived by physician (-0.52), patient (-0.53), and caregiver (-0.51) and with the PAQLQ (0.56) and PACQLQ (0.55) scores. Sc-ACT was found to be significantly related to intensity and frequency of asthma symptoms. Cronbach alpha coefficient α was 0.81 and intraclass correlation coefficient was ≥0.85 for all of the items. The global effect size of Sc-ACT was 0.55. The cutoff point scores of 21 or higher indicated a good asthma control and their MCID was 4 points. The Spanish version of the c-ACT was found to be a reliable and valid questionnaire for evaluating asthma control in Spanish-speaking children ages 4 to 11 in Spain. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  11. Salinity tolerance and mycorrhizal responsiveness of native xeroriparian plants in semi-arid western USA

    USGS Publications Warehouse

    Beauchamp, Vanessa B.; Walz, C.; Shafroth, P.B.

    2009-01-01

    Restoration of salt-affected soils is a global concern. In the western United States, restoration of salinized land, particularly in river valleys, often involves control of Tamarix, an introduced species with high salinity tolerance. Revegetation of hydrologically disconnected floodplains and terraces after Tamarix removal is often difficult because of limited knowledge regarding the salinity tolerance of candidate native species for revegetation. Additionally, Tamarix appears to be non-mycorrhizal. Extended occupation of Tamarix may deplete arbuscular mycorrhizal fungi in the soil, further decreasing the success of revegetation efforts. To address these issues, we screened 42 species, races, or ecotypes native to southwestern U.S. for salinity tolerance and mycorrhizal responsiveness. As expected, the taxa tested showed a wide range of responses to salinity and mycorrhizal fungi. This variation also occurred between ecotypes or races of the same species, indicating that seed collected from high-salinity reference systems is likely better adapted to harsh conditions than seed originating from less saline environments. All species tested had a positive or neutral response to mycorrhizal inoculation. We found no clear evidence that mycorrhizae increased salinity tolerance, but some species were so dependent on mycorrhizal fungi that they grew poorly at all salinity levels in pasteurized soil. ?? 2009 Elsevier B.V.

  12. Transcriptome Exploration in Leymus chinensis under Saline-Alkaline Treatment Using 454 Pyrosequencing

    PubMed Central

    Sun, Yepeng; Wang, Fawei; Wang, Nan; Dong, Yuanyuan; Liu, Qi; Zhao, Lei; Chen, Huan; Liu, Weican; Yin, Hailong; Zhang, Xiaomei; Yuan, Yanxi; Li, Haiyan

    2013-01-01

    Background Leymus chinensis (Trin.) Tzvel. is a high saline-alkaline tolerant forage grass genus of the tribe Gramineae family, which also plays an important role in protection of natural environment. To date, little is known about the saline-alkaline tolerance of L. chinensis on the molecular level. To better understand the molecular mechanism of saline-alkaline tolerance in L. chinensis, 454 pyrosequencing was used for the transcriptome study. Results We used Roche-454 massive parallel pyrosequencing technology to sequence two different cDNA libraries that were built from the two samples of control and under saline-alkaline treatment (optimal stress concentration-Hoagland solution with 100 mM NaCl and 200 mM NaHCO3). A total of 363,734 reads in control group and 526,267 reads in treatment group with an average length of 489 bp and 493 bp were obtained, respectively. The reads were assembled into 104,105 unigenes with MIRA sequence assemable software, among which, 73,665 unigenes were in control group, 88,016 unigenes in treatment group and 57,576 unigenes in both groups. According to the comparative expression analysis between the two groups with the threshold of “log2 Ratio ≥1”, there were 36,497 up-regulated unegenes and 18,218 down-regulated unigenes predicted to be the differentially expressed genes. After gene annotation and pathway enrichment analysis, most of them were involved in stress and tolerant function, signal transduction, energy production and conversion, and inorganic ion transport. Furthermore, 16 of these differentially expressed genes were selected for real-time PCR validation, and they were successfully confirmed with the results of 454 pyrosequencing. Conclusions This work is the first time to study the transcriptome of L. chinensis under saline-alkaline treatment based on the 454-FLX massively parallel DNA sequencing platform. It also deepened studies on molecular mechanisms of saline-alkaline in L. chinensis, and constituted a

  13. [Dynamic model of seasonal breeding rodent pest population controlled with short-acting sterilant].

    PubMed

    Liu, Han-wu; Jin, Zhen; Zhang, Feng-qin; Li, Qiu-ying

    2013-04-01

    Rodent pests bring great damage to human beings, while rodenticide and sterilant can be used to control the pests. After ingesting sterilant, rodent pests lose their fertility, but in some cases, the sterile individuals may gain their fertility again, produce offspring, and enlarge population size. In this paper, the dynamic models of rodent pest population under lethal control and shortacting contraception control were formulated, and, with the prerequisite of the seasonal breeding of rodent pest population, the models were used to regularly analyze their behaviors and the effects of the contraception rate, lethal rate, control interval, and sterilant valid period on the dynamics of the pest population. The results showed that larger contraception rate and lethal rate and shorter control interval could have better control effect, making the controlled population become smaller and even died out. Short-acting sterilant limited the control effect. At the later period of breeding season, the rodent pest population controlled with short-acting sterilant would have a weak recovery.

  14. ABA, GA(3), and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions.

    PubMed

    Atia, Abdallah; Debez, Ahmed; Barhoumi, Zouhaier; Smaoui, Abderrazak; Abdelly, Chedly

    2009-08-01

    Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA(3), NO(-)(3), and NH(+)(4) on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA(3), nitrate (either as NaNO(3) or KNO(3)), and NH(4)Cl enhanced germination under NaCl salinity. The beneficial impact of KNO(3) on germination upon seed exposure to NaCl salinity was rather due to NO(-)(3) than to K(+), since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO(3) completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO(-)(3) and GA(3) mitigate the NaCl-induced reduction of seed germination, and that NO(-)(3) counteracts the inhibitory effect of ABA on germination of C. maritimum.

  15. Salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in coastal Bangladesh: a case-control study.

    PubMed

    Khan, Aneire Ehmar; Scheelbeek, Pauline Franka Denise; Shilpi, Asma Begum; Chan, Queenie; Mojumder, Sontosh Kumar; Rahman, Atiq; Haines, Andy; Vineis, Paolo

    2014-01-01

    Hypertensive disorders in pregnancy are among the leading causes of maternal and perinatal death in low-income countries, but the aetiology remains unclear. We investigated the relationship between salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in a coastal community. A population-based case-control study was conducted in Dacope, Bangladesh among 202 pregnant women with (pre)eclampsia or gestational hypertension, enrolled from the community served by the Upazilla Health Complex, Dacope and 1,006 matched controls from the same area. Epidemiological and clinical data were obtained from all participants. Urinary sodium and sodium levels in drinking water were measured. Logistic regression was used to calculate odds ratios, and 95% confidence intervals. Drinking water sources had exceptionally high sodium levels (mean 516.6 mg/L, S.D 524.2). Women consuming tube-well (groundwater) were at a higher disease risk than rainwater users (p<0.001). Adjusted risks for (pre)eclampsia and gestational hypertension considered together increased in a dose-response manner for increasing sodium concentrations (300.01-600 mg/L, 600.1-900 mg/L, >900.01 mg/L, compared to <300 mg/L) in drinking water (ORs 3.30 [95% CI 2.00-5.51], 4.40 [2.70-7.25] and 5.48 [3.30-9.11] (p-trend<0.001). Significant associations were seen for both (pre)eclampsia and gestational hypertension separately. Salinity in drinking water is associated with increased risk of (pre)eclampsia and gestational hypertension in this population. Given that coastal populations in countries such as Bangladesh are confronted with high salinity exposure, which is predicted to further increase as a result of sea level rise and other environmental influences, it is imperative to develop and evaluate affordable approaches to providing water with low salt content.

  16. Salinity in Drinking Water and the Risk of (Pre)Eclampsia and Gestational Hypertension in Coastal Bangladesh: A Case-Control Study

    PubMed Central

    Khan, Aneire Ehmar; Scheelbeek, Pauline Franka Denise; Shilpi, Asma Begum; Chan, Queenie; Mojumder, Sontosh Kumar; Rahman, Atiq; Haines, Andy; Vineis, Paolo

    2014-01-01

    Background Hypertensive disorders in pregnancy are among the leading causes of maternal and perinatal death in low-income countries, but the aetiology remains unclear. We investigated the relationship between salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in a coastal community. Methods A population-based case-control study was conducted in Dacope, Bangladesh among 202 pregnant women with (pre)eclampsia or gestational hypertension, enrolled from the community served by the Upazilla Health Complex, Dacope and 1,006 matched controls from the same area. Epidemiological and clinical data were obtained from all participants. Urinary sodium and sodium levels in drinking water were measured. Logistic regression was used to calculate odds ratios, and 95% confidence intervals. Findings Drinking water sources had exceptionally high sodium levels (mean 516.6 mg/L, S.D 524.2). Women consuming tube-well (groundwater) were at a higher disease risk than rainwater users (p<0.001). Adjusted risks for (pre)eclampsia and gestational hypertension considered together increased in a dose-response manner for increasing sodium concentrations (300.01–600 mg/L, 600.1–900 mg/L, >900.01 mg/L, compared to <300 mg/L) in drinking water (ORs 3.30 [95% CI 2.00–5.51], 4.40 [2.70–7.25] and 5.48 [3.30–9.11] (p-trend<0.001). Significant associations were seen for both (pre)eclampsia and gestational hypertension separately. Interpretation Salinity in drinking water is associated with increased risk of (pre)eclampsia and gestational hypertension in this population. Given that coastal populations in countries such as Bangladesh are confronted with high salinity exposure, which is predicted to further increase as a result of sea level rise and other environmental influences, it is imperative to develop and evaluate affordable approaches to providing water with low salt content. PMID:25268785

  17. Differential DNA methylation and transcription profiles in date palm roots exposed to salinity

    PubMed Central

    Al-Harrasi, Ibtisam; Al-Yahyai, Rashid

    2018-01-01

    As a salt-adaptive plant, the date palm (Phoenix dactylifera L.) requires a suitable mechanism to adapt to the stress of saline soils. There is growing evidence that DNA methylation plays an important role in regulating gene expression in response to abiotic stresses, including salinity. Thus, the present study sought to examine the differential methylation status that occurs in the date palm genome when plants are exposed to salinity, and to identify salinity responsive genes that are regulated by DNA methylation. To achieve these, whole-genome bisulfite sequencing (WGBS) was employed and mRNA was sequenced from salinity-treated and untreated roots. The WGBS analysis included 324,987,795 and 317,056,091 total reads of the control and the salinity-treated samples, respectively. The analysis covered about 81% of the total genomic DNA with about 40% of mapping efficiency of the sequenced reads and an average read depth of 17-fold coverage per DNA strand, and with a bisulfite conversion rate of around 99%. The level of methylation within the differentially methylated regions (DMRs) was significantly (p < 0.05, FDR ≤ 0.05) increased in response to salinity specifically at the mCHG and mCHH sequence contexts. Consistently, the mass spectrometry and the enzyme-linked immunosorbent assay (ELISA) showed that there was a significant (p < 0.05) increase in the global DNA methylation in response to salinity. mRNA sequencing revealed the presence of 6,405 differentially regulated genes with a significant value (p < 0.001, FDR ≤ 0.05) in response to salinity. Integration of high-resolution methylome and transcriptome analyses revealed a negative correlation between mCG methylation located within the promoters and the gene expression, while a positive correlation was noticed between mCHG/mCHH methylation rations and gene expression specifically when plants grew under control conditions. Therefore, the methylome and transcriptome relationships vary based on the methylated

  18. Differential DNA methylation and transcription profiles in date palm roots exposed to salinity.

    PubMed

    Al-Harrasi, Ibtisam; Al-Yahyai, Rashid; Yaish, Mahmoud W

    2018-01-01

    As a salt-adaptive plant, the date palm (Phoenix dactylifera L.) requires a suitable mechanism to adapt to the stress of saline soils. There is growing evidence that DNA methylation plays an important role in regulating gene expression in response to abiotic stresses, including salinity. Thus, the present study sought to examine the differential methylation status that occurs in the date palm genome when plants are exposed to salinity, and to identify salinity responsive genes that are regulated by DNA methylation. To achieve these, whole-genome bisulfite sequencing (WGBS) was employed and mRNA was sequenced from salinity-treated and untreated roots. The WGBS analysis included 324,987,795 and 317,056,091 total reads of the control and the salinity-treated samples, respectively. The analysis covered about 81% of the total genomic DNA with about 40% of mapping efficiency of the sequenced reads and an average read depth of 17-fold coverage per DNA strand, and with a bisulfite conversion rate of around 99%. The level of methylation within the differentially methylated regions (DMRs) was significantly (p < 0.05, FDR ≤ 0.05) increased in response to salinity specifically at the mCHG and mCHH sequence contexts. Consistently, the mass spectrometry and the enzyme-linked immunosorbent assay (ELISA) showed that there was a significant (p < 0.05) increase in the global DNA methylation in response to salinity. mRNA sequencing revealed the presence of 6,405 differentially regulated genes with a significant value (p < 0.001, FDR ≤ 0.05) in response to salinity. Integration of high-resolution methylome and transcriptome analyses revealed a negative correlation between mCG methylation located within the promoters and the gene expression, while a positive correlation was noticed between mCHG/mCHH methylation rations and gene expression specifically when plants grew under control conditions. Therefore, the methylome and transcriptome relationships vary based on the methylated

  19. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transpot project-demonstration act system definition

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Crumb, C. B.; Flora, C. C.; Macdonald, K. A. B.; Smith, R. D.; Sassi, A. P.; Dorwart, R. J.

    1982-01-01

    The 1985 ACT airplane is the Final Active Controls Technology (ACT) Airplane with the addition of three-axis fly by wire. Thus it retains all the efficiency features of the full ACT system plus the weight and cost savings accruing from deletion of the mechanical control system. The control system implements the full IAAC spectrum of active controls except flutter-mode control, judged essentially nonbeneficial, and incorporates new control surfaces called flaperons to make the most of wing-load alleviation. This redundant electronic system is conservatively designed to preserve the extreme reliability required of crucial short-period pitch augmentation, which provides more than half of the fuel savings.

  20. Salinity reduces 2,4-D efficacy in Echinochloa crusgalli by affecting redox balance, nutrient acquisition, and hormonal regulation.

    PubMed

    Islam, Faisal; Xie, Yuan; Farooq, Muhammad A; Wang, Jian; Yang, Chong; Gill, Rafaqat A; Zhu, Jinwen; Zhou, Weijun

    2018-05-01

    Distinct salinity levels have been reported to enhance plants tolerance to different types of stresses. The aim of this research is to assess the interaction of saline stress and the use of 2,4-D as a means of controlling the growth of Echinochloa crusgalli. The resultant effect of such interaction is vital for a sustainable approach of weed management and food production. The results showed that 2,4-D alone treatment reduces the chlorophyll contents, photosynthetic capacity, enhanced MDA, electrolyte leakage, and ROS production (H 2 O 2 , O 2 ·- ) and inhibited the activities of ROS scavenging enzymes. Further analysis of the ultrastructure of chloroplasts indicated that 2,4-D induced severe damage to the ultrastructure of chloroplasts and thylakoids. Severe saline stress (8 dS m -1 ) followed by mild saline stress treatments (4 dS m -1 ) also reduced the E. crusgalli growth, but had the least impact as compared to the 2,4-D alone treatment. Surprisingly, under combined treatments (salinity + 2,4-D), the phytotoxic effect of 2,4-D was reduced on saline-stressed E. crusgalli plants, especially under mild saline + 2,4-D treatment. This stimulated growth of E. crusgalli is related to the higher activities of enzymatic and non-enzymatic antioxidants and dynamic regulation of IAA, ABA under mild saline + 2,4-D treatment. This shows that 2,4-D efficacy was affected by salinity in a stress intensity-dependent manner, which may result in the need for greater herbicide application rates, additional application times, or more weed control operations required for controlling salt-affected weed.

  1. Salinity Effects on Photosynthesis, Carbon Allocation, and Nitrogen Assimilation in the Red Alga, Gelidium coulteri.

    PubMed

    Macler, B A

    1988-11-01

    The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O(2) evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and

  2. Jerusalem artichoke decreased salt content and increased diversity of bacterial communities in the rhizosphere soil in the coastal saline zone

    NASA Astrophysics Data System (ADS)

    Shao, Tianyun; Li, Niu; Cheng, Yongwen; Long, Xiaohua; Shao, Hongbo; Zed, Rengel

    2017-04-01

    Soil salinity is one of the main environmental constraints that restrict plant growth and agricultural productivity; however, utilization of salt-affected land can bring substantial benefits. This study used an in-situ remediation method by planting Jerusalem artichoke in naturally occurring saline alkali soils with different salinity (high salinity (H, >4.0 g•salt kg-1 soil), moderate salinity (M, 2.0-4.0 g•salt kg-1 soil) and low salinity (L, 1.0-2.0 g•salt kg-1 soil) in the coastal saline zone in southeast China in comparison with the respective controls without Jerusalem artichoke planting (undisturbed soil). Soil pH and salinity increased sequentially from the rhizosphere to the bulk soil and the unplanted controls. The activity of neutral phosphatase and invertase decreased in the order L > M > H, whereas that of catalase was reverse. The minimum content of calcite, muscovite and quartz, and maximum content of chlorite and albite, were found in the control soils. Planting of Jerusalem artichoke enhanced bacterial microflora in saline alkali soil. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. The number of Operational Taxonomic Units (OTU) in the rhizosphere soil was, respectively, 1.27, 1.02 and 1.25 times higher compared with the bulk soil, suggesting that Jerusalem artichoke played a significant role in increasing abundance and diversity of soil microbial populations. The study showed that Jerusalem artichoke could be used to improve saline alkali soil by enriching bacterial communities, enhancing the activity of phosphatase and invertase, and decreasing soil salinity.

  3. Growth responses of Phragmites karka - a candidate for second generation biofuel from degraded saline lands

    NASA Astrophysics Data System (ADS)

    Zaheer Ahmed, Muhammad; Shoukat, Erum; Abideen, Zainul; Aziz, Irfan; Gulzar, Salman; Ajmal Khan, M.

    2017-04-01

    Global changes like rapidly increasing population, limited fresh water resources, increasing salinity and aridity are the major causes of land degradation. Increasing feed production for bioenergy through direct and indirect land use cause major threat to biodiversity besides competing with food resources. Growing halophytes on saline lands would provide alternate source of energy without compromising food and cash crop farming. Phragmites karkahas recently emerged as a potential bio-fuel crop, which maintains optimal growth at 100 mM NaCl with high ligno-cellulosic biomass. However, temporal and organ specific plant responses under salinity needs to be understood for effective management of degraded saline lands. This study was designed to investigate variation in growth, water relations, ion-flux, damage markers, soluble sugars, stomatal stoichiometry and photosynthetic responses of P. karka to short (0-7 days) and long (15-30 days) term exposure with 0 (control), 100 (moderate) and 300 (high) mM NaCl. A reduced shoot growth ( 45%) during earlier (within 7 days) phase was observed in 300 mM NaCl compared to control and moderate salinity. Reduced leaf elongation rate and leaf senescence from 7th day in 300 mM NaCl (and later in moderate salinity) correspond to increasing hydrogen peroxide and malondialdehyde contents. Leaf turgor loss represents the osmotic effect of NaCl at both concentrations, however turgor recovered completely in moderate salinity within a week. Plant appeared to use both organic solutes (soluble sugars) and ions (Na++K++Cl-) for osmotic adjustment along with improved water use efficiency under saline conditions. Turgor loss in high salinity (300 mM NaCl) was related to increased bulk elastic modulus and decreased hydraulic capacitance which ultimately resulted in low water potential. Leaf Na+ and Cl- accumulation increased earlier (from 7th day) in 300 mM NaCl and later in 100 mM. Higher ion sequestration in different organs was found in the

  4. Feeding ecology of breeding gadwalls on saline wetlands

    USGS Publications Warehouse

    Serie, J.R.; Swanson, G.A.

    1976-01-01

    The feeding ecology of breeding gadwalls (Anas strepera) from saline wetlands in North Dakota was examined in relation to sex, pair mates, reproductive status, food availability, and wetland type during the spring and summer of 1971 and 1972. Esophagi of males and females contained 40.4 and 48.2 percent animal food, respectively, between 17 April and 25 August. Animal foods consumed by paired females varied with reproductive condition and were independent of their mates. Invertebrates increased from 47.7 i?? 17.4 percent in the diet during prelaying to 72.0 i?? 18.4 percent during laying and declined to 46.3 i?? 30.0 percent during postlaying. Aquatic insects dominated the diet during egg-laying and were selected disproportionately relative to their availability. Esophageal contents indicated that diversity of plant and animal foods in the diet varied inversely with specific conductance. Major factors influencing food selection of the breeding birds are discussed as interactions among their physiological status, their anatomical and behavioral characteristics, and the abundance and behavior of food organisms as influenced by chemical and physical features of the environment. The data suggested that these interrelated ecological factors act simultaneously to control the phenology of events and determine the foods utilized.

  5. Influence of intramuscular granisetron on experimentally induced muscle pain by acidic saline.

    PubMed

    Louca, S; Ernberg, M; Christidis, N

    2013-06-01

    The aim of this study was to investigate whether intramuscular administration of the 5-HT(3) receptor antagonist granisetron reduces experimental muscle pain induced by repeated intramuscular injections of acidic saline into the masseter muscles. Twenty-eight healthy and pain-free volunteers, fourteen women and fourteen men participated in this randomized, double-blind and placebo-controlled study. After a screening examination and registration of the baseline pressure-pain threshold (PPT), the first simultaneous bilateral injections of 0·5 mL acidic saline (9 mg mL(-1) , pH 3·3) into the masseter muscles were performed. Two days later, PPT and pain (VAS) were re-assessed. The masseter muscle was then pre-treated with 0·5 mL granisetron (Kytril(®) 1 mg mL(-1) pH 5·3) on one side and control substance (isotonic saline, 9 mg mL(-1) pH 6) on the contralateral side. Two minutes thereafter a bilateral simultaneous injection of 0·5 mL acidic saline followed. The evoked pain intensity, pain duration, pain area and PPT were assessed. The volunteers returned 1 week later to re-assess VAS and PPT. On the side pre-treated with granisetron, the induced pain had significantly lower intensity and shorter duration (P < 0·05) compared with the side pre-treated with control. A subgroup analysis showed that the effect of granisetron on pain duration was significant only in women (P < 0·001), while the effect on peak pain and pain area were significant in both sexes. The results showed no significant change in PPT. In conclusion, these results indicate that granisetron has a pain-reducing effect on experimentally induced muscle pain by repeated acidic saline injection. © 2013 John Wiley & Sons Ltd.

  6. Hydrogen-Saturated Saline Protects Intensive Narrow Band Noise-Induced Hearing Loss in Guinea Pigs through an Antioxidant Effect

    PubMed Central

    Chen, Liwei; Yu, Ning; Lu, Yan; Wu, Longjun; Chen, Daishi; Guo, Weiwei; Zhao, Lidong; Liu, Mingbo; Yang, Shiming; Sun, Xuejun; Zhai, Suoqiang

    2014-01-01

    The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5–3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect. PMID:24945316

  7. Effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats.

    PubMed

    Kim, Dong-Hyun; Yeo, Sang Won

    2013-01-01

    This prospective, randomized, and controlled study examined the effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats. The study comprised two control groups (untreated and saline-treated) and three experimental groups of Sprague Dawley rats. The experimental groups received an instillation of lipopolysaccharide (LPS) only, LPS+normal saline (LPS/saline), or LPS+selenium-enriched hot spring water (LPS/selenium). Histopathological changes were identified using hematoxylin-eosin staining. Leakage of exudate was identified using fluorescence microscopy. Microvascular permeability was measured using the Evans blue dye technique. Expression of the Muc5ac gene was measured using reverse transcription-polymerase chain reaction. Mucosal edema and expression of the Muc5ac gene were significantly lower in the LPS/saline group than in the LPS group. Microvascular permeability, mucosal edema, and expression of the Muc5ac gene were significantly lower in the LPS/selenium group than in the LPS group. Mucosal edema was similar in the LPS/selenium group and LPS/saline group, but capillary permeability and Muc5ac expression were lower in the LPS/selenium group. This study shows that normal saline and selenium-enriched hot spring water reduce inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Nebulized hypertonic-saline vs epinephrine for bronchiolitis; proof of concept study of cumulative sum (CUSUM) analysis.

    PubMed

    Gupta, Neeraj; Puliyel, Ashish; Manchanda, Ayush; Puliyel, Jacob

    2012-07-01

    To apply cumulative sum (CUSUM) to monitor a drug trial of nebulized hypertonic-saline in bronchiolitis. To test if monitoring with CUSUM control lines is practical and useful as a prompt to stop the drug trial early, if the study drug performs significantly worse than the comparator drug. Prospective, open label, controlled trial using standard therapy (epinephrine) and study drug (hypertonic-saline) sequentially in two groups of patients. Hospital offering tertiary-level pediatric care. Children, 2 months to 2 years, with first episode of bronchiolitis, excluding those with cardiac disease, immunodeficiency and critical illness at presentation. Nebulized epinephrine in first half of the bronchiolitis season (n = 35) and hypertonic saline subsequently (n = 29). Continuous monitoring of response to hypertonic-saline using CUSUM control charts developed with epinephrine-response data. Clinical score, tachycardia and total duration of hospital stay. In the epinephrine group, the maximum CUSUM was +2.25 (SD 1.34) and minimum CUSUM was -2.26 (SD 1.34). CUSUM score with hypertonic saline group stayed above the zero line throughout the study. There was no statistical difference in the post-treatment clinical score at 24 hours between the treatment groups {Mean (SD) 3.516 (2.816): 3.552 (2.686); 95% CI: -1.416 to 1.356}, heart rate {Mean (SD) 136 (44): 137(12); 95% CI: -17.849 to 15.849) or duration of hospital stay (Mean (SD) 96.029 (111.41): 82.914 (65.940); 95% CI: -33.888 to 60.128}. The software we developed allows for drawing of control lines to monitor study drug performance. Hypertonic saline performed as well or better than nebulized epinephrine in bronchiolitis.

  9. Salinity Gradient of the Baltic Sea Limits the Reproduction and Population Expansion of the Newly Invaded Comb Jelly Mnemiopsis leidyi

    PubMed Central

    Jaspers, Cornelia; Møller, Lene Friis; Kiørboe, Thomas

    2011-01-01

    The recent invasion of the comb jelly Mnemiopsis leidyi into northern European waters is of major public and scientific concern. One of the key features making M. leidyi a successful invader is its high fecundity combined with fast growth rates. However, little is known about physiological limitations to its reproduction and consequent possible abiotic restrictions to its dispersal. To evaluate the invasion potential of M. leidyi into the brackish Baltic Sea we studied in situ egg production rates in different regions and at different salinities in the laboratory, representing the salinity gradient of the Baltic Sea. During October 2009 M. leidyi actively reproduced over large areas of the Baltic Sea. Egg production rates scaled with animal size but decreased significantly with decreasing salinity, both in the field (7–29) and in laboratory experiments (6–33). Temperature and zooplankton, i.e. food abundance, could not explain the observed differences. Reproduction rates at conditions representing the Kattegat, south western and central Baltic Sea, respectively, were 2.8 fold higher at the highest salinities (33 and 25) than at intermediate salinities (10 and 15) and 21 times higher compared from intermediate to the lowest salinity tested (6). Higher salinity areas such as the Kattegat, and to a lower extent the south western Baltic, seem to act as source regions for the M. leidyi population in the central Baltic Sea where a self-sustaining population, due to the low salinity, cannot be maintained. PMID:21887373

  10. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland.

    PubMed

    Wood, Cameron; Harrington, Glenn A

    2015-01-01

    Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater-fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level-driven movement of the fresh water-sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two-dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater-dependent ecosystems. © 2014, National Ground Water Association.

  11. [Effects of clipping on nitrogen allocation strategy and compensatory growth of Leymus chinensis under saline-alkali conditions].

    PubMed

    Zheng, Cong Cong; Wang, Yong Jing; Sun, Hao; Wang, Xin Yu; Gao, Ying Zhi

    2017-07-18

    Soil salinization and overgrazing are two main factors limiting animal husbandry in the Songnen Grassland. Leymus chinensis is a dominant rhizome grass, resistant to grazing as well as to-lerant to salt stress. Foliar labeled with 15 N-urea was used to study the nitrogen allocation strategy and compensatory growth response to clipping under saline-alkali conditions. The results showed that the total absorbed 15 N allocated to the aboveground part was more than 60%. Compared with the control treatment (no saline-alkali, no clipping), saline-alkali increased the distribution of 15 N by 5.1% in root; the 15 N distribution into aboveground in the moderate clipping and saline-alkali treatment was 11.6% higher than that of the control, exhibiting over-compensatory growth of aboveground biomass and total biomass, however, 15 N allocated to stem base was significantly increased by 9.5% under severe clipping level and saline-alkali addition, showing under-compensatory growth of shoot, root and total biomass. These results suggested that L. chinensis adapted to mode-rate clipping by over-compensatory growth under salt-alkali stress condition. However, L. chinensis would take a relatively conservative growth strategy through the enhanced N allocation to stem base for storage under severe saline-alkali and clipping conditions.

  12. Development of remote sensing techniques for assessment of salinity induced plant stresses

    NASA Astrophysics Data System (ADS)

    Stong, Matthew Harold

    Salinity has been shown to reduce vegetative growth, crop quality, and yield in agricultural crops. Remote sensing is capable of providing data about large areas. This project was designed to induce salinity stress in a crop, pak choi, and thereafter monitor the response of the crop as expressed by its spectral reflectances. The project was conducted in the National Taiwan University Phytotron, and spectral data was collected using a GER 2600. Yield and soil salinity (ECe) were also measured. After three seasons of data were collected, wavelengths sensitive to salinity were selected. These wavelengths, which are within the spectral response of biochemicals produced by plants as a response to soil salinity, were used to create two indices, the Salinity Stress Index (SSI) and the Normalized Salinity Stress Index (NSSI). After creating the indices tests were conducted to determine the efficacy of these indices in detecting salinity and drought stresses as compared to existing indices (SRVI and NDVI). This project induced salinity and drought stress in a crop, pak choi, and thereafter monitored the response of the crop as expressed by its spectral reflectances. The SSI and NSSI correlated well to both ECe and marketable yield. Additionally the SSI and NSSI were found to provide statistical differences between salinity stressed treatments and the control treatment. Drought stress was not detected well by any of the indices reviewed although the SSI and NSSI indices tended to increase with drought stress and decrease with salinity stress. As a final test, specific ion toxicities of sodium and chloride were tested against the developed indices (SSI and NSSI) and existing indices (NDVI, SRVI, and NDWI). There were no differences in SSI and NSSI responses to specific ion concentration in the high salinity treatments. These results indicated that the SSI and NSSI are not sensitive to the specific ion concentration in irrigation water. However, the SSI and NSSI were higher

  13. 78 FR 64210 - Extension of Review Periods Under the Toxic Substances Control Act; Certain Chemicals and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... Under the Toxic Substances Control Act; Certain Chemicals and Microorganisms; Premanufacture... 325 and 324110), e.g., chemical manufacturing and petroleum refineries. The North American Industrial... Agency under section 5 of the Toxic Substances Control Act (TSCA), received by EPA on or before October 1...

  14. 48 CFR 1552.235-75 - Access to Toxic Substances Control Act Confidential Business Information (APR 1996).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Control Act Confidential Business Information (APR 1996). 1552.235-75 Section 1552.235-75 Federal... Confidential Business Information (APR 1996). As prescribed in 1535.007(b), insert the following provision: Access to Toxic Substances Control Act Confidential Business Information (APR 1996) In order to perform...

  15. Salinity stress response in estuarine fishes from the Murray Estuary and Coorong, South Australia.

    PubMed

    Hossain, Md Afzal; Aktar, Shefali; Qin, Jian G

    2016-12-01

    Estuaries are unstable ecosystems and can be changed by the environmental and anthropogenic impact. The Murray Estuary and Coorong were degraded by drought and low freshwater input in the last decade and therefore transformed into the largest hyper-saline lagoon in Australia. This study evaluates the physiological stress of two estuarine fish species (small-mouthed hardyhead Atherinosoma microstoma and Tamar goby Afurcagobius tamarensis) to the induced salinity change in captivity. The test fishes were collected from the Coorong and transported to the laboratory in the water from the Coorong. Each fish species was exposed to different levels of salinity, and a number of enzymes were assessed to measure the stress response of fish to salinity change. The activity of reactive oxygen species was significantly increased with the salinity change in both fish species compared with the fish in the control. Significant salinity effect on superoxide dismutase activity was observed on Tamar goby but not on small-mouthed hardyhead. Conversely, the impact of salinity on catalase activity was detected on small-mouthed hardyhead but not on Tamar goby. The study reveals that the induction of physical stress by salinity changes occurred in both Tamar goby and small-mouthed hardyhead despite the varying response of antioxidant enzymes between fish species. The study provides an insight into the understanding of physiological adaptation in estuarine fish to salinity change. The results could improve our knowledge on stress response and resilience of estuarine fish to hypo- and hyper-salinity stress.

  16. Effects of salinity on baldcypress seedlings: Physiological responses and their relation to salinity tolerance

    USGS Publications Warehouse

    Allen, J.A.; Chambers, J.L.; Pezeshki, S.R.

    1997-01-01

    Growth and physiological responses of 15 open-pollinated families of baldcypress (Taxodium distichum var. distichum) subjected to flooding with saline water were evaluated in this study. Ten of the families were from coastal sites in Louisiana and Alabama, USA that have elevated levels of soil-water salinity. The other five families were from inland, freshwater sites in Louisiana. Seedlings from all families tolerated flooding with water of low (2 g l-1) salinity. Differences in biomass among families became most apparent at the highest salinity levels (6 and 8 g l-1). Overall, increasing salinity reduced leaf biomass more than root biomass, which in turn was reduced more than stem biomass. A subset of seedlings from the main greenhouse experiment was periodically placed indoors under artificial light, and measurements were made of gas exchange and leaf water potential. Also, tissue concentrations of Cl-, Na+, K+, and Ca2+ were determined at the end of the greenhouse experiment. Significant intraspecific variation was found for nearly all the physiological parameters evaluated, but only leaf concentrations of Na+ and Cl- were correlated with an index of family-level differences in salt tolerance.

  17. Minimal groundwater leakage restricts salinity in a hydrologically terminal basin of northwest Australia

    NASA Astrophysics Data System (ADS)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline

    2016-04-01

    The Fortescue Marsh (FM) is one of the largest wetlands of arid northwest Australia (~1200 km2) and is thought to act as a terminal basin for the Upper Fortescue River catchment. Unlike the playa lake systems that predominate in most arid regions, where salinity is driven by inflow and evaporation of groundwater, the hydrological regime of the FM is driven by inundation from irregular cyclonic events [1]. Surface water of the FM is fresh to brackish and the salinity of the deepest groundwater (80 m b.g.l.) does not exceed 160 g/L; salt efflorescences are rarely present on the surface [2]. In this study, we tested the hypothesis that persistent but low rates of groundwater outflow have restricted the accumulation of salt in the FM over time. Using hydrological, hydrochemical data and dimensionless time evaporation modelling along with the water and salt budget, we calculated the time and the annual groundwater discharge volume that would be required to achieve and maintain the range of salinity levels observed in the Marsh. Groundwater outflow from alluvial and colluvial aquifers to the Lower Fortescue catchment is limited by an extremely low hydraulic gradient of 0.001 and is restricted to a relatively small 'alluvial window' of 0.35 km2 because of the elevation of the basement bedrock at the Marsh outflow. We show that if the Marsh was 100% "leakage free" i.e., a true terminal basin for the Upper Fortescue Catchment, the basin water would have achieved salt saturation after ~45 ka. This is not the case and only a very small outflow of saline groundwater of <2 GL/yr (<0.03% of the FM water volume) is needed to maintain the current salinity conditions. The minimum time required to develop the current hydrochemical composition of the water in the Marsh and the steady-state conditions for salt concentration is between 58 and 164 ka. This is a minimum age of the Marsh but it can be much older as nearly steady-state conditions could be maintained infinitely. Our

  18. Toxic Substances Control Act Test Submissions 2.0 (TSCATS 2.0)

    EPA Pesticide Factsheets

    The Toxic Substances Control Act Test Submissions 2.0 (TSCATS 2.0) tracks the submissions of health and safety data submitted to the EPA either as required or voluntarily under certain sections of TSCA.

  19. Groundwater seepage controls salinity in a hydrologically terminal basin of semi-arid northwest Australia

    NASA Astrophysics Data System (ADS)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline F.

    2016-11-01

    Very small groundwater outflows have the potential to significantly impact the hydrochemistry and salt accumulation processes of notionally terminal basins in arid environments. However, this limited groundwater outflow can be very difficult to quantify using classical water budget calculations due to large uncertainties in estimates of evaporation and evapotranspiration rates from the surface of dry lake beds. In this study, we used a dimensionless time evaporation model to estimate the range of groundwater outflow required to maintain salinity levels observed at the Fortescue Marsh (FM), one of the largest wetlands of semi-arid northwest Australia (∼1100 km2). The groundwater outflow from aquifers underlying the FM to the Lower Fortescue catchment is constrained by an extremely low hydraulic gradient of <0.0001 and a small 'alluvial outlet' of 0.35 km2 because of relatively high bedrock elevation. However, FM groundwater salinity is far below saturation with respect to halite (TDS < 160 g/L), episodic flood water is fresh to brackish, and salt efflorescences are very sparse and evident only when the FM is dry. We show that if the FM was 100% "leakage free" i.e., a true terminal basin, groundwater would have achieved halite saturation (>300 g/L) after ∼45 ka. We calculated that only a very small seepage of ∼2G L/yr (∼0.03% of the FM water volume) is sufficient to maintain current salinity conditions. The minimum time required to develop the current hydrochemical groundwater composition under the FM ranges from ∼60 to ∼165 ka. We conclude that a dimensionless time evaporation model versus inflow over outflow ratio model is likely more suitable than classical water budget calculations for determining outflow from large saline lakes and to estimate groundwater seepage from hydrologically terminal basins.

  20. An integrated strategy for aircraft/airport noise abatement: A legal-institutional control act section 7 to the noise control act of 1972 and proposals based thereon

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1975-01-01

    The development of the aircraft noise control structure since the Griggs case of 1962 was examined. The Noise Control Act of 1972 is described which undertook to establish the legal-institutional framework within which an adequate aircraft/airport noise abatement program might be initiated with concern for full recognition of all the beneficial and detrimental consequences of air transportation and appropriate distribution of benefits and costs.

  1. Rainfall and irrigation controls on groundwater rise and salinity risk in the Ord River Irrigation Area, northern Australia

    NASA Astrophysics Data System (ADS)

    Smith, Anthony J.

    2008-09-01

    Groundwater beneath the Ord River Irrigation Area (ORIA) in northern Australia has risen in elevation by 10-20 m during the past 40 years with attendant concerns about water logging and soil salinization. Persistent groundwater accession has been attributed to excessive irrigation and surface water leakage; however, analysis of daily water-table records from the past 10 years yielded a contrary result. On a seasonal basis, water-table elevation typically fell during irrigation (dry) seasons and rose during fallow (wet) seasons, conflicting with the conventional view that irrigation and not rainfall must be the dominant control on groundwater accession. Previous investigations of unexpectedly large infiltration losses through the cracking clay soils provide a plausible explanation for the apparent conundrum. Because rainfall is uncontrolled and occurs independently of the soil moisture condition, there is greater opportunity for incipient ponding and rapid infiltration through preferred flow pathways. In contrast, irrigation is scheduled when needed and applications are stopped after soil wetting is achieved. Contemporary groundwater management in the ORIA is focused on improving irrigation efficiency during dry seasons but additional opportunities may exist to improve groundwater conditions and salinity risk through giving equal attention to the wet-season water balance.

  2. Interrelationship of salinity shift with oxidative stress and lipid metabolism in the monogonont rotifer Brachionus koreanus.

    PubMed

    Lee, Min-Chul; Park, Jun Chul; Kim, Duck-Hyun; Kang, Sujin; Shin, Kyung-Hoon; Park, Heum Gi; Han, Jeonghoon; Lee, Jae-Seong

    2017-12-01

    Salinity is a critical key abiotic factor affecting biological processes such as lipid metabolism, yet the relationship between salinity and lipid metabolism has not been studied in the rotifer. To understand the effects of salinity on the monogonont rotifer B. koreanus, we examined high saline (25 and 35psu) conditions compared to the control (15psu). In vivo life cycle parameters (e.g. cumulative offspring and life span) were observed in response to 25 and 35psu compared to 15psu. In addition, to investigate whether high salinity induces oxidative stress, the level of reactive oxygen species (ROS) and glutathione S-transferase activity (GST) were measured in a salinity- (15, 25, and 35psu; 24h) and time-dependent manner (3, 6, 12, 24h; 35psu). Furthermore composition of fatty acid (FA) and lipid metabolism-related genes (e.g. elongases and desaturases) were examined in response to different salinity conditions. As a result, retardation in cumulative offspring and significant increase in life span were demonstrated in the 35psu treatment group compared to the control (15psu). Furthermore, ROS level and GST activity have both demonstrated a significant increase (P<0.05) in the 35psu treatment. In general, the quantity of FA and mRNA expression of the lipid metabolism-related genes was significantly decreased (P<0.05) in response to high saline condition with exceptions for both GST-S4 and S5 demonstrated a significant increase in their mRNA expression. This study demonstrates that high salinity induces oxidative stress, leading to a negative impact on lipid metabolism in the monogonont rotifer, B. koreanus. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants.

    PubMed

    Nakaminami, Kentaro; Okamoto, Masanori; Higuchi-Takeuchi, Mieko; Yoshizumi, Takeshi; Yamaguchi, Yube; Fukao, Yoichiro; Shimizu, Minami; Ohashi, Chihiro; Tanaka, Maho; Matsui, Minami; Shinozaki, Kazuo; Seki, Motoaki; Hanada, Kousuke

    2018-05-29

    Peptides encoded by small coding genes play an important role in plant development, acting in a similar manner as phytohormones. Few hormone-like peptides, however, have been shown to play a role in abiotic stress tolerance. In the current study, 17 Arabidopsis genes coding for small peptides were found to be up-regulated in response to salinity stress. To identify peptides leading salinity stress tolerance, we generated transgenic Arabidopsis plants overexpressing these small coding genes and assessed survivability and root growth under salinity stress conditions. Results indicated that 4 of the 17 overexpressed genes increased salinity stress tolerance. Further studies focused on AtPROPEP3 , which was the most highly up-regulated gene under salinity stress. Treatment of plants with synthetic peptides encoded by AtPROPEP3 revealed that a C-terminal peptide fragment (AtPep3) inhibited the salt-induced bleaching of chlorophyll in seedlings. Conversely, knockdown AtPROPEP3 transgenic plants exhibited a hypersensitive phenotype under salinity stress, which was complemented by the AtPep3 peptide. This functional AtPep3 peptide region overlaps with an AtPep3 elicitor peptide that is related to the immune response of plants. Functional analyses with a receptor mutant of AtPep3 revealed that AtPep3 was recognized by the PEPR1 receptor and that it functions to increase salinity stress tolerance in plants. Collectively, these data indicate that AtPep3 plays a significant role in both salinity stress tolerance and immune response in Arabidopsis .

  4. Role of solute-transport models in the analysis of groundwater salinity problems in agricultural areas

    USGS Publications Warehouse

    Konikow, Leonard F.

    1981-01-01

    Undesirable salinity increases occur in both groundwater and surface water and are commonly related to agricultural practices. Groundwater recharge from precipitation or irrigation will transport and disperse residual salts concentrated by evapotranspiration, salts leached from soil and aquifer materials, as well as some dissolved fertilizers and pesticides. Where stream salinity is affected by agricultural practices, the increases in salt load usually are attributable mostly to a groundwater component of flow. Thus, efforts to predict, manage, or control stream salinity increases should consider the role of groundwater in salt transport. Two examples of groundwater salinity problems in Colorado, U.S.A., illustrate that a model which simulates accurately the transport and dispersion of solutes in flowing groundwater can be (1) a valuable investigative tool to help understand the processes and parameters controlling the movement and fate of the salt, and (2) a valuable management tool for predicting responses and optimizing the development and use of the total water resource. ?? 1981.

  5. The effects of salinity in the soil water balance: A Budyko's approach

    NASA Astrophysics Data System (ADS)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  6. Effects of saline or albumin resuscitation on standard coagulation tests.

    PubMed

    Bellomo, Rinaldo; Morimatsu, Hiroshi; Presneill, Jeff; French, Craig; Cole, Louise; Story, David; Uchino, Shigehiko; Naka, Toshio; Finfer, Simon; Cooper, D James; Myburgh, John

    2009-12-01

    To explore whether fluid resuscitation with normal saline or 4% albumin is associated with differential changes in routine clinical coagulation tests. Substudy from a large double-blind randomised controlled trial, the SAFE (Saline versus Albumin Fluid Evaluation) study. Three general intensive care units. Cohort of 687 critically ill patients. We randomly allocated patients to receive either 4% human albumin or normal saline for fluid resuscitation, and collected demographic and haematological data. Albumin was administered to 338 patients and saline to 349. At baseline, the two groups had similar mean activated partial thromboplastin time (APTT) of 37.2 s (albumin) v 39.1 s (saline); mean international normalised ratio (INR) of 1.38 v 1.34, and mean platelet count of 244 x 10(9)/L v 249 x 10(9)/L. After randomisation, during the first day of treatment, the APTT in the albumin group was prolonged by a mean of 2.7 s, but shortened slightly by a mean of -0.9 s in the saline group. The INR did not change in either group, while the platelet count decreased transiently in both groups. Using multivariate analysis of covariance to account for baseline coagulation status, albumin fluid resuscitation (P = 0.01) and a greater overall volume of resuscitation (P = 0.03) were independently associated with prolongation of APTT during the first day. Administration of albumin or of larger fluid volumes is associated with a prolongation of APTT. In ICU patients, the choice and amount of resuscitation fluid may affect a routinely used coagulation test.

  7. Physiological and leaf metabolome changes in the xerohalophyte species Atriplex halimus induced by salinity.

    PubMed

    Bendaly, Alia; Messedi, Dorsaf; Smaoui, Abderrazak; Ksouri, Riadh; Bouchereau, Alain; Abdelly, Chedly

    2016-06-01

    Atriplex halimus is a xerohalophyte plant, which could be used as cash crops. This plant was integrated in Tunisian government programs the aim of which is to rehabilitate saline areas and desert. To investigate its strategies involved in salt tolerance, A. halimus was grown hydroponically under controlled conditions with increasing salinity. Plants were harvested and analyzed after 60 days of treatment. The biomass of A. halimus increased by moderate salinity and decreased significantly at high salinity compared to control plants at 400 mM. Despite of the large amounts of Na(+) observed in the leaves of Atriplex plants, leaf water contents and leaf succulence kept on increasing in treated plants and decreased over 150 mM NaCl. This confirmed the compartmentation and the efficient contribution of Na(+) in the osmotic adjustment. Analysis of the metabolic profiles showed an accumulation of carbohydrates and amino acids. The leaf tissues preferentially stored proline, α alanine and sucrose. Increasing NaCl levels were also accompanied by a significant accumulation of malate in leaves. Involvement of these solutes in osmotic adjustment was considered low. Nevertheless, they seemed to have an important role in controlling photosynthesis which capacity was enhanced by low salinity and decreased with increasing salinity (evaluated by actual photochemical efficiency of photosystem II and chlorophyll contents). The unchanged maximum photochemical efficiency of photosystem II accompanied by the increase of the non-photochemical quenching, the enhancement of the total antioxidant activity and the decrease of the malondialdehyde contents in leaves showed efficient protection of membranes and photosystem II from photo-oxidative damage. This protection seemed to be attributed to proline and sucrose largely accumulated in leaves treated with salt. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  9. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  10. Osmoregulation in the Hawaiian anchialine shrimp Halocaridina rubra (Crustacea: Atyidae): expression of ion transporters, mitochondria-rich cell proliferation and hemolymph osmolality during salinity transfers.

    PubMed

    Havird, Justin C; Santos, Scott R; Henry, Raymond P

    2014-07-01

    Studies of euryhaline crustaceans have identified conserved osmoregulatory adaptions allowing hyper-osmoregulation in dilute waters. However, previous studies have mainly examined decapod brachyurans with marine ancestries inhabiting estuaries or tidal creeks on a seasonal basis. Here, we describe osmoregulation in the atyid Halocaridina rubra, an endemic Hawaiian shrimp of freshwater ancestry from the islands' anchialine ecosystem (coastal ponds with subsurface freshwater and seawater connections) that encounters near-continuous spatial and temporal salinity changes. Given this, survival and osmoregulatory responses were examined over a wide salinity range. In the laboratory, H. rubra tolerated salinities of ~0-56‰, acting as both a hyper- and hypo-osmoregulator and maintaining a maximum osmotic gradient of ~868 mOsm kg(-1) H2O in freshwater. Furthermore, hemolymph osmolality was more stable during salinity transfers relative to other crustaceans. Silver nitrate and vital mitochondria-rich cell staining suggest all gills are osmoregulatory, with a large proportion of each individual gill functioning in ion transport (including when H. rubra acts as an osmoconformer in seawater). Additionally, expression of ion transporters and supporting enzymes that typically undergo upregulation during salinity transfer in osmoregulatory gills (i.e. Na(+)/K(+)-ATPase, carbonic anhydrase, Na(+)/K(+)/2Cl(-) cotransporter, V-type H(+)-ATPase and arginine kinase) were generally unaltered in H. rubra during similar transfers. These results suggest H. rubra (and possibly other anchialine species) maintains high, constitutive levels of gene expression and ion transport capability in the gills as a means of potentially coping with the fluctuating salinities that are encountered in anchialine habitats. Thus, anchialine taxa represent an interesting avenue for future physiological research. © 2014. Published by The Company of Biologists Ltd.

  11. Effects of Soil Salinity on Sucrose Metabolism in Cotton Leaves

    PubMed Central

    Zhang, Lei; Luo, Junyu; Dong, Helin; Ma, Yan; Zhao, Xinhua; Chen, Binglin; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    This study investigated sucrose metabolism of the youngest fully expanded main-stem leaf (MSL) and the subtending leaf of cotton (Gossypium hirsutum L.) boll (LSCB) of salt-tolerant (CCRI-79) and salt-sensitive (Simian 3) cultivars and its relationship to boll weight under low, medium and high soil salinity stress in Dafeng, China, in 2013 and 2014. The results showed that with increased soil salinity, 1) both the chlorophyll content and net photosynthetic rate (Pn) decreased, while the internal CO2 concentration firstly declined, and then increased in the MSL and LSCB; 2) carbohydrate contents in the MSL reduced significantly, while sucrose and starch contents in the LSCB increased, as did the activities of sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) in both the MSL and LSCB; 3) but invertase activity in both the MSL and LSCB did not change significantly. Our study also showed that the LSCB was more sensitive to soil salinity than was the MSL. Of the measured physiological indices, higher SPS activity, mainly controlled by sps3, may contribute to adaption of the LSCB to soil salinity stress because SPS is beneficial for efficiently sucrose synthesis, reduction of cellular osmotic potential and combined actions of Pn, and sucrose transformation rate and SPS may contribute to the reduction in boll weight under soil salinity stress. PMID:27228029

  12. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    PubMed

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. 28 CFR 0.177 - Applications for orders under the Comprehensive Drug Abuse Prevention and Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Comprehensive Drug Abuse Prevention and Control Act. 0.177 Section 0.177 Judicial Administration DEPARTMENT OF... the Comprehensive Drug Abuse Prevention and Control Act. Notwithstanding the delegation of functions... authorized to exercise the authority vested in the Attorney General by section 514 of the Comprehensive Drug...

  14. 28 CFR 0.177 - Applications for orders under the Comprehensive Drug Abuse Prevention and Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Comprehensive Drug Abuse Prevention and Control Act. 0.177 Section 0.177 Judicial Administration DEPARTMENT OF... the Comprehensive Drug Abuse Prevention and Control Act. Notwithstanding the delegation of functions... authorized to exercise the authority vested in the Attorney General by section 514 of the Comprehensive Drug...

  15. 28 CFR 0.177 - Applications for orders under the Comprehensive Drug Abuse Prevention and Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Comprehensive Drug Abuse Prevention and Control Act. 0.177 Section 0.177 Judicial Administration DEPARTMENT OF... the Comprehensive Drug Abuse Prevention and Control Act. Notwithstanding the delegation of functions... authorized to exercise the authority vested in the Attorney General by section 514 of the Comprehensive Drug...

  16. 28 CFR 0.177 - Applications for orders under the Comprehensive Drug Abuse Prevention and Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Comprehensive Drug Abuse Prevention and Control Act. 0.177 Section 0.177 Judicial Administration DEPARTMENT OF... the Comprehensive Drug Abuse Prevention and Control Act. Notwithstanding the delegation of functions... authorized to exercise the authority vested in the Attorney General by section 514 of the Comprehensive Drug...

  17. 28 CFR 0.177 - Applications for orders under the Comprehensive Drug Abuse Prevention and Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Comprehensive Drug Abuse Prevention and Control Act. 0.177 Section 0.177 Judicial Administration DEPARTMENT OF... the Comprehensive Drug Abuse Prevention and Control Act. Notwithstanding the delegation of functions... authorized to exercise the authority vested in the Attorney General by section 514 of the Comprehensive Drug...

  18. 76 FR 20588 - FDA Food Safety Modernization Act: Focus on Preventive Controls for Facilities; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    .... FDA-2011-N-0251] FDA Food Safety Modernization Act: Focus on Preventive Controls for Facilities... comment. SUMMARY: The Food and Drug Administration (FDA) is announcing a public meeting entitled ``FDA... controls for facilities provisions of the recently enacted FDA Food Safety Modernization Act (FSMA). FDA is...

  19. The effect of saline lock on phlebitis rates of patients in cardiac care units.

    PubMed

    Eghbali-Babadi, Maryam; Ghadiriyan, Raziyeh; Hosseini, Sayed Mohsen

    2015-01-01

    Despite advances in the field of intravenous therapy, phlebitis is still a common complication of peripheral venous catheter and finding an appropriate solution to prevent and reduce the incidence of this complication remains challenging. One of the methods used in reducing the incidence of phlebitis is the use of saline lock, which is forgotten in most hospitals. Therefore, this study aimed to evaluate its impact on the incidence and severity of phlebitis. In a single-blind (the researcher) clinical trial, 88 patients with peripheral venous catheter admitted in cardiac care units in selected hospitals of Isfahan University of Medical Sciences, Iran, were selected through convenient sampling method. They were randomly divided into two groups of intervention and control groups using random number table. The intervention group received 3 ml of 0.9% normal saline sterilized before and after each intravenous drug or every 12 h. However, in the control group, the intravenous drugs were given as routine and saline lock was not used. The evaluation of intravenous catheter regarding the incidence of phlebitis and its degrees using Jackson's Visual Infusion Phlebitis Scale was performed 6 times within 72 h (every 12 h). Results were evaluated by SPSS software using descriptive statistics, Chi-square test, t-test, and Mann-Whitney test. Results showed that there was a statistically significant difference between the two groups regarding the degree of phlebitis (P = 0.003). The percentage of phlebitis incidence in the control group was 88.6% and in the intervention group was 43.2%. There was a statistically significant difference between the two groups (P < 0.001). The risk of incidence of phlebitis in the group without saline lock (control), compared to the intervention group, was 10.3 times greater (CI = 95%). The incidence of phlebitis in both groups increased with increase in the duration of catheter placement. The results of this study showed that the use of saline lock

  20. The effect of saline lock on phlebitis rates of patients in cardiac care units

    PubMed Central

    Eghbali-Babadi, Maryam; Ghadiriyan, Raziyeh; Hosseini, Sayed Mohsen

    2015-01-01

    Background: Despite advances in the field of intravenous therapy, phlebitis is still a common complication of peripheral venous catheter and finding an appropriate solution to prevent and reduce the incidence of this complication remains challenging. One of the methods used in reducing the incidence of phlebitis is the use of saline lock, which is forgotten in most hospitals. Therefore, this study aimed to evaluate its impact on the incidence and severity of phlebitis. Materials and Methods: In a single-blind (the researcher) clinical trial, 88 patients with peripheral venous catheter admitted in cardiac care units in selected hospitals of Isfahan University of Medical Sciences, Iran, were selected through convenient sampling method. They were randomly divided into two groups of intervention and control groups using random number table. The intervention group received 3 ml of 0.9% normal saline sterilized before and after each intravenous drug or every 12 h. However, in the control group, the intravenous drugs were given as routine and saline lock was not used. The evaluation of intravenous catheter regarding the incidence of phlebitis and its degrees using Jackson's Visual Infusion Phlebitis Scale was performed 6 times within 72 h (every 12 h). Results were evaluated by SPSS software using descriptive statistics, Chi-square test, t-test, and Mann–Whitney test. Results: Results showed that there was a statistically significant difference between the two groups regarding the degree of phlebitis (P = 0.003). The percentage of phlebitis incidence in the control group was 88.6% and in the intervention group was 43.2%. There was a statistically significant difference between the two groups (P < 0.001). The risk of incidence of phlebitis in the group without saline lock (control), compared to the intervention group, was 10.3 times greater (CI = 95%). The incidence of phlebitis in both groups increased with increase in the duration of catheter placement. Conclusions

  1. Contributions of groundwater conditions to soil and water salinization

    NASA Astrophysics Data System (ADS)

    Salama, Ramsis B.; Otto, Claus J.; Fitzpatrick, Robert W.

    Salinization is the process whereby the concentration of dissolved salts in water and soil is increased due to natural or human-induced processes. Water is lost through one or any combination of four main mechanisms: evaporation, evapotranspiration, hydrolysis, and leakage between aquifers. Salinity increases from catchment divides to the valley floors and in the direction of groundwater flow. Salinization is explained by two main chemical models developed by the authors: weathering and deposition. These models are in agreement with the weathering and depositional geological processes that have formed soils and overburden in the catchments. Five soil-change processes in arid and semi-arid climates are associated with waterlogging and water. In all represented cases, groundwater is the main geological agent for transmitting, accumulating, and discharging salt. At a small catchment scale in South and Western Australia, water is lost through evapotranspiration and hydrolysis. Saline groundwater flows along the beds of the streams and is accumulated in paleochannels, which act as a salt repository, and finally discharges in lakes, where most of the saline groundwater is concentrated. In the hummocky terrains of the Northern Great Plains Region, Canada and USA, the localized recharge and discharge scenarios cause salinization to occur mainly in depressions, in conjunction with the formation of saline soils and seepages. On a regional scale within closed basins, this process can create playas or saline lakes. In the continental aquifers of the rift basins of Sudan, salinity increases along the groundwater flow path and forms a saline zone at the distal end. The saline zone in each rift forms a closed ridge, which coincides with the closed trough of the groundwater-level map. The saline body or bodies were formed by evaporation coupled with alkaline-earth carbonate precipitation and dissolution of capillary salts. Résumé La salinisation est le processus par lequel la

  2. Polymer tensiometers in a saline environment.

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; Gooren, H. P. A.; Bakker, G.; Russell, W.; Hoogendam, C. W.; Huiskes, C.; Shouse, P.; de Rooij, G. H.

    2010-05-01

    It is estimated that 20% of all cultivated land and nearly half of the irrigated land is salt-affected, which pose major economic and environmental problems. Salinity may be the result of two processes; dryland and irrigation salinity. Dryland salinity is caused by a rise in the groundwater table, which occurs as a result of the replacement of deep-rooted, perennial native vegetation by shallow-rooted annual species meant for production. Irrigation salinity may occur as a result of poor water quality, poor drainage, or inefficient use of water. Consequently, new strategies to enhance crop yield stability on saline soils represent a major research priority (Botella et al. 2005). At the same time, native vegetation is capable of thriving under saline and/or dry conditions. The plant physiology of such vegetation has been investigated thoroughly, but the relation with in situ soil properties (soil moisture and salinity) may be more difficult to unravel as soil moisture sensors are less sensitive in dry soil, and the signal of most soil moisture content sensors is strongly attenuated by soil salinity. Recently, polymer tensiometer were developed that are able to measure matric potentials (closely related to a soil's moisture status) in dry soils. Polymer tensiometers consist of a solid ceramic, a stainless steel cup and a pressure transducer. The ceramic consist of a support layer and a membrane with 2 nm pore-size to prevent polymer leakage. Between the ceramic membrane and the pressure transducer a tiny chamber is located, which contains the polymer solution. The polymer's osmotic potential strongly reduces the total water potential inside the polymer tensiometer, which causes build-up of osmotic pressure. Polymer tensiometers would thus be an ideal instrument to measure in dry soil, if the polymer inside the tensiometer is not affected by the salts in the soil solution. We will address some key issues regarding the use of POTs in saline environments by showing

  3. Rain Impact Model Assessment of Near-Surface Salinity Stratification Following Rainfall

    NASA Astrophysics Data System (ADS)

    Drushka, K.; Jones, L.; Jacob, M. M.; Asher, W.; Santos-Garcia, A.

    2016-12-01

    Rainfall over oceans produces a layer of fresher surface water, which can have a significant effect on the exchanges between the surface and the bulk mixed layer and also on satellite/in-situ comparisons. For satellite sea surface salinity (SSS) measurements, the standard is the Hybrid Coordinate Ocean Model (HYCOM), but there is a significant difference between the remote sensing sampling depth of 0.01 m and the typical range of 5-10 m of in-situ instruments. Under normal conditions the upper layer of the ocean is well mixed and there is uniform salinity; however, under rainy conditions, there is a dilution of the near-surface salinity that mixes downward by diffusion and by mechanical mixing (gravity waves/wind speed). This significantly modifies the salinity gradient in the upper 1-2 m of the ocean, but these transient salinity stratifications dissipate in a few hours, and the upper layer becomes well mixed at a slightly fresher salinity. Based upon research conducted within the NASA/CONAE Aquarius/SAC-D mission, a rain impact model (RIM) was developed to estimate the change in SSS due to rainfall near the time of the satellite observation, with the objective to identify the probability of salinity stratification. RIM uses HYCOM (which does not include the short-term rain effects) and a NOAA global rainfall product CMORPH to model changes in the near-surface salinity profile in 0.5 h increments. Based upon SPURS-2 experimental near-surface salinity measurements with rain, this paper introduces a term in the RIM model that accounts for the effect of wind speed in the mechanical mixing, which translates into a dynamic vertical diffusivity; whereby a Generalized Ocean Turbulence Model (GOTM) is used to investigate the response to rain events of the upper few meters of the ocean. The objective is to determine how rain and wind forcing control the thickness, stratification strength, and lifetime of fresh lenses and to quantify the impacts of rain-formed fresh lenses

  4. Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection

    DOE PAGES

    Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing; ...

    2017-05-31

    Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: themore » time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Thus, our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.« less

  5. Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing

    Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: themore » time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Thus, our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.« less

  6. Environmental and Groundwater Controls on Evaporation Rates of A Shallow Saline Lake in the Western Sandhills Nebraska, USA

    NASA Astrophysics Data System (ADS)

    Peake, C.; Riveros-Iregui, D.; Lenters, J. D.; Zlotnik, V. A.; Ong, J.

    2013-12-01

    The western Sand Hills of Nebraska exhibit many shallow saline lakes that actively mediate groundwater-lake-atmospheric exchanges. The region is home to the largest stabilized dune field in the western hemisphere. Most of the lakes in the western Sand Hills region are saline and support a wide range of ecosystems. However, they are also highly sensitive to variability in evaporative and groundwater fluxes, which makes them a good laboratory to examine the effects of climate on the water balance of interdunal lakes. Despite being semiarid, little is known about the importance of groundwater-surface water interactions on evaporative rates, or the effects of changes in meteorological and energy forcings on the diel, and seasonal dynamics of evaporative fluxes. Our study is the first to estimate evaporation rates from one of the hundreds of shallow saline lakes that occur in the western Sand Hills region. We applied the energy balance Bowen ratio method at Alkali Lake, a typical saline western Sand Hills lake, over a three-year period (2007-2009) to quantify summer evaporation rates. Daily evaporation rates averaged 5.5 mm/day from July through September and were largely controlled by solar radiation on a seasonal and diel scales. Furthermore, the range of annual variability of evaporation rates was low. Although less pronounced, groundwater level effects on evaporation rates were also observed, especially from August through October when solar radiation was lower. The lake exhibits significant fluctuation in lake levels and combined with a shallow lake bed, large changes in lake surface area are observed. Our findings also show that with the onset of summer conditions, lake surface area can change very rapidly (e.g. 24% of its surface area or ~16.6 hectares were lost in less than ~2 months). In every year summer evaporation exceeded annual rainfall by an average of 28.2% suggesting that groundwater is a significant component of the lake water balance, it is important

  7. Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China.

    PubMed

    Wang, Zhuoran; Zhao, Gengxing; Gao, Mingxiu; Chang, Chunyan

    2017-02-01

    The objectives of this study were to explore the spatial variability of soil salinity in coastal saline soil at macro, meso and micro scales in the Yellow River delta, China. Soil electrical conductivities (ECs) were measured at 0-15, 15-30, 30-45 and 45-60 cm soil depths at 49 sampling sites during November 9 to 11, 2013. Soil salinity was converted from soil ECs based on laboratory analyses. Our results indicated that at the macro scale, soil salinity was high with strong variability in each soil layer, and the content increased and the variability weakened with increasing soil depth. From east to west in the region, the farther away from the sea, the lower the soil salinity was. The degrees of soil salinization in three deeper soil layers are 1.14, 1.24 and 1.40 times higher than that in the surface soil. At the meso scale, the sequence of soil salinity in different topographies, soil texture and vegetation decreased, respectively, as follows: depression >flatland >hillock >batture; sandy loam >light loam >medium loam >heavy loam >clay; bare land >suaeda salsa >reed >cogongrass >cotton >paddy >winter wheat. At the micro scale, soil salinity changed with elevation in natural micro-topography and with anthropogenic activities in cultivated land. As the study area narrowed down to different scales, the spatial variability of soil salinity weakened gradually in cultivated land and salt wasteland except the bare land.

  8. Overview of the Nordic Seas CARINA data and salinity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Are; Key, Robert; Jeansson, Emil

    2009-01-01

    Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculatedmore » and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO).With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004) and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas include the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution provides an overview of the CARINA data from the Nordic Seas and summaries the findings of the QC of the salinity data. One cruise had salinity data that were of questionable quality, and these have been removed from the data product. An evaluation of the consistency of the quality controlled salinity data suggests that they are consistent to at least 0.005.« less

  9. 29 CFR 1910.8 - OMB control numbers under the Paperwork Reduction Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false OMB control numbers under the Paperwork Reduction Act. 1910.8 Section 1910.8 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS General § 1910.8 OMB control numbers...

  10. 29 CFR 1910.8 - OMB control numbers under the Paperwork Reduction Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false OMB control numbers under the Paperwork Reduction Act. 1910.8 Section 1910.8 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS General § 1910.8 OMB control numbers...

  11. In Situ Global Sea Surface Salinity and Variability from the NCEI Global Thermosalinograph Database

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Boyer, T.; Zhang, H. M.

    2017-12-01

    Sea surface salinity (SSS) plays an important role in the global ocean circulations. The variations of sea surface salinity are key indicators of changes in air-sea water fluxes. Using nearly 30 years of in situ measurements of sea surface salinity from thermosalinographs, we will evaluate the variations of the sea surface salinity in the global ocean. The sea surface salinity data used are from our newly-developed NCEI Global Thermosalinograph Database - NCEI-TSG. This database provides a comprehensive set of quality-controlled in-situ sea-surface salinity and temperature measurements collected from over 340 vessels during the period 1989 to the present. The NCEI-TSG is the world's most complete TSG dataset, containing all data from the different TSG data assembly centers, e.g. COAPS (SAMOS), IODE (GOSUD) and AOML, with more historical data from NCEI's archive to be added. Using this unique dataset, we will investigate the spatial variations of the global SSS and its variability. Annual and interannual variability will also be studied at selected regions.

  12. Molecular mechanisms underlying the protective effects of hydrogen-saturated saline on noise-induced hearing loss.

    PubMed

    Chen, Liwei; Han, Mingkun; Lu, Yan; Chen, Daishi; Sun, Xuejun; Yang, Shiming; Sun, Wei; Yu, Ning; Zhai, Suoqiang

    2017-10-01

    This study aimed to explore the molecular mechanism of the protective effects of hydrogen-saturated saline on NIHL. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections 3 d before and 1 h before noise exposure. ABR were tested to examine cochlear physiology changes. The changes of 8-hydroxy-desoxyguanosine (8-HOdG), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and high mobility group box-1 protein (HMGB1) in the cochlea were also examined. The results showed that pre-treatment with hydrogen-saturated saline could significantly attenuate noise-induced hearing loss. The concentration of 8-HOdG was also significantly decreased in the hydrogen-saturated saline group compared with the normal saline group. After noise exposure, the concentrations of IL-1, IL-6, TNF-α, and ICAM-1 in the cochlea of guinea pigs in the hydrogen-saturated saline group were dramatically reduced compared to those in the normal saline group. The concentrations of HMGB-1 and IL-10 in the hydrogen-saturated saline group were significantly higher than in those in the normal saline group immediately and at 7 d after noise exposure. This study revealed for the first time the protective effects of hydrogen-saturated saline on noise-induced hearing loss (NIHL) are related to both the anti-oxidative activity and anti-inflammatory activity.

  13. Electrocapillary Phenomena at Edible Oil/Saline Interfaces.

    PubMed

    Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao

    2017-03-01

    Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil < OA-oil < SO-oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.

  14. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton

    PubMed Central

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A. Egrinya

    2012-01-01

    A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100 mM) or non-uniform NaCl concentrations (0/200 and 50/150 mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na+ concentrations in leaves. The [Na+] in the ‘0’ side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the ‘0’ side phloem was girdled, suggesting that the increased [Na+] in the ‘0’ side roots was possibly due to transportation of foliar Na+ to roots through phloem. Plants under non-uniform salinity extruded more Na+ from the root than those under uniform salinity. Root Na+ efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na+ efflux and H+ influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na+ extrusion was probably due to active Na+/H+ antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na+ concentration, transport of excessive foliar Na+ to the low salinity side, and enhanced Na+ efflux from the low salinity root. PMID:22200663

  15. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress

    PubMed Central

    Trittermann, Christine; Berger, Bettina; Roy, Stuart J.; Seki, Motoaki; Shinozaki, Kazuo; Tester, Mark

    2015-01-01

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early “osmotic” phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions. PMID:26244554

  16. Salinity Effects on Photosynthesis, Carbon Allocation, and Nitrogen Assimilation in the Red Alga, Gelidium coulteri1

    PubMed Central

    Macler, Bruce A.

    1988-01-01

    The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O2 evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and

  17. Quality control for federal clean water act and safe drinking water act regulatory compliance.

    PubMed

    Askew, Ed

    2013-01-01

    QC sample results are required in order to have confidence in the results from analytical tests. Some of the AOAC water methods include specific QC procedures, frequencies, and acceptance criteria. These are considered to be the minimum controls needed to perform the method successfully. Some regulatory programs, such as those in 40 CFR Part 136.7, require additional QC or have alternative acceptance limits. Essential QC measures include method calibration, reagent standardization, assessment of each analyst's capabilities, analysis of blind check samples, determination of the method's sensitivity (method detection level or quantification limit), and daily evaluation of bias, precision, and the presence of laboratory contamination or other analytical interference. The details of these procedures, their performance frequency, and expected ranges of results are set out in this manuscript. The specific regulatory requirements of 40 CFR Part 136.7 for the Clean Water Act, the laboratory certification requirements of 40 CFR Part 141 for the Safe Drinking Water Act, and the ISO 17025 accreditation requirements under The NELAC Institute are listed.

  18. Last Glacial Maximum Salinity Reconstruction

    NASA Astrophysics Data System (ADS)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  19. Atlantic Ocean CARINA data: overview and salinity adjustments

    NASA Astrophysics Data System (ADS)

    Tanhua, T.; Steinfeldt, R.; Key, R. M.; Brown, P.; Gruber, N.; Wanninkhof, R.; Perez, F.; Körtzinger, A.; Velo, A.; Schuster, U.; van Heuven, S.; Bullister, J. L.; Stendardo, I.; Hoppema, M.; Olsen, A.; Kozyr, A.; Pierrot, D.; Schirnick, C.; Wallace, D. W. R.

    2009-08-01

    Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. Arctic, Atlantic and Southern Ocean. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report details of the secondary QC for salinity for this data set. Procedures of quality control - including crossover analysis between stations and inversion analysis of all crossover data - are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal accuracy of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s (Key et al., 2004), and is now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.

  20. Unfinished Business: The Immigration Reform and Control Act of 1986.

    ERIC Educational Resources Information Center

    Munoz, Cecilia

    The intent of the Immigration Reform and Control Act (IRCA) of 1986 to eliminate the large exploitable subclass of undocumented immigrants living within the borders of the United States cannot be achieved through the methods chosen for its implementation. IRCA was designed to legalize the status of undocumented immigrants and to prevent more…

  1. 45 CFR 2508.19 - What Privacy Act exemptions or control of systems of records are exempt from disclosure?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false What Privacy Act exemptions or control of systems of records are exempt from disclosure? 2508.19 Section 2508.19 Public Welfare Regulations Relating to... ACT OF 1974 § 2508.19 What Privacy Act exemptions or control of systems of records are exempt from...

  2. The influence of parametric and external noise in act-and-wait control with delayed feedback.

    PubMed

    Wang, Jiaxing; Kuske, Rachel

    2017-11-01

    We apply several novel semi-analytic approaches for characterizing and calculating the effects of noise in a system with act-and-wait control. For concrete illustration, we apply these to a canonical balance model for an inverted pendulum to study the combined effect of delay and noise within the act-and-wait setting. While the act-and-wait control facilitates strong stabilization through deadbeat control, a comparison of different models with continuous vs. discrete updating of the control strategy in the active period illustrates how delays combined with the imprecise application of the control can seriously degrade the performance. We give several novel analyses of a generalized act-and-wait control strategy, allowing flexibility in the updating of the control strategy, in order to understand the sensitivities to delays and random fluctuations. In both the deterministic and stochastic settings, we give analytical and semi-analytical results that characterize and quantify the dynamics of the system. These results include the size and shape of stability regions, densities for the critical eigenvalues that capture the rate of reaching the desired stable equilibrium, and amplification factors for sustained fluctuations in the context of external noise. They also provide the dependence of these quantities on the length of the delay and the active period. In particular, we see that the combined influence of delay, parametric error, or external noise and on-off control can qualitatively change the dynamics, thus reducing the robustness of the control strategy. We also capture the dependence on how frequently the control is updated, allowing an interpolation between continuous and frequent updating. In addition to providing insights for these specific models, the methods we propose are generalizable to other settings with noise, delay, and on-off control, where analytical techniques are otherwise severely scarce.

  3. Attenuation of Cigarette Smoke-Induced Airway Mucus Production by Hydrogen-Rich Saline in Rats

    PubMed Central

    Zhang, Jingxi; Dong, Yuchao; Xu, Wujian; Li, Qiang

    2013-01-01

    Background Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD) and asthma. Cigarette smoking (CS) is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. Methods Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. Results Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. Conclusion Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD. PMID:24376700

  4. Corrosion of dental aluminium bronze in neutral saline and saline lactic acid.

    PubMed

    Tibballs, J E; Erimescu, Raluca

    2006-09-01

    To compare the corrosion behaviours of two aluminium bronze, dental casting alloys during a standard immersion test and for immersion in neutral saline. Cast specimens of aluminium bronzes with 1.4 wt% Fe (G) and 4 wt% Fe (N) were subject to progressively longer periods (up to in total 7 days) immersed in 0.1 M saline, 0.1 M lactic acid solutions and examined by scanning electron microscopy with EDX analysis. Immersion in 0.1M neutral saline was for 7 days. In the acidic solution, exposed interdendritic volumes in alloy N corroded completely away in 7 days with dissolution of Ni-enriched precipitate species as well as the copper-rich matrix. Alloy G begins to corrode more slowly but by a similar mechanism. The number density of an Fe-enriched species is insufficient to maintain a continuous galvanic potential to the copper matrix, and dissolution becomes imperceptible. In neutral saline solution, galvanic action alone caused pit-etching, without the dissolution of either precipitate species. The upper limit for the total dissolution of metallic ions in the standard immersion test can be set at 200 microg cm(-2). Aluminium bronze dental alloys can be expected to release both copper and nickel ions into an acidic oral environment.

  5. Evaluating physiological responses of plants to salinity stress

    PubMed Central

    Negrão, S.; Schmöckel, S. M.; Tester, M.

    2017-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments. PMID:27707746

  6. Effect of hypersaline cooling canals on aquifer salinization

    USGS Publications Warehouse

    Hughes, Joseph D.; Langevin, Christian D.; Brakefield-Goswami, Linzy

    2010-01-01

    The combined effect of salinity and temperature on density-driven convection was evaluated in this study for a large (28 km2) cooling canal system (CCS) at a thermoelectric power plant in south Florida, USA. A two-dimensional cross-section model was used to evaluate the effects of hydraulic heterogeneities, cooling canal salinity, heat transport, and cooling canal geometry on aquifer salinization and movement of the freshwater/saltwater interface. Four different hydraulic conductivity configurations, with values ranging over several orders of magnitude, were evaluated with the model. For all of the conditions evaluated, aquifer salinization was initiated by the formation of dense, hypersaline fingers that descended downward to the bottom of the 30-m thick aquifer. Saline fingers reached the aquifer bottom in times ranging from a few days to approximately 5 years for the lowest hydraulic conductivity case. Aquifer salinization continued after saline fingers reached the aquifer bottom and coalesced by lateral movement away from the site. Model results showed that aquifer salinization was most sensitive to aquifer heterogeneity, but was also sensitive to CCS salinity, temperature, and configuration.

  7. Microstrip Patch Sensor for Salinity Determination.

    PubMed

    Lee, Kibae; Hassan, Arshad; Lee, Chong Hyun; Bae, Jinho

    2017-12-18

    In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS), and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under -20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of -35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF) tunable sensors for salinity determination.

  8. Response of Stream Biodiversity to Increasing Salinization

    NASA Astrophysics Data System (ADS)

    Hawkins, C. P.; Vander Laan, J. J.; Olson, J. R.

    2014-12-01

    We used a large data set of macroinvertebrate samples collected from streams in both reference-quality (n = 68) and degraded (n = 401) watersheds in the state of Nevada, USA to assess relationships between stream biodiversity and salinity. We used specific electrical conductance (EC)(μS/cm) as a measure of salinity, and applied a previously developed EC model to estimate natural, baseflow salinity at each stream. We used the difference between observed and predicted salinity (EC-Diff) as a measure of salinization associated with watershed degradation. Observed levels of EC varied between 22 and 994 μS/cm across reference sites and 22 to 3,256 uS/cm across non-reference sites. EC-Diff was as high as 2,743 μS/cm. We used a measure of local biodiversity completeness (ratio of observed to expected number of taxa) to assess ecological response to salinity. This O/E index decreased nearly linearly up to about 25% biodiversity loss, which occurred at EC-Diff of about 300 μS/cm. Too few sites had EC-Diff greater than 300 μS/cm to draw reliable inferences regarding biodiversity response to greater levels of salinization. EC-Diff increased with % agricultural land use, mine density, and % urban land use in the watersheds implying that human activities have been largely responsible for increased salinization in Nevada streams and rivers. Comparison of biological responses to EC and other stressors indicates that increased salinization may be the primary stressor causing biodiversity loss in these streams and that more stringent salinity water quality standards may be needed to protect aquatic life.

  9. Elevated CO2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettuces.

    PubMed

    Sgherri, Cristina; Pérez-López, Usue; Micaelli, Francesco; Miranda-Apodaca, Jon; Mena-Petite, Amaia; Muñoz-Rueda, Alberto; Quartacci, Mike Frank

    2017-06-01

    Both salt stress and high CO 2 level, besides influencing secondary metabolism, can affect oxidative status of plants mainly acting in an opposite way with salinity provoking oxidative stress and elevated CO 2 alleviating it. The aim of the present work was to study the changes in the composition of phenolic acids and flavonoids as well as in the antioxidant activity in two differently pigmented lettuce cvs (green or red leaf) when submitted to salinity (200 mM NaCl) or elevated CO 2 (700 ppm) or to their combination in order to evaluate how a future global change can affect lettuce quality. Following treatments, the red cv. always maintained higher levels of antioxidant secondary metabolites as well as antioxidant activity, proving to be more responsive to altered environmental conditions than the green one. Overall, these results suggest that the application of moderate salinity or elevated CO 2 , alone or in combination, can induce the production of some phenolics that increase the health benefits of lettuce. In particular, moderate salinity was able to induce the synthesis of the flavonoids quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide and quercitrin. Phenolics-enrichment as well as a higher antioxidant capacity were also observed under high CO 2 with the red lettuce accumulating cyanidin, free chlorogenic acid, conjugated caffeic and ferulic acid as well as quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide, luteolin-7-O-glucoside, rutin, quercitrin and kaempferol. When salinity was present in combination with elevated CO 2 , reduction in yield was prevented and a higher presence of phenolic compounds, in particular luteolin, was observed compared to salinity alone. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Atlantic Ocean CARINA data: overview and salinity adjustments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanhua, T.; Steinfeldt, R.; Key, Robert

    2010-01-01

    Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon dioxide IN the Atlantic Ocean). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the threemore » data products: merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. the Arctic Mediterranean Seas, the Atlantic and the Southern Ocean. These products have been corrected to be internally consistent. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30 S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report the details of the secondary QC (Quality Control) for salinity for this data set. Procedures of quality control including crossover analysis between stations and inversion analysis of all crossover data are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal consistency of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA data products are consistent both internally was well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, oceanic carbon

  11. Atlantic Ocean CARINA data: overview and salinity adjustments

    NASA Astrophysics Data System (ADS)

    Tanhua, T.; Steinfeldt, R.; Key, R. M.; Brown, P.; Gruber, N.; Wanninkhof, R.; Perez, F.; Körtzinger, A.; Velo, A.; Schuster, U.; van Heuven, S.; Bullister, J. L.; Stendardo, I.; Hoppema, M.; Olsen, A.; Kozyr, A.; Pierrot, D.; Schirnick, C.; Wallace, D. W. R.

    2010-02-01

    Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon dioxide IN the Atlantic Ocean). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the three data products: merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. the Arctic Mediterranean Seas, the Atlantic and the Southern Ocean. These products have been corrected to be internally consistent. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report the details of the secondary QC (Quality Control) for salinity for this data set. Procedures of quality control - including crossover analysis between stations and inversion analysis of all crossover data - are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal consistency of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA data products are consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, oceanic carbon

  12. Root and shoot responses of Taxodium distichum seedlings subjected to saline flooding

    USGS Publications Warehouse

    Krauss, K.W.; Chambers, J.L.; Allen, J.A.; Luse, B.P.; DeBosier, A.S.

    1999-01-01

    Variation among progeny of five half-sib family collections of baldcypress (Taxodium distichum) from three freshwater and two brackish-water seed sources subjected to saline flooding was evaluated Mini-rhizotrons (slant tubes) were used to monitor root elongation for a period of 99 days. Salinity level produced significant effects across all baldcypress half-sib families, with root elongation averaging 1594.0, 956.8, and 382.1 mm, respectively, for the 0, 4, and 6 g l-1 treatments. Combined mean root elongation for families from brackish-water seed sources was greater (1236.7 mm) than for families from freshwater seed sources (794.6 mm). Considerable variation occurred at the highest salinity treatment, however, with one freshwater family maintaining more than 28% more root growth than the average of the two brackish-water collections. Hence, results indicate that short-term evaluation of root elongation at these salinity concentrations may not be a reliable method for salt tolerance screening of baldcypress. Species-level effects for height and diameter, which were measured at day 62, were significant for both parameters. Height increment in the control (7.4 cm), for example, was approximately five times greater than height increment in the 6 g l-1 salinity treatment (1.5 cm). Family-level variation was significant only for diameter, which had an incremental range of 0.2 to 1.5 mm across all salinity levels.

  13. Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants

    PubMed Central

    Garg, Bharti; Gill, Sarvajeet S.; Biswas, Dipul K.; Sahoo, Ranjan K.; Kunchge, Nandkumar S.; Tuteja, Renu; Tuteja, Narendra

    2017-01-01

    To cope with the problem of salinity- and weed-induced crop losses, a multi-stress tolerant trait is need of the hour but a combinatorial view of such traits is not yet explored. The overexpression of PDH45 (pea DNA helicase 45) and EPSPS (5-enoylpruvyl shikimate-3-phosphate synthase) genes have been reported to impart salinity and herbicide tolerance. Further, the understanding of mechanism and pathways utilized by PDH45 and EPSPS for salinity and herbicide tolerance will help to improve the crops of economical importance. In the present study, we have performed a comparative analysis of salinity and herbicide tolerance to check the biochemical parameters and antioxidant status of tobacco transgenic plants. Collectively, the results showed that PDH45 overexpressing transgenic lines display efficient tolerance to salinity stress, while PDH45+EPSPS transgenics showed tolerance to both the salinity and herbicide as compared to the control [wild type (WT) and vector control (VC)] plants. The activities of the components of enzymatic antioxidant machinery were observed to be higher in the transgenic plants indicating the presence of an efficient antioxidant defense system which helps to cope with the stress-induced oxidative-damages. Photosynthetic parameters also showed significant increase in PDH45 and PDH45+EPSPS overexpressing transgenic plants in comparison to WT, VC and EPSPS transgenic plants under salinity stress. Furthermore, PDH45 and PDH45+EPSPS synergistically modulate the jasmonic acid and salicylic acid mediated signaling pathways for combating salinity stress. The findings of our study suggest that pyramiding of the PDH45 gene with EPSPS gene renders host plants tolerant to salinity and herbicide by enhancing the antioxidant machinery thus photosynthesis. PMID:28392794

  14. 76 FR 1460 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-DVD Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Production Act of 1993--DVD Control Association Notice is hereby given that, on December 9, 2010, pursuant to.... (``the Act''), DVD Copy Control Association (``DVD CCA'') has filed written notifications simultaneously... plaintiffs to actual damages under specified circumstances. Specifically, City Brand International Limited...

  15. The money laundering control act and proposed amendments: Its impact on the casino industry.

    PubMed

    Mills, J

    1991-12-01

    In their efforts to track unreported income, Congress passed the Money Laundering Control Act in 1985. Because they are often involved in large cash transactions, casinos were required to report on cash transactions in amounts of $10,000 or more in much the same manner as banks and other financial institutions. However, because of the unique nature of cash and chip transactions within modern casinos, the Act, or state variants of it, have created significant compliance costs for casinos. This analysis examines the implications of the Act for the casino gaming industry, and evaluates some of the recent suggested Amendments to the Act.

  16. Transcriptomic response to low salinity stress in gills of the Pacific white shrimp, Litopenaeus vannamei.

    PubMed

    Hu, Dongxu; Pan, Luqing; Zhao, Qun; Ren, Qin

    2015-12-01

    The Pacific white shrimp, Litopenaeus vannamei (L. vannamei), is one of the most farmed species. Salinity is an important environmental factor that affects its growth and distribution. However, the molecular mechanism of the shrimp in response to salinity stress remains largely unclear. High-throughput sequencing is a helpful tool to analyze the molecular response to salinity challenge in shrimp. In the present study, the transcriptomic responses of the gills in L. vannamei under low salinity stress were detected by Illumina's digital gene expression system. A total of 10,725,789 and 10,827,411 reads were generated from the non-changed and low salinity changed groups, respectively. 64,590 Unigenes with an average length of 764 bp were generated. Compared with the control, 585 genes were differentially expressed under low salinity. GO functional analysis and KEGG pathway analysis indicated some vital genes in response to the challenge. Ten genes related to osmoregulation and ambient salinity adaption were selected to validate the DGE results by RT-qPCR. This work provides valuable information to study the mechanism of salinity adaption in L. vannamei. Genes and pathways from the results will be beneficial to reveal the molecular basis of osmoregulation. It also gives an insight into the response to the salinity challenge in L. vannamei. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Early growth stages salinity stress tolerance in CM72 x Gairdner doubled haploid barley population

    PubMed Central

    Angessa, Tefera Tolera; Zhang, Xiao-Qi; Zhou, Gaofeng; Broughton, Sue; Zhang, Wenying

    2017-01-01

    A doubled haploid (DH) population of barley (Hordeum vulgare L.) generated from salinity tolerant genotype CM72 and salinity sensitive variety Gairdner was studied for salinity stress tolerance at germination, seedling emergence and first leaf full expansion growth stages. Germination study was conducted with deionized water, 150 mM and 300 mM NaCl treatments. Seedling stage salinity tolerance was conducted with three treatments: control, 150 mM NaCl added at seedling emergence and first leaf full expansion growth stages. Results from this study revealed transgressive phenotypic segregations for germination percentage and biomass at seedling stage. Twelve QTL were identified on chromosomes 2H–6H each explaining 10–25% of the phenotypic variations. A QTL located at 176.5 cM on chromosome 3H was linked with fresh weight per plant and dry weight per plant in salinity stress induced at first leaf full expansion growth stage, and dry weight per plant in salinity stress induced at seedling emergence. A stable QTL for germination at both 150 and 300 mM salinity stress was mapped on chromosome 2H but distantly located from a QTL linked with seedling stage salinity stress tolerance. QTL, associated markers and genotypes identified in this study play important roles in developing salinity stress tolerant barley varieties. PMID:28640858

  18. Agreement of measured and calculated serum osmolality during the infusion of mannitol or hypertonic saline in patients after craniotomy: a prospective, double-blinded, randomised controlled trial.

    PubMed

    Li, Qian; Chen, Han; Hao, Jing-Jing; Yin, Ning-Ning; Xu, Ming; Zhou, Jian-Xin

    2015-10-07

    Mannitol and hypertonic saline are used to ameliorate brain edema and intracranial hypertension during and after craniotomy. We hypothesized that the agreement of measured and calculated serum osmolality during the infusion of hypertonic saline would be better than mannitol. The objective was to determine the accuracy of serum osmolality estimation by different formulas during the administration of hyperosmolar agent. A prospective, randomized, double-blinded, controlled trial was conducted in a 30-bed neurosurgical intensive care unit at a university hospital. Thirty-five adult patients requiring the use of hyperosmolar agents for prevention or treatment of brain edema after elective craniotomy were enrolled, and randomly assigned 1:1 to receive 125 mL of either 20 % mannitol (mannitol group) or 3.1 % sodium chloride solution (hypertonic saline group) in 15 min. Serum osmolality, serum sodium and potassium concentration, blood urea nitrogen and blood glucose concentration were measured during the study period. The primary outcome was the agreement of measured and estimated serum osmolality during the infusion of the two experimental agents. We used Bland and Altman's limits of agreement analysis to clarify the accuracy of estimated serum osmolality. Bias and upper and lower limits of agreement of bias were calculated. For each formula, the bias was statistically lower in hypertonic saline group than mannitol group (p < 0.001). Within group comparison showed that the lowest bias (6.0 [limits of agreement: -18.2 to 30.2] and 0.8 [-12.9 to 14.5] mOsml/kg in mannitol group and hypertonic saline group, respectively) was derived from the formula '2 × ([serum sodium] + [serum potassium]) + [blood urea nitrogen] + [blood glucose]'. Compared to mannitol, a better agreement between measured and estimated serum osmolality was found during the infusion of hypertonic saline. This result indicates that, if hypertonic saline is chosen to prevent or treat brain edema

  19. Effects of salinity on baldcypress seedlings: responses and their relation to salinity tolerance physiological

    Treesearch

    James A. Allen; Jim L. Chambers; S. Reza Pezeshki

    1997-01-01

    Taxodium distichum var.distichum) subjected to flooding with saline water were evaluated in this study. Ten of the families were from coastal sites in Louisiana and Alabama, USA that have elevated levels of soil-water salinity. The other five families were from inland, freshwater sites in Louisiana. Seedlings from all families...

  20. Microbial response to salinity stress in a tropical sandy soil amended with native shrub residues or inorganic fertilizer.

    PubMed

    Sall, Saïdou Nourou; Ndour, Ndèye Yacine Badiane; Diédhiou-Sall, Siré; Dick, Richard; Chotte, Jean-Luc

    2015-09-15

    Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Integrative application of active controls (IAAC) technology to an advanced subsonic transport project. Initial act configuration design study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The performance and economic benefits of a constrained application of Active Controls Technology (ACT) are identified, and the approach to airplane design is established for subsequent steps leading to the development of a less constrained final ACT configuration. The active controls configurations are measured against a conventional baseline configuration, a state-of-the-art transport, to determine whether the performance and economic changes resulting from ACT merit proceeding with the project. The technology established by the conventional baseline configuration was held constant except for the addition of ACT. The wing, with the same planform, was moved forward on the initial ACT configuration to move the loading range aft relative to the wing mean aerodynamic chord. Wing trailing-edge surfaces and surface controls also were reconfigured for load alleviation and structural stabilization.

  2. Bioerosion structures in high-salinity marine environments: Evidence from the Al-Khafji coastline, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Sorogy, Abdelbaset S.; Alharbi, Talal; Richiano, Sebastián

    2018-05-01

    Salinity is one the major stress factors that controls the biotic activities in marine environments. In general, the mixture with fresh-water has been mention as a great stress factor, but the opposite, i.e. high-salinity conditions, is less developed in the ichnological literature. Along the Al-Khafji coastline, Saudi Arabia, hard substrates (constituted by gastropods, bivalves and coral skeletons) contain diverse and abundant bioerosion traces and associated encrusters. Field and laboratory observations allowed the recognition of eight ichnospecies belong to the ichnogenera Gastrochaenolites, Entobia, Oichnus, Caulostrepsis and Trypanites, which can be attributed to various activities produced by bivalves, sponges, gastropods and annelids. The borings demonstrate two notable ichnological boring assemblages, namely, Entobia-dominated and Gastrochaenolites-dominated assemblages. The highly diversified bioerosion and encrustation in the studied hard organic substrate indicate a long exposition period of organic substrate with slow to moderate rate of deposition in a restricted (high-salinity) marine environment. This bioerosion study shows that high-salinity, at least for the study area, is not an important controlling factor for ichnology.

  3. Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)?

    NASA Astrophysics Data System (ADS)

    El-Shabrawy, Gamal M.; Anufriieva, Elena V.; Germoush, Mousa O.; Goher, Mohamed E.; Shadrin, Nickolai V.

    2015-11-01

    Zooplankton and 14 abiotic variables were studied during August 2011 at 10 stations in Lake Qarun, Egypt. Stations with the lowest salinity and highest nutrient concentrations and turbidity were close to the discharge of waters from the El-Bats and El-Wadi drainage systems. A total of 15 holozooplankton species were identified. The salinity in Lake Qarun increased and fluctuated since 1901: 12 g/L in 1901; 8.5 g/L in 1905; 12.0 g/L in 1922; 30.0 g/L in 1985; 38.7 g/L in 1994; 35.3 g/L in 2006, and 33.4 g/L in 2011. The mean concentration of nutrients (nitrate, nitrite and orthophosphate) gradually increased from 35, 0.16 and 0.38 µg/L, respectively, in 1953-1955 to 113, 16.4, and 30.26 µg/L in 2011. From 1999-2003 some decrease of species diversity occurred. Average total zooplankton density was 30 000 ind./m3 in 1974-1977; 356 125 ind./m3 in 1989; 534 000 ind./m3 in 1994-1995; from 965 000 to 1 452 000 ind./m3 in 2006, and 595 000 ind./m3 in 2011. A range of long-term summer salinity variability during the last decades was very similar to a range of salinity spatial variability in summer 2011. There is no significant correlation between zooplankton abundance and salinity in spatial and long-term changes. We conclude that salinity fluctuations since at least 1955 did not directly drive the changes of composition and abundance of zooplankton in the lake. A marine community had formed in the lake, and it continues to change. One of the main drivers of this change is a regular introduction and a pressure of alien species on the existent community. Eutrophication also plays an important role. The introduction of Mnemiopsis leidyi, first reported in 2014, may lead to a start of a new stage of the biotic changes in Lake Qarun, when eutrophication and the population dynamics of this ctenophore will be main drivers of the ecosystem change.

  4. Episodic Salinization of Urban Rivers: Potential Impacts on Carbon, Cation, and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Haq, S.; Kaushal, S.

    2017-12-01

    -nutrient interactions, and on underlying mechanisms and controls. The magnitude/frequency of salt pulses may increase in the future due to the interactive effect of climate change and urbanization. An improved understanding of the salinization-nutrients interactions is necessary to better manage aquatic resources.

  5. Dornase alpha compared to hypertonic saline for lung atelectasis in critically ill patients.

    PubMed

    Youness, Houssein A; Mathews, Kathryn; Elya, Marwan K; Kinasewitz, Gary T; Keddissi, Jean I

    2012-12-01

    Despite the lack of randomized trials, nebulized Dornase alpha and hypertonic saline are used empirically to treat atelectasis in mechanically ventilated patients. Our objective was to determine the clinical and radiological efficacy of these medications as an adjunct to standard therapy in critically ill patients. Mechanically ventilated patients with new onset (<48 h) lobar or multilobar atelectasis were randomized into three groups: nebulized Dornase alpha, hypertonic (7%) saline or normal saline every 12 h. All patients received standard therapy, including chest percussion therapy, kinetic therapy, and bronchodilators. The primary endpoint was the change in the daily chest X-ray atelectasis score. A total of 33 patients met the inclusion criteria and were randomized equally into the three groups. Patients in the Dornase alpha group showed a reduction of 2.18±1.33 points in the CXR score from baseline to day 7, whereas patients in the normal saline group had a reduction of 1.00±1.79 points, and patients in the hypertonic saline group showed a score reduction of 1.09±1.51 points. Pairwise comparison of the mean change of the CXR score showed no statistical difference between hypertonic saline, normal saline, and dornase alpha. Airway pressures as well as oxygenation, expressed as PaO(2)/F(I)O(2) and time to extubation also were similar among groups. During the study period the rate of extubation was 54% (6/11), 45% (5/11), and 63% (7/11) in the normal saline, hypertonic saline, and Dornase alpha groups, respectively (p=0.09). No treatment related complications were observed. There was no significant improvement in the chest X-ray atelectasis score in mechanically ventilated patients with new onset atelectasis who were nebulized with Dornase alpha twice a day. Hypertonic saline was no more effective than normal saline in this population. Larger randomized control trials are needed to confirm our results.

  6. Mechanisms for Seasonal and Interannual Sea Surface Salinity Variability in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Stammer, D.; Serra, N.; Bryan, F.

    2016-12-01

    Space-borne salinity data in the Indian Ocean are analyzed over the period 2000-2015 based on data from the European Space Agency's (ESA) "Soil Moisture and Ocean Salinity" (SMOS) and the National Aeronautical Space Agency's (NASA) "Aquarius/SAC-D" missions. The seasonal variability is the dominant mode of sea surface salinity (SSS) variability in the Indian Ocean, accounting for more than 50% of salinity variance. Through a combined analysis of the satellite and ARGO data, dominant forcing terms for seasonal salinity changes are identified. It is found, that E-P controls seasonal salinity tendency in the western Indian Ocean, where the ITCZ has a strong seasonal cycle. In contrast, Ekman advection is the dominant term in the northern and eastern equatorial Indian Ocean. The influence of vertical processes on the salinity tendency is enhanced in coastal upwelling regions and south of the equator due to mid-ocean upwelling. Jointly those processes can explain most of the observed seasonal cycle with a correlation of 0.85 and an RMS difference of 0.07/month. However, the detailed composition of driving terms depends on underlying data products. In general, our study confirms previous results from Lisan Yu (2011); however, in the eastern Indian Ocean contrasting results indicate the leading role of meridional Ekman advection to the seasonal salinity tendency instead of surface external forces due to precipitation. The inferred dominant salinity budget terms are confirmed by results obtained from a high resolution NCAR Core model run driven by NCEP forcing fields. From an EOF analysis of the salinity fields after substracting the annual and semiannual cycle we found that the first EOF mode explains more than 20% of salinity variance. The first principal component of SSS EOF is correlated with the Indian Ocean Dipole Mode Index. Nevertheless the EOF pattern shows a meridional tripole structure, while the IOD describes a zonal SST dipole (Saji et al, 1999).

  7. Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish.

    PubMed

    Nearing, J; Betka, M; Quinn, S; Hentschel, H; Elger, M; Baum, M; Bai, M; Chattopadyhay, N; Brown, E M; Hebert, S C; Harris, H W

    2002-07-09

    To determine whether calcium polyvalent cation-sensing receptors (CaRs) are salinity sensors in fish, we used a homology-based cloning strategy to isolate a 4.1-kb cDNA encoding a 1,027-aa dogfish shark (Squalus acanthias) kidney CaR. Expression studies in human embryonic kidney cells reveal that shark kidney senses combinations of Ca(2+), Mg(2+), and Na(+) ions at concentrations present in seawater and kidney tubules. Shark kidney is expressed in multiple shark osmoregulatory organs, including specific tubules of the kidney, rectal gland, stomach, intestine, olfactory lamellae, gill, and brain. Reverse transcriptase-PCR amplification using specific primers in two teleost fish, winter flounder (Pleuronectes americanus) and Atlantic salmon (Salmo salar), reveals a similar pattern of CaR tissue expression. Exposure of the lumen of winter flounder urinary bladder to the CaR agonists, Gd(3+) and neomycin, reversibly inhibit volume transport, which is important for euryhaline teleost survival in seawater. Within 24-72 hr after transfer of freshwater-adapted Atlantic salmon to seawater, there are increases in their plasma Ca(2+), Mg(2+), and Na(+) that likely serve as a signal for internal CaRs, i.e., brain, to sense alterations in salinity in the surrounding water. We conclude that CaRs act as salinity sensors in both teleost and elasmobranch fish. Their tissue expression patterns in fish provide insights into CaR functions in terrestrial animals including humans.

  8. The effect of salinity increase on the photosynthesis, growth and survival of the Mediterranean seagrass Cymodocea nodosa

    NASA Astrophysics Data System (ADS)

    Sandoval-Gil, José M.; Marín-Guirao, Lázaro; Ruiz, Juan M.

    2012-12-01

    There are major concerns in the Mediterranean Sea over the effects of hypersaline effluents from seawater desalination plants on seagrass communities. However, knowledge concerning the specific physiological capacities of seagrasses to tolerate or resist salinity increases is still limited. In this study, changes in the photosynthetic characteristics, pigment content, leaf light absorption, growth and survival of the seagrass Cymodocea nodosa were examined across a range of simulated hypersaline conditions. To this end, large plant fragments were maintained under salinities of 37 (control ambient salinity), 39, 41 and 43 (practical salinity scale) in a laboratory mesocosm system for 47 days. At the end of the experimental period, net photosynthesis exhibited a modest, but significant, decline (12-17%) in all tested hypersaline conditions (39-43). At intermediate salinity levels (39-41), the decline in photosynthetic rates was mainly accounted for by substantial increases in respiratory losses (approximately 98% of the control), the negative effects of which on leaf carbon balance were offset by an improved capacity and efficiency of leaves to absorb light, mainly through changes in accessory pigments, but also in optical properties related to leaf anatomy. Conversely, inhibition of gross photosynthesis (by 19.6% compared to the control mean) in the most severe hypersaline conditions (43) reduced net photosynthesis. In this treatment, the respiration rate was limited in order to facilitate a positive carbon balance (similar to that of the control plants) and shoot survival, although vitality would probably be reduced if such metabolic alterations persisted. These results are consistent with the ecology of Mediterranean C. nodosa populations, which are considered to have high morphological and physiological plasticity and a capacity to grow in a wide variety of coastal environments with varying salinity levels. The results from this study support the premise that C

  9. Estuarine turbidity, flushing, salinity, and circulation

    NASA Technical Reports Server (NTRS)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  10. Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the pacific oyster.

    PubMed

    Ko, Ginger W K; Dineshram, R; Campanati, Camilla; Chan, Vera B S; Havenhand, Jon; Thiyagarajan, Vengatesen

    2014-09-02

    Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.

  11. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    NASA Astrophysics Data System (ADS)

    Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.

    2016-02-01

    The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.

  12. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the Administrator...

  13. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the Administrator...

  14. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the Administrator...

  15. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the Administrator...

  16. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the Administrator...

  17. 75 FR 7627 - Notice of Lodging of Proposed Consent Decree Under the Federal Water Pollution Control Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    .... (``Defendants'') under the pre-treatment requirements of the Federal Water Pollution Control Act (Clean Water... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Federal Water Pollution Control Act Notice is hereby given that on February 16, 2010, a proposed Consent Decree was filed...

  18. Benefits and Costs of Pulp and Paper Effluent Controls Under the Clean Water Act

    NASA Astrophysics Data System (ADS)

    Luken, Ralph A.; Johnson, F. Reed; Kibler, Virginia

    1992-03-01

    This study quantifies local improvements in environmental quality from controlling effluents in the pulp and paper industry. Although it is confined to a single industry, this study is the first effort to assess the actual net benefits of the Clean Water Act pollution control program. An assessment of water quality benefits requires linking regulatory policy, technical effects, and behavioral responses. Regulatory policies mandate specific controls that influence the quantity and nature of effluent discharges. We identify a subset of stream segments suitable for analysis, describe water quality simulations and control cost calculations under alternative regulatory scenarios, assign feasible water uses to each segment based on water quality, and determine probable upper bounds for the willingness of beneficiaries to pay. Because the act imposes uniform regulations that do not account for differences in compliance costs, existing stream quality, contributions of other effluent sources, and recreation potential, the relation between water quality benefits and costs varies widely across sites. This variation suggests that significant positive net benefits have probably been achieved in some cases, but we conclude that the costs of the Clean Water Act as a whole exceed likely benefits by a significant margin.

  19. On the role of inter-basin surface salinity contrasts in global ocean circulation

    NASA Astrophysics Data System (ADS)

    Seidov, D.; Haupt, B. J.

    2002-08-01

    The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (TOC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. Ocean-wide inter-basin SSS contrasts serve as the major controlling element in global TOC. These contrasts are shown to be at least as important as high-latitudinal freshwater impacts. It is also shown that intra-basin longitudinal distribution of sea surface salinity, as well as intra- and inter-basin longitudinal distribution of sea surface temperature, is not crucial to conveyor functionality if only inter-basin contrasts in sea surface salinity are retained. This is especially important for paleoclimate and future climate simulations.

  20. Three Years of Aquarius Salinity Measurements: Algorithm, Validation and Applications

    NASA Astrophysics Data System (ADS)

    Meissner, T.; Wentz, F. J.; Le Vine, D. M.; Lagerloef, G. S. E.

    2014-12-01

    Aquarius is an L-band radiometer/scatterometer (i.e. active/passive) system designed to provide monthly salinity maps at 150 km spatial scale to an accuracy of 0.2 psu. The sensor was launched on June 10, 2011 as part of the Aquarius/SAC-D mission and has been collecting data since August 25, 2011. Version 3 of the data product was released in June 2014 and provides a major milestone towards reaching the mission requirement of 0.2 psu. This presentation reports the status of the Aquarius salinity retrieval algorithm highlighting the advances that have been made for and since the Version 3 release. The most important ones are: 1) An improved surface roughness correction that is based on Aquarius scatterometer observations; 2) A reduction in ascending/descending differences due to galactic background radiation reflected from the ocean surface; 3) A refinement of the quality control flags and masks that indicate degradation under certain environmental conditions. The Aquarius salinity algorithm also retrieves wind speed as part of the roughness correction with an accuracy comparable to the products from other satellites such as WindSat, SSMIS, ASCAT, and QuikSCAT. Validation of the salinity retrievals is accomplished using measurements from ARGO drifters measuring at 5 m depth and in the tropics also from moored buoys measuring at 1 m depth which are co-located with the nearest Aquarius footprint. In the most recent work an effort has also been made to identify areas with frequent rain to isolate potential issues with rain freshening in the upper ocean layer. Results in rain-free regions indicate that on monthly basis and 150 km grid, the V3 Aquarius salinity maps have an accuracy of about 0.13 psu in the tropics and 0.22 psu globally. Comparing Aquarius with ARGO and moored buoy salinity measurements during and after rain events permits a quantitative assessment of the effect of salinity stratification within the first 5 m of the upper ocean layer.

  1. Hypoaigic influences on groundwater flux to a seasonally saline river

    NASA Astrophysics Data System (ADS)

    Trefry, M. G.; Svensson, T. J. A.; Davis, G. B.

    2007-03-01

    SummaryHypoaigic zones are aquifer volumes close to and beneath the shores of saline surface water bodies, and are characterized by the presence of time-dependent natural convection and chemical stratification. When transient and cyclic processes are involved there is significant potential for complex flow and reaction in the near-shore aquifer, presenting a unique challenge to pollutant risk assessment methodologies. This work considers the nature of some hypoaigic processes generated by the seasonally saline Canning River of Western Australia near a site contaminated by petroleum hydrocarbons. A dissolved hydrocarbon plume migrates within the shallow superficial aquifer to the nearby bank of the Canning River. Beneath the river bank a zone of complex fluid mixing is established by seasonal and tidal influences. Understanding this complexity and the subsequent ramifications for local biogeochemical conditions is critical to inferring the potential for degradation of advecting contaminants. A range of modelling approaches throws light on the overall topographic controls of discharge to the river, on the saline convection processes operating under the river bank, on the potential for fluid mixing, and on the various important time scales in the system. Saline distributions simulated within the aquifer hypoaigic zone are in at least qualitative agreement with previous field measurements at the site and are strongly affected by seasonal influences. Groundwater seepage velocities at the shoreline are found to be positively correlated with river salinity. Calculations of fluid age distributions throughout the system show sensitivity to dispersivity values; however, maximum fluid ages under the river appear to be diffusion limited to a few decades. The saline convection cell in the aquifer defines a zone of strong dispersive dilution of aged (many decades) deep aquifer fluids with relatively young (several months) riverine fluids. Seasonal recharge and river salinity

  2. Saline Systems highlights for 2005

    PubMed Central

    2006-01-01

    On the 4th of July, 2005, the Saline Systems editorial group launched the new online open access journal, Saline Systems, with BioMed Central as the publisher. The scope of the journal includes both basic and applied research on halophilic organisms and saline environments, from gene systems to ecosystems. The stated goal of the journal is to meet publication needs for researchers working in coastal and inland saline environments and provide an interdisciplinary and readily accessible forum for scientists worldwide. The inaugural volume of the journal contains a significant number of high quality original research papers and reviews on a wide range of relevant topics. At the end of the launch period, from January 1, 2006 onwards, the journal will be introducing article-processing charges to cover the cost of publication. Charges will be partly or completely waived for authors from BioMed Central institutional subscribers and in cases of financial hardship. PMID:16417635

  3. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.

  4. 14 CFR 11.201 - Office of Management and Budget (OMB) control numbers assigned under the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Office of Management and Budget (OMB) control numbers assigned under the Paperwork Reduction Act. 11.201 Section 11.201 Aeronautics and Space... PROCEDURES Paperwork Reduction Act Control Numbers § 11.201 Office of Management and Budget (OMB) control...

  5. Regression models for estimating salinity and selenium concentrations at selected sites in the Upper Colorado River Basin, Colorado, 2009-2012

    USGS Publications Warehouse

    Linard, Joshua I.; Schaffrath, Keelin R.

    2014-01-01

    Elevated concentrations of salinity and selenium in the tributaries and main-stem reaches of the Colorado River are a water-quality concern and have been the focus of remediation efforts for many years. Land-management practices with the objective of limiting the amount of salt and selenium that reaches the stream have focused on improving the methods by which irrigation water is conveyed and distributed. Federal land managers implement improvements in accordance with the Colorado River Basin Salinity Control Act of 1974, which directs Federal land managers to enhance and protect the quality of water available in the Colorado River. In an effort to assist in evaluating and mitigating the detrimental effects of salinity and selenium, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, the Colorado River Water Resources District, and the Bureau of Land Management, analyzed salinity and selenium data collected at sites to develop regression models. The study area and sites are on the Colorado River or in one of three small basins in Western Colorado: the White River Basin, the Lower Gunnison River Basin, and the Dolores River Basin. By using data collected from water years 2009 through 2011, regression models able to estimate concentrations were developed for salinity at six sites and selenium at six sites. At a minimum, data from discrete measurement of salinity or selenium concentration, streamflow, and specific conductance at each of the sites were needed for model development. Comparison of the Adjusted R2 and standard error statistics of the two salinity models developed at each site indicated the models using specific conductance as the explanatory variable performed better than those using streamflow. The addition of multiple explanatory variables improved the ability to estimate selenium concentration at several sites compared with use of solely streamflow or specific conductance. The error associated with the log-transformed salinity

  6. Salt exclusion and mycorrhizal symbiosis increase tolerance to NaCl and CaCl2 salinity in ‘Siam Queen’ basil

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to evaluate the effects of salinity on growth and nutrient uptake in basil (Ocimum basilicum L.). Plants were fertilized with a complete nutrient solution and exposed to no, low, or moderate levels of salinity from NaCl or CaCl2. Plants in the control and moderate salinity tre...

  7. Intra-abdominal saline irrigation at cesarean section: a systematic review and meta-analysis.

    PubMed

    Eke, Ahizechukwu Chigoziem; Shukr, Ghadear Hussein; Chaalan, Tina Taissir; Nashif, Sereen Khaled; Eleje, George Uchenna

    2016-01-01

    The aim of this study was to examine the evidence guiding intraoperative saline irrigation at cesarean sections. We searched "cesarean sections", "pregnancy", "saline irrigation" and "randomized clinical trials" in ClinicalTrials.gov, the Cochrane Central Register of Controlled Trials, AJOL, MEDLINE, LILACS and CINAHL from inception of each database to April 2015. The primary outcomes were predefined as intraoperative nausea and emesis. The pooled results were reported as relative risk (RR) with 95% confidence interval (95% CI). Three randomized trials including 862 women were analyzed. Intraoperative saline irrigation was associated with a 68% increased risk of developing intraoperative nausea (RR = 1.68, 95% CI 1.36-2.06), 70% increased risk of developing intraoperative emesis (RR = 1.70, 95% CI 1.28-2.25), 92% increased risk of developing post-operative nausea and 84% increased risk of using anti-emetics post-operatively (RR = 1.84, 95% CI 0.21-2.78) when compared with controls. There were no significant differences between intraoperative saline irrigation and no treatment for post-operative emesis (RR = 1.65, 95% CI 0.74-3.67), estimated blood loss, time to return of gastrointestinal function, postpartum endometritis (RR = 0.95, 95% CI 0.64-1.40), urinary tract infection and wound infection. Intraoperative saline irrigation at cesarean delivery increases intraoperative and post-operative nausea, requiring increasing use of anti-emetics without significant reduction in infectious, intraoperative and postpartum complications. Routine abdominal irrigation at cesarean section is not supported by current data.

  8. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley.

    PubMed

    Hasanuzzaman, Md; Davies, Noel W; Shabala, Lana; Zhou, Meixue; Brodribb, Tim J; Shabala, Sergey

    2017-06-19

    While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), β-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well

  9. Carbon Dioxide-Based versus Saline Tissue Expansion for Breast Reconstruction: Results of the XPAND Prospective, Randomized Clinical Trial.

    PubMed

    Ascherman, Jeffrey A; Zeidler, Kamakshi; Morrison, Kerry A; Appel, James Z; Berkowitz, R L; Castle, John; Colwell, Amy; Chun, Yoon; Johnson, Debra; Mohebali, Khashayar

    2016-12-01

    AeroForm is a new type of remote-controlled, needle-free, carbon dioxide-based expander involving a potentially faster method of tissue expansion. Results are presented here from the AirXpanders Patient Activated Controlled Tissue Expander pivotal trial comparing AeroForm to saline tissue expanders. Women undergoing two-stage breast reconstruction were randomized at 17 U.S. sites in this U.S. Food and Drug Administration-approved investigational device exemption trial. Expansion in the investigational arm was performed by the patient in 10-cc increments up to 30 cc/day of carbon dioxide and in the control arm by the physician with periodic bolus injections of saline. Safety endpoints, expansion and reconstruction times, pain, and satisfaction were assessed. One hundred fifty women were treated: 98 with carbon dioxide expanders (n = 168) and 52 with saline expanders (n = 88). The treatment success rate (all breasts exchanged successfully excluding non-device-related failures) was 96.1 percent for carbon dioxide and 98.8 percent for saline. Median time to full expansion and completion of the second-stage operation was 21.0 and 108.5 days (carbon dioxide) versus 46.0 and 136.5 days (saline), respectively, with a similar rate of overall complications. Ease of use for the carbon dioxide expander was rated high by patients (98 percent) and physicians (90 percent). The AirXpanders Patient Activated Controlled Tissue Expander trial results demonstrate that a carbon dioxide-based expander is an effective method of tissue expansion with a similar overall adverse event rate compared to saline expanders, and provides a more convenient and expedient expansion. Therapeutic, I.

  10. Salinity: Electrical conductivity and total dissolved solids

    USDA-ARS?s Scientific Manuscript database

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  11. Continuous salinity and temperature data from san francisco estuary, 19822002: Trends and the salinity-freshwater inflow relationship

    USGS Publications Warehouse

    Shellenbarger, G.G.; Schoellhamer, D.H.

    2011-01-01

    The U.S. Geological Survey and other federal and state agencies have been collecting continuous temperature and salinity data, two critical estuarine habitat variables, throughout San Francisco estuary for over two decades. Although this dynamic, highly variable system has been well studied, many questions remain relating to the effects of freshwater inflow and other physical and biological linkages. This study examines up to 20 years of publically available, continuous temperature and salinity data from 10 different San Francisco Bay stations to identify trends in temperature and salinity and quantify the salinityfreshwater inflow relationship. Several trends in the salinity and temperature records were identified, although the high degree of daily and interannual variability confounds the analysis. In addition, freshwater inflow to the estuary has a range of effects on salinity from -0.0020 to -0.0096 (m3 s-1) -1 discharge, depending on location in the estuary and the timescale of analyzed data. Finally, we documented that changes in freshwater inflow to the estuary that are within the range of typical management actions can affect bay-wide salinities by 0.61.4. This study reinforces the idea that multidecadal records are needed to identify trends from decadal changes in water management and climate and, therefore, are extremely valuable. ?? 2011 Coastal Education & Research Foundation.

  12. Algal derivatives may protect crops from residual soil salinity: a case study on a tomato-wheat rotation

    NASA Astrophysics Data System (ADS)

    Di Stasio, Emilio; Raimondi, Giampaolo; Van Oosten, Michael; Maggio, Albino

    2017-04-01

    In coastal areas, summer crops are frequently irrigated with saline water. As a consequence, salts may accumulate in the root zone with detrimental effects on the following winter crops if the rainfall is insufficient to leach them. Two field experiments were performed in 2015-2016 on a field used for tomato (summer) wheat (winter) rotation cropping. The spring-summer experiment was carried in order to evaluate the effect of two algal derivatives (Ascophyllum nodosum), Rygex and Super Fifty, on a tomato crop exposed to increasing salinity and reduced nutrient availability. In the autumn-winter experiment we investigated the effect of residual salts from the previous summer irrigations on plant growth and yield of wheat treated with the same two algal extracts. The salt treatment for the irrigated summer crop was 80 mM NaCl plus a non-salinized control. The nutrient regimes were 100% and 50% of the tomato nutritional requirements. With both the seaweeds applications the salt stressed plants were demonstrated improved Relative Water Content and water potential. Nevertheless the total fresh biomass and the fruit fresh weight were enhanced only in the non salinized controls. Application of algal derivatives increased the total fresh weight over controls in the non salinized plants. The seaweed treatments enhanced the fruit fresh weight with an increase of 30% and 46% for Rygex and Super Fifty, respectively. Preliminary analysis of the ion profile in roots, shoots and leaves, indicates that the seaweed extracts may enhance the assimilation of ions in fruits affecting their nutritional value. The residual salinity of the summer experiment reduced the wheat biomass production. However, the seaweed extracts treatments improved growth under salinity. In the salt stressed plants the Super Fifty application increased shoots and ears by 34% and 23% respectively, compared to the non treated plants. Plant height was increased by application of seaweeds extracts for both the

  13. The U.S. Salinity Laboratory (USDA-ARS) guidelines for assessing multi-scale soil salinity with proximal and remote sensing

    USDA-ARS?s Scientific Manuscript database

    Soil salinity is a major threat to sustainable agriculture, especially in arid and semi-arid regions. Updated and accurate inventories of salinity in agronomically and environmentally relevant ranges (i.e., <20 dS/m, when salinity is measured as electrical conductivity of the saturation extract, ECe...

  14. Soil salinity decreases global soil organic carbon stocks.

    PubMed

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effectiveness of T. harzianum and Humate Amendment in Soil Salinity Restoration

    NASA Astrophysics Data System (ADS)

    Apostolakis, Antonios; Daliakopoulos, Ioannis; Tsanis, Ioannis

    2017-04-01

    Soil salinity is a major soil degradation threat, especially for the water stressed parts of the Mediterranean region, where it hinders soil fertility and thus agricultural productivity. Soil salinity management can be complex and expensive, often resorting to the use of chemical amendments thus risking soil and aquifer pollution. This study quantifies the beneficial effects of (a) a commercial strain of the beneficial fungus Trichoderma harzianum (TH), and (b) a commercial humate fertilizer enhancer (HFE) approved for organic farming, against soil salinization. The treatments are tested in the context of a Solanum lycopersicum (tomato) greenhouse simulation of the cultivation conditions typical for the semi-arid coastal Timpaki basin in south-central Crete. 20 vigorous 20-day-old Solanum lycopersicum L. cv Elpida seedlings are treated either with TH or HFE, using soil substrates and irrigation treatments of two degradation states. 20 additional plants serve either as controls or guard rows. All plants are transplanted into 35 L pots under greenhouse conditions. Preliminary analysis of soil salinity and crop yield indicators suggest that both treatments are beneficial for the soil-plant system, each to a different extent depending on initial soil conditions.

  16. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance.

    PubMed

    Tak, Himanshu; Negi, Sanjana; Ganapathi, T R

    2017-03-01

    Banana is an important fruit crop and its yield is hampered by multiple abiotic stress conditions encountered during its growth. The NAC (NAM, ATAF, and CUC) transcription factors are involved in plant response to biotic and abiotic stresses. In the present study, we studied the induction of banana NAC042 transcription factor in drought and high salinity conditions and its overexpression in transgenic banana to improve drought and salinity tolerance. MusaNAC042 expression was positively associated with stress conditions like salinity and drought and it encoded a nuclear localized protein. Transgenic lines of banana cultivar Rasthali overexpressing MusaNAC042 were generated by Agrobacterium-mediated transformation of banana embryogenic cells and T-DNA insertion was confirmed by PCR and Southern blot analysis. Our results using leaf disc assay indicated that transgenic banana lines were able to tolerate drought and high salinity stress better than the control plants and retained higher level of total chlorophyll and lower level of MDA content (malondialdehyde). Transgenic lines analyzed for salinity (250 mM NaCl) and drought (Soil gravimetric water content 0.15) tolerance showed higher proline content, better Fv/Fm ratio, and lower levels of MDA content than control suggesting that MusaNAC042 may be involved in responses to higher salinity and drought stresses in banana. Expression of several abiotic stress-related genes like those coding for CBF/DREB, LEA, and WRKY factors was altered in transgenic lines indicating that MusaNAC042 is an efficient modulator of abiotic stress response in banana.

  17. Host–microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures

    PubMed Central

    Dittami, Simon M; Duboscq-Bidot, Laëtitia; Perennou, Morgan; Gobet, Angélique; Corre, Erwan; Boyen, Catherine; Tonon, Thierry

    2016-01-01

    Like most eukaryotes, brown algae live in association with bacterial communities that frequently have beneficial effects on their development. Ectocarpus is a genus of small filamentous brown algae, which comprises a strain that has recently colonized freshwater, a rare transition in this lineage. We generated an inventory of bacteria in Ectocarpus cultures and examined the effect they have on acclimation to an environmental change, that is, the transition from seawater to freshwater medium. Our results demonstrate that Ectocarpus depends on bacteria for this transition: cultures that have been deprived of their associated microbiome do not survive a transfer to freshwater, but restoring their microflora also restores the capacity to acclimate to this change. Furthermore, the transition between the two culture media strongly affects the bacterial community composition. Examining a range of other closely related algal strains, we observed that the presence of two bacterial operational taxonomic units correlated significantly with an increase in low salinity tolerance of the algal culture. Despite differences in the community composition, no indications were found for functional differences in the bacterial metagenomes predicted to be associated with algae in the salinities tested, suggesting functional redundancy in the associated bacterial community. Our study provides an example of how microbial communities may impact the acclimation and physiological response of algae to different environments, and thus possibly act as facilitators of speciation. It paves the way for functional examinations of the underlying host–microbe interactions, both in controlled laboratory and natural conditions. PMID:26114888

  18. The role of salinity in the trophic transfer of 137Cs in euryhaline fish.

    PubMed

    Pouil, Simon; Oberhänsli, François; Swarzenski, Peter W; Bustamante, Paco; Metian, Marc

    2018-09-01

    In order to better understand the influence of changing salinity conditions on the trophic transfer of 137 Cs in marine fish that live in dynamic coastal environments, its depuration kinetics was investigated in controlled aquaria. The juvenile turbot Scophthalmus maximus was acclimated to three distinct salinity conditions (10, 25 and 38) and then single-fed with compounded pellets that were radiolabelled with 137 Cs. At the end of a 21-d depuration period, assimilation efficiencies (i.e. AEs = proportion of 137 Cs ingested that is actually assimilated by turbots) were determined from observational data acquired over the three weeks. Our results showed that AEs of 137 Cs in the turbots acclimated to the highest salinity condition were significantly lower than for the other conditions (p < 0.05). Osmoregulation likely explains the decreasing AE observed at the highest salinity condition. Indeed, observations indicate that fish depurate ingested 137 Cs at a higher rate when they increase ion excretion, needed to counterbalance the elevated salinity. Such data confirm that ambient salinity plays an important role in trophic transfer of 137 Cs in some fish species. Implications for such findings extend to seafood safety and climate change impact studies, where the salinity of coastal waters may shift in future years in response to changing weather patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Quantitative Molecular Phenotyping of Gill Remodeling in a Cichlid Fish Responding to Salinity Stress*

    PubMed Central

    Kültz, Dietmar; Li, Johnathon; Gardell, Alison; Sacchi, Romina

    2013-01-01

    A two-tiered label-free quantitative (LFQ) proteomics workflow was used to elucidate how salinity affects the molecular phenotype, i.e. proteome, of gills from a cichlid fish, the euryhaline tilapia (Oreochromis mossambicus). The workflow consists of initial global profiling of relative tryptic peptide abundances in treated versus control samples followed by targeted identification (by MS/MS) and quantitation (by chromatographic peak area integration) of validated peptides for each protein of interest. Fresh water acclimated tilapia were independently exposed in separate experiments to acute short-term (34 ppt) and gradual long-term (70 ppt, 90 ppt) salinity stress followed by molecular phenotyping of the gill proteome. The severity of salinity stress can be deduced with high technical reproducibility from the initial global label-free quantitative profiling step alone at both peptide and protein levels. However, an accurate regulation ratio can only be determined by targeted label-free quantitative profiling because not all peptides used for protein identification are also valid for quantitation. Of the three salinity challenges, gradual acclimation to 90 ppt has the most pronounced effect on gill molecular phenotype. Known salinity effects on tilapia gills, including an increase in the size and number of mitochondria-rich ionocytes, activities of specific ion transporters, and induction of specific molecular chaperones are reflected in the regulation of abundances of the corresponding proteins. Moreover, specific protein isoforms that are responsive to environmental salinity change are resolved and it is revealed that salinity effects on the mitochondrial proteome are nonuniform. Furthermore, protein NDRG1 has been identified as a novel key component of molecular phenotype restructuring during salinity-induced gill remodeling. In conclusion, besides confirming known effects of salinity on gills of euryhaline fish, molecular phenotyping reveals novel insight into

  20. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient

    NASA Astrophysics Data System (ADS)

    Zheng, Yanling; Jiang, Xiaofen; Hou, Lijun; Liu, Min; Lin, Xianbiao; Gao, Juan; Li, Xiaofei; Yin, Guoyu; Yu, Chendi; Wang, Rong

    2016-06-01

    Anaerobic ammonium oxidation (anammox) is a major microbial pathway for nitrogen (N) removal in estuarine and coastal environments. However, understanding of anammox bacterial dynamics and associations with anammox activity remains scarce along estuarine salinity gradient. In this study, the diversity, abundance, and activity of anammox bacteria, and their potential contributions to total N2 production in the sediments along the salinity gradient (0.1-33.8) of the Yangtze estuarine and coastal zone, were studied using 16S rRNA gene clone library, quantitative polymerase chain reaction assay, and isotope-tracing technique. Phylogenetic analysis showed a significant change in anammox bacterial community structure along the salinity gradient (P < 0.01), with the dominant genus shifting from Brocadia in the freshwater region to Scalindua in the open ocean. Anammox bacterial abundance ranged from 3.67 × 105 to 8.22 × 107 copies 16S rRNA gene g-1 and related significantly with salinity (P < 0.05). The anammox activity varied between 0.08 and 6.46 nmol N g-1 h-1 and related closely with anammox bacterial abundance (P < 0.01). Contributions of anammox activity to total N loss were highly variable along the salinity gradient, ranging from 5 to 77% and were significantly negatively correlated with salinity (P < 0.01). Sediment organic matter was also recognized as an important factor in controlling the relative role of anammox to total N2 production in the Yangtze estuarine and coastal zone. Overall, our data demonstrated a biogeographical distribution of anammox bacterial diversity, abundance, and activity along the estuarine salinity gradient and suggested that salinity is a major environmental control on anammox process in the estuarine and coastal ecosystems.

  1. 46 CFR 565.13 - OMB control number assigned pursuant to the Paperwork Reduction Act

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false OMB control number assigned pursuant to the Paperwork Reduction Act 565.13 Section 565.13 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AND ACTIONS TO ADDRESS RESTRICTIVE FOREIGN MARITIME PRACTICES CONTROLLED CARRIERS § 565.13 OMB control number assigned pursuant to...

  2. Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands

    USGS Publications Warehouse

    Stagg, Camille L.; Schoolmaster, Donald; Krauss, Ken W.; Cormier, Nicole; Conner, William H.

    2017-01-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: 1) a direct pathway representing the effects of flooding on soil moisture, 2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and 3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to sea-level rise, and increased decomposition following a drought or a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal

  3. Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands.

    PubMed

    Stagg, Camille L; Schoolmaster, Donald R; Krauss, Ken W; Cormier, Nicole; Conner, William H

    2017-08-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate-change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: (1) a direct pathway representing the effects of flooding on soil moisture, (2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and (3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to drought and sea-level rise, and increased decomposition following a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal

  4. Efficacy and Safety of Continuous Micro-Pump Infusion of 3% Hypertonic Saline combined with Furosemide to Control Elevated Intracranial Pressure.

    PubMed

    Li, Yuqian; Li, Zhihong; Li, Min; Yang, Yanlong; Wang, Bao; Gao, Li; Zhang, Xingye; Cheng, Hongyu; Fang, Wei; Zhao, Bo; Wang, Boliang; Gao, Guodong; Li, Lihong

    2015-06-17

    Elevated intracranial pressure is one of the most common problems in patients with diverse intracranial disorders, leading to increased morbidity and mortality. Effective management for increased intracranial pressure is based mainly on surgical and medical techniques with hyperosmolar therapy as one of the core medical treatments. The study aimed to explore the effects of continuous micro-pump infusions of 3% hypertonic saline combined with furosemide on intracranial pressure control. We analyzed data on 56 eligible participants with intracranial pressure >20 mmHg from March 2013 to July 2014. The target was to increase and maintain plasma sodium to a level between 145 and 155 mmol/L and osmolarity to a level of 310 to 320 mOsmol/kg. Plasma sodium levels significantly increased from 138±5 mmol/L at admission to 151±3 mmol/L at 24 h (P<0.01). Osmolarity increased from 282±11 mOsmol/kg at baseline to 311±8 mOsmol/kg at 24 h (P<0.01). Intracranial pressure significantly decreased from 32±7 mmHg to 15±6 mmHg at 24 h (P<0.01). There was a significant improvement in CPP (P<0.01). Moreover, central venous pressure, mean arterial pressure, and Glasgow Coma Scale slightly increased. However, these changes were not statistically significant. Continuous infusion of 3% hypertonic saline + furosemide is effective and safe for intracranial pressure control.

  5. Salinity Energy.

    ERIC Educational Resources Information Center

    Schmitt, Walter R.

    1987-01-01

    Discussed are the costs of deriving energy from the earth's natural reserves of salt. Argues that, as fossil fuel supplies become more depleted in the future, the environmental advantages of salinity power may prove to warrant its exploitation. (TW)

  6. Saline Flush After Rocuronium Bolus Reduces Onset Time and Prolongs Duration of Effect: A Randomized Clinical Trial.

    PubMed

    Ishigaki, Sayaka; Masui, Kenichi; Kazama, Tomiei

    2016-03-01

    Circulatory factors modify the onset time of neuromuscular-blocking drugs. Therefore, we hypothesized that infusion of a saline flush immediately after rocuronium administration would shorten the onset time without influencing the duration of the rocuronium effect. Forty-eight patients were randomly allocated to the control or saline flush group. Anesthesia was induced and maintained with propofol and remifentanil, and all patients received 0.6 mg/kg rocuronium in 10 mL of normal saline. In the saline flush group, 20 mL normal saline was immediately infused after rocuronium administration. Neuromuscular blockade was assessed using acceleromyography at the adductor pollicis muscle with train-of-four (TOF) stimulation. The neuromuscular indices for rocuronium were calculated as follows: the latent onset time, defined as the time from the start of rocuronium infusion until first occurrence of depression of the first twitch of the TOF (T1) ≥5%; onset time, defined as the time from the start of rocuronium infusion until first occurrence of depression of the T1 ≥95%; clinical duration, defined as the time from the start of rocuronium administration until T1 recovered to 25% of the final T1 value; recovery index, defined as the time for recovery of T1 from 25% to 75% of the final T1 value; and the total recovery time, defined as the time from the start of rocuronium administration until reaching a TOF ratio of 0.9. Significance was designated at P <0.05. The measured latent onset time and onset time were significantly shorter in the saline flush group than the control group by 15 seconds (95.2% confidence interval, 0-15, P = 0.007) and 15 seconds (0-30, P = 0.018), respectively. Saline flush significantly depressed the T1 height at 30, 45, and 60 seconds after the rocuronium bolus by 17%, 24%, and 14%, respectively. In addition, the recovery phase was significantly prolonged in the saline flush group. The mean clinical duration (5th-95th percentile range) in the

  7. Phytoremediation potential of some halophytic species for soil salinity.

    PubMed

    Devi, S; Nandwal, A S; Angrish, R; Arya, S S; Kumar, N; Sharma, S K

    2016-01-01

    Phytoremediation potential of six halophytic species i.e. Suaeda nudiflora, Suaeda fruticosa, Portulaca oleracea, Atriplex lentiformis, Parkinsonia aculeata and Xanthium strumarium was assessed under screen house conditions. Plants were raised at 8.0, 12.0, 16.0, and 20.0 dSm(-1) of chloride-dominated salinity. The control plants were irrigated with canal water. Sampling was done at vegetative stage (60-75 DAS). About 95 percent seed germination occurred up to 12 dSm(-1) and thereafter declined slightly. Mean plant height and dry weight plant(-1) were significantly decreased from 48.71 to 32.44 cm and from 1.73 to 0.61g plant(-1) respectively upon salinization. Na(+)/K(+) ratio (0.87 to 2.72), Na(+)/ Ca(2+) + Mg(2+) (0.48 to 1.54) and Cl(-)/SO4(2-) (0.94 to 5.04) ratio showed increasing trend. Salinity susceptibility index was found minimum in Suaeda fruticosa (0.72) and maximum in Parkinsonia aculeata (1.17). Total ionic content also declined and magnitude of decline varied from 8.51 to 18.91% at 8 dSm(-1) and 1.85 to 7.12% at 20 dSm(-1) of salinity. On the basis of phytoremediation potential Suaeda fruticosa (1170.02 mg plant(-1)), Atriplex lentiformis (777.87 mg plant(-1)) were the best salt hyperaccumulator plants whereas Xanthium strumarium (349.61 mg plant(-1)) and Parkinsonia aculeata (310.59 mg plant(-1)) were the least hyperaccumulator plants.

  8. Effects of periodical salinity fluctuation on the growth, molting, energy homeostasis and molting-related gene expression of Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Guo, Xiantao; Wang, Fang; Dong, Shuanglin

    2016-10-01

    To determine the response of Litopenaeus vannamei to periodical salinity fluctuation, a 30-day experiment was conducted in laboratory. In this experiment, two salinity fluctuation amplitudes of 4 (group S4) and 10 (group S10) were designed. The constant salinity of 30 (group S0) was used as the control. Levels of shrimp growth, molting frequency (MF), cellular energy status (ATP, ADP and AMP), as well as the expression of genes encoding molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), ecdysteroid-regulated protein (ERP), and energy-related AMP-activated protein kinase (AMPK) were determined. The results showed that periodical salinity fluctuation significantly influenced all indicators except MF which ranged from 13.3% in group S10 to15.4% in group S4. In comparison with shrimps cultured at the constant salinity of 30, those in group S4 showed a significant elevation in growth rate, food conversion efficiency, cellular energy status, ERP and MIH gene transcript abundance, and a significant reduction in CHH and AMPK transcript abundance ( P < 0.05). However, salinity fluctuation of 10 only resulted in a significant variation in MIH and CHH gene expression when compared to the control ( P < 0.05). According to our findings, L. vannamei may be highly capable of tolerating salinity fluctuation. When ambient salinity fluctuated at approx. 4, the increased MF and energy stores in organisms may aid to promoting shrimp growth.

  9. The changes of proteins and polysaccharides in extracellular polymeric substance for Spirogyra fluviatilis under different salinity

    NASA Astrophysics Data System (ADS)

    Lee, Yichao; Chang, Shuiping

    2017-05-01

    Spirogyra is a genus of widely distributed, large green fresh water algae. This study discovered that changes in salinity can induce Spirogyra fluviatilis to produce amounts of extracellular polymeric substance (EPS) when controlling other environmental conditions. If culturing S. fluviatilis with salinity greater than a 3.0‰ medium for 4 hours, the secretion EPS will be changed. And the level of polysaccharides and proteins, the primary components of EPS, is slightly increased in accordance with the increase in the salinity. But the proteins to polysaccharides ratio changes are not significantly

  10. Treatment of high salinity brines by direct contact membrane distillation: Effect of membrane characteristics and salinity.

    PubMed

    Li, Jianfeng; Guan, Yunshan; Cheng, Fangqin; Liu, Yu

    2015-12-01

    Direct contact membrane distillation (DCMD) is one of the attractive technologies for high salinity brine treatment. In this study, four polytetrafluoroethylene (PTFE) membranes were examined in treating highly concentrated salt solutions. Results showed that non-supported membranes generally have a higher overall mass transfer coefficient but porosity seems to be the most important parameter controlling membrane flux and thermal efficiency. Supported membranes with large thickness had relatively higher thermal efficiency than small thickness. This can be attributed to their reduced heat loss through heat condition. In addition, KCl, NaCl and MgCl2 solutions showed distinct trends over flux decline at high salt concentrations (⩾2.0M). The difference in flux was largely due to the discrepancy in water activities of these solutions (KCl>NaCl>MgCl2). However, the effect of viscosity on permeate flux could not be neglected for MgCl2 at high salt concentrations as the suddenly increased viscosity could lead to serious temperature polarization. This study indicates that membrane distillation is a promising technology for high salinity brine treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Salinity affects behavioral thermoregulation in a marine decapod crustacean

    NASA Astrophysics Data System (ADS)

    Reiser, Stefan; Mues, Annika; Herrmann, Jens-Peter; Eckhardt, André; Hufnagl, Marc; Temming, Axel

    2017-10-01

    Thermoregulation in aquatic ectotherms is a complex behavioral pattern that is affected by various biotic and abiotic factors with one being salinity. Especially in coastal and estuarine habitats, altering levels of salinity involve osmoregulatory adjustments that affect total energy budgets and may influence behavioral responses towards temperature. To examine the effect of salinity on behavioral thermoregulation in a marine evertebrate ectotherm, we acclimated juvenile and sub-adult common brown shrimp (Crangon crangon, L.) to salinities of 10, 20 and 30 PSU and investigated their thermal preference in an annular chamber system using the gravitational method for temperature preference determination. Thermal preference of individual brown shrimp was considerably variable and brown shrimp selected a wide range of temperatures in each level of salinity as well as within individual experimental trials. However, salinity significantly affected thermal preference with the shrimp selecting higher temperatures at 10 and 20 PSU when compared to 30 PSU of salinity. Body size had no effect on thermal selection and did not interact with salinity. Temperature preference differed by sex and male shrimp selected significantly higher temperatures at 10 PSU when compared to females. The results show that salinity strongly affects thermal selection in brown shrimp and confirms the strong interrelation of temperature and salinity on seasonal migratory movements that has been previously derived from observations in the field. In the field, however, it remains unclear whether salinity drives thermal selection or whether changes in temperature modify salinity preference.

  12. Crime Control Act of 1990 [29 November 1990]. [Summary].

    PubMed

    1990-01-01

    In the US, the Crime Control Act of 1990 was approved on November 29, 1990. This various titles of this Act include provisions relating to the following: 1) international money laundering; 2) child abuse; 3) child pornography; 4) kidnapping, abducting, or unlawfully restraining a child; 5) the protection of crime victims; 6) funding for local law enforcement agencies; 7) funding for federal law enforcement; 8) rural drug enforcement assistance; 9) mandatory detention for certain criminals; 10) juvenile justice; 11) penalties for use of certain firearms; 12) improvements in miscellaneous criminal law; 13) disability benefits for public safety officers; 14) money laundering; 15) drug-free school zones; 16) miscellaneous amendments to the federal judicial and criminal codes; 17) general provisions; 18) grants for correctional options; 19) control of anabolic steroids; 20) asset forfeiture; 21) student loan cancellation for law enforcement officers; 22) firearms provisions; 23) chemical diversion and trafficking; 24) drug paraphernalia; 25) banking law enforcement; 26) licit opium imports; 27) sentencing for methamphetamine offenses; 28) drug enforcement grants; 29) prisons; 30) shock incarceration (prison boot camps); 31) bankruptcy and restitution; 32) appropriations for law and drug enforcement agencies; 33) anti-drug programs; 34) support of law enforcement; 35) technical and minor substantive amendments to the federal criminal code; 36) federal debt collection; and 37) national child search assistance (for missing children).

  13. 77 FR 54612 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ODVA, INC.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... Engineering & Manufacturing, Inc. has changed its name to Norgren Automation Solutions, LLC, Saline, MI. No...(b) of the Act on May 24, 2012 (77 FR 31041). Patricia A. Brink, Director of Civil Enforcement...

  14. Saline-filled laparoscopic surgery: A basic study on partial hepatectomy in a rabbit model.

    PubMed

    Shimada, Masanari; Kawaguchi, Masahiko; Ishikawa, Norihiko; Watanabe, Go

    2015-01-01

    There is still a poor understanding of the effects of pneumoperitoneum with insufflation of carbon dioxide gas (CO2) on malignant cells, and pneumoperitoneum has a negative impact on cardiopulmonary responses. A novel saline-filled laparoscopic surgery (SAFLS) is proposed, and the technical feasibility of performing saline-filled laparoscopic partial hepatectomy (LPH) was evaluated in a rabbit model. Twelve LPH were performed in rabbits, with six procedures performed using an ultrasonic device with CO2 pneumoperitoneum (CO2 group) and six procedures performed using a bipolar resectoscope (RS) in a saline-filled environment (saline group). Resection time, CO2 and saline consumption, vital signs, blood gas analysis, complications, interleukin-1 beta (IL-1β) and C-reactive protein (CRP) levels were measured. The effectiveness of the resections was evaluated by the pathological findings. LPH was successfully performed with clear observation by irrigation and good control of bleeding by coagulation with RS. There were no significant differences in all perioperative values, IL-1βand CRP levels between the two groups. All pathological specimens of the saline group showed that the resected lesions were coagulated and regenerated as well as in the CO2 group. SAFLS is feasible and provides a good surgical view with irrigation and identification of bleeding sites.

  15. Flow dynamics in hyper-saline aquifers: hydro-geophysical monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Haaken, Klaus; Piero Deidda, Gian; Cassiani, Giorgio; Deiana, Rita; Putti, Mario; Paniconi, Claudio; Scudeler, Carlotta; Kemna, Andreas

    2017-03-01

    Saline-freshwater interaction in porous media is a phenomenon of practical interest particularly for the management of water resources in arid and semi-arid environments, where precious freshwater resources are threatened by seawater intrusion and where storage of freshwater in saline aquifers can be a viable option. Saline-freshwater interactions are controlled by physico-chemical processes that need to be accurately modeled. This in turn requires monitoring of these systems, a non-trivial task for which spatially extensive, high-resolution non-invasive techniques can provide key information. In this paper we present the field monitoring and numerical modeling components of an approach aimed at understanding complex saline-freshwater systems. The approach is applied to a freshwater injection experiment carried out in a hyper-saline aquifer near Cagliari (Sardinia, Italy). The experiment was monitored using time-lapse cross-hole electrical resistivity tomography (ERT). To investigate the flow dynamics, coupled numerical flow and transport modeling of the experiment was carried out using an advanced three-dimensional (3-D) density-driven flow-transport simulator. The simulation results were used to produce synthetic ERT inversion results to be compared against real field ERT results. This exercise demonstrates that the evolution of the freshwater bulb is strongly influenced by the system's (even mild) hydraulic heterogeneities. The example also highlights how the joint use of ERT imaging and gravity-dependent flow and transport modeling give fundamental information for this type of study.

  16. Impact of topography on groundwater salinization due to ocean surge inundation

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Yang, Jie; Graf, Thomas; Koneshloo, Mohammad; O'Neal, Michael A.; Michael, Holly A.

    2016-08-01

    Sea-level rise and increases in the frequency and intensity of ocean surges caused by climate change are likely to exacerbate adverse effects on low-lying coastal areas. The landward flow of water during ocean surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topographic features (e.g., ponds, dunes, barrier islands, and channels) likely have a strong impact on overwash and salinization processes, but are generally highly simplified in modeling studies. To understand topographic impacts on groundwater salinization, we modeled a theoretical overwash event and variable-density groundwater flow and salt transport in 3-D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density groundwater flow. To represent various coastal landscape types, we simulated both synthetic fields and real-world coastal topography from Delaware, USA. The groundwater salinization assessment suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, the amount of water that can be stored in surface depressions determines the amount of seawater that infiltrates the subsurface and the time for seawater to flush from the aquifer. Our study suggests that topography has a significant impact on groundwater salinization due to ocean surge overwash, with important implications for coastal land management and groundwater vulnerability assessment.

  17. Is bacteriostatic saline superior to normal saline as an echocardiographic contrast agent?

    PubMed

    Cardozo, Shaun; Gunasekaran, Prasad; Patel, Hena; McGorisk, Timothy; Toosi, Mehrdad; Faraz, Haroon; Zalawadiya, Sandip; Alesh, Issa; Kottam, Anupama; Afonso, Luis

    2014-12-01

    Objective data on the performance characteristics and physical properties of commercially available saline formulations [normal saline (NS) vs. bacteriostatic normal saline (bNS)] are sparse. This study sought to compare the in vitro physical properties and in vivo characteristics of two commonly employed echocardiographic saline contrast agents in an attempt to assess superiority. Nineteen patients undergoing transesophageal echocardiograms were each administered agitated regular NS and bNS injections in random order and in a blinded manner according to a standardized protocol. Video time-intensity (TI) curves were constructed from a representative region of interest, placed paraseptally within the right atrium, in the bicaval view. TI curves were analyzed for maximal plateau acoustic intensity (Vmax, dB) and dwell time (DT, s), defined as time duration between onset of Vmax and decay of video intensity below clinically useful levels, reflecting the duration of homogenous opacification of the right atrium. To further characterize the physical properties of the bubbles in vitro, fixed aliquots of similarly agitated saline were injected into a glass well slide-cover slip assembly and examined using an optical microscope to determine bubble diameter in microns (µm) and concentration [bubble count/high power field (hpf)]. A higher acoustic intensity (a less negative dB level), higher bubble concentration and longer DT were considered properties of a superior contrast agent. For statistical analysis, a paired t test was conducted to evaluate the differences in means of Vmax and DT. Compared to NS, bNS administration was associated with superior opacification (video intensity -8.69 ± 4.7 vs. -10.46 ± 4.1 dB, P = 0.002), longer DT (17.3 ± 6.1 vs. 10.2 ± 3.7 s) in vivo and smaller mean bubble size (43.4 vs. 58.6 μm) and higher bubble concentration (1,002 vs. 298 bubble/hpf) in vitro. bNS provides higher intensity and more sustained opacification of the right atrium

  18. Controlled boiling on Enceladus. 2. Model of the liquid-filled cracks

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.; Nakajima, Miki

    2016-07-01

    Controlled boiling will occur on Enceladus whenever a long, narrow conduit connects liquid water to the vacuum of space. In a companion paper we focus on the upward flow of the vapor and show how it controls the evaporation rate through backpressure, which arises from friction on the walls. In this paper we focus on the liquid and show how it flows through the conduit up to its level of neutral buoyancy. For an ice shell 20 km thick, the liquid water interface could be 2 km below the surface. We find that the evaporating surface can be narrow. There is no need for a large vapor chamber that acts as a plume source. Freezing on the icy walls and the evaporating surface is avoided if the crack width averaged over the length of the tiger stripes is greater than 1 m and the salinity of the liquid is greater than 20 g kg-1. Controlled boiling plays a crucial role in our model, which makes it different from earlier published models. The liquids on Enceladus are boiling because there is no overburden pressure-the saturation vapor pressure is equal to the total pressure. Salinity plays a crucial role in preventing freezing, and we argue that the subsurface oceans of icy satellites can have water vapor plumes only if their salinities are greater than about 20 g kg-1.

  19. 25 CFR 44.110 - What Indian Self-Determination Act provisions apply to grants under the Tribally Controlled...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false What Indian Self-Determination Act provisions apply to... Self-Determination Act provisions apply to grants under the Tribally Controlled Schools Act? (a) The... administrative cost grant; (4) Any dispute regarding new construction or facility improvement or repair; or (5...

  20. 25 CFR 44.110 - What Indian Self-Determination Act provisions apply to grants under the Tribally Controlled...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What Indian Self-Determination Act provisions apply to... Self-Determination Act provisions apply to grants under the Tribally Controlled Schools Act? (a) The... administrative cost grant; (4) Any dispute regarding new construction or facility improvement or repair; or (5...

  1. 25 CFR 44.110 - What Indian Self-Determination Act provisions apply to grants under the Tribally Controlled...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true What Indian Self-Determination Act provisions apply to... Self-Determination Act provisions apply to grants under the Tribally Controlled Schools Act? (a) The... administrative cost grant; (4) Any dispute regarding new construction or facility improvement or repair; or (5...

  2. 25 CFR 44.110 - What Indian Self-Determination Act provisions apply to grants under the Tribally Controlled...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false What Indian Self-Determination Act provisions apply to... Self-Determination Act provisions apply to grants under the Tribally Controlled Schools Act? (a) The... administrative cost grant; (4) Any dispute regarding new construction or facility improvement or repair; or (5...

  3. 25 CFR 44.110 - What Indian Self-Determination Act provisions apply to grants under the Tribally Controlled...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What Indian Self-Determination Act provisions apply to... Self-Determination Act provisions apply to grants under the Tribally Controlled Schools Act? (a) The... administrative cost grant; (4) Any dispute regarding new construction or facility improvement or repair; or (5...

  4. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    NASA Astrophysics Data System (ADS)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials < -30 MPa, which are far below values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results

  5. What are the effects of hypertonic saline plus furosemide in acute heart failure?

    PubMed

    Zepeda, Patricio; Rain, Carmen; Sepúlveda, Paola

    2015-08-27

    In search of new therapies to solve diuretic resistance in acute heart failure, the addition of hypertonic saline has been proposed. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified two systematic reviews including nine pertinent randomized controlled trials. We combined the evidence and generated a summary of findings following the GRADE approach. We concluded hypertonic saline associated with furosemide probably decrease mortality, length of hospital stay and hospital readmission in patients with acute decompensated heart failure.

  6. Assessing the Impact of Topography on Groundwater Salinization Due to Storm Surge Inundation

    NASA Astrophysics Data System (ADS)

    Yu, X.; Yang, J.; Graf, T.; Koneshloo, M.; O'Neal, M. A.; Michael, H. A.

    2015-12-01

    The sea-level rise and increase in the frequency and intensity of coastal storms due to climate change are likely to exacerbate adverse effects of storm surges on low-lying coastal areas. The landward flow of water during storm surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topography (e.g. ponds, dunes, canals) likely has a strong impact on overwash and salinization processes, but is generally highly simplified in modeling studies. To understand the topographic impacts on groundwater salinization, we modeled overwash and variable-density groundwater flow and salt transport in 3D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering processes such as overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density flow. To represent various coastal landscape types, we started with realistic coastal topography from Delaware, USA, and then generated synthetic fields with differing shore-perpendicular connectivity and surface depressions. The groundwater salinization analysis suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, depression storage of surface water mainly controls the time for infiltrated salt to flush from the aquifer. The results indicate that for a range of synthetic conditions, topography increases the flushing time of salt by 20-300% relative to an equivalent "simple slope" in which topographic variation is absent. Our study suggests that topography have a significant impact on overwash salinization, with important implications for land management at local scales and groundwater vulnerability assessment at regional to global scales.

  7. Long Term Surface Salinity Measurements

    NASA Technical Reports Server (NTRS)

    Schmitt, Raymond W.; Brown, Neil L.

    2005-01-01

    Our long-term goal is to establish a reliable system for monitoring surface salinity around the global ocean. Salinity is a strong indicator of the freshwater cycle and has a great influence on upper ocean stratification. Global salinity measurements have potential to improve climate forecasts if an observation system can be developed. This project is developing a new internal field conductivity cell that can be protected from biological fouling for two years. Combined with a temperature sensor, this foul-proof cell can be deployed widely on surface drifters. A reliable in-situ network of surface salinity sensors will be an important adjunct to the salinity sensing satellite AQUARIUS to be deployed by NASA in 2009. A new internal-field conductivity cell has been developed by N Brown, along with new electronics. This sensor system has been combined with a temperature sensor to make a conductivity - temperature (UT) sensor suitable for deployment on drifters. The basic sensor concepts have been proven on a high resolution CTD. A simpler (lower cost) circuit has been built for this application. A protection mechanism for the conductivity cell that includes antifouling protection has also been designed and built. Mr. A.Walsh of our commercial partner E-Paint has designed and delivered time-release formulations of antifoulants for our application. Mr. G. Williams of partner Clearwater Instrumentation advised on power and communication issues and supplied surface drifters for testing.

  8. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity.

    PubMed

    Kwok, K W H; Leung, K M Y

    2005-01-01

    Intertidal harpacticoid copepods are commonly used in eco-toxicity tests worldwide. They predominately live in mid-high shore rock pools and often experience a wide range of temperature and salinity fluctuation. Most eco-toxicity tests are conducted at fixed temperature and salinity and thus the influence of these environmental factors on chemical toxicity is largely unknown. This study investigated the combined effect of temperature and salinity on the acute toxicity of the copepod Tigriopus japonicus against two common biocides, copper (Cu) and tributyltin (TBT) using a 2 x 3 x 4 factorial design (i.e. two temperatures: 25 and 35 degrees C; three salinities: 15.0 per thousand, 34.5 per thousand and 45.0 per thousand; three levels of the biocide plus a control). Copper sulphate and tributyltin chloride were used as the test chemicals while distilled water and acetone were utilised as solvents for Cu and TBT respectively. 96 h-LC50s of Cu and TBT were 1024 and 0.149 microg l(-1) respectively (at 25 degrees C; 34.5 per thousand) and, based on these results, nominal biocide concentrations of LC0 (i.e. control), LC30, LC50 and LC70 were employed. Analysis of Covariance using 'concentration' as the covariate and both 'temperature' and 'salinity' as fixed factors, showed a significant interaction between temperature and salinity effects for Cu, mortality increasing with temperature but decreasing with elevated salinity. A similar result was revealed for TBT. Both temperature and salinity are, therefore, important factors affecting the results of acute eco-toxicity tests using these marine copepods. We recommend that such eco-toxicity tests should be conducted at a range of environmentally realistic temperature/salinity regimes, as this will enhance the sensitivity of the test and improve the safety margin in line with the precautionary principle.

  9. Salinity alters the protein composition of rice endosperm and the physicochemical properties of rice flour.

    PubMed

    Baxter, Graeme; Zhao, Jian; Blanchard, Christopher

    2011-09-01

    Salinity is one of the major threats to production of rice and other agricultural crops worldwide. Although numerous studies have shown that salinity can severely reduce rice yield, little is known about its impact on the chemical composition, processing and sensory characteristics of rice. The objective of the current study was to investigate the effect of salinity on the pasting and textural properties of rice flour as well as on the protein content and composition of rice endosperm. Rice grown under saline conditions had significantly lower yields but substantially higher protein content. The increase in protein content was mainly attributed to increases in the amount of glutelin, with lesser contributions from albumin. Salinity also altered the relative proportions of the individual peptides within the glutelin fraction. Flours obtained from rice grown under saline conditions showed significantly higher pasting temperatures, but lower peak and breakdown viscosities. Rice gels prepared from the flour showed significantly higher hardness and adhesiveness values, compared to the freshwater controls. Salinity can significantly affect the pasting and textural characteristics of rice flour. Although some of the effects could be attributed to changes in protein content of the rice flour, especially the increased glutelin level, the impact of salinity on the physicochemical properties of rice is rather complex and may involve the interrelated effects of other rice components such as starch and lipids. Copyright © 2011 Society of Chemical Industry.

  10. Is the Taklimakan Desert Highway Shelterbelt Sustainable to Long-Term Drip Irrigation with High Saline Groundwater?

    PubMed Central

    Zhang, Jianguo; Xu, Xinwen; Li, Shengyu; Zhao, Ying; Zhang, Afeng; Zhang, Tibin; Jiang, Rui

    2016-01-01

    Freshwater resources are scarce in desert regions. Highly saline groundwater of different salinity is being used to drip irrigate the Taklimakan Desert Highway Shelterbelt with a double-branch-pipe system controlling the irrigation cycles. In this study, to evaluate the dynamics of soil moisture and salinity under the current irrigation system, soil samples were collected to a 2-m depth in the shelterbelt planted for different years and irrigated with different groundwater salinities, and soil moisture and salinity were analyzed. The results showed that both depletion of soil moisture and increase of topsoil salinity occurred simultaneously during one irrigation cycle. Soil moisture decreased from 27.4% to 2.4% for a 15-day irrigation cycle and from 26.4% to 2.7% for a 10-day-cycle, respectively. Topsoil electrical conductivity (EC) increased from 0.64 to 3.32 dS/m and 0.70 to 3.99 dS/m for these two irrigation cycles. With increased shelterbelt age, profiled average soil moisture (0–200 cm) reduced from 12.8% (1-year) to 7.1% (10-year); however, soil moisture in 0–20-cm increased, while topsoil salinity decreased. In addition, irrigation salinity mainly affected soil salinity in the 0–20-cm range. We conclude that water supply with the double-branch-pipe is a feasible irrigation method for the Taklimakan Desert Highway Shelterbelt, and our findings provide a model for shelterbelt construction and sustainable management when using highly saline water for irrigation in analogous habitats. PMID:27711244

  11. Herbivore Impacts on Marsh Production Depend upon a Compensatory Continuum Mediated by Salinity Stress

    PubMed Central

    Long, Jeremy D.; Porturas, Laura D.

    2014-01-01

    Plant communities are disturbed by several stressors and they are expected to be further impacted by increasing anthropogenic stress. The consequences of these stressors will depend, in part, upon the ability of plants to compensate for herbivory. Previous studies found that herbivore impacts on plants can vary from negative to positive because of environmental control of plant compensatory responses, a.k.a. the Compensatory Continuum Hypothesis. While these influential studies enhanced our appreciation of the dynamic nature of plant-herbivore interactions, they largely focused on the impact of resource limitation. This bias limits our ability to predict how other environmental factors will shape the impact of herbivory. We examined the role of salinity stress on herbivory of salt marsh cordgrass, Spartina foliosa, by an herbivore previously hypothesized to influence the success of restoration projects (the scale insect, Haliaspis spartinae). Using a combination of field and mesocosm manipulations of scales and salinity, we measured how these factors affected Spartina growth and timing of senescence. In mesocosm studies, Spartina overcompensated for herbivory by growing taller shoots at low salinities but the impact of scales on plants switched from positive to neutral with increasing salinity stress. In field studies of intermediate salinities, scales reduced Spartina growth and increased the rate of senescence. Experimental salinity additions at this field site returned the impact of scales to neutral. Because salinity decreased scale densities, the switch in impact of scales on Spartina with increasing salinity was not simply a linear function of scale abundance. Thus, the impact of scales on primary production depended strongly upon environmental context because intermediate salinity stress prevented plant compensatory responses to herbivory. Understanding this context-dependency will be required if we are going to successfully predict the success of

  12. Interactions between environmental stressors: the influence of salinity on host-parasite interactions between Daphnia magna and Pasteuria ramosa.

    PubMed

    Hall, Matthew D; Vettiger, Andrea; Ebert, Dieter

    2013-04-01

    Interactions between environmental stressors play an important role in shaping the health of an organism. This is particularly true in terms of the prevalence and severity of infectious disease, as stressors in combination will not always act to simply decrease the immune function of a host, but may instead interact to compound or even oppose the influence of parasitism on the health of an organism. Here, we explore the impact of environmental stress on host-parasite interactions using the water flea Daphnia magna and it is obligate parasite Pasteuria ramosa. Utilising an ecologically relevant stressor, we focus on the combined effect of salinity and P. ramosa on the fecundity and survival of the host, as well as on patterns of infectivity and the proliferation of the parasite. We show that in the absence of the parasite, host fecundity and survival was highest in the low salinity treatments. Once a parasite was introduced into the environment, however, salinity and parasitism acted antagonistically to influence both host survival and fecundity, and these patterns of disease were unrelated to infection rates or parasite spore loads. By summarising the form of interactions found in the broader Daphnia literature, we highlight how the combined effect of stress and parasitism will vary with the type of stressor, the trait used to describe the health of Daphnia and the host-parasite combination under observation. Our results highlight how the context-dependent nature of interactions between stress and parasitism inevitably complicates the link between environmental factors and the prevalence and severity of disease.

  13. Salinity reduction benefits European eel larvae: Insights at the morphological and molecular level.

    PubMed

    Politis, Sebastian N; Mazurais, David; Servili, Arianna; Zambonino-Infante, Jose-Luis; Miest, Joanna J; Tomkiewicz, Jonna; Butts, Ian A E

    2018-01-01

    European eel (Anguilla anguilla) is a euryhaline species, that has adapted to cope with both, hyper- and hypo-osmotic environments. This study investigates the effect of salinity, from a morphological and molecular point of view on European eel larvae reared from 0 to 12 days post hatch (dph). Offspring reared in 36 practical salinity units (psu; control), were compared with larvae reared in six scenarios, where salinity was decreased on 0 or 3 dph and in rates of 1, 2 or 4 psu/day, towards iso-osmotic conditions. Results showed that several genes relating to osmoregulation (nkcc2α, nkcc2β, aqp1dup, aqpe), stress response (hsp70, hsp90), and thyroid metabolism (thrαA, thrαB, thrβB, dio1, dio2, dio3) were differentially expressed throughout larval development, while nkcc1α, nkcc2β, aqp3, aqp1dup, aqpe, hsp90, thrαA and dio3 showed lower expression in response to the salinity reduction. Moreover, larvae were able to keep energy metabolism related gene expression (atp6, cox1) at stable levels, irrespective of the salinity reduction. As such, when reducing salinity, an energy surplus associated to reduced osmoregulation demands and stress (lower nkcc, aqp and hsp expression), likely facilitated the observed increased survival, improved biometry and enhanced growth efficiency. Additionally, the salinity reduction decreased the amount of severe deformities such as spinal curvature and emaciation but also induced an edematous state of the larval heart, resulting in the most balanced mortality/deformity ratio when salinity was decreased on 3 dph and at 2 psu/day. However, the persistency of the pericardial edema and if or how it represents an obstacle in further larval development needs to be further clarified. In conclusion, this study clearly showed that salinity reduction regimes towards iso-osmotic conditions facilitated the European eel pre-leptocephalus development and revealed the existence of highly sensitive and regulated osmoregulation processes at such

  14. SMAP Salinity Artifacts Associated With Presence of Rain

    NASA Astrophysics Data System (ADS)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  15. Effects of a Storm-Surge Related Salinity Decrease on Greenhouse Gas Emissions in Tidal Salt Marsh Mesocosms

    NASA Astrophysics Data System (ADS)

    Capooci, M.; Barba, J.; Seyfferth, A.; Vargas, R.

    2017-12-01

    Salt marshes, along with mangrove forests and seagrass beds, are capable of sequestering large quantities of carbon. Additionally, salt marshes are resilient ecosystems, capable of quickly recovering from disturbances. However, very little is known about how carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ammonia (NH3) fluxes from wetland soils, in addition to pore water chemistry, change with a disturbance event such as a storm surge. Using soil mesocosms from St. Jones Reserve, a National Estuarine Research Reserve, and site-specific water salinity data, we conducted a laboratory experiment that recreated the changes in salinity associated with a storm event and compared them to soils flooded with the mean annual salinity of the St. Jones River. Control and treatment were done in triplicate. We controlled for variations in temperature (set at 21°C) and all cores maintained similar flooded conditions. Treatment included a decrease in salinity based on historic values during storm events (i.e. Hurricane Joaquin). Greenhouse gas (GHG; CO2, CH4, N2O, NH3) emissions were measured hourly using automated chambers. Pore water was collected every day to every other day and analyzed for a variety of parameters, including Fe2+, S2-, SO42-, and NO3-. Auxiliary measurements, such as soil temperature, moisture, and oxygen levels, in addition to pore water salinity, were also taken to ensure that proper conditions were maintained. We found significant increases in CO2, CH4, and N2O emissions when comparing the treatment (lowered salinity) to the control. We found also differences in pore water chemistry between treatment phases, particularly in Fe2+. The results of this experiment have implications for GHG dynamics in salt marsh ecosystems, showcasing the need to measure GHG emissions during and after storm events. This study provides insights into how changes in salinity affect GHG emissions in salt marshes, as well as how ecosystem dynamics respond to a

  16. Ectomycorrhizal and endophytic fungi associated with Alnus glutinosa growing in a saline area of central Poland.

    PubMed

    Thiem, Dominika; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Alnus glutinosa (black alder) is a mycorrhizal pioneer tree species with tolerance to high concentrations of salt in the soil and can therefore be considered to be an important tree for the regeneration of forests areas devastated by excessive salt. However, there is still a lack of information about the ectomycorrhizal fungi (EMF) associated with mature individuals of A. glutinosa growing in natural saline conditions. The main objective of this study was to test the effect of soil salinity and other physicochemical parameters on root tips colonized by EMF, as well as on the species richness and diversity of an EMF community associated with A. glutinosa growing in natural conditions. We identified a significant effect of soil salinity (expressed as electrical conductivity: EC e and EC 1:5 ) on fungal taxa but not on the total level of EM fungal colonization on roots. Increasing soil salinity promoted dark-coloured EMF belonging to the order Thelephorales ( Tomentella sp. and Thelephora sp.). These fungi are also commonly found in soils polluted with heavy-metal. The ability of these fungi to grow in contaminated soil may be due to the presence of melanine, a natural dark pigment and common wall component of the Thelephoraceae that is known to act as a protective interface between fungal metabolism and biotic and abiotic environmental stressors. Moreover, increased colonization of fungi belonging to the class of Leotiomycetes and Sordiomycetes, known as endophytic fungal species, was observed at the test sites, that contained a larger content of total phosphorus. This observation confirms the ability of commonly known endophytic fungi to form ectomycorrhizal structures on the roots of A. glutinosa under saline stress conditions.

  17. The density-salinity relation of standard seawater

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Seitz, Steffen; Hassel, Egon; Wolf, Henning

    2018-01-01

    The determination of salinity by means of electrical conductivity relies on stable salt proportions in the North Atlantic Ocean, because standard seawater, which is required for salinometer calibration, is produced from water of the North Atlantic. To verify the long-term stability of the standard seawater composition, it was proposed to perform measurements of the standard seawater density. Since the density is sensitive to all salt components, a density measurement can detect any change in the composition. A conversion of the density values to salinity can be performed by means of a density-salinity relation. To use such a relation with a target uncertainty in salinity comparable to that in salinity obtained from conductivity measurements, a density measurement with an uncertainty of 2 g m-3 is mandatory. We present a new density-salinity relation based on such accurate density measurements. The substitution measurement method used is described and density corrections for uniform isotopic and chemical compositions are reported. The comparison of densities calculated using the new relation with those calculated using the present reference equations of state TEOS-10 suggests that the density accuracy of TEOS-10 (as well as that of EOS-80) has been overestimated, as the accuracy of some of its underlying density measurements had been overestimated. The new density-salinity relation may be used to verify the stable composition of standard seawater by means of routine density measurements.

  18. Salinity tolerance and osmotic response of the estuarine hermit crab Pagurus maclaughlinae in the Indian River Lagoon, Florida

    NASA Astrophysics Data System (ADS)

    Rhodes-Ondi, Sarah E.; Turner, Richard L.

    2010-01-01

    Pagurus maclaughlinae is the most common hermit in the Indian River Lagoon System. Wide variations in lagoonal salinity make it likely that P. maclaughlinae is euryhaline and that other hermit species in the area are more stenohaline, at least in some stages of their life histories. In a study of salinity tolerance, crabs were held unfed at salinities of 5-50 (25 control) for up to 30 days. Based on survivorship curves, P. maclaughlinae tolerated acute exposure to salinities of 10-45 for up to 18 days, and survivorship up to 30 days at 20-45 equaled or exceeded survivorship of the control. In a study of acclimation, the osmotic pressure of hemolymph was measured after crabs were held in the laboratory for 12, 48, and 96 h acutely exposed to salinities of 10-45. Paired t-tests revealed that the crabs weakly hyperregulated their hemolymph at 45-154 mOsmol above the external medium at all salinities and sampling times, and the osmotic differential of their hemolymph was fully acclimated by 96 h. In a third study, acclimatization of hemolymph was studied on crabs at four field sites that differed in their recent salinity histories. Field-collected crabs weakly regulated their hemolymph 72-84 mOsmol above the external medium at all sites sampled. Performance did not differ by site. The range of salinity tolerance and acclimation of hemolymph of P. maclaughlinae partly explain their wide distribution, and the consistent osmotic differential of its hemolymph indicates that the osmoregulatory ability of this small-bodied species is conserved in populations throughout the lagoon. Although some other larger-bodied hermit species in the region are euryhaline as adults, their tendency to hyperregulate strongly at low salinities possibly adds an energetic burden that, along with their less euryhaline long-lived larvae, might exclude them from the lagoon. Salinity tolerance of larval P. maclaughlinae has yet to be studied.

  19. Salinity affects compositional traits of epibacterial communities on the brown macroalga Fucus vesiculosus.

    PubMed

    Stratil, Stephanie B; Neulinger, Sven C; Knecht, Henrik; Friedrichs, Anette K; Wahl, Martin

    2014-05-01

    Epibiotic biofilms have the potential to control major aspects of the biology and ecology of their hosts. Their composition and function may thus be essential for the health of the host. We tested the influence of salinity on the composition of epibacterial communities associated with the brown macroalga Fucus vesiculosus. Algal individuals were incubated at three salinities (5, 19, and 25) for 14 days and nonliving reference substrata (stones) were included in the experiment. Subsequently, the composition of their surface-associated bacterial communities was analyzed by 454 pyrosequencing of 16S rRNA gene sequences. Redundancy analysis revealed that the composition of epiphytic and epilithic communities significantly differed and were both affected by salinity. We found that 5% of 2494 epiphytic operational taxonomic units at 97% sequence similarity were responsible for the observed shifts. Epibacterial α-diversity was significantly lower at salinity 5 but did not differ between substrata. Our results indicate that salinity is an important factor in structuring alga-associated epibacterial communities with respect to composition and/or diversity. Whether direct or indirect mechanisms (via altered biotic interactions) may have been responsible for the observed shifts is discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    PubMed

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  1. Effect of salinity on regulation mechanism of neuroendocrine-immunoregulatory network in Litopenaeus vannamei.

    PubMed

    Zhao, Qun; Pan, Luqing; Ren, Qin; Wang, Lin; Miao, Jingjing

    2016-02-01

    The effects of low salinity (transferred from 31‰ to 26‰, 21‰, and 16‰) on the regulation pathways of neuroendocrine-immunoregulatory network were investigated in Litopenaeus vannamei. The results showed that the hormones (corticotrophin-releasing hormone, adrenocorticotropic hormone) and biogenic amines (dopamine, noradrenaline, 5-hydroxytryptamine) concentrations in lower salinity groups increased significantly within 12 h. The gene expression of biogenic amine receptors showed that dopamine receptor D4 and α2 adrenergic receptor in lower salinity groups decreased significantly within 12 h, whereas the 5-HT7 receptor significantly increased within 1d. The second messenger synthetases (adenylyl cyclase, phospholipase C) and the second messengers (cyclic adenosine monophosphate, cyclic guanosine monophosphate) of lower salinity groups shared a similar trend in which adenylyl cyclase and cyclic adenosine monophosphate reached the maximum at 12 h, whereas phospholipase C and cyclic guanosine monophosphate reached the minimum. The immune parameters (total hemocyte count, phenoloxidase activity, phagocytic activity, crustin expression, antibacterial activity, C-type lectin expression, hemagglutinating activity) in lower salinity groups decreased significantly within 12 h. Except for the total hemocyte count, all the parameters recovered to the control levels afterwards. Therefore, it may be concluded that the neuroendocrine-immunoregulatory network plays a principal role in adapting to salinity changes as the main center for sensing the stress and causes immune response in L. vannamei. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis.

    PubMed

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-02-15

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effects of Methane-Rich Saline on the Capability of One-Time Exhaustive Exercise in Male SD Rats

    PubMed Central

    Xin, Lei; Sun, Xuejun; Lou, Shujie

    2016-01-01

    Purpose To explore the effects of methane-rich saline (CH4 saline) on the capability of one-time exhaustive exercise in male SD rats. Methods Thirty rats were equally divided into to three groups at random: control group (C), placebo group (P) and methane saline group (M). Rats in M group underwent intraperitoneal injection of CH4 saline, and the other two groups simultaneously underwent intraperitoneal injection of normal saline. Then, the exercise capability of rats was tested through one-time exhaustive treadmill exercise except C group. Exercise time and body weight were recorded before and after one-time exhaustive exercise. After exhaustive exercise, the blood and gastrocnemius samples were collected from all rats to detect biochemical parameters in different methods. Results It was found that the treadmill running time was significantly longer in rats treated with CH4 saline. At the same time, CH4 saline reduced the elevation of LD and UN in blood caused by one-time exhaustive exercise. The low level of blood glucose induced by exhaustive exercise was also normalized by CH4 saline. Also CH4 saline lowered the level of CK in plasma. Furthermore, this research indicated that CH4 saline markedly increased the volume of T-AOC in plasma and alleviated the peak of TNF-α in both plasma and gastrocnemius. From H&E staining, CH4 saline effectively improved exercise-induced structural damage in gastrocnemius. Conclusions CH4 saline could enhance exercise capacity in male SD rats through increase of glucose aerobic oxidation, improvement of metabolic clearance and decrease of exhaustive exercise-induced gastrocnemius injury. PMID:26942576

  4. Simplified spatiotemporal electromagnetic induction - salinity multi-field calibration

    USDA-ARS?s Scientific Manuscript database

    Salinity-affected farmlands are common in arid and semi-arid regions. To assure long-term sustainability of farming practices in these areas, soil salinity (ECe) should be routinely mapped and monitored. Salinity can be measured through soil sampling directed by geospatial measurements of apparent s...

  5. Characterization and Expression of Glutamate Dehydrogenase in Response to Acute Salinity Stress in the Chinese Mitten Crab, Eriocheir sinensis

    PubMed Central

    Wang, Yueru; Li, Erchao; Yu, Na; Wang, Xiaodan; Cai, Chunfang; Tang, Boping; Chen, Liqiao; Van Wormhoudt, Alain

    2012-01-01

    Background Glutamate dehydrogenase (GDH) is a key enzyme for the synthesis and catabolism of glutamic acid, proline and alanine, which are important osmolytes in aquatic animals. However, the response of GDH gene expression to salinity alterations has not yet been determined in macro-crustacean species. Methodology/Principal Findings GDH cDNA was isolated from Eriocheir sinensis. Then, GDH gene expression was analyzed in different tissues from normal crabs and the muscle of crabs following transfer from freshwater (control) directly to water with salinities of 16‰ and 30‰, respectively. Full-length GDH cDNA is 2,349 bp, consisting of a 76 bp 5′- untranslated region, a 1,695 bp open reading frame encoding 564 amino acids and a 578 bp 3′- untranslated region. E. sinensis GDH showed 64–90% identity with protein sequences of mammalian and crustacean species. Muscle was the dominant expression source among all tissues tested. Compared with the control, GDH expression significantly increased at 6 h in crabs transferred to 16‰ and 30‰ salinity, and GDH expression peaked at 48 h and 12 h, respectively, with levels approximately 7.9 and 8.5 fold higher than the control. The free amino acid (FAA) changes in muscle, under acute salinity stress (16‰ and 30‰ salinities), correlated with GDH expression levels. Total FAA content in the muscle, which was based on specific changes in arginine, proline, glycine, alanine, taurine, serine and glutamic acid, tended to increase in crabs following transfer to salt water. Among these, arginine, proline and alanine increased significantly during salinity acclimation and accounted for the highest proportion of total FAA. Conclusions E. sinensis GDH is a conserved protein that serves important functions in controlling osmoregulation. We observed that higher GDH expression after ambient salinity increase led to higher FAA metabolism, especially the synthesis of glutamic acid, which increased the synthesis of proline and

  6. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland

    NASA Astrophysics Data System (ADS)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.

    2018-02-01

    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter conditions. To understand better the mechanisms that control surface-subsurface salinity exchanges during regional dry-wet climate cycles, we made a detailed geoelectrical study of a closed-basin prairie wetland (P1 in the Cottonwood Lake Study Area, North Dakota) that is currently experiencing record wet conditions. We found saline lenses of sulfate-rich porewater (TDS > 10 g L-1) contained in fine-grained wetland sediments 2-4 m beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand (c. 1983). During the most recent drought (1988-1993), the wetland switched from a groundwater discharge to recharge function, allowing salts dissolved in surface runoff to move into wetland sediments beneath the bathymetric low of the basin. However, groundwater levels during this time did not decline to the elevation of the saline lenses, suggesting these features formed during more extended paleo-droughts and are stable in the subsurface on at least centennial timescales. We hypothesize a "drought-induced recharge" mechanism that allows wetland ponds to maintain moderate salinity under semiarid climate. Discharge of drought-derived saline groundwater has the potential to increase the salinity of wetland ponds during wet climate.

  7. Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility

    NASA Technical Reports Server (NTRS)

    Neumann, P. M.; Van Volkenburgh, E.; Cleland, R. E.

    1988-01-01

    Treatment of bean (Phaseolus vulgaris L.) seedlings with low levels of salinity (50 or 100 millimolar NaCl) decreased the rate of light-induced leaf cell expansion in the primary leaves over a 3 day period. This decrease could be due to a reduction in one or both of the primary cellular growth parameters: wall extensibility and cell turgor. Wall extensibility was assessed by the Instron technique. Salinity did not decrease extensibility and caused small increases relative to the controls after 72 hours. On the other hand, 50 millimolar NaCl caused a significant reduction in leaf bulk turgor at 24 hours; adaptive decreases in leaf osmotic potential (osmotic adjustment) were more than compensated by parallel decreases in xylem tension potential and the leaf apoplastic solute potential, resulting in a decreased leaf water potential. It is concluded that in bean seedlings, mild salinity initially affects leaf growth rate by a decrease in turgor rather than by a reduction in wall extensibility. Moreover, long-term salinization (10 days) resulted in an apparent mechanical adjustment, i.e. an increase in wall extensibility, which may help counteract reductions in turgor and maintain leaf growth rates.

  8. Salinity signature of the Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Salo, Sigrid; Adams, Jennifer Miletta

    Three sites in the North Pacific have temperature and salinity observations in most months for several years before and after 1977. The Gulf of Alaska station (57°N, 148°W) showed a 2°C warming and a 0.6 freshening in salinity at 10 m depth in the 1980s compared to the 1970s. OWS PAPA (50°N, 145°W) and PAPA line station 7 (49.1°N, 132.4°W) show warming of 0.6°C and 0.9°C, with no major salinity change. The decrease in density and increase in stratification in the Gulf of Alaska after 1977 corresponds primarily to a decrease in salinity in the upper 150 m. We propose that while the Pacific Decadal Oscillation has an east/west character in temperature, the salinity signature will have a NNW/SSE character, similar to the pattern of interannual variability in precipitation.

  9. Analysis of environmental factors influencing salinity patterns, oyster growth, and mortality in lower Breton Sound Estuary, Louisiana using 20 years of data

    USGS Publications Warehouse

    LaPeyre, Megan K.; Geaghan, James; Decossas, Gary A.; La Peyre, Jerome F.

    2016-01-01

    Freshwater inflow characteristics define estuarine functioning by delivering nutrients, sediments, and freshwater, which affect biological resources and ultimately system production. Using 20 years of water quality, weather, and oyster growth and mortality data from Breton Sound Estuary (BSE), Louisiana, we examined the relationship of riverine, weather, and tidal influence on estuarine salinity, and the relationship of salinity to oyster growth and mortality. Mississippi River discharge was found to be the most important factor determining salinity patterns over oyster grounds within lower portions of BSE, with increased river flow associated with lowered salinities, while easterly winds associated with increased salinity were less influential. These patterns were consistent throughout the year. Salinity and temperature (season) were found to critically control oyster growth and mortality, suggesting that seasonal changes to river discharge affecting water quality over the oyster grounds have profound impacts on oyster populations. The management of oyster reefs in estuaries (such as BSE) requires an understanding of how estuarine hydrodynamics and salinity are influenced by forcing factors such as winds, river flow, and by the volume, timing, and location of controlled releases of riverine water.

  10. [PROTEOMIC ANALYSIS OF ADAPTIVE MECHANISMS TO SALINITY STRESS IN MARINE GASTROPODS LITTORINA SAXATILIS].

    PubMed

    Muraeva, O A; Maltseva, A L; Mikhailova, N A; Granovitch, A I

    2015-01-01

    Salinity is one of the most important abiotic environmental factors affecting marine animals. If salinity deviate from optimum, adaptive mechanisms switch on to maintain organism's physiological activity. In this study, the reaction of the snails Littorina saxatilis from natural habitats and in response to experimental salinity decreasing was analyzed on proteomic level. The isolation of all snails inside their shells and gradually declining mortality was observed under acute experimental salinity decrease (down to 10 per hundred). Proteomic changes were evaluated in the surviving experimental mollusks compared to control individual using differential 2D gel-electrophoresis (DIGE) and subsequent LC-MS/MS-identification of proteins. Approximately 10% of analyzed proteins underwent up- or down regulation during the experiment. Proteins of folding, antioxidant response, intercellular matrix, cell adhesion, cell signaling and metabolic enzymes were identified among them. Proteome changes observed in experimental hypoosmotic stress partially reproduced in the proteomes of mollusks that live in conditions of natural freshening (estuaries). Possible mechanisms involved in the adaptation process of L. saxatilis individuals to hypo-osmotic stress are discussed.

  11. Salinity tolerance ecophysiology of Equisetum giganteum in South America: a study of 11 sites providing a natural gradient of salinity stress

    PubMed Central

    Husby, Chad E.; Delatorre, José; Oreste, Vittorio; Oberbauer, Steven F.; Palow, Danielle T.; Novara, Lázaro; Grau, Alfredo

    2011-01-01

    Background and aims The basic set of adaptations necessary for salinity tolerance in vascular plants remains unknown. Although much has been published on salinity stress, almost all studies deal with spermatophytes. Studies of salinity tolerance in pteridophytes are relatively rare but hold promise for revealing the fundamental adaptations that all salt-tolerant vascular plants may share. The most basal pteridophytes to exhibit salinity tolerance are members of the genus Equisetum, including the giant horsetail, Equisetum giganteum, the only pteridophyte to occur in salinity-affected regions of the Atacama Desert valleys of northern Chile. Here it can constitute a significant vegetation component, forming dense stands of shoots >4 m high. Methodology Physiological parameters (stomatal conductances; efficiency of photosystem II; sap osmotic potential) were measured in E. giganteum populations in northern Chile across a range of groundwater salinities at 11 sites. In addition, Na, K, electrical conductivity and total plant water potential were measured in the plants and groundwater from each site. Principal results Equisetum giganteum exhibits similar stomatal conductances and photochemical efficiencies of photosystem II across a wide range of groundwater salinities. It lowers cell sap osmotic potential with increasing salinity and produces positive root pressure, as evidenced by guttation, at the full range of salinities experienced in the Atacama Desert. Equisetum giganteum maintains low Na concentrations in its xylem fluid and cell sap when soil water Na is high. It also maintains high K/Na ratios in xylem fluid and cell sap when soil water has low K/Na ratios. Conclusions Equisetum giganteum is well adapted to salinity stress. Efficient K uptake and Na exclusion are important adaptations and closely similar to those of the facultative halophyte fern Acrostichum aureum. PMID:22476492

  12. Construing Morality at High versus Low Levels Induces Better Self-control, Leading to Moral Acts

    PubMed Central

    Wu, Chia-Chun; Wu, Wen-Hsiung; Chiou, Wen-Bin

    2017-01-01

    Human morality entails a typical self-control dilemma in which one must conform to moral rules or socially desirable norms while exerting control over amoral, selfish impulses. Extant research regarding the connection between self-control and level of construal suggest that, compared with a low-level, concrete construal (highlighting means and resources, e.g., answering ‘how’ questions), a high-level, abstract construal (highlighting central goals, e.g., answering ‘why’ questions) promotes self-control. Hence, construing morality at higher levels rather than lower levels should engender greater self-control and, it follows, promote a tendency to perform moral acts. We conducted two experiments to show that answering “why” (high-level construal) vs. “how” (low-level construal) questions regarding morality was associated with a situational state of greater self-control, as indexed by less Stroop interference in the Stroop color-naming task (Experiments 1 and 2). Participants exposed to “why” questions regarding morality displayed a greater inclination for volunteerism (Experiment 1), showed a lower tendency toward selfishness in a dictator game (Experiment 2), and were more likely to return undeserved money (Experiment 2) compared with participants exposed to “how” questions regarding morality. In both experiments, self-control mediated the effect of a high-level construal of morality on dependent measures. The current research constitutes a new approach to promoting prosociality and moral education. Reminding people to think abstractly about human morality may help them to generate better control over the temptation to benefit from unethical acts and make it more likely that they will act morally. PMID:28680415

  13. Construing Morality at High versus Low Levels Induces Better Self-control, Leading to Moral Acts.

    PubMed

    Wu, Chia-Chun; Wu, Wen-Hsiung; Chiou, Wen-Bin

    2017-01-01

    Human morality entails a typical self-control dilemma in which one must conform to moral rules or socially desirable norms while exerting control over amoral, selfish impulses. Extant research regarding the connection between self-control and level of construal suggest that, compared with a low-level, concrete construal (highlighting means and resources, e.g., answering 'how' questions), a high-level, abstract construal (highlighting central goals, e.g., answering 'why' questions) promotes self-control. Hence, construing morality at higher levels rather than lower levels should engender greater self-control and, it follows, promote a tendency to perform moral acts. We conducted two experiments to show that answering "why" (high-level construal) vs. "how" (low-level construal) questions regarding morality was associated with a situational state of greater self-control, as indexed by less Stroop interference in the Stroop color-naming task (Experiments 1 and 2). Participants exposed to "why" questions regarding morality displayed a greater inclination for volunteerism (Experiment 1), showed a lower tendency toward selfishness in a dictator game (Experiment 2), and were more likely to return undeserved money (Experiment 2) compared with participants exposed to "how" questions regarding morality. In both experiments, self-control mediated the effect of a high-level construal of morality on dependent measures. The current research constitutes a new approach to promoting prosociality and moral education. Reminding people to think abstractly about human morality may help them to generate better control over the temptation to benefit from unethical acts and make it more likely that they will act morally.

  14. The Controlled Substances Act: how a "big tent" reform became a punitive drug law.

    PubMed

    Courtwright, David T

    2004-10-05

    The 1970 Controlled Substances Act was part of an omnibus reform package designed to rationalize, and in some respects to liberalize, American drug policy. While the legislation provided additional resources for law enforcement and a systematic means for regulating the use of most psychoactive drugs, it also did away with mandatory minimum sentences and provided more support for treatment and research. Over the next three decades, and in response to public alarm about drug abuse, the US Congress continuously amended the law to produce a more punitive system of drug control. The amendments, which gave the Drug Enforcement Administration greater control over scheduling and maintenance and which substantially increased penalties for illicit trafficking, transformed the law into the legal foundation of America's "drug war," as the stricter criminal approach came to be known. By the 1980s, the flexibility and innovative spirit of the original Controlled Substances Act (and that of Nixon-era drug strategy generally) had largely disappeared from American drug policy.

  15. Salinity tolerance of non-native suckermouth armoured catfish (Loricariidae: Pterygoplichthys sp.) from Kerala, India

    USGS Publications Warehouse

    Kumar, A. Biju; Schofield, Pam; Raj, Smrithy; Satheesh, Sima

    2018-01-01

    Loricariid catfishes of the genus Pterygoplichthys are native to South America and have been introduced in many localities around the world. They are freshwater fishes, but may also use low-salinity habitats such as estuaries for feeding or dispersal. Here we report results of a field survey and salinity-tolerance experiments for a population of Pterygoplichthys sp. collected in Kerala, India. In both chronic and acute salinity-tolerance trials, fish were able to withstand salinities up to 12 ppt with no mortality; however, fish transferred to salinities > 12 ppt did not survive. The experimental results provide evidence that nonnative Pterygoplichthys sp. are able to tolerate mesohaline conditions for extended periods, and can easily invade the brackish water ecosystems of the state. Further, Pterygoplichthys sp. from Kerala have greater salinity tolerance than other congeners. These data are vital to predicting the invasion of non-native fishes such as Pterygoplichthys spp. into coastal systems in Kerala and worldwide. This is particularly important as estuarine ecosystems are under threat of global climate change and sea-level rise. In light of the results of the present study and considering the reports of negative impacts of the species in invaded water bodies, management authorities may consider controlling populations and/or instituting awareness programmes to prevent the spread of this nuisance aquatic invasive species in Kerala.

  16. Effects of Salinity on Oil Spill Dispersant Toxicity in Estuarine Organisms

    NASA Astrophysics Data System (ADS)

    Eckmann, C. A.

    2016-02-01

    Chemical dispersants can be a useful tool to mitigate oil spills, but the potential risks to sensitive estuarine species should be carefully considered. To improve the decision making process, more information is needed regarding the effects of oil spill dispersants on the health of coastal ecosystems under variable environmental conditions such as salinity. The two oil dispersants used in this study were Corexit ® 9500 and Finasol ® OSR 52. Corexit ® 9500 was the primary dispersant used during the 2010 Deepwater Horizon oil spill event, while Finasol® OSR 52 is another dispersant approved for oil spill response in the U.S., yet considerably less is known regarding its toxicity to estuarine species. The grass shrimp, Palaemonetes pugio, was used as a model estuarine species. It is a euryhaline species that tolerates salinities from brackish to full strength seawater. Adult and larval life stages were tested with each dispersant at three salinities, 5ppt, 20ppt, and 30ppt. Median acute lethal toxicity thresholds were calculated. Lipid peroxidation assays were conducted on surviving shrimp to investigate sublethal effects. The toxicity of both dispersants was significantly influenced by salinity, with greatest toxicity observed at the lowest salinity tested. Larval shrimp were significantly more sensitive than adult shrimp to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Furthermore, significant sublethal effects were seen at higher concentrations of both dispersants compared to the control. These data will enable environmental managers to make informed decisions regarding dispersant use in future oil spills.

  17. Effects of Salinity on Oil Spill Dispersant Toxicity in Estuarine Organisms

    NASA Astrophysics Data System (ADS)

    Eckmann, C. A.

    2015-12-01

    Chemical dispersants can be a useful tool to mitigate oil spills, but the potential risks to sensitive estuarine species should be carefully considered. To improve the decision making process, more information is needed regarding the effects of oil spill dispersants on the health of coastal ecosystems under variable environmental conditions such as salinity. The two oil dispersants used in this study were Corexit ® 9500 and Finasol ® OSR 52. Corexit ® 9500 was the primary dispersant used during the 2010 Deepwater Horizon oil spill event, while Finasol® OSR 52 is another dispersant approved for oil spill response in the U.S., yet considerably less is known regarding its toxicity to estuarine species. The grass shrimp, Palaemonetes pugio, was used as a model estuarine species. It is a euryhaline species that tolerates salinities from brackish to full strength seawater. Adult and larval life stages were tested with each dispersant at three salinities, 5ppt, 20ppt, and 30ppt. Median acute lethal toxicity thresholds were calculated. Lipid peroxidation assays were conducted on surviving shrimp to investigate sublethal effects. The toxicity of both dispersants was significantly influenced by salinity, with greatest toxicity observed at the lowest salinity tested. Larval shrimp were significantly more sensitive than adult shrimp to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Furthermore, significant sublethal effects were seen at higher concentrations of both dispersants compared to the control. These data will enable environmental managers to make informed decisions regarding dispersant use in future oil spills.

  18. The partial root-zone saline irrigation system and antioxidant responses in tomato plants.

    PubMed

    Alves, Rita de Cássia; de Medeiros, Ana Santana; Nicolau, Mayara Cristina Malvas; Neto, Antônio Pizolato; de Assis Oliveira, Francisco; Lima, Leonardo Warzea; Tezotto, Tiago; Gratão, Priscila Lupino

    2018-06-01

    Salinity is a limiting factor that can affect plant growth and cause significant losses in agricultural productivity. This study provides an insight about the viability of partial root-zone irrigation (PRI) system with saline water supported by a biochemical approach involving antioxidant responses. Six different irrigation methods using low and high salt concentrations (S1-0.5 and S2-5.0 dS m -1 ) were applied, with or without PRSI, so that one side of the root-zone was submitted to saline water while the other side was low salinity water irrigated. The results revealed different responses according to the treatments and the PRSI system applied. For the treatments T1, T2 and T3, the PRSI was not applied, while T4, T5 and T6 treatments were applied with PRSI system. Lipid peroxidation, proline content, and activities of SOD, CAT, APX, GR and GSH in tomato plants subjected to PRSI system were analyzed. Plant growth was not affected by the salt concentrations; however, plants submitted to high salt concentrations showed high MDA content and Na + accumulation when compared to the control plants. Plants submitted to treatments T4, T5 and T6 with PRSI system exhibited lower MDA compared to the control plants (T1). Proline content and activities of SOD, CAT, APX, GR and GSH content were maintained in all treatments and tissues analyzed, with only exception for APX in fruits and GSH content, in roots. The overall results showed that PRSI system could be an applicable technique for saline water supply on irrigation since plants did not show to be vulnerable to salt stress, supported by a biochemical approach involving antioxidant responses. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Final ACT configuration evaluation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Final ACT Configuration Evaluation Task of the Integrated Application of Active Controls (IAAC) technology project within the energy efficient transport program is summarized. The Final ACT Configuration, through application of Active Controls Technology (ACT) in combination with increased wing span, exhibits significant performance improvements over the conventional baseline configuration. At the design range for these configurations, 3590 km, the block fuel used is 10% less for the Final ACT Configuration, with significant reductions in fuel usage at all operational ranges. Results of this improved fuel usage and additional system and airframe costs and the complexity required to achieve it were analyzed to determine its economic effects. For a 926 km mission, the incremental return on investment is nearly 25% at 1980 fuel prices. For longer range missions or increased fuel prices, the return is greater. The technical risks encountered in the Final ACT Configuration design and the research and development effort required to reduce these risks to levels acceptable for commercial airplane design are identified.

  20. Glutamate dehydrogenase and Na+-K+ ATPase expression and growth response of Litopenaeus vannamei to different salinities and dietary protein levels

    NASA Astrophysics Data System (ADS)

    Li, Erchao; Arena, Leticia; Lizama, Gabriel; Gaxiola, Gabriela; Cuzon, Gerard; Rosas, Carlos; Chen, Liqiao; van Wormhoudt, Alain

    2011-03-01

    Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture. The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp ( L. vannamei) were investigated. This involved an examination of growth performance, glutamate dehydrogenase (GDH) and Na+-K+ ATPase mRNA expression,, and GDH activity in muscles and gills. Three experimental diets were formulated, containing 25%, 40%, and 50% dietary protein, and fed to the shrimp at a salinity of 25. After 20 days, no significant difference was observed in weight gain, though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels. Subsequently, shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5, respectively, and sampled at weeks 1 and 2. Shrimp fed with 40% protein at 25 in salinity (optimal conditions) were used as a control. Regardless of the salinities, shrimp fed with 50% dietary protein had significantly higher growth performance than other diets; no significant differences were found in comparison with the control. Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks. Ambient salinity change also stimulated the hepatosomatic index, which increased in the first week and then recovered to a relatively normal level, as in the control, after 2 weeks. These findings indicate that in white shrimp, the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism. Increased dietary protein level could improve the osmoregulation capacity of L. vannamei with more energy resources allocated to GDH activity and expression.

  1. Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions

    PubMed Central

    Nguyen, Hoa T.; Stanton, Daniel E.; Schmitz, Nele; Farquhar, Graham D.; Ball, Marilyn C.

    2015-01-01

    Background and Aims Halophytic eudicots are characterized by enhanced growth under saline conditions. This study combines physiological and anatomical analyses to identify processes underlying growth responses of the mangrove Avicennia marina to salinities ranging from fresh- to seawater conditions. Methods Following pre-exhaustion of cotyledonary reserves under optimal conditions (i.e. 50 % seawater), seedlings of A. marina were grown hydroponically in dilutions of seawater amended with nutrients. Whole-plant growth characteristics were analysed in relation to dry mass accumulation and its allocation to different plant parts. Gas exchange characteristics and stable carbon isotopic composition of leaves were measured to evaluate water use in relation to carbon gain. Stem and leaf hydraulic anatomy were measured in relation to plant water use and growth. Key Results Avicennia marina seedlings failed to grow in 0–5 % seawater, whereas maximal growth occurred in 50–75 % seawater. Relative growth rates were affected by changes in leaf area ratio (LAR) and net assimilation rate (NAR) along the salinity gradient, with NAR generally being more important. Gas exchange characteristics followed the same trends as plant growth, with assimilation rates and stomatal conductance being greatest in leaves grown in 50–75 % seawater. However, water use efficiency was maintained nearly constant across all salinities, consistent with carbon isotopic signatures. Anatomical studies revealed variation in rates of development and composition of hydraulic tissues that were consistent with salinity-dependent patterns in water use and growth, including a structural explanation for low stomatal conductance and growth under low salinity. Conclusions The results identified stem and leaf transport systems as central to understanding the integrated growth responses to variation in salinity from fresh- to seawater conditions. Avicennia marina was revealed as an obligate halophyte

  2. The Photosynthesis, Na+/K+ Homeostasis and Osmotic Adjustment of Atriplex canescens in Response to Salinity

    PubMed Central

    Pan, Ya-Qing; Guo, Huan; Wang, Suo-Min; Zhao, Bingyu; Zhang, Jin-Lin; Ma, Qing; Yin, Hong-Ju; Bao, Ai-Ke

    2016-01-01

    Atriplex canescens (fourwing saltbush) is a C4 perennial fodder shrub with excellent resistance to salinity. However, the mechanisms underlying the salt tolerance in A. canescens are poorly understood. In this study, 5-weeks-old A. canescens seedlings were treated with various concentrations of external NaCl (0–400 mM). The results showed that the growth of A. canescens seedlings was significantly stimulated by moderate salinity (100 mM NaCl) and unaffected by high salinity (200 or 400 mM NaCl). Furthermore, A. canescens seedlings showed higher photosynthetic capacity under NaCl treatments (except for 100 mM NaCl treatment) with significant increases in net photosynthetic rate and water use efficiency. Under saline conditions, the A. canescens seedlings accumulated more Na+ in either plant tissues or salt bladders, and also retained relatively constant K+ in leaf tissues and bladders by enhancing the selective transport capacity for K+ over Na+ (ST value) from stem to leaf and from leaf to bladder. External NaCl treatments on A. canescens seedlings had no adverse impact on leaf relative water content, and this resulted from lower leaf osmotic potential under the salinity conditions. The contribution of Na+ to the leaf osmotic potential (Ψs) was sharply enhanced from 2% in control plants to 49% in plants subjected to 400 mM NaCl. However, the contribution of K+ to Ψs showed a significant decrease from 34% (control) to 9% under 400 mM NaCl. Interestingly, concentrations of betaine and free proline showed significant increase in the leaves of A. canescens seedlings, these compatible solutes presented up to 12% of contribution to Ψs under high salinity. These findings suggest that, under saline environments, A. canescens is able to enhance photosynthetic capacity, increase Na+ accumulation in tissues and salt bladders, maintain relative K+ homeostasis in leaves, and use inorganic ions and compatible solutes for osmotic adjustment which may contribute to the

  3. 7 CFR 1425.24 - OMB control number assigned pursuant to Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARKETING ASSOCIATIONS § 1425.24 OMB control number assigned pursuant to Paperwork Reduction Act. The... Office of Management and Budget (OMB) under the provisions of 44 U.S.C. Chapter 35 and have been assigned...

  4. [Soil sandy desertification and salinization and their interrelationships in Yanghuang irrigated area of Hongsipu, Ningxia of northwest China].

    PubMed

    Yang, Xin-guo; Song, Nai-ping

    2011-09-01

    By the methods of controlled and typical sampling, this paper analyzed the texture, salinization characteristics, cation exchange capacity (CEC), and their correlations in the 0-40 cm soil profiles of corn land, medlar land, and non-utilized land in Yanghuang irrigated area of Hongsipu, Northwest China. Under controlled sampling, the salt content in the soil profiles was 0.69-1.30 g x kg(-1) (except in non-utilized land where the 0-10 cm soil salt content was up to 1.74 g x kg(-1)), with no obvious salinization. The sodium adsorption ratio and exchangeable sodium percentage in the 20-40 cm soil layer of medlar land were 12.18 and 14.1%, respectively, and the total content of clay and silt in the 0-40 cm soil profile of medlar land was up to 37.3% whereas that in the 0-20 cm soil layer of corn land was only 13.5%. In the 20-40 cm soil layer of corn land, the indices of sandy desertification and salinization had significant correlations under controlled sampling but no correlations under typical sampling, while the CEC and the sandy desertification and salinization indices had significant correlations under typical sampling. In different land use types in the study area, soil sandy desertification and salinization had complicated interrelationships, and CEC could be used as the indicator for the changes in soil environmental quality.

  5. Testing the effects of long-acting steroids in edema and ecchymosis after closed rhinoplasty

    PubMed Central

    Gutierrez, Santiago; Wuesthoff, Carolina

    2014-01-01

    BACKGROUND: Steroids have proven to be of some benefit in rhinoplasty edema and ecchymosis when administered at a high and repeated dose. OBJECTIVE: To evaluate the effects of single-dose, long-acting intramuscular steroids on postoperative edema and ecchymosis after closed rhinoplasty with osteotomies compared with placebo. METHODS: A randomized, double-blinded, placebo-controlled trial was performed. Fifty-four patients were randomly assigned to two groups: 28 received a single dose of long-acting dexamethasone (mean [± SD] dose 16±4 mg) immediately before anesthetic induction; the remaining 26 received an intramuscular injection of saline solution. The same surgeon performed all surgeries, with patients under general anesthesia. Acetaminophen was the only analgesic used to control postoperative pain. High-resolution digital photographs were taken on postoperative days 1, 3, 7 and 14. Scoring was performed separately for eyelid swelling and ecchymosis by an independent observer using a graded scale (0 to 5) for edema and a scoring system (0 to 13) for ecchymosis. RESULTS: No statistically significant differences in terms of age, sex or amount of bleeding during surgery were found between the two groups. No statistically significant difference was observed in the decrease of both ecchymosis and edema between placebo and high-dose, long-acting dexamethasone. A statistically significant difference in operation time was found, favouring the steroid group. No severe complications were observed due to steroid use. DISCUSSION: Osteotomies are basically a form of (controlled) trauma, with considerable disruption of the abundant blood vessels in this facial region and, therefore, are associated with with undesirable effects. A recent meta-analysis failed to show benefits of the use of steroids after postoperative day 3. Only a trend toward reduction in edema and ecchymosis with the use of long-acting steroids compared with placebo was demonstrated in the present study

  6. 29 CFR 1904.45 - OMB control numbers under the Paperwork Reduction Act

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false OMB control numbers under the Paperwork Reduction Act 1904.45 Section 1904.45 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR RECORDING AND REPORTING OCCUPATIONAL INJURIES AND ILLNESSES Transition From...

  7. 29 CFR 1904.45 - OMB control numbers under the Paperwork Reduction Act

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false OMB control numbers under the Paperwork Reduction Act 1904.45 Section 1904.45 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR RECORDING AND REPORTING OCCUPATIONAL INJURIES AND ILLNESSES Transition From...

  8. 29 CFR 1904.45 - OMB control numbers under the Paperwork Reduction Act

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false OMB control numbers under the Paperwork Reduction Act 1904.45 Section 1904.45 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR RECORDING AND REPORTING OCCUPATIONAL INJURIES AND ILLNESSES Transition From...

  9. 29 CFR 1904.45 - OMB control numbers under the Paperwork Reduction Act

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false OMB control numbers under the Paperwork Reduction Act 1904.45 Section 1904.45 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR RECORDING AND REPORTING OCCUPATIONAL INJURIES AND ILLNESSES Transition From...

  10. 29 CFR 1915.8 - OMB control numbers under the Paperwork Reduction Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false OMB control numbers under the Paperwork Reduction Act. 1915.8 Section 1915.8 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT...

  11. 29 CFR 1915.8 - OMB control numbers under the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false OMB control numbers under the Paperwork Reduction Act. 1915.8 Section 1915.8 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT...

  12. 46 CFR 147.8 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 147.8 Section 147.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.8 OMB control numbers assigned pursuant...

  13. 46 CFR 147.8 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 147.8 Section 147.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.8 OMB control numbers assigned pursuant...

  14. 46 CFR 150.105 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 150.105 Section 150.105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.105 OMB control numbers assigned pursuant to...

  15. 46 CFR 150.105 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 150.105 Section 150.105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.105 OMB control numbers assigned pursuant to...

  16. 46 CFR 147.8 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 147.8 Section 147.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.8 OMB control numbers assigned pursuant...

  17. 46 CFR 150.105 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 150.105 Section 150.105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.105 OMB control numbers assigned pursuant to...

  18. 46 CFR 147.8 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 147.8 Section 147.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.8 OMB control numbers assigned pursuant...

  19. 46 CFR 150.105 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 150.105 Section 150.105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.105 OMB control numbers assigned pursuant to...

  20. 46 CFR 150.105 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 150.105 Section 150.105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.105 OMB control numbers assigned pursuant to...

  1. 46 CFR 147.8 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 147.8 Section 147.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.8 OMB control numbers assigned pursuant...

  2. 46 CFR 107.05 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 107.05 Section 107.05 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION General § 107.05 OMB control numbers assigned...

  3. 46 CFR 107.05 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 107.05 Section 107.05 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION General § 107.05 OMB control numbers assigned...

  4. 46 CFR 107.05 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 107.05 Section 107.05 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION General § 107.05 OMB control numbers assigned...

  5. 46 CFR 107.05 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 107.05 Section 107.05 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION General § 107.05 OMB control numbers assigned...

  6. 46 CFR 107.05 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 107.05 Section 107.05 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION General § 107.05 OMB control numbers assigned...

  7. Do catheter washouts extend patency time in long-term indwelling urethral catheters? A randomized controlled trial of acidic washout solution, normal saline washout, or standard care.

    PubMed

    Moore, Katherine N; Hunter, Kathleen F; McGinnis, Rosemary; Bacsu, Chasta; Fader, Mandy; Gray, Mikel; Getliffe, Kathy; Chobanuk, Janice; Puttagunta, Lakshmi; Voaklander, Donald C

    2009-01-01

    Blockage of long-term indwelling catheters with mineral deposit is an ongoing management issue, but evidence on optimal management is lacking. Our purpose was to examine whether catheter washouts prevent or reduce catheter blockage. A multisite randomized controlled trial. Adults with long-term indwelling catheters that required changing every 3 weeks or less, living in the community, and requiring supportive or continuing care were recruited. Participants were randomly assigned to 1 of 3 groups: control (usual care, no washout), saline washout, or commercially available acidic washout solution (Contisol Maelor Pharmaceuticals Ltd, Wrexham, UK). At baseline visit, the catheter was changed and participants were followed weekly for 8 weeks, with checks for catheter patency and urine pH. Participants randomized to saline or commercial solution had a weekly washout with the appropriate solution. Endpoints were 8 weeks (completion data), 3 or more catheter changes in the 8-week period, or symptomatic urinary tract infection (UTI) requiring antibiotics. The study hypothesis was that catheter life would be extended by 25% in the commercial solution group. It was not possible to blind participants or research nurses to washout versus no intervention, but participants in the saline and washout solution groups were blinded to solution type. One hundred twelve potential participants were screened; 73 were enrolled, randomized, and included in the final analysis. Of these, 53 completed the full 8 weeks of data collection; 16 terminated early because of 3 catheter changes or self-reported 'UTI'. Other reasons for termination were hematuria, latex sensitivity, deceased/severe illness, or personal choice. Analysis of variance was used to analyze mean differences on demographic variables and mean number of weeks in study. Kaplan-Meier survival curve analysis showed no statistical difference between the groups in time to first catheter change. At this time, the evidence is

  8. Effectiveness of a publicly-funded demonstration program to promote management of dryland salinity.

    PubMed

    Robertson, M J; Measham, T G; Batchelor, G; George, R; Kingwell, R; Hosking, K

    2009-07-01

    to either wait for the information or act sooner and take risks based on initial results. We also found that often it is a clear outline of the process that is of most importance in decision making as opposed to the actual results. We identified limitations in regulatory processes and the capacity for local government to engage in the CDI. The opportunities that CDI-type approaches provide centre around the value of its group-based approach. We conclude that they can overcome knowledge constraints in managing salinity by fostering group-based learning, offer a structured process of trialling options so that the costs and benefits can be clearly and transparently quantified, and avoid the costly mistakes and "learning failures" of the past.

  9. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Test act system validation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of the Test Active Control Technology (ACT) System laboratory tests was to verify and validate the system concept, hardware, and software. The initial lab tests were open loop hardware tests of the Test ACT System as designed and built. During the course of the testing, minor problems were uncovered and corrected. Major software tests were run. The initial software testing was also open loop. These tests examined pitch control laws, wing load alleviation, signal selection/fault detection (SSFD), and output management. The Test ACT System was modified to interface with the direct drive valve (DDV) modules. The initial testing identified problem areas with DDV nonlinearities, valve friction induced limit cycling, DDV control loop instability, and channel command mismatch. The other DDV issue investigated was the ability to detect and isolate failures. Some simple schemes for failure detection were tested but were not completely satisfactory. The Test ACT System architecture continues to appear promising for ACT/FBW applications in systems that must be immune to worst case generic digital faults, and be able to tolerate two sequential nongeneric faults with no reduction in performance. The challenge in such an implementation would be to keep the analog element sufficiently simple to achieve the necessary reliability.

  10. Quantifying the impact of the major driving mechanisms of inter-annual variability of salinity in the North Sea

    NASA Astrophysics Data System (ADS)

    Núñez-Riboni, Ismael; Akimova, Anna

    2017-05-01

    New 67-year long (1948-2014) gridded time series of salinity in the North Sea at all depths allowed to quantify, spatially resolved, the amount of inter-annual salinity variability explained by each of its driving mechanisms: sea level pressure (SLP), precipitation, river run-off, zonal and meridional winds and currents over the eastern North Atlantic. For the current data, not only annual averages but also their deviations, as measure of turbulence, were considered. Our results summarize and expand the knowledge gathered in the last 50 years about the mechanisms driving inter-annual variability of salinity in the North Sea. Three mechanisms, uncorrelated with each other and acting over separate regions of the North Sea, arise as most important: (1) River run-off from continental Europe explains 50-80% of inter-annual salinity variations at lag 0 in the Southern and German Bights and the Norwegian Trench up to the connection with the North Atlantic, down to the seabed near the coasts and to the deep Norwegian Trench (100 m); (2) Remote variations of salinity in the Rockall Trough explain 70% of salinity variations of the tongue of high salinity in the northwestern North Sea with a lag of one year and down the water column; (3) The Neva discharge explains 60% of salinity changes in Skagerrak and southern Norwegian trench at lag 0. An explanation for this correlation might be the Baltic freshwater outflow being modulated by the Neva discharge through intensification of the estuarine gravitational circulation. We confirmed known relations between river run-off, precipitation over continental Europe, SLP over northern Europe and zonal wind over western Europe. Linked to these changes, we found also changes of meridional wind north of Scotland favoring eastward Ekman transport of salty North Atlantic waters into the North Sea off the Norwegian coast. Excluding this only case, we found no significant correlation between wind-driven currents and North Sea salinity changes

  11. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus

    PubMed Central

    Avia, Komlan; Coelho, Susana M.; Montecinos, Gabriel J.; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J. Mark; Boudry, Pierre

    2017-01-01

    Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species. PMID:28256542

  12. Salinity anomaly as a trigger for ENSO events

    PubMed Central

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A.; Marx, Lawrence; Kinter III, James L.

    2014-01-01

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage. PMID:25352285

  13. Salinity anomaly as a trigger for ENSO events.

    PubMed

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  14. Hydraulic redistribution: limitations for plants in saline soils.

    PubMed

    Bazihizina, Nadia; Veneklaas, Erik J; Barrett-Lennard, Edward G; Colmer, Timothy D

    2017-10-01

    Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance. © 2017 John Wiley & Sons Ltd.

  15. Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone

    PubMed Central

    Bazihizina, Nadia

    2012-01-01

    Soil salinity is generally spatially heterogeneous, but our understanding of halophyte physiology under such conditions is limited. The growth and physiology of the dicotyledonous halophyte Atriplex nummularia was evaluated in split-root experiments to test whether growth is determined by: (i) the lowest; (ii) the highest; or (iii) the mean salinity of the root zone. In two experiments, plants were grown with uniform salinities or horizontally heterogeneous salinities (10–450mM NaCl in the low-salt side and 670mM in the high-salt side, or 10mM NaCl in the low-salt side and 500–1500mM in the high-salt side). The combined data showed that growth and gas exchange parameters responded most closely to the root-weighted mean salinity rather than to the lowest, mean, or highest salinity in the root zone. In contrast, midday shoot water potentials were determined by the lowest salinity in the root zone, consistent with most water being taken from the least negative water potential source. With uniform salinity, maximum shoot growth was at 120–230mM NaCl; ~90% of maximum growth occurred at 10mM and 450mM NaCl. Exposure of part of the roots to 1500mM NaCl resulted in an enhanced (+40%) root growth on the low-salt side, which lowered root-weighted mean salinity and enabled the maintenance of shoot growth. Atriplex nummularia grew even with extreme salinity in part of the roots, as long as the root-weighted mean salinity of the root zone was within the 10–450mM range. PMID:23125356

  16. Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone.

    PubMed

    Bazihizina, Nadia; Barrett-Lennard, Edward G; Colmer, Timothy D

    2012-11-01

    Soil salinity is generally spatially heterogeneous, but our understanding of halophyte physiology under such conditions is limited. The growth and physiology of the dicotyledonous halophyte Atriplex nummularia was evaluated in split-root experiments to test whether growth is determined by: (i) the lowest; (ii) the highest; or (iii) the mean salinity of the root zone. In two experiments, plants were grown with uniform salinities or horizontally heterogeneous salinities (10-450 mM NaCl in the low-salt side and 670 mM in the high-salt side, or 10 mM NaCl in the low-salt side and 500-1500 mM in the high-salt side). The combined data showed that growth and gas exchange parameters responded most closely to the root-weighted mean salinity rather than to the lowest, mean, or highest salinity in the root zone. In contrast, midday shoot water potentials were determined by the lowest salinity in the root zone, consistent with most water being taken from the least negative water potential source. With uniform salinity, maximum shoot growth was at 120-230 mM NaCl; ~90% of maximum growth occurred at 10 mM and 450 mM NaCl. Exposure of part of the roots to 1500 mM NaCl resulted in an enhanced (+40%) root growth on the low-salt side, which lowered root-weighted mean salinity and enabled the maintenance of shoot growth. Atriplex nummularia grew even with extreme salinity in part of the roots, as long as the root-weighted mean salinity of the root zone was within the 10-450 mM range.

  17. Sea Surface Salinity: The Next Remote Sensing Challenge

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary S. E.; Swift, Calvin T.; LeVine, David M.

    1995-01-01

    A brief history of salinity remote sensing is presented. The role of sea surface salinity (SSS) in the far north Atlantic and the influence of salinity variations on upper ocean dynamics in the tropics are described. An assessment of the present state of the technology of the SSS satellite remote sensing is given.

  18. Effects of Salinity and Nutrient Addition on Mangrove Excoecaria agallocha

    PubMed Central

    Chen, Yaping; Ye, Yong

    2014-01-01

    Effects of salinity on seed germination and growth of young (1 month old) and old (2-year old) seedlings of Excoecaria agallocha were investigated. Combined effects of salinity and nutrient level were also examined on old seedlings. Seed germination was best at 0 and 5 psu salinity. 15 psu salinity significantly delayed root initiation and decreased final establishment rate. All seeds failed to establish at 25 psu salinity. Young seedlings performed best at 0 and 5 psu, but growth was stunned at 15 psu, and all seedlings died within 90 days at 25 psu. Old seedlings grew best at salinities below 5 psu and they survived the whole cultivation at 25 psu. This indicated that E. agallocha increased salt tolerance over time. Gas exchange was significantly compromised by salinities above 15 psu but evidently promoted by high nutrient. Proline accumulated considerably at high nutrient, and its contents increased from 0 to 15 psu but decreased at 25 psu salinity. Lipid peroxidation was aggravated by increasing salinity beyond 15 psu but markedly alleviated by nutrient addition. These responses indicated that E. agallocha was intolerant to high salinity but it can be greatly enhanced by nutrient addition. PMID:24691495

  19. Influence of constant and fluctuating salinity on responses of 'mysidopsis bahia' exposed to cadmium in a life-cycle test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyer, R.A.; McGovern, D.G.

    1991-01-01

    Two 28-day, life-cycle tests were conducted to evaluate effects of constant and fluctuating salinities on chronic toxicity of cadmium to Mysidopsis bahia at 27C. Salinities of 10 to 32% and cadmium concentrations of 1 to 9 micrograms/l were examined. Estimated median tolerance concentrations at day 28 ranged from 4.8 to 6.3 micrograms Cd/l over the salinity range of 13 to 29%. Size and fecundity of exposed and unexposed females were predicted to be comparable when cadmium was equal or greater than 5.0 micrograms Cd/l and salinities equal or less than 20% and at concentrations of less than 5 micrograms/l atmore » lower salinities. At higher cadmium levels both responses were impaired regardless of salinity. Reproduction in control treatments was an order of magnitude lower in low (10 and 13%) as compared to high (21, 29, 32%) salinity treatments. This effect of salinity on reproduction was not moderated by periodic exposure to higher, more suitable salinities. Survival, growth and reproduction were not impacted by addition of 5 micrograms Cd/l under fluctuating salinity conditions. The no-effect concentration is 4-5 micgrogram Cd/1 regardless of salinity. Changes in survival, growth and reproduction observed are consistent with the principal distribution of M. bahia in estuaries relative to salinity. Comparison of these data with previously reported acute responses suggests that the acute water quality criterion for cadmium should be salinity-dependent whereas the chronic criterion need not be.« less

  20. Sensor-Based Assessment of Soil Salinity during the First Years of Transition from Flood to Sprinkler Irrigation.

    PubMed

    Casterad, Mª Auxiliadora; Herrero, Juan; Betrán, Jesús A; Ritchie, Glen

    2018-02-17

    A key issue for agriculture in irrigated arid lands is the control of soil salinity, and this is one of the goals for irrigated districts when changing from flood to sprinkling irrigation. We combined soil sampling, proximal electromagnetic induction, and satellite data to appraise how soil salinity and its distribution along a previously flood-irrigated field evolved after its transformation to sprinkling. We also show that the relationship between NDVI (normalized difference vegetation index) and ECe (electrical conductivity of the soil saturation extracts) mimics the production function between yield and soil salinity. Under sprinkling, the field had a double crop of barley and then sunflower in 2009 and 2011. In both years, about 50% of the soil of the entire studied field-45 ha-had ECe < 8 dS m-1, i.e., allowing barley cultivation, while the percent of surface having ECe ≥ 16 dS m-1 increased from 8.4% in 2009 to 13.7% in 2011. Our methodology may help monitor the soil salinity oscillations associated with irrigation management. After quantifying and mapping the soil salinity in 2009 and 2011, we show that barley was stunted in places of the field where salinity was higher. Additionally, the areas of salinity persisted after the subsequent alfalfa cropping in 2013. Application of differential doses of water to the saline patches is a viable method to optimize irrigation water distribution and lessen soil salinity in sprinkler-irrigated agriculture.

  1. Sensor-Based Assessment of Soil Salinity during the First Years of Transition from Flood to Sprinkler Irrigation

    PubMed Central

    Herrero, Juan; Betrán, Jesús A.; Ritchie, Glen

    2018-01-01

    A key issue for agriculture in irrigated arid lands is the control of soil salinity, and this is one of the goals for irrigated districts when changing from flood to sprinkling irrigation. We combined soil sampling, proximal electromagnetic induction, and satellite data to appraise how soil salinity and its distribution along a previously flood-irrigated field evolved after its transformation to sprinkling. We also show that the relationship between NDVI (normalized difference vegetation index) and ECe (electrical conductivity of the soil saturation extracts) mimics the production function between yield and soil salinity. Under sprinkling, the field had a double crop of barley and then sunflower in 2009 and 2011. In both years, about 50% of the soil of the entire studied field—45 ha—had ECe < 8 dS m−1, i.e., allowing barley cultivation, while the percent of surface having ECe ≥ 16 dS m−1 increased from 8.4% in 2009 to 13.7% in 2011. Our methodology may help monitor the soil salinity oscillations associated with irrigation management. After quantifying and mapping the soil salinity in 2009 and 2011, we show that barley was stunted in places of the field where salinity was higher. Additionally, the areas of salinity persisted after the subsequent alfalfa cropping in 2013. Application of differential doses of water to the saline patches is a viable method to optimize irrigation water distribution and lessen soil salinity in sprinkler-irrigated agriculture. PMID:29462981

  2. Microbiological water methods: quality control measures for Federal Clean Water Act and Safe Drinking Water Act regulatory compliance.

    PubMed

    Root, Patsy; Hunt, Margo; Fjeld, Karla; Kundrat, Laurie

    2014-01-01

    Quality assurance (QA) and quality control (QC) data are required in order to have confidence in the results from analytical tests and the equipment used to produce those results. Some AOAC water methods include specific QA/QC procedures, frequencies, and acceptance criteria, but these are considered to be the minimum controls needed to perform a microbiological method successfully. Some regulatory programs, such as those at Code of Federal Regulations (CFR), Title 40, Part 136.7 for chemistry methods, require additional QA/QC measures beyond those listed in the method, which can also apply to microbiological methods. Essential QA/QC measures include sterility checks, reagent specificity and sensitivity checks, assessment of each analyst's capabilities, analysis of blind check samples, and evaluation of the presence of laboratory contamination and instrument calibration and checks. The details of these procedures, their performance frequency, and expected results are set out in this report as they apply to microbiological methods. The specific regulatory requirements of CFR Title 40 Part 136.7 for the Clean Water Act, the laboratory certification requirements of CFR Title 40 Part 141 for the Safe Drinking Water Act, and the International Organization for Standardization 17025 accreditation requirements under The NELAC Institute are also discussed.

  3. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  4. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  5. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  6. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  7. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  8. Modification of the deep salinity-maximum in the Southern Ocean by circulation in the Antarctic Circumpolar Current and the Weddell Gyre

    NASA Astrophysics Data System (ADS)

    Donnelly, Matthew; Leach, Harry; Strass, Volker

    2017-07-01

    The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is assessed using a set of 37 hydrographic sections collected over a 20-year period in the Southern Ocean as part of the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity-maximum is observed eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, and in the Atlantic sector, this acts to limit the direct poleward propagation of the salinity signal. Limited entrainment occurs into the Weddell Gyre, with LCDW entering primarily through the eddy-dominated eastern limb. A vertical mixing coefficient, κV of (2.86 ± 1.06) × 10-4 m2 s-1 and an isopycnal mixing coefficient, κI of (8.97 ± 1.67) × 102 m2 s-1 are calculated for the eastern Indian and Pacific sectors of the Antarctic Circumpolar Current (ACC). A κV of (2.39 ± 2.83) × 10-5 m2 s-1, an order of magnitude smaller, and a κI of (2.47 ± 0.63) × 102 m2 s-1, three times smaller, are calculated for the southern and eastern Weddell Gyre reflecting a more turbulent regime in the ACC and a less turbulent regime in the Weddell Gyre. In agreement with other studies, we conclude that the ACC acts as a barrier to direct meridional transport and mixing in the Atlantic sector evidenced by the eastward propagation of the deep salinity-maximum signal, insulating the Weddell Gyre from short-term changes in NADW characteristics.

  9. Gene expression plasticity in response to salinity acclimation in threespine stickleback ecotypes from different salinity habitats.

    PubMed

    Gibbons, Taylor C; Metzger, David C H; Healy, Timothy M; Schulte, Patricia M

    2017-05-01

    Phenotypic plasticity is thought to facilitate the colonization of novel environments and shape the direction of evolution in colonizing populations. However, the relative prevalence of various predicted patterns of changes in phenotypic plasticity following colonization remains unclear. Here, we use a whole-transcriptome approach to characterize patterns of gene expression plasticity in the gills of a freshwater-adapted and a saltwater-adapted ecotype of threespine stickleback (Gasterosteus aculeatus) exposed to a range of salinities. The response of the gill transcriptome to environmental salinity had a large shared component common to both ecotypes (2159 genes) with significant enrichment of genes involved in transmembrane ion transport and the restructuring of the gill epithelium. This transcriptional response to freshwater acclimation is induced at salinities below two parts per thousand. There was also differentiation in gene expression patterns between ecotypes (2515 genes), particularly in processes important for changes in the gill structure and permeability. Only 508 genes that differed between ecotypes also responded to salinity and no specific processes were enriched among this gene set, and an even smaller number (87 genes) showed evidence of changes in the extent of the response to salinity acclimation between ecotypes. No pattern of relative expression dominated among these genes, suggesting that neither gains nor losses of plasticity dominated the changes in expression patterns between the ecotypes. These data demonstrate that multiple patterns of changes in gene expression plasticity can occur following colonization of novel habitats. © 2017 John Wiley & Sons Ltd.

  10. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress.

    PubMed

    Hu, Longxing; Li, Huiying; Chen, Liang; Lou, Yanhong; Amombo, Erick; Fu, Jinmin

    2015-08-04

    Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.

  11. Changes of hypertonic saline-induced masseter muscle pain characteristics, by an infusion of the serotonin receptor type 3 antagonist granisetron.

    PubMed

    Christidis, Nikolaos; Ioannidou, Kiriaki; Milosevic, Milena; Segerdahl, Märta; Ernberg, Malin

    2008-10-01

    This study aimed to investigate whether granisetron reduces masseter muscle pain and allodynia induced by hypertonic saline. Fifteen healthy women and 15 age-matched healthy men participated in this randomized, placebo-controlled, double-blinded study. They first received bilateral injections of hypertonic saline into the masseter muscles (internal control). The evoked pain intensity and the pressure-pain threshold (PPT) were recorded during 30 minutes. Granisetron was then injected on one side and placebo (normal saline) on the contralateral side. Two minutes thereafter, the hypertonic saline injections were repeated. Pain and PPT were again recorded. The first injection of hypertonic saline induced pain of similar intensity, duration, and pain area on both sides, but with larger pain area in the women (P = .017). The PPT did not change significantly. The second injection of hypertonic saline induced considerably less pain (62.5%), of shorter duration (44.1%), and of smaller area (77.4%) on the side pretreated with granisetron (P = .005). The PPT was increased on the granisetron side in the men (P = .002). The results of this study show that local injection of a single dose of granisetron attenuates masseter muscle pain induced by hypertonic saline. This article presents the changes of hypertonic saline-induced masseter muscle pain characteristics by infusion of granisetron. It appears that the pain-inducing effect in this experimental pain model is partly due to activation of 5-HT3-receptors. Hence, the results indicate that granisetron might offer a new treatment approach for localized myofascial pain.

  12. Salinity and temperature tolerance of brown-marbled grouper Epinephelus fuscoguttatus.

    PubMed

    Cheng, Sha-Yen; Chen, Chih-Sung; Chen, Jiann-Chu

    2013-04-01

    Grouper have to face varied environmental stressors as a result of drastic changes to water conditions during the storm season. We aimed to test the response of brown-marbled grouper to drastic and gradual changes in temperature and salinity to understand the grouper's basic stress response. The results can improve the culture of grouper. Brown-marbled grouper, Epinephelus fuscoguttatus (6.2 ± 0.8 g) were examined for temperature and salinity tolerances at nine different environmental regimes (10, 20, and 33 ‰ combined with 20, 26 and 32 °C), in which the fish were subjected to both gradual and sudden changes in temperature and salinity. The critical thermal maximum (50 % CTMAX) and the upper incipient lethal temperature (UILT) were in the ranges of 35.9-38.3 and 32.7-36.5 °C, respectively. The critical thermal minimum (50 % CTMIN) and the lower incipient lethal temperature (LILT) were in the ranges of 9.8-12.2 and 14.9-22.3 °C, respectively. The critical salinity maximum (50 % CSMAX) and the upper incipient lethal salinity (UILS) were in the ranges of 67.0-75.5 and 54.2-64.8 ‰, respectively. Fish at temperature of 20 °C and a salinity of 33 ‰ tolerated temperatures as low as 10 °C when the temperature was gradually decreased. Fish acclimated at salinities of 10-33 ‰ and a temperature of 32 °C tolerated salinities of as high as 75-79 ‰. All fish survived from accumulating salinity after acute transfer to 20, 10, 5, and 3 ‰. But all fish died while transferred to 0 ‰. Relationships among the UILT, LILT, 50 % CTMAX, 50 % CTMIN, UILS, 50 % CSMAX, salinity, and temperature were examined. The grouper's temperature and salinity tolerance elevated by increasing acclimation temperature and salinity. On the contrary, the grouper's temperature and salinity tolerance degraded by decreasing acclimation temperature and salinity. The tolerance of temperature and salinity on grouper in gradual changes were higher than in drastic changes.

  13. Production of consistent pain by intermittent infusion of sterile 5% hypertonic saline, followed by decrease of pain with cryotherapy.

    PubMed

    Long, Blaine C; Knight, Kenneth L; Hopkins, Ty; Parcell, Allen C; Feland, J Brent

    2012-08-01

    It is suggested that postinjury pain is difficult to examine; thus, investigators have developed experimental pain models. To minimize pain, cryotherapy (cryo) is applied, but reports on its effectiveness are limited. To investigate a pain model for the anterior knee and examine cryo in reducing the pain. Controlled laboratory study. Therapeutic modality laboratory. 30 physically active healthy male subjects who were free from any lower extremity orthopedic, neurological, cardiovascular, or endocrine pathologies. Perceived pain was measured every minute. Surface temperature was also assessed in the center of the patella and the popliteal fossa. There was a significant interaction between group and time (F68,864 = 3.0, P = .0001). At the first minute, there was no difference in pain between the 3 groups (saline/cryo = 4.80 ± 4.87 mm, saline/sham = 2.80 ± 3.55 mm, no saline/cryo = 4.00 ± 3.33 mm). During the first 5 min, pain increased from 4.80 ± 4.87 to 45.90 ± 21.17 mm in the saline/cryo group and from 2.80 ± 3.55 to 31.10 ± 20.25 mm in the saline/sham group. Pain did not change within the no-saline/cryo group, 4.00 ± 3.33 to 1.70 ± 1.70 mm. Pain for the saline/sham group remained constant for 17 min. Cryo decreased pain for 16 min in the saline/cryo group. There was no difference in preapplication surface temperature between or within each group. No change in temperature occurred within the saline/sham. Cooling and rewarming were similar in both cryo groups. Ambient temperature fluctuated less than 1°C during data collection. Intermittent infusion of sterile 5% hypertonic saline may be a useful experimental pain model in establishing a constant level of pain in a controlled laboratory setting. Cryotherapy decreased the induced anterior knee pain for 16 min.

  14. Natural and management influences on freshwater inflows and salinity in the San Francisco Estuary at monthly to interannual scales

    USGS Publications Warehouse

    Knowles, Noah

    2002-01-01

    Understanding the processes controlling the physics, chemistry, and biology of the San Francisco Estuary and their relation to climate variability is complicated by the combined influence on freshwater inflows of natural variability and upstream management. To distinguish these influences, alterations of estuarine inflow due to major reservoirs and freshwater pumping in the watershed were inferred from available data. Effects on salinity were estimated by using reconstructed estuarine inflows corresponding to differing levels of impairment to drive a numerical salinity model. Both natural and management inflow and salinity signals show strong interannual variability. Management effects raise salinities during the wet season, with maximum influence in spring. While year‐to‐year variations in all signals are very large, natural interannual variability can greatly exceed the range of management effects on salinity in the estuary.

  15. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching.

    PubMed

    Wang, Shutao; Feng, Qian; Zhou, Yapeng; Mao, Xiaoxi; Chen, Yaheng; Xu, Hao

    2017-01-01

    Soil salinization is a global problem that limits agricultural development and impacts human life. This study aimed to understand the dynamic changes in water and salinity in saline-alkali soil based on an indoor soil column simulation. We studied the changes in the water and salt contents of soils with different degrees of salinization under various irrigation conditions. The results showed that after seven irrigations, the pH, conductivity and total soluble salt content of the percolation samples after irrigation generally increased initially then decreased with repeated irrigation. The soil moisture did not change significantly after irrigation. The pH, conductivity, and total soluble salt content of each layer of the soil profile exhibited general declining trends. In the soil profile from Changguo Township (CG), the pH decreased from 8.21-8.35 to 7.71-7.88, the conductivity decreased from 0.95-1.14 ms/cm to 0.45-0.68 ms/cm, and the total soluble salt content decreased from 2.63-2.81 g/kg to 2.28-2.51 g/kg. In the soil profile from Zhongjie Industrial Park (ZJ), the pH decreased from 8.36-8.54 to 7.73-7.96, the conductivity decreased from 1.58-1.68 ms/cm to 1.45-1.54 ms/cm, and the total soluble salt decreased from 2.81-4.03 g/kg to 2.56-3.28 g/kg. The transported salt ions were primarily K+, Na+ and Cl-. After several irrigations, a representative desalination effect was achieved. The results of this study can provide technical guidance for the comprehensive management of saline-alkali soils.

  16. 40 CFR 2.306 - Special rules governing certain information obtained under the Toxic Substances Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Definitions. For the purposes of this section: (1) Act means the Toxic Substances Control Act, 15 U.S.C. 2601... distribution (including for test marketing purposes and for use in research and development), any chemical... mixture; and toxicological, clinical, and ecological studies of a chemical substance or mixture; (B) Any...

  17. Investigations in Marine Chemistry: Salinity II.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Presented is a science activity in which the student investigates methods of calibration of a simple conductivity meter via a hands-on inquiry technique. Conductivity is mathematically compared to salinity using a point slope formula and graphical techniques. Sample solutions of unknown salinity are provided so that the students can sharpen their…

  18. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats

    USGS Publications Warehouse

    Soares, Marcos Antonio; Li, Hai-Yan; Kowalski, Kurt P.; Bergen, Marshall; Torres, Monica S.; White, James F.

    2016-01-01

    Non-native Phragmites australis decreases biodiversity and produces dense stands in North America. We surveyed the endophyte communities in the stems, leaves and roots of collections of P. australis obtained from two sites with a low and high salt concentration to determine differences in endophyte composition and assess differences in functional roles of microbes in plants from both sites. We found differences in the abundance, richness and diversity of endophytes between the low saline collections (18 species distributed in phyla Ascomycota, Basidiomycota and Stramenopiles (Oomycota); from orders Dothideales, Pleosporales, Hypocreales, Eurotiales, Cantharellales and Pythiales; Shannon H = 2.639; Fisher alpha = 7.335) and high saline collections (15 species from phylum Ascomycota; belonging to orders Pleosporales, Hypocreales, Diaporthales, Xylariales and Dothideales; Shannon H = 2.289; Fisher alpha = 4.181). Peyronellaea glomerata, Phoma macrostoma and Alternaria tenuissima were species obtained from both sites. The high salt endophyte community showed higher resistance to zinc, mercury and salt stress compared to fungal species from the low salt site. These endophytes also showed a greater propensity for growth promotion of rice seedlings (a model species) under salt stress. The results of this study are consistent with the ‘habitat-adapted symbiosis hypothesis’ that holds that endophytic microbes may help plants adapt to extreme habitats. The capacity of P. australis to establish symbiotic relationships with diverse endophytic microbes that enhance its tolerance to abiotic stresses could be a factor that contributes to its invasiveness in saline environments. Targeting the symbiotic associates of P. australis could lead to more sustainable control of non-native P. australis.

  19. 40 CFR 2.303 - Special rules governing certain information obtained under the Noise Control Act of 1972.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... information was issued under section 11(d) of the Act, 42 U.S.C. 4910(d), and whether the information was.... For the purposes of this section: (1) Act means the Noise Control Act of 1972, 42 U.S.C. 4901 et seq. (2) Manufacturer has the meaning given it in 42 U.S.C. 4902(6). (3) Product has the meaning given it...

  20. 40 CFR 2.303 - Special rules governing certain information obtained under the Noise Control Act of 1972.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... information was issued under section 11(d) of the Act, 42 U.S.C. 4910(d), and whether the information was.... For the purposes of this section: (1) Act means the Noise Control Act of 1972, 42 U.S.C. 4901 et seq. (2) Manufacturer has the meaning given it in 42 U.S.C. 4902(6). (3) Product has the meaning given it...

  1. 40 CFR 2.303 - Special rules governing certain information obtained under the Noise Control Act of 1972.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... information was issued under section 11(d) of the Act, 42 U.S.C. 4910(d), and whether the information was.... For the purposes of this section: (1) Act means the Noise Control Act of 1972, 42 U.S.C. 4901 et seq. (2) Manufacturer has the meaning given it in 42 U.S.C. 4902(6). (3) Product has the meaning given it...

  2. Salinity and temperature variations reflecting on cellular PCNA, IGF-I and II expressions, body growth and muscle cellularity of a freshwater fish larvae.

    PubMed

    Martins, Y S; Melo, R M C; Campos-Junior, P H A; Santos, J C E; Luz, R K; Rizzo, E; Bazzoli, N

    2014-06-01

    The present study assessed the influence of salinity and temperature on body growth and on muscle cellularity of Lophiosilurus alexaxdri vitelinic larvae. Slightly salted environments negatively influenced body growth of freshwater fish larvae and we observed that those conditions notably act as an environmental influencer on muscle growth and on local expression of hypertrophia and hypeplasia markers (IGFs and PCNA). Furthermore, we could see that salinity tolerance for NaCl 4gl(-)(1) diminishes with increasing temperature, evidenced by variation in body and muscle growth, and by irregular morphology of the lateral skeletal muscle of larvae. We saw that an increase of both PCNA and autocrine IGF-II are correlated to an increase in fibre numbers and fibre diameter as the temperature increases and salinity diminishes. On the other hand, autocrine IGF-I follows the opposite way to the other biological parameters assessed, increasing as salinity increases and temperature diminishes, showing that this protein did not participate in muscle cellularity, but participating in molecular/cellular repair. Therefore, slightly salted environments may provide adverse conditions that cause some obstacles to somatic growth of this species, suggesting some osmotic expenditure with a salinity increment. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea

    PubMed Central

    Garg, Rohini; Shankar, Rama; Thakkar, Bijal; Kudapa, Himabindu; Krishnamurthy, Lakshmanan; Mantri, Nitin; Varshney, Rajeev K.; Bhatia, Sabhyata; Jain, Mukesh

    2016-01-01

    Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea. PMID:26759178

  4. Evolution of bacterial communities in the Gironde Estuary (France) according to a salinity gradient

    NASA Astrophysics Data System (ADS)

    Prieur, D.; Troussellier, M.; Romana, A.; Chamroux, S.; Mevel, G.; Baleux, B.

    1987-01-01

    Three surveys were performed in the Gironde Estuary (France) in August 1981, March 1982 and July 1982. For each campaign, seventy samples were taken by helicopter, in order to follow the tide along the estuary. Of the parameters that were studied, salinity appeared to be the most important and which controls the bacterial communities along the estuary. This paper deals with the evolution of bacterial communities along a salinity gradient. The information obtained from various bacteriological parameters (total bacterial counts, viable counts on salted and unsalted media, functional evenness) were convergent. The bacterial community is dominated by an halotolerant microflora. In the estuary, a continental microflora is followed by a marine microflora. The succession zone between these two microflora is located between 5 and 10‰ areas of salinity.

  5. Ranking the Potential Yield of Salinity and Selenium from Subbasins in the Lower Gunnison River Basin Using Seasonal, Multi-parameter Regression Models

    NASA Astrophysics Data System (ADS)

    Linard, J.; Leib, K.; Colorado Water Science Center

    2010-12-01

    Elevated levels of salinity and dissolved selenium can detrimentally effect the quality of water where anthropogenic and natural uses are concerned. In areas, such as the lower Gunnison Basin of western Colorado, salinity and selenium are such a concern that control projects are implemented to limit their mobilization. To prioritize the locations in which control projects are implemented, multi-parameter regression models were developed to identify subbasins in the lower Gunnison River Basin that were most likely to have elevated salinity and dissolved selenium levels. The drainage area is about 5,900 mi2 and is underlain by Cretaceous marine shale, which is the most common source of salinity and dissolved selenium. To characterize the complex hydrologic and chemical processes governing constituent mobilization, geospatial variables representing 70 different environmental characteristics were correlated to mean seasonal (irrigation and nonirrigation seasons) salinity and selenium yields estimated at 154 sampling sites. The variables generally represented characteristics of the physical basin, precipitation, soil, geology, land use, and irrigation water delivery systems. Irrigation and nonirrigation seasons were selected due to documented effects of irrigation on constituent mobilization. Following a stepwise approach, combinations of the geospatial variables were used to develop four multi-parameter regression models. These models predicted salinity and selenium yield, within a 95 percent confidence range, at individual points in the Lower Gunnison Basin for irrigation and non-irrigation seasons. The corresponding subbasins were ranked according to their potential to yield salinity and selenium and rankings were used to prioritize areas that would most benefit from control projects.

  6. Relationship of otolith strontium-to-calcium ratios and salinity: Experimental validation for juvenile salmonids

    USGS Publications Warehouse

    Zimmerman, C.E.

    2005-01-01

    Analysis of otolith strontium (Sr) or strontium-to-calcium (Sr:Ca) ratios provides a powerful tool to reconstruct the chronology of migration among salinity environments for diadromous salmonids. Although use of this method has been validated by examination of known individuals and translocation experiments, it has never been validated under controlled experimental conditions. In this study, incorporation of otolith Sr was tested across a range of salinities and resulting levels of ambient Sr and Ca concentrations in juvenile chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), sockeye salmon (Oncorhynchus nerka), rainbow trout (Oncorhynchus rnykiss), and Arctic char (Salvelinus alpinus). Experimental water was mixed, using stream water and seawater as end members, to create experimental salinities of 0.1, 6.3, 12.7, 18.6, 25.5, and 33.0 psu. Otolith Sr and Sr:Ca ratios were significantly related to salinity for all species (r2 range: 0.80-0.91) but provide only enough predictive resolution to discriminate among fresh water, brackish water, and saltwater residency. These results validate the use of otolith Sr:Ca ratios to broadly discriminate salinity histories encountered by salmonids but highlight the need for further research concerning the influence of osmoregulation and physiological changes associated with smoking on otolith microchemistry.

  7. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber

    PubMed Central

    Liu, Jingran; Luo, Junyu; Zhao, Xinhua; Dong, Helin; Ma, Yan; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Cotton (Gosspium hirsutum L.) is classified as a salt tolerant crop. However, its yield and fiber quality are negatively affected by soil salinity. Studies on the enzymatic differences in sucrose metabolism under different soil salinity levels are lacking. Therefore, field experiments, using two cotton cultivars, CCRI-79 (salt-tolerant) and Simian 3 (salt-sensitive), were conducted in 2013 and 2014 at three different salinity levels (1.15 dS m-1 [low soil salinity], 6.00 dS m-1 [medium soil salinity], and 11.46 dS m-1 [high soil salinity]). The objective was to elucidate the effects of soil salinity on sucrose content and the activity of key enzymes that are related to sucrose metabolism in cotton fiber. Results showed that as the soil salinity increased, cellulose content, sucrose content, and sucrose transformation rate declined; the decreases in cellulose content and sucrose transformation rate caused by the increase in soil salinity were more in Simian 3 than those in CCRI-79. With increase in soil salinity, activities of sucrose metabolism enzymes sucrose phophate synthase (SPS), acidic invertase, and alkaline invertase were decreased, whereas sucrose synthase (SuSy) activity increased. However, the changes displayed in the SuSy and SPS activities in response to increase in soil salinity were different and the differences were large between the two cotton cultivars. These results illustrated that suppressed cellulose synthesis and sucrose metabolism under high soil salinity were mainly due to the change in SPS, SuSy, and invertase activities, and the difference in cellulose synthesis and sucrose metabolism in fiber for the two cotton cultivars in response to soil salinity was determined mainly by both SuSy and SPS activities. PMID:27227773

  8. The effects of temperature and salinity on phosphate levels in two euryhaline crustacean species

    NASA Astrophysics Data System (ADS)

    Spaargaren, D. H.; Richard, P.; Ceccaldi, H. J.

    Total phoshate, inorganic phosphate and organic (phospholipid) phosphate concentrations were determined in the blood of Carcinus maenas and in whole-animal homogenates of Penaeus japonicus acclimatized to various salinities and a high or a low temperature. In the blood of Carcinus, total and inorganic P concentrations range between 1.0 and 4.5 mmol · l -1; the amount of phospholipids is negligeable. The higher values were found at more extreme salinities. Low temperature is associated with low phosphate concentrations, particularly at intermediate salinities. Total P concentrations in Penaeus homogenates range between 10 and 60 mmol · 1 -1; phospholipid concentrations range between zero and 50 mmol · 1 -1. The higher values are again found at the extreme salinities. Inorganic P concentrations are almost constant — ca 10 mmol · 1 -1. No apparent effect of temperature on phosphate concentrations was observed. The results show clearly that osmotic stress influences severely the phosphate metabolism of the two species studied. Both species are able to accumulate phosphate at all experimental temperature/salinity combinations used, even when deprived of food. At extreme salinities, large quantities of phosphate are accumulated and converted to organic P compounds, most likely as phospholipids associated with the cell membranes. These effects of osmotic conditions in phosphate metabolism may offer an explanation for the effect of Ca ++ on membrane permeability as the regulation of both ions may be strongly interrelated, often under hormonal control.

  9. Salinity information in coral δ18O records

    NASA Astrophysics Data System (ADS)

    Conroy, J. L.; Thompson, D. M.; Dassié, E. P.; Stevenson, S.; Konecky, B. L.; DeLong, K. L.; Sayani, H. R.; Emile-Geay, J.; Partin, J. W.; Abram, N. J.; Martrat, B.

    2017-12-01

    Coral oxygen isotopic ratios (δ18O) are typically utilized to reconstruct sea surface temperature (SST), or SST-based El Niño-Southern Oscillation metrics (e.g., NIÑO3.4), despite the influence of both SST and the oxygen isotopic composition of seawater (δ18Osw) on coral δ18O. The ideal way to isolate past δ18Osw variations is to develop independent and univariate SST and δ18Osw responders, for instance, via paired coral δ18O and Sr/Ca analyses. Nonetheless, many coral δ18O records without paired Sr/Ca records already exist in the paleoclimatic literature, and these may be able to provide some insight into past δ18Osw and salinity changes due to the nature of the significant positive relationship between instrumental salinity and δ18Osw. Here we use coral δ18O records from the new PAGES Iso2k database to assess the regions in which coral δ18O has the greatest potential to provide salinity information based on the strength of the relationship between instrumental salinity and coral δ18O values. We find from annual pseudocoral similations that corals in the western tropical Pacific share a substantial fraction of their variance with δ18Osw rather than SST. In contrast, in the Indian Ocean and eastern tropical Pacific it is SST that predominantly explains coral δ18O variance. In agreement with this variance decomposition, we find that coral δ18O time series from the western tropical Pacific are significantly correlated with mid to late 20th century salinity. However, variations in the strength of the δ18Osw-salinity relationship across the western tropical Pacific will likely have a significant influence on coral δ18O-based salinity reconstructions. Additionally, in some cases a strong, negative correlation between SST and δ18Osw might not allow their influences to be adequately separated in coral δ18O records without the use of coupled Sr/Ca estimates of the temperature contribution. Overall, we find a range of modern salinity and SST

  10. Validation of Salinity Data from the Soil Moisture and Ocean Salinity (SMOS) and Aquarius Satellites in the Agulhas Current System

    NASA Astrophysics Data System (ADS)

    Button, N.

    2016-02-01

    The Agulhas Current System is an important western boundary current, particularly due to its vital role in the transport of heat and salt from the Indian Ocean to the Atlantic Ocean, such as through Agulhas rings. Accurate measurements of salinity are necessary for assessing the role of the Agulhas Current System and these rings in the global climate system are necessary. With ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius/SAC-D satellites, we now have complete spatial and temporal (since 2009 and 2011, respectively) coverage of salinity data. To use this data to understand the role of the Agulhas Current System in the context of salinity within the global climate system, we must first understand validate the satellite data using in situ and model comparisons. In situ comparisons are important because of the accuracy, but they lack in the spatial and temporal coverage to validate the satellite data. For example, there are approximately 100 floats in the Agulhas Return Current. Therefore, model comparisons, such as the Hybrid Coordinate Ocean Model (HYCOM), are used along with the in situ data for the validation. For the validation, the satellite data, Argo float data, and HYCOM simulations were compared within box regions both inside and outside of the Agulhas Current. These boxed regions include the main Agulhas Current, Agulhas Return Current, Agulhas Retroflection, and Agulhas rings, as well as a low salinity and high salinity region outside of the current system. This analysis reveals the accuracy of the salinity measurements from the Aquarius/SAC-D and SMOS satellites within the Agulhas Current, which then provides accurate salinity data that can then be used to understand the role of the Agulhas Current System in the global climate system.

  11. Climate change and soil salinity: The case of coastal Bangladesh.

    PubMed

    Dasgupta, Susmita; Hossain, Md Moqbul; Huq, Mainul; Wheeler, David

    2015-12-01

    This paper estimates location-specific soil salinity in coastal Bangladesh for 2050. The analysis was conducted in two stages: First, changes in soil salinity for the period 2001-2009 were assessed using information recorded at 41 soil monitoring stations by the Soil Research Development Institute. Using these data, a spatial econometric model was estimated linking soil salinity with the salinity of nearby rivers, land elevation, temperature, and rainfall. Second, future soil salinity for 69 coastal sub-districts was projected from climate-induced changes in river salinity and projections of rainfall and temperature based on time trends for 20 Bangladesh Meteorological Department weather stations in the coastal region. The findings indicate that climate change poses a major soil salinization risk in coastal Bangladesh. Across 41 monitoring stations, the annual median projected change in soil salinity is 39 % by 2050. Above the median, 25 % of all stations have projected changes of 51 % or higher.

  12. Vacuolar Chloride Fluxes Impact Ion Content and Distribution during Early Salinity Stress1

    PubMed Central

    Baetz, Ulrike; Tohge, Takayuki; Martinoia, Enrico; De Angeli, Alexis

    2016-01-01

    The ability to control the cytoplasmic environment is a prerequisite for plants to cope with changing environmental conditions. During salt stress, for instance, Na+ and Cl− are sequestered into the vacuole to help maintain cytosolic ion homeostasis and avoid cellular damage. It has been observed that vacuolar ion uptake is tied to fluxes across the plasma membrane. The coordination of both transport processes and relative contribution to plant adaptation, however, is still poorly understood. To investigate the link between vacuolar anion uptake and whole-plant ion distribution during salinity, we used mutants of the only vacuolar Cl− channel described to date: the Arabidopsis (Arabidopsis thaliana) ALMT9. After 24-h NaCl treatment, almt9 knock-out mutants had reduced shoot accumulation of both Cl− and Na+. In contrast, almt9 plants complemented with a mutant variant of ALMT9 that exhibits enhanced channel activity showed higher Cl− and Na+ accumulation. The altered shoot ion contents were not based on differences in transpiration, pointing to a vacuolar function in regulating xylem loading during salinity. In line with this finding, GUS staining demonstrated that ALMT9 is highly expressed in the vasculature of shoots and roots. RNA-seq analysis of almt9 mutants under salinity revealed specific expression profiles of transporters involved in long-distance ion translocation. Taken together, our study uncovers that the capacity of vacuolar Cl− loading in vascular cells plays a crucial role in controlling whole-plant ion movement rapidly after onset of salinity. PMID:27503602

  13. Federal control of Indian Lands v. State control of Gaming - Cabazon Bingo and the Indian Gaming regulatory act.

    PubMed

    Strate, L D; Mayo, A M

    1990-03-01

    In September, 1988, the 100th Congress passed the Indian Gaming Regulatory Act, concluding five years of debate over the Indian Gaming issue - brought to a head by a Supreme Court decision in February, 1987, that barred states from regulating Indian Gaming. That case (State of California v. Cabazon Band of Mission Indians) forced the legislature to take a serious look at issues of gaming on Indian lands. The result was the creation of a three-tiered system whereby tribes will control ceremonial games, the federal government will control bingo, and the states and tribes will negotiate agreements to cover casino games, parimutuel racing, and jai alai, if such games are legal in that particular state. In light of the case of the Cabazon Indians and the passage of the Indian Gaming Regulatory Act, this paper will address the following competing issues: tribal sovereignty, state interests, federal interests, and states like Nevada, which have a regulated gaming industry.

  14. Current purpose and practice of hypertonic saline in neurosurgery: a review of the literature.

    PubMed

    Thongrong, Cattleya; Kong, Nicolas; Govindarajan, Barani; Allen, Duane; Mendel, Ehud; Bergese, Sergio D

    2014-12-01

    To review and summarize controversies and current concepts regarding the use of hypertonic saline during the perioperative period in neurosurgery. Relevant literature was searched on PubMed and Scopus electronic databases to identify all studies that have investigated the use of hypertonic saline in neurosurgery. Fluid management during the course of neurosurgical practice has been debated at length, especially strategies to control intracranial pressure and small volume resuscitation. The goal of fluid therapy includes minimizing cerebral edema, preserving intravascular volume, and maintaining cerebral perfusion pressure. Mannitol is widely recognized as the gold standard for treating intracranial hypertension but can result in systemic hypotension. Thus, hypertonic saline provides volume expansion and may improve cerebral and systemic hemodynamics. Recently published prospective data, however, regarding the use of osmotic agents fails to establish clear guidelines in neurosurgical patients. We suggest that hypertonic saline will emerge as an alternative to mannitol, especially for a long-term use or multiple doses are needed and lead to a great opportunity for collaborative research. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region.

    USGS Publications Warehouse

    Kraemer, T.F.; Reid, D.F.

    1984-01-01

    Ra was measured in deep saline formation waters produced from a variety of US Gulf Coast subsurface environments, including oil and gas reservoirs, and water-producing geopressured aquifers. A strong positive correlation was found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th on and within the solid matrix. The processes believed to be primarily responsible for transfering Ra from matrix to formation water are chemical leaching and alpha -particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following: 1) ion exchange; 2) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of re-equilibration of silica between solution and quartz grains; and 3) the equilibration of Ra in solution with detrital baryte within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs.-P.Br.

  16. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    NASA Astrophysics Data System (ADS)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  17. Pain difference associated with injection of abobotulinumtoxinA reconstituted with preserved saline and preservative-free saline: a prospective, randomized, side-by-side, double-blind study.

    PubMed

    Allen, Shawn B; Goldenberg, Neil A

    2012-06-01

    The Food and Drug Administration has approved the reconstitution of botulinum toxin A with preservative-free saline. Reconstitution of onabotulinumtoxinA with preserved saline has been previously reported to decrease the pain of injections. We present the first split-face study investigating differences in subjective pain when using preserved and preservative-free saline as the reconstituent of choice for abobotulinumtoxinA. To determine whether patients notice a difference in pain when injecting abobotulinumtoxinA diluted with preserved saline versus preservative-free saline. A prospective, randomized, double-blind, side-by-side trial was conducted in a private practice dermatology office in Boulder, Colorado. Twenty volunteer patients received injections on one side of their face with abobotulinumtoxinA reconstituted with preservative-free saline and with abobotulinumtoxinA reconstituted with preserved saline on the other side. Patients reported their pain on a 10-point visual analogue pain scale after each side was injected. Patients kept a diary for the first 48 hours after treatment to track any continued pain, onset of action, or adverse events. Patients were seen at a follow-up visit at 2 weeks, and any adverse events were recorded. Ninety percent of patients reported less pain on the side injected with preserved saline than on the side injected with preservative-free saline. Pain on the preserved saline side was 60% less than on the preservative-free side. Neither the patients nor the investigators noted any difference in onset of action between the two sides. Reconstitution of abobotulinumtoxinA with preserved saline results in significantly less pain on injection than with preservative-free saline. Preserved saline may be the reconstituent of choice for reconstitution of abobotulinumtoxinA. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  18. The long-term salinity field in San Francisco Bay

    USGS Publications Warehouse

    Uncles, R.J.; Peterson, D.H.

    1996-01-01

    Data are presented on long-term salinity behaviour in San Francisco Bay, California. A two-level, width averaged model of the tidally averaged salinity and circulation has been written in order to interpret the long-term (days to decades) salinity variability. The model has been used to simulate daily averaged salinity in the upper and lower levels of a 51 segment discretization of the Bay over the 22-yr period 1967-1988. Monthly averaged surface salinity from observations and monthly-averaged simulated salinity are in reasonable agreement. Good agreement is obtained from comparison with daily averaged salinity measured in the upper reaches of North Bay. The salinity variability is driven primarily by freshwater inflow with relatively minor oceanic influence. All stations exhibit a marked seasonal cycle in accordance with the Mediterranean climate, as well as a rich spectrum of variability due to extreme inflow events and extended periods of drought. Monthly averaged salinity intrusion positions have a pronounced seasonal variability and show an approximately linear response to the logarithm of monthly averaged Delta inflow. Although few observed data are available for studies of long-term salinity stratification, modelled stratification is found to be strongly dependent on freshwater inflow; the nature of that dependence varies throughout the Bay. Near the Golden Gate, stratification tends to increase up to very high inflows. In the central reaches of North Bay, modelled stratification maximizes as a function of inflow and further inflow reduces stratification. Near the head of North Bay, lowest summer inflows are associated with the greatest modelled stratification. Observations from the central reaches of North Bay show marked spring-neap variations in stratification and gravitational circulation, both being stronger at neap tides. This spring-neap variation is simulated by the model. A feature of the modelled stratification is a hysteresis in which, for a given

  19. Decline of the world's saline lakes

    Treesearch

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  20. Potential mitigation approach to minimize salinity intrusion in the Lower Savannah River Estuary due to reduced controlled releases from Lake Thurmond

    USGS Publications Warehouse

    Conrads, Paul; Greenfield, James M.

    2010-01-01

    The Savannah River originates at the confluence of the Seneca and Tugaloo Rivers, near Hartwell, Ga. and forms the State boundary between South Carolina and Georgia. The J. Strom Thurmond Dam and Lake, located 187 miles upstream from the coast, is responsible for most of the flow regulation that affects the Savannah River from Augusta to the coast. The Savannah Harbor experiences semi-diurnal tides of two high and two low tides in a 24.8-hour period with pronounced differences in tidal range between neap and spring tides occurring on a 14-day and 28-day lunar cycle. The Savannah National Wildlife Refuge is located in the Savannah River Estuary. The tidal freshwater marsh is an essential part of the 28,000-acre refuge and is home to a diverse variety of wildlife and plant communities. The Southeastern U.S. experienced severe drought conditions in 2008 and if the conditions had persisted in Georgia and South Carolina, Thurmond Lake could have reached an emergency operation level where outflow from the lake is equal to the inflow to the lake. To decrease the effect of the reduced releases on downstream resources, a stepped approach was proposed to reduce the flow in increments of 500 cubic feet per second (ft3/s) intervals. Reduced flows from 3,600 ft3/s to 3,100 ft3/s and 2,600 ft3/s were simulated with two previously developed models of the Lower Savannah River Estuary to evaluate the potential effects on salinity intrusion. The end of the previous drought (2002) was selected as the baseline condition for the simulations with the model. Salinity intrusion coincided with the 28-day cycle semidiurnal tidal cycles. The results show a difference between the model simulations of how the salinity will respond to the decreased flows. The Model-to-Marsh Decision Support System (M2MDSS) salinity response shows a large increase in the magnitude (> 6.0 practical salinity units, psu) and duration (3-4 days) of the salinity intrusion with extended periods (21 days) of tidal

  1. Long-acting peptidomimergic control of gigantism caused by pituitary acidophilic stem cell adenoma.

    PubMed

    Maheshwari, H G; Prezant, T R; Herman-Bonert, V; Shahinian, H; Kovacs, K; Melmed, S

    2000-09-01

    Gigantism is caused by GH hypersecretion occurring before epiphyseal long bone closure and usually is associated with pituitary adenoma. A 15-yr-old female patient presented with accelerated growth due to a large pituitary tumor that was surgically resected to relieve pressure effects. Second surgery to remove residual tumor tissue was followed by administration of octreotide LAR, a long-acting depot somatostatin analog, together with long-acting cabergoline. Height was over the 95th percentile, with evidence of a recent growth spurt. Serum GH levels were more than 60 ng/mL (normal, <10 ng/mL) with no suppression to 75 g oral glucose, and serum PRL (>8,000 ng/mL; normal, <23 ng/mL) and insulin-like growth factor I levels (845 ng/mL; age-matched normal, 242-660 ng/mL) were elevated. Histology, immunostaining, and electron microscopy demonstrated a pituitary acidophil stem cell adenoma. Tumor tissue expressed both somatostatin receptor type 2 and dopamine receptor type 2. The Gs alpha subunit, GHRH receptor, and MEN1 genes were intact, and tumor tissue abundantly expressed pituitary tumor transforming gene (PTTG). Serum GH and PRL levels were controlled after two surgeries, and with continued cabergoline and octreotide LAR GH, PRL, and insulin-like growth factor I levels were normalized. In conclusion, administration of long-acting somatostatin analog every 4 weeks in combination with a long-acting dopamine agonist biweekly controlled biochemical parameters and accelerated growth in a patient with gigantism caused by a rare pituitary acidophil stem cell adenoma.

  2. Weight effect of saline accumulation in surgical drapes.

    PubMed

    Wiggins, Michael N; Thostenson, Jeff D

    2007-10-01

    Positive vitreal pressure during phacoemulsification is a known risk factor for posterior capsule rupture. Knowledge of modifiable causes of positive vitreal pressure is imperative to aid in its management intraoperatively. The aim of our study was to determine whether the weight from the accumulation of a large volume of saline in the surgical drapes could have an effect on intraocular pressure in patients. Such an effect could indicate a source of posterior vitreal pressure in patients undergoing prolonged phacoemulsification. In 23 adult patients undergoing phacoemulsification at the Jones Eye Institute at the University of Arkansas for Medical Sciences, intraocular pressure readings were taken before and after the addition of 500 cc of saline to the surgical drapes and taken again after removal of the saline. Statistically significant differences in intraocular pressure were found between the baseline measurement, the measurement with saline, and the measurement after saline removal. No differences in the rise in intraocular pressure were found according to age, race, sex, or which eye was tested. Accumulation of a large volume of saline in surgical drapes has a modest effect on intraocular pressure. This may indicate a contributing cause of posterior vitreal pressure during prolonged phacoemulsification.

  3. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria.

    PubMed

    Ebadi, Ali; Khoshkholgh Sima, Nayer Azam; Olamaee, Mohsen; Hashemi, Maryam; Ghorbani Nasrabadi, Reza

    2018-08-01

    The negative impact of salinity on plant growth and the survival of rhizosphere biota complicates the application of bioremediation to crude oil-contaminated saline soils. Here, a comparison was made between the remedial effect of treating the soil with Pseudomonas aeruginosa, a salinity tolerant hydrocarbon-degrading consortium in conjunction with either the halophyte Salicornia persica or the non-halophyte Festuca arundinacea. The effect of the various treatments on salinized soils was measured by assessing the extent of total petroleum hydrocarbon (TPH) degradation, the soil's dehydrogenase activity, the abundance of the bacteria and the level of phytotoxicity as measured by a bioassay. When a non-salinized soil was assessed after a treatment period of 120 days, the ranking for effectiveness with respect to TPH removal was F. arundinacea > P. aeruginosa > S. persica > no treatment control, while in the presence of salinity, the ranking changed to S. persica > P. aeruginosa > F. arundinacea > no treatment control. Combining the planting of S. persica or F. arundinacea with P. aeruginosa inoculation ("bioaugmentation") boosted the degradation of TPH up to 5-17%. Analyses of the residual oil contamination revealed that long chain alkanes (above C20) were particularly strongly degraded following the bioaugmentation treatments. The induced increase in dehydrogenase activity and the abundance of the bacteria (3.5 and 10 fold respectively) achieved in the bioaugmentation/S. persica treatment resulted in 46-76% reduction in soil phytotoxicity in a saline soil. The indication was that bioaugmentation of halophyte can help to mitigate the adverse effects on the effectiveness of bioremediation in a crude oil-contaminated saline soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. "SPURS" in the North Atlantic Salinity Maximum

    NASA Astrophysics Data System (ADS)

    Schmitt, Raymond

    2014-05-01

    The North Atlantic Salinity Maximum is the world's saltiest open ocean salinity maximum and was the focus of the recent Salinity Processes Upper-ocean Regional Study (SPURS) program. SPURS was a joint venture between US, French, Irish, and Spanish investigators. Three US and two EU cruises were involved from August, 1012 - October, 2013 as well as surface moorings, glider, drifter and float deployments. Shipboard operations included underway meteorological and oceanic data, hydrographic surveys and turbulence profiling. The goal is to improve our understanding of how the salinity maximum is maintained and how it may be changing. It is formed by an excess of evaporation over precipitation and the wind-driven convergence of the subtropical gyre. Such salty areas are getting saltier with global warming (a record high SSS was observed in SPURS) and it is imperative to determine the relative roles of surface water fluxes and oceanic processes in such trends. The combination of accurate surface flux estimates with new assessments of vertical and horizontal mixing in the ocean will help elucidate the utility of ocean salinity in quantifying the changing global water cycle.

  5. Effect of spa therapy with saline balneotherapy on oxidant/antioxidant status in patients with rheumatoid arthritis: a single-blind randomized controlled trial

    NASA Astrophysics Data System (ADS)

    Karagülle, Mine; Kardeş, Sinan; Karagülle, Oğuz; Dişçi, Rian; Avcı, Aslıhan; Durak, İlker; Karagülle, Müfit Zeki

    2017-01-01

    Oxidative stress has been shown to play a contributory role in the pathogenesis of rheumatoid arthritis (RA). Recent studies have provided evidence for antioxidant properties of spa therapy. The purpose of this study is to investigate whether spa therapy with saline balneotherapy has any influence on the oxidant/antioxidant status in patients with RA and to assess clinical effects of spa therapy. In this investigator-blind randomized controlled trial, we randomly assigned 50 patients in a 1:1 ratio to spa therapy plus standard drug treatment (spa group) or standard drug treatment alone (control group). Spa group followed a 2-week course of spa therapy regimen consisting of a total of 12 balneotherapy sessions in a thermal mineral water pool at 36-37 °C for 20 min every day except Sunday. All clinical and biochemical parameters were assessed at baseline and after spa therapy (2 weeks). The clinical parameters were pain intensity, patient global assessment, physician global assessment, Health Assessment Questionnaire disability index (HAQ-DI), Disease Activity Score for 28-joints based on erythrocyte sedimentation rate (DAS28-4[ESR]). Oxidative status parameters were malondialdehyde (MDA), nonenzymatic superoxide radical scavenger activity (NSSA), antioxidant potential (AOP), and superoxide dismutase (SOD). The NSSA levels were increased significantly in the spa group ( p = 0.003) but not in the control group ( p = 0.509); and there was a trend in favor of spa therapy for improvements in NSSA levels compared to control ( p = 0.091). Significant clinical improvement was found in the spa group compared to the control in terms of patient global assessment ( p = 0.011), physician global assessment ( p = 0.043), function (HAQ-DI) ( p = 0.037), disease activity (DAS28-4[ESR]) (0.044) and swollen joint count (0.009), and a trend toward improvement in pain scores (0.057). Spa therapy with saline balneotherapy exerts antioxidant effect in patients with RA as reflected by the

  6. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah

    USGS Publications Warehouse

    Boyd, Eric S.; Yu, Ri-Qing; Barkay, Tamar; Hamilton, Trinity L.; Baxter, Bonnie K.; Naftz, David L.; Marvin-DiPasquale, Mark

    2017-01-01

    Surface water and biota from Great Salt Lake (GSL) contain some of the highest documented concentrations of total mercury (THg) and methylmercury (MeHg) in the United States. In order to identify potential biological sources of MeHg and controls on its production in this ecosystem, THg and MeHg concentrations, rates of Hg(II)-methylation and MeHg degradation, and abundances and compositions of archaeal and bacterial 16 rRNA gene transcripts were determined in sediment along a salinity gradient in GSL. Rates of Hg(II)-methylation were inversely correlated with salinity and were at or below the limits of detection in sediment sampled from areas with hypersaline surface water. The highest rates of Hg(II)-methylation were measured in sediment with low porewater salinity, suggesting that benthic microbial communities inhabiting less saline environments are supplying the majority of MeHg in the GSL ecosystem. The abundance of 16S rRNA gene transcripts affiliated with the sulfate reducer Desulfobacterium sp. was positively correlated with MeHg concentrations and Hg(II)-methylation rates in sediment, indicating a potential role for this taxon in Hg(II)-methylation in low salinity areas of GSL. Reactive inorganic Hg(II) (a proxy used for Hg(II) available for methylation) and MeHg concentrations were inversely correlated with salinity. Thus, constraints imposed by salinity on Hg(II)-methylating populations and the availability of Hg(II) for methylation are inferred to result in higher MeHg production potentials in lower salinity environments. Benthic microbial MeHg degradation was also most active in lower salinity environments. Collectively, these results suggest an important role for sediment anoxia and microbial sulfate reducers in the production of MeHg in low salinity GSL sub-habitats and may indicate a role for salinity in constraining Hg(II)-methylation and MeHg degradation activities by influencing the availability of Hg(II) for methylation.

  7. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching

    PubMed Central

    Feng, Qian; Mao, Xiaoxi

    2017-01-01

    Soil salinization is a global problem that limits agricultural development and impacts human life. This study aimed to understand the dynamic changes in water and salinity in saline-alkali soil based on an indoor soil column simulation. We studied the changes in the water and salt contents of soils with different degrees of salinization under various irrigation conditions. The results showed that after seven irrigations, the pH, conductivity and total soluble salt content of the percolation samples after irrigation generally increased initially then decreased with repeated irrigation. The soil moisture did not change significantly after irrigation. The pH, conductivity, and total soluble salt content of each layer of the soil profile exhibited general declining trends. In the soil profile from Changguo Township (CG), the pH decreased from 8.21–8.35 to 7.71–7.88, the conductivity decreased from 0.95–1.14 ms/cm to 0.45–0.68 ms/cm, and the total soluble salt content decreased from 2.63–2.81 g/kg to 2.28–2.51 g/kg. In the soil profile from Zhongjie Industrial Park (ZJ), the pH decreased from 8.36–8.54 to 7.73–7.96, the conductivity decreased from 1.58–1.68 ms/cm to 1.45–1.54 ms/cm, and the total soluble salt decreased from 2.81–4.03 g/kg to 2.56–3.28 g/kg. The transported salt ions were primarily K+, Na+ and Cl-. After several irrigations, a representative desalination effect was achieved. The results of this study can provide technical guidance for the comprehensive management of saline-alkali soils. PMID:29091963

  8. Saline aquifer mapping project in the southeastern United States

    USGS Publications Warehouse

    Williams, Lester J.; Spechler, Rick M.

    2011-01-01

    In 2009, the U.S. Geological Survey initiated a study of saline aquifers in the southeastern United States to evaluate the potential use of brackish or saline water from the deeper portions of the Floridan aquifer system and the underlying Coastal Plain aquifer system (Fig. 1). The objective of this study is to improve the overall understanding of the available saline water resources for potential future development. Specific tasks are to (1) develop a digital georeferenced database of borehole geophysical data to enable analysis and characterization of saline aquifers (see locations in Fig. 1), (2) identify and map the regional extent of saline aquifer systems and describe the thickness and character of hydrologic units that compose these systems, and (3) delineate salinity variations at key well sites and along section lines to provide a regional depiction of the freshwater-saltwater interfaces. Electrical resistivity and induction logs, coupled with a variety of different porosity logs (sonic, density, and neutron), are the primary types of borehole geophysical logs being used to estimate the water quality in brackish and saline formations. The results from the geophysical log calculations are being compared to available water-quality data obtained from water wells and from drill-stem water samples collected in test wells. Overall, the saline aquifer mapping project is helping to improve the understanding of saline water resources in the area. These aquifers may be sources of large quantities of water that could be treated by using reverse osmosis or similar technologies, or they could be used for aquifer storage and recovery systems.

  9. Modelling the salinization of a coastal lagoon-aquifer system

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  10. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  11. Osmotic and hydraulic adjustment of mangrove saplings to extreme salinity.

    PubMed

    Méndez-Alonzo, Rodrigo; López-Portillo, Jorge; Moctezuma, Coral; Bartlett, Megan K; Sack, Lawren

    2016-12-01

    Salinity tolerance in plant species varies widely due to adaptation and acclimation processes at the cellular and whole-plant scales. In mangroves, extreme substrate salinity induces hydraulic failure and ion excess toxicity and reduces growth and survival, thus suggesting a potentially critical role for physiological acclimation to salinity. We tested the hypothesis that osmotic adjustment, a key type of plasticity that mitigates salinity shock, would take place in coordination with declines in whole-plant hydraulic conductance in a common garden experiment using saplings of three mangrove species with different salinity tolerances (Avicennia germinans L., Rhizophora mangle L. and Laguncularia racemosa (L.) C.F. Gaertn., ordered from higher to lower salinity tolerance). For each mangrove species, four salinity treatments (1, 10, 30 and 50 practical salinity units) were established and the time trajectories were determined for leaf osmotic potential (Ψ s ), stomatal conductance (g s ), whole-plant hydraulic conductance (K plant ) and predawn disequilibrium between xylem and substrate water potentials (Ψ pdd ). We expected that, for all three species, salinity increments would result in coordinated declines in Ψ s , g s and K plant , and that the Ψ pdd would increase with substrate salinity and time of exposure. In concordance with our predictions, reductions in substrate water potential promoted a coordinated decline in Ψ s , g s and K plant , whereas the Ψ pdd increased substantially during the first 4 days but dissipated after 7 days, indicating a time lag for equilibration after a change in substratum salinity. Our results show that mangroves confront and partially ameliorate acute salinity stress via simultaneous reductions in Ψ s , g s and K plant , thus developing synergistic physiological responses at the cell and whole-plant scales. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e

  12. Responses of Atriplex spongiosa and Suaeda monoica to Salinity

    PubMed Central

    Storey, Richard; Jones, R. Gareth Wyn

    1979-01-01

    The growth and tissue water, K+, Na+, Cl−, proline and glycinebetaine contents of the shoots and roots of two Chenopodiaceae, Atriplex spongiosa and Suaeda monoica have been measured over a range of external NaCl salinities. Both species showed some fresh weight response to low salinity mainly due to increased succulence. S. monoica showed both a greater increase in succulence (at low salinities) and tolerance of high salinities than A. spongiosa. Both species had high affinities for Na+ and maintained constant but low shoot K+ contents with increasing salinity. These trends were more marked with S. monoica in which Na+ stimulated the accumulation of K+ in roots. An association between high leaf Na+ accumulation, high osmotic pressure, succulence, and a positive growth response at low salinities was noted. Proline accumulation was observed in shoot tissues with suboptimal water contents. High glycinebetaine contents were found in the shoots of both species. These correlated closely with the sap osmotic pressure and it is suggested that glycinebetaine is the major cytoplasmic osmoticum (with K+ salts) in these species at high salinities. Na+ salts may be preferentially utilized as vacuolar osmotica. PMID:16660671

  13. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  14. The effectiveness of a saline mouth rinse regimen and education programme on radiation-induced oral mucositis and quality of life in oral cavity cancer patients: A randomised controlled trial.

    PubMed

    Huang, B-S; Wu, S-C; Lin, C-Y; Fan, K-H; Chang, J T-C; Chen, S-C

    2018-03-01

    Radiation therapy (RT) and concurrent chemotherapy RT (CCRT) generate radiation-induced oral mucositis (OM) and lower quality of life (QOL). This study assessed the impact of a saline mouth rinse regimen and education programme on radiation-induced OM symptoms, and QOL in oral cavity cancer (OCC) patients receiving RT or CCRT. Ninety-one OCC patients were randomly divided into a group that received saline mouth rinses and an education programme and a control group that received standard care. OM symptoms and QOL were assessed with the WHO Oral Toxicity Scale, MSS-moo and UW-QOL. Data were collected at the first postoperative visit to the radiation department (T0) and at 4 weeks and 8 weeks after beginning RT or CCRT. Patients in both groups had significantly higher levels of physical and social-emotional QOL at 8 weeks after beginning RT or CCRT compared to the first visit. Patients in the saline rinse group had significantly better physical and social-emotional QOL as compared to the standard care group at 8 weeks. Radiation-induced OM symptoms and overall QOL were not different between the groups. We thus conclude the saline rinse and education programme promote better physical and social-emotional QOL in OCC patients receiving RT/CCRT. © 2018 John Wiley & Sons Ltd.

  15. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas?

    PubMed Central

    Buchwalter, David; Davis, Jenny

    2016-01-01

    Anthropogenic salinization of rivers is an emerging issue of global concern, with significant adverse effects on biodiversity and ecosystem functioning. Impacts of freshwater salinization on biota are strongly mediated by evolutionary history, as this is a major factor determining species physiological salinity tolerance. Freshwater insects dominate most flowing waters, and the common lotic insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) are particularly salt-sensitive. Tolerances of existing taxa, rapid adaption, colonization by novel taxa (from naturally saline environments) and interactions between species will be key drivers of assemblages in saline lotic systems. Here we outline a conceptual framework predicting how communities may change in salinizing rivers. We envision that a relatively small number of taxa will be saline-tolerant and able to colonize salinized rivers (e.g. most naturally saline habitats are lentic; thus potential colonizers would need to adapt to lotic environments), leading to depauperate communities in these environments. PMID:26932680

  16. Freshwater salinization syndrome on a continental scale

    PubMed Central

    Likens, Gene E.; Pace, Michael L.; Utz, Ryan M.; Haq, Shahan; Gorman, Julia; Grese, Melissa

    2018-01-01

    Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity. PMID:29311318

  17. Effect of Hypertonic Saline Infusion versus Normal Saline on Serum NGAL and Cystatin C Levels in Patients Undergoing Coronary Artery Bypass Graft

    PubMed Central

    Yousefshahi, Fardin; Bashirzadeh, Mona; Abdollahi, Mohammad; Mojtahedzadeh, Mojtaba; Salehiomran, Abbass; Jalali, Arash; Mazandarani, Mahnaz; Zaare, Elmira; Ahadi, Mehdi

    2013-01-01

    Background: Acute kidney injury (AKI) is a common and life-threatening complication following coronary artery bypass graft (CABG). Neutrophil gelatinase-associated lipocalin (NGAL) and Cystatin C have shown to be good predictive factors for AKI. Recently, there has been a growing interest in the use of hypertonic saline in cardiac operations. The purpose of this study was to evaluate the prophylactic anti-inflammatory effect of hypertonic saline (Group A) infusion versus normal saline (Group B) on serum NGAL and Cystatin C levels as the two biomarkers of AKI in CABG patients. Methods: This randomized double-blinded clinical trial recruited 40 patients undergoing CABG in Tehran Heart Center, Tehran, Iran. After applying exclusion criteria, the effects of preoperative hypertonic saline (294 meq Na) versus normal saline (154 meq Na) infusion on serum NGAL and Cystatin C levels were investigated in three intervals: before surgery and 24 and 48 hours postoperatively. The probable intraoperative or postoperative confounders, including pump time, cross-clamp time, heart rate, systolic and diastolic blood pressures, central venous pressure, arterial pH, partial pressure of arterial oxygen, fraction of inspired oxygen, blood sugar, Na, K, Mg, hemoglobins, white blood cells, hematocrits, and platelets, were recorded and compared between the two groups of study. Results: The study population comprised 40 patients, including 25 (62.5%) males, at a, mean age ± SD of 61.75 ± 8.13 years. There were no statistically significant differences between the patients’ basic, intraoperative, and postoperative characteristics, including intraoperative and postoperative hemodynamic variables and supports such as inotropic use. Intra-aortic balloon pump use and mortality were not seen in our cases. Three patients in the normal saline group and one patient in the hypertonic saline group had serum NGAL levels greater than 400 ng/ml. Moreover, 10 patients in Group A and 17 patients in group

  18. Effect of Hypertonic Saline Infusion versus Normal Saline on Serum NGAL and Cystatin C Levels in Patients Undergoing Coronary Artery Bypass Graft.

    PubMed

    Yousefshahi, Fardin; Bashirzadeh, Mona; Abdollahi, Mohammad; Mojtahedzadeh, Mojtaba; Salehiomran, Abbass; Jalali, Arash; Mazandarani, Mahnaz; Zaare, Elmira; Ahadi, Mehdi

    2013-01-01

    Acute kidney injury (AKI) is a common and life-threatening complication following coronary artery bypass graft (CABG). Neutrophil gelatinase-associated lipocalin (NGAL) and Cystatin C have shown to be good predictive factors for AKI. Recently, there has been a growing interest in the use of hypertonic saline in cardiac operations. The purpose of this study was to evaluate the prophylactic anti-inflammatory effect of hypertonic saline (Group A) infusion versus normal saline (Group B) on serum NGAL and Cystatin C levels as the two biomarkers of AKI in CABG patients. This randomized double-blinded clinical trial recruited 40 patients undergoing CABG in Tehran Heart Center, Tehran, Iran. After applying exclusion criteria, the effects of preoperative hypertonic saline (294 meq Na) versus normal saline (154 meq Na) infusion on serum NGAL and Cystatin C levels were investigated in three intervals: before surgery and 24 and 48 hours postoperatively. The probable intraoperative or postoperative confounders, including pump time, cross-clamp time, heart rate, systolic and diastolic blood pressures, central venous pressure, arterial pH, partial pressure of arterial oxygen, fraction of inspired oxygen, blood sugar, Na, K, Mg, hemoglobins, white blood cells, hematocrits, and platelets, were recorded and compared between the two groups of study. The study population comprised 40 patients, including 25 (62.5%) males, at a, mean age ± SD of 61.75 ± 8.13 years. There were no statistically significant differences between the patients' basic, intraoperative, and postoperative characteristics, including intraoperative and postoperative hemodynamic variables and supports such as inotropic use. Intra-aortic balloon pump use and mortality were not seen in our cases. Three patients in the normal saline group and one patient in the hypertonic saline group had serum NGAL levels greater than 400 ng/ml. Moreover, 10 patients in Group A and 17 patients in group B showed a rise in serum

  19. Soil salinity detection. [Starr and Cameron Counties, Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Richardson, A. J.; Gausman, H. W.; Leamer, R. W.; Gerbermann, A. H.; Everitt, J. H.; Cuellar, J. A. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Growth forms and herbage biomass production varied considerably among saline and nonsaline soil range sites in Starr County. Grasses on saline soil sites were shallow-rooted and short whereas on nonsaline sites there was an intermixture of short and midgrass species. Differentiation between primarily undisturbed saline and nonsaline rangelands, in Starr County, is partially possible using film optical density readings from Skylab imagery. Differentiation among eight saline and nonsaline soil sites in Cameron County, using black and white and color film was not possible according to statistical results from both DMRT and correlation analysis. Linear analysis showed that Bendix 24-band MSS data (aircraft) collected at 1700 m and 4800 m, as well as Skylab and LANDSAT-1 MSS data, were significantly correlated to electrical conductivity readings. In Starr County, the best spectral band for detection of saline soil levels, using black and white SO-022 film, was in the 0.6 to 0.7 micron spectral region. In Cameron County, the best spectral bands for detection of saline soil levels were the 2.3 to 2.43 micron, 0.72 to 0.76 micron, 0.69 to 1.75 micron, and 0.7 to 1.1 micron spectral regions.

  20. Comparison of heparinized saline and 0.9% sodium chloride for maintaining peripheral intravenous catheter patency in dogs.

    PubMed

    Ueda, Yu; Odunayo, Adesola; Mann, F A

    2013-01-01

    To determine whether heparinized saline would be more effective in maintaining the patency of peripheral IV catheters in dogs compared to 0.9% sodium chloride. Prospective blinded randomized study. University Veterinary Teaching Hospital. Thirty healthy purpose bred dogs, intended for use in the junior surgery laboratory, were utilized. The dogs were randomized into 1 of 3 groups, 2 treatment groups and a control group. An 18-Ga cephalic catheter was placed in the cephalic vein of each dog. Each dog in the treatment group had their catheter flushed with either 10 IU/mL heparinized saline or 0.9% sodium chloride every 6 hours for 42 hours. The dogs in the control group did not have their catheters flushed until the end of the study period. Immediately prior to flushing catheters, each catheter was evaluated for patency by aspiration of blood and the catheter site was evaluated for phlebitis. All dogs in the heparinized saline and 0.9% sodium chloride group had catheters that flushed easily at each evaluation point. More dogs in the saline group had catheters from which blood could not be aspirated, but there was no significant difference between these groups. All dogs in the control group had catheters that flushed easily at the end of the assigned 6 hour interval except in 1 dog. Phlebitis was not detected in any dog. Flushes of 0.9% sodium chloride were found to be as effective as 10 IU/mL heparinized saline flushes in maintaining patency of 18-Ga peripheral venous catheters in dogs for up to 42 hours. For peripheral catheters placed with the intention of performing serial blood draws, heparinized flushes may be warranted. © Veterinary Emergency and Critical Care Society 2013.