Towards decadal soil salinity mapping using Landsat time series data
NASA Astrophysics Data System (ADS)
Fan, Xingwang; Weng, Yongling; Tao, Jinmei
2016-10-01
Salinization is one of the major soil problems around the world. However, decadal variation in soil salinization has not yet been extensively reported. This study exploited thirty years (1985-2015) of Landsat sensor data, including Landsat-4/5 TM (Thematic Mapper), Landsat-7 ETM+ (Enhanced Thematic Mapper Plus) and Landsat-8 OLI (Operational Land Imager), for monitoring soil salinity of the Yellow River Delta, China. The data were initially corrected for atmospheric effects, and then matched the spectral bands of EO-1 (Earth Observing One) ALI (Advanced Land Imager). Subsequently, soil salinity maps were derived with a previously developed PLSR (Partial Least Square Regression) model. On intra-annual scale, the retrievals showed that soil salinity increased in February, stabilized in March, and decreased in April. On inter-annual scale, soil salinity decreased within 1985-2000 (-0.74 g kg-1/10a, p < 0.001), and increased within 2000-2015 (0.79 g kg-1/10a, p < 0.001). Our study presents a new perspective for use of multiple Landsat data in soil salinity retrieval, and further the understanding of soil salinization development over the Yellow River Delta.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Woods Hole Oceanographic Institution Scientist Dave Fratantoni works on the EcoMapper AUVs (autonomous underwater vehicles) onboard the Institute's research vessel Knorr, Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The EcoMappers will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Two EcoMapper AUVs (autonomous underwater vehicles) are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The EcoMappers will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Nazeer, Majid; Bilal, Muhammad
2018-04-01
Landsat-5 Thematic Mapper (TM) dataset have been used to estimate salinity in the coastal area of Hong Kong. Four adjacent Landsat TM images were used in this study, which was atmospherically corrected using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer code. The atmospherically corrected images were further used to develop models for salinity using Ordinary Least Square (OLS) regression and Geographically Weighted Regression (GWR) based on in situ data of October 2009. Results show that the coefficient of determination ( R 2) of 0.42 between the OLS estimated and in situ measured salinity is much lower than that of the GWR model, which is two times higher ( R 2 = 0.86). It indicates that the GWR model has more ability than the OLS regression model to predict salinity and show its spatial heterogeneity better. It was observed that the salinity was high in Deep Bay (north-western part of Hong Kong) which might be due to the industrial waste disposal, whereas the salinity was estimated to be constant (32 practical salinity units) towards the open sea.
2008-01-01
Paulo , Brazil ) and Jerry Miller (formerly of NRL) shelf extent, so that interaction between the plumes in this season are gratefully acknowledged. This...g00 Ro Grnde Brazil ’ Departamento Oceancgriti, Servicto de Hldnropa Naval Cludad Autonoma de Buen os Aie Buenas Aires. Argentina ARTICLE IN FO...Available online 26 March 2008 the continental shelf off Uruguay and Southern Brazil . Depending upon the prevailing rainfall, Keywords: wind and tidal
NASA Astrophysics Data System (ADS)
Lang, T. J.; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; Tatum, P. F.
2018-02-01
We propose the Deep Space Gateway Lightning Mapper (DLM) instrument. The primary goal of the DLM is to optically monitor Earth's high-latitude (50° and poleward) total lightning not observed by current and planned spaceborne lightning mappers.
Optimizing Performance of a Microwave Salinity Mapper: STARRS L-Band Radiometer Enhancements
2007-05-04
Contribution Number NRL/JA/ setts at Amherst, along with Quadrant Engineering Inc. 7330-05-5313. (now ProSensing Inc.) and funding from the National...Thus, sampling schemes development of STARRS by Quadrant Engineering can be optimized for particular applications. STARRS began under Naval Research...performance to be optimized. As we show later, a draw- ture, computed as the mean temperature from four back of this approach not found in analog
NASA Astrophysics Data System (ADS)
El Harti, Abderrazak; Lhissou, Rachid; Chokmani, Karem; Ouzemou, Jamal-eddine; Hassouna, Mohamed; Bachaoui, El Mostafa; El Ghmari, Abderrahmene
2016-08-01
Soil salinization is major environmental issue in irrigated agricultural production. Conventional methods for salinization monitoring are time and money consuming and limited by the high spatiotemporal variability of this phenomenon. This work aims to propose a spatiotemporal monitoring method of soil salinization in the Tadla plain in central Morocco using spectral indices derived from Thematic Mapper (TM) and Operational Land Imager (OLI) data. Six Landsat TM/OLI satellite images acquired during 13 years period (2000-2013) coupled with in-situ electrical conductivity (EC) measurements were used to develop the proposed method. After radiometric and atmospheric correction of TM/OLI images, a new soil salinity index (OLI-SI) is proposed for soil EC estimation. Validation shows that this index allowed a satisfactory EC estimation in the Tadla irrigated perimeter with coefficient of determination R2 varying from 0.55 to 0.77 and a Root Mean Square Error (RMSE) ranging between 1.02 dS/m and 2.35 dS/m. The times-series of salinity maps produced over the Tadla plain using the proposed method show that salinity is decreasing in intensity and progressively increasing in spatial extent, over the 2000-2013 period. This trend resulted in a decrease in agricultural activities in the southwestern part of the perimeter, located in the hydraulic downstream.
Simulation of Thematic Mapper performance as a function of sensor scanning parameters
NASA Technical Reports Server (NTRS)
Johnson, R. H.; Shah, N. J.; Schmidt, N. F.
1975-01-01
The investigation and results of the Thematic Mapper Instrument Performance Study are described. The Thematic Mapper is the advanced multispectral scanner initially planned for the Earth Observation Satellite and now planned for LANDSAT D. The use of existing digital airborne scanner data obtained with the Modular Multispectral Scanner (M2S) at Bendix provided an opportunity to simulate the effects of variation of design parameters of the Thematic Mapper. Analysis and processing of this data on the Bendix Multispectral Data Analysis System were used to empirically determine categorization performance on data generated with variations of the sampling period and scan overlap parameters of the Thematic Mapper. The Bendix M2S data, with a 2.5 milliradian instantaneous field of view and a spatial resolution (pixel size) of 10-m from 13,000 ft altitude, allowed a direct simulation of Thematic Mapper data with a 30-m resolution. The flight data chosen were obtained on 30 June 1973 over agricultural test sites in Indiana.
A comparison of four different lens mappers.
Larrue, Denis; Legeard, Morgane
2014-11-01
Recently, a number of lens mappers have become available for measuring the detailed optical properties of progressive addition lenses (PALs). The goal of this study was to compare the results obtained from several different lens mappers for a range of different lenses. The optical power maps of six lenses-two single-vision lenses, a parallel-sided slide, a flat prism, and two progressive lenses-were measured using four different lens mappers: the Dual Lens Mapper, the Nimo TR4005, the Rotlex Class Plus, and the Visionix VM2500. The repeatability of the instruments was also evaluated. All lens mappers gave very repeatable measurements; however, measurements among the lens mappers varied considerably. Differences appeared to be above the tolerance at the optical center for measurements of single-vision lenses, and these differences increase in the periphery up to 1.00 diopter. Similar differences were observed for the PALs, even increased by prism and base curve effect, with figures greater than 1 diopter in the periphery. The measurements made on the prism and lenses with different base curves suggest that base curve, thickness, and prismatic effect can all contribute to the differences among instruments. Measurements of a given lens taken with different lens mappers can vary substantially. Particular caution should be exercised when interpreting power maps for PALs taken with different instruments.
Resource and environmental surveys from space with the thematic mapper in the 1980's
NASA Technical Reports Server (NTRS)
1976-01-01
The selection of observation of vegetation is the primary optimization objective of the thematic mapper. The following are aspects of plans for the thematic mapper: (1) to include an appropriately modified first generation MSS in the thematic mapper mission; (2) to provide assured coverage for a minimum of six years to give agencies and other users an opportunity to justify the necessary commitment of resources for the transition into a completely valid operational phase; (3) to provide for global, direct data read-out, without the necessity for on-board data storage or dependence on foreign receiving stations; (4) to recognize the operational character of the thematic mapper after successful completion of its experimental evaluation; and (5) to combine future experimental packages with compatible orbits as part of the operational LANDSAT follow-on payloads.
NASA Technical Reports Server (NTRS)
Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.;
2018-01-01
Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).
Assessment of sea water inundation along Daboo creek area in Indus Delta Region, Pakistan
NASA Astrophysics Data System (ADS)
Zia, Ibrahim; Zafar, Hina; Shahzad, Muhammad I.; Meraj, Mohsin; Kazmi, Jamil H.
2017-12-01
Indus Deltaic Region (IDR) in Pakistan is an erosion vulnerable coast due to the high deep water wave energy. Livelihood of millions of people depends on the fisheries and mangrove forests in IDR. IDR consists of many creeks where Daboo is a major creek located at southeast of the largest city of Pakistan, Karachi. Unfortunately, there has been no detailed study to analyze the damages of sea water intrusion at a large temporal and spatial scale. Therefore, this study is designed to estimate the effects of sea water inundation based on changing sea water surface salinity and sea surface temperature (SST). Sea surface salinity and SST data from two different surveys in Daboo creek during 1986 and 2010 are analyzed to estimate the damages and extent of sea water intrusion. Mean salinity has increased 33.33% whereas mean SST decreased 13.79% from 1987 to 2010. Spatio-temporal analysis of creek area using LANDSAT 5 Thematic mapper (TM) data for the years 1987 and 2010 shows significant amount of erosion at macro scale. Creek area has increased approximately 9.93% (260.86 m2 per year) which is roughly equal to 60 extensive sized shrimp farms. Further Land Use Land Cover (LULC) analyses for years 2001 and 2014 using LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) has indicated 42.3% decrease in cultivated land. Wet mud flats have spread out at the inner mouth of creek with enormous increase of 123.3%. Significant sea water intrusion has increased the area of barren land by 37.9%. This also resulted in overall decrease of 6.7% in area covered by mangroves. Therefore, this study recorded a significant evidence of sea water intrusion in IDR that has caused serious damages to community living in the area, economical losses. Additionally, it has also changed the environment by reducing creek biological productivity as reported by earlier studies over other regions of the world.
HGDP and HapMap Analysis by Ancestry Mapper Reveals Local and Global Population Relationships
Magalhães, Tiago R.; Casey, Jillian P.; Conroy, Judith; Regan, Regina; Fitzpatrick, Darren J.; Shah, Naisha; Sobral, João; Ennis, Sean
2012-01-01
Knowledge of human origins, migrations, and expansions is greatly enhanced by the availability of large datasets of genetic information from different populations and by the development of bioinformatic tools used to analyze the data. We present Ancestry Mapper, which we believe improves on existing methods, for the assignment of genetic ancestry to an individual and to study the relationships between local and global populations. The principle function of the method, named Ancestry Mapper, is to give each individual analyzed a genetic identifier, made up of just 51 genetic coordinates, that corresponds to its relationship to the HGDP reference population. As a consequence, the Ancestry Mapper Id (AMid) has intrinsic biological meaning and provides a tool to measure similarity between world populations. We applied Ancestry Mapper to a dataset comprised of the HGDP and HapMap data. The results show distinctions at the continental level, while simultaneously giving details at the population level. We clustered AMids of HGDP/HapMap and observe a recapitulation of human migrations: for a small number of clusters, individuals are grouped according to continental origins; for a larger number of clusters, regional and population distinctions are evident. Calculating distances between AMids allows us to infer ancestry. The number of coordinates is expandable, increasing the power of Ancestry Mapper. An R package called Ancestry Mapper is available to apply this method to any high density genomic data set. PMID:23189146
HGDP and HapMap analysis by Ancestry Mapper reveals local and global population relationships.
Magalhães, Tiago R; Casey, Jillian P; Conroy, Judith; Regan, Regina; Fitzpatrick, Darren J; Shah, Naisha; Sobral, João; Ennis, Sean
2012-01-01
Knowledge of human origins, migrations, and expansions is greatly enhanced by the availability of large datasets of genetic information from different populations and by the development of bioinformatic tools used to analyze the data. We present Ancestry Mapper, which we believe improves on existing methods, for the assignment of genetic ancestry to an individual and to study the relationships between local and global populations. The principle function of the method, named Ancestry Mapper, is to give each individual analyzed a genetic identifier, made up of just 51 genetic coordinates, that corresponds to its relationship to the HGDP reference population. As a consequence, the Ancestry Mapper Id (AMid) has intrinsic biological meaning and provides a tool to measure similarity between world populations. We applied Ancestry Mapper to a dataset comprised of the HGDP and HapMap data. The results show distinctions at the continental level, while simultaneously giving details at the population level. We clustered AMids of HGDP/HapMap and observe a recapitulation of human migrations: for a small number of clusters, individuals are grouped according to continental origins; for a larger number of clusters, regional and population distinctions are evident. Calculating distances between AMids allows us to infer ancestry. The number of coordinates is expandable, increasing the power of Ancestry Mapper. An R package called Ancestry Mapper is available to apply this method to any high density genomic data set.
Evidence for dust transport in Viking IR thermal mapper opacity data
NASA Technical Reports Server (NTRS)
Martin, Terry Z.
1993-01-01
Global maps of 9-micron dust opacity derived from radiometric observations made by the Viking Orbiter IR Thermal Mapper instruments have revealed a wealth of new information about the distribution of airborne dust over 1.36 Mars years from 1976-1979. In particular, the changing dust distribution during major dust storms is of interest since the data provide a point of contact with both Earth-based observations of storm growth and with global circulation models.
Near-infrared hyperspectral imaging of atherosclerotic plaque in WHHLMI rabbit artery
NASA Astrophysics Data System (ADS)
Ishii, Katsunori; Kitayabu, Akiko; Omiya, Kota; Honda, Norihiro; Awazu, Kunio
2013-03-01
Hyperspectral imaging (HSI) of rabbit atherosclerotic plaque in near-infrared (NIR) range from 1150 to 2400 nm was demonstrated. A method to identify vulnerable plaques that are likely to cause acute coronary events has been required. The object of this study is identifying vulnerable plaques by NIR-HSI for an angioscopic application. In this study, we observed the hyperspectral images of the atherosclerotic plaque in WHHLMI rabbit (atherosclerotic rabbit) artery under simulated angioscopic conditions by NIR-HSI. NIR-HSI system was constructed by a NIR super continuum light and a mercury-cadmium-telluride camera. Spectral absorbance values (log (1/R) data) were obtained in the wavelength range from 1150 to 2400 nm at 10 nm intervals. The hyperspectral images were constructed with spectral angle mapper algorithm. As a result, the detections of atherosclerotic plaque under angioscopic observation conditions were achieved especially in the wavelength around 1200 nm, which corresponds to the second overtone of CH stretching vibration mode. The NIR-HSI was considered to serve as an angioscopic diagnosis technique to identify vulnerable plaques without clamping and saline injection.
NASA Astrophysics Data System (ADS)
Qu, Yonghua; Jiao, Siong; Lin, Xudong
2008-10-01
Hetao Irrigation District located in Inner Mongolia, is one of the three largest irrigated area in China. In the irrigational agriculture region, for the reasons that many efforts have been put on irrigation rather than on drainage, as a result much sedimentary salt that usually is solved in water has been deposited in surface soil. So there has arisen a problem in such irrigation district that soil salinity has become a chief fact which causes land degrading. Remote sensing technology is an efficiency way to map the salinity in regional scale. In the principle of remote sensing, soil spectrum is one of the most important indications which can be used to reflect the status of soil salinity. In the past decades, many efforts have been made to reveal the spectrum characteristics of the salinized soil, such as the traditional statistic regression method. But it also has been found that when the hyper-spectral reflectance data are considered, the traditional regression method can't be treat the large dimension data, because the hyper-spectral data usually have too higher spectral band number. In this paper, a partial least squares regression (PLSR) model was established based on the statistical analysis on the soil salinity and the reflectance of hyper-spectral. Dataset were collect through the field soil samples were collected in the region of Hetao irrigation from the end of July to the beginning of August. The independent validation using data which are not included in the calibration model reveals that the proposed model can predicate the main soil components such as the content of total ions(S%), PH with higher determination coefficients(R2) of 0.728 and 0.715 respectively. And the rate of prediction to deviation(RPD) of the above predicted value are larger than 1.6, which indicates that the calibrated PLSR model can be used as a tool to retrieve soil salinity with accurate results. When the PLSR model's regression coefficients were aggregated according to the wavelength of visual (blue, green, red) and near infrared bands of LandSat Thematic Mapper(TM) sensor, some significant response values were observed, which indicates that the proposed method in this paper can be used to analysis the remotely sensed data from the space-boarded platform.
The plume of the Yukon River in relation to the oceanography of the Bering Sea
NASA Technical Reports Server (NTRS)
Dean, Kenneson G.; Mcroy, C. Peter; Ahlnas, Kristina; Springer, Alan
1989-01-01
The ecosystem of the northern Bering-Sea shelf was studied using data from the NOAA Very High Resolution Radiometer and AVHRR and the Landsat MSS and Thematic Mapper (TM) in conjunction with shipboard measurements. Emphasis was placed on the influence of the Yukon River on this inner shelf environment and on the evaluation of the utility of the new Landsat TM data for oceanography. It was found that the patterns of water mass distribution obtained from satellite images agreed reasonably well with the areal patterns of temperature, salinity, and phytoplankton distributions. The AVHRR, MSS, and TM data show that the Yukon-River discharge is warmer and more turbid than the surrounding coastal water that originates to the south; thus, the Yukon water contributes to the higher temperatures and lower transmissivity of the coastal water. The high resolution of the TM thermal IR band made it possible to observe complex patterns and structures in the surface water that could not be resolved on previous data sets.
NASA Technical Reports Server (NTRS)
Ogletree, G.; Coccoli, J.; Mckern, R.; Smith, M.; White, R.
1972-01-01
The results of analytical and simulation studies of the stellar-inertial measurement system (SIMS) for an earth observation satellite are presented. Subsystem design analyses and sensor design trades are reported. Three candidate systems are considered: (1) structure-mounted gyros with structure-mounted star mapper, (2) structure-mounted gyros with gimbaled star tracker, and (3) gimbaled gyros with structure-mounted star mapper. The purpose of the study is to facilitate the decisions pertaining to gimbaled versus structure-mounted gyros and star sensors, and combinations of systems suitable for the EOS satellite.
CheS-Mapper - Chemical Space Mapping and Visualization in 3D.
Gütlein, Martin; Karwath, Andreas; Kramer, Stefan
2012-03-17
Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis.
CheS-Mapper - Chemical Space Mapping and Visualization in 3D
2012-01-01
Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis. PMID:22424447
One-Year Observations of Jupiter by the Jovian Infrared Auroral Mapper on Juno
NASA Astrophysics Data System (ADS)
Adriani, A.; Mura, A.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.; Becker, H. N.; Bagenal, F.; Hansen, C. J.; Orton, G.; Gladstone, R.; Kurth, W. S.; Mauk, B.; Valek, P. W.
2017-12-01
The Jovian InfraRed Auroral Mapper (JIRAM) [1] on board the Juno [2,3] spacecraft, is equipped with an infrared camera and a spectrometer working in the spectral range 2-5 μm. JIRAM was built to study the infrared aurora of Jupiter as well as to map the planet's atmosphere in the 5 µm spectral region. The spectroscopic observations are used for studying clouds and measuring the abundance of some chemical species that have importance in the atmosphere's chemistry, microphysics and dynamics like water, ammonia and phosphine. During 2017 the instrument will operate during all 7 of Juno's Jupiter flybys. JIRAM has performed several observations of the polar regions of the planet addressing the aurora and the atmosphere. Unprecedented views of the aurora and the polar atmospheric structures have been obtained. We present a survey of the most significant observations that the instrument has performed during the current year. [1] Adriani A. et al., JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rew., DOI 10.1007/s11214-014-0094-y, 2014. [2] Bolton S.J. et al., Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science DOI: 10.1126/science.aal2108, 2017. [3] Connerney J. E.P. et al., Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, DOI: 10.1126/science.aam5928, 2017.
NASA Technical Reports Server (NTRS)
Buechler, Dennis E.; Christian, Hugh J.; Koshak, William J.; Goodman, Steven J.
2013-01-01
There is a need to monitor the on-orbit performance of the Geostationary Lightning Mapper (GLM) on the Geostationary Operational Environmental Satellite R (GOES-R) for changes in instrument calibration that will affect GLM's lightning detection efficiency. GLM has no onboard calibration so GLM background radiance observations (available every 2.5 min) of Deep Convective Clouds (DCCs) are investigated as invariant targets to monitor GLM performance. Observations from the Lightning Imaging Sensor (LIS) and the Visible and Infrared Scanner (VIRS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite are used as proxy datasets for GLM and ABI 11 m measurements.
Evaluation of spatial, radiometric and spectral thematic mapper performance for coastal studies
NASA Technical Reports Server (NTRS)
Klemas, V.
1985-01-01
The main emphasis of the research was to determine what effect different wetland plant canopies would have upon observed reflectance in Thematic Mapper bands. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. Biomass estimates computed from spectral data were most similar to biomass estimates determined from harvest data when models developed for a specific canopy were used. In other words, the spectral biomass estimate of a broadleaf canopy was most similar to the harvest biomass estimate when a broadleaf canopy radiance model was used. Work is continuing to more precisely determine regression coefficients for each canopy type and to model the change in the coefficients with various combinations of canopy types. Researchers suspect that textural and spatial considerations can be used to identify canopy types and improve biomass estimates from Thematic Mapper data.
NASA Technical Reports Server (NTRS)
Ripple, William J.; Wang, S.; Isaacson, Dennis L.; Paine, D. P.
1995-01-01
Digital Landsat Thematic Mapper (TM) and Satellite Probatoire d'Observation de la Terre (SPOT) High Resolution Visible (HRV) images of coniferous forest canopies were compared in their relationship to forest wood volume using correlation and regression analyses. Significant inverse relationships were found between softwood volume and the spectral bands from both sensors (P less than 0.01). The highest correlations were between the log of softwood volume and the near-infrared bands (HRV band 3, r = -0.89; TM band 4, r = -0.83).
Analysis of nonlinear internal waves observed by Landsat thematic mapper
NASA Astrophysics Data System (ADS)
Artale, V.; Levi, D.; Marullo, S.; Santoleri, R.
1990-09-01
In this work we test the compatibility between the theoretical parameters of a nonlinear wave model and the quantitative information that one can deduce from satellite-derived data. The theoretical parameters are obtained by applying an inverse problem to the solution of the Cauchy problem for the Korteweg-de Vries equation. Our results are applied to the case of internal wave patterns elaborated from two different satellite sensors at the south of Messina (the thematic mapper) and at the north of Messina (the synthetic aperture radar).
Limitations and potential of satellite imagery to monitor environmental response to coastal flooding
Ramsey, Elijah W.; Werle, Dirk; Suzuoki, Yukihiro; Rangoonwala, Amina; Lu, Zhong
2012-01-01
Storm-surge flooding and marsh response throughout the coastal wetlands of Louisiana were mapped using several types of remote sensing data collected before and after Hurricanes Gustav and Ike in 2008. These included synthetic aperture radar (SAR) data obtained from the (1) C-band advance SAR (ASAR) aboard the Environmental Satellite, (2) phased-array type L-band SAR (PALSAR) aboard the Advanced Land Observing Satellite, and (3) optical data obtained from Thematic Mapper (TM) sensor aboard the Land Satellite (Landsat). In estuarine marshes, L-band SAR and C-band ASAR provided accurate flood extent information when depths averaged at least 80 cm, but only L-band SAR provided consistent subcanopy detection when depths averaged 50 cm or less. Low performance of inundation mapping based on C-band ASAR was attributed to an apparent inundation detection limit (>30 cm deep) in tall Spartina alterniflora marshes, a possible canopy collapse of shoreline fresh marsh exposed to repeated storm-surge inundations, wind-roughened water surfaces where water levels reached marsh canopy heights, and relatively high backscatter in the near-range portion of the SAR imagery. A TM-based vegetation index of live biomass indicated that the severity of marsh dieback was linked to differences in dominant species. The severest impacts were not necessarily caused by longer inundation but rather could be caused by repeated exposure of the palustrine marsh to elevated salinity floodwaters. Differential impacts occurred in estuarine marshes. The more brackish marshes on average suffered higher impacts than the more saline marshes, particularly the nearshore coastal marshes occupied by S. alterniflora.
JIRAM infrared observations of Jupiter Aurorae: results of the first year.
NASA Astrophysics Data System (ADS)
Mura, A.; Adriani, A.; Altieri, F.; Dinelli, B. M.; Moriconi, M. L.; Migliorini, A.; Bolton, S. J.; Connerney, J. E. P.; Cicchetti, A.; Noschese, R.; Sindoni, G.; Tosi, F.; Filacchione, G.; Fabiano, F.; Piccioni, G.; Turrini, D.; Amoroso, M.; Plainaki, C.; Olivieri, A.; Gerard, J.-C.
2017-09-01
JIRAM (Jovian Infrared Auroral Mapper) is an imaging spectrometer on board the Juno spacecraft, specifically designed to observe the aurorae of Jupiter. Here we show results on JIRAM's data after one year of observations. The footprints of Io, Europa and Ganymede have also been observed and characterized.
Internet protocol network mapper
Youd, David W.; Colon III, Domingo R.; Seidl, Edward T.
2016-02-23
A network mapper for performing tasks on targets is provided. The mapper generates a map of a network that specifies the overall configuration of the network. The mapper inputs a procedure that defines how the network is to be mapped. The procedure specifies what, when, and in what order the tasks are to be performed. Each task specifies processing that is to be performed for a target to produce results. The procedure may also specify input parameters for a task. The mapper inputs initial targets that specify a range of network addresses to be mapped. The mapper maps the network by, for each target, executing the procedure to perform the tasks on the target. The results of the tasks represent the mapping of the network defined by the initial targets.
On-board multispectral classification study
NASA Technical Reports Server (NTRS)
Ewalt, D.
1979-01-01
The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.
Landsat Thematic Mapper monitoring of turbid inland water quality
NASA Technical Reports Server (NTRS)
Lathrop, Richard G., Jr.
1992-01-01
This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.
Titan Radar Mapper observations from Cassini's T3 fly-by
Elachi, C.; Wall, S.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Lorenz, R.; Lunine, J.; Paganelli, F.; Soderblom, L.; Wood, C.; Wye, L.; Zebker, H.; Anderson, Y.; Ostro, S.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.
2006-01-01
Cassini's Titan Radar Mapper imaged the surface of Saturn's moon Titan on its February 2005 fly-by (denoted T3), collecting high-resolution synthetic-aperture radar and larger-scale radiometry and scatterometry data. These data provide the first definitive identification of impact craters on the surface of Titan, networks of fluvial channels and surficial dark streaks that may be longitudinal dunes. Here we describe this great diversity of landforms. We conclude that much of the surface thus far imaged by radar of the haze-shrouded Titan is very young, with persistent geologic activity. ?? 2006 Nature Publishing Group.
Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator)
1984-01-01
The effect different wetland plant canopies have upon observed reflectance in Thematic Mapper bands is studied. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. The spectral biomass estimate of a broadleaf canopy is most similar to the harvest biomass estimate when a broadleaf canopy radiance model is used. All major wetland vegetation species can be identified through TM imagery. Simple regression models are developed equating the vegetation index and the infrared index with biomass. The spectral radiance index largely agreed with harvest biomass estimates.
The utility of Landsat-D for water-resources studies
NASA Technical Reports Server (NTRS)
Salomonson, V. V.
1980-01-01
The paper discusses applications of the Landsat-D remote sensing observations to hydrology and management of water resources. It is expected that the Landsat-D thematic mapper will provide spatial resolution of 30 m vs 79 m in the reflected solar radiation bands; additional spectral resolution in the 0.5 to 1.0 micron region and new bands covering regions in the 0.45 to 2.35 micron range will be available. The thematic mapper produces data at an 85 megabit/sec rate; an advanced data processing system will be used for improved monitoring of earth resources.
Geologic results of the TMS survey over Mt. Emmons, Colorado. [Thematic Mapper Simulator
NASA Technical Reports Server (NTRS)
Rickman, D. L.; Sadowski, R. M.
1985-01-01
In 1981, NASA conducted with an American company a cooperative study, involving the use of Thematic Mapper Simulator (TMS) data. The study was concerned with an area near Crested Butte, Colorado, which contains a known, but unmined, major molybdenum deposit. Detailed ground observations in the Mt. Emmons area demonstrated that the imagery was extremely effective for detection of geologically significant features. The imagery specifically delineated areas of ferric iron staining, seritization, and hornfelized rock. Attention is given to data acquisition and data processing, field work in 1982 and in 1983, the integration of gravity data, and costs.
NASA Technical Reports Server (NTRS)
Westman, Walter E.; Price, Curtis V.
1988-01-01
Landsat Thematic Mapper (TM) and aircraft-borne Thematic Mapper simulator (TMS) data were collected over two areas of natural vegetation in southern California exposed to gradients of pollutant dose, particularly in photochemical oxidants: the coastal sage scrub of the Santa Monica Mountains in the Los Angeles basin, and the yellow pine forests in the southern Sierra Nevada. In both situations, natural variations in canopy closure, with subsequent exposure of understory elements (e.g.,rock or soil, chaparral, grasses, and herbs), were sufficient to cause changes in spectral variation that could obscure differences due to visible foliar injury symptoms observed in the field. TM or TMS data are therefore more likely to be successful in distinguishing pollution injury from background variation when homogeneous communities with closed canopies are subjected to more severe pollution-induced structural and/or compositional change. The present study helps to define the threshold level of vegetative injury detectable by TM data.
NS001MS - Landsat-D thematic mapper band aircraft scanner
NASA Technical Reports Server (NTRS)
Richard, R. R.; Merkel, R. F.; Meeks, G. R.
1978-01-01
The thematic mapper is a multispectral scanner which will be launched aboard Landsat-D in the early 1980s. Compared with previous Landsat scanners, this instrument will have an improved spatial resolution (30 m) and new spectral bands. Designated NS001MS, the scanner is designed to duplicate the thematic mapper spectral bands plus two additional bands (1.0 to 1.3 microns and 2.08 to 2.35 microns) in an aircraft scanner for evaluation and investigation prior to design and launch of the final thematic mapper. Applicable specifications used in defining the thematic mapper were retained in the NS001MS design, primarily with respect to spectral bandwidths, noise equivalent reflectance, and noise equivalent difference temperature. The technical design and operational characteristics of the multispectral scanner (with thematic mapper bands) are discussed.
Abstracts of the annual meeting of Planetary Geologic Mappers: June 21-22, 2002, Tempe, Arizona
Gregg, Tracy K. P.; Tanaka, Kenneth L.; Senske, David A.
2002-01-01
The annual meeting of planetary geologic mappers allows mappers the opportunity to exchange ideas, experiences, victories, and problems. In addition, presentations are reviewed by the Geologic Mapping Subcommittee (GEMS) to provide input to the Planetary Geology and Geophysics Mapping Program review panel’s consideration of new proposals and progress reports that include mapping tasks. Funded mappers bring both oral presentation materials (slides or viewgraphs) and map products to post for review by GEMS and fellow mappers. Additionally, the annual meetings typically feature optional field trips that offer Earth analogs and parallels to planetary mapping problems or workshops that provide information and status of current missions. The 2002 meeting of planetary geologic mappers was held June 21-22 at the Mars Flight Facility, Arizona State University, Tempe, Arizona. Dr. Phil Christensen graciously offered the use of the newly renovated facility, and Ms. Kelly Bender not only proved to be a courteous hostess, but also arranged a short workshop on June 23 regarding TES and THEMIS data. Approximately 30 people attended each day of the 2-day meeting, although not the same 30—some attended only on Thursday and others only on Friday. On Thursday, eight mappers gave oral presentations of Mars mapping, and an additional two presentations were presented as posters only. Eight oral presentations on Venus mapping were given on Friday, and an additional four presentations were posters only. Twelve people attended the TES/THEMIS workshop. Presentations of Ganymede mapping and Europa mapping (the latter not yet financially sponsored by PG&G mapping program) were also given on Friday. Aside from the regular presentations of maps-in-progress, there were some additional talks. Lisa Gaddis (USGS) presented a proposal seeking support for a new lunar mapping program in light of all the new data available; she made a good case that the GEMS panel discussed. Jim Skinner (USGS) gave a short presentation on free (or nearly so) software available for 3D viewing of planetary surfaces. Healthy discussions focused on the review time for some maps and the use of different styles of correlation charts observed on the presented maps. Next year’s meeting will be held June 19-20 at Brown University, Providence, RI.
Outgassing models for Landsat-4 thematic mapper short wave infrared bands
Micijevic, E.; Helder, D.L.; ,
2005-01-01
Detector responses to the Internal Calibrator (IC) pulses in the Landsat-4 Thematic Mapper (TM) have been observed to follow an oscillatory behavior. This phenomenon is present only in the Short Wave Infrared (SWIR) bands and has been observed throughout the lifetime of the instrument, which was launched in July 1982 and imaged the Earth's surface until late 1993. These periodic changes in amplitude, which can be as large as 7.5 percent, are known as outgassing effects and are believed to be due to optical interference caused by a gradual buildup of an ice-like material on the window of the cryogenically cooled dewar containing the SWIR detectors. Similar outgassing effects in the Landsat-5 TM have been characterized using an optical thin-film model that relates detector behavior to the ice film growth rate, which was found to gradually decrease with time. A similar approach, which takes into consideration the different operational history of the instrument, has been applied in this study to three closely sampled data sets acquired throughout the lifetime of the Landsat-4 TM. Although Landsat-4 and Landsat-5 Thematic Mappers are essentially identical instruments, data generated from analyses of outgassing effects indicate subtle, but important, differences between the two. The estimated lifetime model could improve radiometric accuracy by as much as five percent.
Using the Landsat 7 enhanced thematic mapper tasseled cap transformation to extract shoreline
Scott, J.W.
2003-01-01
A semiautomated method for objectively interpreting and extracting the land-water interface has been devised and used successfully to generate multiple shoreline data for the test States of Louisiana and Delaware. The method is based on the application of tasseled cap transformation coefficients derived by the EROS Data Center for Landsat 7 Enhanced Thematic Mapper Data, and is used in conjunction with ERDAS Imagine software. Shoreline data obtained using this method are cost effective compared with conventional mapping methods for State, regional, and national coastline applications. Attempts to attribute vector shoreline data with orthometric elevation values derived from tide observation stations, however, proved unsuccessful.
Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator)
1984-01-01
The effect different wetland plant canopies have upon observed reflectance in Thematic Mapper bands is examined. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. Biomass estimates computed from spectral data were most similar to biomass estimates determined from harvest data when models developed for a specific canopy were used. Precise determination of regression coefficients for each canopy type and modeling changes in the coefficients with various combinations of canopy types are being tested. The multispectral band scanner vegetation index estimates are very similar to the vegetation index estimates.
Operon-mapper: A Web Server for Precise Operon Identification in Bacterial and Archaeal Genomes.
Taboada, Blanca; Estrada, Karel; Ciria, Ricardo; Merino, Enrique
2018-06-19
Operon-mapper is a web server that accurately, easily, and directly predicts the operons of any bacterial or archaeal genome sequence. The operon predictions are based on the intergenic distance of neighboring genes as well as the functional relationships of their protein-coding products. To this end, Operon-mapper finds all the ORFs within a given nucleotide sequence, along with their genomic coordinates, orthology groups, and functional relationships. We believe that Operon-mapper, due to its accuracy, simplicity and speed, as well as the relevant information that it generates, will be a useful tool for annotating and characterizing genomic sequences. http://biocomputo.ibt.unam.mx/operon_mapper/.
Geostationary Carbon Process Mapper (GCPM)
NASA Technical Reports Server (NTRS)
Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natraj, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung
2012-01-01
Geostationary Carbon Process Mapper (GCPM) is an earth science mission to measure key atmospheric trace gases related to climate change and human activity.Understanding of sources and sinks of CO2 is currently limited by frequency of observations and uncertainty in vertical transport. GCPM improves this situation by making simultaneous high resolution measurements of CO2, CH4, CF, and CO in near-IR, many times per day. GCPM is able to investigate processes with time scales of minutes to hours. CO2, CH4, CF, Co selected because their combination provides information needed to disentangle natural and anthropogenic sources/sinks. Quasi-continuous monitoring effectively eliminates atmospheric transport uncertainties from source/sink inversion modeling. will have one instrument (GeoFTS), hosted on a commercial communications satellite, planned for two years operation. GCPM will affordably advance the understanding of observed cycle variability improving future climate projections.
Evaluation of corn/soybeans separability using Thematic Mapper and Thematic Mapper Simulator data
NASA Technical Reports Server (NTRS)
Pitts, D. E.; Badhwar, G. D.; Thompson, D. R.; Henderson, K. E.; Shen, S. S.; Sorensen, C. T.; Carnes, J. G.
1984-01-01
Multitemporal Thematic Mapper, Thematic Mapper Simulator, and detailed ground truth data were collected for a 9- by 11-km sample segment in Webster County, IA, in the summer of 1982. Three dates were acquired each with Thematic Mapper Simulator (June 7, June 23, and July 31) and Thematic Mapper (August 2, September 3, and October 21). The Thematic Mapper Simulator data were converted to equivalent TM count values using TM and TMS calibration data and model based estimates of atmospheric effects. The July 31, TMS image was compared to the August 2, TM image to verify the conversion process. A quantitative measure of proportion estimation variance (Fisher information) was used to evaluate the corn/soybeans separability for each TM band as a function of time during the growing season. The additional bands in the middle infrared allowed corn and soybeans to be separated much earlier than was possible with the visible and near-infrared bands alone. Using the TM and TMS data, temporal profiles of the TM principal components were developed. The greenness and brightness exhibited behavior similar to MSS greenness and brightness for corn and soybeans.
2009-08-06
This mosaic of image swaths from Cassini’s Titan Radar Mapper, taken with the synthetic-aperture radar SAR, features a large dark region several hundred kilometers across that differs in several significant ways from potential lakes observed on Titan.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Macdonald, R. B.; Hall, F. G.; Carnes, J. G.
1986-01-01
Results from analysis of a data set of simultaneous measurements of Thematic Mapper band reflectance and leaf area index are presented. The measurements were made over pure stands of Aspen in the Superior National Forest of northern Minnesota. The analysis indicates that the reflectance may be sensitive to the leaf area index of the Aspen early in the season. The sensitivity disappears as the season progresses. Based on the results of model calculations, an explanation for the observed relationship is developed. The model calculations indicate that the sensitivity of the reflectance to the Aspen overstory depends on the amount of understory present.
Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator)
1983-01-01
A series of experiments were initiated to determine the feasibility of using thematic mapper spectral data to estimate wetlands biomass. The experiments were conducted using hand-held radiometers simulating thematic mapper wavebands 3, 4 and 5. Spectral radiance data were collected from the ground and from a low altitude aircraft in an attempt to gain some insight into the potential utility of actual thematic mapper data for biomass estimation in wetland plant communities. In addition, radiative transfer models describing volume reflectance of eight water column containing submerged aquatic vegetation were refined.
Landsat 4 and 5 status and results from Thematic Mapper data analyses
NASA Technical Reports Server (NTRS)
Salomonson, V. V.
1984-01-01
Landsat-1, 2, and 3 have functioned successfully well beyond their design lifetimes of one year and provided a very sizable collection of data. On July 16, 1982 with the successful launch of Landsat-4, a second generation of Landsat satellites was introduced. Landsat-4 continues to make available the observational services which had been provided by the Multispectral Scanner (MSS) on Landsats 1-3. In addition, the new satellite is provided with an improved observational capability which is based on a utilization of the Thematic Mapper (TM). The system status (March 1984) of Landsat-4 is considered along with an evaluation of the MSS, and a description of the design and performance of the TM. Attention is also given to the satellite Landsat-5, which was launched successfully on March 1, 1984, taking into account design modifications leading to improved performance and some scenes provided by the new spacecraft.
The spatial distribution of rocks on Mars
NASA Astrophysics Data System (ADS)
Christensen, P. R.
1986-11-01
A Viking IR Thematic Mapper observations-based mapping of the spatial distribution of rocks exposed on the planet's surface exhibits a 6-percent areal coverage rock abundance. A model for the determination of rock abundance relates the thermal emission in each of the four Thematic Mapper bands to temperature contrasts in the field of view as well as to nonunit thermal emissivity due to absorption bands in the surface materials and the scattering of the outgoing energy by atmospheric dust and water ice; since each of these produces characteristic spectral and diurnal signatures, they can be readily separated. Dual-polarization radar measurements show the Tharsis volcanic region to be very rough, while thermal measurements indicate few rocks, accompanied by a dust covering. These observations suggest an approximately 1-km thick mantle of fines, overlying a rough subsurface, on which both erosional and depositional aeolian processes have exerted considerable influence.
Cross-comparison of the IRS-P6 AWiFS sensor with the L5 TM, L7 ETM+, & Terra MODIS sensors
Chander, G.; Xiong, X.; Angal, A.; Choi, T.; Malla, R.
2009-01-01
As scientists and decision makers increasingly rely on multiple Earth-observing satellites to address urgent global issues, it is imperative that they can rely on the accuracy of Earth-observing data products. This paper focuses on the crosscomparison of the Indian Remote Sensing (IRS-P6) Advanced Wide Field Sensor (AWiFS) with the Landsat 5 (L5) Thematic Mapper (TM), Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+), and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The cross-comparison was performed using image statistics based on large common areas observed by the sensors within 30 minutes. Because of the limited availability of simultaneous observations between the AWiFS and the Landsat and MODIS sensors, only a few images were analyzed. These initial results are presented. Regression curves and coefficients of determination for the top-of-atmosphere (TOA) trends from these sensors were generated to quantify the uncertainty in these relationships and to provide an assessment of the calibration differences between these sensors. ?? 2009 SPIE.
Thematic mapper design parameter investigation
NASA Technical Reports Server (NTRS)
Colby, C. P., Jr.; Wheeler, S. G.
1978-01-01
This study simulated the multispectral data sets to be expected from three different Thematic Mapper configurations, and the ground processing of these data sets by three different resampling techniques. The simulated data sets were then evaluated by processing them for multispectral classification, and the Thematic Mapper configuration, and resampling technique which provided the best classification accuracy were identified.
A mobile, web-based system can improve positive airway pressure adherence.
Hostler, Jordanna M; Sheikh, Karen L; Andrada, Teotimo F; Khramtsov, Andrei; Holley, Paul R; Holley, Aaron B
2017-04-01
SleepMapper is a mobile, web-based system that allows patients to self-monitor their positive airway pressure therapy, and provides feedback and education in real time. In addition to the usual, comprehensive support provided at our clinic, we gave the SleepMapper to 30 patients initiating positive airway pressure. They were compared with patients initiating positive airway pressure at our clinic without SleepMapper (controls) to determine whether SleepMapper affected adherence. A total of 61 patients had polysomnographic and adherence data analysed, 30 were given SleepMapper and 31 received our standard of care. The two groups were well matched at baseline to include no significant differences in age, apnea-hypopnea index, percentage receiving split-night polysomnographs and starting pressures. Patients in the control group received significantly more non-benzodiazepine sedative hypnotics the night of their polysomnography and during positive airway pressure initiation. At 11 weeks, patients in the SleepMapper group had a greater percentage of nights with any use (78.0 ± 22.0 versus 55.5 ± 24.0%; P < 0.001) and >4 h positive airway pressure use (78.0 ± 22.0 versus 55.5 ± 24.0%; P = 0.02). There was a trend toward more patients in the SleepMapper group achieving >4 h of use for at least 70% of nights [9/30 (30%) versus 3/31 (9.7%); P = 0.06]. In multivariate linear regression, the SleepMapper remained significantly associated with percentage of nights >4 h positive airway pressure use (β coefficient = 0.18; P = 0.02). Added to our usual, comprehensive programme to maximize positive airway pressure adherence in new users, the SleepMapper was independently associated with an 18% increase in nights >4 h of use. © 2016 European Sleep Research Society.
Lineage mapper: A versatile cell and particle tracker
NASA Astrophysics Data System (ADS)
Chalfoun, Joe; Majurski, Michael; Dima, Alden; Halter, Michael; Bhadriraju, Kiran; Brady, Mary
2016-11-01
The ability to accurately track cells and particles from images is critical to many biomedical problems. To address this, we developed Lineage Mapper, an open-source tracker for time-lapse images of biological cells, colonies, and particles. Lineage Mapper tracks objects independently of the segmentation method, detects mitosis in confluence, separates cell clumps mistakenly segmented as a single cell, provides accuracy and scalability even on terabyte-sized datasets, and creates division and/or fusion lineages. Lineage Mapper has been tested and validated on multiple biological and simulated problems. The software is available in ImageJ and Matlab at isg.nist.gov.
NASA Astrophysics Data System (ADS)
Yuan, T.; Heale, C. J.; Snively, J. B.
2016-12-01
Utilizing observations from the Na lidar at Utah State University and the nearby Mesospheric Temperature Mapper (MTM) at Bear Lake Observatory (BLO) [41.9°N, 111.4°W], we investigate a unique case of vertical dispersion for a spectrally broad gravity wave packet in the mesopause region over Logan, Utah (41.7°N, 111.8°W) that occurred on September 2nd, 2011, to study the waves' evolution as a packet propagates upward. The lidar observed temperature perturbation was dominated by close to a 1-hour modulation at 100 km during the early hours, but gradually evolved into a 1.5-hour modulation during the second half of the night. The vertical wavelength also decreased simultaneously, while the vertical group and phase velocities of the packet apparently slowed, as it was approaching a critical level during the second half of the night. A two-dimensional numerical model is utilized to simulate the observed GW processes, finding that the location of the lidar relative to the source can strongly influence which portion of the spectrum can be observed at a particular location relative to a source.
CheS-Mapper 2.0 for visual validation of (Q)SAR models
2014-01-01
Background Sound statistical validation is important to evaluate and compare the overall performance of (Q)SAR models. However, classical validation does not support the user in better understanding the properties of the model or the underlying data. Even though, a number of visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allow the investigation of model validation results are still lacking. Results We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. The approach applies the 3D viewer CheS-Mapper, an open-source application for the exploration of small molecules in virtual 3D space. The present work describes the new functionalities in CheS-Mapper 2.0, that facilitate the analysis of (Q)SAR information and allows the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. The approach is generic: It is model-independent and can handle physico-chemical and structural input features as well as quantitative and qualitative endpoints. Conclusions Visual validation with CheS-Mapper enables analyzing (Q)SAR information in the data and indicates how this information is employed by the (Q)SAR model. It reveals, if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org. Graphical abstract Comparing actual and predicted activity values with CheS-Mapper.
Development of image mappers for hyperspectral biomedical imaging applications
Kester, Robert T.; Gao, Liang; Tkaczyk, Tomasz S.
2010-01-01
A new design and fabrication method is presented for creating large-format (>100 mirror facets) image mappers for a snapshot hyperspectral biomedical imaging system called an image mapping spectrometer (IMS). To verify this approach a 250 facet image mapper with 25 multiple-tilt angles is designed for a compact IMS that groups the 25 subpupils in a 5 × 5 matrix residing within a single collecting objective's pupil. The image mapper is fabricated by precision diamond raster fly cutting using surface-shaped tools. The individual mirror facets have minimal edge eating, tilt errors of <1 mrad, and an average roughness of 5.4 nm. PMID:20357875
cMapper: gene-centric connectivity mapper for EBI-RDF platform.
Shoaib, Muhammad; Ansari, Adnan Ahmad; Ahn, Sung-Min
2017-01-15
In this era of biological big data, data integration has become a common task and a challenge for biologists. The Resource Description Framework (RDF) was developed to enable interoperability of heterogeneous datasets. The EBI-RDF platform enables an efficient data integration of six independent biological databases using RDF technologies and shared ontologies. However, to take advantage of this platform, biologists need to be familiar with RDF technologies and SPARQL query language. To overcome this practical limitation of the EBI-RDF platform, we developed cMapper, a web-based tool that enables biologists to search the EBI-RDF databases in a gene-centric manner without a thorough knowledge of RDF and SPARQL. cMapper allows biologists to search data entities in the EBI-RDF platform that are connected to genes or small molecules of interest in multiple biological contexts. The input to cMapper consists of a set of genes or small molecules, and the output are data entities in six independent EBI-RDF databases connected with the given genes or small molecules in the user's query. cMapper provides output to users in the form of a graph in which nodes represent data entities and the edges represent connections between data entities and inputted set of genes or small molecules. Furthermore, users can apply filters based on database, taxonomy, organ and pathways in order to focus on a core connectivity graph of their interest. Data entities from multiple databases are differentiated based on background colors. cMapper also enables users to investigate shared connections between genes or small molecules of interest. Users can view the output graph on a web browser or download it in either GraphML or JSON formats. cMapper is available as a web application with an integrated MySQL database. The web application was developed using Java and deployed on Tomcat server. We developed the user interface using HTML5, JQuery and the Cytoscape Graph API. cMapper can be accessed at http://cmapper.ewostech.net Readers can download the development manual from the website http://cmapper.ewostech.net/docs/cMapperDocumentation.pdf. Source Code is available at https://github.com/muhammadshoaib/cmapperContact:smahn@gachon.ac.krSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The Mole Mapper Study, mobile phone skin imaging and melanoma risk data collected using ResearchKit.
Webster, Dan E; Suver, Christine; Doerr, Megan; Mounts, Erin; Domenico, Lisa; Petrie, Tracy; Leachman, Sancy A; Trister, Andrew D; Bot, Brian M
2017-02-14
Sensor-embedded phones are an emerging facilitator for participant-driven research studies. Skin cancer research is particularly amenable to this approach, as phone cameras enable self-examination and documentation of mole abnormalities that may signal a progression towards melanoma. Aggregation and open sharing of this participant-collected data can be foundational for research and the development of early cancer detection tools. Here we describe data from Mole Mapper, an iPhone-based observational study built using the Apple ResearchKit framework. The Mole Mapper app was designed to collect participant-provided images and measurements of moles, together with demographic and behavioral information relating to melanoma risk. The study cohort includes 2,069 participants who contributed 1,920 demographic surveys, 3,274 mole measurements, and 2,422 curated mole images. Survey data recapitulates associations between melanoma and known demographic risks, with red hair as the most significant factor in this cohort. Participant-provided mole measurements indicate an average mole size of 3.95 mm. These data have been made available to engage researchers in a collaborative, multidisciplinary effort to better understand and prevent melanoma.
The Mole Mapper Study, mobile phone skin imaging and melanoma risk data collected using ResearchKit
Webster, Dan E.; Suver, Christine; Doerr, Megan; Mounts, Erin; Domenico, Lisa; Petrie, Tracy; Leachman, Sancy A.; Trister, Andrew D.; Bot, Brian M.
2017-01-01
Sensor-embedded phones are an emerging facilitator for participant-driven research studies. Skin cancer research is particularly amenable to this approach, as phone cameras enable self-examination and documentation of mole abnormalities that may signal a progression towards melanoma. Aggregation and open sharing of this participant-collected data can be foundational for research and the development of early cancer detection tools. Here we describe data from Mole Mapper, an iPhone-based observational study built using the Apple ResearchKit framework. The Mole Mapper app was designed to collect participant-provided images and measurements of moles, together with demographic and behavioral information relating to melanoma risk. The study cohort includes 2,069 participants who contributed 1,920 demographic surveys, 3,274 mole measurements, and 2,422 curated mole images. Survey data recapitulates associations between melanoma and known demographic risks, with red hair as the most significant factor in this cohort. Participant-provided mole measurements indicate an average mole size of 3.95 mm. These data have been made available to engage researchers in a collaborative, multidisciplinary effort to better understand and prevent melanoma. PMID:28195576
OMPS TC EDR Algorithm: Improvement and Verification
NASA Astrophysics Data System (ADS)
Novicki, M.; Sen, B.; Hao, X.; Qu, J. J.
2009-12-01
The Ozone Mapper and Profiler Suite (OMPS) is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in early 2011. The OMPS will continue monitoring ozone from space, using three instruments, namely the Total Column Mapper (heritage: TOMS), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE). The Total Column Mapper (TC) sensor images the Earth through a slit, nadir-cell horizontally spaced at 49.5 km cross-track with an along-track reporting interval of 50 km. The total field of view (FOV) cross track is 110 degrees to provide daily global coverage. The TC sensor, a grating spectrometer, provides 0.45 nm spectral sampling across the wavelength range of 300-380 nm. The calibration stability, which is essential to enable long-term ozone monitoring, is maintained by periodic observations of the Sun, using a diffuser to redirect the solar irradiance into the sensor. We describe the data analysis method being presently implemented to retrieve the total column ozone Earth Data Record (EDR) from the radiance data measured by the TC sensor. We discuss the software changes, the test data used to verify the functional performance and the test results.
OMPS SDR Calibration and Validation
NASA Astrophysics Data System (ADS)
Sen, B.; Done, J.; Buss, R.; Jaross, G. R.; Kelly, T. J.
2009-12-01
The Ozone Mapper and Profiler Suite (OMPS) is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in early 2011. The OMPS will continue monitoring ozone from space, using three instruments, namely the Total Column Mapper (heritage: TOMS), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE). The Total Column Mapper (TC) sensor images the Earth through a slit, nadir-cell horizontally spaced at 49.5 km cross-track with an along-track reporting interval of 50 km. The total field of view (FOV) cross-track is 110 degree to provide daily global coverage. The TC sensor, a grating spectrometer, provides 0.45 nm spectral sampling across the wavelength range of 300-380 nm. The calibration stability, which is essential to enable long-term ozone monitoring, is maintained by periodic observations of the Sun, using a diffuser to redirect the solar irradiance into the sensor. We describe the plans to calibrate the TC sensor and validate the radiance data (TC Sensor Data Record or TC SDR) after launch. We discuss the measurements planned during the Intensive Cal/Val (ICV) phase of NPP mission, the data analysis methodology and results from the analysis of OMPS calibration measurements.
NASA Technical Reports Server (NTRS)
Wrigley, R. C.; Acevedo, W.; Alexander, D.; Buis, J.; Card, D.
1984-01-01
An experiment of a factorial design was conducted to test the effects on classification accuracy of land cover types due to the improved spatial, spectral and radiometric characteristics of the Thematic Mapper (TM) in comparison to the Multispectral Scanner (MSS). High altitude aircraft scanner data from the Airborne Thematic Mapper instrument was acquired over central California in August, 1983 and used to simulate Thematic Mapper data as well as all combinations of the three characteristics for eight data sets in all. Results for the training sites (field center pixels) showed better classification accuracies for MSS spatial resolution, TM spectral bands and TM radiometry in order of importance.
NASA Technical Reports Server (NTRS)
Tucker, C. J.
1978-01-01
The first four Landsat-D thematic mapper sensors were evaluated and compared to the RBV and MSS sensors from Landsats-1, 2, and 3, Colvocoresses' proposed 'operational Landsat' three band system, and the French SPOT three band system using simulation/integration techniques and in situ collected spectral reflectance data. Sensors were evaluated by their ability to discriminate vegetation biomass, chlorophyll concentration, and leaf water content. The thematic mapper and SPOT bands were superior in a spectral resolution context to the other three sensor systems for vegetational applications. Significant improvements are expected for vegetational analyses from Landsat-D thematic mapper and SPOT imagery over MSS and RBV imagery.
Global Visualization (GloVis) Viewer
,
2005-01-01
GloVis (http://glovis.usgs.gov) is a browse image-based search and order tool that can be used to quickly review the land remote sensing data inventories held at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS). GloVis was funded by the AmericaView project to reduce the difficulty of identifying and acquiring data for user-defined study areas. Updated daily with the most recent satellite acquisitions, GloVis displays data in a mosaic, allowing users to select any area of interest worldwide and immediately view all available browse images for the following Landsat data sets: Multispectral Scanner (MSS), Multi-Resolution Land Characteristics (MRLC), Orthorectified, Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and ETM+ Scan Line Corrector-off (SLC-off). Other data sets include Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectroradiometer (MODIS), Aqua MODIS, and the Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion data.
SkyMapper Southern Survey: First Data Release (DR1)
NASA Astrophysics Data System (ADS)
Wolf, Christian; Onken, Christopher A.; Luvaul, Lance C.; Schmidt, Brian P.; Bessell, Michael S.; Chang, Seo-Won; Da Costa, Gary S.; Mackey, Dougal; Martin-Jones, Tony; Murphy, Simon J.; Preston, Tim; Scalzo, Richard A.; Shao, Li; Smillie, Jon; Tisserand, Patrick; White, Marc C.; Yuan, Fang
2018-02-01
We present the first data release of the SkyMapper Southern Survey, a hemispheric survey carried out with the SkyMapper Telescope at Siding Spring Observatory in Australia. Here, we present the survey strategy, data processing, catalogue construction, and database schema. The first data release dataset includes over 66 000 images from the Shallow Survey component, covering an area of 17 200 deg2 in all six SkyMapper passbands uvgriz, while the full area covered by any passband exceeds 20 000 deg2. The catalogues contain over 285 million unique astrophysical objects, complete to roughly 18 mag in all bands. We compare our griz point-source photometry with Pan-STARRS1 first data release and note an RMS scatter of 2%. The internal reproducibility of SkyMapper photometry is on the order of 1%. Astrometric precision is better than 0.2 arcsec based on comparison with Gaia first data release. We describe the end-user database, through which data are presented to the world community, and provide some illustrative science queries.
Software used with the flux mapper at the solar parabolic dish test site
NASA Technical Reports Server (NTRS)
Miyazono, C.
1984-01-01
Software for data archiving and data display was developed for use on a Digital Equipment Corporation (DEC) PDP-11/34A minicomputer for use with the JPL-designed flux mapper. The flux mapper is a two-dimensional, high radiant energy scanning device designed to measure radiant flux energies expected at the focal point of solar parabolic dish concentrators. Interfacing to the DEC equipment was accomplished by standard RS-232C serial lines. The design of the software was dicated by design constraints of the flux-mapper controller. Early attemps at data acquisition from the flux-mapper controller were not without difficulty. Time and personnel limitations result in an alternative method of data recording at the test site with subsequent analysis accomplished at a data evaluation location at some later time. Software for plotting was also written to better visualize the flux patterns. Recommendations for future alternative development are discussed. A listing of the programs used in the anaysis is included in an appendix.
HomozygosityMapper2012--bridging the gap between homozygosity mapping and deep sequencing.
Seelow, Dominik; Schuelke, Markus
2012-07-01
Homozygosity mapping is a common method to map recessive traits in consanguineous families. To facilitate these analyses, we have developed HomozygosityMapper, a web-based approach to homozygosity mapping. HomozygosityMapper allows researchers to directly upload the genotype files produced by the major genotyping platforms as well as deep sequencing data. It detects stretches of homozygosity shared by the affected individuals and displays them graphically. Users can interactively inspect the underlying genotypes, manually refine these regions and eventually submit them to our candidate gene search engine GeneDistiller to identify the most promising candidate genes. Here, we present the new version of HomozygosityMapper. The most striking new feature is the support of Next Generation Sequencing *.vcf files as input. Upon users' requests, we have implemented the analysis of common experimental rodents as well as of important farm animals. Furthermore, we have extended the options for single families and loss of heterozygosity studies. Another new feature is the export of *.bed files for targeted enrichment of the potential disease regions for deep sequencing strategies. HomozygosityMapper also generates files for conventional linkage analyses which are already restricted to the possible disease regions, hence superseding CPU-intensive genome-wide analyses. HomozygosityMapper is freely available at http://www.homozygositymapper.org/.
Waldron, Marcus C.; Steeves, Peter A.; Finn, John T.
2001-01-01
During the spring and summer of 1996, 1997, and 1998, measurements of phytoplankton- chlorophyll concentration, Secchi disk transparency, and color were made at 97 Massachusetts lakes within 24 hours of Landsat Thematic Mapper imaging of the lakes in an effort to assess water quality and trophic state. Spatial distributions of floating, emergent, and submerged macrophytes were mapped in 49 of the lakes at least once during the 3-year period. The maps were digitized and used to assign pixels in the thematic mapper images to one of four vegetation cover classes-open water, 1-50 percent floating-and-emergent-vegetation cover, 51-100 percent floating-and-emergent-vegetation cover, and submerged vegetation at any density. The field data were collected by teams of U.S. Geological Survey and Massachusetts Department of Environmental Management staff and by 76 volunteers. Side-by-side sampling by U.S. Geological Survey and volunteer field teams resulted in statistically similar chlorophyll determinations, Secchi disk readings, and temperature measurements, but concurrent color determinations were not similar, possibly due to contamination of sample bottles issued to the volunteers.Attempts to develop predictive relations between phytoplankton-chlorophyll concentration, Secchi disk transparency, lake color, dissolved organic carbon, and various combinations of thematic mapper bands 1, 2, 3, and 4 digital numbers were unsuccessful, primarily because of the extremely low concentrations of chlorophyll in the lakes studied, and also because of the highly variable dissolved organic carbon concentrations.Predictive relations were developed between Secchi disk transparency and phytoplankton-chlorophyll concentration, and between color and dissolved organic carbon concentration. Phytoplankton-chlorophyll concentration was inversely correlated with Secchi disk transparency during all three sampling periods. The relations were very similar in 1996 and 1997 and indicated that 62 to 67 percent of the variability in Secchi disk transparency could be explained by the chlorophyll concentration. Analysis of color and dissolved organic carbon concentrations in water samples collected by U.S. Geological Survey field teams in 1996-98 indicated that 91 percent of the variance in color in Massachusetts lakes can be explained by variations in dissolved organic carbon.Areas of open-water, submerged vegetation, and two surface-vegetation-cover classes predicted from Thematic Mapper images acquired in the summer of 1996 closely matched the areas observed in a set of field observations. However, the same analysis applied to a set of data acquired in the summer of 1997 resulted in somewhat less reliable predictions, and an attempt to predict 1996 vegetation-cover areas using the relations developed in the 1997 analysis was unsuccessful.
MAPPER: A personal computer map projection tool
NASA Technical Reports Server (NTRS)
Bailey, Steven A.
1993-01-01
MAPPER is a set of software tools designed to let users create and manipulate map projections on a personal computer (PC). The capability exists to generate five popular map projections. These include azimuthal, cylindrical, mercator, lambert, and sinusoidal projections. Data for projections are contained in five coordinate databases at various resolutions. MAPPER is managed by a system of pull-down windows. This interface allows the user to intuitively create, view and export maps to other platforms.
MetalMapper Demonstration at the Former Camp Beale, CA
2012-03-01
2012 2 . REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE MetalMapper Demonstration at the Former Camp Beale, CA 5a...SUMMARY REPORT MetalMapper Demonstration at the Former Camp Beale, CA March 2012 Herb Nelson Anne Andrews SERDP & ESTCP...advanced electromagnetic sensor was demonstrated at the former Camp Beale, CA in 2011. Camp Beale was also the site of the first demonstrations of
Validation of the Thematic Mapper radiometric and geometric correction algorithms
NASA Technical Reports Server (NTRS)
Fischel, D.
1984-01-01
The radiometric and geometric correction algorithms for Thematic Mapper are critical to subsequent successful information extraction. Earlier Landsat scanners, known as Multispectral Scanners, produce imagery which exhibits striping due to mismatching of detector gains and biases. Thematic Mapper exhibits the same phenomenon at three levels: detector-to-detector, scan-to-scan, and multiscan striping. The cause of these variations has been traced to variations in the dark current of the detectors. An alternative formulation has been tested and shown to be very satisfactory. Unfortunately, the Thematic Mapper detectors exhibit saturation effects suffered while viewing extensive cloud areas, and is not easily correctable. The geometric correction algorithm has been shown to be remarkably reliable. Only minor and modest improvements are indicated and shown to be effective.
NASA Astrophysics Data System (ADS)
Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi
2015-07-01
The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Modeling behavioral thermoregulation in a climate change sentinel.
Moyer-Horner, Lucas; Mathewson, Paul D; Jones, Gavin M; Kearney, Michael R; Porter, Warren P
2015-12-01
When possible, many species will shift in elevation or latitude in response to rising temperatures. However, before such shifts occur, individuals will first tolerate environmental change and then modify their behavior to maintain heat balance. Behavioral thermoregulation allows animals a range of climatic tolerances and makes predicting geographic responses under future warming scenarios challenging. Because behavioral modification may reduce an individual's fecundity by, for example, limiting foraging time and thus caloric intake, we must consider the range of behavioral options available for thermoregulation to accurately predict climate change impacts on individual species. To date, few studies have identified mechanistic links between an organism's daily activities and the need to thermoregulate. We used a biophysical model, Niche Mapper, to mechanistically model microclimate conditions and thermoregulatory behavior for a temperature-sensitive mammal, the American pika (Ochotona princeps). Niche Mapper accurately simulated microclimate conditions, as well as empirical metabolic chamber data for a range of fur properties, animal sizes, and environmental parameters. Niche Mapper predicted pikas would be behaviorally constrained because of the need to thermoregulate during the hottest times of the day. We also showed that pikas at low elevations could receive energetic benefits by being smaller in size and maintaining summer pelage during longer stretches of the active season under a future warming scenario. We observed pika behavior for 288 h in Glacier National Park, Montana, and thermally characterized their rocky, montane environment. We found that pikas were most active when temperatures were cooler, and at sites characterized by high elevations and north-facing slopes. Pikas became significantly less active across a suite of behaviors in the field when temperatures surpassed 20°C, which supported a metabolic threshold predicted by Niche Mapper. In general, mechanistic predictions and empirical observations were congruent. This research is unique in providing both an empirical and mechanistic description of the effects of temperature on a mammalian sentinel of climate change, the American pika. Our results suggest that previously underinvestigated characteristics, specifically fur properties and body size, may play critical roles in pika populations' response to climate change. We also demonstrate the potential importance of considering behavioral thermoregulation and microclimate variability when predicting animal responses to climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, Rachel, E-mail: rachel.sparks@ucl.ac.uk; Barratt, Dean; Nicolas Bloch, B.
2015-03-15
Purpose: Transrectal ultrasound (TRUS)-guided needle biopsy is the current gold standard for prostate cancer diagnosis. However, up to 40% of prostate cancer lesions appears isoechoic on TRUS. Hence, TRUS-guided biopsy has a high false negative rate for prostate cancer diagnosis. Magnetic resonance imaging (MRI) is better able to distinguish prostate cancer from benign tissue. However, MRI-guided biopsy requires special equipment and training and a longer procedure time. MRI-TRUS fusion, where MRI is acquired preoperatively and then aligned to TRUS, allows for advantages of both modalities to be leveraged during biopsy. MRI-TRUS-guided biopsy increases the yield of cancer positive biopsies. Inmore » this work, the authors present multiattribute probabilistic postate elastic registration (MAPPER) to align prostate MRI and TRUS imagery. Methods: MAPPER involves (1) segmenting the prostate on MRI, (2) calculating a multiattribute probabilistic map of prostate location on TRUS, and (3) maximizing overlap between the prostate segmentation on MRI and the multiattribute probabilistic map on TRUS, thereby driving registration of MRI onto TRUS. MAPPER represents a significant advancement over the current state-of-the-art as it requires no user interaction during the biopsy procedure by leveraging texture and spatial information to determine the prostate location on TRUS. Although MAPPER requires manual interaction to segment the prostate on MRI, this step is performed prior to biopsy and will not substantially increase biopsy procedure time. Results: MAPPER was evaluated on 13 patient studies from two independent datasets—Dataset 1 has 6 studies acquired with a side-firing TRUS probe and a 1.5 T pelvic phased-array coil MRI; Dataset 2 has 7 studies acquired with a volumetric end-firing TRUS probe and a 3.0 T endorectal coil MRI. MAPPER has a root-mean-square error (RMSE) for expert selected fiducials of 3.36 ± 1.10 mm for Dataset 1 and 3.14 ± 0.75 mm for Dataset 2. State-of-the-art MRI-TRUS fusion methods report RMSE of 3.06–2.07 mm. Conclusions: MAPPER aligns MRI and TRUS imagery without manual intervention ensuring efficient, reproducible registration. MAPPER has a similar RMSE to state-of-the-art methods that require manual intervention.« less
James W. Hoffman; Lloyd L. Coulter; Philip J Riggan
2005-01-01
The new FireMapper® 2.0 and OilMapper airborne, infrared imaging systems operate in a "snapshot" mode. Both systems feature the real time display of single image frames, in any selected spectral band, on a daylight readable tablet PC. These single frames are displayed to the operator with full temperature calibration in color or grayscale renditions. A rapid...
CosmoQuest MoonMappers: Citizen Lunar Exploration
NASA Astrophysics Data System (ADS)
Gay, P. L.; Antonenko, I.; Robbins, S. J.; Bracey, G.; Lehan, C.; Moore, J.; Huang, D.
2012-09-01
The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.
The subject of this presentation is forest vegetation dynamics as observed by the TERRA spacecraft's Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper, and complimentary in situ time series measurements of forest canopy metrics related to Leaf Area...
2009-08-03
NASA Moon Minerology Mapper, a guest instrument onboard the Indian Space Research Organization Chandrayaan-1 mission to the moon, looks homeward. Australia is visible in the lower center of the image.
Maia Mapper: high definition XRF imaging in the lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.
Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less
Maia Mapper: high definition XRF imaging in the lab
Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.; ...
2018-03-13
Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less
Maia Mapper: high definition XRF imaging in the lab
NASA Astrophysics Data System (ADS)
Ryan, C. G.; Kirkham, R.; Moorhead, G. F.; Parry, D.; Jensen, M.; Faulks, A.; Hogan, S.; Dunn, P. A.; Dodanwela, R.; Fisher, L. A.; Pearce, M.; Siddons, D. P.; Kuczewski, A.; Lundström, U.; Trolliet, A.; Gao, N.
2018-03-01
Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keV into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.
Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions
NASA Technical Reports Server (NTRS)
Tucker, C. J.
1978-01-01
The first four LANDSAT-D thematic mapper sensors were evaluated and compared to: the return beam vidicon (RBV) and multispectral scanners (MSS) sensors from LANDSATS 1, 2, and 3; Colvocoresses' proposed 'operational LANDSAT' three band system; and the French SPOT three band system using simulation/intergration techniques and in situ collected spectral reflectance data. Sensors were evaluated by their ability to discriminate vegetation biomass, chlorophyll concentration, and leaf water content. The thematic mapper and SPOT bands were found to be superior in a spectral resolution context to the other three sensor systems for vegetational applications. Significant improvements are expected for most vegetational analyses from LANDSAT-D thematic mapper and SPOT imagery over MSS and RBV imagery.
About Estuary Data Mapper (EDM)
Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions.
Parker, Timothy J.; Tanaka, Kenneth L.; Senske, David A.
2002-01-01
The annual Planetary Geologic Mappers Meeting serves two purposes. In addition to giving mappers the opportunity to exchange ideas, experiences, victories, and problems with others, presentations are reviewed by the Geologic Mapping Subcommittee (GeMS) to provide input to the Planetary Geology and Geophysics Mapping Program review panel’s consideration of new proposals and progress reports that include mapping tasks. Funded mappers bring both oral presentation materials (slides or viewgraphs) and map products to post for review by GeMS and fellow mappers. Additionally, the annual meetings typically feature optional field trips offering earth analogs and parallels to planetary mapping problems. The 2001 Mappers Meeting, June 18-19, was convened by Tim Parker, Dave Senske, and Ken Tanaka and was hosted by Larry Crumpler and Jayne Aubele of the New Mexico Museum of Natural History and Science in Albuquerque, New Mexico. Oral presentations were given in the Museum’s Honeywell Auditorium, and maps were posted in the Sandia Room. In addition to active mappers, guests included local science teachers who had successfully competed for the right to attend and listen to the reports. It was a unique pleasure for mappers to have the opportunity to interact with and provide information to teachers responding so enthusiastically to the meeting presentation. On Sunday, June 17, Larry and Jayne conducted an optional pre-meeting field trip. The flanks of Rio Grande Rift, east and west of Albuquerque and Valles Caldera north of town presented tectonic, volcanic, and sedimentary examples of the Rift and adjoining areas analogous to observed features on Mars and Venus. The arid but volcanically and tectonically active environment of New Mexico’s rift valley enables focus on features that appear morphologically young and spectacular in satellite images and digital relief models. The theme of the trip was to see what, at orbiter resolution, "obvious" geologic features look like at lander (outcrop) scales. Trips to the top of the rift-flanking mountains (Sandia Peak, 10,600 ft) and the Valles Caldera, as well as various active spring deposits highlighted the day. After welcoming remarks from the host, Larry Crumpler, opening remarks by Tim Parker and Dave Senske and a report on mapping program status by Ken Tanaka, the mappers’ oral presentations began the morning of June 18, with a session on Venus Geologic Mapping. The afternoon continued with an exciting USGS Planetary GIS on the Web (PIGWAD) demonstration and ended with an open discussion of issues in planetary mapping. Posted maps of Venus quadrangles were viewed during the morning break. Tuesday’s Mars Geologic Mapping session began with a pep talk from Tim Parker encouraging mapping community input to the MER landing site selection committee and continued with Steve Saunders describing the potential contribution of Odyssey Mission data to the geologic mapping of Mars. A Mars map poster session was held during the morning break, and the meeting was adjourned mid-afternoon. After the mappers meeting on Tuesday, attendants were treated to a "Field trip to Mars." The Institute of Meteoritics at the University of New Mexico houses an outstanding collection of meteorites, including those that have been identified as originating from Mars. The Institute tour featured examples of most of the different lithologies exhibited by martian meteorites identified to date, as well as some of the analytical tests (scanning electron microscope) they are conducting on specimens from ALH84001. Wednesday, June 20, featured an optional post-meeting field trip to see a travertine quarry and nearby sites of travertine deposition, the Very Large Array near Socorro, and other volcanic features within the Rio Grande Rift.
Geometric error characterization and error budgets. [thematic mapper
NASA Technical Reports Server (NTRS)
Beyer, E.
1982-01-01
Procedures used in characterizing geometric error sources for a spaceborne imaging system are described using the LANDSAT D thematic mapper ground segment processing as the prototype. Software was tested through simulation and is undergoing tests with the operational hardware as part of the prelaunch system evaluation. Geometric accuracy specifications, geometric correction, and control point processing are discussed. Cross track and along track errors are tabulated for the thematic mapper, the spacecraft, and ground processing to show the temporal registration error budget in pixel (42.5 microrad) 90%.
Digital to analog conversion and visual evaluation of Thematic Mapper data
McCord, James R.; Binnie, Douglas R.; Seevers, Paul M.
1985-01-01
As a part of the National Aeronautics and Space Administration Landsat D Image Data Quality Analysis Program, the Earth Resources Observation Systems Data Center (EDC) developed procedures to optimize the visual information content of Thematic Mapper data and evaluate the resulting photographic products by visual interpretation. A digital-to-analog transfer function was developed which would properly place the digital values on the most useable portion of a film response curve. Individual black-and-white transparencies generated using the resulting look-up tables were utilized in the production of color-composite images with varying band combinations. Four experienced photointerpreters ranked 2-cm-diameter (0. 75 inch) chips of selected image features of each band combination for ease of interpretability. A nonparametric rank-order test determined the significance of interpreter preference for the band combinations.
Digital to Analog Conversion and Visual Evaluation of Thematic Mapper Data
McCord, James R.; Binnie, Douglas R.; Seevers, Paul M.
1985-01-01
As a part of the National Aeronautics and Space Administration Landsat D Image Data Quality Analysis Program, the Earth Resources Observation Systems Data Center (EDC) developed procedures to optimize the visual information content of Thematic Mapper data and evaluate the resulting photographic products by visual interpretation. A digital-to-analog transfer function was developed which would properly place the digital values on the most useable portion of a film response curve. Individual black-and-white transparencies generated using the resulting look-up tables were utilized in the production of color-composite images with varying band combinations. Four experienced photointerpreters ranked 2-cm-diameter (0. 75 inch) chips of selected image features of each band combination for ease of interpretability. A nonparametric rank-order test determined the significance of interpreter preference for the band combinations.
LANDSAT-4/5 image data quality analysis
NASA Technical Reports Server (NTRS)
Malaret, E.; Bartolucci, L. A.; Lozano, D. F.; Anuta, P. E.; Mcgillem, C. D.
1984-01-01
A LANDSAT Thematic Mapper (TM) quality evaluation study was conducted to identify geometric and radiometric sensor errors in the post-launch environment. The study began with the launch of LANDSAT-4. Several error conditions were found, including band-to-band misregistration and detector-to detector radiometric calibration errors. Similar analysis was made for the LANDSAT-5 Thematic Mapper and compared with results for LANDSAT-4. Remaining band-to-band misregistration was found to be within tolerances and detector-to-detector calibration errors were not severe. More coherent noise signals were observed in TM-5 than in TM-4, although the amplitude was generally less. The scan direction differences observed in TM-4 were still evident in TM-5. The largest effect was in Band 4 where nearly a one digital count difference was observed. Resolution estimation was carried out using roads in TM-5 for the primary focal plane bands rather than field edges as in TM-4. Estimates using roads gave better resolution. Thermal IR band calibration studies were conducted and new nonlinear calibration procedures were defined for TM-5. The overall conclusion is that there are no first order errors in TM-5 and any remaining problems are second or third order.
Downloading and Installing Estuary Data Mapper (EDM)
Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions
Frequent Questions about Estuary Data Mapper (EDM)
Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions
2008-12-17
Different wavelengths of light provide new information about the Orientale Basin region of the moon in a composite image taken by NASA Moon Mineralogy Mapper, a guest instrument aboard the Indian Space Research Organization Chandrayaan-1 spacecraft.
NASA Technical Reports Server (NTRS)
Malila, W. A.; Gleason, J. M.; Cicone, R. C.
1976-01-01
A simulation study was carried out to characterize atmospheric effects in LANDSAT-D Thematic Mapper data. In particular, the objective was to determine if any differences would result from using a linear vs. a conical scanning geometry. Insight also was gained about the overall effect of the atmosphere on Thematic Mapper signals, together with the effects of time of day. An added analysis was made of the geometric potential for direct specular reflections (sun glint). The ERIM multispectral system simulation model was used to compute inband Thematic Mapper radiances, taking into account sensor, atmospheric, and surface characteristics. Separate analyses were carried out for the thermal band and seven bands defined in the reflective spectral region. Reflective-region radiances were computed for 40 deg N, 0 deg, and 40 deg S latitudes; June, Mar., and Dec. days; and 9:30 and 11:00 AM solar times for both linear and conical scan modes. Also, accurate simulations of solar and viewing geometries throughout Thematic Mapper orbits were made. It is shown that the atmosphere plays an important role in determining Thematic Mapper radiances, with atmospheric path radiance being the major component of total radiances for short wavelengths and decreasing in importance as wavelength increases. Path radiance is shown to depend heavily on the direct radiation scattering angle and on haze content. Scan-angle-dependent variations were shown to be substantial, especially for the short-wavelength bands.
NASA Cold Land Processes Experiment (CLPX 2002/03): Spaceborne remote sensing
Robert E. Davis; Thomas H. Painter; Don Cline; Richard Armstrong; Terry Haran; Kyle McDonald; Rick Forster; Kelly Elder
2008-01-01
This paper describes satellite data collected as part of the 2002/03 Cold Land Processes Experiment (CLPX). These data include multispectral and hyperspectral optical imaging, and passive and active microwave observations of the test areas. The CLPX multispectral optical data include the Advanced Very High Resolution Radiometer (AVHRR), the Landsat Thematic Mapper/...
Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes
Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.; ...
2016-07-18
The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less
Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.
The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less
NASA Technical Reports Server (NTRS)
1974-01-01
The optimization of a thematic mapper for earth resources application is discussed in terms of cost versus performance. Performance tradeoffs and the cost impact are analyzed. The instrument design and radiometric performance are also described. The feasibility of a radiative cooler design for a scanning spectral radiometer is evaluated along with the charge coupled multiplex operation. Criteria for balancing the cost and complexity of data acquisition instruments against the requirements of the user, and a pushbroom scanner version of the thematic mapper are presented.
NASA Astrophysics Data System (ADS)
Lu, Xian; Chen, Cao; Huang, Wentao; Smith, John A.; Chu, Xinzhao; Yuan, Tao; Pautet, Pierre-Dominique; Taylor, Mike J.; Gong, Jie; Cullens, Chihoko Y.
2015-10-01
We present the first coordinated study using two lidars at two separate locations to characterize a 1 h mesoscale gravity wave event in the mesopause region. The simultaneous observations were made with the Student Training and Atmospheric Research (STAR) Na Doppler lidar at Boulder, CO, and the Utah State University Na Doppler lidar and temperature mapper at Logan, UT, on 27 November 2013. The high precision possessed by the STAR lidar enabled these waves to be detected in vertical wind. The mean wave amplitudes are ~0.44 m/s in vertical wind and ~1% in relative temperature at altitudes of 82-107 km. Those in the zonal and meridional winds are 6.1 and 5.2 m/s averaged from 84 to 99 km. The horizontal and vertical wavelengths inferred from the mapper and lidars are ~219 ± 4 and 16.0 ± 0.3 km, respectively. The intrinsic period is ~1.3 h for the airglow layer, Doppler shifted by a mean wind of ~17 m/s. The wave packet propagates from Logan to Boulder with an azimuth angle of ~135° clockwise from north and an elevation angle of ~ 3° from the horizon. The observed phase difference between the two locations can be explained by the traveling time of the 1 h wave from Logan to Boulder, which is about ~2.4 h. The wave polarization relations are examined through the simultaneous quantifications of the three wind components and temperature. This study has developed a systematic methodology for fully characterizing mesoscale gravity waves, inspecting their intrinsic properties and validating the derivation of horizontal wave structures by applying multiple instruments from coordinated stations.
Monitoring Global Precipitation through UCI CHRS's RainMapper App on Mobile Devices
NASA Astrophysics Data System (ADS)
Nguyen, P.; Huynh, P.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.
2014-12-01
The Water and Development Information for Arid Lands-a Global Network (G-WADI) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System (PERSIANN-CCS) GeoServer has been developed through a collaboration between the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) and the UNESCO's International Hydrological Program (IHP). G-WADI PERSIANN-CCS GeoServer provides near real-time high resolution (0.04o, approx 4km) global (60oN - 60oS) satellite precipitation estimated by the PERSIANN-CCS algorithm developed by the scientists at CHRS. The G-WADI PERSIANN-CCS GeoServer utilizes the open-source MapServer software from the University of Minnesota to provide a user-friendly web-based mapping and visualization of satellite precipitation data. Recent efforts have been made by the scientists at CHRS to provide free on-the-go access to the PERSIANN-CCS precipitation data through an application named RainMapper for mobile devices. RainMapper provides visualization of global satellite precipitation of the most recent 3, 6, 12, 24, 48 and 72-hour periods overlaid with various basemaps. RainMapper uses the Google maps application programing interface (API) and embedded global positioning system (GPS) access to better monitor the global precipitation data on mobile devices. Functionalities include using geographical searching with voice recognition technologies make it easy for the user to explore near real-time precipitation in a certain location. RainMapper also allows for conveniently sharing the precipitation information and visualizations with the public through social networks such as Facebook and Twitter. RainMapper is available for iOS and Android devices and can be downloaded (free) from the App Store and Google Play. The usefulness of RainMapper was demonstrated through an application in tracking the evolution of the recent Rammasun Typhoon over the Philippines in mid July 2014.
NASA Technical Reports Server (NTRS)
1982-01-01
Functional and design data from various thematic mapper subsystems are presented. Coarse focus, modulation transfer function, and shim requirements are addressed along with spectral matching and spatial coverage tests.
INPE LANDSAT-D thematic mapper computer compatible tape format specification
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Desouza, R. C. M.
1982-01-01
The format of the computer compatible tapes (CCT) which contain Thematic Mapper (TM) imagery data acquired from the LANDSAT D and D Prime satellites by the INSTITUTO DE PERSQUISAS ESPACIALS (CNPq-INPE/BRAZIL) is defined.
EnviroMapper for Envirofacts is a single point of access to select U.S. EPA environmental data. This Web site provides access to several EPA databases to provide you with information about environmental activities that may affect air, water, and l
Analysis of change in marsh types of coastal Louisiana, 1978-2001
Linscombe, Robert G.; Hartley, Stephen B.
2011-01-01
Scientists and geographers have provided multiple datasets and maps to document temporal changes in vegetation types and land-water relationships in coastal Louisiana. Although these maps provide useful historical information, technological limitations prevented these and other mapping efforts from providing sufficiently detailed calculations of areal changes and shifts in habitat coverage. The current analysis of habitat change draws upon these past mapping efforts but is based on an advanced, geographic information system dataset that was created by using Landsat 5 Thematic Mapper imagery and digital orthophoto quarter quadrangles. The objective of building this dataset was to more specifically define land-water relationships over time in coastal Louisiana, and it provides the most detailed analysis of vegetation shifts to date. In the current study, we have attempted to explain these vegetation shifts by interpreting them in the context of rainfall records, data from the Palmer Drought Severity Index, and salinity data. During the 23 years we analyzed, total marsh acreage decreased, with conversion of marsh to open water. Furthermore, the general trend across coastal Louisiana was a shift to increasingly fresh marsh types. Although fresh marsh remained almost the same during the 1978-88 study period, there were greater increases during the 1988-2001 study periods. Intermediate marsh followed the same pattern, whereas brackish marsh showed a reverse (decreasing) pattern. Changes in saline (saltwater) marsh were minimal. Interpreting shifts in marsh vegetation types by using climate and salinity data provides better understanding of factors influencing these changes and, therefore, can improve our ability to make predictions about future marsh loss related to vegetation changes. Results of our study indicate that precipitation fluctuations prior to vegetation surveys impacted salinities differently across the coast. For example, a wet 6 months prior to the survey may or may not have made up for a dry period during the earlier 12 months. More research is needed to better understand rainfall periods and how they affect salinity changes. The ability to understand past dynamics and to anticipate future trends in vegetation change and related land loss in the coastal region of Louisiana is a vital part of ongoing and future efforts to conserve its critical wetland ecosystem. With the loss of marsh and resultant changes in hydrology, it is likely that changes in marsh type may show greater variation in the future, even if given only minor changes in precipitation levels.
Neuro-classification of multi-type Landsat Thematic Mapper data
NASA Technical Reports Server (NTRS)
Zhuang, Xin; Engel, Bernard A.; Fernandez, R. N.; Johannsen, Chris J.
1991-01-01
Neural networks have been successful in image classification and have shown potential for classifying remotely sensed data. This paper presents classifications of multitype Landsat Thematic Mapper (TM) data using neural networks. The Landsat TM Image for March 23, 1987 with accompanying ground observation data for a study area In Miami County, Indiana, U.S.A. was utilized to assess recognition of crop residues. Principal components and spectral ratio transformations were performed on the TM data. In addition, a layer of the geographic information system (GIS) for the study site was incorporated to generate GIS-enhanced TM data. This paper discusses (1) the performance of neuro-classification on each type of data, (2) how neural networks recognized each type of data as a new image and (3) comparisons of the results for each type of data obtained using neural networks, maximum likelihood, and minimum distance classifiers.
Cosmic Dawn Intensity Mapper (CDIM): Instrument and Mission Design
NASA Astrophysics Data System (ADS)
Unwin, Stephen C.; CDIM Team
2018-01-01
CDIM is the Cosmic Dawn Intensity Mapper, one of the probe-class missions currently under study for NASA. A detailed Report from the study will be submitted to NASA and for consideration by the Decadal Survey. The flight system will comprise a wide-field cryogenic telescope with a large focal plane array providing complete coverage from optical through mid-IR. The system will be deployed to L2 or Earth-trailing orbit, to provide a stable thermal environment and allow extended observations of fields selected to be cross-correlated with deep surveys in other wavebands. Spectra with will be measured for every point in each target field, using linear variable filters (LVFs). These filters eliminate the need for a spectrometer in the focal plane. Spectra are built up through simple imaging of a series of telescope pointings separated by small angular offsets. This poster presents the initial concept for the instrument and mission design.
NASA Technical Reports Server (NTRS)
Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.
1984-01-01
A technique for the radiometric correction of LANDSAT-4 Thematic Mapper data was proposed by the Canada Center for Remote Sensing. Subsequent detailed observations of raw image data, raw radiometric calibration data and background measurements extracted from the raw data stream on High Density Tape highlighted major shortcomings in the proposed method which if left uncorrected, can cause severe radiometric striping in the output product. Results are presented which correlate measurements of the DC background with variations in both image data background and calibration samples. The effect on both raw data and on data corrected using the earlier proposed technique is explained, and the correction required for these factors as a function of individual scan line number for each detector is described. It is shown how the revised technique can be incorporated into an operational environment.
An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes
NASA Technical Reports Server (NTRS)
Kogut, J.; Larduinat, E.
1985-01-01
The motion of the mirrors in the thematic mapper (TM) and multispectral scanner (MSS) instruments, and the motion of other devices, such as the TDRSS antenna drive, and solar array drives onboard LANDSAT-4 cause vibrations to propagate through the spacecraft. These vibrations as well as nonlinearities in the scanning motion of the TM mirror can cause the TM detectors to point away from their nominal positions. Two computer programs, JITTER and SCDFT, were developed as part of the LANDSAT-D Assessment System (LAS), Products and Procedures Analysis (PAPA) program to evaluate the potential effect of high frequency vibrations on the final TM image. The maximum overlap and underlap which were observed for early TM scenes are well within specifications for the ground processing system. The cross scan and scan high frequency vibrations are also within the specifications cited for the flight system.
,
2008-01-01
The USGS Landsat archive holds an unequaled 36-year record of the Earth's surface that is invaluable to climate change studies, forest and resource management activities, and emergency response operations. An aggressive effort is taking place to provide all Landsat imagery [scenes currently held in the USGS Earth Resources Observation and Science (EROS) Center archive, as well as newly acquired scenes daily] free of charge to users with electronic access via the Web by the end of December 2008. The entire Landsat 7 Enhanced Thematic Mapper Plus (ETM+) archive acquired since 1999 and any newly acquired Landsat 7 ETM+ images that have less than 40 percent cloud cover are currently available for download. When this endeavor is complete all Landsat 1-5 data will also be available for download. This includes Landsat 1-5 Multispectral Scanner (MSS) scenes, as well as Landsat 4 and 5 Thematic Mapper (TM) scenes.
Landsat-5 Thematic Mapper outgassing effects
Helder, D.L.; Micijevic, E.
2004-01-01
A periodic 3% to 5% variation in detector response affecting both image and internal calibrator (IC) data has been observed in bands 5 and 7 of the Landsat-5 Thematic Mapper. The source for this variation is thought to be an interference effect due to buildup of an ice-like contaminant film on a ZnSe window, covered with an antireflective coating (ARC), of the cooled dewar containing these detectors. Periodic warming of the dewar is required in order to remove the contaminant and restore detector response to an uncontaminated level. These effects in the IC data have been characterized over four individual outgassing cycles using thin-film models to estimate transmittance of the window/ARC and ARC/contaminant film stack throughout the instrument lifetime. Based on the results obtained from this modeling, a lookup table procedure has been implemented that provides correction factors to improve the calibration accuracy of bands 5 and 7 by approximately 5%.
Landsat-5 TM reflective-band absolute radiometric calibration
Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.
2004-01-01
The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.
NASA Astrophysics Data System (ADS)
Maynard, N.; Yurchak, B.; Sleptsov, Y.; Turi, J. M.
2004-12-01
Reindeer husbandry in Northern Russia is an economic activity with a special cultural dimension of utmost importance to the indigenous peoples. Climate changes with warmer temperatures are creating significant problems now in the Arctic for the reindeer herds. These climate factors, industrial development, and the recent transition of Russia to a market economy have resulted in a nearly complete disruption of any system of supply of goods and services and health care to indigenous peoples. In turn, this has caused rapidly deteriorating health and living conditions in the indigenous reindeer herder communities. To try to address some of these issues, a NASA-reindeer herder partnership, called Reindeer Mapper, has been initiated which is establishing a system to bring indigenous traditional and local knowledge together with scientific and engineering knowledge, remote sensing and information technologies to create a more powerful information base for addressing these environmental, climate, industrial, political, and business problems. Preliminary results from the Reindeer Mapper pilot project will be presented including a special information-sharing communications system for the Reindeer Mapper project (a private intranet system), several NASA data sets useful to the herders including SAR and Landsat imagery, local knowledge of herd distributions, ground-based data, and weather observations. Results will also be presented from the first NASA-reindeer herder science and indigenous knowledge summer camp for children of reindeer herders from the Republic of Sakha (Yakutia).
Novice to Expert Cognition During Geologic Bedrock Mapping
NASA Astrophysics Data System (ADS)
Petcovic, H. L.; Libarkin, J.; Hambrick, D. Z.; Baker, K. M.; Elkins, J. T.; Callahan, C. N.; Turner, S.; Rench, T. A.; LaDue, N.
2011-12-01
Bedrock geologic mapping is a complex and cognitively demanding task. Successful mapping requires domain-specific content knowledge, visuospatial ability, navigation through the field area, creating a mental model of the geology that is consistent with field data, and metacognition. Most post-secondary geology students in the United States receive training in geologic mapping, however, not much is known about the cognitive processes that underlie successful bedrock mapping, or about how these processes change with education and experience. To better understand cognition during geologic mapping, we conducted a 2-year research study in which 67 volunteers representing a range from undergraduate sophomore to 20+ years professional experience completed a suite of cognitive measures plus a 1-day bedrock mapping task in the Rocky Mountains, Montana, USA. In addition to participants' geologic maps and field notes, the cognitive suite included tests and questionnaires designed to measure: (1) prior geologic experience, via a self-report survey; (2) geologic content knowledge, via a modified version of the Geoscience Concept Inventory; (3) visuospatial ability, working memory capacity, and perceptual speed, via paper-and-pencil and computerized tests; (4) use of space and time during mapping via GPS tracking; and (5) problem-solving in the field via think-aloud audio logs during mapping and post-mapping semi-structured interviews. Data were examined for correlations between performance on the mapping task and other measures. We found that both geological knowledge and spatial visualization ability correlated positively with accuracy in the field mapping task. More importantly, we found a Visuospatial Ability × Geological Knowledge interaction, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. In other words, we found evidence to suggest that visuospatial ability mattered for bedrock mapping for the novices in our sample, but not for the experts. For experienced mappers, we found a significant correlation between GCI scores and the thoroughness with which they covered the map area, plus a relationship between speed and map accuracy such that faster mappers produced better maps. However, fast novice mappers tended to produce the worst maps. Successful mappers formed a mental model of the underlying geologic structure immediately to early in the mapping task, then spent field time collecting observations to confirm, disconfirm, or modify their initial model. In contrast, the least successful mappers (all inexperienced) rarely generated explanations or models of the underlying geologic structure in the field.
Thematic Mapper. Volume 1: Calibration report flight model, LANDSAT 5
NASA Technical Reports Server (NTRS)
Cooley, R. C.; Lansing, J. C.
1984-01-01
The calibration of the Flight 1 Model Thematic Mapper is discussed. Spectral response, scan profile, coherent noise, line spread profiles and white light leaks, square wave response, radiometric calibration, and commands and telemetry are specifically addressed.
Thematic mapper flight model preshipment review data package. Volume 2, part C: Subsystem data
NASA Technical Reports Server (NTRS)
1982-01-01
Reference lists are provided to acceptance data for each of the major subsystems of the thematic mapper. Configuration reports, lists and copies of all failure reports, and requests for deviation/waiver are included.
An overview of the thematic mapper geometric correction system
NASA Technical Reports Server (NTRS)
Beyer, E. P.
1983-01-01
Geometric accuracy specifications for LANDSAT 4 are reviewed and the processing concepts which form the basis of NASA's thematic mapper geometric correction system are summarized for both the flight and ground segments. The flight segment includes the thematic mapper instrument, attitude measurement devices, attitude control, and ephemeris processing. For geometric correction the ground segment uses mirror scan correction data, payload correction data, and control point information to determine where TM detector samples fall on output map projection systems. Then the raw imagery is reformatted and resampled to produce image samples on a selected output projection grid system.
Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies
NASA Technical Reports Server (NTRS)
Klemas, V.; Ackleson, S. G.; Hardisky, M. A.
1985-01-01
On 31 March 1983, the University of Delaware's Center for Remote Sensing initiated a study to evaluate the spatial, radiometric and spectral performance of the LANDSAT Thematic Mapper for coastal and estuarine studies. The investigation was supported by Contract NAS5-27580 from the NASA Goddard Space Flight Center. The research was divided into three major subprojects: (1) a comparison of LANDSAT TM to MSS imagery for detecting submerged aquatic vegetation in Chesapeake Bay; (2) remote sensing of submerged aquatic vegetation - a radiative transfer approach; and (3) remote sensing of coastal wetland biomass using Thematic Mapper wavebands.
Giese, Sven H; Zickmann, Franziska; Renard, Bernhard Y
2014-01-01
Accurate estimation, comparison and evaluation of read mapping error rates is a crucial step in the processing of next-generation sequencing data, as further analysis steps and interpretation assume the correctness of the mapping results. Current approaches are either focused on sensitivity estimation and thereby disregard specificity or are based on read simulations. Although continuously improving, read simulations are still prone to introduce a bias into the mapping error quantitation and cannot capture all characteristics of an individual dataset. We introduce ARDEN (artificial reference driven estimation of false positives in next-generation sequencing data), a novel benchmark method that estimates error rates of read mappers based on real experimental reads, using an additionally generated artificial reference genome. It allows a dataset-specific computation of error rates and the construction of a receiver operating characteristic curve. Thereby, it can be used for optimization of parameters for read mappers, selection of read mappers for a specific problem or for filtering alignments based on quality estimation. The use of ARDEN is demonstrated in a general read mapper comparison, a parameter optimization for one read mapper and an application example in single-nucleotide polymorphism discovery with a significant reduction in the number of false positive identifications. The ARDEN source code is freely available at http://sourceforge.net/projects/arden/.
CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data
O'Connor, Timothy; Bodén, Mikael
2017-01-01
Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599
PrimerMapper: high throughput primer design and graphical assembly for PCR and SNP detection
O’Halloran, Damien M.
2016-01-01
Primer design represents a widely employed gambit in diverse molecular applications including PCR, sequencing, and probe hybridization. Variations of PCR, including primer walking, allele-specific PCR, and nested PCR provide specialized validation and detection protocols for molecular analyses that often require screening large numbers of DNA fragments. In these cases, automated sequence retrieval and processing become important features, and furthermore, a graphic that provides the user with a visual guide to the distribution of designed primers across targets is most helpful in quickly ascertaining primer coverage. To this end, I describe here, PrimerMapper, which provides a comprehensive graphical user interface that designs robust primers from any number of inputted sequences while providing the user with both, graphical maps of primer distribution for each inputted sequence, and also a global assembled map of all inputted sequences with designed primers. PrimerMapper also enables the visualization of graphical maps within a browser and allows the user to draw new primers directly onto the webpage. Other features of PrimerMapper include allele-specific design features for SNP genotyping, a remote BLAST window to NCBI databases, and remote sequence retrieval from GenBank and dbSNP. PrimerMapper is hosted at GitHub and freely available without restriction. PMID:26853558
MAPPER: high-throughput maskless lithography
NASA Astrophysics Data System (ADS)
Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.; Kampherbeek, B. J.
2009-03-01
Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. The objective of building these tools is to involve semiconductor companies to be able to verify tool performance in their own environment. To enable this, the tools will have a 300 mm wafer stage in addition to a 110-beam optics column. First exposures at 45 nm half pitch resolution have been performed and analyzed. On the same wafer it is observed that all beams print and based on analysis of 11 beams the CD for the different patterns is within 2.2 nm from target and the CD uniformity for the different patterns is better than 2.8 nm.
Bartelt, Paul E.; Klaver, Robert W.; Porter, Warren P.
2010-01-01
Effective conservation of amphibian populations requires the prediction of how amphibians use and move through a landscape. Amphibians are closely coupled to their physical environment. Thus an approach that uses the physiological attributes of amphibians, together with knowledge of their natural history, should be helpful. We used Niche Mapper™ to model the known movements and habitat use patterns of a population of Western toads (Anaxyrus (=Bufo) boreas) occupying forested habitats in southeastern Idaho. Niche Mapper uses first principles of environmental biophysics to combine features of topography, climate, land cover, and animal features to model microclimates and animal physiology and behavior across landscapes. Niche Mapper reproduced core body temperatures (Tc) and evaporation rates of live toads with average errors of 1.6 ± 0.4 °C and 0.8 ± 0.2 g/h, respectively. For four different habitat types, it reproduced similar mid-summer daily temperature patterns as those measured in the field and calculated evaporation rates (g/h) with an average error rate of 7.2 ± 5.5%. Sensitivity analyses indicate these errors do not significantly affect estimates of food consumption or activity. Using Niche Mapper we predicted the daily habitats used by free-ranging toads; our accuracy for female toads was greater than for male toads (74.2 ± 6.8% and 53.6 ± 15.8%, respectively), reflecting the stronger patterns of habitat selection among females. Using these changing to construct a cost surface, we also reconstructed movement paths that were consistent with field observations. The effect of climate warming on toads depends on the interaction of temperature and atmospheric moisture. If climate change occurs as predicted, results from Niche Mapper suggests that climate warming will increase the physiological cost of landscapes thereby limiting the activity for toads in different habitats.
Electrocapillary Phenomena at Edible Oil/Saline Interfaces.
Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao
2017-03-01
Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil < OA-oil < SO-oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.
NASA Technical Reports Server (NTRS)
1982-01-01
The data obtained for the Band 1 thematic mapper flight full band assembly (P/N 50797) are summarized. The data were collected from half band, post amplifier, and full band acceptance test data records.
Spectroradiometric calibration of the Thematic Mapper and multispectral scanner system
NASA Technical Reports Server (NTRS)
Palmer, J. (Principal Investigator); Slater, P.
1984-01-01
Results of an analysis that relates TM saturation level to ground reflectance, calendar date, latitude, and atmospheric conditions are reported. The determination of the spectral reflectance at the entrance pupil of the LANDSAT 4 pupil of the thematic mapper is described.
LANDSAT-4 Science Characterization Early Results. Volume 3, Part 2: Thematic Mapper (TM)
NASA Technical Reports Server (NTRS)
Barker, J. L. (Editor)
1985-01-01
The calibration of the LANDSAT 4 thematic mapper is discussed as well as the atmospheric, radiometric, and geometric accuracy and correction of data obtained with this sensor. Methods are given for assessing TM band to band registration.
Liu, Xiaofeng; Ouyang, Sisheng; Yu, Biao; Liu, Yabo; Huang, Kai; Gong, Jiayu; Zheng, Siyuan; Li, Zhihua; Li, Honglin; Jiang, Hualiang
2010-01-01
In silico drug target identification, which includes many distinct algorithms for finding disease genes and proteins, is the first step in the drug discovery pipeline. When the 3D structures of the targets are available, the problem of target identification is usually converted to finding the best interaction mode between the potential target candidates and small molecule probes. Pharmacophore, which is the spatial arrangement of features essential for a molecule to interact with a specific target receptor, is an alternative method for achieving this goal apart from molecular docking method. PharmMapper server is a freely accessed web server designed to identify potential target candidates for the given small molecules (drugs, natural products or other newly discovered compounds with unidentified binding targets) using pharmacophore mapping approach. PharmMapper hosts a large, in-house repertoire of pharmacophore database (namely PharmTargetDB) annotated from all the targets information in TargetBank, BindingDB, DrugBank and potential drug target database, including over 7000 receptor-based pharmacophore models (covering over 1500 drug targets information). PharmMapper automatically finds the best mapping poses of the query molecule against all the pharmacophore models in PharmTargetDB and lists the top N best-fitted hits with appropriate target annotations, as well as respective molecule’s aligned poses are presented. Benefited from the highly efficient and robust triangle hashing mapping method, PharmMapper bears high throughput ability and only costs 1 h averagely to screen the whole PharmTargetDB. The protocol was successful in finding the proper targets among the top 300 pharmacophore candidates in the retrospective benchmarking test of tamoxifen. PharmMapper is available at http://59.78.96.61/pharmmapper. PMID:20430828
NASA Technical Reports Server (NTRS)
Vernieres, Guillaume Rene Jean; Kovach, Robin M.; Keppenne, Christian L.; Akella, Santharam; Brucker, Ludovic; Dinnat, Emmanuel Phillippe
2014-01-01
Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observations
David L. Evans
1994-01-01
A forest cover classification of the Kisatchie National Forest, Catahoula Ranger district, was performed with Landsat Thematic Mapper data. Data base retrievals and map products from this analysis demonstrated use of Landsat for forest management decisions.
Nitrogen Source and Loading Data for EPA Estuary Data Mapper
Nitrogen source and loading data have been compiled and aggregated at the scale of estuaries and associated watersheds of the conterminous United States, using the spatial framework in EPA's Estuary Data Mapper (EDM) to provide system boundaries. Original sources of data include...
Development of the Lunar Polar Hydrogen Mapper Mission
NASA Astrophysics Data System (ADS)
Hardgrove, C.; Bell, J. F.; Starr, R.; Colaprete, A.; Drake, D.; Lazbin, I.; West, S.; Johnson, E. B.; Christian, J.; Heffern, L.; Genova, A.; Dunham, D.; Williams, B.; Nelson, D.; Puckett, S.; Babuscia, A.; Scowen, P.; Kerner, H.; Amzler, R. J.
2018-04-01
The Lunar Polar Hydrogen Mapper is a 6U CubeSat mission launching on SLS EM-1. The spacecraft will orbit at a low altitude perlune over the lunar south pole and carries a miniature neutron spectrometer to map small scale hydrogen enrichments in PSRs.
NASA Technical Reports Server (NTRS)
1982-01-01
Data from the final performance tests of the thematic mapper flight model multiplexer at ambient temperature are presented. Results cover the power supply, the input buffer, and the A/D threshold for bands 1 through 4.
Star sensor/mapper with a self deployable, high-attenuation light shade for SAS-B
NASA Technical Reports Server (NTRS)
Schenkel, F. W.; Finkel, A.
1972-01-01
A star sensor/mapper to determine positional data for the small astronomy satellites was tested to detect stars of plus 4 visual magnitude. It utilizes two information channels with memory so that it can be used with a low-data-rate telemetry system. One channel yields star amplitude information; the other yields the time of star occurrence as the star passes across an N-slit reticle/photomultiplier detector system. Some of the features of the star sensor/mapper are its low weight of 6.5 pounds, low power consumption of 0.4 watt, bandwidth switching to match the satellite spin rate, optical equalization of sensitivity over the 5-by-10 deg field of view, and self-deployable sunshade. The attitude determination accuracy is 3 arc minutes. This is determined by such parameters as the reticle configuration, optical train, and telemetry readout. The optical and electronic design of the star sensor/mapper, its expansion capabilities, and its features are discussed.
NASA Technical Reports Server (NTRS)
Seeley, M. W.; Ruschy, D. L.; Linden, D. R.
1983-01-01
A cooperative research project was initiated in 1982 to study differences in thematic mapper spectral characteristics caused by variable tillage and crop residue practices. Initial evaluations of radiometric data suggest that spectral separability of variably tilled soils can be confounded by moisture and weathering effects. Separability of bare tilled soils from those with significant amounts of corn residue is enhanced by wet conditions, but still possible under dry conditions when recent tillage operations have occurred. In addition, thematic mapper data may provide an alternative method to study the radiant energy balance at the soil surface in conjunction with variable tillage systems.
A Proposal for Phase 4 of the Forest Inventory and Analysis Program
Ronald E. McRoberts
2005-01-01
Maps of forest cover were constructed using observations from forest inventory plots, Landsat Thematic Mapper satellite imagery, and a logistic regression model. Estimates of mean proportion forest area and the variance of the mean were calculated for circular study areas with radii ranging from 1 km to 15 km. The spatial correlation among pixel predictions was...
Forest biomass estimated from MODIS and FIA data in the Lake States: MN, WI and MI, USA
Daolan Zheng; Linda S. Heath; Mark J. Ducey
2007-01-01
This study linked the Moderate Resolution Imaging Spectrometer and USDA Forest Service, Forest Inventory and Analysis (FIA) data through empirical models established using high-resolution Landsat Enhanced Thematic Mapper Plus observations to estimate aboveground biomass (AGB) in three Lake States in the north-central USA. While means obtained from larger sample sizes...
Assessing the Effects of Forest Fragmentation Using Satellite Imagery and Forest Inventory Data
Ronald E. McRoberts; Greg C. Liknes
2005-01-01
For a study area in the North Central region of the USA, maps of predicted proportion forest area were created using Landsat Thematic Mapper imagery, forest inventory plot data, and a logistic regression model. The maps were used to estimate quantitative indices of forest fragmentation. Correlations between the values of the indices and forest attributes observed on...
NASA Technical Reports Server (NTRS)
Paige, David A.; Bachman, Jennifer E.; Keegan, Kenneth D.
1994-01-01
We present the first maps of the apparent thermal inertia and albedo of the north polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking orbiters over a 50-day period in 1978 during the Martian early northern summer season. The maps cover the region from 60 deg N to the north pole at a spatial resolution of 1/2 deg of latitude. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmospphere for a wide range of assumptions concerning aerosol optical properties and aerosol optical depths. The results of these calculations show that the effects of the Martian atmosphere on remote determinations of surface thermal inertia are more significant than have been indicated in previous studies. The maps of apparent thermal inertia and albedo show a great deal of spatial structure that is well correlated with surface features.
New dust opacity mapping from Viking Infrared Thermal Mapper data
NASA Technical Reports Server (NTRS)
Martin, Terry Z.; Richardson, Mark I.
1993-01-01
Global dust opacity mapping for Mars has been carried forward using the approach described by Martin (1986) for Viking IR Thermal Mapper data. New maps are presented for the period from the beginning of Viking observations, until Ls 210 deg in 1979 (1.36 Mars years). This range includes the second and more extensive planet-encircling dust storm observed by Viking, known as storm 1977b. Improvements in approach result in greater time resolution and smaller noise than in the earlier work. A strong local storm event filled the Hellas basin at Ls 170 deg, prior to the 1977a storm. Dust is retained in equatorial regions following the 1977b storm far longer than in mid-latitudes. Minor dust events appear to raise the opacity in northern high latitudes during northern spring. Additional mapping with high time resolution has been done for the periods of time near the major storm origins in order to search for clues to the mechanism of storm initiation. The first evidence of the start of the 1977b storm is pushed back to Ls 274.2 deg, preceding signs of the storm in images by about 15 hours.
NASA Astrophysics Data System (ADS)
Song, Yi; Wang, Jiemin; Yang, Kun; Ma, Mingguo; Li, Xin; Zhang, Zhihui; Wang, Xufeng
2012-07-01
Estimating evapotranspiration (ET) is required for many environmental studies. Remote sensing provides the ability to spatially map latent heat flux. Many studies have developed approaches to derive spatially distributed surface energy fluxes from various satellite sensors with the help of field observations. In this study, remote-sensing-based λE mapping was conducted using a Landsat Thematic Mapper (TM) image and an Enhanced Thematic Mapper Plus (ETM+) image. The remotely sensed data and field observations employed in this study were obtained from Watershed Allied Telemetry Experimental Research (WATER). A biophysics-based surface resistance model was revised to account for water stress and temperature constraints. The precision of the results was validated using 'ground truth' data obtained by eddy covariance (EC) system. Scale effects play an important role, especially for parameter optimisation and validation of the latent heat flux (λE). After considering the footprint of EC, the λE derived from the remote sensing data was comparable to the EC measured value during the satellite's passage. The results showed that the revised surface resistance parameterisation scheme was useful for estimating the latent heat flux over cropland in arid regions.
Improvement in absolute calibration accuracy of Landsat-5 TM with Landsat-7 ETM+ data
Chander, G.; Markham, B.L.; Micijevic, E.; Teillet, P.M.; Helder, D.L.; ,
2005-01-01
The ability to detect and quantify changes in the Earth's environment depends on satellites sensors that can provide calibrated, consistent measurements of Earth's surface features through time. A critical step in this process is to put image data from subsequent generations of sensors onto a common radiometric scale. To evaluate Landsat-5 (L5) Thematic Mapper's (TM) utility in this role, image pairs from the L5 TM and Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors were compared. This approach involves comparison of surface observations based on image statistics from large common areas observed eight days apart by the two sensors. The results indicate a significant improvement in the consistency of L5 TM data with respect to L7 ETM+ data, achieved using a revised Look-Up-Table (LUT) procedure as opposed to the historical Internal Calibrator (IC) procedure previously used in the L5 TM product generation system. The average percent difference in reflectance estimates obtained from the L5 TM agree with those from the L7 ETM+ in the Visible and Near Infrared (VNIR) bands to within four percent and in the Short Wave Infrared (SWIR) bands to within six percent.
Estuary Data Mapper: A virtual portal to coastal data informing environmental management decisions
The Estuary Data Mapper (EDM) is a free, interactive graphical application under development at the US EPA that allows environmental researchers and managers to quickly and easily retrieve, view and save subsets of online US coastal estuary-related data. Accessible data include ...
LAND COVER MAPPING IN AN AGRICULTURAL SETTING USING MULTISEASONAL THEMATIC MAPPER DATA
A multiseasonal Landsat Thematic Mapper (TM) data set consisting of five image dates from a single year was used to characterize agricultural and related land cover in the Willamette River Basin (WRB) of western Oregon. Image registration was accomplished using an automated grou...
The EPA Recovery Mapper is an Internet interactive mapping application that allows users to discover information about every American Recovery and Reinvestment Act (ARRA) award that EPA has funded for six programs. By integrating data reported by the recipients of Recovery Act funding and data created by EPA, this application delivers a level of transparency and public accessibility to users interested in EPA's use of Recovery Act monies. The application is relatively easy to use and builds on the same mapping model as Google, Bing, MapQuest and other commonly used mapping interfaces. EPA Recovery Mapper tracks each award made by each program and gives basic Quick Facts information for each award including award name, location, award date, dollar amounts and more. Data Summaries for each EPA program or for each state are provided displaying dollars for Total Awarded, Total Received (Paid), and Total Jobs This Quarter by Recovery for the latest quarter of data released by Recovery.gov. The data are reported to the government and EPA four times a year by the award recipients. The latest quarterly report will always be displayed in the EPA Recovery Mapper. In addition, the application provides many details about each award. Users will learn more about how to access and interpret these data later in this document. Data shown in the EPA Recovery Mapper are derived from information reported back to FederalReporting.gov from the recipients of Recovery Act funding. EPA
NASA Astrophysics Data System (ADS)
Gierach, Michelle M.; Vazquez-Cuervo, Jorge; Lee, Tong; Tsontos, Vardis M.
2013-10-01
surface salinity (SSS) measurements from the Aquarius/Satélite de Aplicaciones Científicas (SAC)-D satellite and Soil Moisture and Ocean Salinity (SMOS) mission were used to document the freshening associated with the record 2011 Mississippi River flooding event in the Gulf of Mexico (GoM). Assessment of the salinity response was aided by additional satellite observations, including chlorophyll-a (chl-a) and ocean surface currents, and a passive tracer simulation. Low SSS values associated with the spreading of the river plume were observed 1-3 months after peak river discharge which then receded and became unidentifiable from satellite observations 5 months after maximum discharge. The seasonal wind pattern and general circulation of the GoM dramatically impacted the observed salinity response, transporting freshwater eastward along the Gulf coast and entraining low salinity waters into the open GoM. The observed salinity response from Aquarius was consistent with SMOS SSS, chl-a concentrations, and the passive tracer simulation in terms of the pathway and transit time of the river plume spreading. This study is the first successful application of satellite SSS to study salinity variation in marginal seas.
Wisconsin H-Alpha Mapper | UW-Madison Astronomy
Department of Astronomy Wisconsin H-Alpha Mapper Overview Description About WHAM Fabry-Perot Spectroscopy National Science Foundation Astronomy and... 02.20.2012 | Continue Reading » WHAM featured at Natural Astronomy Galactic Structure GALFA GLIMPSE GLIMPSE360 WHAM Extragalactic Astronomy & Cosmology Local
Spectroradiometric calibration of the thematic mapper and multispectral scanner system
NASA Technical Reports Server (NTRS)
Palmer, J. M.; Slater, P. N.
1983-01-01
The results of an analysis that relates thematic mapper (TM) saturation level to ground reflectance, calendar date, latitude, and atmospheric condition is provided. A revised version of the preprint included with the last quarterly report is also provided for publication in the IEEE Transactions on Geoscience and Remote Sensing.
Can Visualizing Document Space Improve Users' Information Foraging?
ERIC Educational Resources Information Center
Song, Min
1998-01-01
This study shows how users access relevant information in a visualized document space and determine whether BiblioMapper, a visualization tool, strengthens an information retrieval (IR) system and makes it more usable. BiblioMapper, developed for a CISI collection, was evaluated by accuracy, time, and user satisfaction. Users' navigation…
Information content of data from the LANDSAT-4 Thematic Mapper (TM) and multispectral scanner (MSS)
NASA Technical Reports Server (NTRS)
Price, J. C.
1983-01-01
The progress of an investigation to quantify the increased information content of thematic mapper (TM) data as compared to that from the LANDSAT 4 multispectral scanner (MSS) is reported. Two night infrared images were examined and compared with Heat Capacity Mapping Mission data.
NASA Technical Reports Server (NTRS)
Grassl, H.; Doerffer, R.; Fischer, J.; Brockmann, C.; Stoessel, M.
1987-01-01
A Thematic Mapper (TM) field experiment was followed by a data analysis to determine TM capabilities for analysis of suspended matter and phytoplankton. Factor analysis showed that suspended matter concentration, atmospheric scattering, and sea surface temperature can be retrieved as independent factors which determine the variation in the TM data over water areas. Spectral channels in the near infrared open the possibility of determining the Angstrom exponent better than for the coastal zone color scanner. The suspended matter distribution may then be calculated by the absolute radiance of channel 2 or 3 or the ratio of both. There is no indication of whether separation of chlorophyll is possible. The distribution of suspended matter and sea surface temperature can be observed with the expected fine structure. A good correlation between water depth and suspended matter distribution as found from ship data can now be analyzed for an entire area by the synoptic view of the TM scenes.
Lightning-Related Indicators for National Climate Assessment (NCA) Studies
NASA Astrophysics Data System (ADS)
Koshak, W. J.
2017-12-01
With the recent advent of space-based lightning mappers [i.e., the Geostationary Lightning Mapper (GLM) on GOES-16, and the Lightning Imaging Sensor (LIS) on the International Space Station], improved investigations on the inter-relationships between lightning and climate are now possible and can directly support the goals of the National Climate Assessment (NCA) program. Lightning nitrogen oxides (LNOx) affect greenhouse gas concentrations such as ozone that influences changes in climate. Conversely, changes in climate (from any causes) can affect the characteristics of lightning (e.g., frequency, current amplitudes, multiplicity, polarity) that in turn leads to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality). This study discusses improvements to, and recent results from, the NASA/MSFC NCA Lightning Analysis Tool (LAT). It includes key findings on the development of different types of lightning flash energy indicators derived from space-based lightning observations, and demonstrates how these indicators can be used to estimate trends in LNOx across the continental US.
Leaf water stress detection utilizing thematic mapper bands 3, 4 and 5 in soybean plants
NASA Technical Reports Server (NTRS)
Holben, B. N.; Schutt, J. B.; Mcmurtrey, J., III
1983-01-01
The total and diffuse radiance responses of Thematic Mapper bands 3 (0.63-0.69 microns), 4 (0.76-0.90 microns), and 5 (1.55-1.75 microns) to water stress in a soybean canopy are compared. Polarization measurements were used to separate the total from the diffuse reflectance; the reflectances were compared statistically at a variety of look angles at 15 min intervals from about 09.00 until 14.00 hrs EST. The results suggest that remotely sensed data collected in the photographic infrared region (TM4) are sensitive to leaf water stress in a 100 percent canopy cover of soybeans, and that TM3 is less sensitive than TM4 for detection of reversible foliar water stress. The mean values of TM5 reflectance data show similar trends to TM4. The primary implication of this study is that remote sensing of water stress in green plant canopies is possible in TM4 from ground-based observations primarily through the indirect link of leaf geometry.
Estimation of Geotropic Currents in the Bay of Bengal using In-situ Observations.
NASA Astrophysics Data System (ADS)
T, V. R.
2014-12-01
Geostraphic Currents (GCs) can be estimated from temperature and salinity observations. In this study an attempt has been made to compute GC using temperature and salinity observations from Expendable Bathy Thermograph (XBT) and CTD over Bay of Bengal (BoB). Although in recent time we have Argo observations but it is for a limited period and coarse temporal resolutions. In BoB Bengal, where not enough simultaneous hydrographic temperature and salinity data are available with reasonable spatial resolution (~one degree spatial resolution) and for a longer period. To overcome the limitations of GC computed from XBT profiles, temperature-salinity relationships were used from simultaneous temperature and salinity observations. We have demonstrated that GCs can be computed with an accuracy of less than 8.5 cm/s (root mean square error) at the surface with respect to temperature from XBT and salinity from climatological record. This error reduces with increasing depth. Finally, we demonstrated the application of this approach to study the temporal variation of the GCs during 1992 to 2012 along an XBT transect.
Metrological challenges for measurements of key climatological observables Part 2: oceanic salinity
NASA Astrophysics Data System (ADS)
Pawlowicz, R.; Feistel, R.; McDougall, T. J.; Ridout, P.; Seitz, S.; Wolf, H.
2016-02-01
Salinity is a key variable in the modelling and observation of ocean circulation and ocean-atmosphere fluxes of heat and water. In this paper, we examine the climatological relevance of ocean salinity, noting fundamental deficiencies in the definition of this key observable, and its lack of a secure foundation in the International System of Units, the SI. The metrological history of salinity is reviewed, problems with its current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10.
Design and Implementation of an Experimental Cataloging Advisor--Mapper.
ERIC Educational Resources Information Center
Ercegovac, Zorana; Borko, Harold
1992-01-01
Describes the design of an experimental computer-aided cataloging advisor, Mapper, that was developed to help novice users with the descriptive cataloging of single-sheet maps from U.S. publishers. The human-computer interface is considered, the use of HyperCard is discussed, the knowledge base is explained, and assistance screens are described.…
NASA Technical Reports Server (NTRS)
Ahmed, H.
1981-01-01
The format of computer compatible tapes which contain LANDSAT 4 and D Prime thematic mapper data is defined. A complete specification of the CCT-AT (radiometric corrections applied and geometric matrices appended) and the CCT-PT (radiometric and geometric corrections) data formats is provided.
The Estuary Data Mapper (EDM) is a free, interactive virtual gateway to coastal data aimed to promote research and aid in environmental management. The graphical user interface allows users to custom select and subset data based on their spatial and temporal interests giving them...
Forest/non-forest stratification in Georgia with Landsat Thematic Mapper data
William H. Cooke
2000-01-01
Geographically accurate Forest Inventory and Analysis (FIA) data may be useful for training, classification, and accuracy assessment of Landsat Thematic Mapper (TM) data. Minimum expectation for maps derived from Landsat data is accurate discrimination of several land cover classes. Landsat TM costs have decreased dramatically, but acquiring cloud-free scenes at...
Information content of data from the LANDSAT 4 Thematic Mapper (TM) and multispectral scanner (MSS)
NASA Technical Reports Server (NTRS)
Price, J. C.
1983-01-01
Simultaneous data acquisition by the LANDSAT 4 thematic mapper and the multispectral scanner permits the comparison of the two types of image data with respect to engineering performance and data applications. Progress in the evaluation of information content of matching scenes in agricultural areas is briefly reported.
Nano Mapper: an Internet knowledge mapping system for nanotechnology development
NASA Astrophysics Data System (ADS)
Li, Xin; Hu, Daning; Dang, Yan; Chen, Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce
2009-04-01
Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976-2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005-2006 identified through the Nano Mapper system.
Landsat-4 thematic mapper and thematic mapper simulator data for a porphyry copper deposit
NASA Technical Reports Server (NTRS)
Abrams, M. J.
1984-01-01
Aircraft thematic mapper (TM) data were analyzed to evaluate the potential utility of the Landsat-4 thematic mapper for geologic mapping and detection of hydrothermal alteration zones in the Silver Bell porphyry copper deposit in southern Arizona. The data allow a comparison between aircraft TV simulator data and the Landsat-4 TM satellite data which possess similar spectral bands. A color rationcomposite of 30-m pixels was resampled, in order to clearly define a number of hydroxyl bearing minerals, (kaolinite, sericite, white mica), pyrite and iron oxide/hydroxide minerals. The iron oxide minerals have diagnostic absorption bands in the 0.45 and 0.85 micron regions of the spectrum, and the hydrous minerals are characterized by an absorption in the 2.2 micron region. The position of the spectral bands allow the TM to identify regions of hydrothermal alteration without resorting to a data processing algorithm. The comparison of the aircraft and Landsat-4 TM data showed considerable agreement, and confirmed the utility of TM data for identifying hydrothermal alteration zones. Samples of some color TM images are provided.
Nano Mapper: an Internet knowledge mapping system for nanotechnology development
Hu, Daning; Dang, Yan; Chen, Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce
2008-01-01
Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976–2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005–2006 identified through the Nano Mapper system. PMID:21170121
Mapping land cover through time with the Rapid Land Cover Mapper—Documentation and user manual
Cotillon, Suzanne E.; Mathis, Melissa L.
2017-02-15
The Rapid Land Cover Mapper is an Esri ArcGIS® Desktop add-in, which was created as an alternative to automated or semiautomated mapping methods. Based on a manual photo interpretation technique, the tool facilitates mapping over large areas and through time, and produces time-series raster maps and associated statistics that characterize the changing landscapes. The Rapid Land Cover Mapper add-in can be used with any imagery source to map various themes (for instance, land cover, soils, or forest) at any chosen mapping resolution. The user manual contains all essential information for the user to make full use of the Rapid Land Cover Mapper add-in. This manual includes a description of the add-in functions and capabilities, and step-by-step procedures for using the add-in. The Rapid Land Cover Mapper add-in was successfully used by the U.S. Geological Survey West Africa Land Use Dynamics team to accurately map land use and land cover in 17 West African countries through time (1975, 2000, and 2013).
Kim, Heekang; Kwon, Soon; Kim, Sungho
2016-07-08
This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen).
Analysis of LANDSAT-4 TM Data for Lithologic and Image Mapping Purpose
NASA Technical Reports Server (NTRS)
Podwysocki, M. H.; Salisbury, J. W.; Bender, L. V.; Jones, O. D.; Mimms, D. L.
1984-01-01
Lithologic mapping techniques using the near infrared bands of the Thematic Mapper onboard the LANDSAT 4 satellite are investigated. These methods are coupled with digital masking to test the capability of mapping geologic materials. Data are examined under medium to low Sun angle illumination conditions to determine the detection limits of materials with absorption features. Several detection anomalies are observed and explained.
Gregory P. Asner; Michael Keller; Rodrigo Pereira; Johan C. Zweede
2002-01-01
We combined a detailed field study of forest canopy damage with calibrated Landsat 7 Enhanced Thematic Mapper Plus (ETM+) reflectance data and texture analysis to assess the sensitivity of basic broadband optical remote sensing to selective logging in Amazonia. Our field study encompassed measurements of ground damage and canopy gap fractions along a chronosequence of...
Janice L. Coen; Philip J Riggan
2014-01-01
The 2006 Esperanza Fire in Riverside County, California, was simulated with the Coupled Atmosphere-Wildland Fire Environment (CAWFE) model to examine how dynamic interactions of the atmosphere with large-scale fire spread and energy release may affect observed patterns of fire behavior as mapped using the FireMapper thermal imaging radiometer. CAWFE simulated the...
Salinity Variations of the Intermediate Oyashio Waters and Their Relation with the Lunar Nodal Cycle
NASA Astrophysics Data System (ADS)
Rogachev, K. A.; Shlyk, N. V.
2018-01-01
New oceanographic observations in the period 1990-2015 revealed significant salinity variations in the Oyashio Current. In the last 26 years, the salinity of the upper layer decreased by 0.2 PSU. The most rapid changes in salinity and temperature have been observed in the last five years. The time series of salinity measurements is characterized by the high-amplitude fluctuations synchronized with the lunar nodal cycle (18.6 years); i.e., high salinity is observed in the period of strong tidal currents. Modulation of diurnal tidal currents with the K1 and O1 periods in the lunar nodal cycle is significant [8, 9]. The amplitude was maximal in 1988 and 2006 and minimal in 1997 and 2015. The characteristics of tidal currents in the Oyashio Current and Sea of Okhotsk are considered based on available data of drifting buoys over the Kruzenshtern and Kashevarov banks. The amplitude of salinity variations synchronized with the lunar cycle is approximately 0.1 PSU; therefore, it has made a significant contribution to the salinity decrease in recent years.
Improved outgassing models for the Landsat-5 thematic mapper
Micijevic, E.; Chander, G.; Hayes, R.W.
2007-01-01
The Landsat-5 (L5) Thematic Mapper (TM) detectors of the short wave infrared (SWIR) bands 5 and 7 are maintained on cryogenic temperatures to minimize thermal noise and allow adequate detection of scene energy. Over the instrument's lifetime, gain oscillations are observed in these bands that are caused by an ice-like contaminant that gradually builds up on the window of a dewar that houses these bands' detectors. This process of icing, an effect of material outgassing in space, is detected and characterized through observations of Internal Calibrator (IC) data. Analyses of IC data indicated three to five percent uncertainty in absolute gain estimates due to this icing phenomenon. The thin-film interference lifetime models implemented in the image product generation systems at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) successfully remove up to 80 percent of the icing effects for the image acquisition period from the satellite's launch in 1984 until 2001; however, their correction ability was found to be much lower for the time thereafter. This study concentrates on improving the estimates of the contaminant film growth rate and the associated change in the period of gain oscillations. The goal is to provide model parameters with the potential to correct 70 to 80 percent of gain uncertainties caused by outgassing effects in L5 TM bands 5 and 7 over the instrument's entire lifetime. ?? 2007 IEEE.
Improved outgassing models for the Landsat-5 thematic mapper
Micijevic, E.; Chander, G.; Hayes, R.W.
2008-01-01
The Landsat-5 (L5) Thematic Mapper (TM) detectors of the short wave infrared (SWIR) bands 5 and 7 are maintained on cryogenic temperatures to minimize thermal noise and allow adequate detection of scene energy. Over the instrument's lifetime, gain oscillations are observed in these bands that are caused by an ice-like contaminant that gradually builds up on the window of a dewar that houses these bands' detectors. This process of icing, an effect of material outgassing in space, is detected and characterized through observations of Internal Calibrator (IC) data. Analyses of IC data indicated three to five percent uncertainty in absolute gain estimates due to this icing phenomenon. The thin-film interference lifetime models implemented in the image product generation systems at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) successfully remove up to 80 percent of the icing effects for the image acquisition period from the satellite's launch in 1984 until 2001; however, their correction ability was found to be much lower for the time thereafter. This study concentrates on improving the estimates of the contaminant film growth rate and the associated change in the period of gain oscillations. The goal is to provide model parameters with the potential to correct 70 to 80 percent of gain uncertainties caused by outgassing effects in L5 TM bands 5 and 7 over the instrument's entire lifetime. ?? 2007 IEEE.
NASA Astrophysics Data System (ADS)
Usman, M.; Furuya, M.; Sakakibara, D.; Abe, T.
2017-12-01
The anomalous behavior of Karakorum glaciers is a hot topic of discussion in the scientific community. Siachen Glacier is one of the longest glaciers ( 75km) in Karakorum Range. This glacier is supposed to be a surge type but so far no studies have confirmed this claim. Detailed velocity mapping of this glacier can possibly provide some clues about intra/inter-annual changes in velocity and observed terminus. Using L-band SAR data of ALOS-1/2, we applied the feature tracking technique (search patch of 128x128 pixels (range x azimuth) , sampling interval of 12x36 pixels) to derive velocity changes; we used GAMMA software. The velocity was calculated by following the parallel flow assumption. To calculate the local topographic gradient unit vector, we used ASTER-GDEM. We also used optical images acquired by Landsat 5 Thematic Mapper (TM), the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) to derive surface velocity. The algorithm we used is Cross-Correlation in Frequency domain on Orientation images (CCF-O). The velocity was finally calculated by setting a flow line and averaging over the area of 200x200m2. The results indicate seasonal speed up signals that modulate inter-annually from 1999 to 2011, with slight or no change in the observed frontal position. However, in ALOS-2 data, the `observed terminus' seems to have been advancing.
NASA Astrophysics Data System (ADS)
Zhang, Minwei; Hu, Chuanmin; Cannizzaro, Jennifer; Kowalewski, Matthew G.; Janz, Scott J.
2018-01-01
Using hyperspectral data collected by the Airborne Compact Atmospheric Mapper (ACAM) and a shipborne radiometer in Chesapeake Bay in July-August 2011, this study investigates diurnal changes of surface remote sensing reflectance (Rrs). Atmospheric correction of ACAM data is performed using the traditional "black pixel" approach through radiative transfer based look-up-tables (LUTs) with non-zero Rrs in the near-infrared (NIR) accounted for by iterations. The ACAM-derived Rrs was firstly evaluated through comparison with Rrs derived from the Moderate Resolution Imaging Spectroradiometer satellite measurements, and then validated against in situ Rrs using a time window of ±1 h or ±3 h. Results suggest that the uncertainties in ACAM-derived Rrs are generally comparable to those from MODIS satellite measurements over coastal waters, and therefore may be used to assess whether Rrs diurnal changes observed by ACAM are realistic (i.e., with changes > 2 × uncertainties). Diurnal changes observed by repeated ACAM measurements reaches up to 66.8% depending on wavelength and location and are consistent with those from the repeated in situ Rrs measurements. These findings suggest that once airborne data are processed using proper algorithms and validated using in situ data, they are suitable for assessing diurnal changes in moderately turbid estuaries such as Chesapeake Bay. The findings also support future geostationary satellite missions that are particularly useful to assess short-term changes.
NASA Astrophysics Data System (ADS)
Rainville, L.; Farrar, J. T.; Shcherbina, A.; Centurioni, L. R.
2017-12-01
The Salinity Processes in the Upper-ocean Regional Study (SPURS) is a program aimed at understanding the patterns and variability of sea surface salinity. Following the first SPURS program in an evaporation-dominated region (2012-2013), the SPURS-2 program targeted wide range of spatial and temporal scales associated with processes controlling salinity in the rain-dominated Eastern Pacific Fresh Pool. Autonomous instruments were delivered in August and September 2016 using research vessels conducted observations over one complete annual cycle. The SPURS-2 field program used coordinated observations from many different autonomous platforms, and a mix of Lagrangian and Eulerian approaches. Here we discuss the motivation, implementation, and the early of SPURS-2.
Using classified Landsat Thematic Mapper data for stratification in a statewide forest inventory
Mark H. Hansen; Daniel G. Wendt
2000-01-01
The 1998 Indiana/Illinois forest inventory (USDA Forest Service, Forest Inventory and Analysis (FIA)) used Landsat Thematic Mapper (TM) data for stratification. Classified images made by the National Gap Analysis Program (GAP) stratified FIA plots into four classes (nonforest, nonforest/ forest, forest/nonforest, and forest) based on a two pixel forest edge buffer zone...
Using Classified Landsat Thematic Mapper Data for Stratification in a Statewide Forest Inventory
Mark H. Hansen; Daniel G. Wendt
2000-01-01
The 1998 Indiana/Illinois forest inventory (USDA Forest Service, Forest Inventory and Analysis (FIA)) used Landsat Thematic Mapper (TM} data for stratification. Classified images made by the National Gap Analysis Program (GAP) stratified FIA plots into four classes (nonforest, nonforest/forest, forest/nonforest, and forest) based on a two pixel forest edge buffer zone...
Thematic Mapper Analysis of Blue Oak (Quercus douglasii) in Central California
Paul A. Lefebvre Jr.; Frank W. Davis; Mark Borchert
1991-01-01
Digital Thematic Mapper (TM) satellite data from September 1986 and December 1985 were analyzed to determine seasonal reflectance properties of blue oak rangeland in the La Panza mountains of San Luis Obispo County. Linear regression analysis was conducted to examine relationships between TM reflectance and oak canopy cover, basal area, and site topographic variables....
Thematic mapper flight model preshipment review data package. Volume 3, part A: System data
NASA Technical Reports Server (NTRS)
1982-01-01
Results of vibration, acoustical noise, and thermal vacuum are described as well as tests studies of EMI/EMC and mass properties conducted for thematic mapper systems integration. Liens are summarized and the engineering change proposal status is presented. Requests for deviation/waiver are included along with failure and nonforming material reports.
NASA Technical Reports Server (NTRS)
Jackson, M. J.; Baker, J. R.; Townshend, J. R. G.; Gayler, J. E.; Hardy, J. R.
1984-01-01
In assessing the accuracy of classification techniques for Thematic Mapper data the consistency of the detector-to-detector response is critical. Preliminary studies were undertaken, therefore, to assess the significance of this factor for the TM. The overall structure of the band relationships can be examined by principal component analysis. In order to examine the utility of the Thematic Mapper data more carefully, six different land cover classes approximately Anderson level 1 were selected. These included an area of water from the sediment-laden Mississippi, woodland, agricultural land and urban land. A plume class was also selected which includes the plume of smoke emanating from the power station and drifting over the Mississippi river.
The SkyMapper Transient Survey
NASA Astrophysics Data System (ADS)
Scalzo, R. A.; Yuan, F.; Childress, M. J.; Möller, A.; Schmidt, B. P.; Tucker, B. E.; Zhang, B. R.; Onken, C. A.; Wolf, C.; Astier, P.; Betoule, M.; Regnault, N.
2017-07-01
The SkyMapper 1.3 m telescope at Siding Spring Observatory has now begun regular operations. Alongside the Southern Sky Survey, a comprehensive digital survey of the entire southern sky, SkyMapper will carry out a search for supernovae and other transients. The search strategy, covering a total footprint area of 2 000 deg2 with a cadence of ⩽5 d, is optimised for discovery and follow-up of low-redshift type Ia supernovae to constrain cosmic expansion and peculiar velocities. We describe the search operations and infrastructure, including a parallelised software pipeline to discover variable objects in difference imaging; simulations of the performance of the survey over its lifetime; public access to discovered transients; and some first results from the Science Verification data.
The GSFC Mark-2 three band hand-held radiometer. [thematic mapper for ground truth data collection
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Jones, W. H.; Kley, W. A.; Sundstrom, G. J.
1980-01-01
A self-contained, portable, hand-radiometer designed for field usage was constructed and tested. The device, consisting of a hand-held probe containing three sensors and a strap supported electronic module, weighs 4 1/2 kilograms. It is powered by flashlight and transistor radio batteries, utilizes two silicon and one lead sulfide detectors, has three liquid crystal displays, sample and hold radiometric sampling, and its spectral configuration corresponds to LANDSAT-D's thematic mapper bands. The device was designed to support thematic mapper ground-truth data collection efforts and to facilitate 'in situ' ground-based remote sensing studies of natural materials. Prototype instruments were extensively tested under laboratory and field conditions with excellent results.
Landsat-4 MSS and Thematic Mapper data quality and information content analysis
NASA Technical Reports Server (NTRS)
Anuta, P. E.; Bartolucci, L. A.; Dean, M. E.; Lozano, D. F.; Malaret, E.; Mcgillem, C. D.; Valdes, J. A.; Valenzuela, C. R.
1984-01-01
Landsat-4 Thematic Mapper and Multispectral Scanner data were analyzed to obtain information on data quality and information content. Geometric evaluations were performed to test band-to-band registration accuracy. Thematic Mapper overall system resolution was evaluated using scene objects which demonstrated sharp high contrast edge responses. Radiometric evaluation included detector relative calibration, effects of resampling, and coherent noise effects. Information content evaluation was carried out using clustering, principal components, transformed divergence separability measure, and numerous supervised classifiers on data from Iowa and Illinois. A detailed spectral class analysis (multispectral classification) was carried out on data from the Des Moines, IA area to compare the information content of the MSS and TM for a large number of scene classes.
Warming and Inhibition of Salinization at the Ocean's Surface by Cyanobacteria
NASA Astrophysics Data System (ADS)
Wurl, O.; Bird, K.; Cunliffe, M.; Landing, W. M.; Miller, U.; Mustaffa, N. I. H.; Ribas-Ribas, M.; Witte, C.; Zappa, C. J.
2018-05-01
This paper describes high-resolution in situ observations of temperature and, for the first time, of salinity in the uppermost skin layer of the ocean, including the influence of large surface blooms of cyanobacteria on those skin properties. In the presence of the blooms, large anomalies of skin temperature and salinity of 0.95°C and -0.49 practical salinity unit were found, but a substantially cooler (-0.22°C) and saltier skin layer (0.19 practical salinity unit) was found in the absence of surface blooms. The results suggest that biologically controlled warming and inhibition of salinization of the ocean's surface occur. Less saline skin layers form during precipitation, but our observations also show that surface blooms of Trichodesmium sp. inhibit evaporation decreasing the salinity at the ocean's surface. This study has important implications in the assessment of precipitation over the ocean using remotely sensed salinity, but also for a better understanding of heat exchange and the hydrologic cycle on a regional scale.
The Mars mapper science and mission planning tool
NASA Technical Reports Server (NTRS)
Lo, Martin W.
1993-01-01
The Mars Mapper Program (MOm) is an interactive tool for science and mission design developed for the Mars Observer Mission (MO). MOm is a function of the Planning and Sequencing Element of the MO Ground Data System. The primary users of MOm are members of the science and mission planning teams. Using MOm, the user can display digital maps of Mars in various projections and resolutions ranging from 1 to 256 pixels per degree squared. The user can overlay the maps with ground tracks of the MO spacecraft (S/C) and footprints and swaths of the various instruments on-board the S/C. Orbital and instrument geometric parameters can be computed on demand and displayed on the digital map or plotted in XY-plots. The parameter data can also be saved into files for other uses. MOm is divided into 3 major processes: Generator, Mapper, Plotter. The Generator Process is the main control which spawns all other processes. The processes communicate via sockets. At any one time, only 1 copy of MOm may operate on the system. However, up to 5 copies of each of the major processes may be invoked from the Generator. MOm is developed on the Sun SPARCStation 2GX with menu driven graphical user interface (GUI). The map window and its overlays are mouse-sensitized to permit on-demand calculations of various parameters along an orbit. The program is currently under testing and will be delivered to the MO Mission System Configuration Management for distribution to the MO community in 3/93.
GLOBE Observer Mosquito Habitat Mapper: Geoscience and Public Health Connections
NASA Astrophysics Data System (ADS)
Low, R.; Boger, R. A.
2017-12-01
The global health crisis posed by vector-borne diseases is so great in scope that it is clearly insurmountable without the active help of tens-or hundreds- of thousands of individuals, working to identify and eradicate risk in communities around the world. Mobile devices equipped with data collection capabilities and visualization opportunities are lowering the barrier for participation in data collection efforts. The GLOBE Observer Mosquito Habitat Mapper (MHM) provides citizen scientists with an easy to use mobile platform to identify and locate mosquito breeding sites in their community. The app also supports the identification of vector taxa in the larvae development phase via a built-in key, which provides important information for scientists and public health officials tracking the rate of range expansion of invasive vector species and associated health threats. GO Mosquito is actively working with other citizen scientist programs across the world to ensure interoperability of data through standardization of metadata fields specific to vector monitoring, and through the development of APIs that allow for data exchange and shared data display through a UN-sponsored proof of concept project, Global Mosquito Alert. Avenues of application for mosquito vector data-both directly, by public health entities, and by modelers who employ remotely sensed environmental data to project mosquito population dynamics and epidemic disease will be featured.
Goldschmidt crater and the Moon's north polar region: Results from the Moon Mineralogy Mapper (M3)
Cheek, L.C.; Pieters, C.M.; Boardman, J.W.; Clark, R.N.; Combe, J.-P.; Head, J.W.; Isaacson, P.J.; McCord, T.B.; Moriarty, D.; Nettles, J.W.; Petro, N.E.; Sunshine, J.M.; Taylor, L.A.
2011-01-01
Soils within the impact crater Goldschmidt have been identified as spectrally distinct from the local highland material. High spatial and spectral resolution data from the Moon Mineralogy Mapper (M3) on the Chandrayaan-1 orbiter are used to examine the character of Goldschmidt crater in detail. Spectral parameters applied to a north polar mosaic of M3 data are used to discern large-scale compositional trends at the northern high latitudes, and spectra from three widely separated regions are compared to spectra from Goldschmidt. The results highlight the compositional diversity of the lunar nearside, in particular, where feldspathic soils with a low-Ca pyroxene component are pervasive, but exclusively feldspathic regions and small areas of basaltic composition are also observed. Additionally, we find that the relative strengths of the diagnostic OH/H2O absorption feature near 3000 nm are correlated with the mineralogy of the host material. On both global and local scales, the strongest hydrous absorptions occur on the more feldspathic surfaces. Thus, M3 data suggest that while the feldspathic soils within Goldschmidt crater are enhanced in OH/H2O compared to the relatively mafic nearside polar highlands, their hydration signatures are similar to those observed in the feldspathic highlands on the farside.
Mustard, J.F.; Pieters, C.M.; Isaacson, P.J.; Head, J.W.; Besse, S.; Clark, R.N.; Klima, R.L.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; Runyon, C.J.; Tompkins, S.
2011-01-01
The Moon Mineralogy Mapper (M3) acquired high spatial and spectral resolution data of the Aristarchus Plateau with 140 m/pixel in 85 spectral bands from 0.43 to 3.0 m. The data were collected as radiance and converted to reflectance using the observational constraints and a solar spectrum scaled to the Moon-Sun distance. Summary spectral parameters for the area of mafic silicate 1 and 2 m bands were calculated from the M3 data and used to map the distribution of key units that were then analyzed in detail with the spectral data. This analysis focuses on five key compositional units in the region. (1) The central peaks are shown to be strongly enriched in feldspar and are likely from the upper plagioclase-rich crust of the Moon. (2) The impact melt is compositionally diverse with clear signatures of feldspathic crust, olivine, and glass. (3) The crater walls and ejecta show a high degree of spatial heterogeneity and evidence for massive breccia blocks. (4) Olivine, strongly concentrated on the rim, wall, and exterior of the southeastern quadrant of the crater, is commonly associated the impact melt. (5) There are at least two types of glass deposits observed: pyroclastic glass and impact glass. Copyright 2011 by the American Geophysical Union.
Salinity and Temperature Tolerance Experiments on Selected Florida Bay Mollusks
Murray, James B.; Wingard, G. Lynn
2006-01-01
The ultimate goal of the Comprehensive Everglades Restoration Plan (CERP) is to restore and preserve the unique ecosystems of South Florida, including the estuaries. Understanding the effect of salinity and temperature changes, beyond typical oscillations, on the biota of South Florida's estuaries is a necessary component of achieving the goal of restoring the estuaries. The U.S. Geological Survey has been actively involved in researching the history of the South Florida Ecosystem, to provide targets, performance measures, and baseline data for restoration managers. These experiments addressed two aspects of ecosystem history research: 1) determining the utility of using molluscan shells as recorders of change in water chemistry parameters, primarily salinity, and 2) enhancing our in situ observations on modern assemblages by exceeding typically observed aquatic conditions. This set of experiments expanded our understanding of the effects of salinity, temperature and other water chemistry parameters on the reproduction, growth and overall survivability of key species of mollusks used in interpreting sediment core data. Observations on mollusks, plants and microbes made as part of these experiments have further refined our knowledge and understanding of the effects of ecosystem feedback and the role salinity and temperature play in ecosystem stability. The results have demonstrated the viability of several molluscan species as indicators of atypical salinity, and possibly temperature, modulations. For example Cerithium muscarum and Bulla striata demonstrated an ability to withstand a broad salinity and temperature range, with reproduction occurring in atypically high salinities and temperatures. These experiments also provided calibration data for the shell biogeochemistry of Chione cancellata and the possible use of this species as a water chemistry recorder. Observations made in the mesocosms, on a scale not normally observable in the field, have led to new questions about the influence of salinity on the localized ecosystem. The next phase of these experiments; to calibrate growth rate and reproductive viability in atypical salinities is currently underway.
NASA Technical Reports Server (NTRS)
1982-01-01
Tests to verify the as-designed performance of all circuits within the thematic mapper electronics module unit are described. Specifically, the tests involved the evaluation of the scan line corrector driver, shutter drivers function, cal lamp controller function, post amplifier function, command decoder verification unit, and the temperature and actuator controllers function.
Monitoring landscape change for LANDFIRE using multi-temporal satellite imagery and ancillary data
James E. Vogelmann; Jay R. Kost; Brian Tolk; Stephen Howard; Karen Short; Xuexia Chen; Chengquan Huang; Kari Pabst; Matthew G. Rollins
2011-01-01
LANDFIRE is a large interagency project designed to provide nationwide spatial data for fire management applications. As part of the effort, many 2000 vintage Landsat Thematic Mapper and Enhanced Thematic Mapper plus data sets were used in conjunction with a large volume of field information to generate detailed vegetation type and structure data sets for the entire...
Lightning Mapper Sensor Lens Assembly S.O. 5459: Project Management Plan
NASA Technical Reports Server (NTRS)
Zeidler, Janet
1999-01-01
Kaiser Electro-Optics, Inc. (KEO) has developed this Project Management Plan for the Lightning Mapper Sensor (LMS) program. KEO has integrated a team of experts in a structured program management organization to meet the needs of the LMS program. The project plan discusses KEO's approach to critical program elements including Program Management, Quality Assurance, Configuration Management, and Schedule.
Thematic mapper flight model preshipment review data package. Volume 3, part C: System data
NASA Technical Reports Server (NTRS)
1982-01-01
Failure reports for flight model-1 of the thematic mapper are summarized showing the symptom and cause of failure as well as the corrective action taken. Each report is keyed to the major subsystem against which the failure occurred. Requests for deviation/waiver are listed by number, description, and current status. Copies of engineering proposals are included.
The OakMapper WebGIS: improved access to sudden oak death spatial data
K. Tuxen; M. Kelly
2008-01-01
Access to timely and accurate sudden oak death (SOD) location data is critical for SOD monitoring, management and research. Several websites (hereafter called the OakMapper sites) associated with sudden oak death monitoring efforts have been maintained with up-todate SOD location information for over five years, providing information and maps of the most current...
Spectroradiometric calibration of the Thematic Mapper and multispectral scanner system
NASA Technical Reports Server (NTRS)
Slater, P. N.; Palmer, J. M. (Principal Investigator)
1985-01-01
The eleventh quarterly report on Spectroradiometric Calibration of the Thematic Mapper (Contract NAS5-27832) discusses calibrations made at White Sands on 24 May 1985. An attempt is made to standardize test results. Critical values used in the final steps of the data reduction and the comparison of the results of the pre-flight and internal calibration (IC) data are summarized.
F. M. Roberts; P. E. Gessler
2000-01-01
Landsat Thematic Mapper (TM) and SPOT Satellite Imagery were used to map wetland plant species in thc Coeur d'Alene floodplain in northern Idaho. This paper discusses the methodology used to create a wetland plant species map for the floodplain. Species mapped included common cattail (Typha latifolia); water horse-tail (Equisetum...
Landsat and Thermal Infrared Imaging
NASA Technical Reports Server (NTRS)
Arvidson, Terry; Barsi, Julia; Jhabvala, Murzy; Reuter, Dennis
2012-01-01
The purpose of this chapter is to describe the collection of thermal images by Landsat sensors already on orbit and to introduce the new thermal sensor to be launched in 2013. The chapter describes the thematic mapper (TM) and enhanced thematic mapper plus (ETM+) sensors, the calibration of their thermal bands, and the design and prelaunch calibration of the new thermal infrared sensor (TIRS).
Tripp Lowe; Chris Cieszewski; Michael Zasada; Jarek Zawadzki
2005-01-01
The ability to evaluate the ecological and economical effects of proposed modifications to Georgia's best management practices is an important issue in the State. We have incorporated tabular FIA data with Landsat Thematic Mapper satellite images and other spatial data to model Georgia's forested land and assess the area, volume, age, and site quality...
The US EPA Estuary Data Mapper (EDM; http://badger.epa.gov/rsig/edm/index.html) has been designed as a free stand-alone tool for geospatial data discovery, visualization, and data download for estuaries and their associated watersheds in the conterminous United States. EDM requi...
The US EPA Estuary Data Mapper (EDM; http://badger.epa.gov/rsig/edm/index.html) has been designed as a free stand-alone tool for geospatial data discovery, visualization, and data download for estuaries and their associated watersheds in the conterminous United States. EDM requi...
High-Resolution airborne color video data were used to evaluate the accuracy of a land cover map of the upper San Pedro River watershed, derived from June 1997 Landsat Thematic Mapper data. The land cover map was interpreted and generated by Instituto del Medio Ambiente y el Bes...
Thematic mapper flight model preshipment review data package. Volume 2, part B: Subsystem data
NASA Technical Reports Server (NTRS)
1982-01-01
Summarized performance data are presented for the following major subsystems of the thematic mapper: the focal plane assembly, the radiative cooler, the radiative cooler door assembly, the top optical assembly, and the telescope assembly. Reference lists of the configurations status and of nonconforming material reports, failure reports, and requests for deviation/waiver are included.
1985 ACSM-ASPRS Fall Convention, Indianapolis, IN, September 8-13, 1985, Technical Papers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
Papers are presented on Landsat image data quality analysis, primary data acquisition, cartography, geodesy, land surveying, and the applications of satellite remote sensing data. Topics discussed include optical scanning and interactive color graphics; the determination of astrolatitudes and astrolongitudes using x, y, z-coordinates on the celestial sphere; raster-based contour plotting from digital elevation models using minicomputers or microcomputers; the operational techniques of the GPS when utilized as a survey instrument; public land surveying and high technology; the use of multitemporal Landsat MSS data for studying forest cover types; interpretation of satellite and aircraft L-band synthetic aperture radar imagery; geological analysismore » of Landsat MSS data; and an interactive real time digital image processing system. Consideration is given to a large format reconnaissance camera; creating an optimized color balance for TM and MSS imagery; band combination selection for visual interpretation of thematic mapper data for resource management; the effect of spatial filtering on scene noise and boundary detail in thematic mapper imagery; the evaluation of the geometric quality of thematic mapper photographic data; and the analysis and correction of Landsat 4 and 5 thematic mapper sensor data.« less
Kim, Heekang; Kwon, Soon; Kim, Sungho
2016-01-01
This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen). PMID:27399720
Wang, Xia; Shen, Yihang; Wang, Shiwei; Li, Shiliang; Zhang, Weilin; Liu, Xiaofeng; Lai, Luhua; Pei, Jianfeng; Li, Honglin
2017-07-03
The PharmMapper online tool is a web server for potential drug target identification by reversed pharmacophore matching the query compound against an in-house pharmacophore model database. The original version of PharmMapper includes more than 7000 target pharmacophores derived from complex crystal structures with corresponding protein target annotations. In this article, we present a new version of the PharmMapper web server, of which the backend pharmacophore database is six times larger than the earlier one, with a total of 23 236 proteins covering 16 159 druggable pharmacophore models and 51 431 ligandable pharmacophore models. The expanded target data cover 450 indications and 4800 molecular functions compared to 110 indications and 349 molecular functions in our last update. In addition, the new web server is united with the statistically meaningful ranking of the identified drug targets, which is achieved through the use of standard scores. It also features an improved user interface. The proposed web server is freely available at http://lilab.ecust.edu.cn/pharmmapper/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Technical Reports Server (NTRS)
Toll, D. L.
1984-01-01
An airborne multispectral scanner, operating in the same spectral channels as the Landsat Thematic Mapper (TM), was used in a region east of Denver, CO, for a simulation test performed in the framework of using TM to discriminate the level I and level II classes. It is noted that at the 30-m spatial resolution of the Thematic Mapper Simulator (TMS) the overall discrimination for such classes as commercial/industrial land, rangeland, irrigated sod, irrigated alfalfa, and irrigated pasture was superior to that of the Landsat Multispectral Scanner, primarily due to four added spectral bands. For residential and other spectrally heterogeneous classes, however, the higher resolution of TMS resulted in increased variability within the class and a larger spectral overlap.
Response of Stream Biodiversity to Increasing Salinization
NASA Astrophysics Data System (ADS)
Hawkins, C. P.; Vander Laan, J. J.; Olson, J. R.
2014-12-01
We used a large data set of macroinvertebrate samples collected from streams in both reference-quality (n = 68) and degraded (n = 401) watersheds in the state of Nevada, USA to assess relationships between stream biodiversity and salinity. We used specific electrical conductance (EC)(μS/cm) as a measure of salinity, and applied a previously developed EC model to estimate natural, baseflow salinity at each stream. We used the difference between observed and predicted salinity (EC-Diff) as a measure of salinization associated with watershed degradation. Observed levels of EC varied between 22 and 994 μS/cm across reference sites and 22 to 3,256 uS/cm across non-reference sites. EC-Diff was as high as 2,743 μS/cm. We used a measure of local biodiversity completeness (ratio of observed to expected number of taxa) to assess ecological response to salinity. This O/E index decreased nearly linearly up to about 25% biodiversity loss, which occurred at EC-Diff of about 300 μS/cm. Too few sites had EC-Diff greater than 300 μS/cm to draw reliable inferences regarding biodiversity response to greater levels of salinization. EC-Diff increased with % agricultural land use, mine density, and % urban land use in the watersheds implying that human activities have been largely responsible for increased salinization in Nevada streams and rivers. Comparison of biological responses to EC and other stressors indicates that increased salinization may be the primary stressor causing biodiversity loss in these streams and that more stringent salinity water quality standards may be needed to protect aquatic life.
Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.
2011-01-01
The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric, spatial, and uniformity validation effort has been pursued with selected data sets including an Earth-view data set. With this effort an initial validation of the on-orbit performance of the imaging spectrometer has been achieved, including validation of the cross-track spectral uniformity and spectral instantaneous field of view uniformity. The Moon Mineralogy Mapper is the first imaging spectrometer to measure a data set of this kind at the Moon. These calibrated science measurements are being used to address the full set of science goals and objectives for this mission. Copyright 2011 by the American Geophysical Union.
C. Pieters,; P. Mouroulis,; M. Eastwood,; J. Boardman,; Green, R.O.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Cate, D.; Chatterjee, A.; Clark, R.; Barr, D.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, K.; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriguez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.
2011-01-01
The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric, spatial, and uniformity validation effort has been pursued with selected data sets including an Earth-view data set. With this effort an initial validation of the on-orbit performance of the imaging spectrometer has been achieved, including validation of the cross-track spectral uniformity and spectral instantaneous field of view uniformity. The Moon Mineralogy Mapper is the first imaging spectrometer to measure a data set of this kind at the Moon. These calibrated science measurements are being used to address the full set of science goals and objectives for this mission.
1991-07-01
negligible (Bradley and Sprague 1985). 49. Salinity has complex effects , both direct and indirect, on bioac- cumulation and bioavailability. Salinity ... salinity effect on bioaccumulation is present, it will usually be observed at < 1 part per thousand salinity ; increasing the salinity does not increase...the effect . 50. Increasing salinity tends to decrease the water solubility of neu- tral organic chemicals, and also decreases the concentration of both
Shifman, M. A.; Nadkarni, P.; Miller, P. L.
1992-01-01
Pulse field gel electrophoresis mapping is an important technique for characterizing large segments of DNA. We have developed two tools to aid in the construction of pulse field electrophoresis gel maps: PFGE READER which stores experimental conditions and calculates fragment sizes and PFGE MAPPER which constructs pulse field gel electrophoresis maps. PMID:1482898
NASA Technical Reports Server (NTRS)
Smith, Charles M.
2003-01-01
This report provides results of an independent assessment of the geopositional accuracy of the Earth Satellite (EarthSat) Corporation's GeoCover, Orthorectified Landsat Thematic Mapper (TM) imagery over Northeast Asia. This imagery was purchased through NASA's Earth Science Enterprise (ESE) Scientific Data Purchase (SDP) program.
NASA Technical Reports Server (NTRS)
1982-01-01
The acceptance test data package for the thematic mapper flight model power supply was reviewed and the data compared to the relevant specification. The power supply was found to be within specification. Final test data for outut voltage regulation and ripple, efficiency, over and undervoltage protection, telemetry, impedances, turn-on requirements, and input current limits are presented.
Comparison of mapping algorithms used in high-throughput sequencing: application to Ion Torrent data
2014-01-01
Background The rapid evolution in high-throughput sequencing (HTS) technologies has opened up new perspectives in several research fields and led to the production of large volumes of sequence data. A fundamental step in HTS data analysis is the mapping of reads onto reference sequences. Choosing a suitable mapper for a given technology and a given application is a subtle task because of the difficulty of evaluating mapping algorithms. Results In this paper, we present a benchmark procedure to compare mapping algorithms used in HTS using both real and simulated datasets and considering four evaluation criteria: computational resource and time requirements, robustness of mapping, ability to report positions for reads in repetitive regions, and ability to retrieve true genetic variation positions. To measure robustness, we introduced a new definition for a correctly mapped read taking into account not only the expected start position of the read but also the end position and the number of indels and substitutions. We developed CuReSim, a new read simulator, that is able to generate customized benchmark data for any kind of HTS technology by adjusting parameters to the error types. CuReSim and CuReSimEval, a tool to evaluate the mapping quality of the CuReSim simulated reads, are freely available. We applied our benchmark procedure to evaluate 14 mappers in the context of whole genome sequencing of small genomes with Ion Torrent data for which such a comparison has not yet been established. Conclusions A benchmark procedure to compare HTS data mappers is introduced with a new definition for the mapping correctness as well as tools to generate simulated reads and evaluate mapping quality. The application of this procedure to Ion Torrent data from the whole genome sequencing of small genomes has allowed us to validate our benchmark procedure and demonstrate that it is helpful for selecting a mapper based on the intended application, questions to be addressed, and the technology used. This benchmark procedure can be used to evaluate existing or in-development mappers as well as to optimize parameters of a chosen mapper for any application and any sequencing platform. PMID:24708189
Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data.
Martinot, M; Besse, S; Flahaut, J; Quantin-Nataf, C; Lozac'h, L; van Westrenen, W
2018-02-01
Moon Mineralogy Mapper (M 3 ) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M 3 data, using a custom-made method for M 3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.
Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data
NASA Astrophysics Data System (ADS)
Martinot, M.; Besse, S.; Flahaut, J.; Quantin-Nataf, C.; Lozac'h, L.; van Westrenen, W.
2018-02-01
Moon Mineralogy Mapper (M3) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M3 data, using a custom-made method for M3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.
GCM studies on Jovian polar dynamics
NASA Astrophysics Data System (ADS)
Tabataba-Vakili, F.; Orton, G.; Li, C.; Young, R. M.; Read, P. L.; Ingersoll, A. P.
2017-12-01
The Juno spacecraft has produced unparalleled measurements of the polar regions of Jupiter. Observations from JunoCAM and JIRAM (Jupiter Infrared Auroral Mapper) have revealed a structure of cyclonic vortices near the poles. We report simulations of the observed polar dynamics using a hierarchy of models from shallow-water to general circulation models with increasing detail. An initialized, unforced shallow-water model of the polar region results in merging cyclones, producing a Saturn-like polar vortex. Further investigations with more detailed models aim to recreate the observed polar structures on Jupiter and investigate the difference between vortical structures on Saturn and Jupiter. Identifying this difference may shed light on the formation and maintenance mechanisms of the observed vortices.
Micijevic, Esad; Morfitt, Ron
2010-01-01
Systematic characterization and calibration of the Landsat sensors and the assessment of image data quality are performed using the Image Assessment System (IAS). The IAS was first introduced as an element of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) ground segment and recently extended to Landsat 4 (L4) and 5 (L5) Thematic Mappers (TM) and Multispectral Sensors (MSS) on-board the Landsat 1-5 satellites. In preparation for the Landsat Data Continuity Mission (LDCM), the IAS was developed for the Earth Observer 1 (EO-1) Advanced Land Imager (ALI) with a capability to assess pushbroom sensors. This paper describes the LDCM version of the IAS and how it relates to unique calibration and validation attributes of its on-board imaging sensors. The LDCM IAS system will have to handle a significantly larger number of detectors and the associated database than the previous IAS versions. An additional challenge is that the LDCM IAS must handle data from two sensors, as the LDCM products will combine the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) spectral bands.
NASA Technical Reports Server (NTRS)
Heric, Matthew; Cox, William; Gordon, Daniel K.
1987-01-01
In an attempt to improve the land cover/use classification accuracy obtainable from remotely sensed multispectral imagery, Airborne Imaging Spectrometer-1 (AIS-1) images were analyzed in conjunction with Thematic Mapper Simulator (NS001) Large Format Camera color infrared photography and black and white aerial photography. Specific portions of the combined data set were registered and used for classification. Following this procedure, the resulting derived data was tested using an overall accuracy assessment method. Precise photogrammetric 2D-3D-2D geometric modeling techniques is not the basis for this study. Instead, the discussion exposes resultant spectral findings from the image-to-image registrations. Problems associated with the AIS-1 TMS integration are considered, and useful applications of the imagery combination are presented. More advanced methodologies for imagery integration are needed if multisystem data sets are to be utilized fully. Nevertheless, research, described herein, provides a formulation for future Earth Observation Station related multisensor studies.
Li, Shuai; Milliken, Ralph E.
2017-01-01
A new thermal correction model and experimentally validated relationships between absorption strength and water content have been used to construct the first global quantitative maps of lunar surface water derived from the Moon Mineralogy Mapper near-infrared reflectance data. We find that OH abundance increases as a function of latitude, approaching values of ~500 to 750 parts per million (ppm). Water content also increases with the degree of space weathering, consistent with the preferential retention of water originating from solar wind implantation during agglutinate formation. Anomalously high water contents indicative of interior magmatic sources are observed in several locations, but there is no global correlation between surface composition and water content. Surface water abundance can vary by ~200 ppm over a lunar day, and the upper meter of regolith may contain a total of ~1.2 × 1014 g of water averaged over the globe. Formation and migration of water toward cold traps may thus be a continuous process on the Moon and other airless bodies. PMID:28924612
NASA Astrophysics Data System (ADS)
Rogowitz, Bernice E.; Matasci, Naim
2011-03-01
The explosion of online scientific data from experiments, simulations, and observations has given rise to an avalanche of algorithmic, visualization and imaging methods. There has also been enormous growth in the introduction of tools that provide interactive interfaces for exploring these data dynamically. Most systems, however, do not support the realtime exploration of patterns and relationships across tools and do not provide guidance on which colors, colormaps or visual metaphors will be most effective. In this paper, we introduce a general architecture for sharing metadata between applications and a "Metadata Mapper" component that allows the analyst to decide how metadata from one component should be represented in another, guided by perceptual rules. This system is designed to support "brushing [1]," in which highlighting a region of interest in one application automatically highlights corresponding values in another, allowing the scientist to develop insights from multiple sources. Our work builds on the component-based iPlant Cyberinfrastructure [2] and provides a general approach to supporting interactive, exploration across independent visualization and visual analysis components.
Revised landsat-5 thematic mapper radiometric calibration
Chander, G.; Markham, B.L.; Barsi, J.A.
2007-01-01
Effective April 2, 2007, the radiometric calibration of Landsat-5 (L5) Thematic Mapper (TM) data that are processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) will be updated. The lifetime gain model that was implemented on May 5, 2003, for the reflective bands (1-5, 7) will be replaced by a new lifetime radiometric-calibration curve that is derived from the instrument's response to pseudoinvariant desert sites and from cross calibration with the Landsat-7 (L7) Enhanced TM Plus (ETM+). Although this calibration update applies to all archived and future L5 TM data, the principal improvements in the calibration are for the data acquired during the first eight years of the mission (1984-1991), where the changes in the instrument-gain values are as much as 15%. The radiometric scaling coefficients for bands 1 and 2 for approximately the first eight years of the mission have also been changed. Users will need to apply these new coefficients to convert the calibrated data product digital numbers to radiance. The scaling coefficients for the other bands have not changed.
Hadoop-MCC: Efficient Multiple Compound Comparison Algorithm Using Hadoop.
Hua, Guan-Jie; Hung, Che-Lun; Tang, Chuan Yi
2018-01-01
In the past decade, the drug design technologies have been improved enormously. The computer-aided drug design (CADD) has played an important role in analysis and prediction in drug development, which makes the procedure more economical and efficient. However, computation with big data, such as ZINC containing more than 60 million compounds data and GDB-13 with more than 930 million small molecules, is a noticeable issue of time-consuming problem. Therefore, we propose a novel heterogeneous high performance computing method, named as Hadoop-MCC, integrating Hadoop and GPU, to copy with big chemical structure data efficiently. Hadoop-MCC gains the high availability and fault tolerance from Hadoop, as Hadoop is used to scatter input data to GPU devices and gather the results from GPU devices. Hadoop framework adopts mapper/reducer computation model. In the proposed method, mappers response for fetching SMILES data segments and perform LINGO method on GPU, then reducers collect all comparison results produced by mappers. Due to the high availability of Hadoop, all of LINGO computational jobs on mappers can be completed, even if some of the mappers encounter problems. A comparison of LINGO is performed on each the GPU device in parallel. According to the experimental results, the proposed method on multiple GPU devices can achieve better computational performance than the CUDA-MCC on a single GPU device. Hadoop-MCC is able to achieve scalability, high availability, and fault tolerance granted by Hadoop, and high performance as well by integrating computational power of both of Hadoop and GPU. It has been shown that using the heterogeneous architecture as Hadoop-MCC effectively can enhance better computational performance than on a single GPU device. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The Goes-R Geostationary Lightning Mapper (GLM): Algorithm and Instrument Status
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas
2010-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. A joint field campaign with Brazilian researchers in 2010-2011 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.
NASA Technical Reports Server (NTRS)
1982-01-01
Final performance test data for the thematic mapper flight model multiplexer are presented in tables. Aspects covered include A/D thresholds for bands 5, 6, and 7; cross talk; the thermistor; bilevel commands signal parameters; A/D threshold ambient, voltage margin low bus; serial data and bit clock parameters; and the wire check. Tests were conducted at ambient temperature.
2015-07-01
concentrations. A total of 11.23 acres of dynamic surveys were conducted using MetalMapper advanced electromagnetic induction (EMI) sensor. A total of...centimeter DGM digital geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former
2006-09-01
Each of these layers will be described in more detail to include relevant technologies ( Java , PDA, Hibernate , and PostgreSQL) used to implement...Logic Layer -Object-Relational Mapper ( Hibernate ) Data 35 capable in order to interface with Java applications. Based on meeting the selection...further discussed. Query List Application Logic Layer HibernateApache - Java Servlet - Hibernate Interface -OR Mapper -RDBMS Interface
Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment
NASA Technical Reports Server (NTRS)
Martin, Chreston F.; Krabill, William B.; Manizade, Serdar S.; Russell, Rob L.; Sonntag, John G.; Swift, Robert N.; Yungel, James K.
2012-01-01
Description of NASA Airborn Topographic Mapper (ATM) lidar calibration procedures including analysis of the accuracy and consistancy of various ATM instrument parameters and the resulting influence on topographic elevation measurements. The ATM elevations measurements from a nominal operating altitude 500 to 750 m above the ice surface was found to be: Horizontal Accuracy 74 cm, Horizontal Precision 14 cm, Vertical Accuracy 6.6 cm, Vertical Precision 3 cm.
Thematic mapper flight model preshipment review data package. Volume 3, part B: System data
NASA Technical Reports Server (NTRS)
1982-01-01
Procedures and results are presented for performance and systems integration tests of flight model-1 thematic mapper. Aspects considered cover electronic module integration, radiometric calibration, spectral matching, spatial coverage, radiometric calibration of the calibrator, coherent noise, dynamic square wave response, band to band registration, geometric accuracy, and self induced vibration. Thermal vacuum tests, EMI/EMS, and mass properties are included. Liens are summarized.
NASA Technical Reports Server (NTRS)
Lewis, James K.
1987-01-01
Energy flow and nutrient cycling were modeled as affected by herbivory on selected intensive sites along gradients of precipitation and soils, validating the model output by monitoring selected parameters with data derived from the Thematic Mapper (TM). Herbivore production was modeled along the gradient of soils and herbivory, and validated with data derived from TM in a spatial data base.
Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean
NASA Astrophysics Data System (ADS)
Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef
2018-01-01
Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.
Fitzpatrick, Megan J; Mathewson, Paul D; Porter, Warren P
2015-01-01
Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model.
Fitzpatrick, Megan J.; Mathewson, Paul D.; Porter, Warren P.
2015-01-01
Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model. PMID:26308207
PepMapper: a collaborative web tool for mapping epitopes from affinity-selected peptides.
Chen, Wenhan; Guo, William W; Huang, Yanxin; Ma, Zhiqiang
2012-01-01
Epitope mapping from affinity-selected peptides has become popular in epitope prediction, and correspondingly many Web-based tools have been developed in recent years. However, the performance of these tools varies in different circumstances. To address this problem, we employed an ensemble approach to incorporate two popular Web tools, MimoPro and Pep-3D-Search, together for taking advantages offered by both methods so as to give users more options for their specific purposes of epitope-peptide mapping. The combined operation of Union finds as many associated peptides as possible from both methods, which increases sensitivity in finding potential epitopic regions on a given antigen surface. The combined operation of Intersection achieves to some extent the mutual verification by the two methods and hence increases the likelihood of locating the genuine epitopic region on a given antigen in relation to the interacting peptides. The Consistency between Intersection and Union is an indirect sufficient condition to assess the likelihood of successful peptide-epitope mapping. On average from 27 tests, the combined operations of PepMapper outperformed either MimoPro or Pep-3D-Search alone. Therefore, PepMapper is another multipurpose mapping tool for epitope prediction from affinity-selected peptides. The Web server can be freely accessed at: http://informatics.nenu.edu.cn/PepMapper/
Efficient Moment-Based Inference of Admixture Parameters and Sources of Gene Flow
Levin, Alex; Reich, David; Patterson, Nick; Berger, Bonnie
2013-01-01
The recent explosion in available genetic data has led to significant advances in understanding the demographic histories of and relationships among human populations. It is still a challenge, however, to infer reliable parameter values for complicated models involving many populations. Here, we present MixMapper, an efficient, interactive method for constructing phylogenetic trees including admixture events using single nucleotide polymorphism (SNP) genotype data. MixMapper implements a novel two-phase approach to admixture inference using moment statistics, first building an unadmixed scaffold tree and then adding admixed populations by solving systems of equations that express allele frequency divergences in terms of mixture parameters. Importantly, all features of the model, including topology, sources of gene flow, branch lengths, and mixture proportions, are optimized automatically from the data and include estimates of statistical uncertainty. MixMapper also uses a new method to express branch lengths in easily interpretable drift units. We apply MixMapper to recently published data for Human Genome Diversity Cell Line Panel individuals genotyped on a SNP array designed especially for use in population genetics studies, obtaining confident results for 30 populations, 20 of them admixed. Notably, we confirm a signal of ancient admixture in European populations—including previously undetected admixture in Sardinians and Basques—involving a proportion of 20–40% ancient northern Eurasian ancestry. PMID:23709261
Numerical modeling of an estuary: A comprehensive skill assessment
Warner, J.C.; Geyer, W.R.; Lerczak, J.A.
2005-01-01
Numerical simulations of the Hudson River estuary using a terrain-following, three-dimensional model (Regional Ocean Modeling System (ROMS)) are compared with an extensive set of time series and spatially resolved measurements over a 43 day period with large variations in tidal forcing and river discharge. The model is particularly effective at reproducing the observed temporal variations in both the salinity and current structure, including tidal, spring neap, and river discharge-induced variability. Large observed variations in stratification between neap and spring tides are captured qualitatively and quantitatively by the model. The observed structure and variations of the longitudinal salinity gradient are also well reproduced. The most notable discrepancy between the model and the data is in the vertical salinity structure. While the surface-to-bottom salinity difference is well reproduced, the stratification in the model tends to extend all the way to the water surface, whereas the observations indicate a distinct pycnocline and a surface mixed layer. Because the southern boundary coindition is located near the mouth the estuary, the salinity within the domain is particularly sensitive to the specification of salinity at the boundary. A boundary condition for the horizontal salinity gradient, based on the local value of salinity, is developed to incorporate physical processes beyond the open boundary not resolved by the model. Model results are sensitive to the specification of the bottom roughness length and vertical stability functions, insofar as they influence the intensity of vertical mixing. The results only varied slightly between different turbulence closure methods of k-??, k-??, and k-kl. Copyright 2005 by the American Geophysical Union.
Gaxiola, Gabriela; Cuzon, Gerard; García, Tomás; Taboada, Gabriel; Brito, Roberto; Chimal, María Eugenia; Paredes, Adriana; Soto, Luis; Rosas, Carlos; van Wormhoudt, Alain
2005-01-01
Litopenaeus vannamei were reared in close cycle over seven generations and tested for their capacity to digest starch and to metabolise glucose at different stages of the moulting cycle. After acclimation with 42.3% of carbohydrates (HCBH) or 2.3% carbohydrates (LCBH) diets and at high salinity (40 g kg(-1)) or low salinity (15 g kg(-1)), shrimp were sampled and hepatopancreas (HP) were stored. Total soluble protein in HP was affected by the interaction between salinity and moult stages (p<0.05). Specific activity of alpha-amylase ranged from 44 to 241 U mg protein(-1) and a significant interaction between salinity and moult stages was observed (p<0.05), resulting in highest values at stage C for low salinity (mean value 196.4 U mg protein(-1)), and at D0 in high salinity (mean value 175.7 U mg protein(-1)). Specific activity of alpha-glucosidase ranged between 0.09 and 0.63 U mg protein(-1), an interaction between dietary CBH and salinity was observed for the alpha-glucosidase (p<0.05) and highest mean value was found in low salinity-LCBH diet treatment (0.329 U mg protein(-1)). Hexokinase specific activity (range 9-113 mU mg protein(-1)) showed no significant differences when measured at 5 mM glucose (p>0.05). Total hexokinase specific activity (range 17-215 mU mg protein(-1)) showed a significant interaction between dietary CBH and salinity (p<0.05) with highest value (mean value 78.5 mU mg protein(-1)) found in HCBH-high salinity treatment, whereas in the other treatments the activity was not significantly different (mean value 35.93 mU mg protein(-1)). A synergistic effect of dietary CBH, salinity and moult stages over hexokinase IV-like specific activity was also observed (p<0.05). As result of this interaction, the highest value (135.5+/-81 mU mg protein(-1)) was observed in HCBH, high salinity at D0 moult stage. Digestive enzymes activity is enhanced in the presence of high starch diet (HCBH) and hexokinase can be induced at certain moulting stages under the influence of blood glucose level. Perspectives are opened to add more carbohydrates in a growing diet, exemplifying the potential approach for less-polluting feed.
Ouyang, Wei; Hao, Fang-Hua; Fu, Yongshuo; Zhang, Jiaxun
2008-09-01
To feed its rapidly growing energy demand, oil exploitation in China has never been more intensive. The most obvious characteristics of oil exploitation are progressive and regional, which can be monitored by remote sensing, such as land use and cover change, either perpetual or temporary, during oil field development such as construction of oil well, roads, transportation systems and other facilities. In this paper, the oil field located on the north edge of Taklimakan Desert, in the Tarim River watershed in northwest of China. The disturbance effects of regional oil exploitation were the main content of regional environmental managements and monitoring. Based on Enhanced Thematic Mapper Plus (ETM+) and Aster images, analyzed regional land use and landscape change from 2001 to 2003. By the comparison, it can be concluded that the ecological quality was deteriorating in these 3 years. The woodland was degrading to grass and desert. The area of woodland dropped from 9.06 km(2) in 2001 to 3.24 km(2) in 2003 with a 64.23% decrease. At the same time, the area of shrubbery lessened 18.23%. On the other hand, the whole area of desert and Saline soils inflated from 15.08 km(2) in 2001 to 25.36 km(2) in 2003. The patch number of bare land did climb dramatically, but single patch area increased. The research demonstrated that desert and Saline soils patches were activated by the human behavior and climate change. The information from the ETM+ and Aster images was proved be an effective and efficient way to be applied in regional environmental managements.
The role of salinity in the trophic transfer of 137Cs in euryhaline fish.
Pouil, Simon; Oberhänsli, François; Swarzenski, Peter W; Bustamante, Paco; Metian, Marc
2018-09-01
In order to better understand the influence of changing salinity conditions on the trophic transfer of 137 Cs in marine fish that live in dynamic coastal environments, its depuration kinetics was investigated in controlled aquaria. The juvenile turbot Scophthalmus maximus was acclimated to three distinct salinity conditions (10, 25 and 38) and then single-fed with compounded pellets that were radiolabelled with 137 Cs. At the end of a 21-d depuration period, assimilation efficiencies (i.e. AEs = proportion of 137 Cs ingested that is actually assimilated by turbots) were determined from observational data acquired over the three weeks. Our results showed that AEs of 137 Cs in the turbots acclimated to the highest salinity condition were significantly lower than for the other conditions (p < 0.05). Osmoregulation likely explains the decreasing AE observed at the highest salinity condition. Indeed, observations indicate that fish depurate ingested 137 Cs at a higher rate when they increase ion excretion, needed to counterbalance the elevated salinity. Such data confirm that ambient salinity plays an important role in trophic transfer of 137 Cs in some fish species. Implications for such findings extend to seafood safety and climate change impact studies, where the salinity of coastal waters may shift in future years in response to changing weather patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.
Proposed hybrid-classifier ensemble algorithm to map snow cover area
NASA Astrophysics Data System (ADS)
Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir
2018-01-01
Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.
NASA Astrophysics Data System (ADS)
de Silva, Shanaka L.; Bailey, John E.
2017-08-01
Observations of terrestrial analogs are critical to aiding planetary mappers in interpreting surface lithologies on other planets. For instance, the presence of ignimbrites on Mars has been debated for over three decades and is supported by analogy with deposits on Earth. Critical evidence includes the geomorphic and surface expression of the deposits, and those in the Central Andes of South America are amongst the most-cited analogs. Herein we describe some prominent surface textures and patterns seen in ignimbrites on the scale of high-resolution remotely sensed data (10-1 m per pixel). These include pervasive joints and fractures that contribute to yardang form and development as well as prominent mounds, fissures, and fracture networks ("spiders", "bugs", "boxworks") on ignimbrite surfaces. While all these features are related to intrinsic cooling and degassing processes, the involvement of external water buried by hot pyroclastic flows enhances fumarolic activity, advective cooling, and joint development. Observations of these geomorphic expressions using remote sensing are only possible with the highest resolution data and limited surface erosion. For Mars, where similarly high resolution datasets are available (for example, the High Resolution Imaging Sensor Experiment or HiRISE) extensive dust cover may limit the recognition of similar features there. However significant relief on some of these features on Earth indicate they might still be detectable on Mars.
NASA Astrophysics Data System (ADS)
Casagrande, L.; VandenBerg, Don A.
2018-04-01
We use MARCS model atmosphere fluxes to compute synthetic colours, bolometric corrections and reddening coefficients for the Hipparcos/Tycho, Pan-STARRS1, SkyMapper, and JWST systems. Tables and interpolation subroutines are provided to transform isochrones from the theoretical to various observational planes, to derive bolometric corrections, synthetic colours and colour-temperature relations at nearly any given point of the HR diagram for 2600 K ≤ Teff ≤ 8000 K, and different values of reddening in 85 photometric filters. We use absolute spectrophotometry from the CALSPEC library to show that bolometric fluxes can be recovered to ˜2 per cent from bolometric corrections in a single band, when input stellar parameters are well known for FG dwarfs at various metallicities. This sole source of uncertainty impacts interferometric Teff to ≃0.5 per cent (or 30 K at the solar temperature). Uncertainties are halved when combining bolometric corrections in more bands, and limited by the fundamental uncertainty of the current absolute flux scale at 1 per cent. Stars in the RAVE DR5 catalogue are used to validate the quality of our MARCS synthetic photometry in selected filters across the optical and infrared range. This investigation shows that extant MARCS synthetic fluxes are able to reproduce the main features observed in stellar populations across the Galactic disc.
Stable near-surface ocean salinity stratifications due to evaporation observed during STRASSE
NASA Astrophysics Data System (ADS)
Asher, William E.; Jessup, Andrew T.; Clark, Dan
2014-05-01
Under conditions with a large solar flux and low wind speed, a stably stratified warm layer forms at the ocean surface. Evaporation can then lead to an increase in salinity in the warm layer. A large temperature gradient will decrease density enough to counter the density increase caused by the salinity increase, forming a stable positive salinity anomaly at the surface. If these positive salinity anomalies are large in terms of the change in salinity from surface to the base of the gradient, if their areal coverage is a significant fraction of the satellite footprint, and if they persist long enough to be in the satellite field of view, they could be relevant for calibration and validation of L-band microwave salinity measurements. A towed, surface-following profiler was deployed from the N/O Thalassa during the Subtropical Atlantic Surface Salinity Experiment (STRASSE). The profiler measured temperature and conductivity in the surface ocean at depths of 10, 50, and 100 cm. The measurements show that positive salinity anomalies are common at the ocean surface for wind speeds less than 4 m s-1 when the average daily insolation is >300 W m-2 and the sea-to-air latent heat flux is greater than zero. A semiempirical model predicts the observed dependence of measured anomalies on environmental conditions. However, the model results and the field data suggest that these ocean surface salinity anomalies are not large enough in terms of the salinity difference to significantly affect microwave radiometric measurements of salinity.
Uliano, E; Cataldi, M; Carella, F; Migliaccio, O; Iaccarino, D; Agnisola, C
2010-11-01
Acute stress may affect metabolism and nitrogen excretion as part of the adaptive response that allows animals to face adverse environmental changes. In the present paper the acute effects of different salinities and temperatures on routine metabolism, spontaneous activity and excretion of ammonia and urea were studied in two freshwater fish: gambusia, Gambusia affinis and zebrafish, Danio rerio, acclimated to 27 degrees C. The effects on gill morphology were also evaluated. Five salinities (0 per thousand, 10 per thousand, 20 per thousand, 30 per thousand and 35 per thousand) were tested in gambusia, while four salinities were used in zebrafish (0 per thousand, 10 per thousand, 20 per thousand and 25 per thousand). Each salinity acute stress was tested alone or in combination with an acute temperature reduction to 20 degrees C. In gambusia, both salinity and temperature acute stress strongly stimulated urea excretion. Routine oxygen consumption was barely affected by acute salinity or temperature stress, and was reduced by the combined effects of temperature and high salinity. Gills maintained their structural integrity in all stressing conditions; hyperplasia and hypertrophy of mitochondria-rich cells were observed. In zebrafish, temperature and salinity acute changes, both alone and in combination, scarcely affected any parameter tested. The major effect observed was a reduction of nitrogen excretion at 20 degrees C-25 per thousand; under these extreme conditions a significant structural disruption of gills was observed. These results confirm the high tolerance to acute salinity and temperature stress in gambusia, and demonstrate the involvement of urea excretion modulation in the stress response in this species. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1974-01-01
The Ground System requirements for the Land Resources Management (LRM) type-A and type-B missions of the Earth Observatory Satellite (EOS) program are presented. Specifications for the Thematic Mapper data processing are provided (LRM A mission). The specifications also cover the R and D instruments (Thematic Mapper and High Resolution Pointable Imager) data processing for the LRM type-B mission.
Sadowski, Franklin G.; Covington, Steven J.
1987-01-01
Advanced digital processing techniques were applied to Landsat-5 Thematic Mapper (TM) data and SPOT highresolution visible (HRV) panchromatic data to maximize the utility of images of a nuclear powerplant emergency at Chernobyl in the Soviet Ukraine. The images demonstrate the unique interpretive capabilities provided by the numerous spectral bands of the Thematic Mapper and the high spatial resolution of the SPOT HRV sensor.
NASA Technical Reports Server (NTRS)
Ripple, W. J.; Wang, S.; Isaacson, D. L.; Paine, D. P.
1991-01-01
Digital Landsat Thematic Mapper (TM) and SPOT high-resolution visible (HRV) images of coniferous forest canopies were compared in their relationship to forest wood volume using correlation and regression analyses. Significant inverse relationships were found between softwood volume and the spectral bands from both sensors (P less than 0.01). The highest correlations were between the log of softwood volume and the near-infrared bands.
LANDSAT D to test thematic mapper, inaugurate operational system
NASA Technical Reports Server (NTRS)
1982-01-01
NASA will launch the Landsat D spacecraft on July 9, 1982 aboard a new, up-rated Delta 3920 expendable launch vehicle. LANDSAT D will incorporate two highly sophisticated sensors; the flight proven multispectral scanner; and a new instrument expected to advance considerably the remote sensing capabilities of Earth resources satellites. The new sensor, the thematic mapper, provides data in seven spectral (light) bands with greatly improved spectral, spatial and radiometric resolution.
Thematic Mapper: Design through flight evaluation
NASA Technical Reports Server (NTRS)
1984-01-01
LANDSAT 4 and 5, launched in 1982 and 1984, not only carried the Thematic Mapper, but were redesigned to handle the increased data rates associated with it, and to communicate that data to Earth via geosynchronous orbiting Tracking and Data Relay Satellites (TDRS). The TM development program is summarized. A brief historical perspective is presented of the evolution of design requirements and hardware development. The basic performance parameters that serve as sensor design guidelines are presented.
NASA Technical Reports Server (NTRS)
1982-01-01
Data from the thematic mapper scan mirror assembly (SMA) acceptance test are presented. Documentation includes: (1) a list of the acceptance test discrepancies; (2) flight 1 SMA test data book; (3) flight 1 SMA environmental report; (4) the configuration verification index; (5) the flight 1 SMA test failure reports; (6) the flight 1 data tapes log; and (7) the requests for deviation/waivers.
Table Rock Lake Water-Clarity Assessment Using Landsat Thematic Mapper Satellite Data
Krizanich, Gary; Finn, Michael P.
2009-01-01
Water quality of Table Rock Lake in southwestern Missouri is assessed using Landsat Thematic Mapper satellite data. A pilot study uses multidate satellite image scenes in conjunction with physical measurements of secchi disk transparency collected by the Lakes of Missouri Volunteer Program to construct a regression model used to estimate water clarity. The natural log of secchi disk transparency is the dependent variable in the regression and the independent variables are Thematic Mapper band 1 (blue) reflectance and a ratio of the band 1 and band 3 (red) reflectance. The regression model can be used to reliably predict water clarity anywhere within the lake. A pixel-level lake map of predicted water clarity or computed trophic state can be produced from the model output. Information derived from this model can be used by water-resource managers to assess water quality and evaluate effects of changes in the watershed on water quality.
Analysis of thematic mapper simulator data collected over eastern North Dakota
NASA Technical Reports Server (NTRS)
Anderson, J. E. (Principal Investigator)
1982-01-01
The results of the analysis of aircraft-acquired thematic mapper simulator (TMS) data, collected to investigate the utility of thematic mapper data in crop area and land cover estimates, are discussed. Results of the analysis indicate that the seven-channel TMS data are capable of delineating the 13 crop types included in the study to an overall pixel classification accuracy of 80.97% correct, with relative efficiencies for four crop types examined between 1.62 and 26.61. Both supervised and unsupervised spectral signature development techniques were evaluated. The unsupervised methods proved to be inferior (based on analysis of variance) for the majority of crop types considered. Given the ground truth data set used for spectral signature development as well as evaluation of performance, it is possible to demonstrate which signature development technique would produce the highest percent correct classification for each crop type.
Use of laser range finders and range image analysis in automated assembly tasks
NASA Technical Reports Server (NTRS)
Alvertos, Nicolas; Dcunha, Ivan
1990-01-01
A proposition to study the effect of filtering processes on range images and to evaluate the performance of two different laser range mappers is made. Median filtering was utilized to remove noise from the range images. First and second order derivatives are then utilized to locate the similarities and dissimilarities between the processed and the original images. Range depth information is converted into spatial coordinates, and a set of coefficients which describe 3-D objects is generated using the algorithm developed in the second phase of this research. Range images of spheres and cylinders are used for experimental purposes. An algorithm was developed to compare the performance of two different laser range mappers based upon the range depth information of surfaces generated by each of the mappers. Furthermore, an approach based on 2-D analytic geometry is also proposed which serves as a basis for the recognition of regular 3-D geometric objects.
LANDSAT-4 MSS and Thematic Mapper data quality and information content analysis
NASA Technical Reports Server (NTRS)
Anuta, P.; Bartolucci, L.; Dean, E.; Lozano, F.; Malaret, E.; Mcgillem, C. D.; Valdes, J.; Valenzuela, C.
1984-01-01
LANDSAT-4 thematic mapper (TM) and multispectral scanner (MSS) data were analyzed to obtain information on data quality and information content. Geometric evaluations were performed to test band-to-band registration accuracy. Thematic mapper overall system resolution was evaluated using scene objects which demonstrated sharp high contrast edge responses. Radiometric evaluation included detector relative calibration, effects of resampling, and coherent noise effects. Information content evaluation was carried out using clustering, principal components, transformed divergence separability measure, and supervised classifiers on test data. A detailed spectral class analysis (multispectral classification) was carried out to compare the information content of the MSS and TM for a large number of scene classes. A temperature-mapping experiment was carried out for a cooling pond to test the quality of thermal-band calibration. Overall TM data quality is very good. The MSS data are noisier than previous LANDSAT results.
Tectonic evaluation of the Nubian shield of Northeastern Sudan using thematic mapper imagery
NASA Technical Reports Server (NTRS)
1986-01-01
Bechtel is nearing completion of a one-year program that uses digitally enhanced LANDSAT Thematic Mapper (TM) data to compile the first comprehensive regional tectonic map of the Proterozoic Nubian Shield exposed in the northern Red Sea Hills of northeastern Sudan. The status of significant objectives of this study are given. Pertinent published and unpublished geologic literature and maps of the northern Red Sea Hills to establish the geologic framework of the region were reviewed. Thematic mapper imagery for optimal base-map enhancements was processed. Photo mosaics of enhanced images to serve as base maps for compilation of geologic information were completed. Interpretation of TM imagery to define and delineate structural and lithogologic provinces was completed. Geologic information (petrologic, and radiometric data) was compiled from the literature review onto base-map overlays. Evaluation of the tectonic evolution of the Nubian Shield based on the image interpretation and the compiled tectonic maps is continuing.
Impact of Satellite Remote Sensing Data on Simulations of ...
We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the annual hypoxic zone. Rainfall data from the Tropical Rainfall Measurement Mission (TRMM) were used for the salinity flux, and the diffuse attenuation coefficient (Kd) from Moderate Resolution Imaging Spectroradiometer (MODIS) were used for solar penetration. Improvements in the model results in comparison with in situ observations occurred when the two types of satellite data were included. Without inclusion of the satellite-derived surface salinity flux, realistic monthly variability in the model salinity fields was observed, but important inter-annual variability wasmissed. Without inclusion of the satellite-derived light attenuation, model bottom water temperatures were too high nearshore due to excessive penetration of solar irradiance. In general, these salinity and temperature errors led to model stratification that was too weak, and the model failed to capture observed spatial and temporal variability in water-column vertical stratification. Inclusion of the satellite data improved temperature and salinity predictions and the vertical stratification was strengthened, which improved prediction of bottom-water dissolved oxygen. The model-predicted area of bottom-water hypoxia on the
Person, M.; Konikow, Leonard F.
1986-01-01
A solute-transport model of an irrigated stream-aquifer system was recalibrated because of discrepancies between prior predictions of ground-water salinity trends during 1971-1982 and the observed outcome in February 1982. The original model was calibrated with a 1-year record of data collected during 1971-1972 in an 18-km reach of the Arkansas River Valley in southeastern Colorado. The model is improved by incorporating additional hydrologic processes (salt transport through the unsaturated zone) and through reexamination of the reliability of some input data (regression relationship used to estimate salinity from specific conductance data). Extended simulations using the recalibrated model are made to investigate the usefulness of the model for predicting long-term trends of salinity and water levels within the study area. Predicted ground-water levels during 1971-1982 are in good agreement with the observed, indicating that the original 1971-1972 study period was sufficient to calibrate the flow model. However, long-term simulations using the recalibrated model based on recycling the 1971-1972 data alone yield an average ground-water salinity for 1982 that is too low by about 10%. Simulations that incorporate observed surface-water salinity variations yield better results, in that the calculated average ground-water salinity for 1982 is within 3% of the observed value. Statistical analysis of temporal salinity variations of the applied surface water indicates that at least a 4-year sampling period is needed to accurately calibrate the transport model. ?? 1986.
Vertical Redistribution of Ocean Salt Content
NASA Astrophysics Data System (ADS)
Liang, X.; Liu, C.; Ponte, R. M.; Piecuch, C. G.
2017-12-01
Ocean salinity is an important proxy for change and variability in the global water cycle. Multi-decadal trends have been observed in both surface and subsurface salinity in the past decades, and are usually attributed to the change in air-sea freshwater flux. Although air-sea freshwater flux, a major component of the global water cycle, certainly contributes to the change in surface and upper ocean salinity, the salt redistribution inside the ocean can affect the surface and upper ocean salinity as well. Also, the mechanisms controlling the surface and upper ocean salinity changes likely depend on timescales. Here we examined the ocean salinity changes as well as the contribution of the vertical redistribution of salt with a 20-year dynamically consistent and data-constrained ocean state estimate (ECCO: Estimating Circulation and Climate of the Ocean). A decrease in the spatial mean upper ocean salinity and an upward salt flux inside the ocean were observed. These findings indicate that over 1992-2011, surface freshwater fluxes contribute to the decrease in spatial mean upper ocean salinity and are partly compensated by the vertical redistribution of salt inside the ocean. Between advection and diffusion, the two major processes determining the vertical exchange of salt, the advective term at different depths shows a downward transport, while the diffusive term is the dominant upward transport contributor. These results suggest that the salt transport in the ocean interior should be considered in interpreting the observed surface and upper ocean salinity changes, as well as inferring information about the changes in the global water cycle.
Keeping the lights on for global ocean salinity observation
Durack, Paul J.; Lee, Tong; Vinogradova, Nadya T.; ...
2016-02-24
Here, insights about climate are being uncovered thanks to improved capacities to observe ocean salinity, an essential climate variable. However, cracks are beginning to appear in the ocean observing system that require prompt attention if we are to maintain the existing, hard-won capacity into the near future.
Keeping the lights on for global ocean salinity observation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durack, Paul J.; Lee, Tong; Vinogradova, Nadya T.
Here, insights about climate are being uncovered thanks to improved capacities to observe ocean salinity, an essential climate variable. However, cracks are beginning to appear in the ocean observing system that require prompt attention if we are to maintain the existing, hard-won capacity into the near future.
NASA Technical Reports Server (NTRS)
Tucker, O. J.; Farrell, W. M.; Killen, R. M.; Hurley, D. M.
2018-01-01
Recently, the near-infrared observations of the OH veneer on the lunar surface by the Moon Mineralogy Mapper (M3) have been refined to constrain the OH content to 500-750 parts per million (ppm). The observations indicate diurnal variations in OH up to 200 ppm possibly linked to warmer surface temperatures at low latitude. We examine the M3 observations using a statistical mechanics approach to model the diffusion of implanted H in the lunar regolith. We present results from Monte Carlo simulations of the diffusion of implanted solar wind H atoms and the subsequently derived H and H2 exospheres.
Zhang, Yong; Shen, Ji; van der Gast, Christopher; Hahn, Martin W.; Wu, Qinglong
2011-01-01
It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE) with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers) of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline). For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity), the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns. PMID:22125616
NASA Astrophysics Data System (ADS)
Dong, Shenfu; Volkov, Denis; Goni, Gustavo; Lumpkin, Rick; Foltz, Gregory R.
2017-07-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.
A Gulf Stream-derived pycnocline intrusion on the Middle Atlantic Bight shelf
NASA Astrophysics Data System (ADS)
Gawarkiewicz, Glen; McCarthy, Robert K.; Barton, Kenneth; Masse, Ann K.; Church, Thomas M.
1990-12-01
Saline intrusions from the upper slope onto the outer shelf are frequently observed at the pycnocline along the shelfbreak front in the Middle Atlantic Bight during the summer. A brief cruise was conducted in July, 1986 between Baltimore and Washington Canyons to examine along-shelf variability of pycnocline salinity intrusions. A particularly saline intrusion of 35.8 Practical Salinity Units (PSU) was observed between 20 and 40 m in a water depth of 70 to 80 m. The along-shelf extent was at least 40 km. The cooler, sub-pycnocline outer shelf water was displaced 15 km shoreward of the shelfbreak. A Gulf Stream filament was present in the slope region prior to the hydrographic sampling, but was not visible in thermal imagery during the hydrographic sampling. Temperature-salinity characteristics of the intrusion suggest that it was a mixture of Gulf Stream water and slope water, possibly from the filament. The shoreward penetration of saline water was most pronounced at the pycnocline and penetrated the shelfbreak front, with salinities as high as 35.0 PSU reaching as far shoreward as the 35 m isobath. These pycnocline intrusions may be an important mechanism for the transport of Gulf Stream-derived water onto the shelf during the summer. The presence of filaments or other Gulf Stream-derived water on the upper slope may account for some of the along-front variability of the pycnocline salinity maximum that has previously been observed.
NASA Astrophysics Data System (ADS)
Dong, S.; Volkov, D.; Goni, G. J.; Lumpkin, R.; Foltz, G. R.
2017-12-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.
Complementarity of ResourceSat-1 AWiFS and Landsat TM/ETM+ sensors
Goward, S.N.; Chander, G.; Pagnutti, M.; Marx, A.; Ryan, R.; Thomas, N.; Tetrault, R.
2012-01-01
Considerable interest has been given to forming an international collaboration to develop a virtual moderate spatial resolution land observation constellation through aggregation of data sets from comparable national observatories such as the US Landsat, the Indian ResourceSat and related systems. This study explores the complementarity of India's ResourceSat-1 Advanced Wide Field Sensor (AWiFS) with the Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). The analysis focuses on the comparative radiometry, geometry, and spectral properties of the two sensors. Two applied assessments of these data are also explored to examine the strengths and limitations of these alternate sources of moderate resolution land imagery with specific application domains. There are significant technical differences in these imaging systems including spectral band response, pixel dimensions, swath width, and radiometric resolution which produce differences in observation data sets. None of these differences was found to strongly limit comparable analyses in agricultural and forestry applications. Overall, we found that the AWiFS and Landsat TM/ETM+ imagery are comparable and in some ways complementary, particularly with respect to temporal repeat frequency. We have found that there are limits to our understanding of the AWiFS performance, for example, multi-camera design and stability of radiometric calibration over time, that leave some uncertainty that has been better addressed for Landsat through the Image Assessment System and related cross-sensor calibration studies. Such work still needs to be undertaken for AWiFS and similar observatories that may play roles in the Global Earth Observation System of Systems Land Surface Imaging Constellation.
2016-09-23
Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s
LANDSAT D instrument module study
NASA Technical Reports Server (NTRS)
1976-01-01
Spacecraft instrument module configurations which support an earth resource data gathering mission using a thematic mapper sensor were examined. The differences in size of these two experiments necessitated the development of two different spacecraft configurations. Following the selection of the best-suited configurations, a validation phase of design, analysis and modelling was conducted to verify feasibility. The chosen designs were then used to formulate definition for a systems weight, a cost range for fabrication and interface requirements for the thematic mapper (TM).
Moon Zoo - Examples of Interesting Lunar Morphology
NASA Astrophysics Data System (ADS)
Cook, A. C.; Wilkinson, J.
2012-09-01
The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.
Thematic mapper critical elements breadboard program
NASA Technical Reports Server (NTRS)
Dale, C. H., Jr.; Engel, J. L.; Harney, E. D.
1976-01-01
A 40.6 cm bidirectional scan mirror assembly, a scan line corrector and a silicon photodiode array with integral preamplifier input stages were designed, fabricated, and tested to demonstrate performance consistent with requirements of the Hughes thematic mapper system. The measured performance met or exceeded the original design goals in all cases with the qualification that well defined and well understood deficiencies in the design of the photodiode array package will require the prescribed corrections before flight use.
USGS Releases Landsat Orthorectified State Mosaics
,
2005-01-01
The U.S. Geological Survey (USGS) National Remote Sensing Data Archive, located at the USGS Center for Earth Resources Observation and Science (EROS) in Sioux Falls, South Dakota, maintains the Landsat orthorectified data archive. Within the archive are Landsat Enhanced Thematic Mapper Plus (ETM+) data that have been pansharpened and orthorectified by the Earth Satellite Corporation. This imagery has acquisition dates ranging from 1999 to 2001 and was created to provide users with access to quality-screened, high-resolution satellite images with global coverage over the Earth's landmasses.
Pushing back the frontier - A mission to the Pluto-Charon system
NASA Technical Reports Server (NTRS)
Farquhar, Robert; Stern, S. Alan
1990-01-01
A flyby mission to Pluto is proposed. The size, orbit, atmosphere, and surface of Pluto, and the Pluto-Charon system are described. The benefits of a planetary flyby compared to ground observations are discussed in terms of imaging capabilities. Planned payloads include a plasma science package, a UV spectrometer, and a thermal mapper. The advantages of a dual launch to Mars and the need for a Jupiter-Pluto transfer are considered. A diagram of a spacecraft for a flyby study of Pluto is provided.
NASA Technical Reports Server (NTRS)
Murphy, J.; Park, W.; Fitzgerald, A.
1985-01-01
The radiometric characteristics of the LANDSAT-4 TM sensor are being studied with a view to developing absolute and relative radiometric calibration procedures. Preliminary results from several different approaches to the relative correction of all detectors within each band are reported. Topics covered include: the radiometric correction method; absolute calibration; the relative radiometric calibration algorithm; relative gain and offset calibration; relative gain and offset observations; and residual radiometric stripping.
Spatial characterization of acid rain stress in Canadian Shield lakes
NASA Technical Reports Server (NTRS)
Tanis, Fred J.
1986-01-01
A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forests. The number of lakes affected in northeastern United States and on the Canadian Shield is thought to be enormous. Seasonal changes in lake transparency are examined relative to annual acidic load. The relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations is being used to measure seasonal changes in the optical transparency in acid lakes.
Spectroradiometric calibration of the thematic mapper and multispectral scanner system
NASA Technical Reports Server (NTRS)
Slater, P. N. (Principal Investigator); Palmer, J. M.
1983-01-01
The design of a spectroradiometer under construction for atmosheric and surface measurements at White Sands, New Mexico is described. The instrument's observation capability encompasses (1) measuring the solar radiance at a number of wavelengths as a function of air mass for Langley plot analysis in order to generate the optical depth; (2) measuring the ground radiance to determine the absolute ground reflectance; and (3) measuring the sky radiance as a method of checking the accuracy of the radiative transfer program.
Observations of near-surface fresh layers during SPURS-2
NASA Astrophysics Data System (ADS)
Drushka, Kyla; E Asher, William; Thompson, Elizabeth; Jessup, Andrew T.; Clark, Dan
2017-04-01
One of the primary objectives of the ongoing SPURS-2 program is to understand the fate of rainfall deposited on the sea surface. Rain produces stable near-surface fresh layers that persist for O(1-10) hours. The depth, strength, and lifetime of surface fresh layers are known to be related to the local rain and wind conditions, but available observational data are too sparse to allow definitive quantification of cause-and-effect relationships. In this paper, the formation and evolution of rain-formed fresh layers are examined using observations of near-surface salinity made during the 2016 SPURS-2 field experiment, which took place in the Intertropical Convergence Zone of the eastern tropical Pacific Ocean in August-September 2016. During 2016 SPURS-2, over 30 rain events were captured with the Surface Salinity Profiler (SSP), a towed platform that measures salinity and temperature at five discrete depths in the upper meter of the ocean. Differences in salinity measured by the SSP at depths of 0.02 m and at 1 m are correlated with local meteorological conditions. The field results show that the salinity difference increases linearly with rain rate, a result that is consistent with calculations done with a one-dimensional ocean turbulence model. The field data also demonstrate that there is an inverse correlation between wind speed and the vertical salinity difference, which is also consistent with numerical models. The implications of these results are discussed in the context of satellite salinity observations and the representation of rainfall events in climate models.
The eNanoMapper database for nanomaterial safety information
Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon
2015-01-01
Summary Background: The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. Results: The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. Conclusion: We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the “representational state transfer” (REST) API enables building user friendly interfaces and graphical summaries of the data, and how these resources facilitate the modelling of reproducible quantitative structure–activity relationships for nanomaterials (NanoQSAR). PMID:26425413
The eNanoMapper database for nanomaterial safety information.
Jeliazkova, Nina; Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon
2015-01-01
The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the "representational state transfer" (REST) API enables building user friendly interfaces and graphical summaries of the data, and how these resources facilitate the modelling of reproducible quantitative structure-activity relationships for nanomaterials (NanoQSAR).
NASA Astrophysics Data System (ADS)
Wang, Tao; Li, Qi
2018-03-01
Iwagaki oyster Crassostrea nippona occurs naturally along the coasts of Japan and Korea. Because of its unique flavor, delicious taste, edibility during the summer and high commercial value, it has been identified as a potential aquaculture species. To determine the optimum aquaculture conditions and provide necessary information for mass production of the juvenile, the effects of six salinities (15, 20, 25, 30, 35 and 40) and five temperatures (16, 20, 24, 28 and 32₿ on growth and survival of juvenile C. nippona were examined in this study. In the salinity experiment, the largest values of mean shell height and growth rate were observed at salinity 25 (20.96 ± 0.36 mm and 172.0 μm d↿, respectively), which were significantly different (P < 0.05) with those of other treatments, except at salinity 30 (20.56 ± 1.05 mm and 160.3 μm d↿, respectively) (P > 0.05). The maximum survival rate 84.44% was always observed at salinity 20, and there was no significant difference (P > 0.05) in survival rate among salinities varying between 15 and 35. In the temperature-related experiments, the highest growth and survival rates of juvenile were observed at 24₿(180.8 μm d↿ and 84.4%) and 28₿(190.7 μm d↿ and 83.3%), respectively, on day 20, and showed significantly (P < 0.05) larger size and higher survival rate than any other groups. Both juvenile survival and growth were significantly depressed at extreme salinities (15, 40) and temperatures (16₿ 32₿. Based on the results of the present study, a salinity range from 25 to 30 and a temperature range from 24 to 28₿are considered optimal conditions for survival and growth of juvenile C. nippona.
NASA Astrophysics Data System (ADS)
MacAllister, DJ.; Jackson, M. D.; Butler, A. P.; Vinogradov, J.
2018-03-01
Two years of self-potential (SP) measurements were made in a monitoring borehole in the coastal UK Chalk aquifer. The borehole SP data showed a persistent gradient with depth, and temporal variations with a tidal power spectrum consistent with ocean tides. No gradient with depth was observed at a second coastal monitoring borehole ca. 1 km further inland, and no gradient or tidal power spectrum were observed at an inland site ca. 80 km from the coast. Numerical modeling suggests that the SP gradient recorded in the coastal monitoring borehole is dominated by the exclusion-diffusion potential, which arises from the concentration gradient across a saline front in close proximity to, but not intersecting, the base of the borehole. No such saline front is present at the two other monitoring sites. Modeling further suggests that the ocean tidal SP response in the borehole, measured prior to breakthrough of saline water, is dominated by the exclusion-diffusion potential across the saline front, and that the SP fluctuations are due to the tidal movement of the remote front. The electrokinetic potential, caused by changes in hydraulic head across the tide, is one order of magnitude too small to explain the observed SP data. The results suggest that in coastal aquifers, the exclusion-diffusion potential plays a dominant role in borehole SP when a saline front is nearby. The SP gradient with depth indicates the close proximity of the saline front to the borehole and changes in SP at the borehole reflect changes in the location of the saline front. Thus, SP monitoring can be used to facilitate more proactive management of abstraction and saline intrusion in coastal aquifers.
NASA Astrophysics Data System (ADS)
Kudo, A.; Stock, M.; Ushio, T.
2017-12-01
We compared the optical observation from Geostationary Lightning Mapper (GLM) which is mounted on the geostationary meteorological satellite GOES-16 launched last year, and the radio observations from the ground-based VHF broad band interferometer. GLM detects 777.4 nm wavelength infrared optical signals from thunderstorm cells which are illuminated by the heated path during lightning discharge, and was developed mainly for the purpose of increasing the lead time for warning of severe weather and clarifying the discharge mechanism. Its detection has 2 ms frame rate, and 8 km square of space resolution at nadir. The VHF broad band interferometer is able to capture the electromagnetic waves from 20 MHz to 75 MHz and estimate the direction of arrival of the radiation sources using the interferometry technique. This system also has capability of observing the fast discharge process which cannot be captured by other systems, so it is expected to able to make detailed comparison. The recording duration of the system is 1 second. We installed the VHF broad band interferometer which consists of three VHF antenna and one fast antenna at Huntsville, Alabama from April 22nd to May 15th and in this total observation period, 720 triggers of data were observed by the interferometer. For comparison, we adopted the data from April 27th , April 30th. Most April 27th data has GLM "event" detection which is coincident time period. In time-elevation plot comparison, we found GLM detection timing was well coincide with interferometer during K-changes or return strokes and few detection during breakdown process. On the other hand, no GLM detection near the site for all data in April 30th and we are triyng to figure out the reason. We would like to thank University of Alabama Huntsville, New Mexico Institute of Mining and Technology, and RAIRAN Pte. Ltd for the help during the campaign.
Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas
2017-03-01
Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized. © 2016 John Wiley & Sons Ltd.
Estuarine turbidity, flushing, salinity, and circulation
NASA Technical Reports Server (NTRS)
Pritchard, D. W.
1972-01-01
The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.
Thematic mapper study of Alaskan ophiolites
NASA Technical Reports Server (NTRS)
Bird, J. M.
1986-01-01
The combinations of Thematic Mapper (TM) bands that best distinguish basalts of the Brooks Range ophiolites were determined. Geochemical analyses, including major, trace, and rare earth elements (REE), are being done in order to study the significance of TM spectral variations that were observed within some of the sampled rock units. An image of the topography of the western Brooks Range and Colville Basin was constructed. Elevation data for the rest of Northern Alaska are being acquired to expand the area covered by the topography image. Two balanced cross sections (one along the eastern margin, the other along the western margin of the Brooks Range) are being constructed, using the techniques of fault-bend and fault-propagation folding. These are being used to obtain regional shortening estimates for the Brooks Range in an attempt to constrain tectonic models for the evolution of Northern Alaska. The TM data are being used to confirm reconnaissance maps and to obtain structural data where no maps exist. Along with the TM data, digital topography, seismic reflection profiles, and magnetic and gravity surveys are examined to better understand the evolution of the Colville Basin, north of the Brooks Range.
Satellite Remote Sensing For Aluminum And Nickel Laterites
NASA Astrophysics Data System (ADS)
Henderson, Frederick B.; Penfield, Glen T.; Grubbs, Donald K.
1984-08-01
The new LANDSAT-4,-5/Thematic Mapper (TM) land observational satellite remote sensing systems are providing dramatically new and important short wave infrared (SWIR) data, which combined with Landsat's Multi-Spectral Scanner (MSS) visible (VIS), very near infrared (VNIR), and thermal infrared (TI) data greatly improves regional geological mapping on a global scale. The TM will significantly improve clay, iron oxide, aluminum, and nickel laterite mapping capabilities over large areas of the world. It will also improve the ability to discriminate vegetation stress and species distribution associated with lateritic environments. Nickel laterites on Gag Island, Indonesia are defined by MSS imagery. Satellite imagery of the Cape Bougainville and the Darling Range, Australia bauxite deposits show the potential use of MSS data for exploration and mining applications. Examples of satellite syn-thetic aperture radar (SAR) for Jamaica document the use of this method for bauxite exploration. Thematic Mapper data will be combined with the French SPOT satellite's high spatial resolution and stereoscopic digital data, and U.S., Japanese, European, and Canadian Synthetic Aperture Radar (SAR) data to assist with logistics, mine development, and environ-mental concerns associated with aluminum and nickel lateritic deposits worldwide.
NASA Technical Reports Server (NTRS)
Schwaller, Mathew R.
1987-01-01
This paper discusses the application of linear discriminant and profile analyses to detailed investigation of an airborne Thematic Mapper Simulator (TMS) image collected over a geobotanical test site. The test site was located on the Keweenaw Peninsula of Michigan's Upper Peninsula, and remote sensing data collection coincided with the onset of leaf senescence in the regional deciduous flora. Linear discriminant analysis revealed that sites overlying soil geochemical anomalies were distinguishable from background sites by the reflectance and thermal emittance of the tree canopy imaged in the airborne TMS data. The correlation of individual bands with the linear discriminant function suggested that the TMS thermal Channel 7 (10.32-12.33 microns) contributed most, while TMS Bands 2 (0.53-0.60 microns), 3 (0.63-0.69 microns), and 5 (1.53-1.73 microns) contributed somewhat more modestly to the separation of anomalous and background sites imaged by the TMS. The observed changes in canopy reflectance and thermal emittance of the deciduous flora overlying geochemically anomalous areas are consistent with the biophysical changes which are known or presumed to occur as a result of injury induced in metal-stressed vegetation.
An analysis of Landsat-4 Thematic Mapper geometric properties
NASA Technical Reports Server (NTRS)
Walker, R. E.; Zobrist, A. L.; Bryant, N. A.; Gohkman, B.; Friedman, S. Z.; Logan, T. L.
1984-01-01
Landsat-4 Thematic Mapper data of Washington, DC, Harrisburg, PA, and Salton Sea, CA were analyzed to determine geometric integrity and conformity of the data to known earth surface geometry. Several tests were performed. Intraband correlation and interband registration were investigated. No problems were observed in the intraband analysis, and aside from indications of slight misregistration between bands of the primary versus bands of the secondary focal planes, interband registration was well within the specified tolerances. A substantial number of ground control points were found and used to check the images' conformity to the Space Oblique Mercator (SOM) projection of their respective areas. The means of the residual offsets, which included nonprocessing related measurement errors, were close to the one pixel level in the two scenes examined. The Harrisburg scene residual mean was 28.38 m (0.95 pixels) with a standard deviation of 19.82 m (0.66 pixels), while the mean and standard deviation for the Salton Sea scene were 40.46 (1.35 pixels) and 30.57 m (1.02 pixels), respectively. Overall, the data were judged to be a high geometric quality with errors close to those targeted by the TM sensor design specifications.
Stability of landsat-4 thematic mapper outgassing models
Micijevic, E.; Chander, G.
2006-01-01
Oscillations in radiometric gains of the short wave infrared (SWIR) bands in Landsat-4 (L4) and Landsat-5 (L5) Thematic Mappers (TMs) are observed through an analysis of detector responses to the Internal Calibrator (IC) pulses. The oscillations are believed to be caused by an interference effect due to a contaminant film buildup on the window of the cryogenically cooled dewar that houses these detectors. This process of contamination, referred to as outgassing effects, has been well characterized using an optical thin-film model that relates detector responses to the accumulated film thickness and its growth rate. The current models for L4 TM are based on average detector responses to the second brightest IC lamp and have been derived from three data sets acquired during different times throughout the instrument's lifetime. Unlike in L5 TM outgassing characterization, it was found that the L4 TM responses to all three IC lamps can be used to provide accurate characterization and correction for outgassing effects. The analysis of single detector responses revealed an up to five percent difference in the estimated oscillating periods and also indicated a gradual variation of contaminant growth rate over the focal plane.
NASA Technical Reports Server (NTRS)
Buechler, D. E.; Christian, H. J.; Koshak, W. J.; Goodman, S. J.
2011-01-01
The Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite has been providing observations of total lightning over the Earth s Tropics for 13 years. This study examines the performance of the LIS throughout its time in orbit. Application of the Deep Convective Cloud Technique (DCCT) (Doelling et al., 2004) was performed on the LIS background pixels to assess the stability of the LIS instrument. The DCCT analysis indicates that the maximum deviation of the monthly mean radiance is within 2% of the overall mean, indicating stable performance over the period. In addition, an examination of the number of flashes detected over time similarly shows no significant trend (after adjusting for the orbit boost that occurred in August 2001). These and other results indicate that there has been no discernible change in LIS performance throughout its lifetime. A similar approach will used for monitoring the performance of the Geostationary Lightning Mapper (GLM) onboard the next generation Geostationary Operational Environmental Satellite-R (GOES-R). Since GLM is based on LIS design heritage, the LIS results indicate that GLM may also experience stable performance over its lifetime.
NASA Astrophysics Data System (ADS)
White, Joseph D.; Swint, Pamela
2014-01-01
Fire effects on desert ecosystems may be long-lasting based on ecological impact of fire in these environments which potentially is detected from multispectral sensors. To assess this, we analyzed changes in spectral characteristics from 1986 to 2010 of pixels associated with the location of fires that occurred between 1986 and 1999 in Big Bend National Park, USA, located in the northern Chihuahuan Desert. Using Landsat-5 Thematic Mapper (TM) data, we derived spectral indices including the simple ratio (SR), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and normalized burn ratio (NBR) from 1989, 1999, and 2010 from the TM data and compared changes in spectral index values for sites with and without observed fire. We found that the NDVI and SAVI had significantly different values over the time for burned sites of different fire sizes. When differences of the spectral indices were calculated from each time period, time since fire was correlated with the SR and NBR indices. These results showed that large fires potentially had a persistent and long-term change in vegetation cover and soil characteristics which were detected by the extraordinary long-data collection period of the Landsat-5 TM sensor.
Application of Thematic Mapper data to corn and soybean development stage estimation
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Henderson, K. E.
1985-01-01
A model, utilizing direct relationship between remotely sensed spectral data and the development stage of both corn and soybeans has been proposed and published previously (Badhwar and Henderson, 1981; and Henderson and Badhwar, 1984). This model was developed using data acquired by instruments mounted on trucks over field plots of corn and soybeans as well as satellite data from Landsat. In all cases, the data was analyzed in the spectral bands equivalent to the four bands of Landsat multispectral scanner (MSS). In this study the same model has been applied to corn and soybeans using Landsat-4 Thematic Mapper (TM) data combined with simulated TM data to provide a multitemporal data set in TM band intervals. All data (five total acquisitions) were acquired over a test site in Webster County, Iowa from June to October 1982. The use of TM data for determining development state is as accurate as with Landsat MSS and field plot data in MSS bands. The maximum deviation of 0.6 development stage for corn and 0.8 development stage for soybeans is well within the uncertainty with which a field can be estimated with procedures used by observers on the ground in 1982.
Ground data handling for Landsat-D. [for thematic mapper
NASA Technical Reports Server (NTRS)
Lynch, T. J.
1977-01-01
The present plans for the Landsat-D ground data handling are described in relationship to the mission objectives and the planned spacecraft system. The end-to-end data system is presented with particular emphasis on the data handling plans for the new instrument, the Thematic Mapper. This instrument generates ten times the amount of data per scene as the present Multispectral Scanner and this resulting data rate and volume are discussed as well as possible new data techniques to handle them - such as image compression.
Thematic Mapper Protoflight Model Line Spread Function
NASA Technical Reports Server (NTRS)
Schueler, C.
1984-01-01
The Thematic Mapper (TM) Protoflight Model Spatial Line Spread Function (LSF) was not measured before launch. Therefore, methodology are developed to characterize LSF with protoflight model optics and electronics measurements that were made before launch. Direct prelaunch LSF measurements that were made from the flight model TM verified the protoflight TM LSF simulation. Results for two selected protoflight TM channels are presented here. It is shown that LSF data for the other ninety-four channels could be generated in the same fashion.
New dust opacity maps from Viking IR thermal mapper data
NASA Technical Reports Server (NTRS)
Martin, T. Z.; Richardson, M. I.
1992-01-01
Mapping of dust opacity of the Martian atmosphere, using the silicate-induced absorption of 9 micron radiation, was performed with the Viking Infrared Thermal Mapper (IRTM) data for several local dust storms and in a global sense. We present here the first results from an effort to extend the earlier mapping work to the period of the 1977b major storm, and to concentrate attention on the details of opacity behavior during the initial phases of the 1977a and b storms.
Studies of atmospheric dust from Viking IR thermal mapper data
NASA Technical Reports Server (NTRS)
Martin, T. Z.
1993-01-01
Following earlier work to map the dust opacity of the Mars atmosphere, a number of separate studies have been performed employing the radiometric measurements of the Viking IR Thermal Mappers. These efforts have resulted in a new perspective on the atmospheric dust distribution during the Viking Mission, as well as quantitative measures useful in the modeling of likely behavior at other times, and improved boundary conditions for circulation models of Mars. The significant findings from these studies are presented.
Study of Spectral/Radiometric Characteristics of the Thematic Mapper for Land Use Applications
NASA Technical Reports Server (NTRS)
Malila, W. A. (Principal Investigator); Metzler, M. D. (Principal Investigator)
1985-01-01
An investigation conducted in support of the LANDSAT 4/5 Image Data Quality Analysis (LIDQA) Program is discussed. Results of engineering analyses of radiometric, spatial, spectral, and geometric properties of the Thematic Mapper systems are summarized; major emphasis is placed on the radiometric analysis. Details of the analyses are presented in appendices, which contain three of the eight technical papers produced during this investigation; these three, together, describe the major activities and results of the investigation.
2012-05-01
tilted metamorphic rock . Typically, the surface layer of the soil is a brown gravelly silt with sand, about 4 inches thick. The subsoil is yellowish red...site setup, the placement of 200 seed items for use in measuring the capabilities of the advanced EMI sensors tested, the subsequent collection of...advanced sensors. The second team was responsible for the cued survey of 1,491 of the 2,143 targets using the MetalMapper, one of the advanced
Spectral characterization of the LANDSAT Thematic Mapper sensors
NASA Technical Reports Server (NTRS)
Markham, B. L.; Barker, J. L.
1984-01-01
The spectral coverage characteristics of the two thematic mapper instruments were determined by analyses of spectral measurements of the optics, filters, and detectors. The following results are presented: (1) band 2 and 3 flatness was slightly below specification, and band 7 flatness was below specification; (2) band 5 upper-band edge was higher than specifications; (3) band 2 band edges were shifted upward about 9 nm relative to nominal; and (4) band 4, 5, and 7 lower band edges were 16 to 18 nm higher then nominal.
MetalMapper Demonstration at the Pole Mountain Target and Maneuver Area, WY
2012-03-01
number. 1. REPORT DATE MAR 2012 2 . REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE MetalMapper Demonstration at the... 2 ) The bulk of this liability is $10.0B for the 1703 sites identified in the Formerly Used Defense Sites (FUDS) program and $4.4B for the 2433...performer was able to correctly classify 2 /3 of the clutter while identifying 100% of the TOI. 2 The Strategic Environmental Research and Development
Li, Junxia; Wang, Yanxin; Xie, Xianjun
2016-02-15
In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. Copyright © 2015. Published by Elsevier B.V.
Soil salinization in different natural zones of intermontane depressions in Tuva
NASA Astrophysics Data System (ADS)
Chernousenko, G. I.; Kurbatskaya, S. S.
2017-11-01
Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.
Martinez-Ballesta, Maria del Carmen; Bastías, Elizabeth; Zhu, Chuanfeng; Schäffner, Anton R; González-Moro, Begoña; González-Murua, Carmen; Carvajal, Micaela
2008-04-01
Under saline conditions, an optimal cell water balance, possibly mediated by aquaporins, is important to maintain the whole-plant water status. Furthermore, excessive accumulation of boric acid in the soil solution can be observed in saline soils. In this work, the interaction between salinity and excess boron with respect to the root hydraulic conductance (L(0)), abundance of aquaporins (ZmPIP1 and ZmPIP2), ATPase activity and root sap nutrient content, in the highly boron- and salt-tolerant Zea mays L. cv. amylacea, was evaluated. A downregulation of root ZmPIP1 and ZmPIP2 aquaporin contents were observed in NaCl-treated plants in agreement with the L(0) measurements. However, in the H3BO3-treated plants differences in the ZmPIP1 and ZmPIP2 abundance were observed. The ATPase activity was related directly to the amount of ATPase protein and Na+ concentration in the roots, for which an increase in NaCl- and H3BO3+ NaCl-treated plants was observed with respect to untreated and H3BO3-treated plants. Although nutrient imbalance may result from the effect of salinity or H3BO3 alone, an ameliorative effect was observed when both treatments were applied together. In conclusion, our results suggest that under salt stress, the activity of specific membrane components can be influenced directly by boric acid, regulating the functions of certain aquaporin isoforms and ATPase as possible components of the salinity tolerance mechanism.
NASA Astrophysics Data System (ADS)
Volkov, Denis; Dong, Shenfu; Goni, Gustavo; Lumpkin, Rick; Foltz, Greg
2017-04-01
Despite the importance of sea surface salinity (SSS) as an indicator of the hydrological cycle, many details of air-sea interaction responsible for freshwater fluxes and processes determining the near-surface salinity stratification and its variability are still poorly understood. This is primarily due to the lack of dedicated observations. The advent of satellites capable of monitoring SSS, such as the Soil Moisture and Ocean Salinity (SMOS), Aquarius, and Soil Moisture Active-Passive (SMAP) missions, has greatly advanced our knowledge of SSS distribution and variability. However, the spatial resolution of satellite retrievals is too coarse to study the upper-ocean salinity changes due to patchy and transient rain events. Furthermore, the satellites measure salinity within the upper 1 cm skin layer, which can significantly differ from in situ SSS measured at 5 m depth by most Argo floats. Differences between the Aquarius and Argo SSS can be as large as ±0.5 psu. In order to study the near-surface salinity structure in great detail and to link the satellite observations of SSS with all the oceanic and atmospheric processes that control its variability, the National Aeronautics and Space Administration has initiated two field campaigns within the framework of Salinity Processes in the Upper-Ocean Regional Study (SPURS) project (http://spurs.jpl.nasa.gov/). The first campaign, SPURS-1, took place in the evaporation-dominated subtropical North Atlantic Ocean in 2012-2013. The second campaign, SPURS-2, focused on a 3×3° domain in the Inter-Tropical Convergence Zone (ITCZ) in the eastern equatorial Pacific (123.5-126.5°W and 8.5-11.5°N), where the near-surface salinity is strongly dominated by precipitation. The first SPURS-2 cruise took place in Aug-Sep 2016 on board the R/V Roger Revelle, during which a complex multi-instrument oceanographic survey was conducted. As part of this field campaign, we deployed 6 dual-sensor Lagrangian drifters, specifically designed to measure temperature and salinity near the surface ( 20 cm) and at 5 m depth. The main objectives of this deployment were (i) to validate the satellite SSS retrievals and to investigate the causes for the satellite-Argo SSS bias in the precipitation-dominated SPURS-2 region, and (ii) to explore salinity stratification in the upper 5 m and processes that determine it, in particular in relation to rain events. Throughout the experiment, we have observed systematic differences of 0.01-0.02 psu between the near-surface and 5 m salinity. Rain and low wind events have caused salinity differences of up to 2 psu. Strong evaporation on sunny and low wind days has caused the surface to be saltier than the 5-m depth layer by up to 0.4 psu. The mixing time scale between the surface and 5-m depth has been less than a day. Overall, the drifter observations have shown that the bias between Argo and satellite retrievals in the precipitation-dominated region can be largely due to the surface-subsurface salinity differences.
Hayworth, Kenneth J.; Morgan, Josh L.; Schalek, Richard; Berger, Daniel R.; Hildebrand, David G. C.; Lichtman, Jeff W.
2014-01-01
The automated tape-collecting ultramicrotome (ATUM) makes it possible to collect large numbers of ultrathin sections quickly—the equivalent of a petabyte of high resolution images each day. However, even high throughput image acquisition strategies generate images far more slowly (at present ~1 terabyte per day). We therefore developed WaferMapper, a software package that takes a multi-resolution approach to mapping and imaging select regions within a library of ultrathin sections. This automated method selects and directs imaging of corresponding regions within each section of an ultrathin section library (UTSL) that may contain many thousands of sections. Using WaferMapper, it is possible to map thousands of tissue sections at low resolution and target multiple points of interest for high resolution imaging based on anatomical landmarks. The program can also be used to expand previously imaged regions, acquire data under different imaging conditions, or re-image after additional tissue treatments. PMID:25018701
Landsat thematic mapper (TM) soil variability analysis over Webster County, Iowa
NASA Technical Reports Server (NTRS)
Thompson, D. R.; Henderson, K. E.; Pitts, D. E.
1984-01-01
Thematic mapper simulator (TMS) data acquired June 7, June 23, and July 31, 1982, and Landsat thematic mapper (TM) data acquired August 2, September 3, and October 21, 1982, over Webster County, Iowa, were examined for within-field soil effects on corn and soybean spectral signatures. It was found that patterns displayed on various computer-generated map products were in close agreement with the detailed soil survey of the area. The difference in spectral values appears to be due to a combination of subtle soil properties and crop growth patterns resulting from the different soil properties. Bands 4 (0.76-.90 micron), 5 (1.55-1.75 micron), and 7 (2.08-2.35 micron) were found to be responding to the within-field soil variability even with increasing ground cover. While these results are preliminary, they do indicate that the soil influence on the vegetation is being detected by TM and should provide improved information relating to crop and soil properties.
Data and Information Exchange System for the "Reindeer Mapper" Project
NASA Technical Reports Server (NTRS)
Maynard, Nancy; Yurchak, Boris
2005-01-01
During this past year, the Reindeer Mapper Intranet system has been set up on the NASA system, 8 team members have been established, a Reindeer Mapper reference list containing 696 items has been entered, 6 power point presentations have been put on line for review among team members, 304 satellite images have been catalogued (including 16 Landsat images, 288 NDVI 10-day composited images and an anomaly series- May 1998 to December 2002, and 56 SAR CEOS S A R format files), schedules and meeting dates are being shared, students at the Nordic Sami Institute are experimenting with the system for reindeer herder indigenous knowledge sharing, and an "address book" is being developed. Several documents and presentations have been translated and made available in Russian for our Russian colleagues. This has enabled our Russian partners to utilize documents and presentations for use in their research (e.g., SAR imagery comparisons with Russian GIS of specific study areas) and discussion with local colleagues.
NASA Technical Reports Server (NTRS)
Clancy, R. T.; Lee, Steven W.
1991-01-01
The present analysis of emission-phase function (EPF) observations from the IR thermal mapper aboard the Viking Orbiter encompasses polar latitudes, and Viking Lander sites, and spans a wide range of solar longitudes. A multiple scattering radiative transfer model which incorporates a bidirectional phase function for the surface and atmospheric scattering by dust and clouds yields surface albedos and dust and ice optical properties and optical depths for the variety of Mars conditions. It is possible to fit all analyzed EPF sequences corresponding to dust scattering with an albedo of 0.92, rather than the 0.86 given by Pollack et al. on the bases of Viking Lander observations.
NASA Astrophysics Data System (ADS)
Cooray, Asantha
2018-01-01
Cosmic Dawn Intensity Mapper (CDIM) is a 1.0m-class infrared telescope capable of three-dimensional spectro-imaging observations over the wavelength range of 0.75 to 7.5 microns, at a spectral resolving power at or better than 300. This will be achieved with linear variablefilters (LVFs) and a large field-of-view (FoV). The survey strategy using spacecraft operations following a shift and stare mode will result in more than 1300 independent narrow-band spectral images of the sky at a given location. Currently prioritized science programs, taking over three-years of a five-year mission, will be accomplished with a two-tiered wedding-cake survey with the shallowest spanning close to 300 sq. degrees and the deepest tier of about 25 sq. degrees.The remaining two-years could be used for additional survey programs (the wide tier can be expanded to 1000 sq. degrees) or for use by the astronomical community through a General Observing (GO) campaign. CDIM survey data will allow us to (i) establish the initial mass function of stars in galaxies present during reionization, (ii) definitively address AGN/quasar contribution to the reionization photon budget; (iii) establish the environmental dependence of star-formation during reionization through clustering and other environmental measurements; (iv) establish the metal abundance of first-light galaxies during reionization over two decades of stellar mass; (v) measure 3D intensity fluctuations during reionization in both Ly-alpha and H-alpha; and (vi) combine intensity fluctuations with 21-cm data to establish the topology of reionization bubbles.
The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.;
2014-01-01
for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.
Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.
2009-01-01
Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.
Nyman, J.A.; La Peyre, M.K.; Caldwell, A.; Piazza, S.; Thom, C.; Winslow, C.
2009-01-01
Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable. ?? 2009 Elsevier B.V.
Meeting medical terminology needs--the Ontology-Enhanced Medical Concept Mapper.
Leroy, G; Chen, H
2001-12-01
This paper describes the development and testing of the Medical Concept Mapper, a tool designed to facilitate access to online medical information sources by providing users with appropriate medical search terms for their personal queries. Our system is valuable for patients whose knowledge of medical vocabularies is inadequate to find the desired information, and for medical experts who search for information outside their field of expertise. The Medical Concept Mapper maps synonyms and semantically related concepts to a user's query. The system is unique because it integrates our natural language processing tool, i.e., the Arizona (AZ) Noun Phraser, with human-created ontologies, the Unified Medical Language System (UMLS) and WordNet, and our computer generated Concept Space, into one system. Our unique contribution results from combining the UMLS Semantic Net with Concept Space in our deep semantic parsing (DSP) algorithm. This algorithm establishes a medical query context based on the UMLS Semantic Net, which allows Concept Space terms to be filtered so as to isolate related terms relevant to the query. We performed two user studies in which Medical Concept Mapper terms were compared against human experts' terms. We conclude that the AZ Noun Phraser is well suited to extract medical phrases from user queries, that WordNet is not well suited to provide strictly medical synonyms, that the UMLS Metathesaurus is well suited to provide medical synonyms, and that Concept Space is well suited to provide related medical terms, especially when these terms are limited by our DSP algorithm.
Freshening of the Labrador Sea Surface Waters in the 1990s: Another Great Salinity Anomaly
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Koblinsky, Chester J. (Technical Monitor)
2002-01-01
Both the observed and simulated time series of the Labrador Sea surface salinities show a major freshening event since the middles. It continues the series of decoder events of the 1970s and 1980s from which the freshening in the early 1970's was named as the Great Salinity Anomaly (GSA). These events are especially distinguishable in the late summer (August and September) time series. The observed data suggests that the 1990's freshening may equal the GSA in magnitude. This recent event is associated with a large reduction in the overturning rate between the early and latter part of the 1990s. Both the observations and model results indicate that the surface salinity conditions appear to be returning towards normal daring 1999 and 2000 in the coastal area, but offshore, the model predicts the freshening to linger on after peaking 1997.
Molecular Signature of Organic Carbon Along a Salinity Gradient in Suwannee River Plume
NASA Astrophysics Data System (ADS)
Liu, Y.; Bianchi, T. S.; Ward, N. D.; Arellano, A. R.; Paša-Tolić, L.; Tolic, N.; Kuo, L. J.
2016-12-01
Humic and fulvic acid isolates from Suwannee River dissolved organic matter (DOM) have served as reference standards for the International Humic Substances Society (IHSS) for many decades. The large database on Suwannee DOM provides an excellent framework to further expand the application of Fourier transform ion cyclotron mass spectrometry (FT-ICR-MS) in characterizing the chemical composition of aquatic DOM. In this study, we examined the DOM signature of the lower Suwannee River and plume region at 5 stations along a salinity gradient (0 to 28) using FT-ICR-MS. The chemical characteristics of DOM show distinct differences across this steep salinity gradient. In general, samples collected from the coastal station have lower carbon number and are less aromatic. Molecular level analysis reveals that the magnitude weighted proportion of lipids increased as salinity increased. Interestingly, a similar trend was observed for lignin-like compounds. Target quantification of lignin-phenols showed that while the concentrations of these compounds were lower at the coastal station, the DOC-normalized concentrations were not significantly different between the river and coastal stations. In addition to traditional DOM moieties, we identified for the first time, halogenated organic compounds (HOC). We observed more chlorinated compounds in DOM and increased Cl/C as salinity increased. A relatively high proportion of halogenated lipids (compared to non-halogenated) were observed in the total pool of HOC across all stations. Although not significant in relative proportion, halogenated lignin-like compounds were the most abundant HOC moieties in our samples. CO2 concentrations decreased and became more 13C-enriched along the salinity gradient, ranging from 3,990 ppm (13CO2 = -17.3‰) at salinity 0 to 520 ppm (13CO2 = -7.5‰) at salinity 28, indicating high levels of DOM degradation in the river and a shift to primary production in the marine receiving waters, which is consistent with trends of lipid and lignin-like compounds observed with FT-ICR-MS.
Wingard, G.L.; Hudley, J.W.
2012-01-01
A molluscan analogue dataset is presented in conjunction with a weighted-averaging technique as a tool for estimating past salinity patterns in south Florida’s estuaries and developing targets for restoration based on these reconstructions. The method, here referred to as cumulative weighted percent (CWP), was tested using modern surficial samples collected in Florida Bay from sites located near fixed water monitoring stations that record salinity. The results were calibrated using species weighting factors derived from examining species occurrence patterns. A comparison of the resulting calibrated species-weighted CWP (SW-CWP) to the observed salinity at the water monitoring stations averaged over a 3-year time period indicates, on average, the SW-CWP comes within less than two salinity units of estimating the observed salinity. The SW-CWP reconstructions were conducted on a core from near the mouth of Taylor Slough to illustrate the application of the method.
NASA Astrophysics Data System (ADS)
Muraleedharan, K. R.; Dinesh Kumar, P. K.; Prasanna Kumar, S.; Srijith, B.; John, Sebin; Naveen Kumar, K. R.
2017-04-01
Alappuzha mud bank draws special attention among the twenty-mud bank locations reported along the Kerala coast by its remoteness from riverine sources. Among several hypotheses proposed for the formation of mud bank, the subterranean hypothesis was most accepted because of the occurrence of low salinity in the bottom layers. The present study provides evidence to show that occurrence of low salinity waters near the bottom in the mud bank region is an artifact of measuring technique employed for the measurement of salinity. The usual technique of conductivity based salinity determination completely fails in the presence of water laden with high amount of suspended sediment. Laboratory experiments were conducted to determine the response of electrode and conductivity cell sensor types to determine the salinity using a range of suspended sediment in the water column. Actual sediment samples from the mud bank region were utilized for the above studies. Based on field observations and experiments, we conclude that the low salinity was the manifestation of the presence highly turbid fluid mud formation in the mud bank region rather than the influence of fresh water.
Competition between hardwood hammocks and mangroves
Sternberg, L.D.S.L.; Teh, S.Y.; Ewe, S.M.L.; Miralles-Wilhelm, F.; DeAngelis, D.L.
2007-01-01
The boundaries between mangroves and freshwater hammocks in coastal ecotones of South Florida are sharp. Further, previous studies indicate that there is a discontinuity in plant predawn water potentials, with woody plants either showing predawn water potentials reflecting exposure to saline water or exposure to freshwater. This abrupt concurrent change in community type and plant water status suggests that there might be feedback dynamics between vegetation and salinity. A model examining the salinity of the aerated zone of soil overlying a saline body of water, known as the vadose layer, as a function of precipitation, evaporation and plant water uptake is presented here. The model predicts that mixtures of saline and freshwater vegetative species represent unstable states. Depending on the initial vegetation composition, subsequent vegetative change will lead either to patches of mangrove coverage having a high salinity vadose zone or to freshwater hammock coverage having a low salinity vadose zone. Complete or nearly complete coverage by either freshwater or saltwater vegetation represents two stable steady-state points. This model can explain many of the previous observations of vegetation patterns in coastal South Florida as well as observations on the dynamics of vegetation shifts caused by sea level rise and climate change. ?? 2007 Springer Science+Business Media, LLC.
SMOS reveals the signature of Indian Ocean Dipole events
NASA Astrophysics Data System (ADS)
Durand, Fabien; Alory, Gaël; Dussin, Raphaël; Reul, Nicolas
2013-12-01
The tropical Indian Ocean experiences an interannual mode of climatic variability, known as the Indian Ocean Dipole (IOD). The signature of this variability in ocean salinity is hypothesized based on modeling and assimilation studies, on account of scanty observations. Soil Moisture and Ocean Salinity (SMOS) satellite has been designed to take up the challenge of sea surface salinity remote sensing. We show that SMOS data can be used to infer the pattern of salinity variability linked with the IOD events. The core of maximum variability is located in the central tropical basin, south of the equator. This region is anomalously salty during the 2010 negative IOD event, and anomalously fresh during the 2011 positive IOD event. The peak-to-peak anomaly exceeds one salinity unit, between late 2010 and late 2011. In conjunction with other observational datasets, SMOS data allow us to draw the salt budget of the area. It turns out that the horizontal advection is the main driver of salinity anomalies. This finding is confirmed by the analysis of the outputs of a numerical model. This study shows that the advent of SMOS makes it feasible the quantitative assessment of the mechanisms of ocean surface salinity variability in the tropical basins, at interannual timescales.
Abd El-Baki, G K; Mostafa, Doaa
2014-12-01
The interaction between sodium chloride and Trichoderma harzianum (T24) on growth parameters, ion contents, MDA content, proline, soluble proteins as well as SDS page protein profile were studied in Vicia faba Giza 429. A sharp reduction was found in fresh and dry mass of shoots and roots with increasing salinity. Trichoderma treatments promoted the growth criteria as compared with corresponding salinized plants. The water content and leaf area exhibited a marked decrease with increasing salinity. Trichoderma treatments induced a progressive increase in both parameters. Both proline and MDA contents were increased progressively as the salinity rose in the soil. Trichoderma treatments considerably retarded the accumulation of both parameters in shoots and roots. Both Na+ and K+ concentration increased in both organs by enhancing salinity levels. The treatment with Trichoderma harzianum enhanced the accumulation of both ions. Exposure of plants to different concentrations of salinity, or others treated with Trichoderma harzianum produced marked changes in their protein pattern. Three types of alterations were observed: the synthesis of certain proteins declined significantly, specific synthesis of certain other proteins were markedly observed and synthesis of a set specific protein was induced de novo in plant treated with Trichoderma harzianum.
Mediterranean sea water budget long-term trend inferred from salinity observations
NASA Astrophysics Data System (ADS)
Skliris, N.; Zika, J. D.; Herold, L.; Josey, S. A.; Marsh, R.
2018-01-01
Changes in the Mediterranean water cycle since 1950 are investigated using salinity and reanalysis based air-sea freshwater flux datasets. Salinity observations indicate a strong basin-scale multi-decadal salinification, particularly in the intermediate and deep layers. Evaporation, precipitation and river runoff variations are all shown to contribute to a very strong increase in net evaporation of order 20-30%. While large temporal uncertainties and discrepancies are found between E-P multi-decadal trend patterns in the reanalysis datasets, a more robust and spatially coherent structure of multi-decadal change is obtained for the salinity field. Salinity change implies an increase in net evaporation of 8 to 12% over 1950-2010, which is considerably lower than that suggested by air-sea freshwater flux products, but still largely exceeding estimates of global water cycle amplification. A new method based on water mass transformation theory is used to link changes in net evaporation over the Mediterranean Sea with changes in the volumetric distribution of salinity. The water mass transformation distribution in salinity coordinates suggests that the Mediterranean basin salinification is driven by changes in the regional water cycle rather than changes in salt transports at the straits.
Yadav, Ravindra Kumar; Tripathi, Keshawanand; Ramteke, Pramod Wasudeo; Varghese, Eldho; Abraham, Gerard
2016-09-01
Freshly separated cyanobionts of Azolla microphylla and Azolla caroliniana plants exposed to salinity showed decline in the cellular constituents such as chlorophyll (23.1 and 38.9%) and protein (12.9 and 19.3%). However, an increase in the carotenoid and sugar content was observed. Exposure to salinity stress reduced the heterocyst frequency (35.4 and 57.2%) and nitrogenase activity (37.7 and 46.3%) of the cyanobionts. Increase in the activity of antioxidant enzymes such as super oxide dismutase (50.6 and 11.5%), ascorbate peroxidase (63.7 and 57.9%), catalase (94.2 and 22.5%) as well as non-enzymatic antioxidant proline (18.8 and 13.3%) was also observed in response to salinity. The cyanobionts exhibited significant increase in the intracellular Na(+) level and reduced intracellular K(+)/Na(+) and Ca(2+)/Na(+) ratio in response to salinity. The results demonstrate the adverse impact of salinity on the freshly separated cyanobionts as similar to free living cyanobacteria. These results may be helpful in the critical evaluation of salinity tolerance mechanism of the cyanobiont and its interaction with the host. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Jorge, Marco G.; Brennand, Tracy A.; Perkins, Andrew J.; Neudorf, Christina; Hillier, John K.; Cripps, Jonathan E.; Spagnolo, Matteo; Dinney, Meaghan; Storrar, Robert D.
2016-04-01
Mapper-dependent (subjective) differences in drumlin morphometry have received little attention even though over one-hundred thousand drumlins have been manually mapped and used to characterize drumlin morphometry and infer drumlin genesis, and several obstacles to objectivity in drumlin mapping can be identified. Due to uncertainty in drumlin genesis, drumlins remain putative morphogenetic landforms, yet still lack a complete single morphological definition. Additionally, post-formational degradation of relict subglacial landscapes challenges our ability: 1) to identify all drumlins in the landscape (some [potential] drumlins may be too degraded to be mapped and are thus excluded from the inventory), with implications for the analysis of field properties (e.g., spatial arrangement and autocorrelation); and 2) to accurately map the original footprint (i.e., shape and size). These issues (definitional ambiguity; degradation of original drumlin topography) are a problem for both manual and automated mapping. Automation is touted as the solution to the subjectivity of manual mapping, but the quality of any automated method directly depends on the quality of the operational definition (ruleset) it draws upon; if drumlin definitions are subjective (expert-dependent), so will be the automated algorithms relying on them. Additionally, recognizing highly degraded drumlins is, arguably, more difficult automatedly than manually (visually). Because a single morphologic definition is missing, mapping is expert-dependent. Therefore, quantifying the magnitude of inter-mapper differences is important for fully understanding the morphology of drumlins, constraining the robustness of drumlin morphometric inventories and assisting in the development of stricter operational definitions/mapping guidelines. We present the results of an experiment to quantify inter-mapper differences in mapped drumlin morphometry. All participants mapped 42 morphologically diverse drumlins in the Puget Lowland, WA at 2 spatial resolutions (1.8 m and 10.8 m cell size DEMs) in a GIS, using exactly the same base maps (analytical hillshade; semi-transparent elevation; contours) and informed by the same loose operational definition (e.g., drumlins delimited at their base by concave breaks in slope). Preliminary results (3 mappers) indicate that differences between manual mappers are substantial. For example, for the footprints mapped from the 10.8 m terrain data: average length ranges from 4603 m to 5454 m, and the mean absolute difference in length from 693 m to 1101 m; average elongation ratio (ER) ranges from 5.0 to 6.1; average footprint area ranges from 0.39 km2 to 0.50 km2.
A computer model of long-term salinity in San Francisco Bay: Sensitivity to mixing and inflows
Uncles, R.J.; Peterson, D.H.
1995-01-01
A two-level model of the residual circulation and tidally-averaged salinity in San Francisco Bay has been developed in order to interpret long-term (days to decades) salinity variability in the Bay. Applications of the model to biogeochemical studies are also envisaged. The model has been used to simulate daily-averaged salinity in the upper and lower levels of a 51-segment discretization of the Bay over the 22-y period 1967–1988. Observed, monthly-averaged surface salinity data and monthly averages of the daily-simulated salinity are in reasonable agreement, both near the Golden Gate and in the upper reaches, close to the delta. Agreement is less satisfactory in the central reaches of North Bay, in the vicinity of Carquinez Strait. Comparison of daily-averaged data at Station 5 (Pittsburg, in the upper North Bay) with modeled data indicates close agreement with a correlation coefficient of 0.97 for the 4110 daily values. The model successfully simulates the marked seasonal variability in salinity as well as the effects of rapidly changing freshwater inflows. Salinity variability is driven primarily by freshwater inflow. The sensitivity of the modeled salinity to variations in the longitudinal mixing coefficients is investigated. The modeled salinity is relatively insensitive to the calibration factor for vertical mixing and relatively sensitive to the calibration factor for longitudinal mixing. The optimum value of the longitudinal calibration factor is 1.1, compared with the physically-based value of 1.0. Linear time-series analysis indicates that the observed and dynamically-modeled salinity-inflow responses are in good agreement in the lower reaches of the Bay.
NASA Astrophysics Data System (ADS)
Shayegan, Majid; Esmaeili Fereidouni, Abolghasem; Agh, Naser; Jani Khalili, Khosrow
2016-07-01
The effects of salinity on the copepod, Acartia tonsa in terms of daily egg production rate (EPR), hatching success, fecal pellet production rate (FPR), naupliar development time and survival, sex ratio, and total life span were determined in laboratory conditions through three experiments. In experiment 1, EPR, hatching success, and FPR of individual females were monitored at salinities of 13, 20, 35 and 45 during short-periods (seven consecutive days). Results show EPR was affected by salinity with the highest outputs recorded at 20 and 35, respectively, which were considerably higher than those at 13 and 45. Mean FPR was also higher in 35 and 20. In experiment 2, the same parameters were evaluated over total life span of females (long-term study). The best EPR and FPR were observed in 35, which was statistically higher than at 13 and 20. In experiment 3, survival rates of early nauplii until adult stage were lowest at a salinity of 13. The development time increased with increasing of salinity. Female percentage clearly decreased with increasing salinity. Higher female percentages (56.7% and 52.2%, respectively) were significantly observed at two salinities of 13 and 20 compared to that at 35 (25%). Total longevity of females was not affected by salinity increment. Based on our results, for mass culture we recommend that a salinity of 35 be adopted due to higher reproductive performances, better feeding, and faster development of A. tonsa.
Impact of the water salinity on the hydraulic conductivity of fen peat
NASA Astrophysics Data System (ADS)
Gosch, Lennart; Janssen, Manon; Lennartz, Bernd
2017-04-01
Coastal peatlands represent an interface between marine and terrestrial ecosystems; their hydrology is affected by salt and fresh water inflow alike. Previous studies on bog peat have shown that pore water salinity can have an impact on the saturated hydraulic conductivity (Ks) of peat because of chemical pore dilation effects. In this ongoing study, we are aiming at quantifying the impact of higher salinities (up to 3.5 %) on Ks of fen peat to get a better understanding of the water and solute exchange between coastal peatlands and the adjacent sea. Two approaches differing in measurement duration employing a constant-head upward-flow permeameter were conducted. At first, Ks was measured at an initial salinity for several hours before the salinity was abruptly increased and the measurement continued. In the second approach, Ks was measured for 15 min at the salt content observed during sampling. Then, samples were completely (de)salinized via diffusion for several days/weeks before a comparison measurement was carried out. The results for degraded fen peats show a decrease of Ks during long-term measurements which does not depend on the water salinity. A slow, diffusion-controlled change in salinity does not modify the overall outcome that the duration of measurements has a stronger impact on Ks than the salinity. Further experiments will show if fen peat soils differing in their state of degradation exhibit a different behavior. A preliminary conclusion is that salinity might have a less important effect on hydraulic properties of fen peat than it was observed for bog peat.
Cifuentes, L.A.; Schemel, L.E.; Sharp, J.H.
1990-01-01
The effects of river inflow variations on alkalinity/salinity distributions in San Francisco Bay and nitrate/salinity distributions in Delaware Bay are described. One-dimensional, advective-dispersion equations for salinity and the dissolved constituents are solved numerically and are used to simulate mixing in the estuaries. These simulations account for time-varying river inflow, variations in estuarine cross-sectional area, and longitudinally varying dispersion coefficients. The model simulates field observations better than models that use constant hydrodynamic coefficients and uniform estuarine geometry. Furthermore, field observations and model simulations are consistent with theoretical 'predictions' that the curvature of propery-salinity distributions depends on the relation between the estuarine residence time and the period of river concentration variation. ?? 1990.
Early Results from the Wisconsin H-Alpha Mapper Southern Sky Survey
NASA Astrophysics Data System (ADS)
Haffner, L. Matthew; Reynolds, R. J.; Madsen, G. J.; Hill, A. S.; Barger, K. A.; Jaehnig, K. P.; Mierkiewicz, E. J.; Percival, J. W.
2010-01-01
After a successful eleven-year campaign at Kitt Peak, we moved the Wisconsin H-Alpha Mapper (WHAM) to Cerro Tololo in early 2009. Here we present some of the early data after the first nine months under southern skies. These maps begin to complete the first all-sky, kinematic survey of the diffuse Hα emission from the Milky Way. Much of this emission arises from the Warm Ionized Medium (WIM), a significant component of the ISM that extends a few kiloparsecs above the Galactic disk. The WHAM instrument consists of a 0.6 m primary lens housed in a steerable siderostat coupled to a 15 cm dual-etalon Fabry-Perot spectrometer. The optical configuration delivers a spatially integrated spectrum from a one-degree beam on the sky covering 200 km/s with 12 km/s spectral resolution. Short, 30-second exposures allow us to cover the observable sky in about two years at sensitivity levels of about 0.1 R (EM 0.2 pc cm-6). While this first look at the data focuses on the Hα survey, WHAM is also capable of observing many other optical emission lines, revealing fascinating trends in the temperature and ionization state of the WIM. Our ongoing studies of the physical conditions of diffuse ionized gas will continue in the south following the Hα survey. In addition, future observations using our survey mode will cover the full velocity range of the Magellanic Stream, Bridge, and Clouds to trace the ionized gas associated with these neighboring systems. WHAM is supported by NSF award AST-0607512 and has made this smooth relocation south due to the excellent staff at KPNO and CTIO.
A positive linear relationship between salinity and fluorescent dissolved organic matter (FDOM) was observed on several occasions along the West Florida shelf at salinities greater than 36.5. This represents a departure from the typical inverse relationship between FDOM and salin...
Registering Thematic Mapper imagery to digital elevation models
NASA Technical Reports Server (NTRS)
Frew, J.
1984-01-01
The problems encountered when attempting to register Landsat Thematic Mapper (TM) data to U.S. geological survey digital elevation models (DEMs) are examined. It is shown that TM and DEM data are not available in the same map projection, necessitating geometric transformation of one of the data type, that the TM data are not accurately located in their nominal projection, and that TM data have higher resolution than most DEM data, but oversampling the DEM data to TM resolution introduces systematic noise. Further work needed in this area is discussed.
Moon Mineralogy Mapper: Unlocking the Mysteries of the Moon
NASA Technical Reports Server (NTRS)
Runyon, Cassandra
2006-01-01
Moon Mineralogy Mapper (M3) is a state-of-the-art high spectral resolution imaging spectrometer that will characterize and map the mineral composition of the Moon. The M3 instrument will be flown on Chandrayaan-I, the Indian Space Research Organization (ISRO) mission to be launched in March 2008. The Moon is a cornerstone to understanding early solar system processes. M3 high-resolution compositional maps will dramatically improve our understanding about the early evolution of the terrestrial planets and will provide an assessment of lunar resources at high spatial resolution.
NASA Technical Reports Server (NTRS)
Butler, David R.; Walsh, Stephen J.; Brown, Daniel G.
1991-01-01
Methods are described for using Landsat Thematic Mapper digital data and digital elevation models for the display of natural hazard sites in a mountainous region of northwestern Montana, USA. Hazard zones can be easily identified on the three-dimensional images. Proximity of facilities such as highways and building locations to hazard sites can also be easily displayed. A temporal sequence of Landsat TM (or similar) satellite data sets could also be used to display landscape changes associated with dynamic natural hazard processes.
An Analysis LANDSAT-4 Thematic Mapper Geometric Properties
NASA Technical Reports Server (NTRS)
Walker, R. E.; Zobrist, A. L.; Bryant, N. A.; Gokhman, B.; Friedman, S. Z.; Logan, T. L.
1984-01-01
LANDSAT Thematic Mapper P-data of Washington, D. C., Harrisburg, PA, and Salton Sea, CA are analyzed to determine magnitudes and causes of error in the geometric conformity of the data to known Earth surface geometry. Several tests of data geometry are performed. Intraband and interband correlation and registration are investigated, exclusive of map based ground truth. The magnitudes and statistical trends of pixel offsets between a single band's mirror scans (due to processing procedures) are computed, and the inter-band integrity of registration is analyzed. A line to line correlation analysis is included.
A prospectus for Thematic Mapper research in the Earth sciences
NASA Technical Reports Server (NTRS)
1984-01-01
Earth science applications of Thematic Mapper (TM) imagery are discussed. Prospective research themes are defined in a general sense in relation to the technical measurement capabilities of the TM and the various types of Earth information that can potentially be derived from multispectral TM imagery. An overview of the system developed to acquire and reduce TM data is presented. The technical capabilities of this system are presented in detail. The orbital performance of the TM sensor is described, based upon the analysis of LANDSAT 4 and 5 TM data collected to date.
NASA Technical Reports Server (NTRS)
Poros, D. J.; Peterson, C. J.
1985-01-01
Methods for destriping TM images and results of the application of these methods to selected TM scenes with sensor and scan striping, which was not removed by the radiometric correction during the TM Archive Generation Phase in TIPS, are presented. These methods correct only for gain and offset differences between detectors over many image lines and do not consider within-line effects. The feasibility of implementing a destriping process online in TIPS is also described.
Spectral signature of alpine snow cover from the Landsat Thematic Mapper
NASA Technical Reports Server (NTRS)
Dozier, Jeff
1989-01-01
In rugged terrain, snow in the shadows can appear darker than soil or vegetation in the sunlight, making it difficult to interpret satellite data images of rugged terrains. This paper discusses methods for using Thematic Mapper (TM) and SPOT data for automatic analyses of alpine snow cover. Typical spectral signatures of the Landsat TM are analyzed for a range of snow types, atmospheric profiles, and topographic illumination conditions. A number of TM images of Sierra Nevada are analyzed to distinguish several classes of snow from other surface covers.
Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description
Schmidt, Gail; Jenkerson, Calli B.; Masek, Jeffrey; Vermote, Eric; Gao, Feng
2013-01-01
The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software was originally developed by the National Aeronautics and Space Administration–Goddard Space Flight Center and the University of Maryland to produce top-of-atmosphere reflectance from LandsatThematic Mapper and Enhanced Thematic Mapper Plus Level 1 digital numbers and to apply atmospheric corrections to generate a surface-reflectance product.The U.S. Geological Survey (USGS) has adopted the LEDAPS algorithm for producing the Landsat Surface Reflectance Climate Data Record.This report discusses the LEDAPS algorithm, which was implemented by the USGS.
NASA Astrophysics Data System (ADS)
Woodall, Milton A., II; Minch, J. R.; Nunez, J.; Keeter, Howard S.; Johnson, Anthony M.
1990-07-01
The performance of eyesafe erbium:glass lasers operating at a wavelength of 1. 54 urn has been tested under various natural and manmade obscurants. To obtain the maximum amount of information two distinct system configurations were employed. The first a laser cloud mapper was designed to provide a direct depth profile of smoke density and reflectivity as well as target position. The second configuration was a production military laser rangefinder. It is representative of systems currently incorporated in tactical armored vehicles and was used to provide a direct indication of target range. 1.
Thematic mapper studies band correlation analysis
NASA Technical Reports Server (NTRS)
Ungar, S. G.; Kiang, R.
1976-01-01
Spectral data representative of thematic mapper candidate bands 1 and 3 to 7 were obtained by selecting appropriate combinations of bands from the JSC 24 channel multispectral scanner. Of all the bands assigned, only candidate bands 4 (.74 mu to .80 mu) and 5 (.80 mu to .91 mu) showed consistently high intercorrelation from region to region and time to time. This extremely high correlation persisted when looking at the composite data set in a multitemporal, multilocation domain. The GISS investigations lend positive confirmation to the hypothesis, that TM bands 4 and 5 are redundant.
The influence of salinity on the effects of Multi-walled carbon nanotubes on polychaetes.
De Marchi, Lucia; Neto, Victor; Pretti, Carlo; Figueira, Etelvina; Chiellini, Federica; Morelli, Andrea; Soares, Amadeu M V M; Freitas, Rosa
2018-06-05
Salinity shifts in estuarine and coastal areas are becoming a topic of concern and are one of the main factors influencing nanoparticles behaviour in the environment. For this reason, the impacts of multi-walled carbon nanotubes (MWCNTs) under different seawater salinity conditions were evaluated on the common ragworm Hediste diversicolor, a polychaete species widely used as bioindicator of estuarine environmental quality. An innovative method to assess the presence of MWCNT aggregates in the sediments was used for the first time. Biomarkers approach was used to evaluate the metabolic capacity, oxidative status and neurotoxicity of polychaetes after long-term exposure. The results revealed an alteration of energy-related responses in contaminated polychaetes under both salinity conditions, resulting in an increase of metabolism and expenditure of their energy reserves (lower glycogen and protein contents). Moreover, a concentration-dependent toxicity (higher lipid peroxidation, lower ratio between reduced and oxidized glutathione and activation of antioxidant defences and biotransformation mechanisms) was observed in H. diversicolor, especially when exposed to low salinity. Additionally, neurotoxicity was observed by inhibition of Cholinesterases activity in organisms exposed to MWCNTs at both salinities.
The GOES-R GeoStationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.
Porewater salinity reveals past lake-level changes in Lake Van, the Earth's largest soda lake.
Tomonaga, Yama; Brennwald, Matthias S; Livingstone, David M; Kwiecien, Olga; Randlett, Marie-Ève; Stockhecke, Mona; Unwin, Katie; Anselmetti, Flavio S; Beer, Jürg; Haug, Gerald H; Schubert, Carsten J; Sturm, Mike; Kipfer, Rolf
2017-03-22
In closed-basin lakes, sediment porewater salinity can potentially be used as a conservative tracer to reconstruct past fluctuations in lake level. However, until now, porewater salinity profiles did not allow quantitative estimates of past lake-level changes because, in contrast to the oceans, significant salinity changes (e.g., local concentration minima and maxima) had never been observed in lacustrine sediments. Here we show that the salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka. We observed strong changes in the vertical salinity profiles of the pore water of the uppermost 100 m of the sediments in Lake Van. As the salinity balance of Lake Van is almost at steady-state, these salinity changes indicate major lake-level changes in the past. In line with previous studies on lake terraces and with seismic and sedimentological surveys, we identify two major transgressions of up to +105 m with respect to the current lake level at about 135 ka BP and 248 ka BP starting at the onset of the two previous interglacials (MIS5e and MIS7), and a major regression of about -200 m at about 30 ka BP during the last ice age.
Discrimination of natural and cultivated vegetation using Thematic Mapper spectral data
NASA Technical Reports Server (NTRS)
Degloria, Stephen D.; Bernstein, Ralph; Dizenzo, Silvano
1986-01-01
The availability of high quality spectral data from the current suite of earth observation satellite systems offers significant improvements in the ability to survey and monitor food and fiber production on both a local and global basis. Current research results indicate that Landsat TM data when used in either digital or analog formats achieve higher land-cover classification accuracies than MSS data using either comparable or improved spectral bands and spatial resolution. A review of these quantitative results is presented for both natural and cultivated vegetation.
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator)
1983-01-01
The geometric quality of the TM and MSS film products were evaluated by making selective photo measurements such as scale, linear and area determinations; and by measuring the coordinates of known features on both the film products and map products and then relating these paired observations using a standard linear least squares regression approach. Quantitative interpretation tests are described which evaluate the quality and utility of the TM film products and various band combinations for detecting and identifying important forest and agricultural features.
NASA Technical Reports Server (NTRS)
Clancy, R. T.; Lee, S. W.
1991-01-01
An analysis of emission-phase-function (EPF) observations from the Viking Orbiter Infrared Thermal Mapper (IRTM) yields a wide variety of results regarding dust and cloud scattering in the Mars atmosphere and atmospheric-corrected albedos for the surface of Mars. A multiple scattering radiative transfer model incorporating a bidirectional phase function for the surface and atmospheric scattering by dust and clouds is used to derive surface albedos and dust and ice optical properties and optical depths for these various conditions on Mars.
Produce documents and media information. [on lightning
NASA Technical Reports Server (NTRS)
Alzmann, Melanie A.; Miller, G.A.
1994-01-01
Lightning data and information were collected from the United States, Germany, France, Brazil, China, and Australia for the dual purposes of compiling a global lightning data base and producing publications on the Marshall Space Flight Center's lightning program. Research covers the history of lightning, the characteristics of a storm, types of lightningdischarges, observations from airplanes and spacecraft, the future fole of planes and spacecraft in lightning studies, lightning detection networks, and the relationships between lightning and rainfall. Descriptions of the Optical Transient Dectector, the Lightning Imaging Sensor, and the Lightning Mapper Sensor are included.
The Venus Emissivity Mapper - gaining a global perspective on the surface composition of Venus
NASA Astrophysics Data System (ADS)
Helbert, Joern; Dyar, Melinda; Widemann, Thomas; Marcq, Emmanuel; Maturilli, Alessandro; Mueller, Nils; Kappel, David; Ferrari, Sabrina; D'Amore, Mario; Tsang, Constantine; Arnold, Gabriele; Smrekar, Suzanne; VEM Team
2017-10-01
The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, leading to the false notion that information about the composition of Venus’ surface could only be derived from lander missions. However, harsh environmental conditions on the surface cause landed missions to be sole site, highly complex, and riskier than orbiting missions.It is now known that 5 transparency windows occur in the Venus atmosphere, ranging from 0.86 µm to 1.18 µm. Recent advances in high temperature laboratory spectroscopy at the PSL at DLR these windows are highly diagnostic for surface mineralogy. Mapping of the southern hemisphere of Venus with VIRTIS on VEX in the 1.02 µm band was a proof-of-concept for an orbital remote sensing approach to surface composition and weathering studies[1-3]. The Venus Emissivity Mapper [4] proposed for the NASA’s Venus Origins Explorer (VOX) and the ESA EnVision proposal builds on these recent advances. It is the first flight instrument specially designed with a sole focus on mapping the surface of Venus using the narrow atmospheric windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of surface composition as well as redox state of the surface, providing a comprehensive picture of surface-atmosphere interaction and support for landing site selection. Continuous observation of the thermal emission of the Venus will provide tight constraints on the current day volcanic activity[5]. This is complemented by measurements of atmospheric water vapor abundance as well as cloud microphysics and dynamics. These data will allow for accurate correction of atmospheric interference on the surface measurements, which provide highly valuable science on their own. A mission combining VEM with a high-resolution radar mapper such as VOX or EnVision in a low circular orbit will provide key insights into the divergent evolution of Venus.1. Smrekar, S.E., et al., Science, 2010. 328(5978): p. 605-8.2. Helbert, J., et al., GRL, 2008. 35(11).3. Mueller, N., et al., JGR, 2008. 113.4. Helbert, J., et al. 2016. San Diego, CA: SPIE.5. Mueller, N.T., et al., JGR, 2017.
Revised radiometric calibration technique for LANDSAT-4 Thematic Mapper data
NASA Technical Reports Server (NTRS)
Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.
1984-01-01
Depending on detector number, there are random fluctuations in the background level for spectral band 1 of magnitudes ranging from 2 to 3.5 digital numbers (DN). Similar variability is observed in all the other reflective bands, but with smaller magnitude in the range 0.5 to 2.5 DN. Observations of background reference levels show that line dependent variations in raw TM image data and in the associated calibration data can be measured and corrected within an operational environment by applying simple offset corrections on a line-by-line basis. The radiometric calibration procedure defined by the Canadian Center for Remote Sensing was revised accordingly in order to prevent striping in the output product.
RADAR Reveals Titan Topography
NASA Technical Reports Server (NTRS)
Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.
2005-01-01
The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath
Spatial and Temporal Analysis of Sea Surface Salinity Using Satellite Imagery in Gulf of Mexico
NASA Astrophysics Data System (ADS)
Rajabi, S.; Hasanlou, M.; Safari, A. R.
2017-09-01
The recent development of satellite sea surface salinity (SSS) observations has enabled us to analyse SSS variations with high spatiotemporal resolution. In this regards, The Level3-version4 data observed by Aquarius are used to examine the variability of SSS in Gulf of Mexico for the 2012-2014 time periods. The highest SSS value occurred in April 2013 with the value of 36.72 psu while the lowest value (35.91 psu) was observed in July 2014. Based on the monthly distribution maps which will be demonstrated in the literature, it was observed that east part of the region has lower salinity values than the west part for all months mainly because of the currents which originate from low saline waters of the Caribbean Sea and furthermore the eastward currents like loop current. Also the minimum amounts of salinity occur in coastal waters where the river runoffs make fresh the high saline waters. Our next goal here is to study the patterns of sea surface temperature (SST), chlorophyll-a (CHLa) and fresh water flux (FWF) and examine the contributions of them to SSS variations. So by computing correlation coefficients, the values obtained for SST, FWF and CHLa are 0.7, 0.22 and 0.01 respectively which indicated high correlation of SST on SSS variations. Also by considering the spatial distribution based on the annual means, it found that there is a relationship between the SSS, SST, CHLa and the latitude in the study region which can be interpreted by developing a mathematical model.
Marshall, F.E.; Wingard, G.L.
2012-01-01
The upgraded method of coupled paleosalinity and hydrologic models was applied to the analysis of the circa-1900 CE segments of five estuarine sediment cores collected in Florida Bay. Comparisons of the observed mean stage (water level) data to the paleoecology-based model's averaged output show that the estimated stage in the Everglades wetlands was 0.3 to 1.6 feet higher at different locations. Observed mean flow data compared to the paleoecology-based model output show an estimated flow into Shark River Slough at Tamiami Trail of 401 to 2,539 cubic feet per second (cfs) higher than existing flows, and at Taylor Slough Bridge an estimated flow of 48 to 218 cfs above existing flows. For salinity in Florida Bay, the difference between paleoecology-based and observed mean salinity varies across the bay, from an aggregated average salinity of 14.7 less than existing in the northeastern basin to 1.0 less than existing in the western basin near the transition into the Gulf of Mexico. When the salinity differences are compared by region, the difference between paleoecology-based conditions and existing conditions are spatially consistent.
NASA Technical Reports Server (NTRS)
Troccoli, Alberto; Rienecker, Michele M.; Keppenne, Christian L.; Johnson, Gregory C.
2003-01-01
The NASA Seasonal-to-Interannual Prediction Project (NSIPP) has developed an Ocean data assimilation system to initialize the quasi-isopycnal ocean model used in our experimental coupled-model forecast system. Initial tests of the system have focused on the assimilation of temperature profiles in an optimal interpolation framework. It is now recognized that correction of temperature only often introduces spurious water masses. The resulting density distribution can be statically unstable and also have a detrimental impact on the velocity distribution. Several simple schemes have been developed to try to correct these deficiencies. Here the salinity field is corrected by using a scheme which assumes that the temperature-salinity relationship of the model background is preserved during the assimilation. The scheme was first introduced for a zlevel model by Troccoli and Haines (1999). A large set of subsurface observations of salinity and temperature is used to cross-validate two data assimilation experiments run for the 6-year period 1993-1998. In these two experiments only subsurface temperature observations are used, but in one case the salinity field is also updated whenever temperature observations are available.
Fine-scale variability of isopycnal salinity in the California Current System
NASA Astrophysics Data System (ADS)
Itoh, Sachihiko; Rudnick, Daniel L.
2017-09-01
This paper examines the fine-scale structure and seasonal fluctuations of the isopycnal salinity of the California Current System from 2007 to 2013 using temperature and salinity profiles obtained from a series of underwater glider surveys. The seasonal mean distributions of the spectral power of the isopycnal salinity gradient averaged over submesoscale (12-30 km) and mesoscale (30-60 km) ranges along three survey lines off Monterey Bay, Point Conception, and Dana Point were obtained from 298 transects. The mesoscale and submesoscale variance increased as coastal upwelling caused the isopycnal salinity gradient to steepen. Areas of elevated variance were clearly observed around the salinity front during the summer then spread offshore through the fall and winter. The high fine-scale variances were observed typically above 25.8 kg m-3 and decreased with depth to a minimum at around 26.3 kg m-3. The mean spectral slope of the isopycnal salinity gradient with respect to wavenumber was 0.19 ± 0.27 over the horizontal scale of 12-60 km, and 31%-35% of the spectra had significantly positive slopes. In contrast, the spectral slope over 12-30 km was mostly flat, with mean values of -0.025 ± 0.32. An increase in submesoscale variability accompanying the steepening of the spectral slope was often observed in inshore areas; e.g., off Monterey Bay in winter, where a sharp front developed between the California Current and the California Under Current, and the lower layers of the Southern California Bight, where vigorous interaction between a synoptic current and bottom topography is to be expected.
Liu, Yun-Qi; Liu, Yi-Fang; Ma, Xue-Mei; Xiao, Yi-Ding; Wang, You-Bin; Zhang, Ming-Zi; Cheng, Ai-Xin; Wang, Ting-Ting; Li, Jia-La; Zhao, Peng-Xiang; Xie, Fei; Zhang, Xin
2015-07-01
Many pathways have been reported involving the effect of hydrogen-rich saline on protecting skin flap partial necrosis induced by the inflammation of ischemia/reperfusion injury. This study focused on the influence of hydrogen-rich saline treatment on apoptosis pathway of ASK-1/JNK and Bcl-2/Bax radio in I/R injury of skin flaps. Adult male Sprague-Dawley rats were divided into three groups. Group 1 was sham surgery group, Group 2 and 3 were ischemia/reperfusion surgery treated with physiological saline and hydrogen-rich saline respectively. Blood perfusion of flap was measured by Laser doppler flowmeters. Hematoxylin and eosin staining was used to observe morphological changes. Early apoptosis in skin flap was observed through TUNEL staining and presented as the percentage of TUNEL-positive cells of total cells. pASK-1, pJNK, Bcl-2 and Bax were examined by immunodetection. In addition Bcl-2, Bax and caspase-3 were detected by qPCR. Caspase-3 activity was also measured. Compared to the Group 2, tissues from the group 3 were observed with a high expression of Bcl-2 and a low expression of pASK-1, pJNK, and Bax, a larger survival area and a high level of blood perfusion. Hydrogen-rich saline ameliorated inflammatory infiltration and decreased cell apoptosis. The results indicate that hydrogen-rich saline could ameliorate ischemia/reperfusion injury and improve flap survival rate by inhibiting the apoptosis factor and, at the same time, promoting the expression of anti-apoptosis factor. Copyright © 2015. Published by Elsevier Ltd.
Gunnarsson, S; Johansson, M; Gústavsson, A; Arnason, T; Arnason, J; Smáradóttir, H; Björnsson, B Th; Thorarensen, H; Imsland, A K
2014-10-01
The effects of a 6 week short-day photoperiod followed by continuous light, applied during the juvenile phase of Arctic charr Salvelinus alpinus in fresh water on smoltification and on the long-term growth and maturity following transfer to brackish water (BW) (constant salinity of either 17 and 27 or increasing salinity in steps from 17 to 27) were investigated. Prior to salinity transfer, the juveniles were either reared at continuous light (C group) or reared for 6 weeks on a short day (8L:16D, S group) followed by continuous light (24L:0D). Increased salinity had negative effect on growth, with female fish reared at 17 salinity weighing 19 and 27% more than the salinity-step group (17-27) and the 27 salinity group, respectively. The stepwise acclimation to salinity had limited advantage in terms of growth rate. Short photoperiod for 6 weeks (November to January) followed by continuous light improved growth, but not seawater (SW) tolerance. Gill Na(+) , K(+) -ATPase activity and plasma Na(+) levels changed with time, indicating some variation in osmoregulatory capacity during the experimental period. Overall, there appear to be interactive effects on maturation from applying short-day photoperiod followed by rearing at higher salinities. Plasma leptin varied with time and may be linked to stress caused by the observed variations in osmoregulatory ability. It is concluded that changes in growth rates observed in this study are mainly related to rearing salinity with higher growth rates at lower salinities. Short-day photoperiod has some growth-inducing effects but did not improve SW tolerance. Farmers of S. alpinus using BW for land-based rearing should keep salinity at moderate and stable levels according to these results to obtain best growth. © 2014 The Fisheries Society of the British Isles.
Simulating polar bear energetics during a seasonal fast using a mechanistic model.
Mathewson, Paul D; Porter, Warren P
2013-01-01
In this study we tested the ability of a mechanistic model (Niche Mapper™) to accurately model adult, non-denning polar bear (Ursus maritimus) energetics while fasting during the ice-free season in the western Hudson Bay. The model uses a steady state heat balance approach, which calculates the metabolic rate that will allow an animal to maintain its core temperature in its particular microclimate conditions. Predicted weight loss for a 120 day fast typical of the 1990s was comparable to empirical studies of the population, and the model was able to reach a heat balance at the target metabolic rate for the entire fast, supporting use of the model to explore the impacts of climate change on polar bears. Niche Mapper predicted that all but the poorest condition bears would survive a 120 day fast under current climate conditions. When the fast extended to 180 days, Niche Mapper predicted mortality of up to 18% for males. Our results illustrate how environmental conditions, variation in animal properties, and thermoregulation processes may impact survival during extended fasts because polar bears were predicted to require additional energetic expenditure for thermoregulation during a 180 day fast. A uniform 3°C temperature increase reduced male mortality during a 180 day fast from 18% to 15%. Niche Mapper explicitly links an animal's energetics to environmental conditions and thus can be a valuable tool to help inform predictions of climate-related population changes. Since Niche Mapper is a generic model, it can make energetic predictions for other species threatened by climate change.
Simulating Polar Bear Energetics during a Seasonal Fast Using a Mechanistic Model
Mathewson, Paul D.; Porter, Warren P.
2013-01-01
In this study we tested the ability of a mechanistic model (Niche Mapper™) to accurately model adult, non-denning polar bear (Ursus maritimus) energetics while fasting during the ice-free season in the western Hudson Bay. The model uses a steady state heat balance approach, which calculates the metabolic rate that will allow an animal to maintain its core temperature in its particular microclimate conditions. Predicted weight loss for a 120 day fast typical of the 1990s was comparable to empirical studies of the population, and the model was able to reach a heat balance at the target metabolic rate for the entire fast, supporting use of the model to explore the impacts of climate change on polar bears. Niche Mapper predicted that all but the poorest condition bears would survive a 120 day fast under current climate conditions. When the fast extended to 180 days, Niche Mapper predicted mortality of up to 18% for males. Our results illustrate how environmental conditions, variation in animal properties, and thermoregulation processes may impact survival during extended fasts because polar bears were predicted to require additional energetic expenditure for thermoregulation during a 180 day fast. A uniform 3°C temperature increase reduced male mortality during a 180 day fast from 18% to 15%. Niche Mapper explicitly links an animal’s energetics to environmental conditions and thus can be a valuable tool to help inform predictions of climate-related population changes. Since Niche Mapper is a generic model, it can make energetic predictions for other species threatened by climate change. PMID:24019883
Mapper: high throughput maskless lithography
NASA Astrophysics Data System (ADS)
Kuiper, V.; Kampherbeek, B. J.; Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Boers, J.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.
2009-01-01
Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. A new platform has been designed and built which contains a 300 mm wafer stage, a wafer handler and an electron beam column with 110 parallel electron beams. This manuscript describes the first patterning results with this 300 mm platform.
Neutral Atomic Emissions from Comet Hale-Bopp
NASA Astrophysics Data System (ADS)
Oliversen, R. J.; Scherb, F.; Roesler, F. L.; Mierkiewicz, E. J.; Woodward, R. C.; Hilton, G. M.; Doane, N. E.
1997-07-01
High resolution (R=100,000) spectra of atomic oxygen, hydrogen, and carbon from Comet Hale-Bopp were obtained at the NSO McMath-Pierce main telescope from February 8 to April 19, 1997, using a 50 mm dual-etalon Fabry-Perot/CCD spectrometer. The field of view was 6 arcmin. Spectra with good signal-to-noise were obtained for the emission lines [O I] 6300 Angstroms, Hα (6563 Angstroms), and [C I] 9850 Angstroms. On several of these nights, complementary [O I] 6300 Angstroms observations were simultaneously obtained with the Wisconsin Hα Mapper (WHα M) at Kitt Peak. Additional [O I] 6300 Angstroms observations were also obtained in September 1996. These [C I] 9850 Angstroms observations are the first extensive data set of this cometary line. We will present an overview of our observations and preliminary results.
Goode, Daniel J.; Senior, Lisa A.; Subah, Ali; Jaber, Ayman
2013-01-01
Changes in groundwater levels and salinity in six groundwater basins in Jordan were characterized by using linear trends fit to well-monitoring data collected from 1960 to early 2011. On the basis of data for 117 wells, groundwater levels in the six basins were declining, on average about -1 meter per year (m/yr), in 2010. The highest average rate of decline, -1.9 m/yr, occurred in the Jordan Side Valleys basin, and on average no decline occurred in the Hammad basin. The highest rate of decline for an individual well was -9 m/yr. Aquifer saturated thickness, a measure of water storage, was forecast for year 2030 by using linear extrapolation of the groundwater-level trend in 2010. From 30 to 40 percent of the saturated thickness, on average, was forecast to be depleted by 2030. Five percent of the wells evaluated were forecast to have zero saturated thickness by 2030. Electrical conductivity was used as a surrogate for salinity (total dissolved solids). Salinity trends in groundwater were much more variable and less linear than groundwater-level trends. The long-term linear salinity trend at most of the 205 wells evaluated was not increasing, although salinity trends are increasing in some areas. The salinity in about 58 percent of the wells in the Amman-Zarqa basin was substantially increasing, and the salinity in Hammad basin showed a long-term increasing trend. Salinity increases were not always observed in areas with groundwater-level declines. The highest rates of salinity increase were observed in regional discharge areas near groundwater pumping centers.
Surface pH changes suggest a role for H+/OH- channels in salinity response of Chara australis.
Absolonova, Marketa; Beilby, Mary J; Sommer, Aniela; Hoepflinger, Marion C; Foissner, Ilse
2018-05-01
To understand salt stress, the full impact of salinity on plant cell physiology has to be resolved. Electrical measurements suggest that salinity inhibits the proton pump and opens putative H + /OH - channels all over the cell surface of salt sensitive Chara australis (Beilby and Al Khazaaly 2009; Al Khazaaly and Beilby 2012). The channels open transiently at first, causing a characteristic noise in membrane potential difference (PD), and after longer exposure remain open with a typical current-voltage (I/V) profile, both abolished by the addition of 1 mM ZnCl 2 , the main known blocker of animal H + channels. The cells were imaged with confocal microscopy, using fluorescein isothiocyanate (FITC) coupled to dextran 70 to illuminate the pH changes outside the cell wall in artificial fresh water (AFW) and in saline medium. In the early saline exposure, we observed alkaline patches (bright fluorescent spots) appearing transiently in random spatial distribution. After longer exposure, some of the spots became fixed in space. Saline also abolished or diminished the pH banding pattern observed in the untreated control cells. ZnCl 2 suppressed the alkaline spot formation in saline and the pH banding pattern in AFW. The osmotic component of the saline stress did not produce transient bright spots or affect banding. The displacement of H + from the cell wall charges, the H + /OH - channel conductance/density, and self-organization are discussed. No homologies to animal H + channels were found. Salinity activation of the H + /OH - channels might contribute to saline response in roots of land plants and leaves of aquatic angiosperms.
NASA Astrophysics Data System (ADS)
Susanto, R. D.; Setiawan, A.; Zheng, Q.; Sulistyo, B.; Adi, T. R.; Agustiadi, T.; Trenggono, M.; Triyono, T.; Kuswardani, A.
2016-12-01
The seasonal variability of a full lifetime of Aquarius sea surface salinity time series from August 25, 2011 to June 7, 2015 is compared to salinity time series obtained from in situ observations in the Karimata Strait. The Karimata Strait plays dual roles in water exchange between the Pacific and the Indian Ocean. The salinity in the Karimata Strait is strongly affected by seasonal monsoon winds. During the boreal winter monsoon, northwesterly winds draws low salinity water from the South China Sea into the Java Sea and at the same time, the Java Sea receives an influx of the Indian Ocean water via the Sunda Strait. The Java Sea water will reduce the main Indonesian throughflow in the Makassar Strait. Conditions are reversed during the summer monsoon. Low salinity water from the South China Sea also controls the vertical structure of water properties in the upper layer of the Makassar Strait and the Lombok Strait. As a part of the South China Sea and Indonesian Seas Transport/Exchange (SITE) program, trawl resistance bottom mounted CTD was deployed in the Karimata Strait in mid-2010 to mid-2016 at water depth of 40 m. CTD casts during the mooring recoveries and deployments are used to compare the bottom salinity data. This in situ salinity time series is compared with various Aquarius NASA salinity products (the level 2, level 3 ascending and descending tracks and the seven-days rolling averaged) to check the consistency, correlation and statistical analysis. The preliminary results show that the seasonal variability of Aquarius salinity time series has larger amplitude variability compared to that of in situ data.
Hydrography and circulation west of Sardinia in June 2014
NASA Astrophysics Data System (ADS)
Knoll, Michaela; Borrione, Ines; Fiekas, Heinz-Volker; Funk, Andreas; Hemming, Michael P.; Kaiser, Jan; Onken, Reiner; Queste, Bastien; Russo, Aniello
2017-11-01
In the frame of the REP14-MED sea trial in June 2014, the hydrography and circulation west of Sardinia, observed by means of gliders, shipborne CTD (conductivity, temperature, depth) instruments, towed devices, and vessel-mounted ADCPs (acoustic doppler current profilers), are presented and compared with previous knowledge. So far, the circulation is not well-known in this area, and the hydrography is subject to long-term changes. Potential temperature, salinity, and potential density ranges as well as core values of the observed water masses were determined. Modified Atlantic Water (MAW), with potential density anomalies below 28.72 kg m-3, showed a salinity minimum of 37.93 at 50 dbar. Levantine Intermediate Water (LIW), with a salinity maximum of about 38.70 at 400 dbar, was observed within a range of 28.72<σΘ/(kg m-3) < 29.10. MAW and LIW showed slightly higher salinities than previous investigations. During the trial, LIW covered the whole area from the Sardinian shelf to 7°15' E. Only north of 40° N was it tied to the continental slope. Within the MAW, a cold and saline anticyclonic eddy was observed in the southern trial area. The strongest variability in temperature and salinity appeared around this eddy, and in the southwestern part of the domain, where unusually low saline surface water entered the area towards the end of the experiment. An anticyclonic eddy of Winter Intermediate Water was recorded moving northward at 0.014 m s-1. Geostrophic currents and water mass transports calculated across zonal and meridional transects showed a good agreement with vessel-mounted ADCP measurements. Within the MAW, northward currents were observed over the shelf and offshore, while a southward transport of about 1.5 Sv occurred over the slope. A net northward transport of 0.38 Sv across the southern transect decreased to zero in the north. Within the LIW, northward transports of 0.6 Sv across the southern transects were mainly observed offshore, and decreased to 0.3 Sv in the north where they were primarily located over the slope. This presentation of the REP14-MED observations helps to further understand the long-term evolution of hydrography and circulation in the Western Mediterranean, where considerable changes occurred after the Eastern Mediterranean Transient and the Western Mediterranean Transition.
NASA Technical Reports Server (NTRS)
Hoffer, R. M.; Dean, M. E.; Knowlton, D. J.; Latty, R. S.
1982-01-01
Kershaw County, South Carolina was selected as the study site for analyzing simulated thematic mapper MSS data and dual-polarized X-band synthetic aperture radar (SAR) data. The impact of the improved spatial and spectral characteristics of the LANDSAT D thematic mapper data on computer aided analysis for forest cover type mapping was examined as well as the value of synthetic aperture radar data for differentiating forest and other cover types. The utility of pattern recognition techniques for analyzing SAR data was assessed. Topics covered include: (1) collection and of TMS and reference data; (2) reformatting, geometric and radiometric rectification, and spatial resolution degradation of TMS data; (3) development of training statistics and test data sets; (4) evaluation of different numbers and combinations of wavelength bands on classification performance; (5) comparison among three classification algorithms; and (6) the effectiveness of the principal component transformation in data analysis. The collection, digitization, reformatting, and geometric adjustment of SAR data are also discussed. Image interpretation results and classification results are presented.
Remote sensing of coastal wetlands biomass using Thematic Mapper wavebands
NASA Technical Reports Server (NTRS)
Hardisky, M. A.; Klemas, V.
1985-01-01
Spectral data, simulating thematic mapper bands 3, 4 and 5 are gathered in salt and brackish marshes using a hand-held radiometer. Simple regression models are developed equating spectral radiance indices with total live biomass for S. alterniflora in a salt marsh and for a variety of plant species in a brackish marsh. Models are then tested using an independent set of data and compared to harvest estimates of biomass. In the salt marsh, biomass estimates from spectral data are similar to harvest biomass estimates during most of the growing season. Estimates of annual net aerial primary productivity calculated from spectral data are within 21% of production estimated from harvest data. During August, biomass estimates from spectral data in the brackish marsh are similar to biomass estimated by harvesting techniques. At other times during the growing season, spectral data estimates of biomass are not always comparable to harvest biomass estimates. Reasonable estimates of wetlands biomass are possible during the peak of the growing season (August) using spectral data similar to thematic mapper bands 3, 4 and 5 gathered with hand-held radiometers.
The influence of salinity on metal uptake and effects in the midge Chironomus maddeni.
Bidwell, Joseph R; Gorrie, John R
2006-01-01
The influence of different porewater salinities (up to 12 g/L) on the toxicity and bioaccumulation of copper, zinc and lead from metal-spiked sediments was assessed using the midge, Chironomus maddeni. Survival of the larvae was significantly reduced at a porewater salinity of 12 g/L, but no effects were observed at 4 or 8 g/L. Both growth and survival of C. maddeni were reduced after exposure to salt/metal spiked sediments as compared to those exposed to sediments spiked with metals or salt alone. Increased salinity resulted in increased bioaccumulation of copper and zinc, but decreased bioaccumulation of lead. The observed patterns of bioaccumulation were not entirely explained by the modelled free ion activities of the metals, indicating that factors such as osmotic stress, consumption of metal-contaminated sediments or metal interactions may have been important as well. These results highlight the need to consider the influence of existing or potential salinization when undertaking hazard assessments of freshwater systems impacted by contaminants such as trace metals.
Influence of the Yukon River on the Bering Sea
NASA Technical Reports Server (NTRS)
Dean, Kenneson G.; Mcroy, C. Peter
1988-01-01
Physical and biological oceanography of the northern Bering Sea including the influence of the Yukon River were studied. Satellite data acquired by the Advanced Very High Resolution Radiometer (AVHRR), the LANDSAT Multispectral Scanner (MSS) and the Thematic Mapper (TM) sensor were used to detect sea surface temperatures and suspended sediments. Shipboard measurements of temperature, salinity and nutrients were acquired through the Inner Shelf Transfer and Recycling (ISHTAR) project and were compared to digitally enhanced and historical satellite images. The satellite data reveal north-flowing, warm water along the Alaskan coast that is highly turbid with complex patterns of surface circulation near the Yukon River delta. To the west near the Soviet Union, cold water, derived from an upwelling, mixes with shelf water and also flows north. The cold and warm water coincide with the Anadyr, Bering Shelf and Alaskan coastal water masses. Generally, warm Alaskan coastal water forms near the coast and extends offshore as the summer progresses. Turbid water discharged by the Yukon River progresses in the same fashion but extends northward across the entrance to Norton Sound, attaining its maximum surface extent in October. The Anadyr water flows northward and around St. Lawrence Island, but its extent is highly variable and depends upon mesoscale pressure fields in the Arctic Ocean and the Bering Sea.
New horizons in remote sensing for forest range resource management
Lauer, D.T.
1985-01-01
Forest and range resource scientists were among the first to recognize the potential of aircraft and satellite remote sensing for management of timber, forage, water, and wildlife resource. Today, data from a variety of sensor systems are being put to practical use for inventorying, monitoring, and assessing forest and range resources. In the future, improved sensor systems providing new kinds of data will be available. Likewise, new types of data handling and processing systems can be anticipated. Among the new or anticipated aircraft and satellite systems and/or data are National High-Altitude Photograph II, U. S. Geological Survey-acquired Side-Looking Airborne Radar, the Landsat thematic mapper, the National Oceanic Resolution Radiometer, the French Systeme Probatoire d'Observation de la Terre (SPOT) satellite, the European Space Agency Earth Resources Satellite, the National Aeronautics and Space Administration Large Format Camera and Shuttle Imaging Radar (SIR-A, -B, and -C), and a variety of other systems in existence or planned by the Soviets, Japanese, Canadians, Chinese, Brazilians, Indonesians, and other. Application examples are presented that illustrate uses of 1-kilometer-resolution AVHRR data, 80-meter Landsat multispectral scanner data, 30-meter Landsat thematic mapper data, and 10-meter SPOT-simulator data. These examples address fire fuel monitoring, land cover mapping, rangeland assessment, and soils landscape mapping.
Leib, Kenneth J.; Bauch, Nancy J.
2008-01-01
In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley Salinity Control Unit was 10,700 tons/year. This accounts for approximately 27 percent of the decrease observed downstream from the Grand Valley Salinity Control Unit. Salinity loads were decreasing at the fastest rate (6,950 tons/year) in Region 4, which drains an area between the Colorado River at Cameo, Colorado (station CAMEO) and Colorado River above Glenwood Springs, Colorado (station GLEN) streamflow-gaging stations. Trends in salinity concentration and streamflow were tested at station CAMEO to determine if salinity concentration, streamflow, or both are controlling salinity loads upstream from the Grand Valley Salinity Control Unit. Trend tests of individual ion concentrations were included as potential indicators of what sources (based on mineral composition) may be controlling trends in the upper Colorado. No significant trend was detected for streamflow from 1986 to 2003 at station CAMEO; however, a significant downward trend was detected for salinity concentration. The trend slope indicates that salinity concentration is decreasing at a median rate of about 3.54 milligrams per liter per year. Five major ions (calcium, magnesium, sodium, sulfate, and chloride) were tested for trends. The results indicate that processes within source areas with rock and soil types (or other unidentified sources) bearing calcium, sodium, and sulfate had the largest effect on the downward trend in salinity load upstream from station CAMEO. Downward trends in salinity load resulting from ground-water sources and/or land-use change were thought to be possible reasons for the observed decreases in salinity loads; however, the cause or causes of the decreasing salinity loads are not fully understood. A reduction in the amount of ground-water percolation from Region 4 (resulting from work done through Federal irrigation system improvement programs as well as privately funded irrigation system improvements) has helped reduce annual salinity load from Region 4 by approxima
NASA Technical Reports Server (NTRS)
Butera, M. K.
1977-01-01
Vegetation in selected study areas on the Louisiana coast was mapped using low altitude aircraft and satellite (LANDSAT) multispectral scanner data. Fresh, brackish, and saline marshes were then determined from the remotely sensed presence of dominant indicator plant associations. Such vegetational classifications were achieved from data processed through a standard pattern recognition computer program. The marsh salinity zone maps from the aircraft and satellite data compared favorably within the broad salinity regimes. The salinity zone boundaries determined by remote sensing compared favorably with those interpolated from line-transect field observations from an earlier year.
The long-term salinity field in San Francisco Bay
Uncles, R.J.; Peterson, D.H.
1996-01-01
Data are presented on long-term salinity behaviour in San Francisco Bay, California. A two-level, width averaged model of the tidally averaged salinity and circulation has been written in order to interpret the long-term (days to decades) salinity variability. The model has been used to simulate daily averaged salinity in the upper and lower levels of a 51 segment discretization of the Bay over the 22-yr period 1967-1988. Monthly averaged surface salinity from observations and monthly-averaged simulated salinity are in reasonable agreement. Good agreement is obtained from comparison with daily averaged salinity measured in the upper reaches of North Bay. The salinity variability is driven primarily by freshwater inflow with relatively minor oceanic influence. All stations exhibit a marked seasonal cycle in accordance with the Mediterranean climate, as well as a rich spectrum of variability due to extreme inflow events and extended periods of drought. Monthly averaged salinity intrusion positions have a pronounced seasonal variability and show an approximately linear response to the logarithm of monthly averaged Delta inflow. Although few observed data are available for studies of long-term salinity stratification, modelled stratification is found to be strongly dependent on freshwater inflow; the nature of that dependence varies throughout the Bay. Near the Golden Gate, stratification tends to increase up to very high inflows. In the central reaches of North Bay, modelled stratification maximizes as a function of inflow and further inflow reduces stratification. Near the head of North Bay, lowest summer inflows are associated with the greatest modelled stratification. Observations from the central reaches of North Bay show marked spring-neap variations in stratification and gravitational circulation, both being stronger at neap tides. This spring-neap variation is simulated by the model. A feature of the modelled stratification is a hysteresis in which, for a given spring-neap tidal range and fairly steady inflows, the stratification is higher progressing from neaps to springs than from springs to neaps. The simulated responses of the Bay to perturbations in coastal sea salinity and Delta inflow have been used to further delineate the time-scales of salinity variability. Simulations have been performed about low inflow, steady-state conditions for both salinity and Delta inflow perturbations. For salinity perturbations a small, sinusoidal salinity signal with a period of 1 yr has been applied at the coastal boundary as well as a pulse of salinity with a duration of one day. For Delta inflow perturbations a small, sinusoidally varying inflow signal with a period of 1 yr has been superimposed on an otherwise constant Delta inflow, as well as a pulse of inflow with a duration of one day. Perturbations is coastal salinity dissipate as they move through the Bay. Seasonal perturbations require about 40-45 days to propagate from the coastal ocean to the Delta and to the head of South Bay. The response times of the model to perturbations in freshwater inflow are faster than this in North Bay and comparable in South Bay. In North Bay, time-scales are consistent with advection due to lower level, up-estuary transport of coastal salinity perturbations; for inflow perturbations, faster response times arise from both upper level, down-estuary advection and much faster, down-estuary migration of isohalines in response to inflow volume continuity. In South Bay, the dominant time-scales are governed by tidal dispersion.
NASA Astrophysics Data System (ADS)
Lee, J.; Chang, H.
2001-12-01
In this research, we investigate the reciprocal influence between groundwater flow and its salinization occurred in two underground cavern sites, using major ion chemistry, PCA for chemical analysis data, and cross-correlation for various hydraulic data. The study areas are two underground LPG storage facilities constructed in South Sea coast, Yosu, and West Sea coastal regions, Pyeongtaek, Korea. Considerably high concentration of major cations and anions of groundwaters at both sites showed brackish or saline water types. In Yosu site, some great chemical difference of groundwater samples between rainy and dry season was caused by temporal intrusion of high-saline water into propane and butane cavern zone, but not in Pyeongtaek site. Cl/Br ratios and δ 18O- δ D distribution for tracing of salinization source water in both sites revealed that two kind of saline water (seawater and halite-dissolved solution) could influence the groundwater salinization in Yosu site, whereas only seawater intrusion could affect the groundwater chemistry of the observation wells in Pyeongtaek site. PCA performed by 8 and 10 chemical ions as statistical variables in both sites showed that intensive intrusion of seawater through butane cavern was occurred at Yosu site while seawater-groundwater mixing was observed at some observation wells located in the marginal part of Pyeongtaek site. Cross-correlation results revealed that the positive relationship between hydraulic head and cavern operating pressure was far more conspicuous at propane cavern zone in both sites (65 ~90% of correlation coefficients). According to the cross-correlation results of Yosu site, small change of head could provoke massive influx of halite-dissolved solution from surface through vertically developed fracture networks. However in Pyeongtaek site, the pressure-sensitive observation wells are not completely consistent with seawater-mixed wells, and the hydraulic change of heads at these wells related to the operating pressure is highly associated with horizontal fault developed along the east-west line of propane cavern zone.
USDA-ARS?s Scientific Manuscript database
Aquarius is a combined passive/active L-band microwave instrument developed to map the ocean surface salinity field from space. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open oc...
NASA Astrophysics Data System (ADS)
Wang, Bin; Hirose, Naoki; Yuan, Dongliang; Moon, Jae-Hong; Pan, Xishan
2017-07-01
Offshore extension of the fresh Subei coast water is identified in winter based on in site salinity observation data in this and previous studies. A high-resolution regional ocean circulation model is used to investigate the cross-isobath movement of low salinity-water over the Yellow and East China Seas, and it has reproduced the salinity distribution observed in the winter of 2014-2015 successfully. The model suggests that the low-salinity water is basically degenerated back to the eastern coast of China in winter because of strong northeasterly wind. However, a part of the low-salinity water extends offshore in the southeast direction across the 20-50 m isobaths over the Yangtze Bank, which cannot be explained by either the northerly winter monsoon or the Changjiang discharge. Numerical experiments suggest that the cross-isobath transport of the soluble substances is highly attributed to the tidal residual current, flowing southeastward across 20-50 m isobaths over the whole Yangtze Bank. The results of controlled experiments also indicate that the bottom shear of the tidal current, rather than the tidal mixing, plays a significant role in the cross-isobath current during winter.
High temperature, high intensity solar array. [for Venus Radar Mapper mission
NASA Technical Reports Server (NTRS)
Smith, B. S.; Brooks, G. R.; Pinkerton, R.
1985-01-01
The solar array for the Venus Radar Mapper mission will operate in the high temperature, high intensity conditions of a low Venus orbit environment. To fulfill the performance requirements in this environment at minimum cost and mass while maximizing power density and packing factor on the panel surface, several features were introduced into the design. These features included the use of optical surface reflectors (OSR's) to reduce the operating temperature; new adhesives for conductive bonding of OSR's to avoid electrostatic discharges; custom-designed large area cells and novel shunt diode circuit and panel power harness configurations.
Mineralogy of the Lunar Crust in Spatial Context: First Results from the Moon Mineralogy Mapper (M3)
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Combe, J-P; Green, R.; Goswami, J. N.; Head, J. W., III; Hicks, M.; Isaacson, P.;
2009-01-01
India's Chandrayaan-1 successfully launched October 22, 2008 and went into lunar orbit a few weeks later. Commissioning of instruments began in late November and was near complete by the end of the year. Initial data for NASA's Moon Mineralogy Mapper (M3) were acquired across the Orientale Basin and the science results are discussed here. M 3 image-cube data provide mineralogy of the surface in geologic context. A major new result is that the existence and distribution of massive amounts of anorthosite as a continuous stratigraphic crustal layer is now irrefutable.
Radiometric calibration of Landsat Thematic Mapper multispectral images
Chavez, P.S.
1989-01-01
A main problem encountered in radiometric calibration of satellite image data is correcting for atmospheric effects. Without this correction, an image digital number (DN) cannot be converted to a surface reflectance value. In this paper the accuracy of a calibration procedure, which includes a correction for atmospheric scattering, is tested. Two simple methods, a stand-alone and an in situ sky radiance measurement technique, were used to derive the HAZE DN values for each of the six reflectance Thematic Mapper (TM) bands. The DNs of two Landsat TM images of Phoenix, Arizona were converted to surface reflectances. -from Author
NASA Technical Reports Server (NTRS)
Quattrochi, D. A.
1984-01-01
An initial analysis of LANDSAT 4 Thematic Mapper (TM) data for the discrimination of agricultural, forested wetland, and urban land covers is conducted using a scene of data collected over Arkansas and Tennessee. A classification of agricultural lands derived from multitemporal LANDSAT Multispectral Scanner (MSS) data is compared with a classification of TM data for the same area. Results from this comparative analysis show that the multitemporal MSS classification produced an overall accuracy of 80.91% while the TM classification yields an overall classification accuracy of 97.06% correct.
NASA Technical Reports Server (NTRS)
Settle, M.; Chavez, P.; Kieffer, H. H.; Everett, J. R.; Kahle, A. B.; Kitcho, C. A.; Milton, N. M.; Mouat, D. A.
1983-01-01
The geological applications of remote sensing technology are discussed, with emphasis given to the analysis of data from the Thematic Mapper (TM) instrument onboard the Landsat 4 satellite. The flight history and design characteristics of the Landsat 4/TM are reviewed, and some difficulties endountered in the interpretation of raw TM data are discussed, including: the volume of data; residual noise; detector-to-detector striping; and spatial misregistration between measurements. Preliminary results of several geological, lithological, geobotanical mapping experiments are presented as examples of the geological applications of the TM, and some areas for improving the guality of TM imagery are identified.
Comparison of existing digital image analysis systems for the analysis of Thematic Mapper data
NASA Technical Reports Server (NTRS)
Likens, W. C.; Wrigley, R. C.
1984-01-01
Most existing image analysis systems were designed with the Landsat Multi-Spectral Scanner in mind, leaving open the question of whether or not these systems could adequately process Thematic Mapper data. In this report, both hardware and software systems have been evaluated for compatibility with TM data. Lack of spectral analysis capability was not found to be a problem, though techniques for spatial filtering and texture varied. Computer processing speed and data storage of currently existing mini-computer based systems may be less than adequate. Upgrading to more powerful hardware may be required for many TM applications.
Lightning mapper sensor design study
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Poon, C. W.; Shelton, J. C.; Laverty, N. P.; Cook, R. D.
1983-01-01
World-wide continuous measurement of lightning location, intensity, and time during both day and night is to be provided by the Lightning Mapper (LITMAP) instrument. A technology assessment to determine if the LITMAP requirements can be met using existing sensor and electronic technologies is presented. The baseline concept discussed in this report is a compromise among a number of opposing requirements (e.g., ground resolution versus array size; large field of view versus narrow bandpass filter). The concept provides coverage for more than 80 percent of the lightning events as based on recent above-cloud NASA/U2 lightning measurements.
NASA Technical Reports Server (NTRS)
Browder, Joan A.; May, L. Nelson, Jr.; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.
1987-01-01
A stochastic spatial computer model addressing coastal resource problems in Lousiana is being refined and validated using thematic mapper (TM) imagery. The TM images of brackish marsh sites were processed and data were tabulated on spatial parameters from TM images of the salt marsh sites. The Fisheries Image Processing Systems (FIPS) was used to analyze the TM scene. Activities were concentrated on improving the structure of the model and developing a structure and methodology for calibrating the model with spatial-pattern data from the TM imagery.
NASA Technical Reports Server (NTRS)
Markham, Brian L.; Wood, Frank M., Jr.; Ahmad, Suraiya P.
1988-01-01
The NS001 Thematic Mapper Simulator scanner (TMS) and several modular multispectral radiometers (MMRs) are among the primary instruments used in the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE). The NS001 has a continuously variable gain setting. Calibration of the NS001 data is influenced by drift in the dark current level of up to six counts during a mirror scan at typical gain settings. The MMR instruments are being used in their 1 deg FOV configuration on the helicopter and 15 deg FOV on the ground.
Cropland measurement using Thematic Mapper data and radiometric model
NASA Technical Reports Server (NTRS)
Lyon, John G.; Khuwaiter, I. H. S.
1989-01-01
To halt erosion and desertification, it is necessary to quantify resources that are affected. Necessary information includes inventory of croplands and desert areas as they change over time. Several studies indicate the value of remote sensor data as input to inventories. In this study, the radiometric modeling of spectral characteristics of soil and vegetation provides the theoretical basis for the remote sensing approach. Use of Landsat Thematic Mapper images allows measurement of croplands in Saudi Arabia, demonstrating the capability of the approach. The inventory techniques and remote sensing approach presented are potentially useful in developing countries.
GOES-R Geostationary Lightning Mapper Performance Specifications and Algorithms
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Petersen, William A.; Boldi, Robert A.; Carey, Lawrence D.; Bateman, Monte G.; Buchler, Dennis E.; McCaul, E. William, Jr.
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.
Fifty Years of Water Cycle Change expressed in Ocean Salinity
NASA Astrophysics Data System (ADS)
Durack, P. J.; Wijffels, S.
2010-12-01
Using over 1.6 million profiles of salinity, potential temperature and density from historical archives and Argo, we derive the global field of linear change for ocean state properties over the period 1950-2008, taking care to minimise aliasing associated with seasonal and El Nino Southern Oscillation modes. We find large, robust and spatially coherent multi-decadal linear trends in ocean surface salinities. Increases are found in evaporation-dominated regions and freshening in precipitation-dominated regions. The spatial patterns of surface change strongly resemble the climatological mean surface salinity field, consistent with an amplification of the global water cycle. A robust amplification of the mean salinity pattern of 8% (to 200m depth) is found globally and 5-9% is found in each of the 3 key ocean basins. 20th century runs from the CMIP3 model suite support the relationship between amplified patterns of freshwater flux driving an amplified pattern of ocean surface salinity only in models that warm substantially. Models with volcanic aerosols show a diminished warming response and a corresponding weak response in ocean surface salinity change, which implies dampened changes to the global water cycle. The warming response represented in realistic (when compared to observations) 20th century simulations appear quite similar in their broad zonal patterns to those of the projected 21st century simulations, these projected runs being strongly forced by greenhouse gases. This pattern amplification is mostly absent from 20th century simulations which include volcanic forcing. While we confirm that global mean precipitation only weakly change with surface warming (2-3% K-1), the pattern amplification rate in both the freshwater flux and ocean salinity fields indicate larger responses. Our new observed salinity estimates suggest a change of between 8-16% K-1, close to, or greater than, the theoretical response described by the Clausius-Clapeyron relation. The underestimation of change patterns by the CMIP3 model suite is well documented in recent literature describing changes to the atmospheric and terrestrial arms of the global water cycle. These new observational ocean results add emphasis to the conclusion that the rate of observed changes in the 20th century are larger than CMIP3 models, and simplified physical theories predict. A) The 50-year linear surface salinity trend (pss/50-years). Contours every 0.25 pss are plotted in white. B) Ocean-atmosphere freshwater flux (m3 yr-1) averaged over 1980-1993 (Josey et al., 1998). Contours every 1 m3 yr-1 are in white. On both panels, the 1975 surface mean salinity is contoured black (contour interval 0.5 pss for thin lines, 1 for thick lines).
NASA Astrophysics Data System (ADS)
Domingues, Ricardo; Goni, Gustavo; Bringas, Francis; Lee, Sang-Ki; Kim, Hyun-Sook; Halliwell, George; Dong, Jili; Morell, Julio; Pomales, Luis
2015-09-01
During October 2014, Hurricane Gonzalo traveled within 85 km from the location of an underwater glider situated north of Puerto Rico. Observations collected before, during, and after the passage of this hurricane were analyzed to improve our understanding of the upper ocean response to hurricane winds. The main finding in this study is that salinity potentially played an important role on changes observed in the upper ocean; a near-surface barrier layer likely suppressed the hurricane-induced upper ocean cooling, leading to smaller than expected temperature changes. Poststorm observations also revealed a partial recovery of the ocean to prestorm conditions 11 days after the hurricane. Comparison with a coupled ocean-atmosphere hurricane model indicates that model-observations discrepancies are largely linked to salinity effects described. Results presented in this study emphasize the value of underwater glider observations for improving our knowledge of how the ocean responds to tropical cyclone winds and for tropical cyclone intensification studies and forecasts.
NASA Astrophysics Data System (ADS)
Hasson, Audrey; Delcroix, Thierry; Boutin, Jacqueline; Dussin, Raphael; Ballabrera-Poy, Joaquim
2014-06-01
The tropical Pacific Ocean remained in a La Niña phase from mid-2010 to mid-2012. In this study, the 2010-2011 near-surface salinity signature of ENSO (El Niño-Southern Oscillation) is described and analyzed using a combination of numerical model output, in situ data, and SMOS satellite salinity products. Comparisons of all salinity products show a good agreement between them, with a RMS error of 0.2-0.3 between the thermosalinograph (TSG) and SMOS data and between the TSG and model data. The last 6 months of 2010 are characterized by an unusually strong tripolar anomaly captured by the three salinity products in the western half of the tropical Pacific. A positive SSS anomaly sits north of 10°S (>0.5), a negative tilted anomaly lies between 10°S and 20°S and a positive one south of 20°S. In 2011, anomalies shift south and amplify up to 0.8, except for the one south of 20°S. Equatorial SSS changes are mainly the result of anomalous zonal advection, resulting in negative anomalies during El Niño (early 2010), and positive ones thereafter during La Niña. The mean seasonal and interannual poleward drift exports those anomalies toward the south in the southern hemisphere, resulting in the aforementioned tripolar anomaly. The vertical salinity flux at the bottom of the mixed layer tends to resist the surface salinity changes. The observed basin-scale La Niña SSS signal is then compared with the historical 1998-1999 La Niña event using both observations and modeling.
Just add water and the Colorado River still reaches the sea.
Glenn, Edward P; Flessa, Karl W; Cohen, Michael J; Nagler, Pamela L; Rowell, Kirsten; Zamora-Arroyo, Francisco
2007-07-01
A recent article in Environmental Management by All argued that flood flows in North America's Colorado River do not reach the Gulf of California because they are captured and evaporated in Laguna Salada, a below sea-level lakebed near the mouth of the river. We refute this hypothesis by showing that (1) due to its limited area, the Laguna Salada could have evaporated less than 10% of the flood flows that have occurred since 1989; (2) low flow volumes preferentially flow to the Gulf rather than Laguna Salada; (3) All's method for detecting water surface area in the Laguna Salada appears to be flawed because Landsat Thematic Mapper images of the lakebed show it to be dry when All's analyses said it was flooded; (4) direct measurements of salinity at the mouth of the river and in the Upper Gulf of California during flood flows in 1993 and 1998 confirm that flood waters reach the sea; and (5) stable oxygen isotope signatures in clam shells and fish otoliths recorded the dilution of seawater with fresh water during the 1993 and 1998 flows. Furthermore, All's conclusion that freshwater flows do not benefit the ecology of the marine zone is incorrect because the peer-reviewed literature shows that postlarval larval shrimp populations increase during floods, and the subsequent year's shrimp harvest increases. Furthermore, freshwater flows increase the nursery area for Gulf corvina (Cynoscion othonopterus), an important commercial fish that requires estuarine habitats with salinities in the range of 26-38 per thousand during its natal stages. Although flood flows are now much diminished compared to the pre-dam era, they are still important to the remnant wetland and riparian habitats of the Colorado River delta and to organisms in the intertidal and marine zone. Only a small fraction of the flood flows are evaporated in Laguna Salada.
NASA Astrophysics Data System (ADS)
Sasaki, Hiroaki; Siswanto, Eko; Nishiuchi, Kou; Tanaka, Katsuhisa; Hasegawa, Toru; Ishizaka, Joji
2008-02-01
Absorption coefficients of colored dissolved organic matter (CDOM) [a g(λ)] were measured and relationship with salinity was derived in the East China Sea (ECS) during summer when amount of the Changjiang River discharge is large. Low salinity Changjiang Diluted Water (CDW) was observed widely in the shelf region and was considered to be the main origin of CDOM, resulting in a strong relationship between salinity and a g(λ). Error of satellite a g(λ) estimated by the present ocean color algorithm could be corrected by satellite-retrieved chlorophyll data. Satellite-retrieved salinity could be predicted with about +/-1.0 accuracy from satellite a g(λ) and the relation between salinity and a g(λ). Our study suggests that satellite-derived a g(λ) can be an indicator of the low salinity CDW during summer.
Unlocking the secrets of Venus surface mineralogy from orbit
NASA Astrophysics Data System (ADS)
Helbert, J.; Maturilli, A.; Ferrari, S.; Dyar, M. D.; Mueller, N. T.; Smrekar, S. E.; Koulen, J.
2016-12-01
The surface composition of a planet is a key to understand its interior and evolution. Proper interpretations of Venus surface observations in the near-infrared require a dedicated laboratory effort. The atmosphere of Venus dictates which spectral bands on the surface can be observed. This places severe constraints on the ability to identify rock-forming minerals. To complicate matters further, we cannot observe reflectance, as would be the standard at 1 mm. Observations are obtained on the night side where the thermal emission of the surface is measured directly. Finally, high surface temperatures are known to affect band positions of mineral spectra as expected from crystal field theory. Over the last year we have started at the Planetary Spectroscopy Laboratory (PSL) at DLR in Berlin, Germany to systematically build a spectral library for rocks and minerals under Venus thermal conditions. Using funding from the European Union as part of the EuroPlanet consortium we extended the spectral coverage for high temperature measurements down to 0.7 micron. The spectral library will be key in understanding and modeling differences in emissivity between ambient and Venus conditions, potentially enabling calibration transfer between datasets. We can show that the expected emissivity variation between felsic and mafic minerals would be observable even with the limited number of surface windows available. Furthermore the absolute emissivity derived from our laboratory measurements at Venus temperature match in situ reflectivity data from the Venera 9 and 10 landing sites in the same bands. Based on experience gained from using the VIRTIS instrument on Venus Express to observe the surface of Venus and the new high temperature laboratory experiments, we have developed the multi-spectral Venus Emissivity Mapper (VEM) to study the surface of Venus. VEM imposes minimal requirements on the spacecraft and mission design and can therefore be added to any future Venus mission. Ideally, the VEM instrument will be combined with a high-resolution radar mapper to provide accurate topographic information, as it will be the case for the proposed NASA Discovery VERITAS mission or the ESA EnVision M5 proposal.
Important observations and parameters for a salt water intrusion model
Shoemaker, W.B.
2004-01-01
Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.
Important observations and parameters for a salt water intrusion model.
Shoemaker, W Barclay
2004-01-01
Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.
A global algorithm for estimating Absolute Salinity
NASA Astrophysics Data System (ADS)
McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.
2012-12-01
The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).
Sasaki, Tsugihisa; Sounou, Tsutomu; Tsuji, Hideki; Sugiyama, Kazuhisa
2017-01-01
To facilitate the analysis of lacrimal conditions, we utilized high-definition dacryoendoscopy (HDD) and undertook observations with a pressure-controlled air-insufflation system. We report the safety and performance of HDD. In this retrospective, non-randomized clinical trial, 46 patients (14 males and 32 females; age range 39-91 years; mean age ± SD 70.3±12.0 years) who had lacrimal disorders were examined with HDD and conventional dacryoendoscopy (CD). The high-definition dacryoendoscope had 15,000 picture element image fibers and an advanced objective lens. Its outer diameter was 0.9-1.2 mm. Air insufflation was controlled at 0-20 kPa with a digital manometer-based pressure-controlled air-insufflation system to evaluate the quality of the image. The HDD had an air/saline irrigation channel between the outer sheath (outer diameter =1.2 mm) and the metal inner sheath of the endoscope. We used it and the CD in air, saline, and diluted milk saline with and without manual irrigation to quantitatively evaluate the effect of air pressure and saline irrigation on image quality. In vivo, the most significant improvement in image quality was demonstrated with air-insufflated (5-15 kPa) HDD, as compared with saline-irrigated HDD and saline-irrigated CD. No emphysema or damage was noted under observation with HDD. In vitro, no significant difference was demonstrated between air-insufflated HDD and saline-irrigated HDD. In vitro, the image quality of air-insufflated HDD was significantly improved as compared with that of saline-irrigated CD. Pressure-controlled (5-15 kPa) air-insufflated HDD is safe, and yields significantly better image quality than CD and saline-irrigated HDD.
A large-format imager for the SkyMapper Survey Telescope
NASA Astrophysics Data System (ADS)
Granlund, A.; Conroy, P. G.; Keller, S. C.; Oates, A. P.; Schmidt, B.; Waterson, M. F.; Kowald, E.; Dawson, M. I.
2006-06-01
The Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) at Mt Stromlo Observatory is developing a wide-field Cassegrain Imager for the new 1.3m SkyMapper Survey Telescope under construction for Siding Spring Observatory, NSW, Australia. The Imager features a fast-readout, low-noise 268 Million pixel CCD mosaic that provides a 5.7 square degree field of view. Given the close relative sizes of the telescope and Imager, the work is proceeding in close collaboration with the telescope's manufacturer, Electro Optics Systems Pty Ltd (Canberra, Australia). The design of the SkyMapper Imager focal plane is based on E2V (Chelmsford, UK) deep depletion CCDs. These devices have 2048 x 4096 15 micron pixels, and provide a 91% filling factor in our mosaic configuration of 4 x 8 chips. In addition, the devices have excellent quantum efficiency from 300nm-950nm, near perfect cosmetics, and low-read noise, making them well suited to the all-sky ultraviolet through near-IR Southern Sky Survey to be conducted by the telescope. The array will be controlled using modified versions of the new IOTA controllers being developed for Pan-STARRS by Onaka and Tonry et al. These controllers provide a cost effective, low-volume, high speed solution for our detector read-out requirements. The system will have an integrated 6-filter exchanger, and Shack-Hartmann optics, and will be cooled by closed-cycle helium coolers. This paper will present the specifications, and opto-mechanical and detector control design of the SkyMapper Imager, including the test results of the detector characterisation and manufacturing progress.
NASA Technical Reports Server (NTRS)
Anderson, Daniel; Lewis, David; Hilbert, Kent
2007-01-01
This Candidate Solution suggests the use of Aquarius sea surface salinity measurements to improve the NOAA/NCDDC (National Oceanic and Atmospheric Administration s National Coastal Data Development Center) HABSOS (Harmful Algal Blooms Observing System) DST (decision support tool) by enhancing development and movement forecasts of HAB events as well as potential species identification. In the proposed configuration, recurring salinity measurements from the Aquarius mission would augment HABSOS sea surface temperature and in situ ocean current measurements. Thermohaline circulation observations combined with in situ measurements increase the precision of HAB event movement forecasting. These forecasts allow coastal managers and public health officials to make more accurate and timely warnings to the public and to better direct science teams to event sites for collection and further measurements.
Application of digital analysis of MSS data to agro-environmental studies
NASA Technical Reports Server (NTRS)
Lewis, R. A.; Goward, S. N. (Principal Investigator)
1981-01-01
Progress in the application of digital analysis of multispectral scanner data to agro-environmental studies is described. Simulation of LANDSAT D thematic mapper (TM) observations from aircraft multispectral scanner data and field spectrometer data collected over a corn-soybean agricultural region in Webster County, Iowa during the 1979 growing season in support of the NASA/AgRISTARS program is described. The simulations were analyzed to evaluate the potential utility of the TM (1.55-1.75 micron) mid-infrared observations in corn-soybean discrimination. Current LANDSAT data was analyzed to study snow cover in northern New England and wetlands in Nebraska and Vermont. The application of satellite remote sensor data in additional environmental research areas is described.
Chander, Gyanesh; Mishra, N.; Helder, Dennis L.; Aaron, David; Choi, T.; Angal, A.; Xiong, X.
2010-01-01
Different applications and technology developments in Earth observations necessarily require different spectral coverage. Thus, even for the spectral bands designed to look at the same region of the electromagnetic spectrum, the relative spectral responses (RSR) of different sensors may be different. In this study, spectral band adjustment factors (SBAF) are derived using hyperspectral Earth Observing-1 (EO-1) Hyperion measurements to adjust for the spectral band differences between the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere (TOA) reflectance measurements from 2000 to 2009 over the pseudo-invariant Libya 4 reference standard test site.
Honig, Aaron; Supan, John; LaPeyre, Megan K.
2015-01-01
Benthic intertidal bivalves play an essential role in estuarine ecosystems by contributing to habitat provision, water filtration, and promoting productivity. As such, changes that impact population distributions and persistence of local bivalve populations may have large ecosystem level consequences. Recruitment, growth, mortality, population size structure and density of the gulf coast ribbed mussel, Geukensia granosissima, were examined across a salinity gradient in southeastern Louisiana. Data were collected along 100-m transects at interior and edge marsh plots located at duplicate sites in upper (salinity ~4 psu), central (salinity ~8 psu) and lower (salinity ~15 psu) Barataria Bay, Louisiana, U.S.A. Growth, mortality and recruitment were measured in established plots from April through November 2012. Mussel densities were greatest within the middle bay (salinity ~8) regardless of flooding regime, but strongly associated with highest stem densities of Juncus roemerianus vegetation. Mussel recruitment, growth, size and survival were significantly higher at mid and high salinity marsh edge sites as compared to all interior marsh and low salinity sites. The observed patterns of density, growth and mortality in Barataria Bay may reflect detrital food resource availability, host vegetation community distribution along the salinity gradient, salinity tolerance of the mussel, and reduced predation at higher salinity edge sites.
Damasceno, Évila Pinheiro; de Figuerêdo, Lívia Pitombeira; Pimentel, Marcionília Fernandes; Loureiro, Susana; Costa-Lotufo, Letícia Veras
2017-08-01
Few studies have examined the toxicity of metal mixtures to marine organisms exposed to different salinities. The aim of the present study was to investigate the acute toxicity of zinc and nickel exposures singly and in combination to Artemia sp. under salinities of 10, 17, and 35 psu. The mixture concentrations were determined according to individual toxic units (TUs) to follow a fixed ratio design. Zinc was more toxic than nickel, and both their individual toxicities were higher at lower salinities. These changes in toxicity can be attributed to the Biotic Ligand Model (BLM) rather than to metal speciation. To analyze the mixture effect, the observed data were compared with the expected mixture effects predicted by the concentration addition (CA) model and by deviations for synergistic/antagonistic interactions and dose-level and dose-ratio dependencies. For a salinity of 35 psu, the mixture had no deviations; therefore, the effects were additive. After decreasing the salinity to 17 psu, the toxicity pattern changed to antagonism at low concentrations and synergism at higher equivalent LC 50 levels. For the lowest salinity tested (10 psu), antagonism was observed. The speciations of both metals were similar when in a mixture and when isolated, and changes in toxicity patterns are more related to the organism's physiology than metal speciation. Therefore, besides considering chemical interactions in real-world scenarios, where several chemicals can be present, the influence of abiotic factors, such as salinity, should also be considered. Copyright © 2017 Elsevier Inc. All rights reserved.
An overview of new insights from satellite salinity missions on oceanography
NASA Astrophysics Data System (ADS)
Reul, Nicolas
2015-04-01
The Soil Moisture and Ocean Salinity (SMOS) mission, launched on 2 November 2009, is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the need for global observations of soil moisture and ocean salinity, two key variables describing the Earth's water cycle and having been identified as Essential Climate Variables (ECVs) by the Global Climate Observing System (GCOS). After five years of satellite Sea Surface Salinity (SSS) monitoring from SMOS data, we will present an overview of the scientific highlights these data have brougtht to the oceanographic communities. In particular, we shall review the impact of SMOS SSS and brightness tempeaerture data for the monitoring of: -Mesoscale variability of SSS (and density) in frontal structures, eddies, -Ocean propagative SSS signals (e.g. TIW, planetary waves), -Freshwater flux Monitoring (Evaportaion minus precipitation, river run off), -Large scale SSS anomalies related to climate fluctuations (e.g. ENSO, IOD), -Air-Sea interactions (equatorial upwellings, Tropical cyclone wakes) -Temperature-Salinity dependencies, -Sea Ice thickness, -Tropical Storm and high wind monitoring, -Ocean surface bio-geo chemistry.
The GEOS-iODAS: Description and Evaluation
NASA Technical Reports Server (NTRS)
Vernieres, Guillaume; Rienecker, Michele M.; Kovach, Robin; Keppenne, Christian L.
2012-01-01
This report documents the GMAO's Goddard Earth Observing System sea ice and ocean data assimilation systems (GEOS iODAS) and their evolution from the first reanalysis test, through the implementation that was used to initialize the GMAO decadal forecasts, and to the current system that is used to initialize the GMAO seasonal forecasts. The iODAS assimilates a wide range of observations into the ocean and sea ice components: in-situ temperature and salinity profiles, sea level anomalies from satellite altimetry, analyzed SST, and sea-ice concentration. The climatological sea surface salinity is used to constrain the surface salinity prior to the Argo years. Climatological temperature and salinity gridded data sets from the 2009 version of the World Ocean Atlas (WOA09) are used to help constrain the analysis in data sparse areas. The latest analysis, GEOS ODAS5.2, is diagnosed through detailed studies of the statistics of the innovations and analysis departures, comparisons with independent data, and integrated values such as volume transport. Finally, the climatologies of temperature and salinity fields from the Argo era, 2002-2011, are presented and compared with the WOA09.
Muraeva, O A; Maltseva, A L; Mikhailova, N A; Granovitch, A I
2015-01-01
Salinity is one of the most important abiotic environmental factors affecting marine animals. If salinity deviate from optimum, adaptive mechanisms switch on to maintain organism's physiological activity. In this study, the reaction of the snails Littorina saxatilis from natural habitats and in response to experimental salinity decreasing was analyzed on proteomic level. The isolation of all snails inside their shells and gradually declining mortality was observed under acute experimental salinity decrease (down to 10 per hundred). Proteomic changes were evaluated in the surviving experimental mollusks compared to control individual using differential 2D gel-electrophoresis (DIGE) and subsequent LC-MS/MS-identification of proteins. Approximately 10% of analyzed proteins underwent up- or down regulation during the experiment. Proteins of folding, antioxidant response, intercellular matrix, cell adhesion, cell signaling and metabolic enzymes were identified among them. Proteome changes observed in experimental hypoosmotic stress partially reproduced in the proteomes of mollusks that live in conditions of natural freshening (estuaries). Possible mechanisms involved in the adaptation process of L. saxatilis individuals to hypo-osmotic stress are discussed.
Normalization of satellite imagery
NASA Technical Reports Server (NTRS)
Kim, Hongsuk H.; Elman, Gregory C.
1990-01-01
Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.
NASA Technical Reports Server (NTRS)
2001-01-01
This image shows the global thermal inertia of the Martian surface as measured by the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor. The data were acquired during the first 5000 orbits of the MGS mapping mission. The pattern of inertia variations observed by TES agrees well with the thermal inertia maps made by the Viking Infrared Thermal Mapper experiment, but the TES data shown here are at significantly higher spatial resolution (15 km versus 60 km).The TES instrument was built by Santa Barbara Remote Sensing and is operated by Philip R. Christensen, of Arizona State University, Tempe, AZ.Overview of the Landsat-7 Mission
NASA Technical Reports Server (NTRS)
Williams, Darrel; Irons, James; Goward, Samuel N.; Masek, Jefery
1999-01-01
Landsat-7 is scheduled for launch on April 15 from the Western Test Range at Vandenberg Air Force Base, Calif., on a Delta-H expendable launch vehicle. The Landsat 7 satellite consists of a spacecraft bus being provided by Lockheed Martin Missiles and Space (Valley Forge, Pa.) and the Enhanced Thematic Mapper Plus instrument built by Raytheon (formerly Hughes) Santa Barbara Remote Sensing (Santa Barbara, Calif.). The instrument on board Landsat 7 is the Enhanced Thematic Mapper Plus (ETM+). ETM+ improves upon the previous Thematic Mapper (TM) instruments on Landsat's 4 and 5 (Fig. la and lb). It includes the previous 7 spectral bands measuring reflected solar radiation and emitted thermal emissions but, in addition, includes a new 15 in panchromatic (visible-near infrared) band. The spatial resolution of the thermal infrared band has also been improved to 60 m. Both the radiometric precision and accuracy of the sensor are also improved from the previous TM sensors. After being launched into a sun-synchronous polar orbit, the satellite will use on-board propulsion to adjust its orbit to a circular altitude of 438 miles (705 kilometers) crossing the equator at approximately 10 a.m. on its southward track. This orbit will place Landsat 7 along the same ground track as previous Landsat satellites. The orbit will be maintained with periodic adjustments for the life of the mission. A three-axis attitude control subsystem will stabilize the satellite and keep the instrument pointed toward the Earth to within 0.05 degrees. Later this year, plans call for the NASA Earth Observation System (EOS) Terra (AM-1) observatory and the experimental EO-1 mission to closely follow Landsat-7's orbit to support synergistic research and applications from this new suite of terrestrial sensor systems. Landsat is the United States' oldest land-surface observation satellite system, with satellites continuously operating since 1972. Although the program has scored numerous successes in scientific and resource-management applications, Landsat has had a tumultuous history of management and funding changes over its nearly 27-year history. Landsat-7 marks a new direction in the program to reduce the cost of data and increase systematic global coverage for use in global change research as well as commercial and regional applications. With the passage of the Land Remote Sensing Policy Act in 1992, oversight of the Landsat program began to shift from the commercial sector to the federal government. NASA integrated Landsat-7 into its EOS science program in 1994. Landsat-7 is managed and operated jointly by NASA and U.S. Geological Survey (USGS). As a result, the costs of acquiring observations from
NASA Technical Reports Server (NTRS)
Dinnat, E. P.; Boutin, J.; Yin, X.; LeVine, D. M.
2014-01-01
Two ongoing space missions share the scientific objective of mapping the global Sea Surface Salinity (SSS), yet their observations show significant discrepancies. ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometers to measure emission from the sea surface and retrieve SSS. Significant differences in SSS retrieved by both sensors are observed, with SMOS SSS being generally lower than Aquarius SSS, except for very cold waters where SMOS SSS is the highest overall. Figure 1 is an example of the difference between the SSS retrieved by SMOS and Aquarius averaged over one month and 1 degree in longitude and latitude. Differences are mostly between -1 psu and +1 psu (psu, practical salinity unit), with a significant regional and latitudinal dependence. We investigate the impact of the vicarious calibration and retrieval algorithm used by both mission on these differences.
NASA Technical Reports Server (NTRS)
Dinnat, E. P.; Boutin, J.; Yin, X.; Le Vine, D. M.; Waldteufel, P.; Vergely, J. -L.
2014-01-01
Two ongoing space missions share the scientific objective of mapping the global Sea Surface Salinity (SSS), yet their observations show significant discrepancies. ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometers to measure emission from the sea surface and retrieve SSS. Significant differences in SSS retrieved by both sensors are observed, with SMOS SSS being generally lower than Aquarius SSS, except for very cold waters where SMOS SSS is the highest overall. Figure 1 is an example of the difference between the SSS retrieved by SMOS and Aquarius averaged over one month and 1 degree in longitude and latitude. Differences are mostly between -1 psu and +1 psu (psu, practical salinity unit), with a significant regional and latitudinal dependence. We investigate the impact of the vicarious calibration and some components of the retrieval algorithm used by both mission on these differences.
Zbikowska, Elżbieta; Walczak, Maciej; Krawiec, Arkadiusz
2013-01-01
The present study was aimed at investigating the coexistence and interactions between free living amoebae of Naegleria and Hartmannella genera and pathogenic Legionella pneumophila bacteria in thermal saline baths used in balneotherapy in central Poland. Water samples were collected from November 2010 to May 2011 at intervals longer than 1 month. The microorganisms were detected with the use of a very sensitive fluorescence in situ hybridisation method. In addition, the morphology of the amoebae was studied. Despite relatively high salinity level, ranging from 1.5 to 5.0 %, L. pneumophila were found in all investigated baths, although their number never exceeded 10(6) cells dm(-3). Hartmannella were not detected, while Naegleria fowleri were found in one bath. The observation that N. fowleri and L. pneumophila may coexist in thermal saline baths is the first observation emphasising potential threat from these microorganisms in balneotherapy.
The assessment of spatial distribution of soil salinity risk using neural network.
Akramkhanov, Akmal; Vlek, Paul L G
2012-04-01
Soil salinity in the Aral Sea Basin is one of the major limiting factors of sustainable crop production. Leaching of the salts before planting season is usually a prerequisite for crop establishment and predetermined water amounts are applied uniformly to fields often without discerning salinity levels. The use of predetermined water amounts for leaching perhaps partly emanate from the inability of conventional soil salinity surveys (based on collection of soil samples, laboratory analyses) to generate timely and high-resolution salinity maps. This paper has an objective to estimate the spatial distribution of soil salinity based on readily or cheaply obtainable environmental parameters (terrain indices, remote sensing data, distance to drains, and long-term groundwater observation data) using a neural network model. The farm-scale (∼15 km(2)) results were used to upscale soil salinity to a district area (∼300 km(2)). The use of environmental attributes and soil salinity relationships to upscale the spatial distribution of soil salinity from farm to district scale resulted in the estimation of essentially similar average soil salinity values (estimated 0.94 vs. 1.04 dS m(-1)). Visual comparison of the maps suggests that the estimated map had soil salinity that was uniform in distribution. The upscaling proved to be satisfactory; depending on critical salinity threshold values, around 70-90% of locations were correctly estimated.
NASA Technical Reports Server (NTRS)
Petro, Larry; Bely, P.; Burg, R.; Wade, L.; Beichman, C.; Gay, J.; Baudoz, P.; Rabbia, Y.; Perrin, J. M.
1998-01-01
Zodiacal dust around neighboring stars could obscure the signal of terrestrial planets observed with the Terrestrial Planet Finder (TPF) if that dust is similar to that in the Solar System. Unfortunately, little is known about the presence, or frequency of occurrence of zodiacal dust around stars and so the relevance of zodiacal dust to the design of the TPF, or to the TPF mission, is unknown. It is likely that direct observation of zodiacal dust disks will be necessary to confidently determine the characteristics of individual systems. A survey of a large number of stars in the solar neighborhood that could be candidates for observation with TPF should be undertaken. We present a concept for a space mission to undertake a sensitive, large-scale survey capable of characterizing solar-system-like zodiacal dust around 400 stars within 20 pc of the Sun.
Fresh-water discharge salinity relations in the tidal Delaware River
Keighton, Walter B.
1966-01-01
Sustained flows of fresh water greater than 3,500, 4,400, and 5,300 cubic feet per second into the Delaware River estuary at Trenton, NJ assure low salinity at League Island, Eddystone, and Marcus Hook, respectively. When the discharge at Trenton is less than these critical values, salinity is very sensitive to change in discharge, so that a relatively small decrease in fresh-water discharge results in a relatively great increase in salinity. Comparison of the discharge-salinity relations observed for the 14-year period August 1949-December 1963 with relations proposed by other workers but based on other time periods indicate that such relations change with time and that salinity is affected not only by discharge but also by dredging; construction of breakwater, dikes, and tidal barriers; changing sea level; tidal elevation; tidal range; and wind intensity and direction.
Rotzoll, Kolja
2012-01-01
The Pearl Harbor aquifer in southern O‘ahu is one of the most important sources of freshwater in Hawai‘i. A thick freshwater lens overlays brackish and saltwater in this coastal aquifer. Salinity profiles collected from uncased deep monitor wells (DMWs) commonly are used to monitor freshwater-lens thickness. However, vertical flow in DMWs can cause the measured salinity to differ from salinity in the adjacent aquifer or in an aquifer without a DWM. Substantial borehole flow and displacement of salinity in DMWs over several hundred feet have been observed in the Pearl Harbor aquifer. The objective of this study was to evaluate the effects of borehole flow on measured salinity profiles from DMWs. A numerical modeling approach incorporated aquifer hydraulic characteristics and recharge and withdrawal rates representative of the Pearl Harbor aquifer. Borehole flow caused by vertical hydraulic gradients associated with both the natural regional flow system and groundwater withdrawals was simulated. Model results indicate that, with all other factors being equal, greater withdrawal rates, closer withdrawal locations, or higher hydraulic conductivities of the well cause greater borehole flow and displacement of salinity in the well. Borehole flow caused by the natural groundwater-flow system is five orders of magnitude greater than vertical flow in a homogeneous aquifer, and borehole-flow directions are consistent with the regional flow system: downward flow in inland recharge areas and upward flow in coastal discharge areas. Displacement of salinity inside the DMWs associated with the regional groundwater-flow system ranges from less than 1 to 220 ft, depending on the location and assumed hydraulic conductivity of the well. For example, upward displacements of the 2 percent and 50 percent salinity depths in a well in the coastal discharge part of the flow system are 17 and 4.4 ft, respectively, and the average salinity difference between aquifer and borehole is 0.65 percent seawater salinity. Groundwater withdrawals and drawdowns generally occur at shallow depths in the freshwater system with respect to the depth of the DMW and cause upward flow in the DMW. Simulated groundwater withdrawal of 4.3 million gallons per day that is 100 ft from a DMW causes thirty times more borehole flow than borehole flow that is induced by the regional flow field alone. The displacement of the 2 percent borehole salinity depth increases from 17 to 33 ft, and the average salinity difference between aquifer and borehole is 0.85 percent seawater salinity. Peak borehole flow caused by local groundwater withdrawal near DMWs is directly proportional to the pumping rate in the nearby production well. Increasing groundwater withdrawal to 16.7 million gallons per day increases upward displacement of the 50 percent salinity depth (midpoint of the transition zone) from 4.6 to 77 ft, and the average salinity difference between aquifer and borehole is 1.4 percent seawater salinity. Simulated groundwater withdrawal that is 3,000 ft away from DMWs causes less borehole flow and salinity displacements than nearby withdrawal. Simulated effects of groundwater withdrawal from a horizontal shaft and withdrawal from a vertical well in a homogeneous aquifer were similar. Generally, the 50 percent salinity depths are less affected by borehole flow than the 2 percent salinity depths. Hence, measured salinity profiles are useful for calibration of regional numerical models despite borehole-flow effects. Commonly, a 1 percent error in salinity is acceptable in numerical modeling studies. Incorporation of heterogeneity in the model is necessary to simulate long vertical steps observed in salinity profiles in southern O‘ahu. A thick zone of low aquifer hydraulic conductivity limits exchange of water between aquifer and well and creates a long vertical step in the salinity profile. A heterogeneous basalt-aquifer scenario simulates observed vertical salinity steps and borehole flow that is consistent with measured borehole flow from DMWs in southern O‘ahu. However, inclusion of local-scale heterogeneities in regional models generally is not warranted.
Stratil, Stephanie B; Neulinger, Sven C; Knecht, Henrik; Friedrichs, Anette K; Wahl, Martin
2014-05-01
Epibiotic biofilms have the potential to control major aspects of the biology and ecology of their hosts. Their composition and function may thus be essential for the health of the host. We tested the influence of salinity on the composition of epibacterial communities associated with the brown macroalga Fucus vesiculosus. Algal individuals were incubated at three salinities (5, 19, and 25) for 14 days and nonliving reference substrata (stones) were included in the experiment. Subsequently, the composition of their surface-associated bacterial communities was analyzed by 454 pyrosequencing of 16S rRNA gene sequences. Redundancy analysis revealed that the composition of epiphytic and epilithic communities significantly differed and were both affected by salinity. We found that 5% of 2494 epiphytic operational taxonomic units at 97% sequence similarity were responsible for the observed shifts. Epibacterial α-diversity was significantly lower at salinity 5 but did not differ between substrata. Our results indicate that salinity is an important factor in structuring alga-associated epibacterial communities with respect to composition and/or diversity. Whether direct or indirect mechanisms (via altered biotic interactions) may have been responsible for the observed shifts is discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab
Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo
2013-01-01
Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure–temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge. PMID:23716664
Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.
Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo
2013-06-11
Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.
Demonstration of angular anisotropy in the output of Thematic Mapper
NASA Technical Reports Server (NTRS)
Duggin, M. J. (Principal Investigator); Lindsay, J.; Piwinski, D. J.; Schoch, L. B.
1984-01-01
There is a dependence of TM output (proportional to scene radiance in a manner which will be discussed) upon season, upon cover type and upon view angle. The existence of a significant systematic variation across uniform scenes in p-type (radiometrically and geometrically pre-processed) data is demonstrated. Present pre-processing does remove the effects and the problem must be addressed because the effects are large. While this is in no way attributable to any shortcomings in the thematic mapper, it is an effect which is sufficiently important to warrant more study, with a view to developing suitable pre-processing correction algorithms.
NASA Technical Reports Server (NTRS)
Morrissey, L. A.; Weinstock, K. J.; Mouat, D. A.; Card, D. H.
1984-01-01
An evaluation of Thematic Mapper Simulator (TMS) data for the geobotanical discrimination of rock types based on vegetative cover characteristics is addressed in this research. A methodology for accomplishing this evaluation utilizing univariate and multivariate techniques is presented. TMS data acquired with a Daedalus DEI-1260 multispectral scanner were integrated with vegetation and geologic information for subsequent statistical analyses, which included a chi-square test, an analysis of variance, stepwise discriminant analysis, and Duncan's multiple range test. Results indicate that ultramafic rock types are spectrally separable from nonultramafics based on vegetative cover through the use of statistical analyses.
Mapping the Oman Ophiolite using TM data
NASA Technical Reports Server (NTRS)
Abrams, Michael
1987-01-01
Ophiolite terrains, considered to be the onland occurrences of oceanic crust, host a number of types of mineral deposits: volcanogenic massive sulfides, podiform chromite, and asbestos. Thematic Mapper data for the Semail Ophiolite in Oman were used to separate and map ultramafic lithologies hosting these deposits, including identification of the components of the extrusive volcanic sequence, mapping of serpentinization due to various tectonic processes, and direct identification of gossans. Thematic Mapper data were found to be extremely effective for mapping in this terrain due to the excellent spatial resolution and the presence of spectral bands which allow separation of the pertinent mineralogically caused spectral features associated with the rock types of interest.
Podwysocki, Melvin H.; Power, Marty S.; Salisbury, Jack; Jones, O.D.
1984-01-01
Landsat-4 Thematic Mapper (TM) data of southern Nevada collected under conditions of low-angle solar illumination were digitally processed to identify hydroxyl-bearing minerals commonly associated with hydrothermal alteration in volcanic terrains. Digital masking procedures were used to exclude shadow areas and vegetation and thus to produce a CRC image suitable for testing the new TM bands as a means to map hydrothermally altered rocks. Field examination of a masked CRC image revealed that several different types of altered rocks displayed hues associated with spectral characteristics common to hydroxyl-bearing minerals. Several types of unaltered rocks also displayed similar hues.
NASA Technical Reports Server (NTRS)
Jai, A.
1982-01-01
One of the outputs of the data management system being developed to provide a variety of standard image products from the thematic mapper and the multispectral band scanners on LANDSAT 4, is the partially processed TM data (radiometric corrections applied and geometric correction matrices for two projections appended) which is recorded on a 28-track high density tape. Specifications are presented for the format of the recorded data as well as for the time code and the major and minor frames of the tape. Major frame types, formats, and field definitions are included.
An Approach for Stitching Satellite Images in a Bigdata Mapreduce Framework
NASA Astrophysics Data System (ADS)
Sarı, H.; Eken, S.; Sayar, A.
2017-11-01
In this study we present a two-step map/reduce framework to stitch satellite mosaic images. The proposed system enable recognition and extraction of objects whose parts falling in separate satellite mosaic images. However this is a time and resource consuming process. The major aim of the study is improving the performance of the image stitching processes by utilizing big data framework. To realize this, we first convert the images into bitmaps (first mapper) and then String formats in the forms of 255s and 0s (second mapper), and finally, find the best possible matching position of the images by a reduce function.
Thematic mapper studies of Andean volcanoes
NASA Technical Reports Server (NTRS)
Francis, P. W.
1986-01-01
The primary objective was to identify all the active volcanoes in the Andean region of Bolivia. Morphological features of the Tata Sabaya volcano, Bolivia, were studied with the thematic mapper. Details include marginal levees on lava and pyroclastic flows, and summit crater structure. Valley glacier moraine deposits, not easily identified on the multispectral band scanner, were also unambiguous, and provide useful marker horizons on large volcanic edifices which were built up in preglacial times but which were active subsequently. With such high resolution imagery, it is not only possible to identify potentially active volcanoes, but also to use standard photogeological interpretation to outline the history of individual volcanoes.
Evaluation of microRNA alignment techniques
Kaspi, Antony; El-Osta, Assam
2016-01-01
Genomic alignment of small RNA (smRNA) sequences such as microRNAs poses considerable challenges due to their short length (∼21 nucleotides [nt]) as well as the large size and complexity of plant and animal genomes. While several tools have been developed for high-throughput mapping of longer mRNA-seq reads (>30 nt), there are few that are specifically designed for mapping of smRNA reads including microRNAs. The accuracy of these mappers has not been systematically determined in the case of smRNA-seq. In addition, it is unknown whether these aligners accurately map smRNA reads containing sequence errors and polymorphisms. By using simulated read sets, we determine the alignment sensitivity and accuracy of 16 short-read mappers and quantify their robustness to mismatches, indels, and nontemplated nucleotide additions. These were explored in the context of a plant genome (Oryza sativa, ∼500 Mbp) and a mammalian genome (Homo sapiens, ∼3.1 Gbp). Analysis of simulated and real smRNA-seq data demonstrates that mapper selection impacts differential expression results and interpretation. These results will inform on best practice for smRNA mapping and enable more accurate smRNA detection and quantification of expression and RNA editing. PMID:27284164
NASA Technical Reports Server (NTRS)
1986-01-01
The tectonic evaluation of the Nubian Shield using the Thematic Mapper (TM) imagery is progressing well and shows great promise. The TM tapes for the six LANDSAT 5 scenes covering the northern portion of the Red Sea hills were received, and preliminary maps and interpretations were made for most of the area. It is apparent that faulting and shearing associated with the major suture zones such as the Sol Hamed are clearly visible and that considerable detail can be seen. An entire quadrant of scene 173,45 was examined in detail using all seven bands, and every band combination was evaluated to best display the geology. A comparison was done with color ratio combinations and color combinations of the eigen vector bands to verify if band combinations of 7-red, 4-green, and 2-blue were indeed superior. There is no single optimum enhancement which provides the greatest detail for every image and no single combination of spectral bands for all cases, although bands 7, 4, and 2 do provide the best overall display. The color combination of the eigen vector bands proved useful in distinguishing fine detailed features.
Kim, Jeremie S; Senol Cali, Damla; Xin, Hongyi; Lee, Donghyuk; Ghose, Saugata; Alser, Mohammed; Hassan, Hasan; Ergin, Oguz; Alkan, Can; Mutlu, Onur
2018-05-09
Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x-6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x-3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be applied to any read mapper. We hope that our results provide inspiration for new works to design other bioinformatics algorithms that take advantage of emerging technologies and new processing paradigms, such as processing-in-memory using 3D-stacked memory devices.
Salinity affects behavioral thermoregulation in a marine decapod crustacean
NASA Astrophysics Data System (ADS)
Reiser, Stefan; Mues, Annika; Herrmann, Jens-Peter; Eckhardt, André; Hufnagl, Marc; Temming, Axel
2017-10-01
Thermoregulation in aquatic ectotherms is a complex behavioral pattern that is affected by various biotic and abiotic factors with one being salinity. Especially in coastal and estuarine habitats, altering levels of salinity involve osmoregulatory adjustments that affect total energy budgets and may influence behavioral responses towards temperature. To examine the effect of salinity on behavioral thermoregulation in a marine evertebrate ectotherm, we acclimated juvenile and sub-adult common brown shrimp (Crangon crangon, L.) to salinities of 10, 20 and 30 PSU and investigated their thermal preference in an annular chamber system using the gravitational method for temperature preference determination. Thermal preference of individual brown shrimp was considerably variable and brown shrimp selected a wide range of temperatures in each level of salinity as well as within individual experimental trials. However, salinity significantly affected thermal preference with the shrimp selecting higher temperatures at 10 and 20 PSU when compared to 30 PSU of salinity. Body size had no effect on thermal selection and did not interact with salinity. Temperature preference differed by sex and male shrimp selected significantly higher temperatures at 10 PSU when compared to females. The results show that salinity strongly affects thermal selection in brown shrimp and confirms the strong interrelation of temperature and salinity on seasonal migratory movements that has been previously derived from observations in the field. In the field, however, it remains unclear whether salinity drives thermal selection or whether changes in temperature modify salinity preference.
Rangani, Jaykumar; Parida, Asish K.; Panda, Ashok; Kumari, Asha
2016-01-01
Salinity-induced modulations in growth, photosynthetic pigments, relative water content (RWC), lipid peroxidation, photosynthesis, photosystem II efficiency, and changes in activity of various antioxidative enzymes were studied in the halophyte Salvadora persica treated with various levels of salinity (0, 250, 500, 750, and 1000 mM NaCl) to obtain an insight into the salt tolerance ability of this halophyte. Both fresh and dry biomass as well as leaf area (LA) declined at all levels of salinity whereas salinity caused an increase in leaf succulence. A gradual increase was observed in the Na+ content of leaf with increasing salt concentration up to 750 mM NaCl, but at higher salt concentration (1000 mM NaCl), the Na+ content surprisingly dropped down to the level of 250 mM NaCl. The chlorophyll and carotenoid contents of the leaf remained unaffected by salinity. The photosynthetic rate (PN), stomatal conductance (gs), the transpiration rate (E), quantum yield of PSII (ΦPSII), photochemical quenching (qP), and electron transport rate remained unchanged at low salinity (250 to 500 mM NaCl) whereas, significant reduction in these parameters were observed at high salinity (750 to 1000 mM NaCl). The RWC% and water use efficiency (WUE) of leaf remained unaffected by salinity. The salinity had no effect on maximum quantum efficiency of PS II (Fv/Fm) which indicates that PS II is not perturbed by salinity-induced oxidative damage. Analysis of the isoforms of antioxidative enzymes revealed that the leaves of S. persica have two isoforms each of Mn-SOD and Fe-SOD and one isoform of Cu-Zn SOD, three isoforms of POX, two isoforms of APX and one isoform of CAT. There was differential responses in activity and expression of different isoforms of various antioxidative enzymes. The malondialdehyde (MDA) content (a product of lipid peroxidation) of leaf remained unchanged in S. persica treated with various levels of salinity. Our results suggest that the absence of pigment degradation, the reduction of water loss, and the maintenance of WUE and protection of PSII from salinity-induced oxidative damage by the coordinated changes in antioxidative enzymes are important factors responsible for salt tolerance of S. persica. PMID:26904037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voyer, R.A.; McGovern, D.G.
1991-01-01
Two 28-day, life-cycle tests were conducted to evaluate effects of constant and fluctuating salinities on chronic toxicity of cadmium to Mysidopsis bahia at 27C. Salinities of 10 to 32% and cadmium concentrations of 1 to 9 micrograms/l were examined. Estimated median tolerance concentrations at day 28 ranged from 4.8 to 6.3 micrograms Cd/l over the salinity range of 13 to 29%. Size and fecundity of exposed and unexposed females were predicted to be comparable when cadmium was equal or greater than 5.0 micrograms Cd/l and salinities equal or less than 20% and at concentrations of less than 5 micrograms/l atmore » lower salinities. At higher cadmium levels both responses were impaired regardless of salinity. Reproduction in control treatments was an order of magnitude lower in low (10 and 13%) as compared to high (21, 29, 32%) salinity treatments. This effect of salinity on reproduction was not moderated by periodic exposure to higher, more suitable salinities. Survival, growth and reproduction were not impacted by addition of 5 micrograms Cd/l under fluctuating salinity conditions. The no-effect concentration is 4-5 micgrogram Cd/1 regardless of salinity. Changes in survival, growth and reproduction observed are consistent with the principal distribution of M. bahia in estuaries relative to salinity. Comparison of these data with previously reported acute responses suggests that the acute water quality criterion for cadmium should be salinity-dependent whereas the chronic criterion need not be.« less
Responses of Atriplex spongiosa and Suaeda monoica to Salinity
Storey, Richard; Jones, R. Gareth Wyn
1979-01-01
The growth and tissue water, K+, Na+, Cl−, proline and glycinebetaine contents of the shoots and roots of two Chenopodiaceae, Atriplex spongiosa and Suaeda monoica have been measured over a range of external NaCl salinities. Both species showed some fresh weight response to low salinity mainly due to increased succulence. S. monoica showed both a greater increase in succulence (at low salinities) and tolerance of high salinities than A. spongiosa. Both species had high affinities for Na+ and maintained constant but low shoot K+ contents with increasing salinity. These trends were more marked with S. monoica in which Na+ stimulated the accumulation of K+ in roots. An association between high leaf Na+ accumulation, high osmotic pressure, succulence, and a positive growth response at low salinities was noted. Proline accumulation was observed in shoot tissues with suboptimal water contents. High glycinebetaine contents were found in the shoots of both species. These correlated closely with the sap osmotic pressure and it is suggested that glycinebetaine is the major cytoplasmic osmoticum (with K+ salts) in these species at high salinities. Na+ salts may be preferentially utilized as vacuolar osmotica. PMID:16660671
Wang, Youji; Hu, Menghong; Cheung, S G; Shin, P K S; Lu, Weiqun; Li, Jiale
2012-06-01
The effects of chronic hypoxia and low salinity on anti-predatory responses of the green-lipped mussel Perna viridis were investigated. Dissolved oxygen concentrations ranged from hypoxic to normoxic (1.5 ± 0.3 mg l(-1), 3.0 ± 0.3 mg l(-1) and 6.0 ± 0.3 mg l(-1)), and salinities were selected within the variation during the wet season in Hong Kong coastal waters (15‰, 20‰, 25‰ and 30‰). The dissolved oxygen and salinity significantly affected some anti-predatory responses of mussel, including byssus production, shell thickness and shell weight, and the adductor diameter was only significantly affected by salinity. Besides, interactive effects of dissolved oxygen and salinity on the byssus production and shell thickness were also observed. In hypoxic and low salinity conditions, P. viridis produced fewer byssal threads, thinner shell and adductor muscle, indicating that hypoxia and low salinity are severe environmental stressors for self-defence of mussel, and their interactive effects further increase the predation risk. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Estuarine Salinity Mapping From Airborne Radiometry
NASA Astrophysics Data System (ADS)
Walker, J. P.; Gao, Y.; Cook, P. L. M.; Ye, N.
2016-12-01
Estuaries are critical ecosystems providing both ecological habitat and human amenity including boating and recreational fishing. Salinity gradients, caused by the mixing of fresh and salt water, exert an overwhelming control on estuarine ecology and biogeochemistry as well as being a key tracer for model calibration. At present, salinity monitoring within estuaries typically uses point measurements or underway boat-based methods, which makes sensing of localised phenomena such as upwelling of saline bottom water difficult. This study has pioneered the use of airborne radiometry (passive microwave) sensing as a new method to remotely quantify estuarine salinity, allowing rapid production of high resolution surface salinity maps. The airborne radiometry mapping was conducted for the Gippsland Lakes, the largest estuary in Australia, in February, July, October and November of 2015, using the Polarimetric L-band Microwave Radiometer (PLMR). Salinity was retrieved from the brightness temperature collected by PLMR with results validated against boat sampling conducted concurrently with each flight. Results showed that the retrieval accuracy of the radiative transfer model was better than 5 ppt for most flights. The spatial, temporal and seasonal variations of salinity observed in this study are also analysed and discussed.
Forest cover of North America in the 1970s mapped using Landsat MSS data
NASA Astrophysics Data System (ADS)
Feng, M.; Sexton, J. O.; Channan, S.; Townshend, J. R.
2015-12-01
The distribution and changes in Earth's forests impact hydrological, biogeochemical, and energy fluxes, as well as ecosystems' capacity to support biodiversity and human economies. Long-term records of forest cover are needed across a broad range of investigation, including climate and carbon-cycle modeling, hydrological studies, habitat analyzes, biological conservation, and land-use planning. Satellite-based observations enable mapping and monitoring of forests at ecologically and economically relevant resolutions and continental or even global extents. Following early forest-mapping efforts using coarser resolution remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) and MODerate-resolution Imaging Spectroradiometer (MODIS), forests have been mapped regionally at < 100-m resolution using Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+). These "Landsat-class" sensors offer precise calibration, but they provide observations only over the past three decades—a relatively short period for delineating the long-term changes of forests. Starting in 1971, the Multispectral Scanner (MSS) was the first generation of sensors aboard the Landsat satellites. MSS thus provides a unique resource to extend observations by at least a decade longer in history than records based on Landsat TM and ETM+. Leveraging more recent Landsat-based forest-cover products developed by the Global Land Cover Facility (GLCF) as reference, we developed an automated approach to detect forests using MSS data by leveraging the multispectral and phenological characteristics of forests observed in MSS time-series. The forest-cover map is produced with layers representing the year of observation, detection of forest-cover change relative to 1990, and the uncertainty of forest-cover and -change layers. The approach has been implemented with open-source libraries to facilitate processing large volumes of Landsat MSS images on high-performance computing machines. As the first result of our global mapping effort, we present the forest cover for North America. More than 25,000 Landsat MSS scenes were processed to provide a 120-meter resolution forest cover for North America, which will be made publicly available on the GLCF website (http://www.landcover.org).
Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s
NASA Astrophysics Data System (ADS)
DU, Y.; Zhang, Y.
2016-02-01
A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004-2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate.
Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s
NASA Astrophysics Data System (ADS)
Du, Yan; Zhang, Yuhong; Feng, Ming; Wang, Tianyu; Zhang, Ningning; Wijffels, Susan
2015-11-01
A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004-2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate.
Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s
Du, Yan; Zhang, Yuhong; Feng, Ming; Wang, Tianyu; Zhang, Ningning; Wijffels, Susan
2015-01-01
A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004–2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate. PMID:26522168
Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s.
Du, Yan; Zhang, Yuhong; Feng, Ming; Wang, Tianyu; Zhang, Ningning; Wijffels, Susan
2015-11-02
A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004-2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate.
Incidence and Determinants of Port Occlusions in Cancer Outpatients: A Prospective Cohort Study.
Milani, Alessandra; Mazzocco, Ketti; Gandini, Sara; Pravettoni, Gabriella; Libutti, Livio; Zencovich, Claudia; Sbriglia, Ada; Pari, Chiara; Magon, Giorgio; Saiani, Luisa
Normal saline is considered a safe alternative for heparin as a locking solution in totally implantable venous access devices. The incidence rate of partial occlusion with the use of normal saline (easy injection, impossible aspiration) is estimated at 4%. The aim of this study was to investigate determinants of partial occlusions with the use of normal saline solution and the maintenance of positive pressure in the catheter. We enrolled 218 patients with different solid tumors who underwent pharmacologic treatment through the port with different frequencies: from once every week to at least once every month. The port was flushed with normal saline solution keeping a positive pressure in the catheter. We performed 4111 observations and documented normal port functioning in 99% of observations (n = 4057) and partial occlusions in 1% of observations (n = 54). Partial occlusions were significantly associated with frequency of port flushing (P < .05), chemotherapy (P < .001), and blood sample collection (P < .001). The use of positive pressure in addition to normal saline reduces the incidence rate of partial occlusions. The type of treatment, blood sample collection, and treatment schedule are important determinants of partial occlusions. Nurses play a key role in maintaining a functioning port using positive pressure during the flushing techniques. Certain risk factors must be monitored to prevent partial occlusions, and certain patients are more likely to present with port-related problems.
Dunn, Paul H; Young, Craig M
2015-04-01
Estuaries can be harsh habitats for the marine animals that enter them, but they may also provide these species with sub-saline refuges from their parasites. The nemertean egg predator Carcinonemertes errans is known to occur less frequently and in smaller numbers on its host, the Dungeness crab Metacarcinus magister, when the hosts are found within estuaries. We examined the temperature and salinity tolerances of C. errans to determine if this observed distribution represents a true salinity refuge. We monitored the survival of juvenile and larval worms exposed to ecologically relevant salinities (5-30) and temperatures (8-20 °C) over the course of several days under laboratory conditions. Juvenile worms were unaffected by the experimental temperature levels and exhibited robustness to salinity treatments 25 and 30. However, significant mortality was seen at salinity treatments 20 and below. Larvae were less tolerant than juveniles to lowered salinity and were also somewhat more susceptible to the higher temperatures tested. Given that the Dungeness crab can tolerate forays into mesohaline (salinity 5-18) waters for several days at a time, our findings suggest that salinity gradients play an important role in creating a parasite refuge for this species within the estuaries of the Pacific Northwest. © 2015 Marine Biological Laboratory.
Survival and growth of invasive Indo-Pacific lionfish at low salinities
Schofield, Pamela J.; Huge, Dane H.; Rezek, Troy C.; Slone, Daniel H.; Morris, James A.
2015-01-01
Invasive Indo-Pacific lionfish [Pterois volitans (Linnaeus, 1758) and P. miles (Bennett, 1828)] are now established throughout the Western North Atlantic. Several studies have documented negative effects of lionfish on marine fauna including significant changes to reef fish community composition. Established populations of lionfish have been documented in several estuaries, and there is concern that the species may invade other low-salinity environments where they could potentially affect native fauna. To gain a better understanding of their low-salinity tolerance, we exposed lionfish to four salinities [5, 10, 20 and 34 (control)]. No lionfish mortality was observed at salinities of 34, 20 or 10, but all fish died at salinity = 5 within 12 days. Lionfish survived for at least a month at a salinity of 10 and an average of about a week at 5. Fish started the experiment at an average mass of 127.9 g, which increased at a rate of 0.55 g per day while they were alive, regardless of salinity treatment. Our research indicated lionfish can survive salinities down to 5 for short periods and thus may penetrate and persist in a variety of estuarine habitats. Further study is needed on effects of salinity levels on early life stages (eggs, larvae).
Empirical tools for simulating salinity in the estuaries in Everglades National Park, Florida
NASA Astrophysics Data System (ADS)
Marshall, F. E.; Smith, D. T.; Nickerson, D. M.
2011-12-01
Salinity in a shallow estuary is affected by upland freshwater inputs (surface runoff, stream/canal flows, groundwater), atmospheric processes (precipitation, evaporation), marine connectivity, and wind patterns. In Everglades National Park (ENP) in South Florida, the unique Everglades ecosystem exists as an interconnected system of fresh, brackish, and salt water marshes, mangroves, and open water. For this effort a coastal aquifer conceptual model of the Everglades hydrologic system was used with traditional correlation and regression hydrologic techniques to create a series of multiple linear regression (MLR) salinity models from observed hydrologic, marine, and weather data. The 37 ENP MLR salinity models cover most of the estuarine areas of ENP and produce daily salinity simulations that are capable of estimating 65-80% of the daily variability in salinity depending upon the model. The Root Mean Squared Error is typically about 2-4 salinity units, and there is little bias in the predictions. However, the absolute error of a model prediction in the nearshore embayments and the mangrove zone of Florida Bay may be relatively large for a particular daily simulation during the seasonal transitions. Comparisons show that the models group regionally by similar independent variables and salinity regimes. The MLR salinity models have approximately the same expected range of simulation accuracy and error as higher spatial resolution salinity models.
López-Hoffman, Laura; Anten, Niels P R; Martínez-Ramos, Miguel; Ackerly, David D
2007-01-01
We have studied the interactive effects of salinity and light on Avicennia germinans mangrove seedlings in greenhouse and field experiments. We hypothesized that net photosynthesis, growth, and survivorship rates should increase more with an increase in light availability for plants growing at low salinity than for those growing at high salinity. This hypothesis was supported by our results for net photosynthesis and growth. Net daily photosynthesis did increase more with increasing light for low-salinity plants than for high-salinity plants. Stomatal conductance, leaf-level transpiration, and internal CO(2) concentrations were lower at high than at low salinity. At high light, the ratio of leaf respiration to assimilation was 2.5 times greater at high than at low salinity. Stomatal limitations and increased respiratory costs may explain why, at high salinity, seedlings did not respond to increased light availability with increased net photosynthesis. Seedling mass and growth rates increased more with increasing light availability at low than at high salinity. Ratios of root mass to leaf mass were higher at high salinity, suggesting that either water or nutrient limitations may have limited seedling growth at high salinity in response to increasing light. The interactive effects of salinity and light on seedling size and growth rates observed in the greenhouse were robust in the field, despite the presence of other factors in the field--such as inundation, nutrient gradients, and herbivory. In the field, seedling survivorship was higher at low than at high salinity and increased with light availability. Interestingly, the positive effect of light on seedling survivorship was stronger at high salinity, indicating that growth and survivorship rates are decoupled. In general, this study demonstrates that environmental effects at the leaf-level also influence whole plant growth in mangroves.
Gulf Coast Deep Water Port Facilities study. Appendix B. North Central Gulf Hydrobiological Zones.
1973-04-01
bottom and surface salinities , but their effect is more noticeable at the surface. Because of variation in these factors along the Gulf Coast... effects of discharge on salinity have been considered above. Numerous streams empty into the Gulf of Mexico along its north central portion but the...1967) investigated various aspects of osmoregulation in blue crabs in Mississippi Sound and adjacent waters and observed that salinity and temperature
NASA Astrophysics Data System (ADS)
Marine, Combe; Thierry, Bouvier; Olivier, Pringault; Emma, Rochelle-Newall; Corinne, Bouvier; Martin, Agis; The Thu, Pham; Jean-Pascal, Torreton; Van Thuoc, Chu; Bettarel, Yvan
2013-11-01
Little information exists on the ecological adaptive responses of riverine microorganisms to the salinity changes that typically occur in transitional waters. This study examined the precise effects of a gradual increase in salinity (+3 units per day for 12 days) on freshwater virus and prokaryote communities collected in the Red River Delta (northern Vietnam). The abundance, activity, morphology and diversity of both communities were examined along this simulated salinity gradient (0-36). Three main successive ecological stages were observed: (1) a continuous decline in prokaryotic and viral abundance from the start of the salinization process up to salinity 12-15 together with a strong decrease in the proportion of active cells, (2) a shift in both community compositions (salinity 9-15) and (3) a marked prevalence of lysogenic over lytic cycles up to salinity 21 followed by a collapse of both types of viral infection. Finally, after salinity 21, and up to seawater salinities (i.e. 36) the prokaryotic community showed multiple signs of recovery with their abundance and function even reaching initial levels. These results suggest that most of the physiological and phylogenetic changes that occurred within the salinity range 10-20 seemed to favor the installation of osmotically adapted prokaryotes accompanied by a specific cortege of viral parasites which might both be able to survive and even proliferate in saltwater conditions.
An Insight into microRNA156 Role in Salinity Stress Responses of Alfalfa.
Arshad, Muhammad; Gruber, Margaret Y; Wall, Ken; Hannoufa, Abdelali
2017-01-01
Salinity is one of the major abiotic stresses affecting alfalfa productivity. Developing salinity tolerant alfalfa genotypes could contribute to sustainable crop production. The functions of microRNA156 (miR156) have been investigated in several plant species, but so far, no studies have been published that explore the role of miR156 in alfalfa response to salinity stress. In this work, we studied the role of miR156 in modulating commercially important traits of alfalfa under salinity stress. Our results revealed that overexpression of miR156 increased biomass, number of branches and time to complete growth stages, while it reduced plant height under control and salinity stress conditions. We observed a miR156-related reduction in neutral detergent fiber under non-stress, and acid detergent fiber under mild salinity stress conditions. In addition, enhanced total Kjeldahl nitrogen content was recorded in miR156 overexpressing genotypes under severe salinity stress. Furthermore, alfalfa genotypes overexpressing miR156 exhibited an altered ion homeostasis under salinity conditions. Under severe salinity stress, miR156 downregulated SPL transcription factor family genes, modified expression of other important transcription factors, and downstream salt stress responsive genes. Taken together, our results reveal that miR156 plays a role in mediating physiological and transcriptional responses of alfalfa to salinity stress.
Two different effects of calcium on aquaporins in salinity-stressed pepper plants.
Martínez-Ballesta, M Carmen; Cabañero, Francisco; Olmos, Enrique; Periago, Paula María; Maurel, Christophe; Carvajal, Micaela
2008-06-01
Two different effects of calcium were studied, respectively, in plasma membrane vesicles and in protoplasts isolated from roots of control pepper plants (Capsicum annuum L cv. California) or of plants treated with 50 mM NaCl, 10 mM CaCl(2) or 10 mM CaCl(2) + 50 mM NaCl. Under saline conditions, osmotic water permeability (P ( f )) values decreased in protoplasts and plasma membrane vesicles, and the same reduction was observed in the PIP1 aquaporin abundance, indicating inhibitory effects of NaCl on aquaporin functionality and protein abundance. The cytosolic Ca(2+) concentration, [Ca(2+)](cyt), was reduced by salinity, as observed by confocal microscope analysis. Two different actions of Ca(2+) were observed. On the one hand, increase in free cytosolic calcium concentrations associated with stress perception may lead to aquaporin closure. On the other hand, when critical requirements of Ca(2+) were reduced (by salinity), and extra-calcium would lead to an upregulation of aquaporins, indicating that a positive role of calcium at whole plant level combined with an inhibitory mechanism at aquaporin level may work in the regulation of pepper root water transport under salt stress. However, a link between these observations and other cell signalling in relation to water channel gating remains to be established.
Heat and salt budgets over the Gulf Stream North Wall during LatMix survey in winter 2012.
NASA Astrophysics Data System (ADS)
Sanchez-Rios, A.; Shearman, R. K.; D'Asaro, E. A.; Lee, C.; Gula, J.; Klymak, J. M.
2016-02-01
As part of the ONR-sponsored LatMix Experiment, ship-based and glider-based observations following a Lagrangian float are used to examine the evolution of temperature, salinity and density along the Gulf Stream north wall in wintertime. Satellite observations during the survey and the in-situ measurements showed the presence of submesoscale (<10 km) features along the front. Models have successfully reproduced similar features, but observations are lacking, particularly at the small scales needed to understand their role in the transport of heat and salt across the front and out of the mixed layer. Calculating the trend in time at each depth and cross-front location we found an increase of heat and salinity in regions where the strongest cross-front gradients of velocity were observed at the mixed layer and around 150m depth, these changes are density compensated and suggest isopycnal mixing and a connection between the mixed layer and subsurface layers. The large Rossby number (Ro>1) calculated for this regions corroborates the possibility of submesoscale dynamics. Using a heat and salinity budget, we show that surface forcing, entrainment from below and advection by the mean flow velocities are not sufficient to explain the observed rate of change of heat and salinity in the mixed layer. Although confidence estimates prevent an accurate flux divergence calculation, Reynold flux estimates are consistent with a cross-frontal exchange that can reproduce the observed temporal trends.
NASA Astrophysics Data System (ADS)
Garcia-Eidell, Cynthia; Comiso, Josefino C.; Dinnat, Emmanuel; Brucker, Ludovic
2017-09-01
Global surface ocean salinity measurements have been available since the launch of SMOS in 2009 and coverage was further enhanced with the launch of Aquarius in 2011. In the polar regions where spatial and temporal changes in sea surface salinity (SSS) are deemed important, the data have not been as robustly validated because of the paucity of in situ measurements. This study presents a comparison of four SSS products in the ice-free Arctic region, three using Aquarius data and one using SMOS data. The accuracy of each product is assessed through comparative analysis with ship and other in situ measurements. Results indicate RMS errors ranging between 0.33 and 0.89 psu. Overall, the four products show generally good consistency in spatial distribution with the Atlantic side being more saline than the Pacific side. A good agreement between the ship and satellite measurements was also observed in the low salinity regions in the Arctic Ocean, where SSS in situ measurements are usually sparse, at the end of summer melt seasons. Some discrepancies including biases of about 1 psu between the products in spatial and temporal distribution are observed. These are due in part to differences in retrieval techniques, geophysical filtering, and sea ice and land masks. The monthly SSS retrievals in the Arctic from 2011 to 2015 showed variations (within ˜1 psu) consistent with effects of sea ice seasonal cycles. This study indicates that spaceborne observations capture the seasonality and interannual variability of SSS in the Arctic with reasonably good accuracy.
Hydrographic observations by instrumented marine mammals in the Sea of Okhotsk
NASA Astrophysics Data System (ADS)
Nakanowatari, Takuya; Ohshima, Kay I.; Mensah, Vigan; Mitani, Yoko; Hattori, Kaoru; Kobayashi, Mari; Roquet, Fabien; Sakurai, Yasunori; Mitsudera, Humio; Wakatsuchi, Masaaki
2017-09-01
The Sea of Okhotsk is a challenging environment for obtaining in situ data and satellite observation in winter due to sea ice cover. In this study, we evaluated the validity of hydrographic observations by marine mammals (e.g., seals and sea lions) equipped with oceanographic conductivity-temperature-depth (CTD) sensors. During 4-yr operations from 2011 to 2014, we obtained total of 997 temperature-salinity profiles in and around the Soya Strait, Iony Island, and Urup Strait. The hydrographic data were mainly obtained from May to August and the maximum profile depth in shelf regions almost reaches to the seafloor, while valuable hydrographic data under sea ice cover were also obtained. In strong thermoclines, the seal-derived data sometimes showed positive biases in salinity with spike-like signal. For these salinity biases, we applied a new thermal mass inertia correction scheme, effectively reducing spurious salinity biases in the seasonal thermocline. In the Soya Strait and the adjacent region, the detailed structure of the Soya Warm Current including the cold-water belt was well identified. Dense water up to 27.0σθ, which can be a potential source of Okhotsk Sea Intermediate Water, has flowed from the Soya Strait into the Sea of Okhotsk in mid-winter (February). In summer, around the Iony Island and Urup Strait, remarkable cold and saline waters are localized in the surface layers. These regions are also characterized by weak stratification, suggesting the occurrence of tidally induced vertical mixing. Thus, CTD-tag observations have a great potential in monitoring data-sparse regions in the Sea of Okhotsk.
Salinity signature of the Pacific Decadal Oscillation
NASA Astrophysics Data System (ADS)
Overland, James E.; Salo, Sigrid; Adams, Jennifer Miletta
Three sites in the North Pacific have temperature and salinity observations in most months for several years before and after 1977. The Gulf of Alaska station (57°N, 148°W) showed a 2°C warming and a 0.6 freshening in salinity at 10 m depth in the 1980s compared to the 1970s. OWS PAPA (50°N, 145°W) and PAPA line station 7 (49.1°N, 132.4°W) show warming of 0.6°C and 0.9°C, with no major salinity change. The decrease in density and increase in stratification in the Gulf of Alaska after 1977 corresponds primarily to a decrease in salinity in the upper 150 m. We propose that while the Pacific Decadal Oscillation has an east/west character in temperature, the salinity signature will have a NNW/SSE character, similar to the pattern of interannual variability in precipitation.
Radiometric calibration updates to the Landsat collection
Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal
2016-01-01
The Landsat Project is planning to implement a new collection management strategy for Landsat products generated at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The goal of the initiative is to identify a collection of consistently geolocated and radiometrically calibrated images across the entire Landsat archive that is readily suitable for time-series analyses. In order to perform an accurate land change analysis, the data from all Landsat sensors must be on the same radiometric scale. Landsat 7 Enhanced Thematic Mapper Plus (ETM+) is calibrated to a radiance standard and all previous sensors are cross-calibrated to its radiometric scale. Landsat 8 Operational Land Imager (OLI) is calibrated to both radiance and reflectance standards independently. The Landsat 8 OLI reflectance calibration is considered to be most accurate. To improve radiometric calibration accuracy of historical data, Landsat 1-7 sensors also need to be cross-calibrated to the OLI reflectance scale. Results of that effort, as well as other calibration updates including the absolute and relative radiometric calibration and saturated pixel replacement for Landsat 8 OLI and absolute calibration for Landsat 4 and 5 Thematic Mappers (TM), will be implemented into Landsat products during the archive reprocessing campaign planned within the new collection management strategy. This paper reports on the planned radiometric calibration updates to the solar reflective bands of the new Landsat collection.
High Impact Weather Forecasts and Warnings with the GOES-R Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William; Mach, Douglas M.
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Science Team and Algorithm Working Group Lightning Applications Team have begun to develop cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.
Development of landsat-5 thematic mapper internal calibrator gain and offset table
Barsi, J.A.; Chander, G.; Micijevic, E.; Markham, B.L.; Haque, Md. O.
2008-01-01
The National Landsat Archive Production System (NLAPS) has been the primary processing system for Landsat data since U.S. Geological Survey (USGS) Earth Resources Observation and Science Center (EROS) started archiving Landsat data. NLAPS converts raw satellite data into radiometrically and geometrically calibrated products. NLAPS has historically used the Internal Calibrator (IC) to calibrate the reflective bands of the Landsat-5 Thematic Mapper (TM), even though the lamps in the IC were less stable than the TM detectors, as evidenced by vicarious calibration results. In 2003, a major effort was made to model the actual TM gain change and to update NLAPS to use this model rather than the unstable IC data for radiometric calibration. The model coefficients were revised in 2007 to reflect greater understanding of the changes in the TM responsivity. While the calibration updates are important to users with recently processed data, the processing system no longer calculates the original IC gain or offset. For specific applications, it is useful to have a record of the gain and offset actually applied to the older data. Thus, the NLAPS calibration database was used to generate estimated daily values for the radiometric gain and offset that might have been applied to TM data. This paper discusses the need for and generation of the NLAPSIC gain and offset tables. A companion paper covers the application of and errors associated with using these tables.
Optical maturity variation in lunar spectra as measured by Moon Mineralogy Mapper data
Nettles, J.W.; Staid, M.; Besse, S.; Boardman, J.; Clark, R.N.; Dhingra, D.; Isaacson, P.; Klima, R.; Kramer, G.; Pieters, C.M.; Taylor, L.A.
2011-01-01
High spectral and spatial resolution data from the Moon Mineralogy Mapper (M3) instrument on Chandrayaan-1 are used to investigate in detail changes in the optical properties of lunar materials accompanying space weathering. Three spectral parameters were developed and used to quantify spectral effects commonly thought to be associated with increasing optical maturity: an increase in spectral slope ("reddening"), a decrease in albedo ("darkening"), and loss of spectral contrast (decrease in absorption band depth). Small regions of study were defined that sample the ejecta deposits of small fresh craters that contain relatively crystalline (immature) material that grade into local background (mature) soils. Selected craters are small enough that they can be assumed to be of constant composition and thus are useful for evaluating trends in optical maturity. Color composites were also used to identify the most immature material in a region and show that maturity trends can also be identified using regional soil trends. The high resolution M3 data are well suited to quantifying the spectral changes that accompany space weathering and are able to capture subtle spectral variations in maturity trends. However, the spectral changes that occur as a function of maturity were observed to be dependent on local composition. Given the complexity of space weathering processes, this was not unexpected but poses challenges for absolute measures of optical maturity across diverse lunar terrains. Copyright 2011 by the American Geophysical Union.
Landscape scale assessment of soil and water salinization processes in agricultural coastal area.
NASA Astrophysics Data System (ADS)
Elen Bless, Aplena; Follain, Stéphane; Coiln, François; Crabit, Armand
2017-04-01
Soil salinization is among main land degradation process around the globe. It reduces soil quality, disturbs soil function, and has harmful impacts on plant growth that would threaten agricultural sustainability, particularly in coastal areas where mostly susceptible on land degradation because of pressure from anthropogenic activities and at the same time need to preserve soil quality for supporting food production. In this presentation, we present a landscape scale analysis aiming to assess salinization process affecting wine production. This study was carried out at Serignan estuary delta in South of France (Languadoc Roussillon Region, 43˚ 28'N and 3˚ 31'E). It is a sedimentary basin near coastline of Mediterranean Sea. Field survey was design to characterize both space and time variability of soil and water salinity through water electrical conductivity (ECw) and soil 1/5 electrical conductivity (EC1/5). For water measurements, Orb River and groundwater salinity (piezometers) were determined and for soil 1737 samples were randomly collected from different soil depths (20, 50, 80, and 120 cm) between year 2012 and 2016 and measured. In order to connect with agricultural practices observations and interviews with farmers were conducted. We found that some areas combining specific criteria presents higher electrical conductivity: positions with lower elevation (a.s.l), Cambisols (Calcaric) / Fluvisols soil type (WRB) and dominated clay textures. These observations combined with geochemical determination and spatial analysis confirm our first hypothesis of sea salt intrusion as the main driven factor of soil salinity in this region. In this context, identification of salinization process, fine determination of pedological specificities and fine understanding of agricultural practices allowed us to proposed adaptation strategies to restore soil production function. Please fill in your abstract text. Key Words: Salinity, Coastal Agriculture, Landscape, Soil, Water
NASA Astrophysics Data System (ADS)
Chui, Apple Pui Yi; Ang, Put
2015-06-01
To better understand the possible consequences of climate change on reef building scleractinian corals in a marginal environment, laboratory experiments were conducted to examine the interactive effects of changes in salinity and temperature on percent fertilization success and early embryonic development of the coral Platygyra acuta. In the present study, a salinity of 24 psu (ambient 32 psu) reduced fertilization success by 60 %. Normal embryonic development was reduced by >80 % at 26 psu (ambient 33 psu) with 100 % abnormal development at 22 psu under ambient temperature. Elevated temperature (+3 °C) above the ambient spawning temperature did not show any negative effects on fertilization success. However, there was a trend for more abnormal embryos to develop at elevated temperature in the 2 d of the spawning event. The interactive effects between salinity and temperature are statistically significant only on normal embryonic development of P. acuta, but not on its fertilization success. Salinity was revealed to be the main factor affecting both fertilization success and normal embryonic development. Interestingly, the much lower fertilization success (76 %) observed in the second day of spawning (Trial 2) under ambient temperature recovered to 99 % success under elevated (+3 °C) temperature conditions. Moreover, elevated temperature enhanced normal early embryonic development under lowered salinity (26 psu). This antagonistic interactive effect was consistently observed in two successive nights of spawning. Overall, our results indicate that, in terms of its fertilization success and embryonic development, P. acuta is the most tolerant coral species to reduced salinity thus far reported in the literature. Elevated temperature, at least that within the tolerable range of the corals, could apparently alleviate the potential negative effects from salinity stresses. This mitigating role of elevated temperature appears not to have been reported on corals before.
Interannual and Decadal Changes in Salinity in the Oceanic Subtropical Gyres
NASA Astrophysics Data System (ADS)
Bulusu, Subrahmanyam
2017-04-01
There is evidence that the global water cycle has been undergoing an intensification over several decades as a response to increasing atmospheric temperatures, particularly in regions with skewed evaporation - precipitation (E-P) patterns such as the oceanic subtropical gyres. Moreover, observational data (rain gauges, etc.) are quite sparse over such areas due to the inaccessibility of open ocean regions. In this work, a comparison of observational and model simulations are conducted to highlight the potential applications of satellite derived salinity from NASA Aquarius Salinity mission, NASA Soil Moisture and Ocean Salinity (SMOS), and ESA's Soil Moisture Active Passive (SMAP). We explored spatial and temporal salinity changes (and trends) in surface and subsurface in the oceanic subtropical gyres using Argo floats salinity data, Simple Ocean Data Assimilation (SODA) reanalysis, Estimating the Circulations & Climate of the Ocean GECCO (German ECCO) model simulations, and Hybrid Coordinate Ocean Model (HYCOM). Our results based on SODA reanalysis reveals that a positive rising trend in sea surface salinity in the subtropical gyres emphasizing evidence for decadal intensification in the surface forcing in these regions. Zonal drift in the location of the salinity maximum of the south Pacific, north Atlantic, and south Indian regions implies a change in the mean near-surface currents responsible for advecting high salinity waters into the region. Also we found out that an overall salinity increase within the mixed layer, and a subsurface salinity decrease at depths greater than 200m in the global subtropical gyres over 61 years. We determine that freshwater fluxes at the air-sea interface are the primary drivers of the sea surface salinity (SSS) signature over these open ocean regions by quantifying the advective contribution within the surface layer. This was demonstrated through a mixed layer salinity budget in each subtropical gyre based on the vertically integrated advection and entrainment of salt. Our analysis of decadal variability of fluxes into and out of the gyres reveals little change in the strength of the mean currents through this region despite an increase in the annual export of salt in all subtropical gyres, with the meridional component dominating the zonal. This study reveals that the salt content of E-P maximum waters advected into the subtropical gyres is increasing over time. A combination of increasing direct evaporation over the regions with increasing remote evaporation over nearby E-P maxima is believed to be the main driver in increasing salinity of the subtropical oceans, suggesting an intensification of the global water cycle over decadal timescales.
NASA Astrophysics Data System (ADS)
Kaur, Prabhjot; Bhattacharya, Satadru; Chauhan, Prakash; Ajai; Kiran Kumar, A. S.
2013-01-01
Spectral analysis of Mare Serenitatis has been carried out using Chandrayaan-1 Moon Mineralogy Mapper (M3) data in order to map the compositional diversity of the basaltic units that exist in the basin. Mare Serenitatis is characterized by multiple basaltic flows of different ages indicating a prolonged volcanism subsequent to the basin formation event. Reflectance spectra of fresh craters from the Mare Serenitatis have been analyzed to study the nature and location of the spectral absorption features around 1- and 2-μm respectively, arising due to the electronic charge transition of Fe2+ in the crystal lattice of pyroxenes and/or olivine. Chandrayaan-1 M3 data have been utilized to obtain an Integrated Band Depth (IBD) mosaic of the Serenitatis basin. Based on the spectral variations observed in the IBD mosaic, 13 spectral units have been mapped in the Mare Serenitatis. In the present study, we have also derived spectral band parameters, namely, band center, band strength, band area and band area ratio from the M3 data to study the mineralogical and compositional variations amongst the basaltic units of the studied basin. On the basis of spectral band parameter analysis, the pyroxene compositions of the basaltic units have been determined, which vary from low to intermediate end of the high-Ca pyroxene and probably represent a sub-calcic to calcic augite compositional range. Detailed spectral analyses reveal little variations in the mafic mineralogy of the mare basalts in terms of pyroxene chemistry. The uniformity in pyroxene composition across the basaltic units of Mare Serenitatis, therefore, suggest a probably stable basaltic source region, which might not have experienced large-scale fractionation during the prolonged volcanism that resulted in filling of the large Serenitatis basin.
Enabling the Continuous EOS-SNPP Satellite Data Record thru EOSDIS Services
NASA Astrophysics Data System (ADS)
Hall, A.; Behnke, J.; Ho, E. L.
2015-12-01
Following Suomi National Polar-Orbiting Partnership (SNPP) launch of October 2011, the role of the NASA Science Data Segment (SDS) focused primarily on evaluation of the sensor data records (SDRs) and environmental data records (EDRs) produced by the Joint Polar Satellite System (JPSS), a National Oceanic and Atmosphere Administration (NOAA) Program as to their suitability for Earth system science. The evaluation has been completed for Visible Infrared Imager Radiometer Suite (VIIRS), Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), and Ozone Mapper/Profiler Suite (OMPS) Nadir instruments. Since launch, the SDS has also been processing, archiving and distributing data from the Clouds and the Earth's Radiant Energy System (CERES) and Ozone Mapper/Profiler Suite (OMPS) Limb instruments and this work is planned to continue through the life of the mission. As NASA transitions to the production of standard, Earth Observing System (EOS)-like science products for all instruments aboard Suomi NPP, the Suomi NPP Science Team (ST) will need data processing and production facilities to produce the new science products they develop. The five Science Investigator-led Processing Systems (SIPS): Land, Ocean. Atmosphere, Ozone, and Sounder will produce the NASA SNPP standard Level 1, Level 2, and global Level 3 products and provide the products to the NASA's Distributed Active Archive Centers (DAACs) for distribution to the user community. The SIPS will ingest EOS compatible Level 0 data from EOS Data Operations System (EDOS) for their data processing. A key feature is the use of Earth Observing System Data and Information System (EOSDIS) services for the continuous EOS-SNPP satellite data record. This allows users to use the same tools and interfaces on SNPP as they would on the entire NASA Earth Science data collection in EOSDIS.
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Petersen, W.; Buechler, D. E.; Krehbiel, P. R.; Gatlin, P.; Zubrick, S.
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models is expected to be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 ground processing algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area)
Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper
NASA Technical Reports Server (NTRS)
Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.;
2014-01-01
Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.; Yurchak, Boris S.; Sleptsov, Yuri A.; Turi, Johan Mathis; Mathlesen, Svein D.
2005-01-01
To adapt successfully to the major changes - climate, environment, economic, social and industrial - which have taken place across the Arctic. in recent years, indigenous communities such as reindeer herders must become increasingly empowered with the best available technologies to add to their storehouse of traditional knowledge. Remotely-sensed data and observations are providing increased capabilities for monitoring, risk mapping, and surveillance of parameters critical to the characterization of pasture quality and migratory routes, such as vegetation distribution, snow cover, infrastructure development, and pasture damages due to fires. This paper describes a series of remote sensing capabilities, which are useful to reindeer husbandry, and gives the results of the first year of a project, "Reindeer Mapper", which is a remote sensing and GIs-based system to bring together space technologies with indigenous knowledge for sustainable reindeer husbandry in the Russian Arctic. In this project, reindeer herders and scientists are joining together to utilize technologies to create a system for collecting and sharing space-based and indigenous knowledge in the Russian Arctic. The "Reindeer Mapper" system will help make technologies more readily available to the herder community for observing, data collection and analysis, monitoring, sharing, communications, and dissemination of information - to be integrated with traditional, local knowledge. This paper describes some of the technologies which comprise the system including an intranet system to enable to the team members to work together and share information electronically, remote sensing data for monitoring environmental parameters important to reindeer husbandry (e.g., SAR, Landsat, AVHRR, MODIS), indigenous knowledge about important environmental parameters, acquisition of ground- based measurements, and the integration of all useful data sets for more informed decision-making.
NASA Technical Reports Server (NTRS)
Pedelty, Jeffrey A.; Morisette, Jeffrey T.; Smith, James A.
2004-01-01
We compare images from the Enhanced Thematic Mapper Plus (ETM+) sensor on Landsat-7 and the Advanced Land Imager (ALI) instrument on Earth Observing One (EO-1) over a test site in Rochester, New York. The site contains a variety of features, ranging from water of varying depths, deciduous/coniferous forest, and grass fields, to urban areas. Nearly coincident cloud-free images were collected one minute apart on 25 August 2001. We also compare images of a forest site near Howland, Maine, that were collected on 7 September, 2001. We atmospherically corrected each pair of images with the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) atmosphere model, using aerosol optical thickness and water vapor column density measured by in situ Cimel sun photometers within the Aerosol Robotic Network (AERONET), along with ozone density derived from the Total Ozone Mapping Spectrometer (TOMS) on the Earth Probe satellite. We present true-color composites from each instrument that show excellent qualitative agreement between the multispectral sensors, along with grey-scale images that demonstrate a significantly improved ALI panchromatic band. We quantitatively compare ALI and ETM+ reflectance spectra of a grassy field in Rochester and find < or equal to 6% differences in the visible/near infrared and approx. 2% differences in the short wave infrared. Spectral comparisons of forest sites in Rochester and Howland yield similar percentage agreement except for band 1, which has very low reflectance. Principal component analyses and comparison of normalized difference vegetation index histograms for each sensor indicate that the ALI is able to reproduce the information content in the ETM+ but with superior signal-to-noise performance due to its increased 12-bit quantization.
NASA Astrophysics Data System (ADS)
Meissner, Thomas; Hilburn, Kyle; Wentz, Frank; Gentemann, Chelle
2013-04-01
The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to an accuracy of 0.2 psu. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. This first part of the presentation gives an overview over the major features of the Version 2.1 Aquarius Level 2 salinity retrieval algorithm: 1. Antenna pattern correction: spillover and cross polarization contamination. 2. Correction for the drift of the Aquarius internal calibration system. 3. Correction for intruding celestial radiation, foremost from the galaxy. 4. Correction for effects of the wind roughened ocean surface. We then present a thorough validation study for the salinity product, which consists in a 3-way intercomparison between Aquarius, SMOS and in-situ buoy salinity measurements. The Aquarius - buy comparison shows that that the Aquarius Version 2.1 salinity product is very close to meet the aforementioned mission requirement of 0.2 psu. We demonstrate that in order to meet this accuracy it is crucial to use the L-band scatterometer for correcting effects from the wind roughened ocean surface, which turns out to be the major driver in the salinity retrieval uncertainty budget. A surface roughness correction algorithm that is based solely on auxiliary input of wind fields from numerical weather prediction models (e.g. NCEP, ECMWF) is not sufficient to meet the stringent Aquarius mission requirement, especially at wind speeds above 10 m/s. We show that presence of the Aquarius L-band scatterometer together with the L-band radiometer allows the retrieval of an Aquarius wind speed product whose accuracy matches or exceeds that of other common ocean wind speeds (WindSat, SSMIS). By comparing SMOS and Aquarius salinity fields with the in-situ observations we assess the importance of the roughness correction and the presence of the L-band scatterometer, which is a major difference between the two missions.
Assimilation of temperature and salinity profile data in the Norwegian Climate Prediction Model
NASA Astrophysics Data System (ADS)
Wang, Yiguo; Counillon, Francois; Bertino, Laurent; Bethke, Ingo; Keenlyside, Noel
2016-04-01
Assimilating temperature and salinity profile data is promising to constrain the ocean component of Earth system models for the purpose of seasonal-to-dedacal climate predictions. However, assimilating temperature and salinity profiles that are measured in standard depth coordinate (z-coordinate) into isopycnic coordinate ocean models that are discretised by water densities is challenging. Prior studies (Thacker and Esenkov, 2002; Xie and Zhu, 2010) suggested that converting observations to the model coordinate (i.e. innovations in isopycnic coordinate) performs better than interpolating model state to observation coordinate (i.e. innovations in z-coordinate). This problem is revisited here with the Norwegian Climate Prediction Model, which applies the ensemble Kalman filter (EnKF) into the ocean isopycnic model (MICOM) of the Norwegian Earth System Model. We perform Observing System Simulation Experiments (OSSEs) to compare two schemes (the EnKF-z and EnKF-ρ). In OSSEs, the truth is set to the EN4 objective analyses and observations are perturbations of the truth with white noises. Unlike in previous studies, it is found that EnKF-z outperforms EnKF-ρ for different observed vertical resolution, inhomogeneous sampling (e.g. upper 1000 meter observations only), or lack of salinity measurements. That is mostly because the operator converting observations into isopycnic coordinate is strongly non-linear. We also study the horizontal localisation radius at certain arbitrary grid points. Finally, we perform the EnKF-z with the chosen localisation radius in a realistic framework with NorCPM over a 5-year analysis period. The analysis is validated by different independent datasets.
Seasonal Variability of Salt Transports in the Northern Indian Ocean
NASA Astrophysics Data System (ADS)
D'Addezio, J. M.; Bulusu, S.
2016-02-01
Due to limited observational data in the Indian Ocean compared to other regions of the global ocean, past work on the Northern Indian Ocean (NIO) has relied heavily upon model analysis to study the variability of regional salinity advection caused by the monsoon seasons. With the launch of the Soil Moisture and Ocean Salinity (SMOS) satellite in 2009 and the Aquarius SAC-D mission in 2011 (ended on June 7, 2011), remotely sensed, synoptic scale sea surface salinity (SSS) data is now readily available to study this dynamic region. The new observational data has allowed us to revisit the region to analyze seasonal variability of salinity advection in the NIO using several modeled products, the Aquarius and SMOS satellites, and Argo floats data. The model simulations include the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO2), European Centre for Medium-Range Weather Forecasts - Ocean Reanalysis System 4 (ECMWF-ORSA4), Simple Ocean Data Assimilation (SODA) Reanalysis, and HYbrid Coordinate Ocean Model (HYCOM). Our analyses of salinity at the surface and at depths up to 200 m, surface salt transport in the top 5 m layer, and depth-integrated salt transports revealed different salinity processes in the NIO that are dominantly related to the semi-annual monsoons. Aquarius and SMOS prove useful tools for observing this dynamic region, and reveal some aspects of SSS that Argo cannot resolve. Meridional depth-integrated salt transports using the modeled products along 6°N revealed dominant advective processes from the surface towards near-bottom depths. Finally, a difference in subsurface salinity stratification causes many of the modeled products to incorrectly estimate the magnitude and seasonality of NIO barrier layer thickness (BLT) when compared to the Argo solution. This problem is also evident in model output from the Seychelles-Chagos Thermocline Ridge (SCTR), a region with strong air-sea teleconnections with the Arabian Sea.
Geostationary Lightning Mapper for GOES-R
NASA Technical Reports Server (NTRS)
Goodman, Steven; Blakeslee, Richard; Koshak, William
2007-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 11 year data record of global lightning activity. Instrument formulation studies begun in January 2006 will be completed in March 2007, with implementation expected to begin in September 2007. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite, airborne science missions (e.g., African Monsoon Multi-disciplinary Analysis, AMMA), and regional test beds (e.g, Lightning Mapping Arrays) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data now being provided to selected forecast offices will lead to improved understanding of the application of these data in the severe storm warning process and accelerate the development of the pre-launch algorithms and Nowcasting applications. Proxy data combined with MODIS and Meteosat Second Generation SEVERI observations will also lead to new applications (e.g., multi-sensor precipitation algorithms blending the GLM with the Advanced Baseline Imager, convective cloud initiation and identification, early warnings of lightning threat, storm tracking, and data assimilation).
NASA Astrophysics Data System (ADS)
Lautz, L. K.; Hoke, G. D.; Lu, Z.; Siegel, D. I.
2013-12-01
Hydraulic fracturing has the potential to introduce saline water into the environment due to migration of deep formation water to shallow aquifers and/or discharge of flowback water to the environment during transport and disposal. It is challenging to definitively identify whether elevated salinity is associated with hydraulic fracturing, in part, due to the real possibility of other anthropogenic sources of salinity in the human-impacted watersheds in which drilling is taking place and some formation water present naturally in shallow groundwater aquifers. We combined new and published chemistry data for private drinking water wells sampled across five southern New York (NY) counties overlying the Marcellus Shale (Broome, Chemung, Chenango, Steuben, and Tioga). Measurements include Cl, Na, Br, I, Ca, Mg, Ba, SO4, and Sr. We compared this baseline groundwater quality data in NY, now under a moratorium on hydraulic fracturing, with published chemistry data for 6 different potential sources of elevated salinity in shallow groundwater, including Appalachian Basin formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. A multivariate random number generator was used to create a synthetic, low salinity (< 20 mg/L Cl) groundwater data set (n=1000) based on the statistical properties of the observed low salinity groundwater. The synthetic, low salinity groundwater was then artificially mixed with variable proportions of different potential sources of salinity to explore chemical differences between groundwater impacted by formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. We then trained a multivariate, discriminant analysis model on the resulting data set to classify observed high salinity groundwater (> 20 mg/L Cl) as being affected by formation water, road salt, septic effluent, landfill leachate, animal waste, or water softeners. Single elements or pairs of elements (e.g. Cl and Br) were not effective at discriminating between sources of salinity, indicating multivariate methods are needed. The discriminant analysis model classified most accurately samples affected by formation water and landfill leachate, whereas those contaminated by road salt, animal waste, and water softeners were more likely to be discriminated as contaminated by a different source. Using this approach, no shallow groundwater samples from NY appear to be affected by formation water, suggesting the source of salinity pre-hydraulic fracturing is primarily a combination of road salt, septic effluent, landfill leachate, and animal waste.
NASA Astrophysics Data System (ADS)
Yoshida, S.; Adachi, T.; Kusunoki, K.; Wu, T.; Ushio, T.; Yoshikawa, E.
2015-12-01
Thunderstorm observation has been conducted in Osaka, Japan, with a use of a 3D lightning mapper, called Broadband Observation network for Lightning and Thunderstorm (BOLT), and an X-band phased array radar (PAR). BOLT is a LF sensor network that receives LF emission associated with lightning discharges and locates LF radiation sources in 3D. PAR employs mechanical and electrical scans, respectively, in azimuthal and elevation direction, succeeding in quite high volume scan rate. In this presentation, we focus on lightning activity and charge structure in convective cells that lasted only short time (15 minutes or so). Thunderstorms that consisted of several convective cells developed near the radar site. Precipitation structure of a convective cell in the thunderstorm was clearly observed by PAR. A reflectivity core of the convective cell appeared at an altitude of 6 km at 2245 (JST). After that the core descended and reached the ground at 2256 (JST), resulting in heavy precipitation on surface. The echo top height (30dBZ) increased intermittently between 2245 (JST) and 2253 (JST) and it reached at the altitude of 12 km. The convective cell dissipated at 2300. Many intra-cloud (IC) flashes were initiated within the convective cell. Most IC flashes that were initiated in the convective cell occurred during the time when the echo top height increased, while a few IC flashes were initiated in the convective cell after the cease of the echo top vertical development. These facts indicate that strong updraft at upper levels (about 8 km or higher) plays an important role on thunderstorm electrification for IC flashes. Moreover, initiation altitudes of the IC flashes and the positive charge regions removed by the IC flashes increased, as the echo top height increased. This fact implies that the strong updraft at the upper levels blew up positively-charged ice pellets and negatively-charged graupel, and lifted IC flash initiation altitudes and positive charge regions. Previous observation results showed that positive charge regions sometimes moved upward in short time (about 5 minutes or so) in vigorous convective cells. Our observation results support the previous observation results and show that the rapid charge structure change was caused by strong updraft at upper levels in the convective cell.
Cross-Referencing GLM and ISS-LIS with Ground-Based Lightning Networks
NASA Astrophysics Data System (ADS)
Virts, K.; Blakeslee, R. J.; Goodman, S. J.; Koshak, W. J.
2017-12-01
The Geostationary Lightning Mapper (GLM), in geostationary orbit aboard GOES-16 since late 2016, and the Lightning Imaging Sensor (LIS), installed on the International Space Station in February 2017, provide observations of total lightning activity from space. ISS-LIS samples the global tropics and mid-latitudes, while GLM observes the full thunderstorm life-cycle over the Americas and surrounding oceans. The launch of these instruments provides an unprecedented opportunity to compare lightning observations across multiple space-based optical lightning sensors. In this study, months of observations from GLM and ISS-LIS are cross-referenced with each other and with lightning detected by the ground-based Earth Networks Global Lightning Network (ENGLN) and the Vaisala Global Lightning Dataset 360 (GLD360) throughout and beyond the GLM field-of-view. In addition to calibration/validation of the new satellite sensors, this study provides a statistical comparison of the characteristics of lightning observed by the satellite and ground-based instruments, with an emphasis on the lightning flashes uniquely identified by the satellites.
NASA Astrophysics Data System (ADS)
Lowe, A. T.; Roberts, E. A.; Galloway, A. W. E.
2016-02-01
Coastal regions around the world are changing rapidly, generating many physiological stressors for marine organisms. Food availability, a major factor determining physiological condition of marine organisms, in these systems reflects the influence of biological and environmental factors, and will likely respond dramatically to long-term changes. Using observations of phytoplankton, detritus, and their corresponding fatty acids and stable isotopes of carbon, nitrogen and sulfur, we identified environmental drivers of pelagic food availability and quality along a salinity gradient in a large tidally influenced estuary (San Juan Archipelago, Salish Sea, USA). Variation in chlorophyll a (Chl a), biomarkers and environmental conditions exhibited a similar range at both tidal and seasonal scales, highlighting a tide-related mechanism controlling productivity that is important to consider for long-term monitoring. Multiple parameters of food availability were inversely and non-linearly correlated to salinity, such that availability of high-quality (based on abundance, essential fatty acid concentration and C:N) seston increased below a salinity threshold of 30. The increased marine productivity was associated with increased pH and dissolved oxygen (DO) at lower salinity. Based on this observation we predicted that a decrease of salinity to below the threshold would result in higher Chl a, temperature, DO and pH across a range of temporal and spatial scales, and tested the prediction with a meta-analysis of available data. At all scales, these variables showed significant and consistent increases related to the salinity threshold. This finding provides important context to the increased frequency of below-threshold salinity over the last 71 years in this region, suggesting greater food availability with positive feedbacks on DO and pH. Together, these findings indicate that many of the environmental factors predicted to increase physiological stress to benthic suspension feeders (e.g. decreased salinity) may simultaneously and paradoxically improve conditions for benthic organisms.
Linking water and carbon cycles through salinity observed from space
NASA Astrophysics Data System (ADS)
Xie, X.; Liu, W. T.
2017-12-01
The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.
Climate variability in an estuary: Effects of riverflow on San Francisco Bay
Peterson, David H.; Cayan, Daniel R.; Festa, John F.; Nichols, Frederic H.; Walters, Roy A.; Slack, James V.; Hager, Stephen E.; Schemel, Laurence E.; Peterson, David H.
1989-01-01
A simple conceptual model of estuarine variability in the context of climate forcing has been formulated using up to 65 years of estimated mean-monthly delta flow, the cumulative freshwater flow to San Francisco Bay from the Sacramento-San Joaquin River, and salinity observations near the mouth, head, mid-estuary, and coastal ocean. Variations in delta flow, the principal source of variability in the bay, originate from anomalous changes in northern and central California streamflow, much of which is linked to anomalous winter sea level pressure (“CPA”) in the eastern Pacific. In years when CPA is strongly negative, precipitation in the watershed is heavy, delta flow is high, and the bay's salinity is low; similarly, when CPA is strongly positive, precipitation is light, delta flow is low, and the bay's salinity is high. Thus the pattern of temporal variability in atmospheric pressure anomalies is reflected in the streamflow, then in delta flow, then in estuarine variability. Estuarine salinity can be characterized by river to ocean patterns in annual cycles of salinity in relation to delta flow. Salinity (total dissolved solids) data from the relatively pristine mountain streams of the Sierra Nevada show that for a given flow, one observes higher salinities during the rise in winter flow than on the decline. Salinity at locations throughout San Francisco Bay estuary are also higher during the rise in winter flow than the decline (because it takes a finite time for salinity to fully respond to changes in freshwater flow). In the coastal ocean, however, the annual pattern of sea surface salinity is reversed: lower salinities during the rise in winter flow than on the decline due to effects associated with spring upwelling. Delta flow in spring masks these effects of coastal upwelling on estuarine salinity, including near the mouth of the estuary and, in fact, explains in a statistical sense 86 percent of the variance in salinity at the mouth of the estuary. Some of the variations in residual salinity in the bay not explained by delta flow appear to correlate with variability in coastal ocean properties. Interestingly CPA correlates also with anomalous sea surface salinity in the coastal ocean adjacent to the bay, especially in spring (albeit through a different mechanism than streamflow). For instance, when the atmospheric pressure anomaly as indicated for streamflow is high, the coastal ocean upper-layer Ekman transport is probably in the offshore direction resultingin higher sea surface salinities along the coast (with a phase lag). This circulation corresponds, in direction, to density driven estuarine circulation. In contrast a low atmospheric pressure regime leads to an onshore surface transport, and therefore opposes estuarine circulation. The influence of variations in delta flow on estuarine/phytoplankton/biochemical dynamics can be illustrated with numerical simulation models. For example, when riverflow is high the resulting low estuarine water residence time limits phytoplankton biomass and the observed effects of phytoplankton productivity on estuarine biochemistry are minimal. When riverflow is low but suspended sediment concentrations are high, light becomes a more important factor limiting phytoplankton biomass than residence time and effects of phytoplankton productivity on estuarine biochemistry are also minimal. When both riverflow and suspended sediment concentrations are low, phytoplankton biomass increases and phytoplankton productivity emerges as a major control on estuarine biochemistry: phytoplankton activity draws down and maintains very low ambient concentrations of dissolved silica and partial pressures of carbon dioxide (shifting pH to higher values). However, after an extended period of very low delta flow the major controls on estuarine biochemistry appear to change, possibly because benthic exchange processes (both sources and sinks) strengthen as salinity rises and benthic filter-feeding invertebrates migrate upstream with increasing salinity.
Regional dust deposits on Mars - Physical properties, age, and history
NASA Astrophysics Data System (ADS)
Christensen, P. R.
1986-03-01
This paper presents a description of the use of Viking infrared thermal mapper (IRTM), earth-based radar, and visual observations for the study of the existence of regional dust deposits. It is pointed out that these observations provide estimates of particle size, rock abundance, surface texture, thermal emissivity, and albedo. These estimates can be used to characterize surface deposits and to determine the degree of surface mantling. Attention is given to the regolith properties, atmospheric dust properties, and a model for formation of low-inertia regions. It is found that global dust storms deposit currently approximately 25 microns of material per year in the equatorial region. Over geologic time this value may vary from 0 to 250 microns due to variations in atmospheric conditions produced by orbital variations.
Chander, G.; Markham, B.L.; Helder, D.L.
2009-01-01
This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of-Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.
NASA Technical Reports Server (NTRS)
Chander, Gyanesh; Markham, Brian L.; Helder, Dennis L.
2009-01-01
This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of- Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.
NASA Technical Reports Server (NTRS)
Francis, P. W.; De Silva, S. L.
1989-01-01
A systematic study of the potentially active volcanoes in the Central Andes (14 deg S to 28 deg S) was carried out on the basis of Landsat Thematic Mapper images which provided consistent coverage of the area. More than 60 major volcanoes were identified as potentially active, as compared to 16 that are listed in the Catalog of Active Volcanoes of the World (Casertano, 1963; Hantke and Parodi, 1966). Most of these volcanoes are large (up to 6000 m in height) composite cones. Some of them could threaten nearby settlements, especially those in southern Peru, where the volcanoes rise above deep canyons with settlements along them.
A technique for the reduction of banding in Landsat Thematic Mapper Images
Helder, Dennis L.; Quirk, Bruce K.; Hood, Joy J.
1992-01-01
The radiometric difference between forward and reverse scans in Landsat thematic mapper (TM) images, referred to as "banding," can create problems when enhancing the image for interpretation or when performing quantitative studies. Recent research has led to the development of a method that reduces the banding in Landsat TM data sets. It involves passing a one-dimensional spatial kernel over the data set. This kernel is developed from the statistics of the banding pattern and is based on the Wiener filter. It has been implemented on both a DOS-based microcomputer and several UNIX-based computer systems. The algorithm has successfully reduced the banding in several test data sets.
Thermal control design of the Lightning Mapper Sensor narrow-band spectral filter
NASA Technical Reports Server (NTRS)
Flannery, Martin R.; Potter, John; Raab, Jeff R.; Manlief, Scott K.
1992-01-01
The performance of the Lightning Mapper Sensor is dependent on the temperature shifts of its narrowband spectral filter. To perform over a 10 degree FOV with an 0.8 nm bandwidth, the filter must be 15 cm in diameter and mounted externally to the telescope optics. The filter thermal control required a filter design optimized for minimum bandpass shift with temperature, a thermal analysis of substrate materials for maximum temperature uniformity, and a thermal radiation analysis to determine the parameter sensitivity of the radiation shield for the filter, the filter thermal recovery time after occultation, and heater power to maintain filter performance in the earth-staring geosynchronous environment.
Rowan, L.C.; Pawlewicz, M.J.; Jones, O.D.
1992-01-01
The purpose of this study was to determine if there is a correlation between measurements of organic matter (OM) maturity and laboratory measurements of visible and near-infrared spectral reflectance, and if Landsat Thematic Mapper (TM) images could be used to map maturity. The maturity of Mississippian Chainman Shale samples collected in east-central Nevada and west-central Utah was determined by using vitrinite reflectance and Rock-Eval pyrolysis. TM 4/TM 5 values correspond well to vitrinite reflectance and hydrogen index variations, and therefore this ratio was used to evaluate a TM image of the Eureka, Nevada, area for mapping thermal maturity differences in the Chainman Shale. -from Authors
NASA Technical Reports Server (NTRS)
Kuan, Dana; Fahsi, A.; Steinfeld S.; Coleman, T.
1998-01-01
Two Landsat Thematic Mapper (TM) images, from July 1984 and July 1992, were used to identify land use/cover changes in the urban and suburban fringe of the city of Huntsville, Alabama. Image difference was the technique used to quantify the change between the two dates. The eight-year period showed a 16% change, mainly from agricultural lands to urban areas generated by the settlement of industrial, commercial, and residential areas. Visual analysis of the change map (i.e., difference image) supported this phenomenon by showing that most changes were occurring in the vicinity of the major roads and highways across the city.
Regional analysis of tertiary volcanic Calderas (western U.S.) using Landsat Thematic Mapper imagery
NASA Technical Reports Server (NTRS)
Spatz, David M.; Taranik, James V.
1989-01-01
The Landsat Thematic Mapper (TM) imagery of the Basin and Range province of southern Nevada was analyzed to identify and map volcanic rock assemblages at three Tertiary calderas. It was found that the longer-wavelength visible and the NIR TM Bands 3, 5, and 7 provide more effective lithologic discrimination than the shorter-wavelength bands, due partly to deeper penetration of the longer-wavelength bands, resulting in more lithologically driven radiances. Shorter-wavelength TM Bands 1 and 2 are affected more by surficial weathering products including desert varnish which may or may not provide an indirect link to lithologic identity. Guidelines for lithologic analysis of volcanic terrains using Landsat TM imagery are outlined.
NASA Technical Reports Server (NTRS)
Bateman, Monte; Mach, Douglas; Blakeslee, Richard J.; Koshak, William
2018-01-01
As part of the calibration/validation (cal/val) effort for the Geostationary Lightning Mapper (GLM) on GOES-16, we need to assess instrument performance (detection efficiency and accuracy). One major effort is to calculate the detection efficiency of GLM by comparing to multiple ground-based systems. These comparisons will be done pair-wise between GLM and each other source. A complication in this process is that the ground-based systems sense different properties of the lightning signal than does GLM (e.g., RF vs. optical). Also, each system has a different time and space resolution and accuracy. Preliminary results indicate that GLM is performing at or above its specification.
Thematic mapper studies of central Andean volcanoes
NASA Technical Reports Server (NTRS)
Francis, Peter W.
1987-01-01
A series of false color composite images covering the volcanic cordillera was written. Each image is 45 km (1536 x 1536 pixels) and was constructed using bands 7, 4, and 2 of the Thematic Mapper (TM) data. Approximately 100 images were prepared to date. A set of LANDSAT Multispectral Scanner (MSS) images was used in conjunction with the TM hardcopy to compile a computer data base of all volcanic structure in the Central Andean province. Over 500 individual structures were identified. About 75 major volcanoes were identified as active, or potentially active. A pilot study was begun combining Shuttle Imaging Radar (SIR) data with TM for a test area in north Chile and Bolivia.
Roguev, Assen; Xu, Jiewei; Krogan, Nevan
2018-02-01
This protocol describes an optimized high-throughput procedure for generating double deletion mutants in Schizosaccharomyces pombe using the colony replicating robot ROTOR HDA and the PEM (pombe epistasis mapper) system. The method is based on generating high-density colony arrays (1536 colonies per agar plate) and passaging them through a series of antidiploid and mating-type selection (ADS-MTS) and double-mutant selection (DMS) steps. Detailed program parameters for each individual replication step are provided. Using this procedure, batches of 25 or more screens can be routinely performed. © 2018 Cold Spring Harbor Laboratory Press.
Orbit/launch vehicle tradeoff studies. Earth Observatory Satellite system definition study (EOS)
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation of the Earth Observatory Satellite (EOS) design, performance, and cost factors which affect the choices of an orbit and a launch vehicle is presented. Primary emphasis is given to low altitude (300 to 900 nautical miles) land resources management applications for which payload design factors are defined. The subjects considered are: (1) a mission model, (2) orbit analysis and characterization, (3) characteristics and capabilities of candidate conventional launch vehicles, and space shuttle support. Recommendations are submitted for the EOS-A mission, the Single Multispectral Scanner payload, the Single Multispectral Scanner plus Thematic Mapper payload, the Dual Multispectral Scanner payload, and the Dual Multispectral Scanner plus Thematic Mapper payload.
Relationships Between Long-Range Lightning Networks and TRMM/LIS Observations
NASA Technical Reports Server (NTRS)
Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cummins, Kenneth L.; Cummins, Kenneth L.; Blakeslee, Richard J.; Goodman, Steven J.
2012-01-01
Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. The present study intercompares long-range lightning data with observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study examines network detection efficiency and location accuracy relative to LIS observations, describes spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by the long-range networks. Improved knowledge of relationships between these datasets will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).
Evaluation of Long-Range Lightning Detection Networks Using TRMM/LIS Observations
NASA Technical Reports Server (NTRS)
Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cecil, Daniel J.; Cummins, Kenneth L.; Petersen, Walter A.; Blakeslee, Richard J.; Goodman, Steven J.
2011-01-01
Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. Toward this end, the present study evaluates data from the World Wide Lightning Location Network (WWLLN) using observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study documents the WWLLN detection efficiency and location accuracy relative to LIS observations, describes the spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by WWLLN. Improved knowledge of the WWLLN detection capabilities will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).
The Evolution of a Long-Lived Mesoscale Convective System Observed by GLM
NASA Astrophysics Data System (ADS)
Peterson, M. J.; Rudlosky, S. D.; Antunes, L.
2017-12-01
Continuous Geostationary Lightning Mapper (GLM) observations are used to document total lightning activity over the life cycle of a long-lived Mesoscale Convective System (MCS). MCS's may be few in number, but they are important for the Global Electric Circuit (GEC) because they sustain high lightning flash rates and quasi steady state conduction currents (Wilson currents) over longer time periods than ordinary isolated convection. The optical characteristics of the flashes produced by MCS's change over time, providing additional insights into the precipitation structure, convective mode, and evolution of the storm system. These insights are particularly useful in areas void of radar observations. Intercalibrated passive microwave radiometer data from the Global Precipitation Measurement (GPM) constellation also are used to estimate changes in Wilson current generation as the system evolves. These results highlight the role of MCS's in the GEC, and showcase how optical flash descriptors relate to thunderstorm organization, maturity, and structure.
Groundwater salinity in a floodplain forest impacted by saltwater intrusion
NASA Astrophysics Data System (ADS)
Kaplan, David A.; Muñoz-Carpena, Rafael
2014-11-01
Coastal wetlands occupy a delicate position at the intersection of fresh and saline waters. Changing climate and watershed hydrology can lead to saltwater intrusion into historically freshwater systems, causing plant mortality and loss of freshwater habitat. Understanding the hydrological functioning of tidally influenced floodplain forests is essential for advancing ecosystem protection and restoration goals, however finding direct relationships between hydrological inputs and floodplain hydrology is complicated by interactions between surface water, groundwater, and atmospheric fluxes in variably saturated soils with heterogeneous vegetation and topography. Thus, an alternative method for identifying common trends and causal factors is required. Dynamic factor analysis (DFA), a time series dimension reduction technique, models temporal variation in observed data as linear combinations of common trends, which represent unexplained common variability, and explanatory variables. DFA was applied to model shallow groundwater salinity in the forested floodplain wetlands of the Loxahatchee River (Florida, USA), where altered watershed hydrology has led to changing hydroperiod and salinity regimes and undesired vegetative changes. Long-term, high-resolution groundwater salinity datasets revealed dynamics over seasonal and yearly time periods as well as over tidal cycles and storm events. DFA identified shared trends among salinity time series and a full dynamic factor model simulated observed series well (overall coefficient of efficiency, Ceff = 0.85; 0.52 ≤ Ceff ≤ 0.99). A reduced multilinear model based solely on explanatory variables identified in the DFA had fair to good results (Ceff = 0.58; 0.38 ≤ Ceff ≤ 0.75) and may be used to assess the effects of restoration and management scenarios on shallow groundwater salinity in the Loxahatchee River floodplain.
Inhibition of monoamine oxidase isoforms modulates nicotine withdrawal syndrome in the rat.
Malin, D H; Moon, W D; Goyarzu, P; Barclay, E; Magallanes, N; Vela, A J; Negrete, A P; Mathews, H; Stephens, B; Mills, W R
2013-10-06
There have been many reports of monoamine oxidase (MAO) inhibition by non-nicotine ingredients in tobacco smoke, persisting for days after smoking cessation. This study determined the effect of inhibiting MAO and its isoforms on nicotine withdrawal syndrome. Rats were rendered nicotine-dependent by seven days of subcutaneous (s.c.) 9 mg/kg/day infusion of nicotine bitartrate. Twenty-two hours after termination of infusion, they were observed over 20 min for somatically expressed nicotine withdrawal signs. Three hours before observation, rats were injected intraperitoneally (i.p.) with 4 mg/kg each of the MAO A antagonist clorgyline and the MAO B antagonist deprenyl, or with saline alone. A similar experiment was performed with non-dependent, saline-infused rats. Another experiment compared nicotine-dependent rats that received injections of either saline or 4 mg/kg clorgyline alone. A further experiment compared rats receiving either saline or 4 mg/kg deprenyl alone. Combined treatment with both MAO inhibitors markedly and significantly exacerbated somatically expressed nicotine withdrawal signs in nicotine infused rats, while having no significant effects in saline-infused rats. Rats injected s.c. with 4 mg/kg clorgyline alone had significantly more withdrawal signs than saline-injected rats, while deprenyl-injected rats had significantly fewer signs than saline controls. Assays confirmed that clorgyline thoroughly reduced MAO A enzymatic activity and deprenyl thoroughly reduced MAO B activity. The results suggest that inhibition of MAO A may contribute to the intensity of withdrawal syndrome in smoking cessation. © 2013 Elsevier Inc. All rights reserved.
Sardella, Brian A; Kültz, Dietmar
2014-01-01
The green sturgeon (Acipenser medirostris) is an anadromous species with a distinct population segment in the San Francisco Bay-Sacramento River Delta that is currently listed as threatened. Although this species is able to tolerate salinity challenges as soon as 6 mo posthatch, its ability to deal with unpredictable salinity fluctuations remains unknown. Global climate change is predicted to result in large freshwater (FW) flushes through the estuary during winter and greater tidal influence during the summer. We exposed green sturgeon acclimated to 15 (EST) or 24 (BAY) g/L salinity to a rapid FW influx, where salinity was reduced to 0 g/L in 3 h in order to simulate the effect of the "winter" scenario. Both groups survived, enduring a 10% plasma osmolality reduction after 3 h. BAY-acclimated sturgeon upregulated both Na(+), K(+)-ATPase (NKA) activity and caspase 3/7 activity, but no changes were observed in the EST-acclimated fish. In addition, we exposed FW-acclimated sturgeon to a dual 12-h salinity fluctuation cycle (0-24-0 g/L) in order to simulate the effect of greater tidal influence. At 6 h, the sturgeon showed a significant increase in plasma osmolality, and branchial NKA and caspase 3/7 activities were increased, indicating an acclimation response. There was no acclimation at 18 h, and plasma osmolality was higher than the peak observed at 6 h. The second fluctuation elicited an upregulation of the stress proteins ubiquitin and heat shock 70-kDa protein (HSP 70). Sturgeon can acclimate to changes in salinity; however, salinity fluctuations resulted in substantial cellular stress.
Delineation of marsh types and marsh-type change in coastal Louisiana for 2007 and 2013
Hartley, Stephen B.; Couvillion, Brady R.; Enwright, Nicholas M.
2017-05-30
The Bureau of Ocean Energy Management researchers often require detailed information regarding emergent marsh vegetation types (such as fresh, intermediate, brackish, and saline) for modeling habitat capacities and mitigation. In response, the U.S. Geological Survey in cooperation with the Bureau of Ocean Energy Management produced a detailed change classification of emergent marsh vegetation types in coastal Louisiana from 2007 and 2013. This study incorporates two existing vegetation surveys and independent variables such as Landsat Thematic Mapper multispectral satellite imagery, high-resolution airborne imagery from 2007 and 2013, bare-earth digital elevation models based on airborne light detection and ranging, alternative contemporary land-cover classifications, and other spatially explicit variables. An image classification based on image objects was created from 2007 and 2013 National Agriculture Imagery Program color-infrared aerial photography. The final products consisted of two 10-meter raster datasets. Each image object from the 2007 and 2013 spatial datasets was assigned a vegetation classification by using a simple majority filter. In addition to those spatial datasets, we also conducted a change analysis between the datasets to produce a 10-meter change raster product. This analysis identified how much change has taken place and where change has occurred. The spatial data products show dynamic areas where marsh loss is occurring or where marsh type is changing. This information can be used to assist and advance conservation efforts for priority natural resources.
Henry's law constant for phosphine in seawater: determination and assessment of influencing factors
NASA Astrophysics Data System (ADS)
Fu, Mei; Yu, Zhiming; Lu, Guangyuan; Song, Xiuxian
2013-07-01
The Henry's Law constant ( k) for phosphine in seawater was determined by multiple phase equilibration combined with headspace gas chromatography. The effects of pH, temperature, and salinity on k were studied. The k value for phosphine in natural seawater was 6.415 at room temperature (approximately 23°C). This value increases with increases in temperature and salinity, but no obvious change was observed at different pH levels. At the same temperature, there was no significant difference between the k for phosphine in natural seawater and that in artificial seawater. This implies that temperature and salinity are major determining factors for k in marine environment. Double linear regression with Henry's Law constants for phosphine as a function of temperature and salinity confirmed our observations. These results provide a basis for the measurement of trace phosphine concentrations in seawater, and will be helpful for future research on the status of phosphine in the oceanic biogeochemical cycle of phosphorus.
Recent trends and variations in Baltic Sea temperature, salinity, stratification and circulation
NASA Astrophysics Data System (ADS)
Elken, Jüri; Lehmann, Andreas; Myrberg, Kai
2015-04-01
The presentation highlights the results of physical oceanography from BACC II (Second BALTEX Assessment of Climate Change for the Baltic Sea basin) book based on the review of recent literature published until 2013. We include also information from some more recent publications. A recent warming trend in sea surface waters has been clearly demonstrated by all available methods: in-situ measurements, remote sensing data and modelling tools. In particular, remote sensing data for the period 1990-2008 indicate that the annual mean SST has increased even by 1°C per decade, with the greatest increase in the northern Bothnian Bay and also with large increases in the Gulf of Finland, the Gulf of Riga, and the northern Baltic Proper. Although the increase in the northern areas is affected by the recent decline in the extent and duration of sea ice, and corresponding changes in surface albedo, warming is still evident during all seasons and with the greatest increase occurring in summer. The least warming of surface waters (0.3-0.5°C per decade) occurred northeast of Bornholm Island up to and along the Swedish coast, probably owing to an increase in the frequency of coastal upwelling forced by the westerly wind events. Comparing observations with the results of centennial-scale modelling, recent changes in sea water temperature appear to be within the range of the variability observed during the past 500 years. Overall salinity pattern and stratification conditions are controlled by river runoff, wind conditions, and salt water inflows through the Danish straits. The mean top-layer salinity is mainly influenced by the accumulated river runoff, with higher salinity during dry periods and lower salinity during wet periods. Observations reveal a low-salinity period above the halocline starting in the 1980s. The strength of stratification and deep salinity are reduced when the mean zonal wind stress increases, as it occurred since 1987. Major Baltic Inflows of highly saline water of North Sea origin occur sporadically and transport high-saline water into the deep layers of the Baltic Sea. These inflow events occur when high pressure over the Baltic region with easterly winds is followed by several weeks of strong westerly winds; changes in the inflow activity are related to the frequency of deep cyclones and their pathways over the Baltic area. Major inflows are often followed by a period of stagnation during which saline stratification decreases and oxygen deficiency develops in the deep basins of the central Baltic. Major inflows are usually of barotropic character. They normally occur during winter and spring and transport relatively cold, salty and oxygen-rich waters to the deep basins. Since 1996, another type of inflows have been observed during summer or early autumn. These inflows are of baroclinic character and transport high-saline, but warm and low-oxygen water into the deep layers of the Baltic Sea. Event-like water exchange and mixing anomalies, driven by specific atmospheric forcing patterns like sequences of deep cyclones, occur also in other parts of the Baltic Sea.
Hurricane-induced failure of low salinity wetlands
Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.
2010-01-01
During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777
Severin, Ina; Confurius-Guns, Veronique; Stal, Lucas J
2012-06-01
Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community (nifH transcript libraries) of three types of microbial mats situated along a littoral gradient. All three mat types exhibited highest nitrogenase activity at salinities close to ambient seawater or lower. The response to lower or higher salinity was strongest in mats higher up in the littoral zone. Changes in nitrogenase activity as the result of exposure to different salinities were accompanied by changes in the active diazotrophic community. The two stations higher up in the littoral zone showed nifH expression by Cyanobacteria (Oscillatoriales and Chroococcales) and Proteobacteria (Gammaproteobacteria and Deltaproteobacteria). At these stations, a decrease in the relative contribution of Cyanobacteria to the nifH transcript libraries was observed at increasing salinity coinciding with a decrease in nitrogenase activity. The station at the low water mark showed low cyanobacterial contribution to nifH transcript libraries at all salinities but an increase in deltaproteobacterial nifH transcripts under hypersaline conditions. In conclusion, increased salinities caused decreased nitrogenase activity and were accompanied by a lower proportion of cyanobacterial nifH transcripts.
NASA Astrophysics Data System (ADS)
Weiss, Gabriella M.; Pfannerstill, Eva Y.; Schouten, Stefan; Sinninghe Damsté, Jaap S.; van der Meer, Marcel T. J.
2017-12-01
Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.
Is there a signal of sea-level rise in Chesapeake Bay salinity?
NASA Astrophysics Data System (ADS)
Hilton, T. W.; Najjar, R. G.; Zhong, L.; Li, M.
2008-09-01
We evaluate the hypothesis that sea-level rise over the second half of the 20th century has led to detectable increases in Chesapeake Bay salinity. We exploit a simple, statistical model that predicts monthly mean salinity as a function of Susquehanna River flow in 23 segments of the main stem Chesapeake Bay. The residual (observed minus modeled) salinity exhibits statistically significant linear (p < 0.05) trends between 1949 and 2006 in 13 of the 23 segments of the bay. The salinity change estimated from the trend line over this period varies from -2.0 to 2.2, with 10 of the 13 cells showing positive changes. The mean and median salinity changes over all 23 cells are 0.47 and 0.72; over the 13 cells with significant trends they are 0.71 and 1.1. We ran a hydrodynamic model of the bay under present-day and reduced sea level conditions and found a bay-average salinity increase of about 0.5, which supports the hypothesis that the salinity residual trends have a significant component due to sea-level rise. Uncertainties remain, however, due to the spatial and temporal extent of historical salinity data and the infilling of the bay due to sedimentation. The salinity residuals also exhibit interannual variability, with peaks occurring at intervals of roughly 7 to 9 years, which are partially explained by Atlantic Shelf salinity, Potomac River flow and the meridional component of wind stress.
Salinity stress response in estuarine fishes from the Murray Estuary and Coorong, South Australia.
Hossain, Md Afzal; Aktar, Shefali; Qin, Jian G
2016-12-01
Estuaries are unstable ecosystems and can be changed by the environmental and anthropogenic impact. The Murray Estuary and Coorong were degraded by drought and low freshwater input in the last decade and therefore transformed into the largest hyper-saline lagoon in Australia. This study evaluates the physiological stress of two estuarine fish species (small-mouthed hardyhead Atherinosoma microstoma and Tamar goby Afurcagobius tamarensis) to the induced salinity change in captivity. The test fishes were collected from the Coorong and transported to the laboratory in the water from the Coorong. Each fish species was exposed to different levels of salinity, and a number of enzymes were assessed to measure the stress response of fish to salinity change. The activity of reactive oxygen species was significantly increased with the salinity change in both fish species compared with the fish in the control. Significant salinity effect on superoxide dismutase activity was observed on Tamar goby but not on small-mouthed hardyhead. Conversely, the impact of salinity on catalase activity was detected on small-mouthed hardyhead but not on Tamar goby. The study reveals that the induction of physical stress by salinity changes occurred in both Tamar goby and small-mouthed hardyhead despite the varying response of antioxidant enzymes between fish species. The study provides an insight into the understanding of physiological adaptation in estuarine fish to salinity change. The results could improve our knowledge on stress response and resilience of estuarine fish to hypo- and hyper-salinity stress.
NASA Astrophysics Data System (ADS)
Payo, Andrés.; Lázár, Attila N.; Clarke, Derek; Nicholls, Robert J.; Bricheno, Lucy; Mashfiqus, Salehin; Haque, Anisul
2017-05-01
Understanding the dynamics of salt movement in the soil is a prerequisite for devising appropriate management strategies for land productivity of coastal regions, especially low-lying delta regions, which support many millions of farmers around the world. At present, there are no numerical models able to resolve soil salinity at regional scale and at daily time steps. In this research, we develop a novel holistic approach to simulate soil salinization comprising an emulator-based soil salt and water balance calculated at daily time steps. The method is demonstrated for the agriculture areas of coastal Bangladesh (˜20,000 km2). This shows that we can reproduce the dynamics of soil salinity under multiple land uses, including rice crops, combined shrimp and rice farming, as well as non-rice crops. The model also reproduced well the observed spatial soil salinity for the year 2009. Using this approach, we have projected the soil salinity for three different climate ensembles, including relative sea-level rise for the year 2050. Projected soil salinity changes are significantly smaller than other reported projections. The results suggest that inter-season weather variability is a key driver of salinization of agriculture soils at coastal Bangladesh.
An, Biwen A; Shen, Yin; Voordouw, Gerrit
2017-01-01
Microbial communities in shale oil fields are still poorly known. We obtained samples of injection, produced and facility waters from a Bakken shale oil field in Saskatchewan, Canada with a resident temperature of 60°C. The injection water had a lower salinity (0.7 Meq of NaCl) than produced or facility waters (0.6-3.6 Meq of NaCl). Salinities of the latter decreased with time, likely due to injection of low salinity water, which had 15-30 mM sulfate. Batch cultures of field samples showed sulfate-reducing and nitrate-reducing bacteria activities at different salinities (0, 0.5, 0.75, 1.0, 1.5, and 2.5 M NaCl). Notably, at high salinity nitrite accumulated, which was not observed at low salinity, indicating potential for nitrate-mediated souring control at high salinity. Continuous culture chemostats were established in media with volatile fatty acids (a mixture of acetate, propionate and butyrate) or lactate as electron donor and nitrate or sulfate as electron acceptor at 0.5 to 2.5 M NaCl. Microbial community analyses of these cultures indicated high proportions of Halanaerobium, Desulfovermiculus, Halomonas , and Marinobacter in cultures at 2.5 M NaCl, whereas Desulfovibrio, Geoalkalibacter , and Dethiosulfatibacter were dominant at 0.5 M NaCl. Use of bioreactors to study the effect of nitrate injection on sulfate reduction showed that accumulation of nitrite inhibited SRB activity at 2.5 M but not at 0.5 M NaCl. High proportions of Halanaerobium and Desulfovermiculus were found at 2.5 M NaCl in the absence of nitrate, whereas high proportions of Halomonas and no SRB were found in the presence of nitrate. A diverse microbial community dominated by the SRB Desulfovibrio was observed at 0.5 M NaCl both in the presence and absence of nitrate. Our results suggest that nitrate injection can prevent souring provided that the salinity is maintained at a high level. Thus, reinjection of high salinity produced water amended with nitrate maybe be a cost effective method for souring control.