Science.gov

Sample records for salivary amylase activity

  1. Exercise upregulates salivary amylase in humans (Review)

    PubMed Central

    KOIBUCHI, ERI; SUZUKI, YOSHIO

    2014-01-01

    The secretion of salivary α-amylase is influenced by adrenergic regulation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis; thus, exercise affects the levels of salivary α-amylase. Granger et al published a review in 2007 that focused attention on salivary α-amylase. In addition, a portable system for monitoring salivary α-amylase activity was launched in Japan at the end of 2005. The correlation between exercise and salivary α-amylase has since been extensively investigated. The present review summarizes relevant studies published in the English and Japanese literature after 2006. A search of the PubMed and CiNii databases identified 54 articles, from which 15 original articles were selected. The findings described in these publications indicate that exercise consistently increases mean salivary α-amylase activities and concentrations, particularly at an intensity of >70% VO2max in healthy young individuals. Thus, these studies have confirmed that salivary α-amylase levels markedly increase in response to physical stress. Salivary α-amylase levels may therefore serve as an effective indicator in the non-invasive assessment of physical stress. PMID:24669232

  2. Enhancing Maritime Education and Training: Measuring a Ship Navigator's Stress Based on Salivary Amylase Activity

    ERIC Educational Resources Information Center

    Murai, Koji; Wakida, Shin-Ichi; Miyado, Takashi; Fukushi, Keiichi; Hayashi, Yuji; Stone, Laurie C.

    2009-01-01

    Purpose: The purpose of this paper is to propose that the measurement of salivary amylase activity is an effective index to evaluate the stress of a ship navigator for safe navigation training and education. Design/methodology/approach: Evaluation comes from the simulator and actual on-board experiments. The subjects are real captains who have…

  3. Salivary Alpha-Amylase Activity and Salivary Flow Rate in Young Adults

    PubMed Central

    Arhakis, Aristidis; Karagiannis, Vasilis; Kalfas, Sotirios

    2013-01-01

    The secretion of salivary alpha-amylase (sAA) is more associated with psychoneuroendocrinological response to stress than with the flow rate and age. The aim of this cross sectional study is to build an explanatory model based on patterns of relationship between age 20-39 in resting and stimulated saliva under no stressful condition in healthy volunteers. Both resting and stimulated saliva were collected from 40 subjects. The sAA values were log-transformed, the normality assumption was verified with the Shapiro-Wilk test and the reliability of the measurements was estimated by the Pearsons’ r correlation coefficient. The estimated model was based on the theory of the Linear Mixed Models. Significant mean changes were observed in flow rate and sAA activity between resting and stimulated saliva. The final model consists of two components, the first revealed a positive correlation between age and sAA while the second one revealed a negative correlation between the interaction of age × flow rate in its condition (resting or stimulated saliva), with sAA. Both flow rate and age influence sAA activity. PMID:23524385

  4. Possible involvement of β₁ receptors in various emetogen-induced increases in salivary amylase activity in rats.

    PubMed

    Fukui, Hideo; Suyama, Yoshimi; Iwachido, Takako; Miwa, Eri

    2011-01-01

    We investigated the inhibitory effects of β₁- or β₂-adrenoceptor (AR) antagonists on salivary amylase secretion produced by various emetic agents, such as cisplatin, apomorphine, and lithium chloride (LiCl), or the non-emetic agent β(½)-AR agonist isoprenaline in rats. We also determined the inhibitory effect of metoclopramide, a dopamine D₂-receptor antagonist, on increases in the salivary amylase activity induced by apomorphine or granisetron, a 5-HT(3)-receptor antagonist, on LiCl-induced increased salivary amylase activity. Isoprenaline (0.01 mg/kg, s.c.) produced an increase in salivary amylase and the increase was inhibited by the β(½)-AR antagonist propranolol (5 mg/kg, s.c.) and β₁-AR antagonist atenolol (2 mg/kg, s.c.) but not by the β₂-AR antagonist butoxamine (8 mg/kg, s.c.). The increased amylase activity induced by cisplatin (15 mg/kg, i.v.), apomorphine (3 mg/kg, s.c.), or LiCl (120 mg/kg, i.p.) was inhibited significantly by atenolol (2 mg/kg, s.c.) but not by butoxamine (8 mg/kg, s.c.). In addition, increases in amylase activities induced by apomorphine and LiCl were inhibited significantly by metoclopramide (10 mg/kg, i.v.) and granisetron (3 mg/kg, i.v.), respectively. These results suggest that salivary amylase secretion induced by various emetogens is involved in β₁-adrenoceptor activity and that salivary amylase activity is useful to detect emetogens with no direct β₁-AR activation in rats, a species that does not exhibit vomiting.

  5. Salivary alpha amylase activity in human beings of different age groups subjected to psychological stress.

    PubMed

    Sahu, Gopal K; Upadhyay, Seema; Panna, Shradha M

    2014-10-01

    Salivary alpha-amylase (sAA) has been proposed as a sensitive non-invasive biomarker for stress-induced changes in the body that reflect the activity of the sympathetic nervous system. Though several experiments have been conducted to determine the validity of this salivary component as a reliable stress marker in human subjects, the effect of stress induced changes on sAA level in different age groups is least studied. This article reports the activity of sAA in human subjects of different age groups subjected to psychological stress induced through stressful video clip. Differences in sAA level based on sex of different age groups under stress have also been studied. A total of 112 subjects consisting of both the male and female subjects, divided into two groups on basis of age were viewed a video clip of corneal transplant surgery as stressor. Activity of sAA from saliva samples of the stressed subjects were measured and compared with the activity of the samples collected from the subjects before viewing the clip. The age ranges of subjects were 18-25 and 40-60 years. The sAA level increased significantly in both the groups after viewing the stressful video. The increase was more pronounced in the younger subjects. The level of sAA was comparatively more in males than females in the respective groups. No significant change in sAA activity was observed after viewing the soothed video clip. Significant increase of sAA level in response to psychological stress suggests that it might act as a reliable sympathetic activity biochemical marker in different stages of human beings.

  6. The roles of AMY1 copies and protein expression in human salivary α-amylase activity.

    PubMed

    Yang, Ze-Min; Lin, Jing; Chen, Long-Hui; Zhang, Min; Chen, Wei-Wen; Yang, Xiao-Rong

    2015-01-01

    Salivary α-amylase (sAA) activity has been extensively investigated in nutrition and psychology. But few studies were performed to assess the role played by sAA gene (AMY1) copies and protein expression in basal and stimulus-induced sAA activity. The sAA activity, amount and AMY1 copy number were determined from 184 saliva samples pre- and post-citric acid stimulation. Our findings showed that citric acid could induce significant increase in sAA activity, total sAA amount, and glycosylated sAA amount, among which the glycosylated sAA amount had the largest response. The correlation analysis showed that AMY1 copy number, total sAA amount and AMY1 copy number×total sAA amount had significantly positive and successively increasing correlations with sAA activity in unstimulated and stimulated saliva, respectively, and furthermore, we observed higher correlations in unstimulated saliva when compared with the corresponding correlations in stimulated saliva. We also observed significant correlations between glycosylated sAA amount and sAA activity in unstimulated and stimulated saliva, respectively. Interestingly, the correlations were higher in stimulated saliva than in unstimulated saliva, and the correlations between glycosylated sAA amount and sAA activity were higher than that of between total sAA amount and sAA activity in stimulated saliva. Moreover, total sAA amount ratio and glycosylated sAA amount ratio showed significantly positive correlation with sAA activity ratio. AMY1 copy number had no correlation with sAA activity ratio. These findings suggested that AMY1 copy number and sAA amount played crucial roles in sAA activity; however, the roles were attenuated after stimulation due to fortified release of glycosylated sAA.

  7. Simple ITC method for activity and inhibition studies on human salivary α-amylase.

    PubMed

    Lehoczki, Gábor; Szabó, Kármen; Takács, István; Kandra, Lili; Gyémánt, Gyöngyi

    2016-12-01

    Isothermal titration calorimetry (ITC) has an increasing significance in enzyme kinetic studies owing to its general applicability and sensitivity. In the present work, we aimed at developing a simple ITC-based screening procedure for the measurement of human salivary α-amylase (HSA) activity. Reaction of two substrates was studied with three independent methods (ITC, HPLC and spectrophotometry). ITC experiments were made using free and chromophore-containing maltooligomers of different length as substrates. Detailed studies revealed that maltoheptaose or longer oligomers could model properly starch and the presence of aromatic chromophore group did not affect the KM values considerably. It is the first time, when ITC was used to investigate of HSA-catalysed hydrolysis of different substrates (2-chloro-4-nitrophenyl-4-O-α-D-galactopyranosyl-maltoside, maltoheptaose and starch) in the presence of acarbose inhibitor. All measured IC50 values are in micromolar range (0.9, 18.6 and 29.0 μM, respectively) and increased in parallel with the degree of polymerisation of substrates.

  8. The roles of histidine residues at the starch-binding site in streptococcal-binding activities of human salivary amylase.

    PubMed

    Tseng, C C; Miyamoto, M; Ramalingam, K; Hemavathy, K C; Levine, M J; Ramasubbu, N

    1999-02-01

    Human salivary alpha-amylase participates in the initial digestion of starch and may be involved in the colonization of viridans streptococci in the mouth. To elucidate the role of histidine residues located near the starch-binding site on the streptococcal-binding activity, the wild type and three histidine mutants, H52A, H299A and H305A were constructed and expressed in a baculovirus system. While His52 is located near the non-reducing end of the starch-binding pocket (subsite S3/S4), the residues His299 and His305 are located near the subsites S1/S1'. For the wild type, the cDNA encoding the leader and secreted sequences of human salivary amylase was amplified by polymerase chain reaction from a human submandibular salivary-gland cDNA library, and subcloned into the baculovirus shuttle vector pVL1392 downstream of the polyhedrin promoter. Oligonucleotide-based, site-directed mutagenesis was used to generate the mutants expressed in the baculovirus system. Replacing His52 or His299 or His305 to Ala residue did not alter the bacterial-binding activity significantly, but these mutants did show differences in their catalytic activities. The mutant H52A showed negligible reduction in enzymatic activity compared to that of wild type for the hydrolysis of starch and oligosaccharides. In contrast, the H299A and H305A mutants showed a 12 to 13-fold reduction (90-92%) in starch-hydrolysing activity. In addition, the k(cat) for the hydrolysis of oligosaccharides by H299A decreased by as much as 11-fold for maltoheptaoside. This reduction was even higher (40-fold) for the hydrolysis of p-nitrophenyl maltoside, with a significant change in K(M). The mutant H305A, however, exhibited a reduction in k(cat) only, with no changes in the K(M) for the hydrolysis of oligosaccharides. The reduction in the k(cat) for the H305A mutant was almost 93% for maltoheptaoside hydrolysis. The pH activity profile for the H305A mutant was also significantly different from that of the wild type

  9. Characterization of salivary alpha-amylase binding to Streptococcus sanguis

    SciTech Connect

    Scannapieco, F.A.; Bergey, E.J.; Reddy, M.S.; Levine, M.J. )

    1989-09-01

    The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase was the prominent salivary component eluted from S. sanguis. Studies with {sup 125}I-labeled HSMSL or {sup 125}I-labeled HPS also demonstrated a component with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of ({sup 125}I)alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch.

  10. Oral Fusobacterium nucleatum subsp. polymorphum binds to human salivary α-amylase.

    PubMed

    Zulfiqar, M; Yamaguchi, T; Sato, S; Oho, T

    2013-12-01

    Fusobacterium nucleatum acts as an intermediate between early and late colonizers in the oral cavity. In this study, we showed that F. nucleatum subsp. polymorphum can bind to a salivary component with a molecular weight of approximately 110 kDa and identified the protein and another major factor of 55 kDa, as salivary α-amylase by time-of-flight mass spectrometry and immuno-reactions. Salivary α-amylase is present in both monomeric and dimeric forms and we found that formation of the dimer depends on copper ions. The F. nucleatum adhered to both monomeric and dimeric salivary α-amylases, but the numbers of bacteria bound to the dimeric form were more than those bound to the monomeric form. The degree of adherence of F. nucleatum to four α-amylases from different sources was almost the same, however its binding to β-amylase was considerably decreased. Among four α-amylase inhibitors tested, acarbose and type 1 and 3 inhibitors derived from wheat flour showed significant activity against the adhesion of F.nucleatum to monomeric and dimeric amylases, however voglibose had little effect. Moreover F. nucleatum cells inhibited the enzymatic activity of salivary α-amylase in a dose-dependent manner. These results suggest that F. nucleatum plays more important and positive role as an early colonizer for maturation of oral microbial colonization.

  11. Various emetogens increase the secretion of salivary amylase in rats: a potential model in emesis research.

    PubMed

    Fukui, Hideo; Miwa, Eri; Iwachido, Takako; Kitaura, Harumi; Furukawa, Hatsue

    2010-01-01

    We investigated the effects of various emetic agents: cisplatin, apomorphine, lithium chloride (LiCl), rolipram, sibutramine, and the beta(3)-adrenoceptor (AR) agonist CL316243 on salivary amylase secretion in rats. We also determined the inhibitory effect of granisetron, a 5-HT(3)-receptor antagonist, on cisplatin-induced increased salivary amylase activity and the inhibitory effect of bilateral abdominal vagotomy on increases in salivary amylase activity induced by cisplatin and LiCl. Granisetron was administered 15 min before and 1 h after cisplatin administration. Cisplatin (10 - 15 mg/kg, i.v.) increased salivary amylase activity dose-dependently and induced an acute increase from 1.5 h post-treatment with 15 mg/kg. Apomorphine (1 - 3 mg/kg, s.c.), LiCl (120 mg/kg, i.p.), rolipram (3 - 10 mg/kg, p.o.), and sibutramine (10 mg/kg, p.o.) induced significant increases in salivary amylase secretion. On the other hand, CL316243 did not stimulate salivary amylase secretion. The increased amylase activity induced by cisplatin (15 mg/kg, i.v.) was inhibited significantly by granisetron (1 or 3 mg/kg x 2, i.v.) or tended to be inhibited by bilateral abdominal vagotomy, whereas an increase in amylase activity produced by LiCl was not inhibited by abdominal visceral nerve section. These results suggest that salivary amylase activity is useful as a marker for emesis in rats, a species that does not exhibit vomiting.

  12. Effect of an herb root extract, herbal dentifrice and synthetic dentifrice on human salivary amylase

    PubMed Central

    Sapra, Gaurav; Vyas, Yogesh Kumar; Agarwal, Rahul; Aggarwal, Ashish; Chandrashekar, K T; Sharma, Kanika

    2013-01-01

    Background: Salivary amylase is an enzyme, which plays a vital role in formation of dental plaque. It has the ability to bind on the bacterial surfaces and to hydrolyze starch, giving rise to products that are transformed into acids leading to dental caries. Suppression of salivary amylase activity can lead to decrease in risk of dental caries and plaque associated periodontal diseases. The aim of this study was to evaluate the effect of an herb, Spilanthes calva (in form of a test dentifrice) on human salivary amylase activity and to compare it with other dentifrices. Materials and Methods: A total of 80 subjects of age 18-35 years were randomly selected and divided equally into 4 groups. Group 1 subjects were assigned to use Test Dentifrice (with S. calva root extract), while Group 2, Group 3, and Group 4 subjects were assigned to use Herbal Dentifrice (Arodent™), Synthetic Dentifrice (Colgate®), and Control Dentifrice respectively. Salivary amylase activity was determined by Bernfeld method in each group, before and after using the given dentifrices. Results: Maximum inhibition of salivary amylase activity was found in the group using test dentifrice as compared to others. Conclusion: The present study indicates that, the root extract of S. calva possess significant inhibitory activity for salivary amylase. Use of S. calva root extract will provide a wider protection against different pathogenic oral microflora. Use of this extract singly or in combination is strongly recommended in the dentifrice formulations. PMID:24130585

  13. Salivary amylase and stress during stressful environment: three Mars analog mission crews study.

    PubMed

    Rai, Balwant; Kaur, Jasdeep; Foing, Bernard H

    2012-06-14

    After the establishment of the space age physicians, human factors engineers, neurologist and psychologists and their special attention to work on people's capability to meet up the physical, psychological, neuroscience and interpersonal strains of working in space, it has been regarded as an issue that seeks urgent consideration. Not study was conducted on effect of simulated Mars analog environment on stress and salivary amylase. So, this study aimed to confirm whether salivary amylase is act as stress biomarker in crew members who took part in Mars analog mission in an isolated and stressful environment. The 18 crew members were selected who took part in Mars Analog Research Station, Utah. Salivary amylase was measured using a biosensor of salivary amylase monitor and State-Trait Anxiety Inventory score at pre-extravehicular activity, post-extravehicular activity and on before mission. The state and trait anxiety scores at pre-extravehicular activity for each commander were elevated as compared to after extravehicular activity. There were significant differences in the state and trait anxiety scores between before extravehicular activity and after extravehicular activity of Commander and other members, also there were significant differences in values of before-extravehicular activity between commanders and other members. There were significant differences in values of salivary amylase at before extravehicular activity and after extravehicular activity between commander group and other members. There was significant correlation between salivary amylase and state and trait anxiety scores in all groups. Measuring salivary amylase level could be useful for stress assessment of crew members and population working in a stressful and isolated environment.

  14. Structural relationship between the enzymatic and streptococcal binding sites of human salivary alpha-amylase.

    PubMed

    Scannapieco, F A; Bhandary, K; Ramasubbu, N; Levine, M J

    1990-12-31

    Previous studies have demonstrated that human salivary alpha-amylase specifically binds to the oral bacterium Streptococcus gordonii. This interaction is inhibited by substrates such as starch and maltotriose suggesting that bacterial binding may involve the enzymatic site of amylase. Experiments were performed to determine if amylase bound to the bacterial surface possessed enzymatic activity. It was found that over one-half of the bound amylase was enzymatically active. In addition, bacterial-bound amylase hydrolyzed starch to glucose which was then metabolized to lactic acid by the bacteria. In further studies, the role of amylase's histidine residues in streptococcal binding and enzymatic function was assessed after their selective modification with diethyl pyrocarbonate. DEP-modified amylase showed a marked reduction in both enzymatic and streptococcal binding activities. These effects were diminished when DEP modification occurred in the presence of maltotriose. DEP-modified amylase had a significantly altered secondary structure when compared with native enzyme or amylase modified in the presence of maltotriose. Collectively, these results suggest that human salivary alpha-amylase may possess multiple sites for bacterial binding and enzymatic activity which share structural similarities.

  15. The contribution of salivary amylase to glucose polymer hydrolysis in premature infants.

    PubMed

    Murray, R D; Kerzner, B; Sloan, H R; McClung, H J; Gilbert, M; Ailabouni, A

    1986-02-01

    To determine whether salivary amylase of premature infants can function as a surrogate for pancreatic amylase, we evaluated its production in the infant, acid resistance, and hydrolytic potency in a simulated oropharyngeal, gastric, and intestinal environment. The activity of salivary amylase in 11 prematures varied between 1 and 33 U/ml; the isozymic profile and acid resistance of the premature salivary amylase were identical to those of the enzyme of adults. A "modular" formula containing 7 g/dl of a 14C labeled long chain glucose polymer with degrees of polymerization ranging between 18 and 29 glucose units was prepared. Salivary amylase, 1.1 U/ml, was added to this formula. The progressive breakdown of the 14C polymers as the milk was subjected to oropharyngeal, gastric, and intestinal phase environments was evaluated by quantifying the liberation of short-chain oligomers from the 14C labeled substrates. The gastric pH was varied between 2 and 5 and the gastric incubation time was either 5 or 180 min. Substantial gastric phase breakdown only occurred after 3 h of exposure at the higher pHs of 4 (12%) and 5 (32%). During the intestinal phase, salivary amylase activity resumed. Prior gastric phase pH affected ultimate intestinal phase breakdown, p less than 0.001; after 5-min gastric phases at pHs ranging from 2 to 5, the intestinal phase breakdown ranged from 17 to 55%. We conclude that the limited salivary amylase in the saliva of premature infants can produce significant glucose polymer digestion in both the stomach and small intestine but the digestion falls substantially short of that accomplished by usual concentrations of pancreatic amylase.

  16. Elevated Salivary Alpha-Amylase Level, Association Between Depression and Disease Activity, and Stress as a Predictor of Disease Flare in Systemic Lupus Erythematosus

    PubMed Central

    Jung, Ju-Yang; Nam, Jin-Young; Kim, Hyoun-Ah; Suh, Chang-Hee

    2015-01-01

    Abstract Psychological stress has been shown to trigger systemic lupus erythematosus (SLE). However, objective evidence of symptom aggravation due to mental stress is difficult to identify. We aimed to investigate the relationship between SLE disease activity and mental stress, and the usefulness of saliva as an assessment index for stress in patients with SLE. We prospectively assessed the salivary stress hormone and disease-related biomarkers, and questionnaire data regarding stress and depression in 100 patients with SLE and 49 sex- and age-matched normal controls (NCs). Patients with SLE had higher mean salivary α-amylase levels (5.7 ± 4.6 U/mL vs 2.7 ± 2.5 U/mL, P < 0.001), anti-chromatin antibody levels (25.3 ± 22.9 U/mL vs 15.9 ± 10.9 U/mL, P < 0.001), and Beck Depression Index (BDI) scores (11.1 ± 9.2 vs 5.3 ± 5.1, P < 0.001) than NCs. However, salivary cortisol levels and Perceived Stress Scale (PSS) scores did not differ between the groups. The BDI scores correlated with the SLE disease activity index (SLEDAI) scores (r = 0.253, P = 0.011) and erythrocyte sedimentation rates (r = 0.234, P = 0.019). SLE patients with the highest-quartile PSS scores had significantly increased SLEDAI scores compared to those with the lowest-quartile PSS scores after 4 to 5 months’ follow-up. Moreover, SLE patients with elevated SLEDAI scores had higher baseline PSS scores. Patients with SLE showed uncoupling of the sympathetic nervous system and hypothalamic–pituitary–adrenal axis; higher salivary α-amylase and no different cortisol levels compared with NCs. Also, patients with SLE were more depressed, which correlated with disease activity. Furthermore, perceived stress was not correlated with disease activity; however, disease activity worsened several months later with elevated perceived stress levels. PMID:26222848

  17. Estimation of salivary glucose, salivary amylase, salivary total protein and salivary flow rate in diabetics in India.

    PubMed

    Panchbhai, Arati S; Degwekar, Shirish S; Bhowte, Rahul R

    2010-09-01

    Diabetes is known to influence salivary composition and function, eventually affecting the oral cavity. We thus evaluated saliva samples for levels of glucose, amylase and total protein, and assessed salivary flow rate in diabetics and healthy non-diabetics. We also analyzed these parameters with regard to duration and type of diabetes mellitus and gender, and aimed to assess the interrelationships among the variables included in the study. A total of 120 age- and sex-matched participants were divided into 3 groups of 40 each; the uncontrolled diabetic group, the controlled diabetic group and the healthy non-diabetic group. Salivary investigations were performed using unstimulated whole saliva. Mean salivary glucose levels were found to be significantly elevated in both uncontrolled and controlled diabetics, as compared to healthy non-diabetics. There were significant decreases in mean salivary amylase levels in controlled diabetics when compared to healthy non-diabetics. Other than salivary glucose, no other parameters were found to be markedly affected in diabetes mellitus. Further research is needed to explore the clinical implications of these study results.

  18. Susceptibility to corrosion of laser welding composite arch wire in artificial saliva of salivary amylase and pancreatic amylase.

    PubMed

    Zhang, Chao; Liu, Jiming; Yu, Wenwen; Sun, Daqian; Sun, Xinhua

    2015-10-01

    In this study, laser-welded composite arch wire (CAW) with a copper interlayer was exposed to artificial saliva containing salivary amylase or pancreatic amylase, and the resultant corrosion behavior was studied. The purpose was to determine the mechanisms by which salivary amylase and pancreatic amylase contribute to corrosion. The effects of amylase on the electrochemical resistance of CAW were tested by potentiodynamic polarization measurements. The dissolved corrosion products were determined by ICP-OES, and the surfaces were analyzed by SEM, AFM and EDS. The results showed that both exposure to salivary amylase and pancreatic amylase significantly improved the corrosion resistance of CAW. Even isozyme could have different influences on the alloy surface. When performing in vitro research of materials to be used in oral cavity, the effect of α-amylase should be taken into account since a simple saline solution does not entirely simulate the physiological situation.

  19. Measuring Stress and Ability to Recover from Stress with Salivary Alpha-Amylase Levels

    DTIC Science & Technology

    2011-04-01

    Ability to Recover from Stress with Salivary α- Amylase Levels Authors Brandon L. Mulrine Michael F. Sheehan Lolita M. Burrell Michael...TITLE AND SUBTITLE Measuring Stress and Ability to Recover from Stress with Salivary Alpha Amylase Levels 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...stress-related conditions. The findings suggest that measuring salivary α- amylase levels may help to determine a Soldier’s resilience or risk of

  20. Salivary alpha-amylase: role in dental plaque and caries formation.

    PubMed

    Scannapieco, F A; Torres, G; Levine, M J

    1993-01-01

    Salivary alpha-amylase, one of the most plentiful components in human saliva, has at least three distinct biological functions. The enzymatic activity of alpha-amylase undoubtedly plays a role in carbohydrate digestion. Amylase in solution binds with high affinity to a selected group of oral streptococci, a function that may contribute to bacterial clearance and nutrition. The fact that alpha-amylase is also found in acquired enamel pellicle suggests a role in the adhesion of alpha-amylase-binding bacteria. All of these biological activities seem to depend on an intact enzyme conformation. Binding of alpha-amylase to bacteria and teeth may have important implications for dental plaque and caries formation. alpha-Amylase bound to bacteria in plaque may facilitate dietary starch hydrolysis to provide additional glucose for metabolism by plaque microorganisms in close proximity to the tooth surface. The resulting lactic acid produced may be added to the pool of acid in plaque to contribute to tooth demineralization.

  1. Inhibitory effects of tannin on human salivary alpha-amylase.

    PubMed

    Kandra, Lili; Gyémánt, Gyöngyi; Zajácz, Agnes; Batta, Gyula

    2004-07-09

    Here, we first report on the effectiveness and specificity of tannin inhibition of 2-chloro-4-nitrophenyl-4-O-beta-d-galactopyranosylmaltoside hydrolysis that is catalyzed by human salivary alpha-amylase (HSA). Tannin was gallotannin in which quinic acid was esterified with 2-7 units of gallic acid. A number of studies establish that polyphenols-like tannins-may prevent oral diseases, e.g., dental caries. Kinetic analyses confirmed that the inhibition of hydrolysis is a mixed non-competitive type and only one molecule of tannin binds to the active site or the secondary site of the enzyme. Since Dixon plots were linear, product formation could be excluded from the enzyme-substrate-inhibitor complex (ESI). Kinetic constants calculated from secondary plots and non-linear regression are almost identical, thereby confirming the suggested model. Kinetic constants (K(EI) = 9.03 microgmL(-1), K(ESI) = 47.84 microgmL(-1)) show that tannin is as an effective inhibitor of HSA as acarbose and indicate a higher stability for the enzyme-inhibitor complex than ESI.

  2. Salivary alpha amylase and salivary cortisol response to fluid consumption in exercising athletes

    PubMed Central

    Horvath, PJ; Kazial, KA

    2015-01-01

    The objective of the study was to examine salivary biomarker response to fluid consumption in exercising athletes. Exercise induces stress on the body and salivary alpha amylase (sAA) and salivary cortisol are useful biomarkers for activity in the sympathoadrenal medullary system and the hypothalamic pituitary adrenal axis which are involved in the stress response. Fifteen college students were given 150 ml and 500 ml of water on different days and blinded to fluid condition. The exercise protocol was identical for both fluid conditions using absolute exercise intensities ranging from moderate to high. Saliva was collected prior to exercise, post moderate and post high intensities and analyzed by Salimetrics assays. Exercise was significant for sAA with values different between pre-exercise (85 ± 10 U · ml−1) and high intensity (284 ± 30 U · ml−1) as well as between moderate intensity (204 ± 32 U · ml−1) and high intensity. There was no difference in sAA values between fluid conditions at either intensity. Exercise intensity and fluid condition were each significant for cortisol. Cortisol values were different between pre-exercise (0.30 ± 0.03 ug · dL−1) and high intensity (0.45 ± 0.05 ug · dL−1) as well as between moderate intensity (0.33 ± 0.04 ug · dL−1) and high intensity. Moderate exercise intensity cortisol was lower in the 500 ml condition (0.33 ± 0.03 ug · dL−1) compared with the 150 ml condition (0.38 ± 0.03 ug · dL−1). This altered physiological response due to fluid consumption could influence sport performance and should be considered. In addition, future sport and exercise studies should control for fluid consumption. PMID:26681828

  3. Detection of pulmonary amylase activity in exhaled breath condensate.

    PubMed

    Zweifel, M; Rechsteiner, T; Hofer, M; Boehler, A

    2013-12-01

    Amylase activity in exhaled breath condensate (EBC) is usually interpreted as an indication of oropharyngeal contamination despite the fact that amylase can be found in pulmonary excretions. The aim of this study was to recruit and refine an amylase assay in order to detect amylase activity in any EBC sample and to develop a method to identify EBC samples containing amylase of pulmonary origin. EBC was collected from 40 volunteers with an EcoScreen condenser. Amylase assays and methods to discriminate between oropharyngeal and pulmonary proteins were tested and developed using matched EBC and saliva samples. Our refined 2-chloro-4-nitrophenyl-α-D-maltotriosid (CNP-G3) assay was 40-fold more sensitive than the most sensitive commercial assay and allowed detection of amylase activity in 30 µl of EBC. We developed a dot-blot assay which allowed detection of salivary protein in saliva diluted up to 150 000-fold. By plotting amylase activity against staining intensity we identified a few EBC samples with high amylase activity which were aligned with diluted saliva. We believe that EBC samples aligned with diluted saliva contain amylase activity introduced during EBC collection and that all other EBC samples contain amylase activity of pulmonary origin and are basically free of oropharyngeal protein contamination.

  4. Salivary Alpha-Amylase and Cortisol Among Pentecostals on a Worship and Nonworship Day

    PubMed Central

    LYNN, CHRISTOPHER DANA; PARIS, JASON; FRYE, CHERYL ANNE; SCHELL, LAWRENCE M.

    2013-01-01

    Objectives This investigation used a biomarker of sympathetic nervous system activity novel to biocultural research to test the hypothesis that engaging in religious worship activities would reduce baseline stress levels on a non-worship day among Pentecostals. Methods As detailed in Lynn et al. (submitted for publication), stress was measured via salivary cortisol and α-amylase among 52 Apostolic Pentecostals in New York’s mid-Hudson Valley. Saliva samples were collected at four predetermined times on consecutive Sundays and Mondays to establish diurnal profiles and compare days of worship and non-worship. These data were reanalyzed using separate analyses of covariance on α-amylase and cortisol to control for individual variation in Pentecostal behavior, effects of Sunday biomarkers on Monday, and other covariates. Results There was a significant decrease in cortisol and an increase in α-amylase on a non-worship day compared with a service day. Models including engagement in Pentecostal worship behavior explained 62% of the change in non-service day cortisol and 73% of the change in non-service day α-amylase. Conclusions Engagement in Pentecostal worship may be associated with reductions in circulatory cortisol and enhancements in α-amylase activity. Am. J. Hum. Biol. 22:819–822, 2010. PMID:20878966

  5. Metabolism of glycosylated human salivary amylase: in vivo plasma clearance by rat hepatic endothelial cells and in vitro receptor mediated pinocytosis by rat macrophages

    SciTech Connect

    Niesen, T.E.; Alpers, D.H.; Stahl, P.D.; Rosenblum, J.L.

    1984-09-01

    Salivary-type amylase normally comprises about 60% of the amylase activity in human serum, but only a small fraction is a glycosylated isoenzyme (amylase A). In contrast, 1/3 of amylase in human saliva is glycosylated. Since glycosylation can affect circulatory clearance, we studied the clearance of amylase A in rats and its uptake by rat alveolar macrophages. Following intravenous injection, /sup 125/I-labeled amylase A disappeared rapidly from plasma (t 1/2 . 9 min) and accumulated in the liver. Simultaneous injection of mannose-albumin slowed its clearance to a rate comparable to that of /sup 125/I-labeled nonglycosylated salivary amylase (t 1/2 . 45 min). In contrast, galactose-albumin had no effect. Electron microscope autoradiography of the liver following injection of /sup 125/I-labeled amylase A revealed a localization of grains over the hepatic endothelial cells. In vitro studies indicated that amylase A is taken up by alveolar macrophages via receptor-mediated pinocytosis. Uptake was linear over time, saturable, and inhibited by mannan and mannose-albumin, but not by galactose-albumin. We conclude that amylase A, which is a naturally occurring human glycoprotein with at most three terminal L-fucose residues per molecule, is recognized in rats by a mannose receptor located on hepatic endothelial cells. We speculate that this receptor, by rapidly clearing circulating amylase A, may be responsible for the low level of amylase A in human serum.

  6. The Effect of a Brief Salivary α-Amylase Exposure During Chewing on Subsequent in Vitro Starch Digestion Curve Profiles

    PubMed Central

    Woolnough, James W.; Bird, Anthony R.; Monro, John A.; Brennan, Charles S.

    2010-01-01

    There is inconsistency between current in vitro digestion methods with regard to accommodation of a (salivary) α-amylase exposure during the oral phase. The effect of a salivary α-amylase pre-exposure on subsequent in vitro starch digestion curve profiles for various foods was investigated. Foods were chewed, expectorated and the boluses left to rest for 0–15 min. During pancreatic digestion, aliquots were taken and hydrolysis curves constructed for comparison against those of the same foods comminuted with a manually-operated chopper, hence spared exposure to saliva. Hydrolysate aliquots taken at T0 (time zero) of the digestion of chewed samples contained higher levels of glucose and dextrins compared with chopped samples. Pancreatin activity immediately overwhelmed differences in sugar released due to salivary amylase activity. Within 10 min no differences were detectable between hydrolysis curves for chewed and chopped foods. Salivary amylase pretreatment does not contribute to the robustness or relative accuracy of in vitro methods. PMID:21152272

  7. The effect of oral stimulation on human parotid salivary flow rate and alpha-amylase secretion.

    PubMed

    Froehlich, D A; Pangborn, R M; Whitaker, J R

    1987-01-01

    Unilateral parotid saliva was collected from ten subjects following oral stimulation with water as baseline, and aqueous solutions of starch (2.5, 5.0, and 10%), sucrose (0.1, 0.2, and 0.4 M) sodium chloride (0.075, 0.15, and 0.30 M), and citric acid (0.005, 0.01, and 0.02 M). Salivary flow rate increased with increasing levels of each taste stimulus. At concentrations of equal taste intensity, citric acid evoked the highest flow rate, followed by sodium chloride and sucrose, while starch, in solution, had a minimal effect. Secretion rate patterns for total protein and alpha-amylase mirrored those of flow rate. The total protein and alpha-amylase concentrations of the saliva, and specific activity of alpha-amylase, were influenced by the type but not the concentration of stimulus, with citric acid stimulation resulting in the lowest concentrations and highest specific activity. Sodium ion (Na+) concentration generally increased with increasing stimulated flow rate, while K+, Ca++, and Mg++ concentrations remained relatively constant. Subjects with lower flow rates had a more concentrated saliva than those with high flow, except for Na+ concentration. Oral stimulation resulted in similar changes in protein and alpha-amylase secretion rates for the two groups.

  8. Multiple time courses of salivary alpha-amylase and dimensions of affect in adolescence.

    PubMed

    Doane, Leah D; Van Lenten, Scott A

    2014-11-01

    Previous research has illustrated associations among daily experiences, emotions and stress-responding physiological systems. Recently, investigators have examined salivary alpha-amylase (sAA), a surrogate marker of the autonomic nervous system, and its associations with affect. The current study examined associations among affective valence, arousal and sAA across three different time courses at the momentary, daily and inter-individual level to understand varying influences of adolescents' daily emotional experiences on sAA reactivity and diurnal sAA activity. Adolescents (N=82) provided salivary samples and diary reports of affect and experiences five times a day for three consecutive days. They also completed self-report questionnaires on trait affect. Findings from multilevel growth curves demonstrated that adolescents in our sample displayed typical sAA diurnal rhythms with levels dropping 30 min after waking and then increasing across the day to a peak in the late afternoon. Within person momentary experiences of high arousal positive affect were associated with momentary sAA reactivity. Prior day experiences of high arousal negative affect were associated with a greater amylase awakening response (i.e., greater decrease) and flatter slopes the next day. Trait positive affect was also associated with flatter sAA slopes. Our findings suggest that both affective arousal and valence should be accounted for when examining differences in sAA reactivity and diurnal patterns. Further, our results indicated that emotion-physiology transactions among adolescents occur over varying time scales for salivary alpha-amylase as well as cortisol.

  9. Aleppo tannin: structural analysis and salivary amylase inhibition.

    PubMed

    Zajácz, Agnes; Gyémánt, Gyöngyi; Vittori, Natale; Kandra, Lili

    2007-04-09

    The effectiveness and specificity of a tannin inhibition on human salivary amylase (HSA) catalyzed hydrolysis was studied using 2-chloro-4-nitrophenyl 4-O-beta-D-galactopyranosyl-alpha-maltoside (GalG(2)-CNP) and amylose substrates. Aleppo tannin was isolated from the gall nut of Aleppo oak. This tannin is a gallotannin, in which glucose is esterified with gallic acids. This is the first kinetic report, which details the inhibitory effects of this compound on HSA. A mixed non-competitive type inhibition has been observed on both substrates. The extent of inhibition is markedly dependent on the substrate-type. Kinetic constants were calculated from Lineweaver-Burk secondary plots for GalG(2)-CNP (K(EI) 0.82 microg mL(-1), K(ESI) 3.3 microg mL(-1)). This indicates a 1:1 binding ratio of inhibitor-enzyme and/or inhibitor-enzyme-substrate complex. When amylose was the substrate the binding ratio of inhibitor to enzyme-substrate complex was found to be 2:1, with the binding constants of K(EI) 17.4 microg mL(-1), K(ESI) 14.9 microg mL(-1), K(ESI(2)) 9.6 microg mL(-1). Presumably, the tannin inhibitor can bind not only to HSA, but to the amylose substrate, as well. Kinetic data suggest that Aleppo tannin is a more efficient amylase inhibitor than the recently studied other tannin with quinic acid core (GalG(2)-CNP: K(EI) 9.0 microg mL(-1), K(ESI) 47.9 microg mL(-1)).

  10. The green tea polyphenol (-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health.

    PubMed

    Hara, Kumiko; Ohara, Masaru; Hayashi, Ikue; Hino, Takamune; Nishimura, Rumi; Iwasaki, Yoriko; Ogawa, Tetsuji; Ohyama, Yoshihiko; Sugiyama, Masaru; Amano, Hideaki

    2012-04-01

    Green tea is a popular drink throughout the world, and it contains various components, including the green tea polyphenol (-)-epigallocatechin gallate (EGCG). Tea interacts with saliva upon entering the mouth, so the interaction between saliva and EGCG interested us, especially with respect to EGCG-protein binding. SDS-PAGE revealed that several salivary proteins were precipitated after adding EGCG to saliva. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting indicated that the major proteins precipitated by EGCG were alpha-amylase, S100, and cystatins. Surface plasmon resonance revealed that EGCG bound to alpha-amylase at dissociation constant (K(d)) = 2.74 × 10(-6) M, suggesting that EGCG interacts with salivary proteins with a relatively strong affinity. In addition, EGCG inhibited the activity of alpha-amylase by non-competitive inhibition, indicating that EGCG is effective at inhibiting the formation of fermentable carbohydrates involved in caries formation. Interestingly, alpha-amylase reduced the antimicrobial activity of EGCG against the periodontal bacterium Aggregatibacter actinomycetemcomitans. Therefore, we considered that EGCG-salivary protein interactions might have both protective and detrimental effects with respect to oral health.

  11. Copy number polymorphism of the salivary amylase gene: implications in human nutrition research.

    PubMed

    Santos, J L; Saus, E; Smalley, S V; Cataldo, L R; Alberti, G; Parada, J; Gratacòs, M; Estivill, X

    2012-01-01

    The salivary α-amylase is a calcium-binding enzyme that initiates starch digestion in the oral cavity. The α-amylase genes are located in a cluster on the chromosome that includes salivary amylase genes (AMY1), two pancreatic α-amylase genes (AMY2A and AMY2B) and a related pseudogene. The AMY1 genes show extensive copy number variation which is directly proportional to the salivary α-amylase content in saliva. The α-amylase amount in saliva is also influenced by other factors, such as hydration status, psychosocial stress level, and short-term dietary habits. It has been shown that the average copy number of AMY1 gene is higher in populations that evolved under high-starch diets versus low-starch diets, reflecting an intense positive selection imposed by diet on amylase copy number during evolution. In this context, a number of different aspects can be considered in evaluating the possible impact of copy number variation of the AMY1 gene on nutrition research, such as issues related to human diet gene evolution, action on starch digestion, effect on glycemic response after starch consumption, modulation of the action of α-amylases inhibitors, effect on taste perception and satiety, influence on psychosocial stress and relation to oral health.

  12. Salivary cortisol and α-amylase: subclinical indicators of stress as cardiometabolic risk

    PubMed Central

    Cozma, S.; Dima-Cozma, L.C.; Ghiciuc, C.M.; Pasquali, V.; Saponaro, A.; Patacchioli, F.R.

    2017-01-01

    Currently, the potential for cardiovascular (CV) stress-induced risk is primarily based on the theoretical (obvious) side effects of stress on the CV system. Salivary cortisol and α-amylase, produced respectively by the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic-adrenomedullary (SAM) system during stress response, are still not included in the routine evaluation of CV risk and require additional and definitive validation. Therefore, this article overviews studies published between 2010 and 2015, in which salivary cortisol and α-amylase were measured as stress biomarkers to examine their associations with CV/CMR (cardiometabolic risk) clinical and subclinical indicators. A comprehensive search of PubMed, Web of Science and Scopus electronic databases was performed, and 54 key articles related to the use of salivary cortisol and α-amylase as subclinical indicators of stress and CV/CMR factors, including studies that emphasized methodological biases that could influence the accuracy of study outcomes, were ultimately identified. Overall, the biological impact of stress measured by salivary cortisol and α-amylase was associated with CV/CMR factors. Results supported the use of salivary cortisol and α-amylase as potential diagnostic tools for detecting stress-induced cardiac diseases and especially to describe the mechanisms by which stress potentially contributes to the pathogenesis and outcomes of CV diseases. PMID:28177057

  13. Structure of amylase-binding protein A of Streptococcus gordonii: a potential receptor for human salivary α-amylase enzyme.

    PubMed

    Sethi, Ashish; Mohanty, Biswaranjan; Ramasubbu, Narayanan; Gooley, Paul R

    2015-06-01

    Amylase-binding protein A (AbpA) of a number of oral streptococci is essential for the colonization of the dental pellicle. We have determined the solution structure of residues 24-195 of AbpA of Streptococcus gordonii and show a well-defined core of five helices in the region of 45-115 and 135-145. (13) Cα/β chemical shift and heteronuclear (15) N-{(1) H} NOE data are consistent with this fold and that the remainder of the protein is unstructured. The structure will inform future molecular experiments in defining the mechanism of human salivary α-amylase binding and biofilm formation by streptococci.

  14. Oral intercourse or secondary transfer? A Bayesian approach of salivary amylase and foreign DNA findings.

    PubMed

    Breathnach, Michelle; Moore, Elizabeth

    2013-06-10

    The Bayesian Approach allows forensic scientists to evaluate the significance of scientific evidence in light of two conflicting hypothesis. This aids the investigator to calculate a numerical value of the probability that the scientific findings support one hypothesis over conflicting opinions. In the case where oral intercourse is alleged, α-amylase, an indicator of saliva, is detected on penile swabs. The value of this finding is unknown as it may indicate the presence of saliva resulting from oral intercourse however it may also represent the presence of saliva due to innocent means such as background levels of salivary-α-amylase in the male population due to secondary transfer. Therefore, it is difficult to attach significance to this finding without background information and knowledge. A population study of the background levels of salivary-α-amylase was performed by analysing items of underwear worn under normal circumstances by 69 male volunteers. The Phadebas press test was used to screen the garments for amylase-containing stains and the positive areas were subjected to further confirmation of saliva by the RSID-Saliva kit. 44% of underwear screened had stains containing amylase. This study determined the background level of salivary-α-amylase and DNA on the inside front of male underwear which has potential implications on the interpretation of evidence in alleged oral intercourse.

  15. Daytime Secretion of Salivary Cortisol and Alpha-Amylase in Preschool-Aged Children with Autism and Typically Developing Children

    ERIC Educational Resources Information Center

    Kidd, Sharon A.; Corbett, Blythe A.; Granger, Douglas A.; Boyce, W. Thomas; Anders, Thomas F.; Tager, Ira B.

    2012-01-01

    We examined daytime salivary cortisol and salivary alpha-amylase (sAA) secretion levels and variability in preschool-aged children with autism (AUT) and typically developing children (TYP). Fifty-two subjects (26 AUT and 26 TYP) were enrolled. Salivary samples were obtained at waking, midday, and bedtime on two consecutive days at three phases…

  16. Are salivary amylase and pH – Prognostic indicators of cancers?

    PubMed Central

    Ramya, Atmakuri Shanmukha; Uppala, Divya; Majumdar, Sumit; Surekha, Ch.; Deepak, K.G.K.

    2015-01-01

    Background Saliva, “Mirror of body's health” has long been of particular interest as a substitute for blood for disease diagnosis and monitoring. The radiation effects on salivary glands are of particular interest in which salivary amylase is a good indicator of salivary glands function. Thus, estimation of these parameters represents a reasonable approach in evaluation of patient's risk for disease occurrence, intensity and prognosis. Aim of study To evaluate and compare the pH and amylase levels in saliva of cancer patients prior to treatment, patients during treatment. Materials and methods Saliva samples of 90 individuals were taken which were divided into 3 groups - 30 individuals without cancer, 30 cancer patients prior treatment and 30 cancer patients during treatment. Materials used were pH strips and pH meter, Salivary Amylase assay. Results Statistical analysis – ANOVA with post-hoc Tukey's test. 1) Significant decrease in salivary amylase levels – in cancer patients, during treatment when compared to others. 2) Significant decrease in salivary pH levels in newly diagnosed cancer patients prior to treatment. Conclusion To conclude, pH strips and pH meter showed to be a useful tool in the measurement of pH of saliva in individuals with and without cancer. This study showed that cancer patients without treatment have a lower pH of saliva. Treatment increased the pH of the saliva to a more alkaline level whereas amylase levels decreased in those subjects. Therefore those parameters can be an area of further research with an increased sample size, which in-turn may help in opening the doors for new dimension in non invasive prognostic markers. PMID:26258019

  17. Relationship Between Meditation Depth and Waking Salivary Alpha-Amylase Secretion Among Long-Term MBSR Instructors.

    PubMed

    Haslam, Alyson; Wirth, Michael D; Robb, Sara Wagner

    2016-09-28

    The purpose of this study was to characterize sympathetic activity by using waking salivary alpha-amylase (sAA) concentrations in a group of long-term meditation instructors and to examine the association between meditation (depth, dose and duration) and the waking alpha-amylase response. Salivary alpha-amylase samples were collected (immediately upon waking and at 15-min, 30-min and 45-min intervals after waking) from mindfulness-based stress reduction instructors to determine both the area under the curve and the awakening slope (difference in alpha-amylase concentrations between waking and 30-min post-waking). It was determined through general linear models that neither years of meditation nor meditation dose were associated with the awakening sAA slope, but higher scores for meditation depth (greater depth) was associated with a more negative (or steeper) awakening slope [Quartile (Q)1: -7 versus Q4: -21 U/mL; p = 0.06], in fully adjusted models. Older age (p = 0.04) and a later time of waking (p < 0.01) also were associated with less negative awakening slope values. Smoking was associated with lower area under the curve values (smokers: 1716 U/mL versus nonsmokers: 2107 U/mL; p = 0.05) in fully adjusted models. The results suggest a 'healthy' sAA waking slope among individuals who meditate more deeply. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Discovering an Accessible Enzyme: Salivary [alpha]-Amylase--"Prima Digestio Fit in Ore"--A Didactic Approach for High School Students

    ERIC Educational Resources Information Center

    Marini, Isabella

    2005-01-01

    Human salivary [alpha]-amylase is used in this experimental approach to introduce biology high school students to the concept of enzyme activity in a dynamic way. Through a series of five easy, rapid, and inexpensive laboratory experiments students learn what the activity of an enzyme consists of: first in a qualitative then in a semi-quantitative…

  19. Self-compassionate young adults show lower salivary alpha-amylase responses to repeated psychosocial stress

    PubMed Central

    Breines, Juliana G.; McInnis, Christine M.; Kuras, Yuliya I.; Thoma, Myriam V.; Gianferante, Danielle; Hanlin, Luke; Chen, Xuejie; Rohleder, Nicolas

    2015-01-01

    In this study we tested the hypothesis that participants higher in dispositional self-compassion would show lower stress-induced reactivity of salivary alpha-amylase (sAA), a marker of sympathetic nervous system activation. Thirty-three healthy participants (18–34 years old) were exposed to a standardized laboratory stressor on two consecutive days. Self-compassion, self-esteem, and demographic factors were assessed by questionnaire and sAA was assessed at baseline and at 1, 10, 30, and 60 minutes following each stressor. Self-compassion was a significant negative predictor of sAA responses on both days. This relationship remained significant when controlling for self-esteem, subjective distress, age, gender, ethnicity, and Body Mass Index (BMI). These results suggest that self-compassion may serve as a protective factor against stress-induced physiological changes that have implications for health. PMID:26005394

  20. Peer Victimization and Aggression: Moderation by Individual Differences in Salivary Cortisol and Alpha-Amylase

    ERIC Educational Resources Information Center

    Rudolph, Karen D.; Troop-Gordon, Wendy; Granger, Douglas A.

    2010-01-01

    This research examined whether variations in salivary measures of the hypothalamic-pituitary-adrenal axis (cortisol) and autonomic nervous system (alpha amylase [sAA]) contribute to individual differences in the association between peer victimization and aggression. Children (N = 132; M age = 9.46 years, SD = 0.33) completed a measure of peer…

  1. Salivary nitric oxide and alpha-amylase as indexes of training intensity and load.

    PubMed

    Diaz, M M; Bocanegra, O L; Teixeira, R R; Soares, S S; Espindola, F S

    2013-01-01

    This study examined the variation in salivary nitric oxide (NO), alpha-amylase (sAA) and serum markers of muscle injury during 21 weeks of training in elite swimmers. Samples of saliva and blood were collected once a month during 5 months from 11 male professional athletes during their regular training season. The variation in each marker throughout the 21 weeks was compared with the dynamics of training volume, intensity and load. Unstimulated whole saliva was assessed for NO and sAA whereas venous blood was assessed for lactate dehydrogenase, creatine kinase, and γ-glutamyltransferase. Nitric oxide and sAA showed a proportional response to the intensity of training. However, whereas the concentration of NO increased across the 21 weeks, the activity of sAA decreased. Similar variations in the concentration of NO and the markers of muscle injury were also observed. The higher concentration of NO might be attributed to changes in haemodynamics and muscle regenerative processes. On the other hand, autonomic regulation towards parasympathetic predominance might have been responsible for the decrease in sAA activity. These findings provide appealing evidence for the utilization of salivary constituents in sports medicine to monitor training programmes.

  2. Salivary Alpha Amylase and Cortisol Levels in Children with Global Developmental Delay and Their Relation with the Expectation of Dental Care and Behavior during the Intervention

    ERIC Educational Resources Information Center

    dos Santos, Marcio Jose Possari; Bernabe, Daniel Galera; Nakamune, Ana Claudia de Melo Stevanato; Perri, Silvia Helena Venturoli; de Aguiar, Sandra Maria Herondina Coelho Avila; de Oliveira, Sandra Helena Penha

    2012-01-01

    The purpose of this study was to analyze the alpha-amylase (sAA) and cortisol levels in children with Global developmental delay (GDD) before and after dental treatment and its association with the children's behavior during treatment. The morning salivary cortisol levels and activity of sAA of 33 children with GDD were evaluated before and after…

  3. Children's cortisol and salivary alpha-amylase interact to predict attention bias to threatening stimuli.

    PubMed

    Ursache, Alexandra; Blair, Clancy

    2015-01-01

    Physiological responses to threat occur through both the autonomic nervous system (ANS) and the hypothalamic pituitary adrenal (HPA) axis. Activity in these systems can be measured through salivary alpha-amylase (sAA) and salivary cortisol, respectively. Theoretical work and empirical studies have suggested the importance of examining the coordination of these systems in relation to cognitive functioning and behavior problems. Less is known, however, about whether these systems interactively predict more automatic aspects of attention processing such as attention toward emotionally salient threatening stimuli. We used a dot probe task to assess attention bias toward threatening stimuli in 347 kindergarten children. Cortisol and sAA were assayed from saliva samples collected prior to children's participation in assessments on a subsequent day. Using regression analyses, we examined relations of sAA and cortisol to attention bias. Results indicate that cortisol and sAA interact in predicting attention bias. Higher levels of cortisol predicted greater bias toward threat for children who had high levels of sAA, but predicted greater bias away from threat for children who had low levels of sAA. These results suggest that greater symmetry in HPA and ANS functioning is associated with greater reliance on automatic attention processes in the face of threat.

  4. The psychosocial stress-induced increase in salivary alpha-amylase is independent of saliva flow rate.

    PubMed

    Rohleder, Nicolas; Wolf, Jutta M; Maldonado, Enrique F; Kirschbaum, Clemens

    2006-11-01

    The stress response of salivary alpha-amylase (sAA) has been suggested as an index for sympathetic nervous system activation. However, concurrent inhibition of the parasympathetic nervous system is discussed as a confounder due to suppression of saliva flow rate. Here we set out to test the influence of stress-induced changes in flow rate on sAA secretion. Twenty-six subjects underwent the Trier Social Stress Test and a control condition. Saliva was sampled by passive drooling or salivettes. Saliva flow rate, sAA levels and output, salivary cortisol, and heart rate variability were measured. Flow rate increased only when sampled by passive drooling. Stress-induced increases in amylase levels were correlated with increases of amylase output but not with flow rate. Results indicate that flow rate is not a confounder of stress-induced sAA activation and suggest that valid measurements of sAA can be obtained by salivettes without the need for assessment of flow rate.

  5. Anaerobic threshold determination with analysis of salivary amylase.

    PubMed

    Calvo, F; Chicharro, J L; Bandrés, F; Lucía, A; Pérez, M; Alvarez, J; Mojares, L L; Vaquero, A F; Legido, J C

    1997-12-01

    The purpose of this study was to determine the anaerobic threshold from analysis of amylase concentration in total saliva during a laboratory exercise test. Each of 20 healthy young men performed both a submaximal and a maximal test on a treadmill. During the submaximal test, capillary blood and total saliva samples were collected for determination of anaerobic threshold (AT) and saliva threshold (Tsa), respectively. Tsa was defined as the point at which the first continuous increase in amylase concentration occurred during exercise. The results showed no significant difference between values of AT and Tsa when both were expressed either as running velocity or as heart rate. In addition, there existed a high correlation between AT and Tsa (r = .93, p < .001). It was therefore concluded that the analysis of amylase concentration in total saliva during exercise might be used as a valid new method for determining AT.

  6. Measurements of salivary alpha amylase and salivary cortisol in hominoid primates reveal within-species consistency and between-species differences.

    PubMed

    Behringer, Verena; Borchers, Claudia; Deschner, Tobias; Möstl, Erich; Selzer, Dieter; Hohmann, Gottfried

    2013-01-01

    Salivary alpha amylase (sAA) is the most abundant enzyme in saliva. Studies in humans found variation in enzymatic activity of sAA across populations that could be linked to the copy number of loci for salivary amylase (AMY1), which was seen as an adaptive response to the intake of dietary starch. In addition to diet dependent variation, differences in sAA activity have been related to social stress. In a previous study, we found evidence for stress-induced variation in sAA activity in the bonobos, a hominoid primate that is closely related to humans. In this study, we explored patterns of variation in sAA activity in bonobos and three other hominoid primates, chimpanzee, gorilla, and orangutan to (a) examine if within-species differences in sAA activity found in bonobos are characteristic for hominoids and (b) assess the extent of variation in sAA activity between different species. The results revealed species-differences in sAA activity with gorillas and orangutans having higher basal sAA activity when compared to Pan. To assess the impact of stress, sAA values were related to cortisol levels measured in the same saliva samples. Gorillas and orangutans had low salivary cortisol concentrations and the highest cortisol concentration was found in samples from male bonobos, the group that also showed the highest sAA activity. Considering published information, the differences in sAA activity correspond with differences in AMY1 copy numbers and match with general features of natural diet. Studies on sAA activity have the potential to complement molecular studies and may contribute to research on feeding ecology and nutrition.

  7. Differences in Salivary Alpha-Amylase and Cortisol Responsiveness following Exposure to Electrical Stimulation versus the Trier Social Stress Tests

    PubMed Central

    Maruyama, Yoshihiro; Kawano, Aimi; Okamoto, Shizuko; Ando, Tomoko; Ishitobi, Yoshinobu; Tanaka, Yoshihiro; Inoue, Ayako; Imanaga, Junko; Kanehisa, Masayuki; Higuma, Haruka; Ninomiya, Taiga; Tsuru, Jusen; Hanada, Hiroaki; Akiyoshi, Jotaro

    2012-01-01

    Background Cortisol is an essential hormone in the regulation of the stress response along the HPA axis, and salivary cortisol has been used as a measure of free circulating cortisol levels. Recently, salivary alpha-amylase (sAA) has also emerged as a novel biomarker for psychosocial stress responsiveness within the sympathetic adrenomedullary (SAM) system. Principal Findings We measured sAA and salivary cortisol in healthy volunteers after exposure to the Trier Social Stress Test (TSST) and electric stimulation stress. One hundred forty-nine healthy volunteers participated in this study. All subjects were exposed to both the TSST and electric stimulation stress on separate days. We measured sAA and salivary cortisol levels three times immediately before, immediately after, and 20 min after the stress challenge. The State (STAI-S) and Trait (STAI-T) versions of the Spielberger Anxiety Inventory test and the Profile of Mood State (POMS) tests were administered to participants before the electrical stimulation and TSST protocols. We also measured HF, LF and LF/HF Heart Rate Variability ratio immediately after electrical stimulation and TSST exposure. Following TSST exposure or electrical stimulation, sAA levels displayed a rapid increase and recovery, returning to baseline levels 20 min after the stress challenge. Salivary cortisol responses showed a delayed increase, which remained significantly elevated from baseline levels 20 min after the stress challenge. Analyses revealed no differences between men and women with regard to their sAA response to the challenges (TSST or electric stimulations), while we found significantly higher salivary cortisol responses to the TSST in females. We also found that younger subjects tended to display higher sAA activity. Salivary cortisol levels were significantly correlated with the strength of the applied electrical stimulation. Conclusions These preliminary results suggest that the HPA axis (but not the SAM system) may show

  8. Human salivary α-amylase (EC.3.2.1.1) activity and periodic acid and schiff reactive (PAS) staining: A useful tool to study polysaccharides at an undergraduate level.

    PubMed

    Fernandes, Ruben; Correia, Rossana; Fonte, Rosália; Prudêncio, Cristina

    2006-07-01

    Health science education is presently in discussion throughout Europe due to the Bologna Declaration. Teaching basic sciences such as biochemistry in a health sciences context, namely in allied heath education, can be a challenging task since the students of preclinical health sciences are not often convinced that basic sciences are clinically valuable (J. R. Rudland, S. C. Rennie (2003) The determination of the relevance of basic sciences learning objectives to clinical practice using a questionnaire survey, Med. Educ. (Oxf.) 37, 962-965; E. C. Wragg (2003) How can we determine the relevance of basic sciences learning objectives to clinical practice?, Med. Educ. (Oxf.) 37, 948-949). Thus, nowadays teachers are compelled to use their imagination to be able to elaborate laboratory sessions aiming for the understanding of theoretical concepts that are also clinically related: in other words, basic concepts and skills that underlie the competencies demanded of the future health professional. In the present work, we describe a set of laboratory sessions implemented in the discipline of biochemistry, belonging to the first year of several courses of allied health professionals, which can also be implemented in other health sciences courses. These sessions focus on the characteristics and properties of carbohydrates. The exercises we propose include two different laboratory practical sessions based on a histopathological routine technique known as periodic acid and Schiff reactive that is currently used to detect sugar metabolic and tumor diseases (J. M. T. Rivera, C. T. López, B. C. Segui (2001) Bioquímica Estructural: Conceptos y Tests, Tebar Flores, Madrid). The methodology described enables the demonstration of some biochemical properties of polysaccharides, namely animal and vegetable, and the catalytic activity of the human salivary α-amylase (EC.3.2.1.1) enzyme. A further comparison between α-amylase activity in vitro and in situ is also possible by the

  9. Salivary amylase induction by tannin-enriched diets as a possible countermeasure against tannins.

    PubMed

    da Costa, G; Lamy, E; Capela e Silva, F; Andersen, J; Sales Baptista, E; Coelho, A V

    2008-03-01

    Tannins are characterized by protein-binding affinity. They have astringent/bitter properties that act as deterrents, affecting diet selection. Two groups of salivary proteins, proline-rich proteins and histatins, are effective precipitators of tannin, decreasing levels of available tannins. The possibility of other salivary proteins having a co-adjuvant role on host defense mechanisms against tannins is unknown. In this work, we characterized and compared the protein profile of mice whole saliva from animals fed on three experimental diets: tannin-free diet, diet with the incorporation of 5% hydrolyzable tannins (tannic acid), or diet with 5% condensed tannins (quebracho). Protein analysis was performed by one-dimensional gel electrophoresis combined with Matrix-Assisted Laser Desorption Ionization-Time of Flight mass spectrometry to allow the dynamic study of interactions between diet and saliva. Since abundant salivary proteins obscure the purification and identification of medium and low expressed salivary proteins, we used centrifugation to obtain saliva samples free from proteins that precipitate after tannin binding. Data from Peptide Mass Fingerprinting allowed us to identify ten different proteins, some of them showing more than one isoform. Tannin-enriched diets were observed to change the salivary protein profile. One isoform of alpha-amylase was overexpressed with both types of tannins. Aldehyde reductase was only identified in saliva of the quebracho group. Additionally, a hypertrophy of parotid salivary gland acini was observed by histology, along with a decrease in body mass in the first 4 days of the experimental period.

  10. Salivary Alpha-Amylase Enzyme, Psychological Disorders, and Life Quality in Patients with Recurrent Aphthous Stomatitis

    PubMed Central

    Cardoso, Juliana Andrade; dos Santos Junior, André Avelino; Nunes, Maria Lucia Tiellet; de Figueiredo, Maria Antonia Zancanaro; Cherubini, Karen

    2017-01-01

    Objective. The aim of this study was to evaluate stress, anxiety, and salivary alpha-amylase (SAA) activity in patients with recurrent aphthous stomatitis (RAS). The impact of this disease on the life quality was also evaluated. Design. Twenty-two patients with RAS and controls, matched by sex and age, were selected. Stress and anxiety were assessed using Lipp's Inventory of Stress Symptoms and Beck Anxiety Inventory. Life quality was assessed through the World Health Organization Quality of Life-bref (WHOQOL-BREF) and the Oral Health Impact Profile-14 (OHIP-14). Saliva samples were collected in the morning and afternoon and the SAA activity was analyzed by enzymatic kinetic method. Results. No significant difference was observed between the groups regarding the SAA activity (p = 0.306). Patients with RAS had higher scores of anxiety (p = 0.016). The scores of WHOQOL-BREF were significantly lower in patients with RAS. The values obtained through OHIP-14 were significantly higher in these patients (p = 0.002). Conclusion. RAS negatively affects the life quality. Patients with the disease have higher levels of anxiety, suggesting its association with the etiopathogenesis of RAS.

  11. Role of amylase, mucin, IgA and albumin on salivary protein buffering capacity: a pilot study.

    PubMed

    Cheaib, Zeinab; Lussi, Adrian

    2013-06-01

    It has been suggested that proteins serve as major salivary buffers below pH5. It remains unclear, however, which salivary proteins are responsible for these buffering properties. The aim of this pilot study was to evaluate the correlation between salivary concentration of total protein, amylase, mucin, immunoglobulin A (IgA), albumin and total salivary protein buffering capacity at a pH range of 4-5. In addition, the buffering capacity and the number of carboxylic acid moieties of single proteins were assessed. Stimulated saliva samples were collected at 9:00, 13:00 and 17:00 from 4 healthy volunteers on 3 successive days. The buffering capacities were measured for total salivary protein or for specific proteins. Also, the concentration of total protein, amylase, mucin, IgA and albumin were analysed. Within the limits of the current study, it was found that salivary protein buffering capacity was highly positively correlated with total protein, amylase and IgA concentrations. A weak correlation was observed for both albumin and mucin individually. Furthermore, the results suggest that amylase contributed to 35 percent of the salivary protein buffering capacity in the pH range of 4-5.

  12. Salivary Alpha-Amylase Reactivity in Breast Cancer Survivors

    PubMed Central

    Wan, Cynthia; Couture-Lalande, Marie-Ève; Narain, Tasha A.; Lebel, Sophie; Bielajew, Catherine

    2016-01-01

    The two main components of the stress system are the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. While cortisol has been commonly used as a biomarker of HPA functioning, much less attention has been paid to the role of the SAM in this context. Studies have shown that long-term breast cancer survivors display abnormal reactive cortisol patterns, suggesting a dysregulation of their HPA axis. To fully understand the integrity of the stress response in this population, this paper explored the diurnal and acute alpha-amylase profiles of 22 breast cancer survivors and 26 women with no history of cancer. Results revealed that breast cancer survivors displayed identical but elevated patterns of alpha-amylase concentrations in both diurnal and acute profiles relative to that of healthy women, F (1, 39) = 17.95, p < 0.001 and F (1, 37) = 7.29, p = 0.010, respectively. The average area under the curve for the diurnal and reactive profiles was 631.54 ± 66.94 SEM and 1238.78 ± 111.84 SEM, respectively. This is in sharp contrast to their cortisol results, which showed normal diurnal and blunted acute patterns. The complexity of the stress system necessitates further investigation to understand the synergistic relationship of the HPA and SAM axes. PMID:27023572

  13. Salivary Alpha-amylase and Cortisol in Toddlers: Differential Relations to Affective Behavior

    PubMed Central

    Fortunato, Christine K.; Dribin, Amy E.; Granger, Douglas A.; Buss, Kristin A.

    2008-01-01

    This study applies a non-invasive and multi-system measurement approach (using salivary analytes) to examine associations between the psychobiology of the stress response and affective behavior in toddlers. Eighty-seven two-year-olds (48 females) participated in laboratory tasks designed to elicit emotions and behavior ranging from pleasure/approach to fear/withdrawal. Saliva samples were collected pre-task and immediately post-task, and assayed for markers of sympathetic nervous system (alpha-amylase or sAA) and hypothalamic-pituitary-adrenal axis (cortisol) activity. Individual differences in sAA were positively associated with approach behavior and positive affect; whereas, cortisol was positively associated with negative affect and withdrawal behavior. The findings suggest that individual differences in sAA may covary specifically with positive affect and approach behaviors or the predominant emotional state across a series of tasks. The results are discussed with respect to advancing biosocial models of the concomitants and correlates of young children’s affective behaviors. PMID:18688807

  14. Inhibition of human salivary alpha-amylase by glucopyranosylidene-spiro-thiohydantoin.

    PubMed

    Gyémánt, Gyöngyi; Kandra, Lili; Nagy, Veronika; Somsák, László

    2003-12-12

    This study is the first report on the effectiveness and specificity of glucopyranosylidene-spiro-thiohydantoin (G-TH) inhibitor on the 2-chloro-4-nitrophenyl-4-O-beta-D-galactopyranosyl-maltoside (GalG(2)CNP) hydrolysis catalysed by human salivary alpha-amylase (HSA). The inhibition of hydrolysis is a mixed-noncompetitive type. In any case, only one molecule of inhibitor binds to HSA. Since our substrate and inhibitor are small molecules the long enough active site facilitates accommodating both of them simultaneously. However, the product formation can be excluded from enzyme-substrate-inhibitor complex (ESI) since Dixon plots are linear. Kinetic constants calculated from secondary plots and nonlinear regression are almost entirely equal, confirming the fidelity of the suggested model. Kinetic constants (K(1i)=7.3mM, L(1i)=2.84 mM) show that G-TH is not such a potent inhibitor of HSA as acarbose and indicate higher stability for ESI than for enzyme-inhibitor complex.

  15. Activity of alpha-amylase inhibitors from Phaseolus coccineus on digestive alpha-amylases of the coffee berry borer.

    PubMed

    Valencia-Jiménez, Arnubio; Arboleda Valencia, Jorge W; Grossi-De-Sá, Maria Fátima

    2008-04-09

    Seeds of scarlet runner bean ( Phaseolus coccineus L.) were analyzed for alpha-amylase inhibitor (alpha-AI) activity. Through the use of polyclonal antibodies raised against pure alpha-AI-1 from common bean ( Phaseolus vulgaris L.), typical alpha-AlphaIota polypeptides (Mr 14-18 kDa) as well as a large polypeptide of Mr 32000 Da, usually referred to as "amylase inhibitor like", were detected. The inhibitor activity present in four accessions of P. coccineus was examined, both in semiquantitative zymograms allowing the separation of different isoforms and in quantitative assays against human salivary amylase, porcine pancreatic amylase, and coffee berry borer, Hypothenemus hampei Ferrari (Coleoptera: Scolytidae) amylase. Differential inhibition curves lead to the suggestion that the gene encoding one of the inhibitors in P. coccineus (in accession G35590) would be a good candidate for genetic engineering of coffee resistance toward the coffee berry borer. An in vitro proteolytic digestion treatment of pure alpha-AlphaIota-1 resulted in a rapid loss of the inhibitory activity, seriously affecting its natural capacity to interact with mammalian alpha-amylases.

  16. Estimation of Salivary Amylase in Diabetic Patients and Saliva as a Diagnostic Tool in Early Diabetic Patients

    PubMed Central

    Malathi, L.; Masthan, K.M.K.; Balachander, N.; Babu, N. Aravindha; Rajesh, E.

    2013-01-01

    Aim: The aim of this study was to estimate the salivary amylase levels in non-insulin dependent diabetes mellitus patients and to correlate these findings with those in normal individuals, in order to provide salivary amylase level as a bio-chemical indicator for diagnosing and monitoring the glucose levels. Material and Methods: The study samples consisted of 60 individuals. Both males and females participated in the study. Thirty non-insulin dependent diabetes mellitus patients of age group of 30 to 60 years and healthy individuals of same number and age group were included in this study. The data obtained in this study were statistically analyzed by using Student’s t–test. Results: In estimation of salivary amylase levels, the comparison of mean and standard deviation showed the highest mean score (2739.48 +1525.20) among the diabetic patients and lowest mean score (1740.38 + 638.51) among the non-diabetic patients. The p-value obtained was less than 0.01. Hence, a highly significant difference in the mean scores regarding salivary amylase (u/l) was found among the two groups. Conclusion: The mean scores of age, fasting blood sugar, post prandial blood sugar, HbA1c and salivary amylase levels were greater in diabetic patients than in non-diabetic patients. PMID:24392426

  17. Sociodemographic Risk, Parenting, and Effortful Control: Relations to Salivary Alpha-amylase and Cortisol in Early Childhood

    PubMed Central

    Taylor, Zoe E.; Spinrad, Tracy L.; VanSchyndel, Sarah K.; Eisenberg, Nancy; Huynh, Jacqueline; Sulik, Michael J.; Granger, Douglas A.

    2012-01-01

    Early sociodemographic risk, parenting, and temperament were examined as predictors of the activity of children’s (N = 148; 81 boys, 67 girls) hypothalamic-pituitary-adrenal axis and autonomic nervous system. Demographic risk was assessed at 18 months (T1), intrusive-overcontrolling parenting and effortful control were assessed at 30 months (T2), and salivary cortisol and alpha-amylase were collected at 72 (T3) months of age. Demographic risk at T1 predicted lower levels of children’s effortful control and higher levels of mothers’ intrusive-overcontrolling parenting at T2. Intrusive-overcontrolling parenting at T2 predicted higher levels of children’s cortisol and alpha-amylase at T3, but effortful control did not uniquely predict children’s cortisol or alpha-amylase. Findings support the open nature of stress responsive physiological systems to influence by features of the early caregiving environment and underscore the utility of including measures of these systems in prevention trials designed to influence child outcomes by modifying parenting behavior. PMID:22949301

  18. Diurnal profiles of salivary cortisol and alpha-amylase change across the adult lifespan: evidence from repeated daily life assessments.

    PubMed

    Nater, Urs M; Hoppmann, Christiane A; Scott, Stacey B

    2013-12-01

    Salivary cortisol and alpha-amylase are known to have distinctive diurnal profiles. However, little is known about systematic changes in these biomarkers across the adult lifespan. In a study of 185 participants (aged 20-81 years), time-stamped salivary cortisol and alpha-amylase were collected 7 times/day over 10 days. Samples were taken upon waking, 30 min later, and then approximately every 3 h until 9 pm. Multilevel models showed that older age was associated with increased daily cortisol secretion as indicated by greater area under the curve, attenuated wake-evening slopes, and more pronounced cortisol awakening responses. Further, older age was related to greater daily alpha-amylase output and attenuated wake-evening slopes. No age differences were observed regarding the alpha-amylase awakening response. Our findings may contribute to a better understanding of age-related differences in functioning of stress-related systems.

  19. Elevated Salivary Alpha Amylase in Adolescent Sexual Abuse Survivors with Posttraumatic Stress Disorder Symptoms

    PubMed Central

    Strawn, Jeffrey R.; Out, Dorothee; Granger, Douglas A.; Putnam, Frank W.

    2015-01-01

    Abstract Objective: Little is known regarding neuroendocrine responses in adolescent girls with posttraumatic stress disorder (PTSD) who have experienced sexual abuse. Therefore, we collected saliva samples three times daily for 3 days to assess concentrations of salivary alpha amylase (sAA) – a surrogate marker for autonomic nervous system (ANS) activity and, in particular, sympathetic activity – in sexually abused adolescent girls. Methods: Twenty-four girls (mean age: 15±1.4 years) who had experienced recent sexual abuse (i.e., sexual abuse occurred 1–6 months prior to study enrollment) and 12 healthy comparison subjects (mean age: 14.8±1.3 years) completed a structured interview and assessments to ascertain symptoms of posttraumatic stress, then collected saliva at home upon awakening, 30 minutes after waking, and at 5 p.m. on three consecutive school days. Results: For sexually abused girls, total PTSD symptoms were associated with higher overall morning levels of sAA (r[20]=0.51, p=0.02), a finding driven by intrusive symptoms (r[20]=0.43, p<0.05) and hyperarousal symptoms (r[20]=0.58, p=0.01). There were no significant differences in diurnal sAA secretion between the sexually abused girls and healthy comparison adolescents. Conclusions: Overall morning concentrations of sAA in sexually abused girls are associated with overall PTSD severity as well as symptoms of hyperarousal and intrusive symptoms, possibly reflecting symptom-linked increases in ANS tone. These data raise the possibility that alterations in ANS activity are related to the pathophysiology of sexual abuse-related PTSD in adolescent girls, and may inform therapeutic interventions (e.g., antiadrenergic medications). PMID:25803321

  20. Collecting saliva and measuring salivary cortisol and alpha-amylase in frail community residing older adults via family caregivers.

    PubMed

    Hodgson, Nancy A; Granger, Douglas A

    2013-12-18

    Salivary measures have emerged in bio-behavioral research that are easy-to-collect, minimally invasive, and relatively inexpensive biologic markers of stress. This article we present the steps for collection and analysis of two salivary assays in research with frail, community residing older adults-salivary cortisol and salivary alpha amylase. The field of salivary bioscience is rapidly advancing and the purpose of this presentation is to provide an update on the developments for investigators interested in integrating these measures into research on aging. Strategies are presented for instructing family caregivers in collecting saliva in the home, and for conducting laboratory analyses of salivary analytes that have demonstrated feasibility, high compliance, and yield quality specimens. The protocol for sample collection includes: (1) consistent use of collection materials; (2) standardized methods that promote adherence and minimize subject burden; and (3) procedures for controlling certain confounding agents. We also provide strategies for laboratory analyses include: (1) saliva handling and processing; (2) salivary cortisol and salivary alpha amylase assay procedures; and (3) analytic considerations.

  1. Free cortisol and salivary alpha-amylase levels during a six-hour-water immersion in healthy young men

    NASA Astrophysics Data System (ADS)

    Rohleder, N.; Wirth, D.; Fraßl, W.; Kowoll, R.; Schlemmer, M.; Vogler, S.; Kirsch, K. A.; Kirschbaum, C.; Gunga, H.-C.

    2005-08-01

    Limited data are available on the response of stress systems to microgravity. Increased activity of stress systems is reported during space flight, but unchanged or decreased activity during simulated microgravity. We here investigated the impact of head-out water immersion on the activity of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic-adrenal-medullary (SAM) system.Eight healthy young men were exposed to a six-hour water immersion in a thermo neutral bath and a control condition. Saliva samples were taken before, during, and after interventions to assess cortisol as an index for HPA axis activity, and salivary α-amylase as an index for SAM system activity.Cortisol levels uniformly decreased during both conditions. Amylase levels increased during both conditions, but were significantly lower during the first half of water immersion compared to the control condition.In conclusion, the HPA axis is not influenced by simulated microgravity, while SAM system activity shows initial decreases during water immersion.

  2. Aging diurnal rhythms and chronic stress: Distinct alteration of diurnal rhythmicity of salivary alpha-amylase and cortisol.

    PubMed

    Strahler, Jana; Berndt, Christiane; Kirschbaum, Clemens; Rohleder, Nicolas

    2010-05-01

    The present study assessed diurnal profiles of salivary alpha-amylase (sAA), proposed as a marker of autonomic activity, and salivary cortisol in competitive ballroom dancers as well as age- and sex-matched controls to investigate age-related changes of basal activity and potential chronic psychosocial stress-related alterations. According to the Allostatic Load (AL) hypothesis of a cumulative wear and tear of the body we expected to see physiological accumulation of the effects of stress and age especially pronounced in older dancers. Dancers and controls collected five saliva samples throughout the day. Daily overall output of sAA was elevated in older adults while there was no effect of age on mean cortisol levels. Alterations of diurnal rhythms were only seen in younger male dancers showing a flattened diurnal profile of sAA and younger dancers and female older dancers showing a blunted diurnal rhythmicity of cortisol. Furthermore, we found a negative correlation between summary indices of basal sAA and the amount of physical activity. In conclusion, higher overall output of sAA in older adults is in line with the phenomenon of a sympathetic "drive" with increasing age. Furthermore, a lower output of sAA in people who are more physical active is in line with the hypothesis of an exercise-induced decrease of sympathetic activity. Overall, our study does not support the AL hypothesis, but rather highlights the importance of regular physical activity and social environment in promoting health.

  3. Cortisol, salivary alpha-amylase and children's perceptions of their social networks.

    PubMed

    Ponzi, Davide; Muehlenbein, Michael P; Geary, David C; Flinn, Mark V

    2016-01-01

    In recent years there has been a growing interest in the use of social network analysis in biobehavioral research. Despite the well-established importance of social relationships in influencing human behavior and health, little is known about how children's perception of their immediate social relationships correlates with biological parameters of stress. In this study we explore the association between two measures of children's personal social networks, perceived network size and perceived network density, with two biomarkers of stress, cortisol and salivary alpha-amylase. Forty children (mean age = 8.30, min age = 5, and max age = 12) were interviewed to collect information about their friendships and three samples of saliva were collected. Our results show that children characterized by a lower pre-interview cortisol concentration and a lower salivary alpha-amylase reactivity to the interview reported the highest density of friendships. We discuss this result in light of the multisystem approach to the study of children's behavioral outcomes, emphasizing that future work of this kind is needed in order to understand the cognitive and biological mechanisms underlying children's and adolescents' social perceptual biases.

  4. The effects of autonomy support on salivary alpha-amylase: The role of individual differences.

    PubMed

    Sieber, Vanda; Schüler, Julia; Wegner, Mirko

    2016-12-01

    The empirical evidence for the relationship between autonomy-supportive environments and physiological stress is inconsistent. Whereas some studies report a decrease in stress in autonomy-supportive environments, other studies show a negative effect of autonomy on physiological stress. As previous research has not considered individual differences within this relationship, the present research aims to close this empirical gap by proposing that an implicit autonomy disposition, which is defined as a dispositional preference for self-determination, serves as a moderator. In an experiment, we tested whether the autonomy disposition moderates the effect of different teaching styles (controlling, autonomy-supportive, and neutral) on the acute physiological stress response (salivary alpha-amylase) in adolescents (N=69). The study revealed that participants with a high implicit autonomy disposition displayed lower salivary alpha-amylase responses when exposed to autonomy-supportive vignettes compared to when they were exposed to controlling or neutral teaching styles. The opposite pattern was found in students with a low implicit autonomy disposition. The results illustrate that experimentally induced variations in autonomy support lead to different physiological stress responses, depending on individual differences in the implicit autonomy disposition.

  5. Attenuated acute salivary α-amylase responses to gustatory stimulation with citric acid in thin children.

    PubMed

    Chen, Long Hui; Yang, Ze Min; Chen, Wei Wen; Lin, Jing; Zhang, Min; Yang, Xiao Rong; Zhao, Ling Bo

    2015-04-14

    Salivary α-amylase (sAA) is responsible for the 'pre-digestion' of starch in the oral cavity and accounts for up to 50 % of salivary protein in human saliva. An accumulating body of literature suggests that sAA is of nutritional importance; however, it is still not clear how sAA is related to individual's nutritional status. Although copy number variations (CNV) of the salivary amylase gene (AMY1) are associated with variation in sAA levels, a significant amount of sAA variation is not explained by AMY1 CNV. To measure sAA responses to gustatory stimulation with citric acid, we used sAA ratio (the ratio of stimulated sAA levels to those of resting sAA) and investigated acute sAA responses to citric acid in children with normal (Normal-BMI, n 22) and low (Low-BMI, n 21) BMI. The AMY1 gene copy number was determined by quantitative PCR. We, for the first time, demonstrated attenuated acute sAA responses (decreased sAA ratio) to gustatory stimulation in Low-BMI (thinness grade 3) children compared with the Normal-BMI children, which suggest that sAA responses to gustatory stimulation may be of nutritional importance. However, child's nutritional status was not directly related to their resting or stimulated sAA levels, and it was not associated with AMY1 gene copy number. Finally, AMY1 CNV might influence, but did not eventually determine, sAA levels in children.

  6. Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation.

    PubMed

    Okahashi, Nobuo; Nakata, Masanobu; Terao, Yutaka; Isoda, Ryutaro; Sakurai, Atsuo; Sumitomo, Tomoko; Yamaguchi, Masaya; Kimura, Richard K; Oiki, Eiji; Kawabata, Shigetada; Ooshima, Takashi

    2011-01-01

    Streptococcus sanguinis is a member of oral streptococci and one of the most abundant species found in oral biofilm called dental plaque. Colonization of the oral streptococci on the tooth surface depends on the adhesion of bacteria to salivary components adsorbed to the tooth surface. Recently, we identified unique cell surface long filamentous structures named pili in this species. Herein, we investigated the role of S. sanguinis pili in biofilm formation. We found that pili-deficient mutant, in which the genes encoding the three pilus proteins PilA, PilB and PilC have been deleted, showed an impaired bacterial accumulation on saliva-coated surfaces. Confocal microscopic observations suggested that the mutant was incapable of producing typical three-dimensional layer of biofilm. Ligand blot analysis showed that the ancillary pilus proteins PilB and PilC bound to human whole saliva. Additional analysis demonstrated that PilC bound to multiple salivary components, and one of which was found to be salivary α-amylase. These results indicate that pilus proteins are members of saliva-binding proteins of oral S. sanguinis, and suggest the involvement of pili in its colonization on saliva-coated tooth surfaces and in the human oral cavity.

  7. Effects of early life adversity on cortisol/salivary alpha-amylase symmetry in free-ranging juvenile rhesus macaques.

    PubMed

    Petrullo, Lauren A; Mandalaywala, Tara M; Parker, Karen J; Maestripieri, Dario; Higham, James P

    2016-11-01

    Early life adversity (ELA) affects physiological and behavioral development. One key component is the relationship between the developing Hypothalamic-Pituitary-Adrenal (HPA) axis and the Sympathetic Nervous System (SNS). Recent studies suggest a relationship between early life adversity and asymmetry in cortisol (a measure of HPA activation) and salivary alpha-amylase (sAA: a correlate of SNS activation) responses to stress among human children, but to our knowledge there have been no comparable studies in nonhumans. Here, we investigate the responses of these two analytes in "low stress" and "high stress" situations in free-ranging juvenile rhesus macaques (Macaca mulatta) on Cayo Santiago, Puerto Rico. Behavioral data on maternal maltreatment were collected during the first 3months of life to determine individual rates of ELA, and saliva samples were collected from subjects noninvasively during juvenility. Irrespective of ELA, salivary alpha-amylase levels were lower in low stress situations and higher in high stress situations. For cortisol however, high ELA subjects exhibited higher low stress concentrations and blunted acute responses during high stress situations compared to moderate and low ELA subjects. Cortisol and sAA values were positively correlated among low ELA subjects, suggesting symmetry, but were uncorrelated or negatively correlated among moderate and high ELA subjects, suggesting asymmetry in these individuals. These findings indicate dysregulation of the stress response among juveniles maltreated during infancy: specifically, attenuated cortisol reactivity coupled with typical sAA reactivity characterize the stress response profiles of juveniles exposed to higher rates of ELA during the first 3months of life.

  8. Effects of Cardiorespiratory Fitness and Obesity on Salivary Secretory IgA and Alpha-Amylase in South African Children

    PubMed Central

    Starzak, Dorota E.; Konkol, Kristen F.; McKune, Andrew J.

    2016-01-01

    This study examined whether cardiorespiratory fitness (CRF) and body composition are associated with salivary secretory immunoglobulin A (SIgA), a mucosal immunity marker, and salivary alpha-amylase (sAA), a marker of stress-related sympathetic nervous system (SNS) activity, in South African children. Morning (7:30–8:00 a.m.) saliva samples were collected from 132 children (10.05 ± 1.68 years old, 74 females, 58 males). Body composition, resting blood pressure, and predicted maximal aerobic capacity (VO2max) were determined, and SIgA and sAA were quantified. Obese children had significantly higher sAA compared with overweight and normal weight children (p < 0.01). SIgA secretion rate was significantly lower in obese and overweight vs. normal weight children (p < 0.01). Multiple-linear regression analysis revealed that body mass index (BMI) (p < 0.05) and diastolic blood pressure (DBP) (p < 0.05) were independent predictors of sAA with CRF acting as a mitigator. Age and BMI predicted SIgA secretion rate (p < 0.05) with BMI (p < 0.001) found to be an independent predictor of SIgA secretion rate. Obesity, based on BMI, was associated with elevated SNS activity and lowered mucosal immunity. CRF-mitigated sympathetic activation was not associated with mucosal immunity. PMID:27483329

  9. Reduction in Salivary α-amylase Levels following a Mind-Body Intervention in Cancer Survivors - an Exploratory Study

    PubMed Central

    Lipschitz, David L.; Kuhn, Renee; Kinney, Anita Y.; Donaldson, Gary W.; Nakamura, Yoshio

    2013-01-01

    Objective The main aim of this exploratory study was to assess whether salivary α-amylase (sAA) and salivary cortisol levels would be positively modulated by sleep-focused mind-body interventions in female and male cancer survivors. Methods We conducted a randomized controlled trial in which 57 cancer survivors with self-reported sleep disturbance received either a Sleep Hygiene Education (SHE; n=18) control, or one of two experimental mind-body interventions, namely, Mind-Body Bridging (MBB; n=19) or Mindfulness Meditation (MM; n=20). Interventions were three sessions each conducted once per week for three consecutive weeks. Saliva cortisol and sAA were measured at baseline and one week after the last session. Participants also completed a sleep scale at the same time points when saliva was collected for biomarker measurement. Results Our study revealed that at post-study assessment, mean sAA levels upon awakening (“Waking” sample) declined in MBB compared with that of SHE. Mean Waking cortisol levels did not differ among treatment groups but declined slightly in SHE. Self-reported sleep improved across the three interventions at Post-assessment, with largest improvements in the MBB intervention. Conclusion In this exploratory study, sleep focused mind-body intervention (MBB) attenuated Waking sAA levels, suggesting positive influences of a mind-body intervention on sympathetic activity in cancer survivors with sleep disturbance. PMID:23375640

  10. Does diet influence salivary enzyme activities in elephant species?

    PubMed

    Boehlke, Carolin; Pötschke, Sandra; Behringer, Verena; Hannig, Christian; Zierau, Oliver

    2017-01-01

    Asian elephants (Elephas maximus) and African elephants (Loxodonta africana) are herbivore generalists; however, Asian elephants might ingest a higher proportion of grasses than Africans. Although some studies have investigated nutrition-specific morphological adaptations of the two species, broader studies on salivary enzymes in both elephant species are lacking. This study focuses on the comparison of salivary enzymes activity profiles in the two elephant species; these enzymes are relevant for protective and digestive functions in humans. We aimed to determine whether salivary amylase (sAA), lysozyme (sLYS), and peroxidase (sPOD) activities have changed in a species-specific pattern during evolutionary separation of the elephant genera. Saliva samples of 14 Asian and eight African elephants were collected in three German zoos. Results show that sAA and sLYS are salivary components of both elephant species in an active conformation. In contrast, little to no sPOD activity was determined in any elephant sample. Furthermore, sAA activity was significantly higher in Asian compared with African elephants. sLYS and sPOD showed no species-specific differences. The time of food provision until sample collection affected only sAA activity. In summary, the results suggest several possible factors modulating the activity of the mammal-typical enzymes, such as sAA, sLYS, and sPOD, e.g., nutrition and sampling procedure, which have to be considered when analyzing differences in saliva composition of animal species.

  11. Salivary α-Amylase And Chromogranin A In Anxiety-Related Research.

    PubMed

    Tananska, Valeria T

    2014-01-01

    Salivary α-amylase (sAA) and chromogranin A (sCgA) are at the forefront of current biochemical research on anxiety. Their use is being driven by the sudden surge of interest in "salivaomics," a new field in medicine studying saliva's genetic code, proteome and methabolom. Interestingly, it is not the primary functions of the enzyme and the protein, but the ingenious capture of their secondary ones (maintenance of the acid-alkaline balance and bactericidal / antifungal action) that allows for a swift, precise and pain-free measurement under physical and mental duress. Upon stimulation, sAA and sCgA are almost simultaneously released. Studying them allows a closer look at the autonomic nervous system (ANS) as opposed to the hypothalamic-pituitary-adrenal axis (HPA), which involves a long cascade of complex, hard to measure and interpret bio-chemical reactions.

  12. Decreased salivary alpha-amylase levels are associated with performance deficits during sleep loss.

    PubMed

    Pajcin, Maja; Banks, Siobhan; White, Jason M; Dorrian, Jill; Paech, Gemma M; Grant, Crystal; Johnson, Kayla; Tooley, Katie; Fidock, Justin; Kamimori, Gary H; Della Vedova, Chris B

    2017-04-01

    During sleep deprivation, neurobehavioral functions requiring sustained levels of attention and alertness are significantly impaired. Discrepancies between subjective measures of sleepiness and objective performance during sustained operations have led to interest in physiological monitoring of operator performance. Alertness, vigilance, and arousal are modulated by the wake-promoting actions of the central noradrenergic system. Salivary alpha-amylase (sAA) has been proposed as a sensitive peripheral measure of noradrenergic activity, but limited research has investigated the relationship between sAA and performance. In a laboratory-controlled environment, we investigated the relationship between sAA levels, subjective sleepiness, and performance during two days (50h) of total sleep deprivation. Beginning at 09:00, twelve healthy participants (5 females) aged 22.5±2.5years (mean±SD) provided saliva samples, recorded ratings of subjective sleepiness, completed a brief 3-min psychomotor vigilance task (PVT-B) and performed a 40-min simulated driving task, at regular 3h intervals during wakefulness. Ratings of subjective sleepiness exhibited a constant linear increase (p<0.001) during sleep deprivation. In contrast, sAA levels showed a marked diurnal profile, with levels increasing during the day (p<0.001) and steadily declining in the evening and early-morning (p<0.001). PVT-B (mean reaction time and mean slowest 10% reaction time) and simulated driving performance (speed deviation and lane deviation) also exhibited diurnal profiles across the two days of sleep deprivation. Performance peaked in the afternoon (p<0.001) and then steadily worsened as wakefulness continued into the evening and early-morning (p<0.001). Further analysis revealed that higher sAA levels in the hour preceding each performance assessment were associated with better PVT-B and driving performance (p<0.001). These findings suggest that sAA measures may be suitable indicators of performance

  13. The sensitivity and specificity of the RSID-saliva kit for the detection of human salivary amylase in the Forensic Science Laboratory, Dublin, Ireland.

    PubMed

    Casey, David G; Price, Judy

    2010-01-30

    We demonstrate here that the RSID-saliva test can be used as a test for human salivary alpha-amylase on samples routinely examined in forensic casework. We show that the RSID-saliva test detects salivary alpha-amylase at lower concentrations than the Phadebas Quantitative test, that the RSID-saliva test does not cross-react with forensically important human fluids and that the RSID-saliva test can be successfully integrated into the whole swab semen extraction method.

  14. Sex Differences in Salivary Cortisol, Alpha-Amylase, and Psychological Functioning Following Hurricane Katrina

    ERIC Educational Resources Information Center

    Vigil, Jacob M.; Geary, David C.; Granger, Douglas A.; Flinn, Mark V.

    2010-01-01

    The study examines group and individual differences in psychological functioning and hypothalamic-pituitary-adrenal and sympathetic nervous system (SNS) activity among adolescents displaced by Hurricane Katrina and living in a U.S. government relocation camp (n = 62, ages 12-19 years) 2 months postdisaster. Levels of salivary cortisol, salivary…

  15. An In Vitro and In Vivo Study of the α-Amylase Activity of Phaseolamin

    PubMed Central

    de Gouveia, Neire Moura; Alves, Fernanda Vieira; Furtado, Fabiana Barcelos; Scherer, Danielli Luana; Mundim, Antonio Vicente

    2014-01-01

    Abstract We evaluated the polypeptide profiles, inhibition of human salivary α-amylase activity, and hemagglutination properties of a commercial phaseolamin sample. We also performed an in vivo assay to investigate the effects of a commercial phaseolamin treatment (100, 500, or 1500 mg/kg) over 20 days on the glycemia, body weight, and serum biochemical parameters (total cholesterol, triglycerides, alanine aminotransferase, and aspartate aminotransferase) of nondiabetic and streptozotocin-induced diabetic rats. The in vitro evaluation showed defined protein profiles, low hemagglutination activity, and high α-amylase inhibition. None of the experimental groups treated with phaseolamin or acarbose showed decreases in body weight. Our data demonstrate that phaseolamin inhibits amylase activity in vitro, reduces blood glucose levels, decreases or attenuates some of the renal and hepatic effects of diabetes in streptozotocin-induced rats, and could therefore have therapeutic potential in the treatment or prevention of the complications of diabetes. PMID:24650210

  16. Evening salivary alpha-amylase, major depressive disorder, and antidepressant use in the Netherlands Study of Depression and Anxiety (NESDA).

    PubMed

    Veen, Gerthe; Giltay, Erik J; Licht, Carmilla M M; Vreeburg, Sophie A; Cobbaert, Christa M; Penninx, Brenda W J H; Zitman, Frans G

    2013-06-30

    Salivary alpha-amylase (sAA) may be a suitable index for sympathetic activity and dysregulation of the autonomic nervous system. The relationship between antidepressants and depression with sAA levels was studied, since antidepressants were previously shown to have a profound impact on heart rate variability as an ANS indicator. Data are from 1692 participants of the Netherlands Study of Depression and Anxiety (NESDA) who were recruited from the community, general practice, and specialized mental health care. Differences in evening sAA levels were examined between patient groups (i.e., 752 current major depressive disorder [MDD], 611 remitted MDD, and 329 healthy controls) and between 46 tricyclic antidepressant (TCA) users, 307 selective serotonin reuptake inhibitor (SSRI) users, 97 users of another antidepressant, and 1242 non-users. Each participant sampled twice at 22.00h and 23.00h. In multivariable analysis, there was a trend over the three groups with increasing sAA levels from controls to remitted MDD to current MDD that approached significance. Furthermore, in comparison to non-users of antidepressants, TCA rather than SSRI users showed higher sAA levels, that persisted after multivariable adjustment. The present study shows that higher evening sAA levels in depressed patients, indicative of an increased sympathetic activity, may be induced by TCAs.

  17. DEVELOPMENTAL VALIDATION OF A POINT-OF-CARE, SALIVARY α-AMYLASE BIOSENSOR

    PubMed Central

    Shetty, Vivek; Zigler, Corwin; Robles, Theodore F.; Elashoff, David; Yamaguchi, Masaki

    2010-01-01

    The translation of salivary alpha-amylase (sAA) to the ambulatory assessment of stress hinges on the development of technologies capable of speedy and accurate reporting of sAA levels. Here, we describe the developmental validation and usability testing of a point-of-care, colorimetric, sAA biosensor. A disposable test strip allows for streamlined sample collection and a corresponding hand-held reader with integrated analytic capabilities permits rapid analysis and reporting of sAA levels. Bioanalytical validation utilizing saliva samples from 20 normal subjects indicates that, within the biosensor’s linear range (10–230 U/ml), its accuracy (R2 = 0.989), precision (CV < 9%), and measurement repeatability (range −3.1% to + 3.1%) approach more elaborate laboratory-based, clinical analyzers. The truncated sampling-reporting cycle (< 1 minute) and the excellent performance characteristics of the biosensor has the potential to take sAA analysis out of the realm of dedicated, centralized laboratories and facilitate future sAA biomarker qualification studies. PMID:20696529

  18. Autonomic markers associated with generalized social phobia symptoms: heart rate variability and salivary alpha-amylase.

    PubMed

    García-Rubio, María J; Espín, Laura; Hidalgo, Vanesa; Salvador, Alicia; Gómez-Amor, Jesús

    2017-01-01

    The study of autonomic nervous system changes associated with generalized social phobia (GSP) disorder has increased in recent years, showing contradictory results. The present study aimed to evaluate how young people with GSP reacted before, during, and after exposure to the Trier Stress Social Test (TSST), focusing on their autonomic changes (heart rate variability (HRV) and salivary alpha-amylase (sAA)) compared to a control group (non-GSP). Some psychological variables were also considered. Sex was specifically studied as a possible modulator of autonomic fluctuations and psychological state. Eighty young people were randomly distributed into two counterbalanced situations: stress condition (N = 18 and 21 for GSP and non-GSP, respectively) and control condition (N = 21 and 20 for GSP and non-GSP, respectively), where cardiovascular variables were continuously recorded. Psychological questionnaires about mood and perceived stress were filled out, and five saliva samples were collected to analyze sAA. GSP participants showed higher values on low- and high-frequency ratios (HR domains), compared to non-GSP people, during exposure to the TSST, but no differences were observed after the stressor. Furthermore, the two groups did not differ in sAA. Importantly, positive affect in GSP participants was modulated by sex. The present study suggests that the balance between high- and low-frequency domains of HRV is a key cardiovascular marker reflecting the stress response of GSP people, as well the importance of sex in positive affect when facing a stressful situation.

  19. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes.

    PubMed

    Carpenter, Danielle; Dhar, Sugandha; Mitchell, Laura M; Fu, Beiyuan; Tyson, Jess; Shwan, Nzar A A; Yang, Fengtang; Thomas, Mark G; Armour, John A L

    2015-06-15

    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs of AMY2A/AMY2B. Read-depth and experimental data show that different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number. We show that the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations.

  20. Smartphone-based point-of-care testing of salivary α-amylase for personal psychological measurement.

    PubMed

    Zhang, Lin; Yang, Wentao; Yang, Yuankui; Liu, Hong; Gu, Zhongze

    2015-11-07

    Here we report a smartphone-based potentiometric biosensor for point-of-care testing of salivary α-amylase (sAA), which is one of the most sensitive indices of autonomic nervous system activity, and therefore a promising non-invasive biomarker for mental health. The biosensing system includes a smartphone having a sAA-detection App, a potentiometric reader and a sensing chip with preloaded reagents. The saliva sample wicks into the reaction zone on the sensing chip so that the sAA reacts with the preloaded reagents, resulting in conversion of an electron mediator Fe(CN)6(3-) to Fe(CN)6(4-). The sensing chip is then pressed by fingers to push the reaction mixture into the detection zone for the potentiometric measurement. The potential measured by the smartphone-powered potentiometric reader is sent to the smartphone App via the USB port, and converted into sAA concentration based on a calibration curve. Using our method, sAA in real human sample is quantitatively analyzed within 5 min. The results are in good agreement with that obtained using a reference method, and correlated to psychological states of the subjects.

  1. Variation in amylase activities in radish (Raphanus sativus) cultivars.

    PubMed

    Hara, Masakazu; Ito, Fumio; Asai, Tatsuo; Kuboi, Toru

    2009-09-01

    The radish (Raphanus sativus) is a root vegetable of the Brassicaceae family which shows amylolytic activity in the taproot. However, there is little information about differences in these amylolytic activities among radish cultivars. We analyzed the amylase activities and starch contents of 7 kinds of radish cultivars. The Koshin cultivar showed the highest amylase activity, with a level approximately 6 times higher than that of the Sobutori cultivar, which had the lowest. Cultivars with higher amylase activities showed higher starch contents. These results suggest that there are intraspecies variations in amylolytic activities in radishes, and positive correlations between amylase activity and starch content.

  2. Salivary cortisol and alpha-amylase reactivity to taekwondo competition in children.

    PubMed

    Capranica, Laura; Lupo, Corrado; Cortis, Cristina; Chiodo, Salvatore; Cibelli, Giuseppe; Tessitore, Antonio

    2012-02-01

    The aim of this study was to evaluate the effects of an official taekwondo competition (three 1-min rounds with a 1-min recovery in-between) on heart rate (HR), salivary alpha-amylase (sAA), and salivary-free cortisol (sC) in children. Parental consent was obtained for 12 young (10.4 ± 0.2 years) male taekwondo athletes. Saliva sample were collected 15 min before and 1 min after an official taekwondo competition, and at 30, 60, and 90 min of the recovery period. To evaluate the exercise intensity during the competition, HR was measured and expressed as a percentage of individuals HR(peak). Athletes spent 78% of the time working at HR > 90% HR(max), with significant increases from round 1 to round 2 and 3. Peak sAA observed at the end of the match (169.6 ± 47.0 U/mL) was different (P = 0.0001) from the other samplings (pre-competition 55.0 ± 14.0 U/mL, 30-min recovery 80.4 ± 17.7 U/mL, 60-min recovery 50.5 ± 7.6 U/ml; 90-min recovery 53.2 ± 9.6 U/mL). Peak sC values observed at 30-min recovery (17.9 ± 3.5 nmol/L) were different (P < 0.0001) from pre-competition (5.6 ± 0.9 nmol/L), post-competition (9.0 ± 2.0 nmol/L), 60-min recovery (10.3 ± 2.6 nmol/L) and 90-min recovery (4.2 ± 0.8 nmol/L) values. These findings confirm that taekwondo competitions pose a high stress on young athletes. The different sAA and sC reactions in response to the physical stressor mirror the faster reactivity of the sympathetic-adrenomedullary system relatively to the hypothalamic-pituitary-adrenocortical system, respectively. This experimental paradigm might represent a useful model for further research on the effects of various stressors (i.e., training and competition) in taekwondo athletes.

  3. Analysis of the extreme diversity of salivary alpha-amylase isoforms generated by physiological proteolysis using liquid chromatography-tandem mass spectrometry.

    PubMed

    Bailey, Ulla-Maja; Punyadeera, Chamindie; Cooper-White, Justin J; Schulz, Benjamin L

    2012-12-12

    Saliva is a crucial biofluid for oral health and is also of increasing importance as a non-invasive source of disease biomarkers. Salivary alpha-amylase is an abundant protein in saliva, and changes in amylase expression have been previously associated with a variety of diseases and conditions. Salivary alpha-amylase is subject to a high diversity of post-translational modifications, including physiological proteolysis in the oral cavity. Here we developed methodology for rapid sample preparation and non-targeted LC-ESI-MS/MS analysis of saliva from healthy subjects and observed an extreme diversity of alpha-amylase proteolytic isoforms. Our results emphasize the importance of consideration of post-translational events such as proteolysis in proteomic studies, biomarker discovery and validation, particularly in saliva.

  4. Action pattern of human pancreatic and salivary alpha-amylase on 1,4-alpha-D-nitrophenylmaltooligosaccharides. 1,4-alpha-D-nitrophenylmaltooligosaccharides as substrates of alpha-amylse, I.

    PubMed

    Wallenfels, K; Laule, G; Meltzer, B

    1982-08-01

    High performance liquid chromatography (HPLC) was used to monitor the purity of the substrates and to establish the patterns of hydrolysis of ortho- and para-nitrophenylmaltooligosaccharides (2-7 glucose residues) catalysed by human pancreatic and salivary alpha-amylase. Separation of the reaction products from the remaining substrate was performed on a TSK-G-2000 PW or a RP18 column. By measuring the quantitative distribution of products, and assuming a 5-subsite model for the active site of alpha-amylase, differential activities for the hydrolysis of the different glycosidic bonds in the 2 series of substrates were deduced. A highly sensitive coupled continuous assay system is based on the formation of phenyloligosaccharides with 1-4 glucose residues by the action of the amylase under test, coupled to hydrolysis of these products by yeast alpha-glucosidase. The most suitable test substrates were shown to be para-nitrophenyl-alpha-D-maltotetraoside and -pentaoside. Direct production of nitrophenol from ortho-nitrophenyl-alpha-D-maltotrioside is recommended for the measurement of the alpha-amylase activity of pancreatic and salivary gland secretions and extracts.

  5. Immediate Effects of Traditional Thai Massage on Psychological Stress as Indicated by Salivary Alpha-Amylase Levels in Healthy Persons.

    PubMed

    Sripongngam, Thanarat; Eungpinichpong, Wichai; Sirivongs, Dhavee; Kanpittaya, Jaturat; Tangvoraphonkchai, Kamonwan; Chanaboon, Sutin

    2015-10-05

    BACKGROUND Stress can cause psychological and physiological changes. Many studies revealed that massage can decrease stress. However, traditional Thai massage has not been well researched in this regard. The purpose of this study was to investigate the immediate effects of traditional Thai massage (TTM) on salivary alpha-amylase levels (sAA), heart rate variability (HRV), autonomic nervous system (ANS) function, and plasma renin activity (PRA). MATERIAL AND METHODS Twenty-nine healthy participants were randomly allocated into either a traditional Thai massage (TTM) group or Control (C) group, after which they were switched to the other group with a 2-week wash-out period. Each of them was given a 10-minute mental arithmetic test to induce psychological stress before a 1-hour session of TTM or rest. RESULTS Within-groups comparison revealed that sAA was significantly decreased (p<0.05) in the TTM group but not in the C group. HRV and ANS function were significantly increased (p<0.05) and PRA was significantly decreased (p<0.05) in both groups. However, low frequency per high frequency ratio (LF/HF ratio) and ANS balance status were not changed. Only sAA was found to be significantly different between groups (p<0.05). CONCLUSIONS We conclude that both TTM and rest can reduce psychological stress, as indicated by decreased sAA levels, increased parasympathetic activity, decreased sympathetic activity, and decreased PRA. However, TTM may have a modest effect on stress reduction as indicated by a reduced sAA.

  6. Continuous automated assay of alpha-amylase release from superfused rat salivary gland.

    PubMed

    Templeton, D

    1980-11-01

    A method of continuous automated amylase assay is described. This relies on the absorption of iodine by starch to produce a blue color that can be quantified colorimetrically. Digestion of the starch by amylase released from parotid tissue slices reduces the intensity of the color formed, allowing quantification of the amylase released. The assay in sensitive to 0.05 U/amylase/ml and linear up to 13 U/ml. Typical tissue responses to acetyl-beta-methylcholine and isoprenaline are presented.

  7. Activated effect of lignin on α-amylase.

    PubMed

    Zhang, Juan; Cui, Jun-Hui; Yin, Tingting; Sun, Lizhou; Li, Genxi

    2013-12-01

    This paper reports a new kind of activator of α-amylase, lignin, which can greatly increase α-amylase activity. The promoted ratio of lignin is even much higher than that of chloride ion, the traditional activator of α-amylase. Further experimental results reveal that lignin may interact with α-amylase to form a 1:1 complex with a binding constant of 4.47×10(5) M(-1). The binding is spontaneous and lignin/α-amylase complex formation is an exothermal reaction. Hydrogen bonding plays a key role and non-radiation energy transfers from α-amylase to lignin in the binding process. Lignin, combining with α-amylase, conforms to a first-order exponential decay function. The formation of the lignin/α-amylase complex results in the reduction of α-helical content from 57.7% to 53.9%, the increase of the polarity around tryptophan residues, the decrease of the hydrophobicity, and the enlargement of protein granule volume. This work will give a deeper insight into lignin as a kind of dietary fibre, known as an important food functional factor. Furthermore, it also contributes to the exploration of an activator of α-amylase, used in the food industry.

  8. Lactase persistence and augmented salivary alpha-amylase gene copy numbers might have been selected by the combined toxic effects of gluten and (food born) pathogens.

    PubMed

    Pruimboom, Leo; Fox, Tom; Muskiet, Frits A J

    2014-03-01

    Various positively selected adaptations to new nutrients have been identified. Lactase persistence is among the best known, conferring the ability for drinking milk at post weaning age. An augmented number of amylase gene (AMY1) copies, giving rise to higher salivary amylase activity, has been implicated in the consumption of starch-rich foods. Higher AMY1 copy numbers have been demonstrated in populations with recent histories of starchy-rich diets. It is however questionable whether the resulting polymorphisms have exerted positive selection only by providing easily available sources of macro and micronutrients. Humans have explored new environments more than any other animal. Novel environments challenge the host, but especially its immune system with new climatic conditions, food and especially pathogens. With the advent of the agricultural revolution and the concurrent domestication of cattle came new pathogens. We contend that specific new food ingredients (e.g., gluten) and novel pathogens drove selection for lactase persistence and higher AMY gene copy numbers. Both adaptations provide ample glucose for activating the sodium glucose-dependent co-transporter 1 (SGLT1), which is the principal glucose, sodium and water transporter in the gastro-intestinal tract. Their rapid uptake confers protection against potentially lethal dehydration, hyponatremia and ultimately multiple organ failure. Oral rehydration therapy aims at SGLT1 activity and is the current treatment of choice for chronic diarrhoea and vomiting. We hypothesize that lifelong lactase activity and rapid starch digestion should be looked at as the evolutionary covalent of oral rehydration therapy.

  9. Stability of human α-salivary amylase in aged forensic samples.

    PubMed

    Carboni, Ilaria; Rapi, Stefano; Ricci, Ugo

    2014-07-01

    The unequivocal tissue identification in forensic casework samples is a key step for crime scene reconstruction. Just knowing the origin of a fluid can sometimes be enough to either prove or disprove a fact in court. Despite the importance of this test, very few data are available in literature concerning human saliva identification in old forensic caseworks. In this work the stability of human α-amylase activity in aged samples is described by using three different methods integrated with DNA profiling techniques. This analytical protocol was successfully applied on 26-years old samples coming from anonymous threat letters sent to prosecutors who were working on "the Monster of Florence", a case of serial murders happened around Florence (Italy) between 1968 and 1985.

  10. DENTAL MINERALIZATION AND SALIVARY ACTIVITY ARE REDUCED IN OFFSPRING OF SPONTANEOUSLY HYPERTENSIVE RATS (SHR)

    PubMed Central

    Elias, Gracieli Prado; dos Santos, Otoniel Antonio Macedo; Sassaki, Kikue Takebayashi; Delbem, Alberto Carlos Botazzo; Antoniali, Cristina

    2006-01-01

    Several pathologies have been diagnosed in children of hypertensive mothers; however, some studies that evaluated the alterations in their oral health are not conclusive. This study analyzed the salivary gland activity and dental mineralization of offsprings of spontaneously hypertensive rats (SHR). Thirty-day-old SHR males and Wistar rats were studied. The salivary flow was evaluated by injection of pilocarpine, the protein concentration and salivary amylase activity, by the Lowry method and kinetic method at 405 nm, respectively. Enamel and dentin mineralization of the mandibular incisors was quantified with aid of the microhardness meter. The results were analyzed by the ANOVA or Student's t test (p<0.05). It was noticed that the salivary flow rate (0.026 mL/min/100 g ± 0.002) and salivary protein concentration (2.26 mg/mL ± 0.14) of SHR offspring were reduced compared to Wistar normotensive offspring (0.036 mL/min/100 g ± 0.003 and 2.91 mg/mL ± 0.27, respectively), yet there was no alteration in amylase activity (SHR: 242.4 U/mL ± 36.9; Wistar: 163.8 U/mL ± 14.1). Microhardness was lower both in enamel (255.8 KHN ± 2.6) and dentin (59.9 KHN ± 0.8) for the SHR teeth compared to the Wistar teeth (enamel: 328.7 KHN ± 3.3 and dentin: 67.1 KHN ± 1.0). These results suggest that the SHR offspring are more susceptible to development of pathologies impairing oral health, once they presented lesser flow and salivary protein concentration and lower dental mineralization. PMID:19089272

  11. Asymmetry in children's salivary cortisol and alpha-amylase in the context of marital conflict: links to children's emotional security and adjustment.

    PubMed

    Koss, Kalsea J; George, Melissa R W; Cummings, E Mark; Davies, Patrick T; El-Sheikh, Mona; Cicchetti, Dante

    2014-05-01

    Recent research supports the promise of examining interactive models of physiological processes on children's adjustment. The present study investigates interactions between children's autonomic nervous system activity and adrenocortical functioning in the context of marital discord; specifically, testing models of concurrent responses proposed by Bauer et al. ([2002] Developmental and Behavioral Pediatrics 23:102-113) in the prediction of children's behavioral responses to conflict and adjustment. Asymmetry and symmetry in children's salivary alpha-amylase and cortisol were examined in 195 children (M age = 8 years) in response to viewing conflict vignettes. Results were partially consistent with an interactive model in the context of high marital discord; asymmetry among higher alpha-amylase and lower cortisol related to higher emotional insecurity and concurrent and subsequent maladjustment. In contrast, patterns of symmetrical responses were related to greater maladjustment for children exposed to lower levels of marital discord, supporting an additive model. Findings support the importance of a multisystem approach to investigating the adaptiveness of children's physiological stress responses, while also highlighting the value of considering physiological responses in the context of family risk.

  12. Salivary alpha-amylase and cortisol in infancy and toddlerhood: direct and indirect relations with executive functioning and academic ability in childhood.

    PubMed

    Berry, Daniel; Blair, Clancy; Willoughby, Michael; Granger, Douglas A

    2012-10-01

    Using data from a predominantly low-income, population-based prospective longitudinal sample of 1292 children followed from birth, indicators of children's autonomic (salivary alpha-amylase; sAA) and hypothalamic-pituitary-adrenal (HPA) axis (salivary cortisol) activity at 7, 15, and 24 months of age were found to predict executive functioning at 36-months and academic achievement in pre-kindergarten. The findings suggested that the respective cortisol and sAA effects on executive functioning and academic achievement were interactive. Optimal developmental outcomes were associated with asymmetrical cortisol/sAA profiles. Higher cortisol levels were predictive of lower executive functioning and academic abilities, but only for those with concurrently moderate to high levels of sAA. In contrast, higher sAA concentrations were predictive of better executive functioning and academic abilities, but only for those with concurrently moderate to low levels of cortisol. These relations were statistically identical across infancy and toddlerhood. The conditional effects of cortisol and sAA on pre-kindergarten academic achievement were mediated fully by links between these early physiological indicators and executive functioning.

  13. Activity and cellular localization of amylases of rabbit cecal bacteria.

    PubMed

    Sirotek, K; Marounek, M; Suchorská, O

    2006-01-01

    Five 11-week-old rabbits, fed a commercial granulated feed, were slaughtered and cecal starch-degrading bacteria enumerated; total concentration of cultivable bacteria utilizing starch averaged 5.5 x 10(10) CFU/g. The activity and cellular localization of amylases was determined in 9 bacteria identified as Actinomyces israeli (strains AA2 and AD4), Bacteroides spp. (strain AA3), Dichelobacter nodosus (strain AA4), Mitsuokella multiacidus (strain AA6), Eubacterium spp. (strains AA7 and AB2), Clostridium spp. (strains AD1 and AA5). Four strains (AA3, AA4, AA5, AD4) produced extracellular amylases with an activity of 26-35 micromol of reducing sugars per h per mg of protein; in five strains (AA2, AA6, AA7, AB2, AD1) amylases were membrane-bound with an activity of 14-18 micromol of reducing sugars per h per mg of protein. All strains exhibited a low intracellular amylolytic activity. The pH optimum of amylases was 6.8-7.0. In strains producing extracellular amylases a substantial loss of viscosity was observed during incubations of cultivation supernatant with starch, similar to viscosity reduction in starch solutions treated with alpha-amylase; this indicates an endo-type (random cleavage) of extracellular amylase reaction in the bacteria under study. No strain possessed glucoamylase activity.

  14. Electrophoretically unique amylases in rat livers: phylogenic and ontogenic study on the mammalian liver.

    PubMed

    Koyama, Iwao; Komine, Shin-Ichi; Hokari, Shigeru; Matsunaga, Toshiyuki; Nakamura, Koh-Ich; Komoda, Tsugikazu

    2002-09-01

    Liver amylase activity in rodents was assayed with Blue Starch as substrate, and found to be higher than in humans or pigs. Based on the result of concanavalin A affinity chromatography, we found that the sugar moieties of amylase molecules increased in parallel with amylase activity in the tested mammals. However, the amounts of amylase proteins determined by Western bloting with anti-human salivary-type antibody as the probe, were similar to the levels in mammalian livers. Moreover, a similar expression of amylase mRNA was also detected in the mammalian livers by a reverse transcriptional-polymerase chain reaction using primers specific for the human salivary and/or pancreatic amylase complementary DNA (cDNA) sequences. The amylase was detected at the catalytic activity, protein molecule and mRNA levels in rat liver at all ages from fetus to adult. Salivary-type liver amylase activity increased up to one week after birth, and was maintained at the adult level thereafter. However, based on the results of the electrophoretic mobility test, livers with accelerated amylase activity, e.g., at 2-4 weeks after birth or during liver regeneration after partial hepatectomy, were also found to express an amylase electrophoretical identical to pancreatic-type amylase in addition to salivary-type activity. These results suggest that the liver may express an etopic amylase in a certain condition.

  15. Activity and storage of commercial amylases in the 2013 Louisiana grinding season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A current problem in the application of amylases at sugarcane factories is the existence of a wide variation in the activities and activity per unit cost of commercial amylases. The efficiency of amylase action to break down starch in the factory is related to the activity of the amylase used. Until...

  16. Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium Alteromonas haloplanctis.

    PubMed

    Feller, G; d'Amico, D; Gerday, C

    1999-04-06

    The thermal stability of the cold-active alpha-amylase (AHA) secreted by the Antarctic bacterium Alteromonas haloplanctis has been investigated by intrinsic fluorescence, circular dichroism, and differential scanning calorimetry. It was found that this heat-labile enzyme is the largest known multidomain protein exhibiting a reversible two-state unfolding, as demonstrated by the recovery of DeltaHcal values after consecutive calorimetric transitions, a DeltaHcal/DeltaHeff ratio close to unity, and the independence of unfolding thermodynamic parameters of scan rates. By contrast, the mesophilic alpha-amylases investigated here (from porcine pancreas, human salivary glands, yellow meal beetle, Bacillus amyloliquefaciens, and Bacillus licheniformis) unfold irreversibly according to a non-two-state mechanism. Unlike mesophilic alpha-amylases, the melting point of AHA is independent of calcium and chloride binding while the allosteric and structural functions of these ions are conserved. The thermostability of AHA at optimal conditions is characterized by a Tm of 43.7 degrees C, a DeltaHcal of 238 kcal mol-1, and a DeltaCp of 8.47 kcal mol-1 K-1. These values were used to calculate the Gibbs free energy of unfolding over a wide range of temperatures. This stability curve shows that (a) the specific DeltaGmax of AHA [22 cal (mol of residue)-1] is 4 times lower than that of mesophilic alpha-amylases, (b) group hydration plays a crucial role in the enzyme flexibility at low temperatures, (c) the temperature of cold unfolding closely corresponds to the lower limit of bacterial growth, and (d) the recombinant heat-labile enzyme can be expressed in mesophilic hosts at moderate temperatures. It is also argued that the cold-active alpha-amylase has evolved toward the lowest possible conformational stability of its native state.

  17. The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity.

    PubMed

    Zhang, Huiling; Liu, Jun; Hou, Juan; Yao, Ying; Lin, Yuan; Ou, Yongbin; Song, Botao; Xie, Conghua

    2014-09-01

    Potato cold-induced sweetening (CIS) is critical for the postharvest quality of potato tubers. Starch degradation is considered to be one of the key pathways in the CIS process. However, the functions of the genes that encode enzymes related to starch degradation in CIS and the activity regulation of these enzymes have received less attention. A potato amylase inhibitor gene known as SbAI was cloned from the wild potato species Solanum berthaultii. This genetic transformation confirmed that in contrast to the SbAI suppression in CIS-resistant potatoes, overexpressing SbAI in CIS-sensitive potatoes resulted in less amylase activity and a lower rate of starch degradation accompanied by a lower reducing sugar (RS) content in cold-stored tubers. This finding suggested that the SbAI gene may play crucial roles in potato CIS by modulating the amylase activity. Further investigations indicated that pairwise protein-protein interactions occurred between SbAI and α-amylase StAmy23, β-amylases StBAM1 and StBAM9. SbAI could inhibit the activities of both α-amylase and β-amylase in potato tubers primarily by repressing StAmy23 and StBAM1, respectively. These findings provide the first evidence that SbAI is a key regulator of the amylases that confer starch degradation and RS accumulation in cold-stored potato tubers.

  18. [Effect of dental alloys on salivary alkaline and acid phosphatase, alpha amylase K+, Na+, and Cl-].

    PubMed

    Todorov, I; Saprjanova, M

    1977-04-01

    Comparative studied were performed in healthy subjects without metals in their oral cavities and in individuals having different metal alloys (gold, steel, amalgam) in their mouths and presenting with various complaints such as xerostomia, burning mucosa, etc. It was found that the contents of alkaline and acid phosphatases, alpha-amylase, K+, Na+ and Cl- in saliva increased significantly with the increase in total corrosion potential when non-precious metal alloys, especially different types of alloys, were present. Parallel to this, the frequency and the intensity of the complaints increased.

  19. Who is stressed? A pilot study of salivary cortisol and alpha-amylase concentrations in agoraphobic patients and their novice therapists undergoing in vivo exposure.

    PubMed

    Schumacher, Sarah; Gaudlitz, Katharina; Plag, Jens; Miller, Robert; Kirschbaum, Clemens; Fehm, Lydia; Fydrich, Thomas; Ströhle, Andreas

    2014-11-01

    In cognitive behavioural therapy of phobic anxiety, in vivo exposure is considered as an effective treatment strategy. Apparently, it involves the experience of stress and anxiety in patients. Given the therapist's role during exposure sessions, it is conceivable that the performance is also accompanied with the experience of stress in therapists, especially when unversed in conducting psychotherapy. Studies confirmed that cognitive behavioural therapists tend to avoid therapist-guided in vivo exposure. The objective of this study was the simultaneous investigation of therapist's and patient's stress response during in vivo exposure. Therefore, 23 agoraphobic patients and their 23 treating therapists in training provided five saliva samples during an in vivo exposure and five samples during an ordinary therapy session. Before and during exposure session, subjective evaluations of stress and anxiety were assessed. Results suggested that therapists reported similar levels of perceived stress as patients before exposure. Both groups displayed significantly elevated salivary cortisol (sC) levels during exposure compared to the control session and a trend for alterations in salivary alpha-amylase (sAA) activity was found. Therapists reached peak concentrations of sC before start of the intervention followed by a decline during exposure, while patients displayed peak levels of cortisol secretion after 60 min of exposure. In vivo exposure seems to be a demanding intervention not only for the patient, but also for therapists in training. However, it was also demonstrated that physiological and subjective stress rather decrease during the intervention and that both groups rated exposure to be substantially successful. Based on the presented results, another potential factor contributing to the under-usage of exposure treatment is conceivable and needs to be addressed in future research.

  20. Effect of chronic training on heart rate variability, salivary IgA and salivary alpha-amylase in elite swimmers with a disability.

    PubMed

    Edmonds, Rohan; Burkett, Brendan; Leicht, Anthony; McKean, Mark

    2015-01-01

    The purpose of this study was to a) determine the heart rate variability (HRV) and saliva markers of immunity (salivary immunoglobulin A; sIgA) and stress (salivary alpha-amylase; sAA) responses to chronic training in elite swimmers with a disability; and b) identify the relationships between HRV, sIgA, sAA and training volume. Eight members of a high performance Paralympic swimming program were monitored for their weekly resting HRV, sIgA and sAA levels in the 14 weeks leading up to a major international competition. The 14 week training program included aerobic, anaerobic, power and speed, and taper training phases, while also incorporating two swimming step tests and two swimming competitions. Specific time (root mean square of the successive differences; RMSSD) and frequency (high frequency normalized units [HFnu]) domain measures, along with non-linear indices (standard deviation of instantaneous RR variability; SD1 and short term fractal scaling exponent; α1) of HRV were used for all analyses with effects examined using magnitude-based inferences. Relationships between HRV and saliva markers were identified by Spearman rank rho (ρ) correlation coefficients. Compared with week 1, SD1 was very likely lower (96/4/0, ES = -2.21), while sAA was very likely elevated (100/0/0, ES = 2.32) at the beginning of week 7 for all athletes. The training program did not alter HRV or saliva whereas competition did. There were also no apparent differences observed for HRV, sIgA and sAA between each of the training phases during the 14 week swimming program. Correlations were observed between sAA and SD1 (ρ = -0.212, p<0.05), along with sAA and mean HR (ρ = 0.309, p<0.05). These results show that high level national competition influences depresses HRV (SD1) and increases saliva biomarkers of stress (sAA). It appears that a well-managed and periodised swimming program can maintain these indices within normal baseline levels. The study also highlighted the parasympathetic

  1. Age Differences of Salivary Alpha-Amylase Levels of Basal and Acute Responses to Citric Acid Stimulation Between Chinese Children and Adults

    PubMed Central

    Yang, Ze-Min; Chen, Long-Hui; Zhang, Min; Lin, Jing; Zhang, Jie; Chen, Wei-Wen; Yang, Xiao-Rong

    2015-01-01

    It remains unclear how salivary alpha-amylase (sAA) levels respond to mechanical stimuli in different age groups. In addition, the role played by the sAA gene (AMY1) copy number and protein expression (glycosylated and non-glycosylated) in sAA activity has also been rarely reported. In this study, we analyzed saliva samples collected before and after citric acid stimulation from 47 child and 47 adult Chinese subjects. We observed that adults had higher sAA activity and sAA glycosylated levels (glycosylated sAA amount/total sAA amount) in basal and stimulated saliva when compared with children, while no differences were found in total or glycosylated sAA amount between them. Interestingly, adults showed attenuated sAA activity levels increase over those of children after stimulation. Correlation analysis showed that total sAA amount, glycosylated sAA amount, and AMY1 copy number × total sAA amount were all positively correlated with sAA activity before and after stimulation in both groups. Interestingly, correlation r between sAA levels (glycosylated sAA amount and total sAA amount) and sAA activity decreased after stimulation in children, while adults showed an increase in correlation r. In addition, the correlation r between AMY1 copy number × total sAA amount and sAA activity was higher than that between AMY1 copy number, total sAA amount, and sAA activity, respectively. Taken together, our results suggest that total sAA amount, glycosylated sAA amount, and the positive interaction between AMY1 copy number and total sAA amount are crucial in influencing sAA activity before and after stimulation in children and adults. PMID:26635626

  2. Effects of Hatha Yoga on Blood Pressure, Salivary α-Amylase, and Cortisol Function Among Normotensive and Prehypertensive Youth

    PubMed Central

    Mueller, Martina; Gregoski, Mathew J.; Brunner-Jackson, Brenda; McQuade, Lisa; Matthews, Cameron; Treiber, Frank A.

    2014-01-01

    Abstract Objective: Evidence is accumulating, predominantly among clinical trials in adults, that yoga improves blood pressure (BP) control, with downregulation of the hypothalamic–pituitary–adrenal (HPA) axis and the sympathetic nervous system (SNS) projected as underlying mechanisms. This pilot study assessed whether Hatha yoga has the potential to reduce BP among youth and whether dampening of the SNS and/or HPA activity is a likely pathway of change. Design: Thirty-one seventh graders were randomly assigned to a Hatha yoga program (HYP) or attention control (AC) music or art class. Baseline and 3-month evaluations included resting BP; overnight urine samples; and saliva collected at bedtime, upon awakening, and at 30 and 60 minutes after awakening for α-amylase and cortisol assays. Results: Twenty-eight (14 in the HYP group and 14 in the AC group) students were assessed both before and after the intervention. BP changes from pre- to post-intervention were −3.0/−2.0 mmHg for the HYP group and −0.07/−0.79 mmHg for the AC group (p=0.30 and 0.57, respectively). Changes in systolic BP (SBP)/diastolic BP (DBP) for the prehypertensive (75th–94th percentiles for SBP) subgroup analyses were −10.75/−8.25 mmHg for the HYP group (n=4) versus 1.8/1.0 mmHg for the AC group (n=5) (p for SBP=0.02; p for DBP=0.09). Although no statistically significant group differences were observed with changes in SNS or HPA awakening curves (area under curve for α-amylase and cortisol, respectively), a small to moderate effect size was seen favoring a reduction of α-amylase activation for the HYP group (Cohen d=0.34; prehypertensive d=0.20). Conclusions: A school-based Hatha yoga program demonstrated potential to decrease resting BP, particularly among prehypertensive youth. Reduced SNS drive may be an underlying neurohormonal pathway beneficially affected by the program. A large-scale efficacy/effectiveness randomized clinical trial is warranted. PMID:24620850

  3. Probing the role of aromatic residues at the secondary saccharide binding sites of human salivary α-amylase in substrate hydrolysis and bacterial binding

    PubMed Central

    Ragunath, Chandran; Manuel, Suba G.A.; Venkataraman, Venkat; Sait, Hameetha B.R.; Kasinathan, Chinnasamy; Ramasubbu, Narayanan

    2008-01-01

    SUMMARY Human salivary α-amylase (HSAmy) has three distinct functions relevant to oral health: 1) hydrolysis of starch; 2) binding to hydroxyapatite; and 3) binding to bacteria (e.g. viridans streptococci). Although the active site of HSAmy for starch hydrolysis is well characterized, the regions responsible for the bacterial binding are yet to be defined. Since HSAmy possesses several secondary saccharide-binding sites in which aromatic residues are prominently located, we hypothesized that one or more of the secondary saccharide binding sites harboring the aromatic residues may play an important role in bacterial binding. To test this hypothesis, the aromatic residues at five secondary binding sites were mutated to alanine to generate six mutants representing either single (W203A, Y276A and W284A), double (Y276A/W284A and W316A/W388A) or multiple (HSAmy-ar; W134A/W203A/Y276A/W284A/W316A/W388A) mutations. The crystal structure of HSAmy-ar was determined at a resolution of 1.5 Å as an acarbose complex and compared with the existing wild type acarbose complex. The wild type and the mutant enzymes were characterized for their abilities to exhibit enzyme activity, starch binding, hydroxyapatite and bacterial binding activities. Our results clearly showed that 1) mutation of aromatic residues does not alter the overall conformation of the molecule; 2) the single or double mutants showed either moderate or minimal changes in both starch and bacterial binding activities activity whereas the HSAmy-ar showed significant reduction in these activities; 3) the starch hydrolytic activity was reduced 10-fold in HSAmy-ar; 4) oligosaccharide hydrolytic activity was reduced in all the mutants but the action pattern was similar to that of the wild type enzyme; and 5) the hydroxyaptite binding was unaffected in HSAmy-ar. These results clearly show that the aromatic residues at the secondary saccharide binding sites in HSAmy play a critical role in bacterial binding and starch

  4. Alteration of consciousness via diverse photo-acoustic stimulatory patterns. Phenomenology and effect on salivary flow rate, alpha-amylase and total protein levels.

    PubMed

    Beck, Anita; Fábián, Gábor; Fejérdy, Pál; Krause, Wolf-Rainer; Hermann, Péter; Módos, Károly; Varga, Gábor; Fábián, Tibor Károly

    2015-12-01

    Long-term photo-acoustic stimulation is used for the induction of altered states of consciousness for both therapeutic and experimental purposes. Long-term photo-acoustic stimulation also leads to changes in the composition of saliva which have a key contribution to the efficiency of this technique in easing mucosal symptoms of oral psychosomatic patients. The aim of this study is to find out whether there is any cumulative effect of repeated stimulation and whether there are any detectable differences between diverse stimulatory patterns of long lasting photo-acoustic stimulation on the phenomenology of the appearing trance state and on salivary secretion. There was significant cumulative effect in relation with the appearance of day dreaming as phenomenological parameter, and in relation with protein output and amylase/protein ratio as salivary parameter. Pattern specific effect was detectable in relation with salivary flow rate only. Although our results clearly indicate the existence of certain cumulative and stimulation-pattern specific effects of repeated photo-acoustic stimulation, the absolute values of all these effects were relatively small in this study. Therefore, in spite of their theoretical importance there are no direct clinical consequences of these findings. However, our data do not exclude at all the possibility that repeated stimulation with other stimulatory parameters may lead to more pronounced effects. Further studies are needed to make clear conclusion in this respect.

  5. Characterization of the Activity and Stability of Amylase from Saliva and Detergent: Laboratory Practicals for Studying the Activity and Stability of Amylase from Saliva and Various Commercial Detergents

    ERIC Educational Resources Information Center

    Valls, Cristina; Rojas, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2012-01-01

    This article presents two integrated laboratory exercises intended to show students the role of [alpha]-amylases (AAMYs) in saliva and detergents. These laboratory practicals are based on the determination of the enzymatic activity of amylase from saliva and different detergents using the Phadebas test (quantitative) and the Lugol test…

  6. Evidence for pentagalloyl glucose binding to human salivary alpha-amylase through aromatic amino acid residues.

    PubMed

    Gyémánt, Gyöngyi; Zajácz, Agnes; Bécsi, Bálint; Ragunath, Chandran; Ramasubbu, Narayanan; Erdodi, Ferenc; Batta, Gyula; Kandra, Lili

    2009-02-01

    We demonstrate here that pentagalloyl glucose (PGG), a main component of gallotannins, was an effective inhibitor of HSA and it exerted similar inhibitory potency to Aleppo tannin used in this study. The inhibition of HSA by PGG was found to be non-competitive and inhibitory constants of K(EI)=2.6 microM and K(ESI)=3.9 microM were determined from Lineweaver-Burk secondary plots. PGG as a model compound for gallotannins was selected to study the inhibitory mechanism and to characterize the interaction of HSA with this type of molecules. Surface plasmon resonance (SPR) binding experiments confirmed the direct interaction of HSA and PGG, and it also established similar binding of Aleppo tannin to HSA. Saturation transfer difference (STD) experiment by NMR clearly demonstrated the aromatic rings of PGG may be involved in the interaction suggesting a possible stacking with the aromatic side chains of HSA. The role of aromatic amino acids of HSA in PGG binding was reinforced by kinetic studies with the W58L and Y151M mutants of HSA: the replacement of the active site aromatic amino acids with aliphatic ones decreased the PGG inhibition dramatically, which justified the importance of these residues in the interaction.

  7. Characterization of a Hydrophobic Amylase Inhibitor from Corn (Zea mays) Seeds with Activity Against Amylase from Fusarium verticillioides.

    PubMed

    Figueira, Edson L Z; Hirooka, Elisa Y; Mendiola-Olaya, Elizabeth; Blanco-Labra, Alejandro

    2003-08-01

    ABSTRACT A hydrophobic 19.7-kDa amylase inhibitor (AI) was purified from corn kernels by 95% ethanol extraction and anionic exchange chromatography. The AI has an isoelectric point of 3.6 and was very stable at different pH values and high temperatures, maintaining 47.6% activity after heating to 94 degrees C for 60 min. Amino acid analysis indicated high valine, leucine, glycine, alanine, and glutamic acid/glutamine content, and especially high valine content (41.2 mol%). This inhibitor is not a glycoprotein. It required 30-min preincubation to maximize complex enzyme-inhibitor formation when the amylase from Fusarium verticillioides was tested. The optimal pH of interaction was 6.5. It showed broad-spectrum activity including the following amylases: human saliva, porcine pancreas, F. verticillioides, as well as those from some insects of agricultural importance (Acanthoscelides obtectus, Zabrotes subfasciatus, Sitophilus zeamais, and Prostephanus truncatus). This novel hydrophobic protein not only inhibited the amylase from F. verticillioides but also decreased the conidia germination. Thus, this protein represents an approach to decrease the production of fumonisin in corn, either by using it as a molecular marker to detect fungal resistance or through genetic engineering.

  8. Stress and Salivary Glands.

    PubMed

    Kerémi, Beáta; Beck, Anita; Fábián, Tibor Károly; Fábián, Gábor; Szabó, Géza; Nagy, Ákos; Varga, Gábor

    2017-02-15

    Salivary glands produce a bicarbonate-rich fluid containing digestive and protective proteins and other components to be delivered into the gastrointestinal tract. Its function is under strict control of the autonomic nervous system. Salivary electrolyte and fluid secretion is primarily controlled by parasympathetic activity, while protein secretion is primaily triggered by sympathetic stimulation. Stress activates the hypothalamic - pituitary - adrenal axis. The peripheral limb of this axis is the efferent sympathetic/adrenomedullary system. Stress reaction, even if it is sustained for long, does not cause obvious damage to salivary glands. However, stress induces dramatic changes in the constituents of secreted saliva. Since salivary protein secretion is strongly dependent on sympathetic control, changes in saliva can be utilized as sensitive stress indicators. Some of the secreted compounds are known for their protective effect in the mouth and the gut, while others may just pass through the glands from blood plasma because of their chemical nature and the presence of transcellular salivary transporting systems. Indeed, most compounds that appear in blood circulation can also be identified in saliva, although at different concentrations. This work overviews the presently recognized salivary stress biosensors, such as amylase, cortisol, heat shock proteins and other compounds. It also demonstrates that saliva is widely recognised as a diagnostic tool for early and sensitive discovery of salivary and systemic conditions and disorders. At present it may be too early to introduce most of these biomarkers in daily routine diagnostic applications, but advances in salivary biomarker standardisation should permit their wide-range utilization in the future including safe, reliable and non-invasive estimation of acute and chronic stress levels in patients.

  9. Characterization of Peptides from Capsicum annuum Hybrid Seeds with Inhibitory Activity Against α-Amylase, Serine Proteinases and Fungi.

    PubMed

    Vieira Bard, Gabriela C; Nascimento, Viviane V; Ribeiro, Suzanna F F; Rodrigues, Rosana; Perales, Jonas; Teixeira-Ferreira, André; Carvalho, André O; Fernandes, Katia Valevski S; Gomes, Valdirene M

    2015-04-01

    Over the last several years, the activity of antimicrobial peptides (AMPs), isolated from plant species, against different microorganisms has been demonstrated. More recently, some of these AMPs have been described as potent inhibitors of α-amylases and serine proteinases from insects and mammals. The aim of this work was to obtain AMPs from protein extracts of a hybrid Capsicum (Ikeda × UENF 1381) seeds and to evaluate their microbial and enzyme inhibitory activities. Initially, proteins were extracted from the Capsicum hybrid seeds in buffer (sodium phosphate pH 5.4,) and precipitated with ammonium sulfate (90% saturated). Extract of hybrid seeds was subjected to size exclusion chromatography, and three fractions were obtained: S1, S2 and S3. The amino acid sequence, obtained by mass spectrometry, of the 6 kDa peptide from the S3 fraction, named HyPep, showed 100% identity with PSI-1.2, a serine protease inhibitor isolated from C. annuum seeds, however the bifunctionality of this inhibitor against two enzymes is being shown for the first time in this work. The S3 fraction showed the highest antifungal activity, inhibiting all the yeast strains tested, and it also exhibited inhibitory activity against human salivary and Callosobruchus maculatus α-amylases as well as serine proteinases.

  10. Use of activated carbons to remove undesirable residual amylase from factory and refinery streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there has been increased world-wide concern over residual (carry-over) activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food and end-user industries. HT and VHT stable amylases were develope...

  11. Use of activated carbon to remove undesirable residual amylase from refinery streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there has been increased world-wide concern over residual (carry-over)activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food and end-user industries. HT and VHT stable amylases were developed ...

  12. Studies on the Utility of B-Amylase1 IntronIII Sequences as Markers for B-Amylase Activity and Thermostability, Diastatic Power and Malt Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The third intron of barley (Hordeum vulgare L.) ß-amylase 1 (Bmy1) is extremely polymorphic. The use of specific insertion/deletions (indels) in the third intron as markers for cultivar development has been recommended based on associations with ß-amylase activity and thermostability. The third in...

  13. Studies on the Utility of ß-amylase1 IntronIII Sequences as Markers for ß-amylase Activity and Thermostability, Diastatic Power and Malt Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The third intron of barley (Hordeum vulgare L.) ß-amylase 1 (Bmy1) is extremely polymorphic. The use of specific insertion/deletions (indels) in the third intron as markers for cultivar development has been recommended based on associations with ß-amylase activity and thermostability. The third intr...

  14. Improved thermostable α-amylase activity of Bacillus amyloliquefaciens by low-energy ion implantation.

    PubMed

    Li, X Y; Zhang, J L; Zhu, S W

    2011-09-23

    Thermostable α-amylase is of great importance in the starch fermentation industry; it is extensively used in the manufacture of beverages, baby foods, medicines, and pharmaceuticals. Bacillus amyloliquefaciens produces thermostable α-amylase; however, production of thermostable α-amylase is limited. Ion-beam implantation is an effective method for mutation breeding in microbes. We conducted ion-beam implantation experiments using two different ions, Ar(+) and N(+), to determine the survival rate of and dose effect on a high α-amylase activity strain of B. amyloliquefaciens that had been isolated from soil samples. N(+) implantation resulted in a higher survival rate than Ar(+) implantation. The optimum implantation dose was 2.08 × 10(15) ions/cm(2). Under this implantation condition, we obtained a thermally and genetically stable mutant α-amylase strain (RL-1) with high enzyme activity for degrading α-amylase. Compared to the parental strain (RL), the RL-1 strain had a 57.1% increase in α-amylase activity. We conclude that ion implantation in B. amyloliquefaciens can produce strains with increased production of thermostable α-amylase.

  15. Production of alpha-amylase by yeast

    SciTech Connect

    Thomse, K.K.

    1987-01-01

    The enzyme alpha-amylase confers to an organism the enzymatic activity for the degradation of polyglucosides with alpha-1,4 glycosidic bonds such as starch and glycogen which are among the major storage compounds in plants and animals. Most alpha-amylases are single polypeptides of molecular weights around 50,000 dalton. They are generally found in the digestive tract of animals and in germinating seeds. Among the products released upon enzymatic degradation of polyglucosides maltose, a sugar that can be utilized as carbon source by yeast, is a major constituent. A cDNA segment complementary to mouse salivary amylase messenger RNA has been inserted into the yeast expression vector pMA56 behind the promoter of the gene encoding alcohol dehydrogenase I of yeast. Yeast transformants harboring plasmids with the normal orientation of the promoter and the mouse amylase cDNA gene produce amylase and release the enzyme in free form into the culture medium. Approximately 90% of the amylase activity is found in the medium. Yeast strains carrying MAL allele and transformed with a plasmid which directed the synthesis of mouse alpha-amylase were tested on plates containing starch and in batch fermentations using different high molecular weight sugars and oligosaccharides as carbon source. The results of these experiments will be discussed. (Refs. 21).

  16. Improved detection of amylase activity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with copolymerized starch.

    PubMed

    Martínez, T F; Alarcón, F J; Díaz-López, M; Moyano, F J

    2000-08-01

    An improved method, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for detection of amylase activity is described. This method will allow better characterization of certain amylases than that obtained by the Davis technique. The main features of the technique are: (i) identification of amylase bands and molecular mass determination are possible in the same gel; (ii) the hydrolysis of copolymerized substrate during electrophoretic separation is prevented using very low temperatures instead of inactivating agents such as chelating agents; and (iii) the technique is applicable to reveal amylase activity in a wide range of biological samples. The method is not useful for enzymes sensitive to SDS and for high molecular mass amylases.

  17. Alpha-Amylase Activity in Blood Increases after Pharmacological, But Not Psychological, Activation of the Adrenergic System

    PubMed Central

    Nater, Urs M.; La Marca, Roberto; Erni, Katja; Ehlert, Ulrike

    2015-01-01

    Background & Aim Alpha-amylase in both blood and saliva has been used as a diagnostic parameter. While studies examining alpha-amylase activity in saliva have shown that it is sensitive to physiological and psychological challenge of the adrenergic system, no challenge studies have attempted to elucidate the role of the adrenergic system in alpha-amylase activity in blood. We set out to examine the impact of psychological and pharmacological challenge on alpha-amylase in blood in two separate studies. Methods In study 1, healthy subjects were examined in a placebo-controlled, double-blind paradigm using yohimbine, an alpha2-adrenergic antagonist. In study 2, subjects were examined in a standardized rest-controlled psychosocial stress protocol. Alpha-amylase activity in blood was repeatedly measured in both studies. Results Results of study 1 showed that alpha-amylase in blood is subject to stronger increases after injection of yohimbine compared to placebo. In study 2, results showed that there was no significant effect of psychological stress compared to rest. Conclusions Alpha-amylase in blood increases after pharmacological activation of the adrenergic pathways suggesting that sympathetic receptors are responsible for these changes. Psychological stress, however, does not seem to have an impact on alpha-amylase in blood. Our findings provide insight into the mechanisms underlying activity changes in alpha-amylase in blood in healthy individuals. PMID:26110636

  18. Effects of Pulsed Electric Field (PEF) Treatment on Enhancing Activity and Conformation of α-Amylase.

    PubMed

    Tian, Mei-ling; Fang, Ting; Du, Mu-ying; Zhang, Fu-sheng

    2016-04-01

    To explore an efficient, safe, and speedy application of pulsed electric field (PEF) technology for enzymatic modification, effects of PEF treatment on the enzymatic activity, property and kinetic parameters of α-amylase were investigated. Conformational transitions were also studied with the aid of circular dichroism (CD) and fluorescence spectra. The maximum enzymatic activity of α-amylase was obtained under 15 kV/cm electric field intensity and 100 mL/min flow velocity PEF treatment, in which the enzymatic activity increased by 22.13 ± 1.14% compared with control. The activation effect could last for 18 h at 4 °C. PEF treatment could widen the range of optimum temperature for α-amylase, however, it barely exerted any effect on the optimum pH. On the other hand, α-amylase treated by PEF showed an increase of Vmax, t1/2 and ΔG, whereas a decrease of Km and k were observed. Furthermore, it can be observed from fluorescence and CD spectra that PEF treatment had increased the number of amino acid residues, especially that of tryptophan, on α-amylase surface with enhanced α-helices by 34.76% and decreased random coil by 12.04% on α-amylase when compared with that of untreated. These changes in structure had positive effect on enhancing α-amylase activity and property.

  19. Release and Activity of Bound beta-Amylase in a Germinating Barley Grain.

    PubMed

    Sopanen, T; Laurière, C

    1989-01-01

    In resting grains of Triumph barley (Hordeum vulgare L. cv Triumph) about 40% of the beta-amylase could be extracted with a saline solution, the remaining 60% being in a bound form. During seedling growth (20 degrees C), the bound form was released mainly between days 1 and 3. When a preparation containing bound beta-amylase was incubated with an extract made of endosperms separated from germinating grains, release of bound beta-amylase took place and could be studied in vitro. The release was almost completely prevented by leupeptin and antipain, specific inhibitors of a group of SH-proteinases, but it was not inhibited by pepstatin A or EDTA, which inhibit some other barley proteinases. It is thus very likely that in a whole grain, at least the bulk of the bound beta-amylase is released by the proteolytic action of one or several SH-proteinases. When the bound beta-amylase was released by papain, its molecular weight was about 5000 daltons smaller than that of beta-amylase released by dithiothreitol. This indicates that the release is due to removal of a sequence of beta-amylase itself. A similar decrease in size took place during seedling growth. Bound beta-amylase showed some activity against native starch and it hydrolyzed maltotetraose at a rate that was about 70% of the rate the same amount of bound beta-amylase gave after release. Bound beta-amylase is thus not inactive and it is likely that the slower rate of hydrolysis is due to steric hindrances which prevent substrates from reaching the active site.

  20. Anthocyanin composition, antioxidant efficiency, and α-amylase inhibitor activity of different Hungarian sour cherry varieties (Prunus cerasus L.).

    PubMed

    Homoki, Judit R; Nemes, Andrea; Fazekas, Erika; Gyémánt, Gyöngyi; Balogh, Péter; Gál, Ferenc; Al-Asri, Jamil; Mortier, Jérémie; Wolber, Gerhard; Babinszky, László; Remenyik, Judit

    2016-03-01

    Five Hungarian sour cherry cultivars were studied to determine their anthocyanin contents and their possible inhibitory properties. The water and methanol soluble antioxidant capacities were separately assessed by photoluminescence showing values ranged from 3.4μgmg(-1) to 15.4μgmg(-1), respectively. The "VN1" variety (selected from "Csengődi csokros") showed the highest antioxidant capacity. The anthocyanin content, measured by pH differential method or isolated by solid phase extraction, was the highest also in "VN1". Correlation was found between the anthocyanin content and the high antioxidant capacity. The main anthocyanin components were cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside. The presence of malvidin-3,5-O-diglycoside was verified by MALDI-TOF MS. Sour cherry extracts and selected anthocyanins inhibited the human salivary alpha-amylase catalyzed hydrolysis competitively. The lowest IC50 value, 55μgmL(-1) or 80μM, was measured for malvidin-3,5-O-diglycoside, for which possible binding modes within the alpha-amylase active site could be investigated in silico using molecular docking and molecular dynamics.

  1. An analytical method for measuring α-amylase activity in starch-containing foods.

    PubMed

    Koyama, Kazuo; Hirao, Takashi; Toriba, Akira; Hayakawa, Kazuichi

    2013-05-01

    The quality of starch-containing foods may be significantly impaired by contamination with very small amounts of α-amylase, which can enzymatically hydrolyze the starch and cause viscosity loss. Thus, for quality control, it is necessary to have an analytical method that can measure low amylase activity. We developed a sensitive analytical method for measuring the activity of α-amylase (from Bacillus subtilis) in starch-containing foods. The method consists of six steps: (1) crude extraction of α-amylase by centrifugation and filtration; (2) α-amylase purification by desalting and anion-exchange chromatography; (3) reaction of the purified amylase with boron-dipyrromethene (BODIPY)-labeled substrate, which releases a fluorescent fragment upon digestion of the substrate, thus avoiding interference from starch derivatives in the sample; (4) stopping the reaction with acetonitrile; (5) reversed-phase solid-phase extraction of the fluorescent substrate to remove contaminating dye and impurities; and (6) separation and measurement of BODIPY fluorescence by HPLC. The proposed method could quantify α-amylase activities as low as 10 mU/mL, which is enough to reduce the viscosity of starch-containing foods.

  2. Determining the relationship of acute stress, anxiety, and salivary alpha-amylase level with performance of student nurse anesthetists during human-based anesthesia simulator training.

    PubMed

    McKay, Kelly A Chiffer; Buen, John E; Bohan, Kevin J; Maye, John P

    2010-08-01

    Managing stress for student nurse anesthetists represents a multifaceted educational concern for anesthesia educators. Our purpose was to determine the relationship between physiologic measures of stress and performance of student nurse anesthetists during anesthesia simulator training. Following institutional review board approval, 78 students were enrolled from a nurse anesthesia program. A prospective descriptive design was used to compare baseline, acute, and recovery measurements of stress with performance scores of students during an induction and intubation sequence in a patient simulator. Performance scores were stratified into low-, moderate-, and high-performing groups based on scores received from trained observers. A statistically significant difference in physiologic measures of stress was detected between baseline and acute levels of salivary a-amylase (P = .017), heart rate (P = .003), and anxiety levels (P = .001). No significant differences were found when measures of stress were compared with performance of low, moderate, or high performers. This investigation revealed remarkable findings regarding the relationship between stress and student performance. Analysis of the descriptive statistics and means of each group suggests that low performers have increased stress and perform poorly, whereas high performers have increased stress and perform superbly, and moderate performers have modest stress and perform moderately.

  3. [Study of the effect of Pb2+ on alpha-amylase activity by spectroscopy].

    PubMed

    Hong, Fa-shui

    2003-06-01

    The activity of alpha-amylase from porcine pancreas was enhanced under the treatment by Pb2+ at low concentration (0.5-4 mumol.L-1), but was inhibited by Pb2+ at high concentration (above 4 mumol.L-1). Pb2+ at high concentration could competitively displace Ca2+ from alpha-amylase. The EXAFS demonstrated that Pb2+ was bound to the active site of alpha-amylase, the coordination atom was oxygen, the coordination number was 2, and the Pb-O bond length was 0.234 nm. Circular dichroism spectra showed that the secondary structure of trypsin was greatly changed by Pb2+ at high concentration, as alpha-helix, beta-turn and random coil contents decreased, while beta-sheet, aromatic and disulfide bond contents increased. It was suggested that Pb2+ was bound to result in an alpha-amylase conformational change, and the enzyme activity decreased.

  4. Purification and characterization of peptides from Capsicum annuum fruits which are α-amylase inhibitors and exhibit high antimicrobial activity against fungi of agronomic importance.

    PubMed

    Dos Santos, Layrana de Azevedo; Taveira, Gabriel Bonan; Ribeiro, Suzanna de Fátima Ferreira; Pereira, Lídia da Silva; Carvalho, André de Oliveira; Rodrigues, Rosana; Oliveira, Antônia Elenir Amâncio; Machado, Olga Lima Tavares; Araújo, Jucélia da Silva; Vasconcelos, Ilka Maria; Gomes, Valdirene Moreira

    2017-04-01

    Proteins extracted from Capsicum annuum L. fruits were initially subjected to reversed-phase chromatography on HPLC, resulting in eight peptide-rich fractions. All the fractions obtained were tested for their ability to inhibit porcine trypsin and amylase from both human saliva and from larval insect in vitro. All fractions were also tested for their ability to inhibit growth of the phytopathogenic fungi. Several fractions inhibited the activity of human salivary amylase and larval insect amylase, especially fraction Fa5. No fraction tested was found to inhibit trypsin activity, being Fa2 fraction an exception. Interestingly fraction Fa5 also displayed high antimicrobial activity against the species of the Fusarium genus. Fraction Fa5 was found to have two major protein bands of 17 and 6.5 kDa, and these were sequenced by mass spectrometry. Two peptides were obtained from the 6.5-kDa band, which showed similarity to antimicrobial peptides. Fraction Fa5 was also tested for its ability to permeabilize membranes and induce ROS. Fraction Fa5 was able to permeabilize the membranes of all the fungi tested. Fungi belonging to the genus Fusarium also showed an increase in the endogenous production of ROS when treated with this fraction. Antimicrobial peptides were also identified in the fruits from other Capsicum species.

  5. LEADER 3—Lipase and Amylase Activity in Subjects With Type 2 Diabetes

    PubMed Central

    Steinberg, William M.; Nauck, Michael A.; Zinman, Bernard; Daniels, Gilbert H.; Bergenstal, Richard M.; Mann, Johannes F.E.; Steen Ravn, Lasse; Moses, Alan C.; Stockner, Mette; Baeres, Florian M.M.; Marso, Steven P.; Buse, John B.

    2014-01-01

    Objectives This report from the LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results) trial describes baseline lipase and amylase activity in type 2 diabetic subjects without acute pancreatitis symptoms before randomization to the glucagonlike peptide analog liraglutide or placebo. Methods The LEADER is an international randomized placebo-controlled trial evaluating the cardiovascular safety of liraglutide in 9340 type 2 diabetic patients at high cardiovascular risk. Fasting lipase and amylase activity was assessed at baseline, before receiving liraglutide or placebo, using a commercial assay (Roche) with upper limit of normal values of 63 U/L for lipase and 100 U/L for amylase. Results Either or both enzymes were above the upper limit of normal in 22.7% of subjects; 16.6% (n = 1540) had an elevated lipase level (including 1.2% >3-fold elevated), and 11.8% (n = 1094) had an elevated amylase level (including 0.2% >3-fold elevated). In multivariable regression models, severely reduced kidney function was associated with the largest effect on increasing activity of both. However, even among subjects with normal kidney function, 12.2% and 7.7% had elevated lipase and amylase levels. Conclusions In this large study of type 2 diabetic patients, nearly 25% had elevated lipase or amylase levels without symptoms of acute pancreatitis. The clinician must take these data into account when evaluating abdominal symptoms in type 2 diabetic patients. PMID:25275271

  6. Immobilization of α-amylase onto a calix[4]arene derivative: Evaluation of its enzymatic activity.

    PubMed

    Veesar, Irshad Ali; Solangi, Imam Bakhsh; Memon, Shahabuddin

    2015-06-01

    In order to enhance the cost-effectiveness practicability of enzymes in many industries such as pharmaceutical, food, medical and some other technological processes, there is great need to immobilize them onto a solid supports. In this study, a new and efficient immobilization of α-amylase from Saccharomyces cerevisiae has been developed by using the surface functionalization of calix[4]arene as support. A glutaraldehyde-containing amino group functionalized calix[4]arene was used to immobilize α-amylase covalently. In this procedure, imide bonds are formed between amino groups on the protein and aldehyde groups on the calix[4]arene surface. The surface modified support was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM). The effect of various preparation conditions on the immobilized α-amylase process such as immobilization time, enzyme concentration, temperature and pH were investigated. The influence of pH and temperature on the activity of free and immobilized α-amylase was also studied using starch as substrate. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized α-amylase were 25°C and 7, respectively. Compared to the free enzyme, the immobilized α-amylase retained 85% of its original activity and exhibited significant thermal stability than the free one and excellent durability.

  7. Salivary Acetylcholinesterase Activity Is Increased in Parkinson's Disease: A Potential Marker of Parasympathetic Dysfunction

    PubMed Central

    Fedorova, Tatyana; Knudsen, Cindy Soendersoe; Mouridsen, Kim; Nexo, Ebba; Borghammer, Per

    2015-01-01

    Introduction. Decreased salivary flow and xerostomia are frequent findings in Parkinson's disease (PD), possibly caused by alterations in the parasympathetic tonus. Here we explore salivary acetylcholinesterase (AChE) activity as a potential biomarker in PD. Methods. We measured salivary flow, AChE activity, and total protein concentration in 30 PD patients and 49 healthy controls. We also performed exploratory correlation analyses with disease duration, motor symptom severity, autonomic complaints, and other nonmotor symptoms. Results. PD patients displayed significantly decreased salivary flow rate, significantly increased salivary AChE activity, and total protein concentration. Importantly, the AChE activity/total protein ratio was significantly increased in PD patients, suggesting that increased AChE activity cannot be explained solely by upconcentration of saliva. The Unified PD Rating Scale (UPDRS) score displayed significant correlation with total salivary protein (P = 0.002) and near-significant correlation with salivary flow (P = 0.07). Color vision test scores were also significantly correlated with AChE activity (P = 0.04) and total protein levels (P = 0.002). Conclusion. Salivary AChE activity is increased in PD patients compared to healthy controls. Future studies are needed to elucidate whether this parameter reflects the extent of neuronal damage and parasympathetic denervation in the salivary glands of PD patients. PMID:25767737

  8. Influence of dietary nutritional composition on caterpillar salivary enzyme activity.

    PubMed

    Babic, Branislav; Poisson, Alexandre; Darwish, Shireef; Lacasse, Jean; Merkx-Jacques, Magali; Despland, Emma; Bede, Jacqueline C

    2008-01-01

    Caterpillars are faced with nutritional challenges when feeding on plants. In addition to harmful secondary metabolites and protein- and water-limitations, tissues may be carbohydrate-rich which may attenuate optimal caterpillar performance. Therefore, caterpillars have multiple strategies to cope with surplus carbohydrates. In this study, we raise the possibility of a pre-ingestive mechanism to metabolically deal with excess dietary sugars. Many Noctuid caterpillars secrete the labial salivary enzyme glucose oxidase (GOX), which oxidizes glucose to hydrogen peroxide and gluconate, a nutritionally unavailable carbohydrate to the insect. Beet armyworm, Spodoptera exigua, larvae were restricted to diets varying in protein to digestible carbohydrate (P:C) ratio (42p:21c; 33p:30c; 21p:42c) and total nutrient concentration (42% and 63%). High mortality and longer developmental time were observed when caterpillars were reared on the C-biased, P-poor diet (21p:42c). As the carbohydrate content of the diet increased, caterpillars egested excess glucose and a diet-dependent difference in assimilated carbohydrates and pupal biomass was not observed, even though caterpillars restricted to the C-biased diet (21p:42c) accumulated greater pupal lipid reserves. Larval labial salivary GOX activity was also diet-dependent and gluconate, the product of GOX activity, was detected in the frass. Unexpectedly, GOX activity was strongly and positively correlated with dietary protein content.

  9. Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts.

    PubMed

    Fulton, Daniel C; Stettler, Michaela; Mettler, Tabea; Vaughan, Cara K; Li, Jing; Francisco, Perigio; Gil, Manuel; Reinhold, Heike; Eicke, Simona; Messerli, Gaëlle; Dorken, Gary; Halliday, Karen; Smith, Alison M; Smith, Steven M; Zeeman, Samuel C

    2008-04-01

    This work investigated the roles of beta-amylases in the breakdown of leaf starch. Of the nine beta-amylase (BAM)-like proteins encoded in the Arabidopsis thaliana genome, at least four (BAM1, -2, -3, and -4) are chloroplastic. When expressed as recombinant proteins in Escherichia coli, BAM1, BAM2, and BAM3 had measurable beta-amylase activity but BAM4 did not. BAM4 has multiple amino acid substitutions relative to characterized beta-amylases, including one of the two catalytic residues. Modeling predicts major differences between the glucan binding site of BAM4 and those of active beta-amylases. Thus, BAM4 probably lost its catalytic capacity during evolution. Total beta-amylase activity was reduced in leaves of bam1 and bam3 mutants but not in bam2 and bam4 mutants. The bam3 mutant had elevated starch levels and lower nighttime maltose levels than the wild type, whereas bam1 did not. However, the bam1 bam3 double mutant had a more severe phenotype than bam3, suggesting functional overlap between the two proteins. Surprisingly, bam4 mutants had elevated starch levels. Introduction of the bam4 mutation into the bam3 and bam1 bam3 backgrounds further elevated the starch levels in both cases. These data suggest that BAM4 facilitates or regulates starch breakdown and operates independently of BAM1 and BAM3. Together, our findings are consistent with the proposal that beta-amylase is a major enzyme of starch breakdown in leaves, but they reveal unexpected complexity in terms of the specialization of protein function.

  10. Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity

    PubMed Central

    Saeidnia, Soodabeh; Ara, Leila; Hajimehdipoor, Homa; Read, Roger W.; Arshadi, Sattar; Nikan, Marjan

    2016-01-01

    α-Amylase inhibitors play a critical role in the control of diabetes and many of medicinal plants have been found to act as α-amylase inhibitors. Swertia genus, belonging to the family Gentianaceae, comprises different species most of which have been used in traditional medicine of several cultures as antidiabetic, anti-pyretic, analgesic, liver and gastrointestinal tonic. Swertia longifolia Boiss. is the only species of Swertia growing in Iran. In the present investigation, phytochemical study of S. longifolia was performed and α-amylase inhibitory effects of the plant fractions and purified compounds were determined. Aerial parts of the plant were extracted with hexane, chloroform, methanol and water, respectively. The components of the hexane and chloroform fractions were isolated by different chromatographic methods and their structures were determined by 1H NMR and 13C NMR data. α-Amylase inhibitory activity was determined by a colorimetric assay using 3,5-dinitro salysilic acid. During phytochemical examination, α-amyrin, β-amyrin and β-sitosterol were purified from the hexane fraction, while ursolic acid, daucosterol and swertiamarin were isolated from chloroform fraction. The results of the biochemical assay revealed α-amylase inhibitory activity of hexane, chloroform, methanol and water fractions, of which the chloroform and methanol fractions were more potent (IC50 16.8 and 18.1 mg/ml, respectively). Among examined compounds, daucosterol was found to be the most potent α-amylase inhibitor (57.5% in concentration 10 mg/ml). With regard to α-amylase inhibitory effects of the plant extracts, purified constituents, and antidiabetic application of the species of Swertia genus in traditional medicine of different countries, S. longifolia seems more appropriate species for further mechanistic antidiabetic evaluations. PMID:27051429

  11. Identification of active site residues of Fenugreek β-amylase: chemical modification and in silico approach.

    PubMed

    Srivastava, Garima; Singh, Vinay K; Kayastha, Arvind M

    2014-10-01

    The amino acid sequence of Fenugreek β-amylase is not available in protein data bank. Therefore, an attempt has been made to identify the catalytic amino acid residues of enzyme by employing studies of pH dependence of enzyme catalysis, chemical modification and bioinformatics. Treatment of purified Fenugreek β-amylase with EDAC in presence of glycine methyl ester and sulfhydryl group specific reagents (IAA, NEM and p-CMB), followed a pseudo first-order kinetics and resulted in effective inactivation of enzyme. The reaction with EDAC in presence of NTEE (3-nitro-l-tyrosine ethylester) resulted into modification of two carboxyl groups per molecule of enzyme and presence of one accessible sulfhydryl group at the active site, per molecule of enzyme was ascertained by titration with DTNB. The above results were supported by the prevention of inactivation of enzyme in presence of substrate. Based on MALDI-TOF analysis of purified Fenugreek β-amylase and MASCOT search, β-amylase of Medicago sativa was found to be the best match. To further confirm the amino acid involved in catalysis, homology modelling of β-amylase of M. sativa was performed. The sequence alignment, superimposition of template and target models, along with study of interactions involved in docking of sucrose and maltose at the active site, led to identification of Glu187, Glu381 and Cys344 as active site residues.

  12. Effects of dopamine on adenylyl cyclase activity and amylase secretion in rat parotid tissue.

    PubMed

    Hatta, S; Amemiya, N; Takemura, H; Ohshika, H

    1995-06-01

    Several previous studies have shown that dopamine causes amylase secretion from rat parotid tissue. However, the mechanism of this dopamine action is still unclear. The present study was designed to characterize dopamine action in rat parotid gland tissue by examining the effects of dopamine on cyclic AMP accumulation, adenylyl cyclase activity, and amylase release. Dopamine significantly enhanced accumulation of cyclic AMP in parotid slices and stimulated adenylyl cyclase activity in parotid membrane preparations. It also significantly stimulated amylase release from parotid slices. The stimulatory effects of dopamine on cyclic AMP accumulation, adenylyl cyclase activity, and amylase release were effectively blocked with propranolol, a beta-adrenergic antagonist, but not by either SCH 23390, a preferential D1 antagonist, or butaclamol, a preferential D2 antagonist. No substantial specific binding sites for D1 receptors were detectable by [3H]SCH 23390 binding in parotid membranes. These results suggest that the stimulatory effect of dopamine on amylase secretion in rat parotid tissue is not mediated through specific D1 dopamine receptors but rather through beta-adrenergic receptors.

  13. The Effect of Exercise on Salivary Viscosity

    PubMed Central

    Ligtenberg, Antoon J. M.; Liem, Erwin H. S.; Brand, Henk S.; Veerman, Enno C. I.

    2016-01-01

    A common experience after exercise is the presence of a thick and sticky saliva layer on the oral surfaces, which causes a feeling of a dry mouth. Since the salivary mucin MUC5B is responsible for the visco-elastic behavior of saliva, in the present study we explored the effect of exercise on both the salivary viscosity and the secretion of MUC5B in saliva. Twenty healthy dental students performed an aerobic exercise by cycling for 15 min on cycle-ergometers at a heart rate of 130–140 beats per minute. Saliva was collected at three time points: before exercise, immediately after exercise and after 30 min recovery. Salivary flow rate, viscosity, amylase activity, total protein, carbohydrate and MUC5B concentration were determined. Salivary flow rate, protein and amylase did not change significantly. Immediately after exercise, the salivary viscosity and carbohydrate concentration were significantly higher than at baseline and after 30 min recovery. Immediately after exercise, the MUC5B concentration was significantly higher than after 30 min recovery. It is concluded that the presence of thick saliva after exercise is at least partially due to an increased secretion of MUC5B. PMID:27854320

  14. Inhibition of α-amylase activity by cellulose: Kinetic analysis and nutritional implications.

    PubMed

    Dhital, Sushil; Gidley, Michael J; Warren, Frederick J

    2015-06-05

    We report on inhibition of α-amylase activity by cellulose based on in vitro experiments. The presence of cellulose in the hydrolysing medium reduced the initial velocity of starch hydrolysis in a concentration dependent manner. α-Amylase adsorption to cellulose was reversible, attaining equilibrium within 30min of incubation, and showed a higher affinity at 37°C compared to 20 and 0°C. The adsorption was almost unchanged in the presence of maltose (2.5-20mM) but was hindered in the presence of excess protein, suggesting non-specific adsorption of α-amylase to cellulose. Kinetic analyses of α-amylase hydrolysis of maize starch in the presence of cellulose showed that the inhibition is of a mixed type. The dissociation constant (Kic) of the EI complex was found to be ca. 3mg/mL. The observed inhibition of α-amylase activity suggests that cellulose in the diet can potentially attenuate starch hydrolysis.

  15. Smart phone: a popular device supports amylase activity assay in fisheries research.

    PubMed

    Thongprajukaew, Karun; Choodum, Aree; Sa-E, Barunee; Hayee, Ummah

    2014-11-15

    Colourimetric determinations of amylase activity were developed based on a standard dinitrosalicylic acid (DNS) staining method, using maltose as the analyte. Intensities and absorbances of red, green and blue (RGB) were obtained with iPhone imaging and Adobe Photoshop image analysis. Correlation of green and analyte concentrations was highly significant, and the accuracy of the developed method was excellent in analytical performance. The common iPhone has sufficient imaging ability for accurate quantification of maltose concentrations. Detection limits, sensitivity and linearity were comparable to a spectrophotometric method, but provided better inter-day precision. In quantifying amylase specific activity from a commercial source (P>0.02) and fish samples (P>0.05), differences compared with spectrophotometric measurements were not significant. We have demonstrated that iPhone imaging with image analysis in Adobe Photoshop has potential for field and laboratory studies of amylase.

  16. General Subject 1. Report to ICUMSA on the determination of commercial alpha-amylase activity by a spectrophotometric method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A report is given on a new industrial method for the determination of the activity or strength of commercial alpha-amylase at a sugarcane factory or refinery, as well as a recommendation. At the present time, the activities or strengths of commercial alpha-amylases cannot be directly compared becau...

  17. How Do Detergents Work? A Qualitative Assay to Measure Amylase Activity

    ERIC Educational Resources Information Center

    Novo, M. Teresa; Casanoves, Marina; Garcia-Vallvé, Santi; Pujadas, Gerard; Mulero, Miquel; Valls, Cristina

    2016-01-01

    We present a practical activity focusing on two main goals: to give learners the opportunity to experience how the scientific method works and to increase their knowledge about enzymes in everyday situations. The exercise consists of determining the amylase activity of commercial detergents. The methodology is based on a qualitative assay using a…

  18. A novel method to estimate changes in stress-induced salivary α-amylase using heart rate variability and respiratory rate, as measured in a non-contact manner using a single radar attached to the back of a chair.

    PubMed

    Matsui, Takemi; Katayose, Satoshi

    2014-08-01

    The authors have developed a non-contact system which estimates changes in salivary α-amylase (sAA ratio) induced by stress. Before and after stressful sound exposure, a single 24 GHz compact radar which is attached to the back of a chair measures the low frequency (LF) component of heart rate variability and respiratory rate, α-amylase in the subjects' buccal secretions was measured by using an α-amylase assay kit. Using multiple regression analysis, sAA ratio was estimated using stress-induced LF change (LF ratio) and stress-induced respiratory rate change (respiratory rate ratio). Twelve healthy subjects were tested (12 males, 22 ± 2 years), who were exposed to audio stimuli with a composite tone of 2120 Hz and 2130 Hz sine waves at a sound pressure level of 95 dB after a silent period through a headphone. The result showed that sAA ratio estimated using multiple regression analysis significantly correlated with measured sAA ratio (R = 0.76, p < 0.01). This indicates that the system may serve for a stress management in the future.

  19. The need for and development of a method to measure carry-over amylase activity in raw and refined sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there has been increased world-wide concern over carry-over activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in refined sugars to various food and end-user industries. HT and VHT stable amylases were developed for much larger markets than the...

  20. Development of an industrial method to quantitatively measure carry-over amylase activity in raw and refined sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there has been increased concern over carry-over activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food manufacturing industries and other end-users. HT and VHT stable amylases were developed...

  1. Mechanism of removal of undesirable residual amylase, insoluble starch, and select colorants from refinery streams by powdered activated carbons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need in the world-wide sugar industry to find a practical and economical solution to remove or inactivate residual alpha-amylase that are high temperature stable from factory or refinery streams. A survey of refineries that used amylase and had activated carbon systems for decolorization,...

  2. Amy63, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities

    PubMed Central

    Liu, Ge; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-01-01

    A multifunctional enzyme is one that performs multiple physiological functions, thus benefiting the organism. Characterization of multifunctional enzymes is important for researchers to understand how organisms adapt to different environmental challenges. In the present study, we report the discovery of a novel multifunctional enzyme Amy63 produced by marine bacterium Vibrio alginolyticus 63. Remarkably, Amy63 possesses amylase, agarase and carrageenase activities. Amy63 is a substrate promiscuous α-amylase, with the substrate priority order of starch, carrageenan and agar. Amy63 maintains considerable amylase, carrageenase and agarase activities and stabilities at wide temperature and pH ranges, and optimum activities are detected at temperature of 60 °C and pH of 6.0, respectively. Moreover, the heteroexpression of Amy63 dramatically enhances the ability of E. coli to degrade starch, carrageenan and agar. Motif searching shows three continuous glycosyl hydrolase 70 (GH70) family homologs existed in Amy63 encoding sequence. Combining serial deletions and phylogenetic analysis of Amy63, the GH70 homologs are proposed as the determinants of enzyme promiscuity. Notably, such enzymes exist in all kingdoms of life, thus providing an expanded perspective on studies of multifunctional enzymes. To our knowledge, this is the first report of an amylase having additional agarase and carrageenase activities. PMID:26725302

  3. Autonomic regulation of anti-inflammatory activities from salivary glands.

    PubMed

    Mathison, Ronald D; Davison, Joseph S; St Laurent, Chris D; Befus, A Dean

    2012-01-01

    The cervical sympathetic nerves which innervate the medial basal hypothalamus-hypophyseal complex, primary and secondary lymph organs, and numerous glands, such as the pineal, thyroid, parathyroid and salivary glands form a relevant neuroimmunoendocrine structure that is involved in the regulation of systemic homeostasis. The superior cervical ganglia and the submandibular glands form a 'neuroendocrine axis' called the cervical sympathetic trunk submandibular gland (CST-SMG) axis. The identification of this axis usurps the traditional view of salivary glands as accessory digestive structures and reinforces the view that they are important sources of systemically active immunoregulatory and anti-inflammatory factors whose release is intimately controlled by the autonomic nervous system, and in particular the sympathetic branch. An end component of the CST-SMG axis is the synthesis, processing and release of submandibular rat-1 protein (SMR1), a prohormone, that generates several different peptides, one from near its N-terminus called sialorphin and another from its C-terminus called - submandibular gland peptide-T (SGP-T). SGP-T formed the template for tripeptide fragment (FEG) and its metabolically stable D-isomeric peptide feG, which are potent inhibitors of allergy and asthma (IgE-mediated allergic reactions) and several non-IgE-mediated inflammations. The translation from rat genetics and proteomics to humans has yielded structural and functional correlates that hopefully will lead to the development of new medications and therapeutic approaches for difficult to treat disorders. Although the CST-SMG axis has barely been explored in humans recognition of the importance of this axis could facilitate an understanding and improved management of periodontal disease, and other diseases with a more systemic and nervous system basis such as asthma, autoimmunity, graft-versus-host disease and even Parkinson's disease.

  4. A review on structure-activity relationship of dietary polyphenols inhibiting α-amylase.

    PubMed

    Xiao, Jianbo; Ni, Xiaoling; Kai, Guoyin; Chen, Xiaoqing

    2013-01-01

    The inhibitory effects of dietary polyphenols against α-amylase have attracted great interest among researchers. The aim of this review is to give an overview of the research reports on the structure-activity relationship of polyphenols inhibiting α-amylase. The molecular structures that influence the inhibition are the following: (1) The hydroxylation of flavonoids improved the inhibitory effect on α-amylase; (2) Presence of an unsaturated 2,3-bond in conjugation with a 4-carbonyl group has been associated with stronger inhibition; (3) The glycosylation of flavonoids decreased the inhibitory effect on α-amylase depending on the conjugation site and the class of sugar moiety; (4) The methylation and methoxylation of flavonoids obviously weakened the inhibitory effect; (5) The galloylated catechins have higher inhibition than nongalloylated catechins; the catechol-type catechins were stronger than the pyrogallol-type catechins; the inhibition activities of the catechins with 2,3-trans structure were higher than those of the catechins with 2,3-cis structure; (6) Cyanidin-3-glucoside showed higher inhibition against than cyanidin and cyanidin-3-galactoside and cyanidin-3,5-diglucoside had no inhibitory activity; (7) Ellagitannins with β-galloyl groups at glucose C-1 positions have higher inhibitory effect than the α-galloyl and nongalloyl compounds and the molecular weight of ellagitannins is not an important element.

  5. Beta-thiomaltosides as active site probes for alpha-amylase.

    PubMed

    Stankiewicz, P J; Cascio, D; McPherson, A

    1983-12-01

    A series of substituted 1-thio-beta-D-maltopyranosides was synthesized and confirmed by elemental analysis, optical rotation, NMR, and liquid chromatography. These compounds were shown by several biochemical techniques to bind to the active site of alpha-amylase. Steady-state kinetic studies showed the compounds to be competitive inhibitors, with affinities lying within the range of the natural ligands, maltose and maltotriose. Affinity chromatography employing p-aminophenyl-1-thio-beta-D-maltopyranoside linked to Sepharose provides a relatively simple procedure for alpha-amylase purification. The binding of p-bromphenyl-1-thio-beta-D-maltoside was observed in crystals of alpha-amylase using X-ray crystallography, and through the use of difference Fourier analysis its interaction at 5.0-A resolution with the active site of the enzyme has been visualized. The inhibitor binds in a long, deep cleft that divides the two major domains of the enzyme. These studies are believed to provide a first step toward the rational design of ligands for the physiological regulation of starch breakdown and utilization through modulation of alpha-amylase activity.

  6. Chewing bread: impact on alpha-amylase secretion and oral digestion.

    PubMed

    Joubert, Marianne; Septier, Chantal; Brignot, Hélène; Salles, Christian; Panouillé, Maud; Feron, Gilles; Tournier, Carole

    2017-02-22

    During chewing, saliva helps in preparing the food bolus by agglomerating the formed particles, and it initiates enzymatic food breakdown. However, limited information is actually available on the adaptation of saliva composition during the oral processing of complex foods, especially for foods that are sensitive to salivary enzymes. We addressed this question in the context of starch-based products and salivary alpha-amylase. The objectives were two-fold: (1) to determine if salivary alpha-amylase secretion can be modulated by the bread type and (2) to evaluate the contribution of the oral phase in bread enzymatic breakdown. Mouthfuls of three different wheat breads (industrial, artisan and whole-meal breads) were chewed by twelve subjects. Saliva samples were collected at rest and at different times corresponding to 33, 66 and 100% of the individual's chewing sequence. Alpha-amylase activity and total protein content were determined for all saliva samples that were collected. Additionally, the salivary maltose concentration was measured as a marker of bread enzymatic digestion. Boluses were collected at the swallowing time to evaluate the saliva uptake. Chewing industrial bread induced higher saliva uptake than the other breads despite a similar chewing duration. The evolution of salivary amylase activity tended to depend on the type of bread and was highly influenced by a large degree of inter- and intra-subject variability. The protein and maltose concentration steadily increased during chewing as a result of bread breakdown. The salivary protein concentration was mainly affected by the release of the water-soluble proteins of the bread. The salivary maltose concentration was found to be significantly lower for the whole-meal bread. When considering the weight of the mouthful, enzymatic breakdown was found to be most efficient for the breads ranking from industrial > artisan > whole-meal.

  7. Salivary Gland Secretion.

    ERIC Educational Resources Information Center

    Dorman, H. L.; And Others

    1981-01-01

    Describes materials and procedures for an experiment utilizing a live dog to demonstrate: (1) physiology of the salivary gland; (2) parasympathetic control of the salivary gland; (3) influence of varying salivary flow rates on sodium and potassium ions, osmolarity and pH; and (4) salivary secretion as an active process. (DS)

  8. Amylase - urine

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003607.htm Amylase - urine To use the sharing features on this ... is a test that measures the amount of amylase in urine. Amylase is an enzyme that helps ...

  9. Biochemical characterization of the alpha-amylase inhibitor in mungbeans and its application in inhibiting the growth of Callosobruchus maculatus.

    PubMed

    Wisessing, Anussorn; Engkagul, Arunee; Wongpiyasatid, Arunee; Choowongkomon, Kiattawee

    2010-02-24

    The insect Callosobruchus maculatus causes considerable damage to harvested mungbean seeds every year, which leads to commercial losses. However, recent studies have revealed that mungbean seeds contain alpha-amylase inhibitors that can inhibit the protein C. maculatus, preventing growth and development of the insect larvae in the seed, thus preventing further damage. For this reason, the use of alpha-amylase inhibitors to interfere with the pest's digestion process has become an interesting alternative biocontrolling agent. In this study, we have isolated and purified the alpha-amylase inhibitor from mungbean seeds (KPS1) using ammonium sulfate precipitation, gel filtration chromatography and reversed phase HPLC. We found that the alpha-amylase inhibitor, isolated as a monomer, had a molecular weight of 27 kDa. The alpha-amylase inhibitor was purified 750-fold with a final yield of 0.4 mg of protein per 30 g of mungbean seeds. Its specific activity was determined at 14.5 U (mg of protein)(-1). Interestingly, we found that the isolated alpha-amylase inhibitor inhibits C. maculatus alpha-amylase but not human salivary alpha-amylase. After preincubation of the enzyme with the inhibitor, the mungbean alpha-amylase inhibitor inhibited C. maculatus alpha-amylase activity by decreasing V(max) while increasing the K(m) constant, indicating that the mungbean alpha-amylase is a mix noncompetitive inhibitor. The in vivo effect of alpha-amylase inhibitor on the mortality of C. maculatus shows that the alpha-amylase inhibitor acts on C. maculatus during the development stage, by reducing carbohydrate digestion necessary for growth and development, rather than during the end laying/hatching stage. Our results suggest that mungbean alpha-amylase inhibitor could be a useful future biocontrolling agent.

  10. Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica

    PubMed Central

    Cotârleţ, Mihaela; Negoiţă, Teodor Gh.; Bahrim, Gabriela E.; Stougaard, Peter

    2011-01-01

    The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100% identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islands. The Streptomyces grew well in submerged system at 20°C, cells multiplication up to stationary phase being drastically increased after 120 h of submerged cultivation. The beta-amylase production reached a maximum peak after seven days, while alpha-amylase and proteases were performing biosynthesis after nine days of submerged cultivation at 20°C. Newly Streptomyces were able to produce amylase and proteases in a cold environment. The ability to adapt to low temperature of these enzymes could make them valuable ingredients for detergents, the food industry and bioremediation processes which require low temperatures. PMID:24031702

  11. Halotolerant Ability and α-Amylase Activity of Some Saltwater Fungal Isolates

    PubMed Central

    Niknejad, Farhad; Moshfegh, Mahsa; Najafzadeh, Mohammad Javad; Houbraken, Jos; Rezaei, Shahla; Zarrini, Gholamreza; Faramarzi, Mohammad Ali; Nafissi-Varcheh, Nastaran

    2013-01-01

    Four halotolerant fungal isolates originating from the saltwater Lake Urmia in Iran were selected during a screening program for salt resistance and α-amylase activity. The isolates were identified based on sequencing the ITS region and a part of the β-tubulin gene, as Penicillium chrysogenum (isolate U1; CBS 132820), Fusarium incarnatum (isolate U2; CBS 132821), and Penicillium polonicum (isolate U3; CBS 132822, and isolate U4; CBS 132823). The growth of these isolates was determined by measuring the colony diameter and mycelia dry weight in Sabouraud dextrose agar and yeast nitrogen base medium supplemented with NaCl, KCl, and LiCl. Isolate U4 showed a growth up in 15% NaCl and U1 was the only isolate that could grow in 20% KCl. None of the strains grew in a media containing LiCl. The salt supplemented medium did not increase the size of colony diameter in all isolates (p > 0.05). The ability of the selected isolates for amylase production was quantitatively tested and showed that P. polonicum isolate U4 was the most potent producer of amylase with a yield of 260.9 U/L after 60 h, whereas P. polonicum isolate U3 was the lowest one with a production level of 97.9 U/L after 48 h. P. polonicum isolate U4 could be a suitable candidate for production of amylase on an industrial scale after optimization. PMID:24250679

  12. Two sulfhydryl groups near the active site of soybean beta-amylase.

    PubMed

    Mikami, B; Nomura, K; Morita, Y

    1994-01-01

    The less reactive SH groups of soybean beta-amylase, SH4, SH5, and SH6, were modified with p-chloromercuribenzoic acid or N-ethylmaleimide, after the reactive SH groups, SH1, SH2, and SH3, were blocked with 5,5'-dithiobis-(2-nitrobenzoic acid) and cyanide. The enzyme activity decreased, accompanied by the modification of SH4. alpha-Cyclodextrin protected SH4 from the modification more effectively than maltose. The SH4-modified enzyme still bound to glucose, maltose, and alpha-cyclodextrin. SH4 was concerned with neither the catalysis nor substrate binding but its large substituent affected the substrate binding site. The sequencing of the 5-(iodoacetoamidoethyl)-aminoaphthalene-1-sulfonate-labeled peptides showed that SH4, SH5, and SH6 are Cys343, Cys82, and Cys208, respectively. Comparison of the primary structure of beta-amylases also showed that the sequence around SH4 (Cys343), as well as SH2 (Cys95), is strongly conserved between higher plant and bacterial beta-amylases. These results agree with the structure model deduced from X-ray crystallography of soybean beta-amylase.

  13. A comparison of ghrelin, glucose, alpha-amylase and protein levels in saliva from diabetics.

    PubMed

    Aydin, Suleyman

    2007-01-31

    During the past decade, many salivary parameters have been used to characterize disease states. Ghrelin (GAH) is recently-discovered peptide hormone secreted mainly from the stomach but also produced in a number of other tissues including salivary glands. The aim of this work was to examine the relationship between active (aGAH) and inactive (dGAH) ghrelin in the saliva and other salivary parameters in type II diabetic patients and healthy controls. Salivary parameters were assessed in a single measurement of unstimulated whole saliva from 20 obese and 20 non-obese type II diabetes patients, and in 22 healthy controls. Total protein and alpha-amylase were determined by colorimetric methods, and glucose by the glucose-oxidase method. Saliva aGAH and dGAH levels were measured using a commercial radioimmunoassay (RIA) kit. Salivary concentrations of aGAH and dGAH ghrelin were more markedly decreased in obese diabetic subjects than in the two other groups. Glucose and alpha-amylase levels were higher in diabetic subjects than in controls. Furthermore, there were correlations between GAH levels and BMI, and between GAH and blood pressure. However, there was no marked variability in saliva flow rates among the groups. These results indicate that measurement of salivary GAH and its relationship to other salivary parameters might help to provide insight into the role of ghrelin in diabetes.

  14. Identification and Characterization of Useful Fungi with α-Amylase Activity from the Korean Traditional Nuruk

    PubMed Central

    Kim, Hye-Ryun; Kim, Jae-Ho; Bai, Dong-Hoon

    2011-01-01

    The objective of this study was to find useful fungi with α-amylase activity from the Korean traditional nuruk for the quality of traditional Korean alcoholic beverage. In this study, 165 samples of traditional nuruk were collected from 170 regions throughout Korea and the fungi were isolated to a total of 384 strains. In order to investigate the effect of microflora on nuruk, α-amylase activity, saccharogenic power (SP), starch hydrolysis activity and acid producing activity were evaluated. Ten strains were selected by α-amylase activity, which ranged from 458.47 to 1,202.75 U/g. The size of the discolored zone for the starch hydrolysis activity of each fungus ranged from 0.3 to 2 cm. The SP of the 10 strains ranged from 228.8 to 433.4 SP. Of the 10 stains, three were identified as Aspergillus oryzae, two as Aspergillus flavus, two as Lichtheimia sp., one as Rhizopus oryzae and two as other strains. The total aflatoxins present in the nuruks were examined using enzyme-linked immunosorbent assay. The 10 nuruks had less than 1.11 ppb of aflatoxins. PMID:22783116

  15. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products.

    PubMed

    Konkit, Maytiya; Kim, Wonyong

    2016-07-01

    Several enzymes are involved in the process of converting milk to lactic acid and coagulated milk to curd and, therefore, are important in dairy fermented products. Amylase, proteinase, and lipase are enzymes that play an important role in degrading milk into monomeric molecules such as oligosaccharides, amino acids, and fatty acids, which are the main molecules responsible for flavors in cheese. In the current study, we determined the amylase, proteinase, and lipase activities of Lactococcus chungangensis CAU 28(T), a bacterial strain of nondairy origin, and compared them with those of the reference strain, Lactococcus lactis ssp. lactis KCTC 3769(T), which is commonly used in the dairy industry. Lactococcus chungangensis CAU 28(T) and L. lactis ssp. lactis KCTC 3769(T) were both found to have amylase, proteinase, and lipase activities in broth culture, cream cheese, and yogurt. Notably, the proteinase and lipase activities of L. chungangensis CAU 28(T) were higher than those of L. lactis ssp. lactis KCTC 3769(T), with proteinase activity of 10.50 U/mL in tryptic soy broth and 8.64 U/mL in cream cheese, and lipase activity of 100 U/mL of tryptic soy broth, and 100 U/mL of cream cheese. In contrast, the amylase activity was low, with 5.28 U/mL in tryptic soy broth and 8.86 U/mL in cream cheese. These enzyme activities in L. chungangensis CAU 28(T) suggest that this strain has potential to be used for manufacturing dairy fermented products, even though the strain is of nondairy origin.

  16. Comparison of Antibodies with Amylase Activity from Cerebrospinal Fluid and Serum of Patients with Multiple Sclerosis

    PubMed Central

    Doronin, Vasilii B.; Parkhomenko, Taisiya A.; Castellazzi, Massimiliano; Cesnik, Edward; Buneva, Valentina N.; Granieri, Enrico; Nevinsky, Georgy A.

    2016-01-01

    We have recently shown that IgGs from serum and cerebrospinal fluid (CSF) of MS patients are active in hydrolysis of DNA and myelin basic protein. According to literature data, anti-DNA and anti-MBP abzymes may promote important neuropathologic mechanisms in this chronic inflammatory disorder and in MS pathogenesis development. At the same time, the involvement of antibodies with amylase activity in the pathogenesis of any autoimmune disease has not yet been identified. Electrophoretically and immunologically homogeneous IgGs were obtained by a sequential affinity chromatography of the CSF proteins on protein G-Sepharose and FPLC gel filtration. We are able to present the first unpredictable evidence showing that IgGs from CSF possess amylase activity and efficiently hydrolyze maltoheptaose; their average specific Ab activity is ~30-fold higher than that of antibodies from sera of the same MS patients. Specific average RA (SAA) for IgGs from healthy volunteers was approximately ~1000 lower than that for MS patients. In addition, it was shown that a relative SAA of total proteins of CSF (including Abs) ~15-fold lower than that for purified IgGs, while the relative SAA of the total sera protein is higher than that of sera IgGs by a factor of 1033. This result speaks in favor of the fact that amylolytic activity of CSF proteins is mainly caused by the activity of amylase abzymes. One cannot exclude, that amylase abzymes of CSF can play a, as yet unknown, role in the pathogenesis of MS. Some possible reasons of these findings are discussed. PMID:27196086

  17. The salivary gland and salivary enzymes of the giant waterbugs (Heteroptera; Belostomatidae).

    PubMed

    Swart, C C; Deaton, L E; Felgenhauer, B E

    2006-09-01

    The giant waterbugs are predators that utilize extra-oral digestion and are known to capture a wide variety of prey. Herein we describe the differences in salivary enzyme composition between large and small species of giant waterbug (Lethocerus uhleri, Lethocerinae and Belostoma lutarium, Belostomatinae, respectively). The saliva of L. uhleri contains 3 proteolytic enzymes and no amylase, while the salivary gland of B. lutarium produces 2 proteolytic enzymes and amylase. This fundamental difference in salivary enzyme composition correlates with the difference in diet preference between the Lethocerinae and Belostomatinae. Furthermore, we describe the ultrastructure of the salivary gland complex of B. lutarium and present data on the division of labor with respect to compartmentalization of enzyme production. Proteolytic enzymes are produced in the accessory salivary gland and amylase is produced in the main salivary gland lobe. This is the first reported evidence of protease production in the accessory salivary gland in the Heteroptera.

  18. Effect of ultrasound on the activity and conformation of α-amylase, papain and pepsin.

    PubMed

    Yu, Zhi-Long; Zeng, Wei-Cai; Zhang, Wen-Hua; Liao, Xue-Pin; Shi, Bi

    2014-05-01

    The effect of ultrasound on the activity of α-amylase, papain and pepsin was investigated and the mechanism of the effect was explored by determining their conformational changes. With the irradiation of power ultrasound, the activity of α-amylase and papain was inhibited, while the activity of pepsin was activated. According to the analysis of circular dichroism, Fourier transform infrared and fluorescence spectroscopy, the πo → π(∗) amide transitions and secondary structural components, especially β-sheet, of these three enzymes were significantly influenced by ultrasound. The tryptophan fluorescence intensity of the three enzymes was also observed to be affected by sonication. Furthermore, it was found that the pepsin molecule might gradually be resistant to prolonged ultrasonic treatment and recover from the ultrasound-induced damage to its original structure. The results suggested that the activity of α-amylase, papain and pepsin could be modified by ultrasonic treatment mainly due to the variation of their secondary and tertiary structures.

  19. Tracking amylolytic enzyme activities during congress mashing with North American barley cultivars: Comparisons of patterns of activity and ß-amylases with differing Bmy1 ...correlations of amylolytic enzyme activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to test three hypotheses: 1) that a-amylase will have less consistent patterns of activity during mashing than ß-amylase and limit dextrinase 2) that differing ß-amylase 1 intron III alleles (Bmy1.a and Bmy1.b) would not be useful in predicting high or low activities or th...

  20. Phenotypic Variation for Diastatic power, ß-Amylase Activity, and ß-Amylase Thermostability vs. Allelic Variation at the Bmy1 Locus in a Sample of North American Barley Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malting quality data including diastatic power, ß-amylase activity, and ß-amylase thermostability, were collected on malts from three barley (Hordeum vulgare L.) breeding program trials containing two growth habits and 165 lines grown in multiple environments. We attempted to identify causal polymor...

  1. Rice proteins, extracted by alkali and α-amylase, differently affect in vitro antioxidant activity.

    PubMed

    Wang, Zhengxuan; Liu, Ye; Li, Hui; Yang, Lin

    2016-09-01

    Alkali treatment and α-amylase degradation are different processes for rice protein (RP) isolation. The major aim of this study was to determine the influence of two different extraction methods on the antioxidant capacities of RPA, extracted by alkaline (0.2% NaOH), and RPE, extracted by α-amylase, during in vitro digestion for 2h with pepsin and for 3h with pancreatin. Upon pepsin-pancreatin digestion, the protein hydrolysates (RPA-S, RPE-S), which were the supernatants in the absence of undigested residue, and the whole protein digests (RPA, RPE), in which undigested residue remained, were measured. RPE exhibited the stronger antioxidant responses to free radical scavenging activity, metal chelating activity, and reducing power, whereas the weakest antioxidant capacities were produced by RPE-S. In contrast, no significant differences in antioxidant activity were observed between RPA and RPA-S. The present study demonstrated that the in vitro antioxidant responses induced by the hydrolysates and the protein digests of RPs could be affected differently by alkali treatment and α-amylase degradation, suggesting that the extraction is a vital processing step to modify the antioxidant capacities of RPs. The results of the current study indicated that the protein digests, in which undigested residues remained, could exhibit more efficacious antioxidant activity compared to the hydrolysates.

  2. False-positive results with amylase testing of citrus fruits.

    PubMed

    Ricci, Ugo; Carboni, Ilaria; Torricelli, Francesca

    2014-09-01

    In a case of robbery in which the criminals passed through the garden adorned with calamondin trees (Citrus madurensis), the investigators found in the grass six calamondin fruits, some undamaged, while others apparently bitten. The fruits were collected and sent to the laboratory for DNA analysis to verify the presence of saliva and robbers' DNA profile. A specific immunochromatographic strip test for saliva confirmed the presence of human salivary α-amylase, but similar positive results were also observed for intact calamondin and other citrus fruits. Further analysis with a specific automated amylase test confirmed the absence of amylase activity. DNA quantification and typing using a specific forensic kit revealed no human DNA presence in any fruits. This case report demonstrates for the first time the occurrence of false positives when human saliva is sought on citrus fruits.

  3. Effects of metals on {alpha}-amylase activity in the digestive gland of the green mussel, Perna viridis L.

    SciTech Connect

    Yan, T.; Teo, L.H.; Sin, Y.M.

    1996-04-01

    A number of digestive enzymes in the green mussel, Perna viridis L., have been reported, and {alpha}-amylase is believed to have a higher activity than the others. Small plankton, on which the green mussel feeds, may supply plenty of starch and glycogen. They may be an important source of nutrients for the green mussel and the ability of the latter to make good use of them depends mainly on the activities of amylase. The effect of heavy metals on amylase activity is also important as the ability of the mussel`s digestive gland to accumulate these metals is well known. High concentrations of heavy metals, especially lead, have been observed in the water around Singapore. The in vitro inhibition of some metals on the activities of digestive enzymes from the green mussel has been observed, but kinetic properties of the inhibition and the in vivo inhibition of the heavy metals on digestive enzymes are little understood. In the present study, in vitro inhibition of four metals (Pb, Cd, Zn and Hg) on the activity of {alpha}-amylase from the digestive gland of the green mussel will be compared. Their effects on the K{sub M} and V{sub max} values of {alpha}-amylase will also be compared. Finally, lead is either added to the food or water, to see how it affects the activity of {alpha}-amylase and how this effect acts in combination with starvation. 12 refs., 3 figs., 3 tabs.

  4. Kinetic Study of the Active Site Structure of β-Amylase from Bacillus cereus var. mycoides.

    PubMed

    Nitta, Y; Shirakawa, M; Takasaki, Y

    1996-01-01

    The subsite affinities of the active site of β-amylase from Bacillus cereus var. mycoides were evaluated based on Hiromi's theory, using (14)C-radiolabeled maltooligosaccharides as substrate. It was estimated that the active site consisted of six subsites, and all subsite affinities could be evaluated. The active site had a common subsite arrangement with those of β -amylases from soybean and wheat bran. The intrinsic breakdown rate constant of α-1,4 glucosidic linkage (kint) was five to seven times as large as those of the other enzymes.From the pH dependence of log[k0/Km], pK values of two functional ionizable groups were pK1 =4.0 and pK2 = 8.4. The pK values were 0.5-0.6 units for pK1 and 0.2-0.3 units for pK2 larger than those of the other enzymes. For the affinity-labeling of this enzyme by 2, 3 epoxypropyl α-D-glucopyranoside (α-EPG), the binding affinity of α-EPG was 1-1.6kcal/mol larger than those of the other β-amylases.

  5. Characterization of the activity and stability of amylase from saliva and detergent: laboratory practicals for studying the activity and stability of amylase from saliva and various commercial detergents.

    PubMed

    Valls, Cristina; Rojas, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2012-07-01

    This article presents two integrated laboratory exercises intended to show students the role of α-amylases (AAMYs) in saliva and detergents. These laboratory practicals are based on the determination of the enzymatic activity of amylase from saliva and different detergents using the Phadebas test (quantitative) and the Lugol test (qualitative) under different conditions (e.g. variations in temperature and alkalinity). This work also proposes the study of enzyme stability in the presence of several surfactants and oxidizing agents using the same technical approach. The proposed laboratory exercises promote the understanding of the physiological function of this enzyme and the biotechnological applications of AAMYs in the detergent industry. The exercises also promote the understanding that the enzymatic stability and performance are dependent on the organism of origin, and if necessary, these properties could be modified by genetic engineering. In addition, this article reinforces the development of laboratory skills, problem-solving capabilities, and the ability to write a laboratory report. The exercises are proposed primarily as an undergraduate project for advanced students in the biochemical and biotechnological sciences. These laboratory practicals are complementary to the previously published BAMBED article (Biochemistry and Molecular Biology Education Vol. 39, No. 4, pp. 280-290, 2011) on detergent proteases.

  6. Cloning and nucleotide sequence of the gene coding for enzymatically active fragments of the Bacillus polymyxa beta-amylase.

    PubMed

    Kawazu, T; Nakanishi, Y; Uozumi, N; Sasaki, T; Yamagata, H; Tsukagoshi, N; Udaka, S

    1987-04-01

    The gene encoding beta-amylase was cloned from Bacillus polymyxa 72 into Escherichia coli HB101 by inserting HindIII-generated DNA fragments into the HindIII site of pBR322. The 4.8-kilobase insert was shown to direct the synthesis of beta-amylase. A 1.8-kilobase AccI-AccI fragment of the donor strain DNA was sufficient for the beta-amylase synthesis. Homologous DNA was found by Southern blot analysis to be present only in B. polymyxa 72 and not in other bacteria such as E. coli or B. subtilis. B. polymyxa, as well as E. coli harboring the cloned DNA, was found to produce enzymatically active fragments of beta-amylases (70,000, 56,000, or 58,000, and 42,000 daltons), which were detected in situ by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Nucleotide sequence analysis of the cloned 3.1-kilobase DNA revealed that it contains one open reading frame of 2,808 nucleotides without a translational stop codon. The deduced amino acid sequence for these 2,808 nucleotides encoding a secretory precursor of the beta-amylase protein is 936 amino acids including a signal peptide of 33 or 35 residues at its amino-terminal end. The existence of a beta-amylase of larger than 100,000 daltons, which was predicted on the basis of the results of nucleotide sequence analysis of the gene, was confirmed by examining culture supernatants after various cultivation periods. It existed only transiently during cultivation, but the multiform beta-amylases described above existed for a long time. The large beta-amylase (approximately 160,000 daltons) existed for longer in the presence of a protease inhibitor such as chymostatin, suggesting that proteolytic cleavage is the cause of the formation of multiform beta-amylases.

  7. Salivary Stress-Related Responses in Tinnitus: A Preliminary Study in Young Male Subjects with Tinnitus

    PubMed Central

    Alsalman, Ola A.; Tucker, Denise; Vanneste, Sven

    2016-01-01

    Objective: This preliminary study examined if baseline measures of stress-related biomarkers as measured by salivary secretions of specific autonomic [measured by salivary α-amylase (sAA)], endocrine (measured by salivary cortisol), and immune (measured by salivary neopterin) responses are greater in male subjects with tinnitus in response to an induced-stress task. Method: Twenty male subjects with no significant hearing loss, 10 with tinnitus, and 10 without tinnitus were enrolled in this study.Salivary secretions were collected before and after the induced stress task at four different time intervals. Results: sAA levels were lower in the tinnitus group in comparison to subjects without tinnitus, suggesting impaired sympathetic activity in the subjects with tinnitus although these levels remained stable throughout the stress experiment.While no significant effects could be obtained for salivary cortisol or neopterin, salivary neopterin levels were trending toward significance over all measurements. Behavioral measures of stress were found to correlate negatively with measures of sAA and salivary neopterin. Conclusion: The results of this study suggest impaired stress-related sAA mechanisms in male subjects with tinnitus, as evidenced by the different stress reactions induced in the endocrine system (as measured by salivary cortisol) and the immune system (as measured by salivary neopterin). PMID:27489534

  8. An analysis of temperature adaptation in cold active, mesophilic and thermophilic Bacillus α-amylases.

    PubMed

    Mahdavi, Atiyeh; Sajedi, Reza H; Asghari, S Mohsen; Taghdir, Majid; Rassa, Mehdi

    2011-12-01

    A comparative biochemical and structural study was performed on a cold active α-amylase from Bacillus cereus (BCA) and two well-known homologous mesophilic and thermophilic α-amylases from Bacillus amyloliquefaciens (BAA) and Bacillus licheniformis (BLA). In spite of a high degree of sequence and structural similarity, drastic variations were found for T(opt) as 50, 70 and 90°C for BCA, BAA and BLA, respectively. The half-lives of thermoinactivation were 1 and 9 min for BCA and BAA at 80°C respectively, whilst there was no inactivation for BLA at this temperature. Thermodynamic studies on inactivation process suggested that lower thermostability of BCA is due to lower inactivation slope of the Arrhenius plots and subsequently, lower E(a) and ΔH(#). Increased K(m) and accessible surface area for catalytic residues along with a decreased number of internal interactions in this region in BCA compared to BLA suggest that BCA substrate-binding site might be temperature sensitive and is probably more flexible. On the other hand, fewer ion pairs, destructive substitutions and disruption of aromatic interaction networks in structurally critical regions of Bacillus α-amylases result in a severe decrease in BCA thermostability compared to its mesophilic and thermophilic homologues.

  9. Concerted evolution of human amylase genes

    SciTech Connect

    Gumucio, D.L.; Wiebauer, K.; Caldwell, R.M.; Samuelson, L.C.; Meisler, M.H.

    1988-03-01

    Cosmid clones containing 250 kilobases of genomic DNA from the human amylase gene cluster have been isolated. These clones contain seven distinct amylase genes which appear to comprise the complete multigene family. By sequence comparison with the cDNAs, the authors have identified two pancreatic amylase gene and three salivary amylase genes. Two truncated pseudogenes were also recovered. Intergenic distances of 17 to 22 kilobases separate the amylase gene copies. Within the past 10 million years, duplications, gene conversion, and unequal crossover events have resulted in a very high level of sequence similarity among human amylase gene copies. To identify sequence elements involved in tissue-specific expression and hormonal regulation, the promoter regions of the human amylase genes were sequenced and compared with those of the corresponding mouse genes. The promoters of the human and mouse pancreatic amylase genes are highly homologous between nucleotide - 160 and the cap site. Two sequence elements througth to influence pancreas-specific expression of the rodent genes are present in the human genes. In contrast, similarity in the 5' lanking sequences of the salivary amylase genes is limited to several short sequence elements whose positions and orientations differ in the two species. Some of these sequence elements are also associated with other parotid-specific genes and may be involved in their tissue-specific expression. A glucocorticoid response element and a general enhancer element are closely associated in several of the amylase promoters.

  10. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    SciTech Connect

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  11. Salivary Alterations in Rats with Experimental Chronic Kidney Disease

    PubMed Central

    Romero, Ana Carolina; Bergamaschi, Cassia Toledo; de Souza, Douglas Nesadal; Nogueira, Fernando Neves

    2016-01-01

    Objective This study aimed to analyze changes in saliva composition and salivary secretion process of rats with chronic kidney disease induced by 5/6 nephrectomy to set the foundation for salivary studies related to CKD. Methods CKD was induced in Wistar rats via 5/6 nephrectomy. Blood and saliva samples were collected from Control, Sham and CKD groups at 8 and 12 weeks after the surgery. Salivation was stimulated via intraperitoneal injections of pilocarpine (1.0 mg/Kg body weight) or isoproterenol (5.0 mg/Kg body weight). Saliva was collected and immediately stored at -80°C until analysis. The salivary flow rate, total protein, amylase and peroxidase activities, and urea concentrations were measured. The blood urea nitrogen (BUN) and serum creatinine concentrations were also evaluated. Results Increases in BUN and serum creatinine concentrations were observed in the CKD groups. Amylase activity was significantly reduced in response to both stimuli in the CKD groups at 8 weeks and increased in the CKD groups at 12 weeks in response to isoproterenol stimulus. The peroxidase activities of the CKD groups were significantly reduced in response to isoproterenol stimulation and were increased at 12 weeks in response to pilocarpine stimulation. Salivary urea was significantly increased in the CKD groups at 8 weeks in response to the isoproterenol stimuli and at 12 weeks in response to both salivary agonists. Conclusions The pattern of alterations observed in this experimental model is similar to those observed in patients and clearly demonstrates the viability of 5/6 nephrectomy as an experimental model in future studies to understand the alterations in salivary compositions and in salivary glands that are elicited by CKD. PMID:26859883

  12. Activation of bean (Phaseolus vulgaris) [alpha]-amylase inhibitor requires proteolytic processing of the proprotein

    SciTech Connect

    Pueyo, J.J.; Hunt, D.C.; Chrispeels, M.J. )

    1993-04-01

    Seeds of the common bean (Phaseolus vulgaris) contain a plant defense protein that inhibits the [alpha]-amylases of mammals and insects. This [alpha]-amylase inhibitor ([alpha]Al) is synthesized as a proprotein on the endoplasmic reticulum and is proteolytically processed after arrival in the protein storage vacuoles to polypeptides of relative molecular weight (M[sub r]) 15,000 to 18,000. The authors report two types of evidence that proteolytic processing is linked to activation of the inhibitory activity. First, by surveying seed extracts of wild accessions of P. vulgaris and other species in the genus Phaseolus, they found that antibodies to [alpha]Al recognize large (M[sub r] 30,000-35,000) polypeptides as well as typical [alpha]Al processing products (M[sub r] 15,000-18,000). [alpha]Al activity was found in all extracts that had the typical [alpha]Al processed polypeptides, but was absent from seed extracts that lacked such polypeptides. Second, they made a mutant [alpha]Al in which asparagine-77 is changed to aspartic acid-77. This mutation slows down the proteolytic processing of pro-[alpha]Al when the gene is expressed in tobacco. When pro-[alpha]Al was separated from mature [alpha]Al by gel filtration, pro-[alpha]Al was found not to have [alpha]-amylase inhibitory activity. The authors interpret these results to mean that formation of the active inhibitor is causally related to proteolytic processing of the proprotein. They suggest that the polypeptide cleavage removes a conformation constraint on the precursor to produce the biochemically active molecule. 43 refs., 5 figs., 1 tab.

  13. Evaluation of Ten Wild Nigerian Mushrooms for Amylase and Cellulase Activities

    PubMed Central

    Adeoyo, Olusegun Richard

    2011-01-01

    Amylases and cellulases are important enzymes that can be utilized for various biological activities. Ten different wild Nigerian mushrooms (Agaricus blazei, Agaricus sp., Corilopsis occidentalis, Coriolus versicolor, Termitomyces clypeatus, Termitomyces globulus, Pleurotus tuber-regium, Podoscypha bolleana, Pogonomyces hydnoides, and Nothopanus hygrophanus) were assayed for production of these secondary metabolites. The results revealed that most of the tested wild fungi demonstrated very good amylase and cellulase activities. With the incorporation of carboxymethyl-cellulose (a carbon source) into the culture medium, Agaricus blazei had the highest amylolytic activity of 0.60 unit/mL (at 25℃, pH 6.8). This was followed in order by P. tuber-regium and Agaricus sp. with 0.42 and 0.39 unit/mL, respectively (p ≤ 0.05). Maltose and sucrose supplementation into the submerged liquid medium made N. hygrophanus and P. hydnoides to exhibit very low amylase activities of 0.09 and 0.11 unit/mL, respectively. Introducing peptone (an organic nitrogen source) into the basal medium enhanced the ability of C. versicolor to produce a cellulase value of 0.74 unit/mL. Other organic nitrogen sources that supported good cellulase activities were yeast extract and urea. Sodium nitrate (inorganic nitrogen source) generally inhibited cellulase production in all mushrooms. The best carbon source was carboxymethyl-cellulose, which promoted very high cellulase activity of 0.67 unit/mL in C. versicolor, which was followed in order by P. tuber-regium, T. chypeatus, and C. occidentalis (p ≤ 0.05). Sucrose was the poorest carbon compound, supporting the lowest values of 0.01, 0.01, and 0.14 unit/mL in P. hydnoides, A. blazei, and Agaricus sp., respectively. PMID:22783085

  14. Evaluation of amylase testing as a tool for saliva screening of crime scene trace swabs.

    PubMed

    Hedman, Johannes; Dalin, Erik; Rasmusson, Birgitta; Ansell, Ricky

    2011-06-01

    Amylase testing has been used as a presumptive test for crime scene saliva for over three decades, mainly to locate saliva stains on surfaces. We have developed a saliva screening application for crime scene trace swabs, utilising an amylase sensitive paper (Phadebas(®) Forensic Press test). Positive results were obtained for all tested dried saliva stains (0.5-32 μL) with high or intermediate amylase activity (840 and 290 kU/L). Results were typically obtained within 5 min, and all samples that produced DNA profiles were positive. However, salivary amylase activities, as well as DNA concentrations, vary significantly between individuals. We show that there is no correlation between amylase activity and amount of DNA in fresh saliva. Even so, a positive amylase result indicates presence of saliva, and thereby presence of DNA. Amylase testing may be useful for screening in investigations where the number of DNA analyses is limited due to cost, e.g., in volume crime.

  15. Ecto-phosphatase activity on the external surface of Rhodnius prolixus salivary glands: modulation by carbohydrates and Trypanosoma rangeli.

    PubMed

    Gomes, Suzete A O; Fonseca de Souza, André L; Kiffer-Moreira, Tina; Dick, Claudia F; dos Santos, André L A; Meyer-Fernandes, José R

    2008-05-01

    The salivary glands of insect's vectors are target organs to study the vectors-pathogens interactions. Rhodnius prolixus an important vector of Trypanosoma cruzi can also transmit Trypanosoma rangeli by bite. In the present study we have investigated ecto-phosphatase activity on the surface of R. prolixus salivary glands. Ecto-phosphatases are able to hydrolyze phosphorylated substrates in the extracellular medium. We characterized these ecto-enzyme activities on the salivary glands external surface and employed it to investigate R. prolixus-T. rangeli interaction. Salivary glands present a low level of hydrolytic activity (4.30+/-0.35 nmol p-nitrophenol (p-NP)xh(-1)xgland pair(-1)). The salivary glands ecto-phosphatase activity was not affected by pH variation; and it was insensitive to alkaline inhibitor levamisole and inhibited approximately 50% by inorganic phosphate (Pi). MgCl2, CaCl2 and SrCl2 enhanced significantly the ecto-phosphatase activity detected on the surface of salivary glands. The ecto-phosphatase from salivary glands surface efficiently releases phosphate groups from different phosphorylated amino acids, giving a higher rate of phosphate release when phospho-tyrosine is used as a substrate. This ecto-phosphatase activity was inhibited by carbohydrates as d-galactose and d-mannose. Living short epimastigotes of T. rangeli inhibited salivary glands ecto-phosphatase activity at 75%, while boiled parasites did not. Living long epimastigote forms induced a lower, but significant inhibitory effect on the salivary glands phosphatase activity. Interestingly, boiled long epimastigote forms did not loose the ability to modulate salivary glands phosphatase activity. Taken together, these data suggest a possible role for ecto-phosphatase on the R. prolixus salivary glands-T. rangeli interaction.

  16. Effect of ionic liquids on the structure, stability and activity of two related α-amylases.

    PubMed

    Dabirmanesh, Bahareh; Daneshjou, Sara; Sepahi, Abbas Akhavan; Ranjbar, Bijan; Khavari-Nejad, Ramazan Ali; Gill, Pooria; Heydari, Akbar; Khajeh, Khosro

    2011-01-01

    Ionic liquids are recognized as green solvents for carbohydrates dissolution. However, only a limited number of studies have been carried out to investigate their effect on carbohydrate hydrolyzing enzymes. We have investigated the influence of two water miscible ionic liquids on the activity, stability and structure of two related α-amylases from Bacillus amyloliquefaciens and Bacillus lichiniformis. Upon changes in ionic liquids concentrations, both enzymes activity and stability were reduced. Associated thermodynamic and conformational changes were observed using differential scanning calorimetry and fluorescence techniques. Thermal denaturation was accompanied by aggregation in both aqueous buffer and [BMIm][Cl] but [HMIm][Cl] significantly suppressed aggregation.

  17. Active secretion and protective effect of salivary nitrate against stress in human volunteers and rats

    PubMed Central

    Jin, Luyuan; Qin, Lizheng; Xia, Dengsheng; Liu, Xibao; Fan, Zhipeng; Zhang, Chunmei; Gu, Liankun; He, Junqi; Ambudkar, Indu S.; Deng, Dajun; Wang, Songlin

    2014-01-01

    Up to 25% of the circulating nitrate in blood is actively taken up, concentrated, and secreted into saliva by the salivary glands. Salivary nitrate can be reduced to nitrite by the commensal bacteria in the oral cavity or stomach and then further converted to nitric oxide (NO) in vivo, which may play a role in gastric protection. However, whether salivary nitrate is actively secreted in human beings has not yet been determined. This study was designed to determine whether salivary nitrate is actively secreted in human beings as an acute stress response and what role salivary nitrate plays in stress-induced gastric injury. To observe salivary nitrate function under stress conditions, alteration of salivary nitrate and nitrite was analyzed among 22 healthy volunteers before and after a strong stress activity, jumping down from a platform at the height of 68m. A series of stress indexes was analyzed to monitor the stress situation. We found that both the concentration and the total amount of nitrate in mixed saliva were significantly increased in the human volunteers immediately after the jump, with an additional increase 1 h later (p < 0.01). Saliva nitrite reached a maximum immediately after the jump and was maintained 1 h later. To study the biological functions of salivary nitrate and nitrite in stress protection, we further carried out a water-immersion-restraint stress (WIRS) assay in male adult rats with bilateral parotid and submandibular duct ligature (BPSDL). Intragastric nitrate, nitrite, and NO; gastric mucosal blood flow; and gastric ulcer index (UI) were monitored and nitrate was administrated in drinking water to compensate for nitrate secretion in BPSDL animals. Significantly decreased levels of intragastric nitrate, nitrite, and NO and gastricmucosal blood flow were measured in BPSDL rats during the WIRS assay compared to sham control rats (p < 0.05). Recovery was observed in the BPSDL rats upon nitrate administration. The WIRS-induced UI was

  18. Active secretion and protective effect of salivary nitrate against stress in human volunteers and rats.

    PubMed

    Jin, Luyuan; Qin, Lizheng; Xia, Dengsheng; Liu, Xibao; Fan, Zhipeng; Zhang, Chunmei; Gu, Liankun; He, Junqi; Ambudkar, Indu S; Deng, Dajun; Wang, Songlin

    2013-04-01

    Up to 25% of the circulating nitrate in blood is actively taken up, concentrated, and secreted into saliva by the salivary glands. Salivary nitrate can be reduced to nitrite by the commensal bacteria in the oral cavity or stomach and then further converted to nitric oxide (NO) in vivo, which may play a role in gastric protection. However, whether salivary nitrate is actively secreted in human beings has not yet been determined. This study was designed to determine whether salivary nitrate is actively secreted in human beings as an acute stress response and what role salivary nitrate plays in stress-induced gastric injury. To observe salivary nitrate function under stress conditions, alteration of salivary nitrate and nitrite was analyzed among 22 healthy volunteers before and after a strong stress activity, jumping down from a platform at the height of 68 m. A series of stress indexes was analyzed to monitor the stress situation. We found that both the concentration and the total amount of nitrate in mixed saliva were significantly increased in the human volunteers immediately after the jump, with an additional increase 1h later (p<0.01). Saliva nitrite reached a maximum immediately after the jump and was maintained 1h later. To study the biological functions of salivary nitrate and nitrite in stress protection, we further carried out a water-immersion-restraint stress (WIRS) assay in male adult rats with bilateral parotid and submandibular duct ligature (BPSDL). Intragastric nitrate, nitrite, and NO; gastric mucosal blood flow; and gastric ulcer index (UI) were monitored and nitrate was administrated in drinking water to compensate for nitrate secretion in BPSDL animals. Significantly decreased levels of intragastric nitrate, nitrite, and NO and gastric mucosal blood flow were measured in BPSDL rats during the WIRS assay compared to sham control rats (p<0.05). Recovery was observed in the BPSDL rats upon nitrate administration. The WIRS-induced UI was

  19. Chloride Activated Halophilic α-Amylase from Marinobacter sp. EMB8: Production Optimization and Nanoimmobilization for Efficient Starch Hydrolysis

    PubMed Central

    Kumar, Sumit; Khare, S. K.

    2015-01-01

    Halophiles have been perceived as potential source of novel enzymes in recent years. The interest emanates from their ability to catalyze efficiently under high salt and organic solvents. Present work encompasses production optimization and nanoimmobilization of an α-amylase from moderately halophilic Marinobacter sp. EMB8. Media ingredients and culture conditions were optimized by “one-at-a-time approach.” Starch was found to be the best carbon source at 5% (w/v) concentration. Glucose acted as catabolic repressor for amylase production. Salt proved critical for amylase production and maximum production was attained at 5% (w/v) NaCl. Optimization of various culture parameters resulted in 48.0 IU/mL amylase production, a 12-fold increase over that of unoptimized condition (4.0 IU/mL). α-Amylase was immobilized on 3-aminopropyl functionalized silica nanoparticles using glutaraldehyde as cross-linking agent. Optimization of various parameters resulted in 96% immobilization efficiency. Starch hydrolyzing efficiency of immobilized enzyme was comparatively better. Immobilized α-amylase retained 75% of its activity after 5th cycle of repeated use. PMID:25667773

  20. Amylase Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Amylase Share this page: Was this page helpful? Also known as: Amy Formal name: Amylase Related tests: Lipase , Trypsin , Trypsinogen At a Glance ...

  1. Amylase - blood

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003464.htm Amylase - blood To use the sharing features on this page, please enable JavaScript. Amylase is an enzyme that helps digest carbohydrates. It ...

  2. Antidiabetic Activity of Ruellia tuberosa L., Role of α-Amylase Inhibitor: In Silico, In Vitro, and In Vivo Approaches

    PubMed Central

    Ratna Wulan, Dyah; Priyo Utomo, Edi; Mahdi, Chanif

    2015-01-01

    Ruellia tuberosa L. is a folk remedy in the treatment of diabetes mellitus. However, its hypoglycemic activity has not been investigated so far. In the present study, the antidiabetic mechanism of the n-hexane fraction of methanolic extract (HFME) of this plant was investigated in silico, in vitro, and in vivo. In silico study was performed using AutoDock4.2 software. In vitro  α-amylase inhibitory activity was investigated by starch-iodine method. A single dose of 450 mg/kg HFME for 14 days was subjected to an antidiabetic screening in vivo by a multiple low dose streptozotocin (MLD-STZ) induced rats. Molecular modeling results show that Betulin exhibited noncompetitive α-amylase inhibitory activities. The effect of HFME elicited significant reductions of diabetic rat blood glucose. A single dose administration of HFME inhibited α-amylase activity in vivo (P < 0.01) compared to a diabetic control group. Moreover, this extract strongly inhibited the α-amylase activity in vitro (IC50 0.14 ± 0.005 mg/mL). It is concluded that HFME exerted an antidiabetic effect via α-amylase inhibitor. Our findings provide a possible hypoglycemic action of R. tuberosa L. as an alternative therapy in the management of diabetes. PMID:26576302

  3. Anticoagulation activity of salivary gland extract of oriental blackfly Simulium indicum

    PubMed Central

    Borah, Subhalaxmi; Naglot, Ashok; Goswami, Sewali; Rahman, Imtiaz; Deka, Manab

    2014-01-01

    Objective To study the morphology of the salivary gland of the female blackfly of the species Simulium indicum (S. indicum) along with protein profile and anticoagulant activity of the salivary gland extract. Methods Sodium dodecyl sulphate polyacrylamide gel electrophoresis was used to analyze the protein profile of the salivary gland extract (SGE) and anticoagulant activities against thrombin, and the extrinsic and intrinsic coagulation pathways were found in S. indicum SGE in the TT, PT and APTT assays, respectively. Results Results revealed that each gland consisted of a cylindrical U-shaped secretory lobe and a more or less spherical reservoir. The protein contents of whole salivary glands were also quantified and the amount of salivary gland proteins in the adult female S. indicum was found out to be approximately 1.12±0.13 µg/female. At least 16 major and several minor protein bands were detected in the female salivary glands. The molecular masses of these major protein bands were estimated at 69, 65, 61, 58, 44, 42, 39, 33, 30, 28, 27, 26, 23, 21, 18 and 16 kDa, consecutively. Anticoagulant activities were found in S. indicum SGE in all the assays. It was found that SGE prolonged human plasma clotting time in a dose-dependent manner. Factor Xa inhibition was shown by the SGE of S. indicum. Percent inhibition value was 93.8. A positive correlation (r=0.89) was observed between total protein and percent inhibition of factor Xa. Conclusions The present study demonstrated that the mode of action of the anticoagulant(s) is mainly on the inhibition of thrombin and factor Xa along with other target factors of the coagulation cascade. PMID:25183091

  4. Molecular mimicry of substrate oxygen atoms by water molecules in the beta-amylase active site.

    PubMed

    Pujadas, G; Palau, J

    2001-08-01

    Soybean beta-amylase (EC 3.2.1.2) has been crystallized both free and complexed with a variety of ligands. Four water molecules in the free-enzyme catalytic cleft form a multihydrogen-bond network with eight strategic residues involved in enzyme-ligand hydrogen bonds. We show here that the positions of these four water molecules are coincident with the positions of four potential oxygen atoms of the ligands within the complex. Some of these waters are displaced from the active site when the ligands bind to the enzyme. How many are displaced depends on the shape of the ligand. This means that when one of the four positions is not occupied by a ligand oxygen atom, the corresponding water remains. We studied the functional/structural role of these four waters and conclude that their presence means that the conformation of the eight side chains is fixed in all situations (free or complexed enzyme) and preserved from unwanted or forbidden conformational changes that could hamper the catalytic mechanism. The water structure at the active pocket of beta-amylase is therefore essential for providing the ligand recognition process with plasticity. It does not affect the protein active-site geometry and preserves the overall hydrogen-bonding network, irrespective of which ligand is bound to the enzyme. We also investigated whether other enzymes showed a similar role for water. Finally, we discuss the potential use of these results for predicting whether water molecules can mimic ligand atoms in the active center.

  5. Double-sided staining with a gold probe and silver enhancement to detect alpha-amylase and sugar moieties in the mouse salivary glands.

    PubMed

    Menghi, G; Marchetti, L; Bondi, A M; Accili, D; Sabbieti, M G; Materazzi, G

    1999-07-01

    In the present study we report the development of an ultrastructural electron microscopic double-sided staining technique that, using gold probes of 10 nm and enhancement of the gold signal by silver amplification, allows the demonstration of two antigenic sites on the same section. The labeling was carried out in the following manner: one face of uncoated floating grids was incubated with an antibody directed to alpha-amylase, followed by a secondary gold-labeled antibody, amplification of gold particles, drying and carbon coating; subsequently, the reverse face of the same grid, was processed for lectin cytochemistry, with and without sialidase digestion, and it was incubated with HRP-conjugated lectins, anti-HRP antibody and protein-A gold. Also the reverse sequence of steps and amplification of gold signal after the first or second labeling were experimented. The resultant small and large particles revealed different distributional patterns of antigenic sites on the opposite faces of the same tissue section. The transparency of the resin-embedded ultrathin sections in the electron beam allowed the simultaneous visualization of the gold probes of different sizes present on the two faces. The analysis of immunolabeling revealed that the alpha-amylase is chiefly secreted by the parotid and submandibular glands. The application of this double-sided staining technique also indicated that, when present in glycosylated form, the alpha-amylase enzyme does not contain sialic acid in the submandibular and sublingual glands; conversely, its location on the electron-dense areas of target granules in the parotid acinar cells seems to suggest that a sialylated isoenzymatic form can occur within these granule regions where sialic, acid linked to beta-galactose, was found to be located.

  6. Effect of limited proteolysis in the 8th loop of the barrel and of antibodies on porcine pancreas amylase activity.

    PubMed

    Desseaux, V; Payan, F; Ajandouz, E H; Svensson, B; Haser, R; Marchis-Mouren, G

    1991-11-15

    The porcine pancreatic alpha-amylase is a (beta/alpha)8-barrel protein, containing domains A and B (peptide sequence 1-403) and a distinct C-domain (peptide sequence 404-496). Separation of the terminal C-domain from the A and B domains has been attempted by limited proteolysis in the hinge region. Subtilisin was found to hydrolyse amylase between residues 369 and 370 situated in the loop between the eighth beta-strand and alpha-helix. The cleaved amylase was isolated by chromatofocusing and found to retain about 60% of the activity of the native enzyme, while the isolated fragments were inactive. Antigen binding fragments prepared from polyclonal antibodies to native amylase and the CNBr-fragment P1 (peptide sequence 395-496) respectively, were tested for influence on the enzyme activity. Antibodies directed against P1 had no effect whereas antibodies against the peptide sequence 1-394 and amylase respectively inhibited hydrolysis of substrates having four or more glucose residues but not of shorter oligomaltosides. Crystallographic analysis revealed that changes in the region of residue 369 might affect the conformation of the active site as well as of a second binding site. This site, located on the enzyme surface, is proposed to be required for the hydrolysis of larger substrates.

  7. Candida albicans Shed Msb2 and Host Mucins Affect the Candidacidal Activity of Salivary Hst 5

    PubMed Central

    Puri, Sumant; Friedman, Justin; Saraswat, Darpan; Kumar, Rohitashw; Li, Rui; Ruszaj, Donna; Edgerton, Mira

    2015-01-01

    Salivary Histatin 5 (Hst 5) is an antimicrobial peptide that exhibits potent antifungal activity towards Candida albicans, the causative agent of oral candidiasis. However, it exhibits limited activity in vivo, largely due to inactivation by salivary components of both host and pathogen origin. Proteins secreted by C. albicans during infection such as secreted aspartyl proteases (Saps) and shed mucin Msb2 can reduce Hst 5 activity; and human salivary mucins, while suggested to protect Hst 5 from proteolytic degradation, can entrap peptides into mucin gels, thereby reducing bioavailability. We show here that Sap6 that is secreted during hyphal growth reduces Hst 5 activity, most likely a result of proteolytic degradation of Hst 5 since this effect is abrogated with heat inactivated Sap 6. We further show that just like C. albicans shedding Msb2, mammalian mucins, fetuin and porcine gut mucin (that is related to salivary mucins), also reduce Hst 5 activity. However, we identify mucin-like protein-induced changes in C. albicans cell morphology and aggregation patterns, suggesting that the effect of such proteins on Hst 5 cannot be interpreted independently of their effect on yeast cells. PMID:26529023

  8. Salivary aldehyde dehydrogenase - temporal and population variability, correlations with drinking and smoking habits and activity towards aldehydes contained in food.

    PubMed

    Giebułtowicz, Joanna; Dziadek, Marta; Wroczyński, Piotr; Woźnicka, Katarzyna; Wojno, Barbara; Pietrzak, Monika; Wierzchowski, Jacek

    2010-01-01

    Fluorimetric method based on oxidation of the fluorogenic 6-methoxy-2-naphthaldehyde was applied to evaluate temporal and population variability of the specific activity of salivary aldehyde dehydrogenase (ALDH) and the degree of its inactivation in healthy human population. Analyzed was also its dependence on drinking and smoking habits, coffee consumption, and its sensitivity to N-acetylcysteine. Both the specific activity of salivary ALDH and the degree of its inactivation were highly variable during the day, with the highest activities recorded in the morning hours. The activities were also highly variable both intra- and interpersonally, and negatively correlated with age, and this correlation was stronger for the subgroup of volunteers declaring abstinence from alcohol and tobacco. Moderately positive correlations of salivary ALDH specific activity with alcohol consumption and tobacco smoking were also recorded (r(s) ~0.27; p=0.004 and r(s) =0.30; p=0.001, respectively). Moderate coffee consumption correlated positively with the inactivation of salivary ALDH, particularly in the subgroup of non-drinking and non-smoking volunteers. It was found that mechanical stimulation of the saliva flow increases the specific activity of salivary ALDH. The specific activity of the salivary ALDH was strongly and positively correlated with that of superoxide dismutase, and somewhat less with salivary peroxidase. The antioxidant-containing drug N-acetylcysteine increased activity of salivary ALDH presumably by preventing its inactivation in the oral cavity. Some food-related aldehydes, mainly cinnamic aldehyde and anisaldehyde, were excellent substrates of the salivary ALDH3A1 enzyme, while alkenals, particularly those with short chain, were characterized by lower affinity towards this enzyme but high catalytic constants. The protective role of salivary ALDH against aldehydes in food and those found in the cigarette smoke is discussed, as well as its participation in

  9. Comparison of Salivary Beta Glucuronidase Activity in Chronic Periodontitis Patients with and without Diabetes Mellitus

    PubMed Central

    ND, Jayakumar; Varghese, Sheeja

    2014-01-01

    Aim of the study: The aim of the study was to estimate the salivary beta glucuronidase (β) activity in patients with chronic periodontitis with and without diabetes mellitus and to evaluate the relationship between Beta Glucuronidase activity and Periodontal clinical parameters. Materials and Methods: The study consisted of 80 patients of both sexes with age ranging from 20-60 years and they were divided into four groups. Clinical parameters such as Gingival index, Probing depth and Clinical attachment loss were measured. Salivary Beta Glucuronidase activity was measured using spectrophotometer with reagents like phenolphthalein glucuronic acid, phosphate and glycine buffer. Results: The mean BG activity of Group IV (1.17 ± 0.27) was significantly higher than mean BGA levels of Group I, II, III. The p-value was < 0.05. The mean BGA levels of Group III (0.78 ± 0.17) was significantly higher than mean BGA levels of Group I, Group II at 5 % level. There was a significant positive linear relationship between salivary β Glucuronidase level and Probing Depth, clinical attachment level in the experimental Groups. Conclusion: The salivary β Glucuronidase level was higher in Diabetic patients with periodontitis than nondiabetic periodontitis patients. PMID:25121058

  10. Inhibition of Porcine Pancreatic Amylase Activity by Sulfamethoxazole: Structural and Functional Aspect.

    PubMed

    Maity, Sujan; Mukherjee, Koel; Banerjee, Amrita; Mukherjee, Suman; Dasgupta, Dipak; Gupta, Suvroma

    2016-06-01

    Combating Type-2 diabetes mellitus is a pivotal challenge in front of the present world. Several lines of therapy are in practice for resisting this deadly disease which often culminates with cardiovascular complexities, neuropathy and retinopathy. Among various therapies, administration of alpha glucosidase inhibitors is common and widely practiced. Sulfonylurea category of anti diabetic drug often suffers from cross reactivity with sulfamethoxazole (SMX), a common drug in use to treat a handful of microbial infections. However the specific cellular target generating postprandial hypoglycemia on SMX administration is till date unraveled. The present work has been initiated to elucidate the effects of a group of sulfonamide drugs inclusive of SMX for their amylase inhibitory role. SMX inhibits porcine pancreatic amylase (PPA) in a noncompetitive mode with an average IC50 value 0.94 mM respectively. Interaction of SMX with PPA is manifested with gradual quenching of tryptophan fluorescence with concomitant shift in lambda max value (λmax). Binding is governed by entropy driven factor (24.8 cal mol(-1) K(-1)) with unfavorable contribution from enthalpy change. SMX interferes with the activity of acarbose in a synergistic mode to reduce the effective dose of acarbose as evident from the in vitro PPA inhibition study. In summary, loss of PPA activity in presence of SMX is indicative of structural changes of PPA which is further augmented in the presence of acarbose as explained in the schematic model and docking study.

  11. Variation in β-amylase activity and thermostability in Tibetan annual wild and cultivated barley genotypes.

    PubMed

    Zhang, Hai-tao; Chen, Tian-long; Zhang, Bing-lin; Wu, De-zhi; Huang, Ye-chang; Wu, Fei-bo; Zhang, Guo-ping

    2014-09-01

    β-Amylase activity (BAA) and thermostability (BAT) are important traits for malt quality. In this study, 138 Tibetan annual wild barley accessions and 20 cultivated genotypes differing in BAA were planted and analyzed in 2009 and 2012. Significant differences were detected among genotypes in BAA and BAT. The cultivated genotypes had a mean BAA of 1137.6 U/g and a range of from 602.1 to 1407.5 U/g, while the wild accessions had a mean of 1517.9 U/g and a range of from 829.7 to 2310.0 U/g. The cultivated genotypes had a mean relative residual β-amylase activity (RRBAA) of 61.6% and a range of from 22.2% to 82.3%, while the wild barleys had a mean of 57.8% and a range of from 21.9% to 96.1%. Moreover, there was a significant difference among genotypes in the response of RRBAA to the temperature and duration of heat treatment. The wild barleys had wider variation in BAA and BAT than cultivated genotypes.

  12. Automated docking of maltose, 2-deoxymaltose, and maltotetraose into the soybean beta-amylase active site.

    PubMed

    Laederach, A; Dowd, M K; Coutinho, P M; Reilly, P J

    1999-11-01

    In this study, products and substrates were docked into the active site of beta-amylase using the simulated annealing algorithm AutoDock. Lowest-energy conformers reproduced known crystallographic atom positions within 0.4 to 0.8 A rmsd. Docking studies were carried out with both open and closed configurations of the beta-amylase mobile flap, a loop comprising residues 96 to 103. Ligands with two rings docked within the cleft near the active site when the flap was open, but those with four rings did not. The flap must be closed for alpha-maltotetraose to adopt a conformation allowing it to dock near the crystallographically determined subsites. The closed flap is necessary for productive but not for nonproductive binding, and therefore it plays a essential role in catalysis. The gain in total binding energy upon closing of the flap for alpha-maltose docked to subsites -2, -1 and +1, +2 is about 22 kcal/mol, indicating more favorable interactions are possible with the flap closed. Larger intermolecular interaction energies are observed for two alpha-maltose molecules docked to subsites -2, -1 and +1, +2 than for one alpha-maltotetraose molecule docked from subsites -2 to +2, suggesting that it is only upon cleavage of the alpha-1,4 linkage that optimal closed-flap binding can occur with the crytallographically determined enzyme structure.

  13. Parotid salivary secretory pattern in bulimia nervosa.

    PubMed

    Riad, M; Barton, J R; Wilson, J A; Freeman, C P; Maran, A G

    1991-01-01

    Parotid gland enlargement occurs in about 25% of patients with the binge eating syndrome of bulimia nervosa. The parotid salivary secretory patterns in 28 bulimics were determined in order to investigate the functional abnormality in the glands. Bulimia patients had a reduced resting flow rate. Bulimics who developed sialadenosis (4 patients) had reduced resting and stimulated flow rates. The salivary amylase activity was increased in both the resting and stimulated states in bulimics and the sialadenosis group. The resting total protein levels were greater in the bulimics. The electrolyte and immunoglobulin levels were within normal limits. The possibility of protein and enzymatic secretory disturbances due to autonomic nerve disorders as an explanation for the development of sialadenosis in bulimia nervosa is discussed.

  14. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants

    PubMed Central

    2011-01-01

    Background Indian medicinal plants used in the Ayurvedic traditional system to treat diabetes are a valuable source of novel anti-diabetic agents. Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post-prandial hyperglycemia via control of starch breakdown. In this study, seventeen Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on PPA (porcine pancreatic α-amylase). Preliminary phytochemical analysis of the lead extracts was performed in order to determine the probable constituents. Methods Analysis of the 126 extracts, obtained from 17 plants (Aloe vera (L.) Burm.f., Adansonia digitata L., Allium sativum L., Casia fistula L., Catharanthus roseus (L.) G. Don., Cinnamomum verum Persl., Coccinia grandis (L.) Voigt., Linum usitatisumum L., Mangifera indica L., Morus alba L., Nerium oleander L., Ocimum tenuiflorum L., Piper nigrum L., Terminalia chebula Retz., Tinospora cordifolia (Willd.) Miers., Trigonella foenum-graceum L., Zingiber officinale Rosc.) for PPA inhibition was initially performed qualitatively by starch-iodine colour assay. The lead extracts were further quantified with respect to PPA inhibition using the chromogenic DNSA (3, 5-dinitrosalicylic acid) method. Phytochemical constituents of the extracts exhibiting≥ 50% inhibition were analysed qualitatively as well as by GC-MS (Gas chromatography-Mass spectrometry). Results Of the 126 extracts obtained from 17 plants, 17 extracts exhibited PPA inhibitory potential to varying degrees (10%-60.5%) while 4 extracts showed low inhibition (< 10%). However, strong porcine pancreatic amylase inhibitory activity (> 50%) was obtained with 3 isopropanol extracts. All these 3 extracts exhibited concentration dependent inhibition with IC50 values, viz., seeds of Linum usitatisumum (540 μgml-1), leaves of Morus alba (1440

  15. Concurrent attenuated reactivity of alpha-amylase and cortisol is related to disruptive behavior in male adolescents.

    PubMed

    de Vries-Bouw, Marjan; Jansen, Lucres; Vermeiren, Robert; Doreleijers, Theo; van de Ven, Peter; Popma, Arne

    2012-06-01

    Attenuated reactivity of salivary alpha-amylase has been proposed as a specific sympathetic marker of disruptive behavior in juveniles and may have additional value to studying other autonomic parameters and hypothalamic-pituitary-adrenal axis activity. Investigating the interrelationships between neurobiological parameters in relation to juvenile disruptive behavior may enhance insight into the complex mechanisms at play. We investigated salivary alpha-amylase, cortisol, heart rate (HR), and heart rate variability (HRV) in response to a standardized public speaking task, and examined interactions between these parameters in relation to disruptive behavior. Participants were 48 delinquent male adolescents (mean age 18.4 years, SD 0.9), with and without a disruptive behavior disorder (resp. DP+, DP-) and 16 matched normal controls (NC). A structured psychiatric interview as well as the Youth Self Report and Child Behavior Checklist were administered to assess disruptive behavior. Alpha-amylase and cortisol reactivity, but not HR or HRV, showed significant inverse associations with dimensional measures of disruptive behavior. Moreover, both cortisol and alpha-amylase reactivity were significantly lower in the DP+ group as compared to the NC group. The mentioned relationships remained present when nicotine use was entered as a covariate. Combining alpha-amylase and cortisol in one model explained a larger part of the variance of disruptive behavior than either single parameter. There were no interactions between alpha-amylase and cortisol or HRV in relation to disruptive behavior. Attenuated alpha-amylase responsivity to stress is a correlate of disruptive behavior in late-adolescent males. Although nicotine use explains a considerable part of the variance of disruptive behavior, both alpha-amylase and cortisol are related to disruptive behavior, over and above the effect of nicotine use. Combining alpha-amylase and cortisol improved insight into neurobiological

  16. Maltose effects on barley malt diastatic power enzyme activity and thermostability at high isothermal mashing temperature: II. Alpha-amylase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maltose, the primary product of starch degradation during mashing, has the potential as a compatible solute to affect the activity of and increase the thermostability of barley malt alpha-amylase activity at high temperatures used in mashing and temperatures above those normally used in mashing. To ...

  17. Two tandemly located promoters, artificially constructed, are active in a Bacillus subtilis alpha-amylase secretion vector.

    PubMed

    Furusato, T; Takano, J; Jigami, Y; Tanaka, H; Yamane, K

    1986-04-01

    An 85 bp DNA fragment, the nucleotide sequence of which had 84% homology with the sequence for the promoter, ribosome binding site and NH2-terminal five amino acids of the Bacillus amyloliquefaciens alpha-amylase gene, was chemically synthesized. In order to analyze the promoter activity of a Bacillus subtilis alpha-amylase secretion vector, the fragment was inserted between the promoter and signal peptide-coding region of Bacillus subtilis alpha-amylase gene. Both promoters, tandemly repeated, functioned in transcribing the B. subtilis alpha-amylase signal peptide-coding region followed by the Escherichia coli beta-lactamase structural gene. The transcription initiation sites were determined by the primer extension method. The extracellular production of beta-lactamase was stimulated by two promoters as compared with that by the plasmids containing either promoter region alone. The change of two amino acids in the NH2-terminal region of the B. subtilis alpha-amylase signal peptide had no effect on the secretion of beta-lactamase from B. subtilis cells.

  18. Antiviral activity of salivary microRNAs for ophthalmic herpes zoster.

    PubMed

    Irmak, M Kemal; Erdem, Uzeyir; Kubar, Ayhan

    2012-06-07

    Ophthalmic herpes zoster is a common ocular infection caused by the varicella-zoster virus (VZV). Viral mRNA transcripts play a major role in the replicative cycle of the virus and current antiviral agents have little effect in preventing and treating the complications. Therapeutic use of saliva for certain painful ocular diseases such as ophthalmic herpes zoster is a well-known public practice in our region. We thought that antiviral activity of saliva may stem from salivary microvesicles and we aimed to look for molecules with antiviral activity in these vesicles. As a possible candidate for antiviral activity, salivary microvesicles contain at least 20 microRNAs (miRNAs), small noncoding RNAs, which suppress the translation of target mRNAs. miRNAs not only participate in maintenance of normal cell functions, but are also involved in host-virus interactions and limit the replication of certain virus types. Thus, miRNA gene therapy by targeting mRNAs required for VZV survival may find a niche in the treatment of ophthalmic herpes zoster. But, how could salivary microvesicles reach into the corneal cells to demonstrate their antiviral activity. We suggest that human salivary microvesicles can be effective carriers of miRNA for corneal cells, because they contain a molecular machinery for vesicle trafficking and fusion allowing them to be endocytosed by target cells. After binding to the plasma membrane, microvesicles seem to enter into the corneal cells through the clathrin-mediated endocytosis. In the cytosol, human salivary miRNAs base-pair with specific viral mRNAs and inhibit their translation, thus limiting the replication of the virus.

  19. Introducing transglycosylation activity in Bacillus licheniformis α-amylase by replacement of His235 with Glu.

    PubMed

    Tran, Phuong Lan; Cha, Hyun-Ju; Lee, Jin-Sil; Park, Sung-Hoon; Woo, Eui-Jeon; Park, Kwan-Hwa

    2014-09-05

    To understand the role of His and Glu in the catalytic activity of Bacillus licheniformis α-amylase (BLA), His235 was replaced with Glu. The mutant enzyme, H235E, was characterized in terms of its mode of action using labeled and unlabeled maltooctaose (Glc8). H235E predominantly produced maltotridecaose (Glc13) from Glc8, exhibiting high substrate transglycosylation activity, with Km=0.38mM and kcat/Km=20.58mM(-1)s(-1) for hydrolysis, and Km2=18.38mM and kcat2/Km2=2.57mM(-1)s(-1) for transglycosylation, while the wild-type BLA exhibited high hydrolysis activity exclusively. Glu235-located on a wide open groove near subsite +1-is likely involved in transglycosylation via formation of an α-1,4-glycosidic linkage and may recognize and stabilize the non-reducing end glucose of the acceptor molecule.

  20. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Amylase test system. 862.1070 Section 862.1070....1070 Amylase test system. (a) Identification. An amylase test system is a device intended to measure the activity of the enzyme amylase in serum and urine. Amylase measurements are used primarily for...

  1. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Amylase test system. 862.1070 Section 862.1070....1070 Amylase test system. (a) Identification. An amylase test system is a device intended to measure the activity of the enzyme amylase in serum and urine. Amylase measurements are used primarily for...

  2. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Amylase test system. 862.1070 Section 862.1070....1070 Amylase test system. (a) Identification. An amylase test system is a device intended to measure the activity of the enzyme amylase in serum and urine. Amylase measurements are used primarily for...

  3. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Amylase test system. 862.1070 Section 862.1070....1070 Amylase test system. (a) Identification. An amylase test system is a device intended to measure the activity of the enzyme amylase in serum and urine. Amylase measurements are used primarily for...

  4. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Amylase test system. 862.1070 Section 862.1070....1070 Amylase test system. (a) Identification. An amylase test system is a device intended to measure the activity of the enzyme amylase in serum and urine. Amylase measurements are used primarily for...

  5. α-Amylase sensor based on the degradation of oligosaccharide hydrogel films monitored with a quartz crystal sensor.

    PubMed

    Gibbs, Martin John; Biela, Anna; Krause, Steffi

    2015-05-15

    α-Amylase hydrolyses starch molecules to produce smaller oligosaccharides and sugars. Amylases are of great importance in biotechnology and find application in fermentation, detergents, food and the paper industry. The measurement of α-amylase activity in serum and urine has been used in the diagnosis of acute pancreatitis. Salivary amylase has also been shown to be a stress indicator. Sensor coatings suitable for the detection of α-amylase activity have been developed. Oligosaccharides such as glycogen and amylopectin were spin-coated onto gold coated quartz crystals with a base frequency of 10 MHz. The films were subsequently cross-linked with hexamethylene diisocyanate. Film degradation was monitored with a quartz crystal microbalance (QCM) and electrochemical impedance measurements. The films were shown to be stable in phosphate buffered saline (PBS). Addition of α-amylase to the solution resulted in the rapid degradation of the films. The maximum rate of degradation was found to be strongly dependent on the amylase activity in the range typically found in serum when diagnosing pancreatitis (0.08-8 U/ml). Sensor responses in serum were found to be very similar to those obtained in buffer indicating the absence of non-specific binding.

  6. Differential RNA Expression of Bmy1 During Late Seed Development in Wild and Cultivated Barley and the Association With ß-Amylase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four genotypes carrying different ß-amylase 1 (Bmy1) intron III alleles (Bmy1.a, Bmy1.b, Bmy1.c, and Bmy1.d) were analyzed for differences in Bmy1 DNA sequence, Bmy1 RNA expression, ß-amylase activity and protein, and total protein during late seed development. Wild barleys Ashqelon (Bmy1.c) and PI...

  7. Comparisons of amylolytic enzyme activities and ß-amylases with differing Bmy1 intron III alleles to sugar production during congress mashing with North American barley cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the relationships between patterns of activity development of malt amylolytic enzymes (a-amylase, ß-amylase, and limit dextrinase) and sugar production in two- and six-row North American cultivars during the course of Congress mashing and to test two hypotheses:...

  8. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: a comparative study on bacterial, fungal, and mammalian enzymes.

    PubMed

    Kashani-Amin, Elaheh; Ebrahim-Habibi, Azadeh; Larijani, Bagher; Moosavi-Movahedi, Ali Akbar

    2015-10-01

    Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha-amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha-amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha-amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha-amylase surface in domain B. This domain shows differences in various alpha-amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact.

  9. Maltose effects on barley malt diastatic power enzyme activity and thermostability at high isothermal mashing temperature: I. ß-amylase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypothesis that maltose would increase the thermostability of barley malt beta-amylase activity during isothermal mashing was tested at 68, 73 and 78°C and compared to isothermal mashing at 63°C. Finely ground malts of the two-row cultivar Harrington and the six-row cultivar Morex were incubated...

  10. Determination of antioxidant capacity and a-amylase inhibitory activity of the essential oils from citronella grass and lemongrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the present study was to determine the antioxidant capacity of and in vitro a-amylase inhibitory activity of the essential oils extracted from citronella grass and lemongrass. The chemical composition of the extracted essential oils was determined by GC-MS. The antioxidant capacity ...

  11. TRPC1 regulates calcium-activated chloride channels in salivary gland cells.

    PubMed

    Sun, Yuyang; Birnbaumer, Lutz; Singh, Brij B

    2015-11-01

    Calcium-activated chloride channel (CaCC) plays an important role in modulating epithelial secretion. It has been suggested that in salivary tissues, sustained fluid secretion is dependent on Ca(2+) influx that activates ion channels such as CaCC to initiate Cl(-) efflux. However direct evidence as well as the molecular identity of the Ca(2+) channel responsible for activating CaCC in salivary tissues is not yet identified. Here we provide evidence that in human salivary cells, an outward rectifying Cl(-) current was activated by increasing [Ca(2+)]i, which was inhibited by the addition of pharmacological agents niflumic acid (NFA), an antagonist of CaCC, or T16Ainh-A01, a specific TMEM16a inhibitor. Addition of thapsigargin (Tg), that induces store-depletion and activates TRPC1-mediated Ca(2+) entry, potentiated the Cl(-) current, which was inhibited by the addition of a non-specific TRPC channel blocker SKF96365 or removal of external Ca(2+). Stimulation with Tg also increased plasma membrane expression of TMEM16a protein, which was also dependent on Ca(2+) entry. Importantly, in salivary cells, TRPC1 silencing, but not that of TRPC3, inhibited CaCC especially upon store depletion. Moreover, primary acinar cells isolated from submandibular gland also showed outward rectifying Cl(-) currents upon increasing [Ca(2+)]i. These Cl(-) currents were again potentiated with the addition of Tg, but inhibited in the presence of T16Ainh-A01. Finally, acinar cells isolated from the submandibular glands of TRPC1 knockout mice showed significant inhibition of the outward Cl(-) currents without decreasing TMEM16a expression. Together the data suggests that Ca(2+) entry via the TRPC1 channels is essential for the activation of CaCC.

  12. TRPC1 regulates calcium‐activated chloride channels in salivary gland cells

    PubMed Central

    Sun, Yuyang; Birnbaumer, Lutz

    2015-01-01

    Calcium‐activated chloride channel (CaCC) plays an important role in modulating epithelial secretion. It has been suggested that in salivary tissues, sustained fluid secretion is dependent on Ca2+ influx that activates ion channels such as CaCC to initiate Cl− efflux. However direct evidence as well as the molecular identity of the Ca2+ channel responsible for activating CaCC in salivary tissues is not yet identified. Here we provide evidence that in human salivary cells, an outward rectifying Cl− current was activated by increasing [Ca2+]i, which was inhibited by the addition of pharmacological agents niflumic acid (NFA), an antagonist of CaCC, or T16Ainh‐A01, a specific TMEM16a inhibitor. Addition of thapsigargin (Tg), that induces store‐depletion and activates TRPC1‐mediated Ca2+ entry, potentiated the Cl− current, which was inhibited by the addition of a non‐specific TRPC channel blocker SKF96365 or removal of external Ca2+. Stimulation with Tg also increased plasma membrane expression of TMEM16a protein, which was also dependent on Ca2+ entry. Importantly, in salivary cells, TRPC1 silencing, but not that of TRPC3, inhibited CaCC especially upon store depletion. Moreover, primary acinar cells isolated from submandibular gland also showed outward rectifying Cl− currents upon increasing [Ca2+]i. These Cl− currents were again potentiated with the addition of Tg, but inhibited in the presence of T16Ainh‐A01. Finally, acinar cells isolated from the submandibular glands of TRPC1 knockout mice showed significant inhibition of the outward Cl− currents without decreasing TMEM16a expression. Together the data suggests that Ca2+ entry via the TRPC1 channels is essential for the activation of CaCC. J. Cell. Physiol. 9999: 2848–2856, 2015. © 2015 Wiley Periodicals, Inc. PMID:25899321

  13. Potential of the bean alpha-amylase inhibitor alpha-AI-1 to inhibit alpha-amylase activity in true bugs(Hemiptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    True bugs (Hemiptera) are an important pest complex not controlled by Bt crops. An alternative source of resistance includes inhibitors of digestive enzymes. aAI-1, an a-amylase inhibitor from the common bean, has been shown to inhibit a-amylases of bruchid pests of grain legumes. Here we quantify t...

  14. Structure activity relationships of flavonoids as potent alpha-amylase inhibitors.

    PubMed

    Yuan, Erdong; Liu, Benguo; Wei, Qingyi; Yang, Jiguo; Chen, Lei; Li, Qiong

    2014-08-01

    The effects of three flavonoids (quercetin, luteolin, diosmetin) on alpha-amylase were examined by enzymatic kinetics and fluorescence spectroscopy. The three test flavonoids were non-competitive inhibitors of the enzyme. Addition of flavonoids led to fluorescence quenching of alpha-amylase. The quenching was initiated from the formation of a complex between the flavonoids and the enzyme, corresponding to a static quenching process. An alpha-amylase molecule provides a binding site for the test flavonoid. The main binding force was hydrophobic. The decreasing order of inhibition of alpha-amylase by flavonoids and the binding force was luteolin, diosmetin, and quercetin. It is demonstrated that hydroxylation in ring C and methylation of the hydroxyl group in ring B of flavonoids may weaken the binding affinities to alpha-amylase.

  15. Sweet potato beta-amylase. Primary structure and identification of the active-site glutamyl residue.

    PubMed

    Toda, H; Nitta, Y; Asanami, S; Kim, J P; Sakiyama, F

    1993-08-15

    The complete amino acid sequence of a subunit of sweet potato beta-amylase, a homotetramer, was established by sequence analysis of peptides obtained by digestions with Achromobacter protease I and Staphylococcus aureus V8 protease and by cyanogen bromide cleavage of the S-carboxymethylated subunit. The subunit of the enzyme is a single polypeptide consisting of 498 amino acid residues. It showed 50-60% identity in the amino acid sequence with those of beta-amylases from soybean and barley, while it about 25% with those of three bacterial beta-amylases deduced from the cDNA sequences. Sweet potato beta-amylase was completely inactivated with 2,3-epoxypropyl alpha-D-[U-14C]glucopyranoside. Sequence analysis of the inactivated enzyme revealed that Glu187 was specifically esterified by the affinity labeling with the above reagent, proposing that Glu187 is a potent candidate involved directly in the catalysis with this plant beta-amylase.

  16. In Vitro Identification of Histatin 5 Salivary Complexes

    PubMed Central

    Moffa, Eduardo B.; Machado, Maria A. A. M.; Mussi, Maria C. M.; Xiao, Yizhi; Garrido, Saulo S.; Giampaolo, Eunice T.; Siqueira, Walter L.

    2015-01-01

    With recent progress in the analysis of the salivary proteome, the number of salivary proteins identified has increased dramatically. However, the physiological functions of many of the newly discovered proteins remain unclear. Closely related to the study of a protein’s function is the identification of its interaction partners. Although in saliva some proteins may act primarily as single monomeric units, a significant percentage of all salivary proteins, if not the majority, appear to act in complexes with partners to execute their diverse functions. Coimmunoprecipitation (Co-IP) and pull-down assays were used to identify the heterotypic complexes between histatin 5, a potent natural antifungal protein, and other salivary proteins in saliva. Classical protein–protein interaction methods in combination with high-throughput mass spectrometric techniques were carried out. Co-IP using protein G magnetic Sepharose TM beads suspension was able to capture salivary complexes formed between histatin 5 and its salivary protein partners. Pull-down assay was used to confirm histatin 5 protein partners. A total of 52 different proteins were identified to interact with histatin 5. The present study used proteomic approaches in conjunction with classical biochemical methods to investigate protein–protein interaction in human saliva. Our study demonstrated that when histatin 5 is complexed with salivary amylase, one of the 52 proteins identified as a histatin 5 partner, the antifungal activity of histatin 5 is reduced. We expected that our proteomic approach could serve as a basis for future studies on the mechanism and structural-characterization of those salivary protein interactions to understand their clinical significance. PMID:26544073

  17. In Vitro Identification of Histatin 5 Salivary Complexes.

    PubMed

    Moffa, Eduardo B; Machado, Maria A A M; Mussi, Maria C M; Xiao, Yizhi; Garrido, Saulo S; Giampaolo, Eunice T; Siqueira, Walter L

    2015-01-01

    With recent progress in the analysis of the salivary proteome, the number of salivary proteins identified has increased dramatically. However, the physiological functions of many of the newly discovered proteins remain unclear. Closely related to the study of a protein's function is the identification of its interaction partners. Although in saliva some proteins may act primarily as single monomeric units, a significant percentage of all salivary proteins, if not the majority, appear to act in complexes with partners to execute their diverse functions. Coimmunoprecipitation (Co-IP) and pull-down assays were used to identify the heterotypic complexes between histatin 5, a potent natural antifungal protein, and other salivary proteins in saliva. Classical protein-protein interaction methods in combination with high-throughput mass spectrometric techniques were carried out. Co-IP using protein G magnetic Sepharose TM beads suspension was able to capture salivary complexes formed between histatin 5 and its salivary protein partners. Pull-down assay was used to confirm histatin 5 protein partners. A total of 52 different proteins were identified to interact with histatin 5. The present study used proteomic approaches in conjunction with classical biochemical methods to investigate protein-protein interaction in human saliva. Our study demonstrated that when histatin 5 is complexed with salivary amylase, one of the 52 proteins identified as a histatin 5 partner, the antifungal activity of histatin 5 is reduced. We expected that our proteomic approach could serve as a basis for future studies on the mechanism and structural-characterization of those salivary protein interactions to understand their clinical significance.

  18. Increased Salivary Nitric Oxide and G6PD Activity in Refugees with Anxiety and Stress.

    PubMed

    Gammoh, Omar S; Al-Smadi, Ahmed; Al-Awaida, Wajdy; Badr, Mujtaba M; Qinna, Nidal A

    2016-10-01

    Anxiety and stress are related to physiological changes in humans. Accumulating evidence suggests a cross-talk between psychiatric disorders and oxidative stress. The objective of this study was to compare oxidative stress and defensive antioxidant biomarkers in a group of refugees with acute anxiety and stress with a group of local Jordanians. The Hamilton Anxiety Rating Scale (HAM-A) and the Perceived Stress Scale (PSS) Arabic version were used to assess anxiety and stress respectively. Salivary nitric oxide concentration, glucose-6-phosphate dehydrogenase (G6PD) activity and total salivary protein were compared. As expected, refugees showed higher anxiety and stress scores compared with Jordanians. Also, we report a significant increase in salivary nitric oxide and G6PD activity in the refugee group while total protein concentration did not vary between the two groups. This is the first study that demonstrates an increase in nitric oxide and G6PD activity in the saliva of refugees, thus highlighting their potential role as possible biomarkers in anxiety and stress disorders. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Neohesperidin dihydrochalcone: presentation of a small molecule activator of mammalian alpha-amylase as an allosteric effector.

    PubMed

    Kashani-Amin, Elaheh; Larijani, Bagher; Ebrahim-Habibi, Azadeh

    2013-03-18

    Flavonoids and their precursor trans-chalcone have been reported as inhibitors of mammalian alpha-amylase. With regard to this background, neohesperidin dihydrochalcone (NHDC) effect was investigated toward porcine pancreatic alpha-amylase (PPA), and found to be an activator of the enzyme. The maximal activation (up to threefold) was found to occur at 4.8mM of NHDC, which could be considered to have a high activation profile, with regard to the alpha and beta parameters (alpha<1activator of the enzyme and based on the results obtained from modeling tools, it is suggested to interact with PPA at a hydrophilic site located at the N-terminal, far from the active site of the enzyme.

  20. α-Amylase inhibitory activity from nut seed skin polyphenols. 1. Purification and characterization of almond seed skin polyphenols.

    PubMed

    Tsujita, Takahiro; Shintani, Tomoyoshi; Sato, Hiroaki

    2013-05-15

    Using α-amylase inhibition as a separation guide, polyphenolic compounds from almond ( Prunus dulcis ) seed skin were purified using ultrafiltration and Sephadex LH-20 and ODS columns. The purified fraction specifically and strongly inhibited α-amylase; the IC50 value was 2.2 μg/mL for pig pancreatic α-amylase. The fraction contained about 62% of the total polyphenols, 33.8% flavanol-type tannins and 30% procyanidins. Oral administration of the polyphenol fraction to rats fed corn starch significantly suppressed an increase in blood glucose levels and area under the curve (AUC), in a dose-dependent manner. High-resolution MALDI-TOF mass spectra showed that the structure of this sample is a series of polyflavan-3-ol polymers composed of catechin/epicatechin units and gallocatechin/epigallocatechin units up to 11-mer with several interflavanoid ether linkages. The results suggest almond seed skin contains highly polymerized polyphenols with strong α-amylase inhibitory activity, which retard absorption of carbohydrate.

  1. Influence of bethanechol on salivary parameters in irradiated patients

    PubMed Central

    Cotomacio, Claudia; Campos, Luana; Simões, Alyne; Jaguar, Graziela; Crosato, Edgard-Michel

    2017-01-01

    Background Some studies have shown evidence that the prophylactic use of bethanechol chloride (BC) may be useful in preventing the incidence and/or severity of xerostomia (XT). However, the indication of BC in irradiated patients with XT needs to be better characterized. The study aimed to evaluate the influence of BC on XT, salivary flow rate, and salivary composition in patients previously submitted to head and neck radiotherapy. Material and Methods Forty five irradiated patients complaining of XT used 50 mg/day of BC for 3 months, and the salivary parameters were evaluated in 4 Phases (Before BC therapy, after one month of BC, 2 months of BC, and 3 months of BC). Biochemical analysis included buffering capacity; pH; total protein concentration (TP); amylase concentration (AM); catalase (CAT) and peroxidase (PX) activities. In addition, unstimulated and stimulated salivary flow rates were determined and XT was classified. Results According to the XT grading system used, patients showed improvement in XT between Phase 1, and Phases 2, 3 and 4. In addition, some changes were observed in TP concentration (decreased); AM concentration (increased); and PX and CAT activities (decreased and increased, respectively) after Phase 2, for stimulated saliva collection (p<0.05). Conclusions Our results suggested that when BC was used to treat salivary gland dysfunction induced by head and neck radiotherapy, improvement in XT symptoms, and some changes in saliva composition were shown. Key words:Radiotherapy, xerostomia, hyposalivation, saliva, biochemistry. PMID:27918737

  2. Context-dependent olfactory learning monitored by activities of salivary neurons in cockroaches.

    PubMed

    Matsumoto, Chihiro Sato; Matsumoto, Yukihisa; Watanabe, Hidehiro; Nishino, Hiroshi; Mizunami, Makoto

    2012-01-01

    Context-dependent discrimination learning, a sophisticated form of nonelemental associative learning, has been found in many animals, including insects. The major purpose of this research is to establish a method for monitoring this form of nonelemental learning in rigidly restrained insects for investigation of underlying neural mechanisms. We report context-dependent olfactory learning (occasion-setting problem solving) of salivation, which can be monitored as activity changes of salivary neurons in immobilized cockroaches, Periplaneta americana. A group of cockroaches was trained to associate peppermint odor (conditioned stimulus, CS) with sucrose solution reward (unconditioned stimulus, US) while vanilla odor was presented alone without pairing with the US under a flickering light condition (1.0 Hz) and also trained to associate vanilla odor with sucrose reward while peppermint odor was presented alone under a steady light condition. After training, the responses of salivary neurons to the rewarded peppermint odor were significantly greater than those to the unrewarded vanilla odor under steady illumination and those to the rewarded vanilla odor was significantly greater than those to the unrewarded peppermint odor in the presence of flickering light. Similar context-dependent responses were observed in another group of cockroaches trained with the opposite stimulus arrangement. This study demonstrates context-dependent olfactory learning of salivation for the first time in any vertebrate and invertebrate species, which can be monitored by activity changes of salivary neurons in restrained cockroaches.

  3. Clcn2 encodes the hyperpolarization-activated chloride channel in the ducts of mouse salivary glands

    PubMed Central

    Romanenko, Victor G.; Nakamoto, Tetsuji; Catalán, Marcelo A.; Gonzalez-Begne, Mireya; Schwartz, George J.; Jaramillo, Yasna; Sepúlveda, Francisco V.; Figueroa, Carlos D.; Melvin, James E.

    2008-01-01

    Transepithelial Cl− transport in salivary gland ducts is a major component of the ion reabsorption process, the final stage of saliva production. It was previously demonstrated that a Cl− current with the biophysical properties of ClC-2 channels dominates the Cl− conductance of unstimulated granular duct cells in the mouse submandibular gland. This inward-rectifying Cl− current is activated by hyperpolarization and elevated intracellular Cl− concentration. Here we show that ClC-2 immunolocalized to the basolateral region of acinar and duct cells in mouse salivary glands, whereas its expression was most robust in granular and striated duct cells. Consistent with this observation, nearly 10-fold larger ClC-2-like currents were observed in granular duct cells than the acinar cells obtained from submandibular glands. The loss of inward-rectifying Cl− current in cells from Clcn2−/− mice confirmed the molecular identity of the channel responsible for these currents as ClC-2. Nevertheless, both in vivo and ex vivo fluid secretion assays failed to identify significant changes in the ion composition, osmolality, or salivary flow rate of Clcn2−/− mice. Additionally, neither a compensatory increase in Cftr Cl− channel protein expression nor in Cftr-like Cl− currents were detected in Clcn2 null mice, nor did it appear that ClC-2 was important for blood-organ barrier function. We conclude that ClC-2 is the inward-rectifying Cl− channel in duct cells, but its expression is not apparently required for the ion reabsorption or the barrier function of salivary ductal epithelium. PMID:18801913

  4. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems.

    PubMed

    Warren, Frederick J; Zhang, Bin; Waltzer, Gina; Gidley, Michael J; Dhital, Sushil

    2015-03-06

    In vitro hydrolysis assays are a key tool in understanding differences in rate and extent of digestion of starchy foods. They offer a greater degree of simplicity and flexibility than dynamic in vitro models or in vivo experiments for quantifiable, mechanistic exploration of starch digestion. In the present work the influence of α-amylase and amyloglucosidase activities on the digestion of maize and potato starch granules was measured using both glucose and reducing sugar assays. Data were analysed through initial rates of digestion, and by 1st order kinetics, utilising logarithm of slope (LOS) plots. The rate and extent of starch digestion was dependent on the activities of both enzymes and the type of starch used. Potato required more enzyme than maize to achieve logarithmic reaction curves, and complete digestion. The results allow targeted design of starch digestion experiments through a thorough understanding of the contributions of α-amylase and amyloglucosidase to digestion rates.

  5. Assessment of Maillard reaction evolution, prebiotic carbohydrates, antioxidant activity and α-amylase inhibition in pulse flours.

    PubMed

    Moussou, Nadia; Corzo-Martínez, Marta; Sanz, María Luz; Zaidi, Farid; Montilla, Antonia; Villamiel, Mar

    2017-03-01

    In this paper, the quality of bean, chickpea, fava beans, lentil and pea flours from Algeria has been evaluated. Maillard reaction (MR) indicators, modifications in the carbohydrate and protein fractions, antioxidant activity and α-amylase inhibitor of raw, toasted and stored samples were evaluated. Fava beans, beans and peas showed higher content of raffinose family oligosaccharides while chickpeas and lentils showed higher polyol content. Toasting and storage caused slightly change in pulse quality; MR showed slight losses of lysine but increased antioxidant activity. Moreover, inhibition of α-amylase was slightly augmented during processing; this could increase the undigested carbohydrates that reach the colon, modulating the glycemic response. These results point out the suitability of these flours for preparing high-quality foodstuffs intended for a wide spectrum of the population, including hyperglycemic and gluten intolerant individuals.

  6. Inhibition of beta-amylase activity by calcium, magnesium and zinc ions determined by spectrophotometry and isothermal titration calorimetry.

    PubMed

    Dahot, M Umar; Saboury, A A; Moosavi-Movahedi, A A

    2004-04-01

    The inhibition effect of metal ions on beta amylase activity was studied. The inhibitor-binding constant (Ki) was determined by spectrophotometric and isothermal titration calorimetric (ITC) methods. The binding of calcium, magnesium and zinc ion as inhibitors at the active site of barley beta amylase was studied at pH = 4.8 (sodium acetate 16 mM) and T = 300K. The Ki and enthalpy of binding for calcium (13.4, 13.1 mM and -14.3 kJ/mol), magnesium (18.6, 17.8mM and -17.7 kJ/mol) and zinc (17.5, 17.7 mM and -20.0 kJ/mol) were found by spectrophotometric and ITC methods respectively.

  7. Rubusuaviins A-F, monomeric and oligomeric ellagitannins from Chinese sweet tea and their alpha-amylase inhibitory activity.

    PubMed

    Li, Haizhou; Tanaka, Takashi; Zhang, Ying-Jun; Yang, Chong-Ren; Kouno, Isao

    2007-09-01

    Six new ellagitannins herein, rubusuaviins A-F, were isolated from the aqueous acetone extract of Chinese sweet tea (Tien-cha, dried leaves of Rubus suavissimus S. LEE) together with seven known tannins. Rubusuaviin A was characterized as 1-O-galloyl-2,3-O-(S)-HHDP-4,6-O-(S)-sanguisorboyl-beta-D-glucopyranose. Rubusuaviins B, C, and E are dimeric, trimeric, and tetrameric ellagitannins, respectively, in which the sanguisorboyl groups were connected ellagitannin units. Rubusuaviins D and F were desgalloyl derivatives of rubusuaviins C and E, respectively. The inhibition of alpha-amylase activity by rubusuaviins and related ellagitannins was compared. Ellagitannins with beta-galloyl groups at the glucose C-1 positions showed stronger inhibition compared with the alpha-galloyl and desgalloyl compounds. The molecular weight of these compounds was not important for the inhibition of alpha-amylase activity.

  8. Polysaccharide with antioxidant, α-amylase inhibitory and ACE inhibitory activities from Momordica charantia.

    PubMed

    Tan, Hwee-Feng; Gan, Chee-Yuen

    2016-04-01

    Functional polysaccharide was isolated from Momordica charantia, with a yield of 36% (w/w). M. charantia bioactive polysaccharide (MCBP) was an acidic and branched heteropolysaccharide with a molecular weight of 92 kDa. Fourier transform infrared spectroscopic analysis indicated that MCBP was a pectin-like polysaccharide with an esterification degree of 53% and it contains numerous monosaccharides, predominantly glucose, galactose, and galaturonic acid. The results also showed that MCBP exhibited free radical scavenging activity (31.9%), ferric reducing antioxidant power (0.95 mM), α-amylase inhibition (89.1%), and angiotensin-converting enzyme inhibition (94.1%). In the terms of functionality, MCBP showed a lower water-holding capacity but higher in oil-holding capacity, emulsifying activity and foaming capacity compared to citrus pectin. Scanning electron microscopy images demonstrated that MCBP formed gels with a porous structure, and flow analysis showed that the gel solution exhibited pseudoplastic shear-thinning behavior. These findings indicated that MCBP is a promising functional macromolecular carbohydrate for the food and nutraceutical industries.

  9. Characterization and solvent engineering of wheat β-amylase for enhancing its activity and stability.

    PubMed

    Daba, Tadessa; Kojima, Kenji; Inouye, Kuniyo

    2012-10-10

    The kinetic and thermodynamic parameters of wheat β-amylase (WBA) were characterized and various additives were evaluated for enhancing its activity and thermostability. WBA activity was examined by neocuproine method using soluble starch as substrate. The Michaelis constant (K(m)) and molecular activity (k(cat)) were determined to be 1.0±0.1% (w/v) and 94±3s(-1), respectively, at pH 5.4 and at 25°C. The optimum reaction temperature (T(opt)) for WBA activity was 55°C and the temperature (T(50)) at which it loses half of the activity after 30-min incubation was 50±1°C. Modifications of the solvent with 182mM glycine and 0.18% (w/v) gelatin have increased the T(50) by 5°C. Glycerol, ethylene glycol, dimethylformamide (DMF) and dimethyl sulfoxide have also slightly enhanced the thermostability plausibly through weakening the water structure and decreasing the water shell around the WBA protein. Ethanol and DMF activated WBA by up to 24% at 25°C probably by inducing favorable conformation for the active site or changing the substrate structure by weakening the hydrogen bonding. Its half-life in the inactivation at 55°C was improved from 23 to 48min by 182mM glycine. The thermodynamic parameters indicate that WBA is thermo-labile and sufficient stabilization was achieved through solvent modification with additives and that the heat inactivation of WBA is entropic-driven. It is suggested that WBA could be applied more widely in starch-saccharification industries with employing suitable additives.

  10. Salivary cholinesterase activity in children with organic and convential diets

    EPA Science Inventory

    Objective: Previous efforts to determine the health effects of pesticides have focused on quantifying acetylcholinesterase activity in blood. However, since blood draws can be difficult in young children, saliva biomonitoring has recently been explored as a feasible alternative....

  11. Detergent-compatible bacterial amylases.

    PubMed

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  12. Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae).

    PubMed

    Lima-Oliveira, A P M; Alevi, K C C; Anhê, A C B; Azeredo-Oliveira, M T V

    2016-07-29

    Alkaline phosphatase activity was detected in salivary gland cells of the Rhodnius neglectus Lent, 1954, and R. prolixus Stal, 1859, vectors of Trypanosoma cruzi Chagas, 1909 (etiological agent of Chagas disease) and T. rangeli Tejera, 1920 (pathogenic to insect). The Gomori technique was used to demonstrate alkaline phosphatase activity. Alkaline phosphatase activity was observed throughout the entire gland, with an increased activity in the posterior region of the principal gland. In particular, phosphatase activity was found in the nucleolar corpuscles, suggesting a relationship with the rRNA transcription and ribosomal biogenesis. Alkaline phosphatase was also detected in the nuclear membrane and nuclear matrix, suggesting an association with the nucleo-cytoplasmic transport of ribonucleoproteins and the mechanisms of cell cycle and DNA replication, respectively. This study highlights the importance of alkaline phosphatase in the salivary gland of R. prolixus and R. neglectus and emphasizes its importance in secretory activity. Secretory activity is directly involved in hematophagy and, consequently, in development during metamorphosis. The observed presence of alkaline phosphatase suggests its involvement in the production of saliva allowing feeding of these insects that are important vectors of Chagas disease.

  13. Enzymatic activities in different strains isolated from healthy and brittle leaf disease affected date palm leaves: study of amylase production conditions.

    PubMed

    Mouna, Jrad; Imen, Fendri; Choba Ines, Ben; Nourredine, Drira; Adel, Kadri; Néji, Gharsallah

    2015-02-01

    The present study aimed to investigate and compare the enzymatic production of endophytic bacteria isolated from healthy and brittle leaf disease affected date palm leaves (pectinase, cellulase, lipase, and amylase). The findings revealed that the enzymatic products from the bacterial isolates of healthy date palm leaves were primarily 33% amylolytic enzyme, 33 % cellulase, 25 % pectinase, and 25 % lipase. The isolates from brittle leaf disease date palm leaves, on the other hand, were noted to produce 16 % amylolytic enzyme, 20 % cellulose, 50 % pectinase, and 50 % lipase. The effects of temperature and pH on amylase, pectinase, and cellulose activities were investigated. The Bacillus subtilis JN934392 strain isolated from healthy date palm leaves produced higher levels of amylase activity at pH 7. A Box Behnken Design (BBD) was employed to optimize amylase extraction. Maximal activity was observed at pH and temperature ranges of pH 6-6.5 and 37-39 °C, respectively. Under those conditions, amylase activity was noted to be attained 9.37 U/ml. The results showed that the enzyme was able to maintain more than 50 % of its activity over a temperature range of 50-80 °C, with an optimum at 70 °C. This bacterial amylase showed high activity compared to other bacteria, which provides support for its promising candidacy for future industrial application.

  14. Employing in vitro directed molecular evolution for the selection of α-amylase variant inhibitors with activity toward cotton boll weevil enzyme.

    PubMed

    da Silva, Maria Cristina Mattar; Del Sarto, Rafael Perseghini; Lucena, Wagner Alexandre; Rigden, Daniel John; Teixeira, Fabíola Rodrigues; Bezerra, Caroline de Andrade; Albuquerque, Erika Valéria Saliba; Grossi-de-Sa, Maria Fatima

    2013-09-20

    Numerous species of insect pests attack cotton plants, out of which the cotton boll weevil (Anthonomus grandis) is the main insect in Brazil and must be controlled to avert large economic losses. Like other insect pests, A. grandis secretes a high level of α-amylases in the midgut lumen, which are required for digestion of carbohydrates. Thus, α-amylase inhibitors (α-AIs) represent a powerful tool to apply in the control of insect pests. Here, we applied DNA shuffling and phage display techniques and obtained a combinatorial library containing 10⁸ α-AI variant forms. From this library, variants were selected exhibiting in vitro affinity for cotton boll weevil α-amylases. Twenty-six variant sequences were cloned into plant expression vectors and expressed in Arabidopsis thaliana. Transformed plant extracts were assayed in vitro to select specific and potent α-amylase inhibitors against boll weevil amylases. While the wild type inhibitors, used to create the shuffled library, did not inhibit the A. grandis α-amylases, three α-AI mutants, named α-AIC3, α-AIA11 and α-AIG4 revealed high inhibitory activities against A. grandis α-amylases in an in vitro assay. In summary, data reported here shown the potential biotechnology of new α-AI variant genes for cotton boll weevil control.

  15. Salivary Platelet Activating Factor Levels in Periodontal Disease

    DTIC Science & Technology

    1991-05-01

    multifarious and is activated through multiple mediators. The inflammatory process can be subdivided into acute and chronic inflammation. Stedman’s Medical...Just recently, inflammed human gingival tissues were analyzed and found to contain PAF (Noguchi, et al, 1989). Thus, multiple components of the...17.9% release of peroxidase, 20.6% release of P-glucuronidase, 22.4% release of alkaline phosphatase and 28.8% release of aryl sulfatase . At higher

  16. Anti-complement activity of the Ixodes scapularis salivary protein Salp20

    PubMed Central

    Hourcade, Dennis E.; Akk, Antonina M.; Mitchell, Lynne M.; Zhou, Hui-fang; Hauhart, Richard; Pham, Christine T.N.

    2015-01-01

    Complement, a major component of innate immunity, presents a rapid and robust defense of the intravascular space. While regulatory proteins protect host cells from complement attack, when these measures fail, unrestrained complement activation may trigger self-tissue injury, leading to pathologic conditions. Of the three complement activation pathways, the alternative pathway (AP) in particular has been implicated in numerous disease and injury states. Consequently, the AP components represent attractive targets for therapeutic intervention. The common hard-bodied ticks from the family Ixodidae derive nourishment from the blood of their mammalian hosts. During its blood meal the tick is exposed to host immune effectors, including the complement system. In defense, the tick produces salivary proteins that can inhibit host immune functions. The Salp20 salivary protein of Ixodes scapularis inhibits the host AP pathway by binding properdin and dissociating C3bBbP, the active C3 convertase. In these studies we examined Salp20 activity in various complement-mediated pathologies. Our results indicate that Salp20 can inhibit AP-dependent pathogenesis in the mouse. Its efficacy may be part in due to synergic effects it provides with the endogenous AP regulator, factor H. While Salp20 itself would be expected to be highly immunogenic and therefore inappropriate for therapeutic use, its emergence speaks for the potential development of a non-immunogenic Salp20 mimic that replicates its anti-properdin activity. PMID:26675068

  17. Crystal structure of α-amylase from Oryza sativa: molecular insights into enzyme activity and thermostability.

    PubMed

    Ochiai, Akihito; Sugai, Hiroshi; Harada, Kazuki; Tanaka, Seiya; Ishiyama, Yohei; Ito, Kosuke; Tanaka, Takaaki; Uchiumi, Toshio; Taniguchi, Masayuki; Mitsui, Toshiaki

    2014-01-01

    AmyI-1 is an α-amylase from Oryza sativa (rice) and plays a crucial role in degrading starch in various tissues and at various growth stages. This enzyme is a glycoprotein with an N-glycosylated carbohydrate chain, a unique characteristic among plant α-amylases. In this study, we report the first crystal structure of AmyI-1 at 2.2-Å resolution. The structure consists of a typical (β/α)8-barrel, which is well-conserved among most α-amylases in the glycoside hydrolase family-13. Structural superimposition indicated small variations in the catalytic domain and carbohydrate-binding sites between AmyI-1 and barley α-amylases. By contrast, regions around the N-linked glycosylation sites displayed lower conservation of amino acid residues, including Asn-263, Asn-265, Thr-307, Asn-342, Pro-373, and Ala-374 in AmyI-1, which are not conserved in barley α-amylases, suggesting that these residues may contribute to the construction of the structure of glycosylated AmyI-1. These results increase the depths of our understanding of the biological functions of AmyI-1.

  18. Purification and identification of amylases released by the human pathogen Trichomonas vaginalis that are active towards glycogen.

    PubMed

    Smith, Ronald W; Brittingham, Andrew; Wilson, Wayne A

    The parasitic protist Trichomonas vaginalis is the causative agent of the sexually transmitted infection trichomoniasis. In the laboratory, T. vaginalis is typically cultured in a serum-containing medium with maltose or glucose as the carbon source. The nature of the carbohydrates used by the organism in the environment of its host is unclear. However, the vagina contains substantial amounts of glycogen, which is believed to provide a growth substrate for the vaginal microbiota. We have shown previously that T. vaginalis releases glucosidases that are active towards glycogen into its environment. Here we purify and identifying these glucosidases. Using ammonium sulfate precipitation and precipitation with ethanol/glycogen, we purified glucosidase activity from conditioned growth medium, achieving over 300-fold enrichment. Maltose was released when glycogen was incubated with the glucosidase preparation, indicating that a β-amylase was present. However, after prolonged incubation, small quantities of larger products including maltotriose were obtained. Liquid chromatography and tandem mass spectrometry showed that the glucosidase preparation contained three proteins, the major component being a putative β-amylase encoded by the TVAG_080000 open reading frame. Lesser amounts of two putative α-amylases, encoded by the TVAG_178580 and TVAG_205920 open reading frames, were also present. We cloned and expressed the TVAG_080000 open reading frame and found that the recombinant protein was capable of digesting glycogen, releasing exclusively maltose. We conclude that T. vaginalis releases a variety of amylases into its growth environment and is well equipped to utilize the glycogen found in the vagina as a source of essential carbohydrates.

  19. Experimental induction of gene activity in the salivary gland chromosomes of Trichosia pubescens (Diptera: Sciaridae)

    PubMed Central

    1978-01-01

    During the course of experiments with larvae of Trichosia pubescens, we have unexpectedly found that diethyl ether or chloroform anesthesia induces a large puff in a specific band in the polytene chromosomes of the salivary glands. This puff develops a few minutes after the treatment, attaining its maximum size after 60-100 min, and regresses completely 200 min after its activation. Through autoradiography, an intense incorporation of RNA precursors into that puff was observed. A few other smaller puffs are also induced by the treatment. The treatment with diethyl ether or chloroform does not induce puffing in the polytene cells of malpighian tubules and of midgut. PMID:670289

  20. Role of disulfide bridges in the activity and stability of a cold-active alpha-amylase.

    PubMed

    Siddiqui, Khawar Sohail; Poljak, Anne; Guilhaus, Michael; Feller, Georges; D'Amico, Salvino; Gerday, Charles; Cavicchioli, Ricardo

    2005-09-01

    The cold-adapted alpha-amylase from Pseudoalteromonas haloplanktis unfolds reversibly and cooperatively according to a two-state mechanism at 30 degrees C and unfolds reversibly and sequentially with two transitions at temperatures below 12 degrees C. To examine the role of the four disulfide bridges in activity and conformational stability of the enzyme, the eight cysteine residues were reduced with beta-mercaptoethanol or chemically modified using iodoacetamide or iodoacetic acid. Matrix-assisted laser desorption-time of flight mass spectrometry analysis confirmed that all of the cysteines were modified. The iodoacetamide-modified enzyme reversibly folded/unfolded and retained approximately one-third of its activity. Removal of all disulfide bonds resulted in stabilization of the least stable region of the enzyme (including the active site), with a concomitant decrease in activity (increase in activation enthalpy). Disulfide bond removal had a greater impact on enzyme activity than on stability (particularly the active-site region). The functional role of the disulfide bridges appears to be to prevent the active site from developing ionic interactions. Overall, the study demonstrated that none of the four disulfide bonds are important in stabilizing the native structure of enzyme, and instead, they appear to promote a localized destabilization to preserve activity.

  1. Componential profile and amylase inhibiting activity of phenolic compounds from Calendula officinalis L. leaves.

    PubMed

    Olennikov, Daniil N; Kashchenko, Nina I

    2014-01-01

    An ethanolic extract and its ethyl acetate-soluble fraction from leaves of Calendula officinalis L. (Asteraceae) were found to show an inhibitory effect on amylase. From the crude extract fractions, one new phenolic acid glucoside, 6'-O-vanilloyl-β-D-glucopyranose, was isolated, together with twenty-four known compounds including five phenolic acid glucosides, five phenylpropanoids, five coumarins, and nine flavonoids. Their structures were elucidated based on chemical and spectral data. The main components, isoquercitrin, isorhamnetin-3-O-β-D-glucopyranoside, 3,5-di-O-caffeoylquinic acid, and quercetin-3-O-(6''-acetyl)-β-D-glucopyranoside, exhibited potent inhibitory effects on amylase.

  2. Dietary electrolyte balance affects growth performance, amylase activity and metabolic response in the meagre (Argyrosomus regius).

    PubMed

    Magnoni, Leonardo J; Salas-Leiton, Emilio; Peixoto, Maria-João; Pereira, Luis; Silva-Brito, Francisca; Fontinha, Filipa; Gonçalves, José F M; Wilson, Jonathan M; Schrama, Johan W; Ozório, Rodrigo O A

    2017-03-16

    Dietary ion content is known to alter the acid-base balance in freshwater fish. The current study investigated the metabolic impact of acid-base disturbances produced by differences in dietary electrolyte balance (DEB) in the meagre (Argyrosomus regius), an euryhaline species. Changes in fish performance, gastric chyme characteristics, pH and ion concentrations in the bloodstream, digestive enzyme activities and metabolic rates were analyzed in meagre fed ad libitum two experimental diets (DEB 200 or DEB 700mEq/kg) differing in the Na2CO3 content for 69days. Fish fed the DEB 200 diet had 60-66% better growth performance than the DEB 700 group. Meagre consuming the DEB 200 diet were 90-96% more efficient than fish fed the DEB 700 diet at allocating energy from feed into somatic growth. The pH values in blood were significantly lower in the DEB 700 group 2h after feeding when compared to DEB 200, indicating that acid-base balance in meagre was affected by electrolyte balance in diet. Osmolality, and Na(+) and K(+) concentrations in plasma did not vary with the dietary treatment. Gastric chyme in the DEB 700 group had higher pH values, dry matter, protein and energy contents, but lower lipid content than in the DEB 200 group. Twenty-four hours after feeding, amylase activity was higher in the gastrointestinal tract of DEB 700 group when compared to the DEB 200 group. DEB 700 group had lower routine metabolic (RMR) and standard metabolic (SMR) rates, indicating a decrease in maintenance energy expenditure 48h after feeding the alkaline diet. The current study demonstrates that feeding meagre with an alkaline diet not only causes acid-base imbalance, but also negatively affects digestion and possibly nutrient assimilation, resulting in decreased growth performance.

  3. Enhanced antifungal and insect α-amylase inhibitory activities of Alpha-TvD1, a peptide variant of Tephrosia villosa defensin (TvD1) generated through in vitro mutagenesis.

    PubMed

    Vijayan, S; Imani, J; Tanneeru, K; Guruprasad, L; Kogel, K H; Kirti, P B

    2012-02-01

    TvD1 is a small, cationic, and highly stable defensin from the weedy legume, Tephrosia villosa with demonstrated in vitro antifungal activity. We show here peptide modifications in TvD1 that lead to enhanced antifungal activities. Three peptide variants, S32R, D37R, and Alpha-TvD1 (-G-M-T-R-T-) with variations in and around the β2-β3 loop region that imposes the two β-strands, β2 and β3 were generated through in vitro mutagenesis. Alpha-TvD1 exhibited enhanced antifungal activity against the fungal pathogens, Fusarium culmorum and Fusarium oxysporum with respective IC(50) values of 2.5 μM and 3.0 μM, when compared to S32R (<5.0 μM and >5.0 μM), D37R (5.5 μM and 4.5 μM), and the wild type TvD1 (6.5 μM). Because of the enhanced antifungal activity, this variant peptide was characterized further. Growth of F. culmorum in the presence of Alpha-TvD1 showed deformities in hyphal walls and nuclear damage. With respect to the plant pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000, both Alpha-TvD1 and the wild type TvD1 showed comparable antibacterial activity. Both wild type TvD1 and Alpha-TvD1 displayed inhibitory activity against the α-amylase of the mealworm beetle, Tenebrio molitor (TMA) with the latter showing enhanced activity. The human salivary as well as barley α-amylase activities were not inhibited even at concentrations of up to 50 μM, which has been predicted to be due to differences in the pocket size and the size of the interacting loops. Present study shows that the variant Alpha-TvD1 exhibits enhanced antifungal as well as insect α-amylase inhibitory activity.

  4. Association of Novel Domain in Active Site of Archaic Hyperthermophilic Maltogenic Amylase from Staphylothermus marinus*

    PubMed Central

    Jung, Tae-Yang; Li, Dan; Park, Jong-Tae; Yoon, Se-Mi; Tran, Phuong Lan; Oh, Byung-Ha; Janeček, Štefan; Park, Sung Goo; Woo, Eui-Jeon; Park, Kwan-Hwa

    2012-01-01

    Staphylothermus marinus maltogenic amylase (SMMA) is a novel extreme thermophile maltogenic amylase with an optimal temperature of 100 °C, which hydrolyzes α-(1–4)-glycosyl linkages in cyclodextrins and in linear malto-oligosaccharides. This enzyme has a long N-terminal extension that is conserved among archaic hyperthermophilic amylases but is not found in other hydrolyzing enzymes from the glycoside hydrolase 13 family. The SMMA crystal structure revealed that the N-terminal extension forms an N′ domain that is similar to carbohydrate-binding module 48, with the strand-loop-strand region forming a part of the substrate binding pocket with several aromatic residues, including Phe-95, Phe-96, and Tyr-99. A structural comparison with conventional cyclodextrin-hydrolyzing enzymes revealed a striking resemblance between the SMMA N′ domain position and the dimeric N domain position in bacterial enzymes. This result suggests that extremophilic archaea that live at high temperatures may have adopted a novel domain arrangement that combines all of the substrate binding components within a monomeric subunit. The SMMA structure provides a molecular basis for the functional properties that are unique to hyperthermophile maltogenic amylases from archaea and that distinguish SMMA from moderate thermophilic or mesophilic bacterial enzymes. PMID:22223643

  5. ALPHA-AMYLASE ACTIVITY IN VARIOUS CONCENTRATIONS OF THE IONIC LIQUID, 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch is an extremely abundant, economical and versatile industrial commodity. Many industrial uses of starch depend on hydrolyzing the polymer for the conversion of glucose and maltodextrins. Starch hydrolysis is frequently achieved by utilizing alpha-amylase, which is an endo-acting enzyme that...

  6. Very stable high molecular mass multiprotein complex with DNase and amylase activities in human milk.

    PubMed

    Soboleva, Svetlana E; Dmitrenok, Pavel S; Verkhovod, Timofey D; Buneva, Valentina N; Sedykh, Sergey E; Nevinsky, Georgy A

    2015-01-01

    For breastfed infants, human milk is more than a source of nutrients; it furnishes a wide array of proteins, peptides, antibodies, and other components promoting neonatal growth and protecting infants from viral and bacterial infection. It has been proposed that most biological processes are performed by protein complexes. Therefore, identification and characterization of human milk components including protein complexes is important for understanding the function of milk. Using gel filtration, we have purified a stable high molecular mass (~1000 kDa) multiprotein complex (SPC) from 15 preparations of human milk. Light scattering and gel filtration showed that the SPC was stable in the presence of high concentrations of NaCl and MgCl2 but dissociated efficiently under the conditions that destroy immunocomplexes (2 M MgCl2 , 0.5 M NaCl, and 10 mM DTT). Such a stable complex is unlikely to be a casual associate of different proteins. The relative content of the individual SPCs varied from 6% to 25% of the total milk protein. According to electrophoretic and mass spectrometry analysis, all 15 SPCs contained lactoferrin (LF) and α-lactalbumin as major proteins, whereas human milk albumin and β-casein were present in moderate or minor amounts; a different content of IgGs and sIgAs was observed. All SPCs efficiently hydrolyzed Plasmid supercoiled DNA and maltoheptaose. Some freshly prepared SPC preparations contained not only intact LF but also small amounts of its fragments, which appeared in all SPCs during their prolonged storage; the fragments, similar to intact LF, possessed DNase and amylase activities. LF is found in human epithelial secretions, barrier body fluids, and in the secondary granules of leukocytes. LF is a protein of the acute phase response and nonspecific defense against different types of microbial and viral infections. Therefore, LF complexes with other proteins may be important for its functions not only in human milk.

  7. Saliva amylase as a measure of sympathetic change elicited by autogenic training in patients with functional somatic syndromes.

    PubMed

    Kiba, Tadashi; Kanbara, Kenji; Ban, Ikumi; Kato, Fumie; Kawashima, Sadanobu; Saka, Yukie; Yamamoto, Kazumi; Nishiyama, Junji; Mizuno, Yasuyuki; Abe, Tetsuya; Fukunaga, Mikihiko

    2015-12-01

    The aim of this study was to discuss the effect of autogenic training (AT) on patients with functional somatic syndrome (FSS) using salivary amylase, the skin temperature of the finger, subjective severity of symptoms, and psychological characteristics as measures. We assessed 20 patients with FSS and 23 healthy controls before and after AT. Baseline levels of salivary amylase prior to an AT session were significantly higher in the FSS group than in the control group. However, this difference was not significant after AT. The skin temperature of the finger increased after AT in both the FSS and control groups. AT contributed to the improvement of somatic symptoms in patients with FSS. Our results regarding psychological characteristics suggest that mood disturbances are deeply involved in the pathology of FSS. Individuals with FSS exhibited elevated levels of sympathetic activity compared with healthy controls. Our data indicates that AT eased dysregulation of the autonomic nervous system in patients with FSS. Thus, salivary amylase may be a useful index of change induced by AT in patients with FSS.

  8. Effects of a dietary Aspergillus oryzae extract containing alpha-amylase activity on performance and carcass characteristics of finishing beef cattle.

    PubMed

    Tricarico, J M; Abney, M D; Galyean, M L; Rivera, J D; Hanson, K C; McLeod, K R; Harmon, D L

    2007-03-01

    Three experiments were conducted to examine the effects of an Aspergillus oryzae extract containing alpha-amylase activity on performance and carcass characteristics of finishing beef cattle. In Exp. 1, 120 crossbred steers were used in a randomized complete block design to evaluate the effects of roughage source (alfalfa hay vs. cottonseed hulls) and supplemental alpha-amylase at 950 dextrinizing units (DU)/kg of DM. Significant roughage source x alpha-amylase interactions (P < 0.05) were observed for performance. In steers fed cottonseed hulls, supplemental alpha-amylase increased ADG through d 28 and 112 and tended (P < 0.15) to increase ADG in all other periods. The increases in ADG were related to increased DMI and efficiency of gain during the initial 28-d period but were primarily related to increased DMI as the feeding period progressed. Supplemental alpha-amylase increased (P = 0.02) the LM area across both roughage sources. In Exp. 2, 96 crossbred heifers were used in a randomized complete block design with a 2 x 3 factorial arrangement of treatments to evaluate the effects of corn processing (dry cracked vs. high moisture) and supplemental alpha-amylase concentration (0, 580, or 1,160 DU/kg of DM). Alpha-amylase supplementation increased DMI (P = 0.05) and ADG (P = 0.03) during the initial 28 d on feed and carcass-adjusted ADG (P = 0.04) across corn processing methods. Longissimus muscle area was greatest (quadratic effect, P = 0.04), and yield grade was least (quadratic effect, P = 0.02) in heifers fed 580 DU of alpha-amylase/kg of DM across corn processing methods. In Exp. 3, 56 crossbred steers were used in a randomized complete block design to evaluate the effects of supplemental alpha-amylase (930 DU/kg of DM) on performance when DMI was restricted to yield a programmed ADG. Alpha-amylase supplementation did not affect performance when DMI was restricted. We conclude that dietary alpha-amylase supplementation of finishing beef diets may result in

  9. Periodontal status, salivary immunoglobulin, and microbial counts after short exposure to an isolated environment.

    PubMed

    Rai, Balwant; Kaur, Jasdeep

    2013-01-01

    Salivary flow rate, immunoglobulin, and periodontal status were affected during a simulated Skylab mission. The effect is more prominent after long-duration space flights and can persist for several weeks after landing. The objective of this study was to determine the effect of a simulated Mars environment on periodontal status and levels of salivary microorganisms and immunoglobulins in the human oral cavity. Twelve healthy male volunteers were studied before, at 1 and 2 weeks, and after completion of a mission in an isolated, confined simulated Mars environment at the Mars Desert Research Station, USA. We conducted a current stress test, measured salivary immunoglobulin, cortisol, α-amylase, salivary flow rate, and levels of plaque and salivary microbes, and assessed clinical periodontal parameters (probing depth, bleeding on probing, and clinical loss of attachment). Salivary IgG levels and Streptococcus mutans activity were significantly higher at 1 week. Values for clinical periodontal parameters (probing depth, bleeding on probing, and clinical loss of attachment) significantly differed at 1 week. Stress might be caused by the difficulty of the mission rather than the isolated environment, as mission duration was quite short. Periodontal condition might worsen due to poor oral hygiene during the mission. The present findings show that all periodontal conditions and levels of oral bacteria and stress after completion of the simulated Mars mission differed from those at baseline. To verify the relationship between stress status and periodontal health in simulated Mars missions, future studies using larger patient samples and longer follow-up will be required.

  10. Salivary biomarkers of neural hypervigilance in trauma-exposed women

    PubMed Central

    Yoon, Seungyeon A.; Weierich, Mariann R.

    2015-01-01

    Objectives More than half of all adults will be exposed to a traumatic event at some point in their lives, yet we do not yet have reliable biomarkers to help predict who experiences trauma-related symptoms in response to exposure. We tested the utility of salivary cortisol and salivary alpha amylase as markers of (1) neural reactivity to negative affective information and (2) neural hypervigilance in the absence of threat. Participants 20 women (mean age 23.6 +/− 5.8 years) with a history of trauma exposure. Measures Salivary cortisol and alpha amylase reactivity were measured in response to a trauma reminder during a clinical interview. Neural reactivity to novel and familiar affective scenes was measured in a later session using functional magnetic resonance imaging. Results Salivary alpha amylase, but not cortisol, increased in response to the trauma reminder. Salivary alpha amylase reactivity was associated with neural reactivity in the salience network in response to novel negative scenes and neural hypervigilance as indexed by reactivity to novel neutral scenes. Conclusions Salivary alpha amylase might serve as a more reliable marker of trauma-related reactivity to negative affective information, and also as a marker of hypervigilance in the absence of threatening information. PMID:26398002

  11. Heat shock inhibits. alpha. -amylase synthesis in barley aleurone without inhibiting the activity of endoplasmic reticulum marker enzymes

    SciTech Connect

    Sticher, L.; Biswas, A.K.; Bush, D.S.; Jones, R.L. )

    1990-02-01

    The effects of heat shock on the synthesis of {alpha}-amylase and on the membranes of the endoplasmic reticulum (ER) of barley (Hordeum vulgare) aleurone were studied. Heat shock, imposed by raising the temperature of incubation from 25{degree}C to 40{degree}C for 3 hours, inhibits the accumulation of {alpha}-amylase and other proteins in the incubation medium of barley aleurone layers treated with gibberellic acid and Ca{sup 2+}. When ER is isolated from heat-shocked aleurone layers, less newly synthesized {alpha}-amylase is found associated with this membrane system. ER membranes, as indicated by the activities of NADH cytochrome c reductase and ATP-dependent Ca{sup 2+} transport, are not destroyed by heat stress, however. Although heat shock did not reduce the activity of ER membrane marker enzymes, it altered the buoyant density of these membranes. Whereas ER from control tissue showed a peak of marker enzyme activity at 27% to 28% sucrose (1.113-1.120 grams per cubic centimeter), ER from heat-shocked tissue peaked at 30% to 32% sucrose (1.127-1.137 grams per cubic centimeter). The synthesis of a group of proteins designated as heat-shock proteins (HSPs) was stimulated by heat shock. These HSPs were localized to different compartments of the aleurone cell. Several proteins ranging from 15 to 30 kilodaltons were found in the ER and the mitochondrial/plasma membrane fractions of heat-shocked cells, but none of the HSPs accumulated in the incubation medium of heat-shocked aleurone layers.

  12. Morphology and preliminary enzyme characterization of the salivary glands from the predatory bug Podisus nigrispinus (Heteroptera: Pentatomidae).

    PubMed

    Oliveira, J A; Oliveira, M G A; Guedes, R N C; Soares, M J

    2006-06-01

    Podisus nigrispinus (Dallas) is a common predator in agricultural and natural systems in Neotropical America. Its feeding strategy involves extra-oral digestion and to better understand this process its salivary glands were extracted and subjected to morphological and preliminary enzyme characterization. The salivary glands of P. nigrispinus are formed by a pair of main and accessory gland complexes. The main salivary glands are further divided into an anterior and a posterior lobe. The compartmentalization of the salivary gland complex is likely to be important for the production, activation and release of the digestive enzymes used in the extra-oral digestion of prey items. Proteases and lipase, important digestive enzymes involved in zoophagy, were detected in the salivary glands of P. nigrispinus. The prevailing trypsin-like protease activity was characterized by using the serine-protease substrate N-alpha-benzoyl-L-Arg-p-nitroanilidine (L-BApNA) and the trypsin inhibitors tosyl-L-lysine chloromethyl ketone (TLCK) and benzamidine. The KM value obtained for trypsin-like activity was 1.57 mm and the different peaks of optimum pH and temperature activity suggest the presence of multiple forms of this enzyme in P. nigrispinus. Detection of amylase activity in the salivary glands of this predator suggests its ability to digest starch and obtain nutrients from plants, which may have adaptative value under prey scarcity.

  13. Characterization of recombinant β-amylases from Oryza sativa.

    PubMed

    Koide, Tomojiro; Ohnishi, Yasuo; Horinouchi, Sueharu

    2011-01-01

    Four putative β-amylase genes found in the Oryza sativa cDNA sequence database (KOME) were expressed in Escherichia coli. Recombinant proteins from two of these genes showed β-amylase activity. Similarly to β-amylases from other plants, the optimum pH of the recombinant rice β-amylases was about 5.5-6.0, but they exhibited inferior heat stability to soybean β-amylase.

  14. Effect of starch and amylase on the expression of amylase-binding protein A in Streptococcus gordonii.

    PubMed

    Nikitkova, A E; Haase, E M; Scannapieco, F A

    2012-08-01

    Streptococcus gordonii is a common oral commensal bacterial species in tooth biofilm (dental plaque) and specifically binds to salivary amylase through the surface exposed amylase-binding protein A (AbpA). When S. gordonii cells are pretreated with amylase, amylase bound to AbpA facilitates growth with starch as a primary nutrition source. The goal of this study was to explore possible regulatory effects of starch, starch metabolites and amylase on the expression of S. gordonii AbpA. An amylase ligand-binding assay was used to assess the expression of AbpA in culture supernatants and on bacterial cells from S. gordonii grown in defined medium supplemented with 1% starch, 0.5 mg ml(-1) amylase, with starch and amylase together, or with various linear malto-oligosaccharides. Transcription of abpA was determined by reverse transcription quantitative polymerase chain reaction. AbpA was not detectable in culture supernatants containing either starch alone or amylase alone. In contrast, the amount of AbpA was notably increased when starch and amylase were both present in the medium. The expression of abpA was significantly increased (P < 0.05) following 40 min of incubation in defined medium supplemented with starch and amylase. Similar results were obtained in the presence of maltose and other short-chain malto-oligosacchrides. These results suggest that the products of starch hydrolysis produced from the action of salivary α-amylase, particularly maltose and maltotriose, up-regulate AbpA expression in S. gordonii.

  15. [THE EFFECT OF METAL IONES AND SPECIFIC CHEMICAL REAGENTS ON THE ACTIVITY OF ASPERGILLUS FLAVUS VAR. ORYZAE AND BACILLUS SUBTILIS α-AMYLASES].

    PubMed

    Avdiyuk, K V; Varbanets, L D

    2015-01-01

    The effect of cations and anions on the activity of Aspergillus flavus var. oryzae and Bacillus subtilis α-amylases showed that the tested enzymes are sensitive to most of cations and resistant to anions. The most significant inhibitory effects on the activity of A. flavus var. oryzae α-amylase have been demonstrated by Al3+ and Fe3+ ions, while on the activity of B. subtilis α-amylase - Hg2+, Cu2+ and Fe3+ ions. Inactivation of A. flavus var. oryzae and B. subtilis α-amylases in the presence of EGTA is indicated on the presence within their structure of metal ions. An important role in the enzymatic catalysis of both enzymes play carboxyl groups as evidenced by their inhibition of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide methiodide. Inhibition of B. subtilis α-amylase by p-chloromercuribenzoate, N-ethylmaleimide and sodium sulfite is indicated on the probable involvement of the sulfhydryl groups in the functioning of the enzyme. Unlike most studied glycosidases the tested enzymes do not contain histidine imidazole group in the active center.

  16. Effects of temperature and sodium chloride concentration on the activities of proteases and amylases in soy sauce koji.

    PubMed

    Su, Nan-Wei; Wang, Mei-Ling; Kwok, Kam-Fu; Lee, Min-Hsiung

    2005-03-09

    This study investigated the effects of temperature and sodium chloride concentration on the proteolytic and amylolytic activities of soy sauce koji. The optimal temperatures for both protease and amylase were found in the range of 50-55 degrees C. The protease was not stable at 55 degrees C and retained only approximately 20% residual activity after incubation at 55 degrees C for 4 h. The protease was labile in sodium chloride solution, whereas the amylase was quite stable. The residual protease activity in an 18% NaCl solution was only approximately 3%. The harvested koji was mixed with 1.5 volumes of water (v/w) and incubated at 45 degrees C for 48 h; the total nitrogen and amino nitrogen contents were 1.3 and 0.56%, respectively. The results indicated that the hydrolysis of koji at the critical temperature of 45 degrees C could be employed as a rapid fermentation method to reduce the time for soy sauce manufacturing. According to this study, the combination of 5% sodium chloride and fermentation at 45 degrees C was considered as the best condition for the prohydrolysis of koji for making soy sauce. In addition, the critical temperature of 45 degrees C was very important when used in the preparation of protein hydrolysates for the flavoring industry and for the preparation of biologically active peptides.

  17. Characteristics of Raw Starch-Digesting α-Amylase of Streptomyces badius DB-1 with Transglycosylation Activity and Its Applications.

    PubMed

    Shivlata, L; Satyanarayana, T

    2017-04-01

    Streptomyces badius DB-1 produces α-amylase extracellularly, and its production was enhanced 5.1-fold (from 9.47 ± 0.51 to 48.23 ± 1.45 U mL(-1)) due to optimization by one-variable-at-a-time and statistical approaches. Soluble starch emerged as the most influential factor that strongly affected enzyme production. The purified enzyme is a monomer with a molecular mass of ~57 kDa and optimally active at 50 °C and pH 6.0. The enzyme hydrolyzes soluble as well as raw starches into simpler sugars with a high proportion (>40.0 %) of maltotetraose. It is optimally active at moderate temperature and generates maltooligosaccharides from starch, thus, useful as an antistale in bread making. It also plays a role in increasing the formation of maltooligosaccharides due to transglycosylation activity, thus, finds application in functional foods. This is the first report on the production of raw starch-digesting α-amylase by S. badius with transglycosylation activity.

  18. Antidiabetic Activity of Gnidia glauca and Dioscorea bulbifera: Potent Amylase and Glucosidase Inhibitors

    PubMed Central

    Ghosh, Sougata; Ahire, Mehul; Patil, Sumersing; Jabgunde, Amit; Bhat Dusane, Meenakshi; Joshi, Bimba N.; Pardesi, Karishma; Jachak, Sanjay; Dhavale, Dilip D.; Chopade, Balu A.

    2012-01-01

    Diabetes is a metabolic disorder affecting about 220 million people worldwide. One of the most critical complications of diabetes is post-prandial hyper-glycemia (PPHG). Glucosidase inhibitor and α-amylase inhibitors are class of compounds that help in managing PPHG. Low-cost herbal treatment is recommended due to their lesser side effect for treatment of diabetes. Two plants with significant traditional therapeutic potential, namely, Gnidia glauca and Dioscorea bulbifera, were tested for their efficiency to inhibit α-amylase and α-glucosidase. Stem, leaf, and flower of G. glauca and bulb of D. bulbifera were sequentially extracted with petroleum ether, ethyl acetate, and methanol as well as separately with 70% ethanol. Petroleum ether extract of flower of G. glauca was found to inhibit α-amylase significantly (78.56%). Extracts were further tested against crude murine pancreatic, small intestinal, and liver glucosidase enzyme which revealed excellent inhibitory properties. α-glucosidase inhibition provided a strong in vitro evidence for confirmation of both G. glauca and D. bulbifera as excellent antidiabetic remedy. This is the first report of its kind that provides a strong biochemical basis for management of type II diabetes using G. glauca and D. bulbifera. These results provide intense rationale for further in vivo and clinical study. PMID:21785651

  19. Optimizing of the formation of active BMW-amylase after in vitro refolding.

    PubMed

    Nasrollahi, Parisa; Khajeh, Khosro; Akbari, Neda

    2012-09-01

    This study was carried out to determine the optimal folding condition of α-amylase from Bacillus megaterium WHO using response surface methodology (RSM). A first-order model showed that three factors namely glycerol, Ca(2+) and protein concentration had the most significant effect on refolding. Analysis of the results showed that glycerol was better than the other polyols due to its effect on protein stability. Since α-amylases are known to contain calcium ions in their structure, the presence of calcium in the refolding buffer was compulsory. The concentration of protein had the most significant quadratic effect on the response studied. A second-order polynomial model was developed to quantify the relationships between variables. It was shown that the combination of 20%(v/v) glycerol, 25 mM Ca(2+) and 0.3 (mg/ml) protein was the most efficient condition for in vitro refolding of α-amylase. Under the optimal condition the yield of refolding was enhanced up to 7-fold. In order to analysis the size distribution in optimized and basic medium, dynamic light scattering (DLS) was fulfilled. The information gathered in this study showed that the use of solvent engineering and optimization procedure can be a general method for protein refolding.

  20. Low serum amylase and obesity, diabetes and metabolic syndrome: A novel interpretation

    PubMed Central

    Nakajima, Kei

    2016-01-01

    For the last decade, low serum amylase (hypoamylasemia) has been reported in certain common cardiometabolic conditions such as obesity, diabetes (regardless of type), and metabolic syndrome, all of which appear to have a common etiology of insufficient insulin action due to insulin resistance and/or diminished insulin secretion. Some clinical studies have shown that salivary amylase may be preferentially decreased in obese individuals, whereas others have revealed that pancreatic amylase may be preferentially decreased in diabetic subjects with insulin dependence. Despite this accumulated evidence, the clinical relevance of serum, salivary, and pancreatic amylase and the underlying mechanisms have not been fully elucidated. In recent years, copy number variations (CNVs) in the salivary amylase gene (AMY1), which range more broadly than the pancreatic amylase gene (AMY2A and AMY2B), have been shown to be well correlated with salivary and serum amylase levels. In addition, low CNV of AMY1, indicating low salivary amylase, was associated with insulin resistance, obesity, low taste perception/satiety, and postprandial hyperglycemia through impaired insulin secretion at early cephalic phase. In most populations, insulin-dependent diabetes is less prevalent (minor contribution) compared with insulin-independent diabetes, and obesity is highly prevalent compared with low body weight. Therefore, obesity as a condition that elicits cardiometabolic diseases relating to insulin resistance (major contribution) may be a common determinant for low serum amylase in a general population. In this review, the novel interpretation of low serum, salivary, and pancreas amylase is discussed in terms of major contributions of obesity, diabetes, and metabolic syndrome. PMID:27022442

  1. Phytochemical composition, protective and therapeutic effect on gastric ulcer and α-amylase inhibitory activity of Achillea biebersteinii Afan.

    PubMed

    Abd-Alla, Howaida I; Shalaby, Nagwa M M; Hamed, Manal A; El-Rigal, Nagy Saba; Al-Ghamdi, Samira N; Bouajila, Jalloul

    2016-01-01

    Three sesquiterpene lactones [two germacranolides (micranthin and sintenin) and one guaianolide (4β,10α-dihydroxy-5β,7β,8βH-guaia-1,11(13)dien-12,8α-olide)] and four derivatives of 3-methoxy flavones (santin, quercetagetin-3,6,3'-trimethyl ether, quercetagetin-3,6-dimethyl ether, and 5,7 dihydroxy 3,3',4'-trimethoxy flavone) were isolated from the ethyl acetate extract (EAE) of the aerial parts of Achillea biebersteinii Afan. (Asteraceae). Evaluation of protective and therapeutic effects of EAE against ethanol-induced gastric ulcer in rats was carried. Antiulcer activity evaluation was done through measuring ulcer indices, stomach acidity, gastric volume and lesion counts. Oxidative stress markers; malondialdehyde, glutathione and superoxide dismutase were also estimated. The work was extended to determine the histopathological assessment of the stomach. Gastric ulcer exhibited a significant elevation of the ulcer index and oxidative stress markers. The extract attenuated these increments and recorded protective and therapeutic effects against gastric ulcer. Hyperglycaemia increases the mucosal susceptibility to ulcerogenic stimuli and predisposes gastric ulceration. In vitro α-amylase inhibitory assay was applied to evaluate the post prandial antihyperglycaemia activity. The result showing that the EAE has the ability to reduce starch-induced postprandial glycaemic excursions by virtue of potent intestinal α-amylase inhibitory activity. These findings demonstrated the remarkable potential of A. biebersteinii as valuable source of antiulcer agent with post prandial hyperglycaemia lowering effect.

  2. A new nano-optical sensor thin film cadmium sulfide doped in sol-gel matrix for assessment of α-amylase activity in human saliva.

    PubMed

    Attia, M S; Zoulghena, H; Abdel-Mottaleb, M S A

    2014-02-21

    A novel, simple, sensitive and precise spectrofluorimetric method is developed for measuring the activity of the α-amylase enzyme in human saliva. The remarkable quenching of the luminescence intensity at 634 nm of nano CdS doped in a sol-gel matrix by various concentrations of maltose (produced from the reaction of the enzyme with the starch substrate) was successfully used as an optical sensor for the assessment of α-amylase activity. The calibration plot was achieved over the concentration range 4.8 × 10(-10) to 1.2 × 10(-5) mol L(-1) maltose with a correlation coefficient of 0.999 and a detection limit of 5.7 × 10(-11) mol L(-1). The method was used satisfactorily for assessment of the α-amylase activity in a number of human saliva samples collected from various healthy volunteers.

  3. Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on α-amylase activity and in vitro digestibility of starch in raw and processed flours.

    PubMed

    Mkandawire, Nyambe L; Kaufman, Rhett C; Bean, Scott R; Weller, Curtis L; Jackson, David S; Rose, Devin J

    2013-05-08

    The purpose of this study was to investigate the effects of tannins on starch digestion in tannin-containing sorghum extracts and wholegrain flours from 12 sorghum varieties. Extracts reduced amylase activity in a tannin concentration-dependent manner when the extract was mixed with the enzyme before substrate (amylopectin) addition, with higher molecular weight tannins showing greater reduction. Conversely, when the extract and substrate were combined before enzyme addition an enhancement in amylase activity was experienced. In uncooked, cooked, and cooked and stored wholegrain sorghum flours, rapidly digestible, slowly digestible, and resistant starches were not correlated with tannin content or molecular weight distribution. Resistant starch increased from 6.5% to 22-26% when tannins were added to starch up to 50% (starch weight). Tannin extracts both reduced and enhanced amylase activity depending on conditions, and, while these trends were clear in extracts, the effects on starch digestion in wholegrain flours was more complex.

  4. Significant differences in the activities of alpha-amylases in the absence and presence of polyethylene glycol assayed on eight starches solubilized by two methods.

    PubMed

    Mukerjea, Rupendra; Slocum, Giles; Mukerjea, Romila; Robyt, John F

    2006-09-04

    Starch is a reserve chemical source of the energy of the sun found in plants as a water-insoluble granule that differs in their chemical and physical properties, depending on the source. The granules can be solubilized by heating in water or by treatment with various reagents, such as 1M NaOH. alpha-Amylases are widely distributed enzymes that initiate the hydrolysis of starch into low molecular weight maltodextrins. We recently found that the activities of a single alpha-amylase on two different starches were significantly different. We then determined the activities of Bacillus amyloliquefaciens and porcine pancreas alpha-amylases, using eight different starches, solubilized by two methods: autoclaving at 121 degrees C and 1M NaOH at 20 degrees C. There were significant differences in the activities of both of the amylases on all eight of the starches. Previously, it had been found that polyethylene glycol (PEG) stabilized and activated the activities of both enzymes, using a soluble amylose as the substrate. Addition of PEG to the enzymes greatly increased the activities on the eight starches, but the activities still differed significantly. The different activities with the starches were hypothesized as differences in the amounts of secondary and tertiary structures that are partially retained when the different starches are solubilized; the activities on addition of PEG is hypothesized as the formation of highly active species from a series of less active forms.

  5. The bacteria binding glycoprotein salivary agglutinin (SAG/gp340) activates complement via the lectin pathway.

    PubMed

    Leito, Jelani T D; Ligtenberg, Antoon J M; van Houdt, Michel; van den Berg, Timo K; Wouters, Diana

    2011-10-01

    Salivary agglutinin (SAG), also known as gp-340 and Deleted in Malignant Brain Tumours 1, is a glycoprotein that is present in tears, lung fluid and mucosal surfaces along the gastrointestinal tract. It is encoded by the Deleted in Malignant Brain Tumours 1 gene, a member of the Scavenger Receptor Cysteine Rich group B protein superfamily. SAG aggregates bacteria thus promoting their clearance from the oral cavity and activates the complement system. Complement proteins may enter the oral cavity in case of serum leakage, which occurs after mucosal damage. The purpose of this study was to investigate the mode of complement activation. We showed a dose-dependent C4 deposition on SAG-coated microplates showing that either the classical or lectin pathway of complement was activated. Antibodies against mannose binding lectin inhibited C4 deposition and SAG induced no C4 deposition in MBL deficient sera showing SAG activated complement through the MBL pathway. Periodate treatment of SAG abolished MBL pathway activation consistent with an involvement of SAG glycans in complement activation. This provides the first evidence for a role of SAG in complement activation through the MBL pathway and suggests a potential role of SAG as a complement activating factor at the mucosal epithelia.

  6. Study of phenolic content and urease and alpha-amylase inhibitory activities of methanolic extract of Rumex acetosella roots and its sub-fractions in different solvents.

    PubMed

    Ahmed, Dildar; Mughal, Qaria Mumtaz; Younas, Saba; Ikram, Muhammad

    2013-05-01

    The present study aimed to establish relationship between urease and alpha-amylase inhibitory activities on the one hand and on the other between anti-enzymatic activities and total phenolic contents of the methanolic extract of roots of Rumex acetosella and its fractions in various solvents. The methanolic extract and its fractions in chloroform, ethyl acetate, n-butanol and water showed remarkable inhibitory activities against both urease and alpha-amylase, there was a close correspondence between urease and alpha-amylase inhibitory activities of the plant samples. The n-butanol fraction which had the highest total phenolic content (252.19 ± 2.32 µg of Gallic Acid Equivalents/mg of dry mass of the sample) showed prominent activity against both urease and alpha-amylase indicating a possible role of phenolics in inhibiting the activities of these enzymes. The samples displayed enzyme inhibitory activities in a dose dependent manner and their effectiveness was comparable with that of the standards, thiourea (for urease) and acarbose (for alpha-amylase). The samples were manifold more effective against urease than alpha-amylase; 2.8 mg/mL of MeOH extract produced about 81% inhibition in alpha-amylase activity, while only 10 µg/mL of the extract was required to create the same inhibition in urease activity. The IC50 values of methanolic, chloroform, ethyl acetate, n-butanolic, aqueous and standard solutions were 1.29, 1.31, 1.90, 1.38, 0.85 and 1.20 (mg/mL) respectively against alpha-amylase and 0.99, 3.89, 1.76, 0.91, 0.85 and 0.97 (μg/mL) respectively against urease. The total phenolic content in MeOH, hexane, chloroform, ethyl acetate, n-butanol and water fractions was 108.88 ± 2.65, 43.70 ± 1.90, 34.44 ± 2.30, 230.71 ± 1.78, 252.19 ± 2.32 and 94.07 ± 2.25 respectively.

  7. Structure-activity relationship of benzoxazinones and related compounds with respect to the growth inhibition and alpha-amylase activity in cress seedlings.

    PubMed

    Kato-Noguchi, Hisashi; Macías, Francisco A; Molinillo, José M G

    2010-10-15

    Benzoxazinones and their degradation compounds inhibited root growth and alpha-amylase activity in cress seedlings. The inhibitory activity of these compounds was divided into three groups: the high active group; 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one, 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one, 4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one, 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one, the moderate active group; 7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one, (2H)-1,4-benzoxazin-3(4H)-one, 6-methoxy-benzoxazolin-2(3H)-one, benzoxazolin-2(3H)-one and 2-amino-phenoxazine-3-one, and the low active group; 2-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one, 2-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one, 2-amino-7-hydroxyphenoxazine-3-one and 2-amino-7-methoxyphenoxazine-3-one. The structure-activity of these compounds suggests that compounds that have benzoxazinone skeletons are the most active structure, and a hydroxyl group at position C-2 on the benzoxazinone skeleton may not affect inhibitory activity, whereas a hydroxyl group at position N-4 on the skeleton is essential for inhibitory activity. However, the concentration-response curves of these compounds and the I(50) values (the concentrations required for 50% inhibition) for root growth and alpha-amylase indicated that root growth was positively correlated with the alpha-amylase activity in the seedlings. alpha-Amylase is required not only for seed germination, but also subsequent seedling growth until photosynthesis is sufficient to support seedling growth. Therefore, these results suggest that the compounds studied here may inhibit the root growth of cress seedlings by inhibiting alpha-amylase activity.

  8. Identification of the active components in Bone Marrow Soup: a mitigator against irradiation-injury to salivary glands

    PubMed Central

    Fang, Dongdong; Hu, Shen; Liu, Younan; Quan, Vu-Hung; Seuntjens, Jan; Tran, Simon D.

    2015-01-01

    In separate studies, an extract of soluble intracellular contents from whole bone marrow cells, named “Bone Marrow (BM) Soup”, was reported to either improve cardiac or salivary functions post-myocardial infarction or irradiation (IR), respectively. However, the active components in BM Soup are unknown. To demonstrate that proteins were the active ingredients, we devised a method using proteinase K followed by heating to deactivate proteins and for safe injections into mice. BM Soup and “deactivated BM Soup” were injected into mice that had their salivary glands injured with 15Gy IR. Control mice received either injections of saline or were not IR. Results at week 8 post-IR showed the ‘deactivated BM Soup’ was no better than injections of saline, while injections of native BM Soup restored saliva flow, protected salivary cells and blood vessels from IR-damage. Protein arrays detected several angiogenesis-related factors (CD26, FGF, HGF, MMP-8, MMP-9, OPN, PF4, SDF-1) and cytokines (IL-1ra, IL-16) in BM Soup. In conclusion, the native proteins (but not the nucleic acids, lipids or carbohydrates) were the therapeutic ingredients in BM Soup for functional salivary restoration following IR. This molecular therapy approach has clinical potential because it is theoretically less tumorigenic and immunogenic than cell therapies. PMID:26526154

  9. Gamma irradiation of sorghum flour: Effects on microbial inactivation, amylase activity, fermentability, viscosity and starch granule structure

    NASA Astrophysics Data System (ADS)

    Mukisa, Ivan M.; Muyanja, Charles M. B. K.; Byaruhanga, Yusuf B.; Schüller, Reidar B.; Langsrud, Thor; Narvhus, Judith A.

    2012-03-01

    Malted and un-malted sorghum ( Sorghum bicolor (L.) Moench) flour was gamma irradiated with a dose of 10 kGy and then re-irradiated with 25 kGy. The effects of irradiation on microbial decontamination, amylase activity, fermentability (using an amylolytic L. plantarum MNC 21 strain), starch granule structure and viscosity were determined. Standard methods were used during determinations. The 10 kGy dose had no effect on microbial load of un-malted flour but reduced that of malted flour by 3 log cycles. Re-irradiation resulted in complete decontamination. Irradiation of malt caused a significant ( p<0.05) reduction in alpha and beta amylase activity (22% and 32%, respectively). Irradiation of un-malted flour increased the rates of utilization of glucose and maltose by 53% and 100%, respectively, during fermentation. However, microbial growth, rate of lactic acid production, final lactic acid concentration and pH were not affected. Starch granules appeared normal externally even after re-irradiation, however, granules ruptured and dissolved easily after hydration and gelatinization. Production of high dry matter density porridge (200 g dry matter/L) with a viscosity of 3500 cP was achieved by irradiation of un-malted flout at 10 kGy. Gamma irradiation can be used to decontaminate flours and could be utilized to produce weaning porridge from sorghum.

  10. Salivary gland tumors

    MedlinePlus

    ... cancers Salivary duct stones Salivary gland infections Dehydration Sarcoidosis Sjögren syndrome The most common type of salivary ... Cancer Cirrhosis Salivary duct stones Salivary gland infections Sarcoidosis Tumor Review Date 10/30/2015 Updated by: ...

  11. Ribbon regulates morphogenesis of the Drosophila embryonic salivary gland through transcriptional activation and repression

    PubMed Central

    Loganathan, Rajprasad; Lee, Joslynn S.; Wells, Michael B.; Grevengoed, Elizabeth; Slattery, Matthew; Andrew, Deborah J.

    2015-01-01

    Transcription factors affect spatiotemporal patterns of gene expression often regulating multiple aspects of tissue morphogenesis, including cell-type specification, cell proliferation, cell death, cell polarity, cell shape, cell arrangement and cell migration. In this work, we describe a distinct role for Ribbon (Rib) in controlling cell shape/volume increases during elongation of the Drosophila salivary gland (SG). Notably, the morphogenetic changes in rib mutants occurred without effects on general SG cell attributes such as specification, proliferation and apoptosis. Moreover, the changes in cell shape/volume in rib mutants occurred without compromising epithelial-specific morphological attributes such as apicobasal polarity and junctional integrity. To identify the genes regulated by Rib, we performed ChIP-seq analysis in embryos driving expression of GFP-tagged Rib specifically in the SGs. To learn if the Rib binding sites identified in the ChIP-seq analysis were linked to changes in gene expression, we performed microarray analysis comparing RNA samples from age-matched wild-type and rib null embryos. From the superposed ChIP-seq and microarray gene expression data, we identified 60 genomic sites bound by Rib likely to regulate SG-specific gene expression. We confirmed several of the identified Rib targets by qRT-pCR and/or in situ hybridization. Our results indicate that Rib regulates cell growth and tissue shape in the Drosophila salivary gland via a diverse array of targets through both transcriptional activation and repression. Furthermore, our results suggest that autoregulation of rib expression may be a key component of the SG morphogenetic gene network. PMID:26477561

  12. General Subject 2. Report to ICUMSA on the determination of carry-over alpha-amylase activity in white and refined sugars by a spectrophotometric method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A report is given on a new industrial method for the determination of carry-over alpha-amylase activity in raw and refined sugars, as well as a recommendation. In recent years, there has been increased concern over carry-over activity of mostly high temperature (HT) and very high temperature (VHT) s...

  13. Salivary digestive enzymes of the wheat bug, Eurygaster integriceps (Insecta: Hemiptera: Scutelleridae).

    PubMed

    Mehrabadi, Mohammad; Bandani, Ali Reza; Dastranj, Mehdi

    2014-06-01

    The digestive enzymes from salivary gland complexes (SGC) of Eurygaster integriceps, and their response to starvation and feeding were studied. Moreover, digestive amylases were partially purified and characterized by ammonium sulfate precipitation and gel filtration chromatography. The SGC are composed of two sections, the principal glands and accessory glands. The principal glands are further divided into the anterior lobes and posterior lobes. The SGC main enzyme was α-amylase, which hydrolyzed starch better than glycogen. The other carbohydrases were also present in the SGC complexes. Enzymatic activities toward mannose (α/β-mannosidases) were little in comparison to activities against glucose (α/β-glucosidases) and galactose (α/β-galactosidases), the latter being the greatest. Acid phosphatase showed higher activity than alkaline phosphatase. There was no measurable activity for lipase and aminopeptidase. Proteolytic activity was detected against general and specific protease substrates. Activities of all enzymes were increased in response to feeding in comparison to starved insects, revealing their induction and secretion in response to feeding pulse. The SGC amylases eluted in four major peaks and post-electrophoretic detection of the α-amylases demonstrated the existence of at least five isoamylases in the SGC. The physiological implication of these findings in pre-oral digestion of E. integriceps is discussed.

  14. Coumarins with α-glucosidase and α-amylase inhibitory activities from the flower of Edgeworthia gardneri.

    PubMed

    Zhao, Deng-Gao; Zhou, Ai-Yu; Du, Zhiyun; Zhang, Yu; Zhang, Kun; Ma, Yan-Yan

    2015-12-01

    The flower of Edgeworthia gardneri is consumed in beverages in Tibet and has potential health benefits for diabetes. As a part of our continuous studies on dietary supplements for diabetes, two monomers, five dimers and one trimer of coumarins were isolated from the flowers of E. gardneri. One dimer was a new compound (1) and its structure was determined by spectroscopic methods, including multiple NMR techniques and mass spectrometry. The inhibitory activities of all coumarins against α-amylase and α-glucosidase were evaluated. Compound 4 displayed potent inhibitory effect on both α-amylase and α-glucosidase, with an IC50 of 90 and 86μg/mL, respectively. The IC50 of compound 3 against α-glucosidase was 18.7μg/mL, and its inhibition mode was noncompetitive. Based on the fluorescence analysis, the binding constant and the number of binding sites of compound 3 were calculated as 2.05×10(5) and 1.24, respectively. Furthermore, the interaction between compound 3 and α-glucosidase was a spontaneous process that was driven mainly by hydrophobic force. This study could facilitate the utilization of E gardneri as functional food ingredient.

  15. Differential activation of nitric oxide synthase through muscarinic acetylcholine receptors in rat salivary glands.

    PubMed

    Leirós, C P; Rosignoli, F; Genaro, A M; Sales, M E; Sterin-Borda, L; Santiago BordaE

    2000-03-15

    Muscarinic receptors play an important role in secretory and vasodilator responses in rat salivary glands. Nitric oxide synthase (NOS) appears to be one of the multiple effectors coupled to muscarinic receptors in both submandibular and sublingual glands although some differences have been found depending on the gland studied. First, submandibular glands had a lower basal activity of nitric oxide synthase than sublingual glands and the concentration-response curve for carbachol was bell-shaped in the former but not in sublingual glands. Second, cGMP levels displayed a similar profile to that observed for NOS activity in both glands. Third, protein kinase C also coupled to muscarinic receptor activation in the glands might have a regulatory effect on nitric oxide production since its activity was higher in basal conditions in submandibular than sublingual glands and it also increased in the presence of the agonist at a concentration that inhibited NOS activity in submandibular glands. The effects appear to be partly related to the expression of a minor population of M(1) receptors in submandibular glands absent in sublingual as determined in binding and signaling experiments with the muscarinic receptor antagonist pirenzepine.

  16. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity.

    PubMed

    Yilmazer-Musa, Meltem; Griffith, Anneke M; Michels, Alexander J; Schneider, Erik; Frei, Balz

    2012-09-12

    This study evaluated the inhibitory effects of plant-based extracts (grape seed, green tea, and white tea) and their constituent flavan-3-ol monomers (catechins) on α-amylase and α-glucosidase activity, two key glucosidases required for starch digestion in humans. To evaluate the relative potency of extracts and catechins, their concentrations required for 50 and 90% inhibition of enzyme activity were determined and compared to the widely used pharmacological glucosidase inhibitor, acarbose. Maximum enzyme inhibition was used to assess relative inhibitory efficacy. Results showed that grape seed extract strongly inhibited both α-amylase and α-glucosidase activity, with equal and much higher potency, respectively, than acarbose. Whereas tea extracts and catechin 3-gallates were less effective inhibitors of α-amylase, they were potent inhibitors of α-glucosidase. Nongallated catechins were ineffective. The data show that plant extracts containing catechin 3-gallates, in particular epigallocatechin gallate, are potent inhibitors of α-glucosidase activity and suggest that procyanidins in grape seed extract strongly inhibit α-amylase activity.

  17. Truncation of the unique N-terminal domain improved the thermos-stability and specific activity of alkaline α-amylase Amy703.

    PubMed

    Lu, Zhenghui; Wang, Qinhong; Jiang, Sijing; Zhang, Guimin; Ma, Yanhe

    2016-03-01

    High pH condition is of special interest for the potential applications of alkaline α-amylase in textile and detergent industries. Thus, there is a continuous demand to improve the amylase's properties to meet the requirements set by specific applications. Here we reported the systematic study of modular domain engineering to improve the specific activity and stability of the alkaline α-amylase from Bacillus pseudofirmus 703. The specific activity of the N-terminal domain truncated mutant (N-Amy) increased by ~35-fold with a significantly improved thermo-stability. Kinetic analysis demonstrated that the Kcat and Kcat/Kmof N-Amy were enhanced by 1300-fold and 425.7-fold, respectively, representing the largest catalytic activity improvement of the engineered α-amylases through the methods of domain deletion, fusion or swapping. In addition, different from the wild-type Amy703, no exogenous Ca(2+) were required for N-Amy to maintain its full catalytic activity, implying its superior potential for many industrial processes. Circular dichroism analysis and structure modeling revealed that the increased compactness and α-helical content were the main contributors for the improved thermo-stability of N-Amy, while the improved catalytic efficiency was mainly attributed by the increased conformational flexibility around the active center.

  18. Differential RNA Expression of ßm1 during Late Seed Development in Cultivated and Wild Barleys Carrying Different ßmy1 Intron III Alleles and the Association with Beta-Amylase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four genotypes carrying different beta-amylase 1 (Bmy1) intron III alleles (Bmy1.a, Bmy1.b, Bmy1.c, and Bmy1.d) were analyzed for differences in Bmy1 mRNA accumulation, beta-amylase activity and protein, and total protein during late seed development. Wild barleys (Hordeum vulgare ssp. spontaneum) ...

  19. Comparisons of amylolytic enzyme activities and ß-amylases with differing Bmy1 intron III alleles to osmolyte concentration and malt extract during congress mashing with North American barley cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the relationships between patterns of activity of malt amylolytic enzymes (a-amylase, ß-amylase, and limit dextrinase) and the patterns of osmolyte concentration (OC) and malt extract (ME) production in two- and six-row North American barley cultivars over the c...

  20. Bioactive compounds from Carissa opaca roots and xanthine oxidase and alpha-amylase inhibitory activities of their methanolic extract and its fractions in different solvents

    PubMed Central

    Saeed, Ramsha; Ahmed, Dildar

    2015-01-01

    Background: Carissa opaca is known for its many ethnomedicinal uses. There was a need to study its bioactivities and identify its phytochemicals. Objective: The objective was to isolate and identify phytochemicals from roots of C. opaca and to evaluate xanthine oxidase (XO) and alpha-amylase inhibitory activities of their methanolic extract and its fractions. Materials and Methods: Methanolic extract of finely divided powder of roots of C. opaca was obtained by cold maceration, followed by its fractionation to obtain hexane, chloroform, ethyl acetate, n-butanolic, and aqueous fractions. Phytochemicals screening was done by standard protocols. XO and alpha-amylase inhibitory activities of the methanolic extract and its fractions were studied. The most active ethyl acetate fraction was subjected to the column and thin layer chromatography to isolate its compounds, which were identified by gas chromatography-mass spectrometry and high-performance liquid chromatography comparison. Results: Methanolic extract displayed significant activity against both the enzymes with IC50 of 156.0 mg/mL and 5.6 mg/mL for XO and alpha-amylase, respectively. Ethyl acetate fraction showed highest activity against both the enzymes with IC50 of 129 mg/mL and 4.9 mg/mL for XO and alpha-amylase, respectively. Chloroform fraction had IC50 of 154.2 mg/mL and 5.5 mg/mL for XO and alpha-amylase, respectively. Aqueous fraction exhibited significant efficacy against alpha-amylase (IC50 5.0 mg/mL). Hexane fraction showed good activity against alpha-amylase in a dose-dependent manner but exhibited opposite trend against XO. The compounds isolated from ethyl acetate fraction included limonene, vanillin, lupeol, rutin, quercetin, b-sitosterol, Vitamin E, 2-hydroxyacetophenone, naphthalenone, 2,3,3-trimethyl-2-(3-methylbuta-1,3-dienyl)-6-methylenecyclohexanone, and 2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester. Conclusions: Moderately polar phytochemicals of C. opaca roots possess exploitable

  1. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens

    PubMed Central

    Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L.; Russo, Thomas; Edgerton, Mira

    2017-01-01

    ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60–70% killing) and A. baumannii (85–90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa, 60–80% E. cloacae and 20–60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa, but had reduced activity against biofilms of S. aureus and A. baumannii. Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae, and A. baumannii. Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections. PMID:28261570

  2. Lactucaxanthin - a potential anti-diabetic carotenoid from lettuce (Lactuca sativa) inhibits α-amylase and α-glucosidase activity in vitro and in diabetic rats.

    PubMed

    Gopal, Sowmya Shree; Lakshmi, Magisetty Jhansi; Sharavana, Gurunathan; Sathaiah, Gunaseelan; Sreerama, Yadahally N; Baskaran, Vallikannan

    2017-03-22

    Intestinal and pancreatic α-amylase and α-glucosidase inhibitors offer an approach to lower the levels of post-prandial hyperglycemia through the control of dietary starch breakdown in digestion. This study hypothesized that lactucaxanthin (Lxn) in lettuce (Lactuca sativa) inhibits the activity of α-amylase and α-glucosidase. In this study, the interaction of Lxn with α-amylase and α-glucosidase in silico and its inhibitory effect on these enzymes were studied using in vitro and STZ-induced diabetic rat models. Lxn was isolated from lettuce with 96% purity confirmed by HPLC and LCMS. The in silico analysis showed that Lxn has a lower binding energy (-6.05 and -6.34 kcal mol(-1)) with α-amylase and α-glucosidase compared to their synthetic inhibitors, acarbose (-0.21 kcal mol(-1)) and miglitol (-2.78 kcal mol(-1)), respectively. In vitro α-amylase and α-glucosidase inhibition assays revealed that Lxn had IC50 values of 435.5 μg mL(-1) and 1.84 mg mL(-1), but acarbose has values of 2.5 and 16.19 μg mL(-1). The in vivo results showed an increased activity for α-amylase and α-glucosidase in the intestine (4.7 and 1.30 fold, p < 0.05) and pancreas (1.3 and 1.48 fold, p < 0.05) of STZ induced diabetic rats compared to normal rats. Whereas the activity decreased (p < 0.05) in the Lxn fed diabetic rats, except for the intestinal α-glucosidase activity (1.69 ± 0.12 PNP per min per mg protein). This was confirmed by the low blood glucose level (239.4 ± 18.2 mg dL(-1)) in diabetic rats fed Lxn compared to the diabetic group (572.2 ± 30.5 mg dL(-1), p < 0.05). Lxn significantly inhibited (p < 0.05) the activity of α-amylase and α-glucosidase and could be of medical and nutritional relevance in the treatment of diabetes.

  3. Some aspects of the mechanism of complexation of red kidney bean alpha-amylase inhibitor and alpha-amylase.

    PubMed

    Wilcox, E R; Whitaker, J R

    1984-04-10

    Bovine pancreatic alpha-amylase binds 1 mol of acarbose (a carbohydrate alpha-amylase inhibitor) per mol at the active site and also binds acarbose nonspecifically. The red kidney bean alpha-amylase inhibitor-bovine pancreatic alpha-amylase complex retained nonspecific binding for acarbose only. Binding of p-nitrophenyl alpha-D-maltoside to the final complex of red kidney bean alpha-amylase inhibitor and bovine pancreatic alpha-amylase has a beta Ks (Ks') value that is 3.4-fold greater than the Ks (16 mM) of alpha-amylase for p-nitrophenyl alpha-D-maltoside alone. The initial complex of alpha-amylase and inhibitor apparently hydrolyzes this substrate as rapidly as alpha-amylase alone. The complex retains affinity for substrates and competitive inhibitors, which, when present in high concentrations, cause dissociation of the complex. Maltose (0.5 M), a competitive inhibitor of alpha-amylase, caused dissociation of the red kidney bean alpha-amylase inhibitor--alpha-amylase complex. Interaction between red kidney bean (Phaseolus vulgaris) alpha-amylase inhibitor and porcine pancreatic alpha-amylase proceeds through two steps. The first step has a Keq of 3.1 X 10(-5) M. The second step (unimolecular; first order) has a forward rate constant of 3.05 min-1 at pH 6.9 and 30 degrees C. alpha-Amylase inhibitor combines with alpha-amylase, in the presence of p-nitrophenyl alpha-D-maltoside, noncompetitively. On the basis of the data presented, it is likely that alpha-amylase is inactivated by the alpha-amylase inhibitor through a conformational change. A kinetic model, in the presence and absence of substrate, is described for noncompetitive, slow, tight-binding inhibitors that proceed through two steps.

  4. Pressure-induced perturbation on the active site of beta-amylase monitored from the sulfhydryl reaction.

    PubMed

    Tanaka, N; Mitani, D; Kunugi, S

    2001-05-22

    We investigated the pressure effect on the conformation of beta-amylase by monitoring the chemical reaction of the unpaired cysteine. Sweet potato beta-amylase is composed of four identical subunits, each of which contains six cysteine residues. These residues are inert to 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the native state due to steric hindrance. With the increase of the pressure from 0.1 to 400 MPa, the reactivity of one cysteine out of six residues was enhanced. We have identified that the reacted cysteine residue was Cys345 by the chemical cleavage at the reacted site. The reaction kinetics of Cys345 were pseudo-first-order, and the apparent rate constant was increased from 0.001 to 0.05 min(-)(1) with the increase of pressure from 100 to 400 MPa. The activation volume of the reaction rate was calculated as -24 +/- 2 mL/mol from the slope of the logarithmic plot of the pressure dependence of the rate constant. Hysteresis was not evident in the change of intrinsic fluorescence during the cycle of compression and decompression between 0.1 and 400 MPa, indicating that the tetramer does not dissociate under high pressure. This indicates that the enhancement of the reactivity of Cys345 was caused by the perturbation of local conformation under high pressure. The reaction of Cys345 was also enhanced by low concentrations of GuHCl, suggesting the significant role of hydration-driven fluctuation in the pressure-induced enhancement of the reactivity.

  5. Activation of Human Salivary Aldehyde Dehydrogenase by Sulforaphane: Mechanism and Significance

    PubMed Central

    Alam, Md. Fazle; Laskar, Amaj Ahmed; Maryam, Lubna

    2016-01-01

    Cruciferous vegetables contain the bio-active compound sulforaphane (SF) which has been reported to protect individuals against various diseases by a number of mechanisms, including activation of the phase II detoxification enzymes. In this study, we show that the extracts of five cruciferous vegetables that we commonly consume and SF activate human salivary aldehyde dehydrogenase (hsALDH), which is a very important detoxifying enzyme in the mouth. Maximum activation was observed at 1 μg/ml of cabbage extract with 2.6 fold increase in the activity. There was a ~1.9 fold increase in the activity of hsALDH at SF concentration of ≥ 100 nM. The concentration of SF at half the maximum response (EC50 value) was determined to be 52 ± 2 nM. There was an increase in the Vmax and a decrease in the Km of the enzyme in the presence of SF. Hence, SF interacts with the enzyme and increases its affinity for the substrate. UV absorbance, fluorescence and CD studies revealed that SF binds to hsALDH and does not disrupt its native structure. SF binds with the enzyme with a binding constant of 1.23 x 107 M-1. There is one binding site on hsALDH for SF, and the thermodynamic parameters indicate the formation of a spontaneous strong complex between the two. Molecular docking analysis depicted that SF fits into the active site of ALDH3A1, and facilitates the catalytic mechanism of the enzyme. SF being an antioxidant, is very likely to protect the catalytic Cys 243 residue from oxidation, which leads to the increase in the catalytic efficiency and hence the activation of the enzyme. Further, hsALDH which is virtually inactive towards acetaldehyde exhibited significant activity towards it in the presence of SF. It is therefore very likely that consumption of large quantities of cruciferous vegetables or SF supplements, through their activating effect on hsALDH can protect individuals who are alcohol intolerant against acetaldehyde toxicity and also lower the risk of oral cancer

  6. Changes in the salivary protein profile of morbidly obese women either previously subjected to bariatric surgery or not.

    PubMed

    Lamy, Elsa; Simões, Carla; Rodrigues, Lénia; Costa, Ana Rodrigues; Vitorino, Rui; Amado, Francisco; Antunes, Célia; do Carmo, Isabel

    2015-12-01

    Saliva is a non-invasive source of biomarkers useful in the study of physiological mechanisms. Moreover, this fluid has diverse functions, among which food perception and ingestion, making it particularly suitable for the study of obesity. The aims of this study were to assess changes in salivary proteome among morbidly obese women, with a view to provide information about mechanisms potentially related to the development of obesity, and to evaluate whether these changes persist after weight loss. Mixed saliva samples from morbidly obese women (N = 18) who had been either subjected (group O-BS) or not (group O) to bariatric surgery and women with normal weight (N = 14; group C) were compared for protein profiles, alpha-amylase abundance and enzymatic activity, and carbonic anhydrase (CA) VI abundance. Differences in salivary obese profiles were observed for 23 different spots. Zinc-alpha-2 glycoprotein-containing spots showed higher abundance in group O only, whereas cystatin S-containing spots presented higher abundance in the two groups of obese subjects. Most of the spots identified as salivary amylase were present at lower levels in group O-BS. With regard to the amylase enzymatic activity, increases were observed for group O and decreases for group O-BS. One interesting finding was the high correlation between levels of CA VI and body mass index in group O, which was not observed for groups O-BS or C. The differences between groups, mainly regarding salivary proteins involved in taste sensitivity and metabolism, point to the potential of using saliva in the study of obesity development.

  7. Profiles and α-amylase inhibition activity of proanthocyanidins in unripe Manilkara zapota (chiku).

    PubMed

    Wang, Hongyu; Liu, Tingting; Song, Lixia; Huang, Dejian

    2012-03-28

    Proanthocyanidins in unripe Manilkara zapota (chiku) were isolated using solvent extraction followed by Sephadex LH-20 fractionation with a yield of 0.9%. HPLC analysis using a diol column revealed well-resolved oligomers ranging from dimer to hexamer. The majority of the proanthocyanidins are composed of higher-degree oligomers appearing as one large peak in the chromatogram. Analysis of the proanthocyanidins using LC/MS showed that (epi)gallocatechins were the dominant extension unit in the proanthocyanidins. In agreement with this result, thiolysis treatment of the proanthocyanidins using mercaptoacetic acid produced thioether derivatives of (epi)gallocatechins as the major product and (epi)gallocatechin gallate derivatives as the minor product. The mean of the degree of polymerization was estimated to be 9.0. From MALDI-TOF MS, B-type gallocatechin oligomers up to decamer could be detected. The unripe chiku proanthocyanidins are thus good starting material for preparation of (epi)gallocatechin derivatives. The proanthocyanidins was shown to inhibit α-amylase with an IC(50) value of 4.2 ± 0.2 μg/mL and inhibit α-glucosidase with an IC(50) of 16.6 ± 0.3 μg/mL.

  8. Milk glucosidase activity enables suckled pup starch digestion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch requires six enzymes for digestion to free glucose: two amylases (salivary and pancreatic) and four mucosal maltase activities; sucrase-isomaltase and maltase-glucoamylase. All are deficient in suckling rodents. The objective of this study is to test (13)C-starch digestion before weaning by m...

  9. Enzymatic degradation products from a marine polysaccharide YCP with different immunological activity and binding affinity to macrophages, hydrolyzed by alpha-amylases from different origins.

    PubMed

    Ren, Min; Yan, Wei; Yao, Wenbing; Jin, Lei; Gao, Xiangdong

    2010-04-01

    YCP is a marine polysaccharide with anti-tumor and immune-modulating effects. This study evaluated the effect of enzymatic degradation of YCP by alpha-amylases from different origins on its immunological activity and binding ability to the macrophages. YCP was hydrolyzed by alpha-amylases isolated from Aspergillus oryzae, Bacillus licheniformis, Barley malt, and Porcine pancreas respectively, then four fragments with unique molecular weight (termed: YCP-Ao, YCP-Bl, YCP-Bm, and YCP-Pp, respectively) were obtained. The four fragments showed different immunological activity and the ability to bind to macrophages. Among them, YCP-Ao possessed almost equivalent immunological activity compared to the original YCP, while such properties were not retained in YCP-Bl. Our further study showed that YCP-Ao prevented YCP from binding to macrophages. In conclusion, YCP-Ao and YCP might have similar active regions.

  10. Salivary Hormones Response to Preparation and Pre-competitive Training of World-class Level Athletes

    PubMed Central

    Guilhem, Gaël; Hanon, Christine; Gendreau, Nicolas; Bonneau, Dominique; Guével, Arnaud; Chennaoui, Mounir

    2015-01-01

    This study aimed to compare the response of salivary hormones of track and field athletes induced by preparation and pre-competitive training periods in an attempt to comment on the physiological effects consistent with the responses of each of the proteins measured. Salivary testosterone, cortisol, alpha-amylase, immunoglobulin A (IgA), chromogranin A, blood creatine kinase activity, and profile of mood state were assessed at rest in 24 world-class level athletes during preparation (3 times in 3 months) and pre-competitive (5 times in 5 weeks) training periods. Total mood disturbance and fatigue perception were reduced, while IgA (+61%) and creatine kinase activity (+43%) increased, and chromogranin A decreased (−27%) during pre-competitive compared to preparation period. A significant increase in salivary testosterone (+9 to +15%) and a decrease in testosterone/cortisol ratio were associated with a progressive reduction in training load during pre-competitive period (P < 0.05). None of the psycho-physiological parameters were significantly correlated to training load during the pre-competitive period. Results showed a lower adrenocortical response and autonomic activity, and an improvement of immunity status, in response to the reduction in training load and fatigue, without significant correlations of salivary hormones with training load. Our findings suggest that saliva composition is sensitive to training contents (season period) but could not be related to workload resulting from track and field athletics training. PMID:26635619

  11. Antioxidative activity and inhibition of key enzymes linked to type-2 diabetes (α-glucosidase and α-amylase) by Khaya senegalensis.

    PubMed

    Ibrahim, Mohammed Auwal; Koorbanally, Neil Anthony; Islam, Md Shahidul

    2014-09-01

    This study evaluated the in vitro antioxidative activity of Khaya senegalensis extracts and inhibitory effects of some solvent fractions on α-glucosidase and α-amylase activities. The stem bark, root and leaf samples of the plant were sequentially extracted with ethyl acetate, ethanol and water and then tested for antioxidative activity. Our findings revealed that the ethanolic extract of the root had the highest antioxidative activity. Solvent-solvent fractionation of the root ethanolic extract yielded a butanol fraction that showed higher antioxidative activity than other fractions. Furthermore, the butanol fraction had significantly higher (p < 0.05) α-glucosidase and α-amylase inhibitory activities with IC50 values of 2.89 ± 0.46 and 97.51 ± 5.72 μg mL⁻¹, respectively. Enzyme kinetic studies indicated that the butanol fraction is a non-competitive inhibitor for α-glucosidase with an inhibition binding constant K(i) of 1.30 μg mL⁻¹ and a competitive inhibitor of α-amylase with a K(i) of 7.50 μg mL⁻¹. GC-MS analysis revealed that the butanol fraction contained two chromones, p-anilinophenol and 3-ethyl-5-(3-ethyl-(3H)-benzothiazol-2-ylidene)-2-(p-tolylvinylamino)-4-thiazolidinone. Data obtained in the study suggest that the butanol fraction derived from the ethanolic extract of K. senegalensis root possessed excellent antioxidative as well as α-glucosidase and a-amylase inhibitory activities while chromones and/or p-anilinophenol could be the main bioactive compounds responsible for the observed activities.

  12. Effect of tannic acid-fish scale gelatin hydrolysate hybrid nanoparticles on intestinal barrier function and α-amylase activity.

    PubMed

    Wu, Shao-Jung; Ho, Yi-Cheng; Jiang, Shun-Zhou; Mi, Fwu-Long

    2015-07-01

    Practical application of tannic acid is limited because it readily binds proteins to form insoluble aggregates. In this study, tannic acid was self-assembled with fish scale gelatin hydrolysates (FSGH) to form stable colloidal complex nanoparticles. The nanoparticles prepared from 4 mg ml(-1) tannic acid and 4 mg ml(-1) FSGH had a mean particle size of 260.8 ± 3.6 nm, and showed a positive zeta potential (20.4 ± 0.4 mV). The nanoparticles acted as effective nano-biochelators and free radical scavengers because they provided a large number of adsorption sites for interaction with heavy metal ions and scavenging free radicals. The maximum adsorption capacity for Cu(2+) ions was 123.5 mg g(-1) and EC50 of DPPH radical scavenging activity was 21.6 ± 1.2 μg ml(-1). Hydroxyl radical scavenging effects of the nanoparticles were investigated by electron spin resonance spectroscopy. The copper-chelating capacity and free radical scavenging activity of the nanoparticles were associated with their capacity to inhibit Cu(2+) ion-induced barrier impairment and hyperpermeability of Caco-2 intestinal epithelial tight junction (TJ). However, α-amylase inhibitory activity of the nanoparticles was significantly lower than that of free tannic acid. The results suggest that the nanoparticles can ameliorate Cu(2+) ion induced intestinal epithelial TJ dysfunction without severely inhibiting the activity of the digestive enzymes.

  13. Vampire bat salivary plasminogen activator is quiescent in human plasma in the absence of fibrin unlike human tissue plasminogen activator.

    PubMed

    Gardell, S J; Hare, T R; Bergum, P W; Cuca, G C; O'Neill-Palladino, L; Zavodny, S M

    1990-12-15

    The vampire bat salivary plasminogen activator (Bat-PA) is a potent PA that exhibits remarkable selectivity toward fibrin-bound plasminogen (Gardell et al, J Biol Chem 256: 3568, 1989). Herein, we describe the activity of recombinant DNA-derived Bat-PA (rBat-PA) in a human plasma milieu. rBat-PA and recombinant human single-chain tissue plasminogen activator (rt-PA) are similarly efficacious at lysing plasma clots. In stark contrast to rt-PA, the addition of 250 nmol/L rBat-PA to plasma in the absence of a clot failed to deplete plasminogen, alpha 2-antiplasmin and fibrinogen. The lytic activities exhibited by finger-domain minus Bat-PA (F- rBat-PA) and finger and epidermal growth factor-like domains minus Bat-PA (FG- rBat-PA) were less than rBat-PA, especially at low concentrations of PA; nevertheless, these truncated forms also possessed a strict requirement for a fibrin cofactor. The loss of PA activity following the addition of rBat-PA to plasma was slower than that observed when either rt-PA or two-chain rt-PA was added. The efficacy, fibrin selectivity, and decreased susceptibility to inactivation exhibited by rBat-PA in vitro in a human plasma milieu suggests that rBat-PA may be superior to rt-PA for the treatment of thrombotic complications.

  14. Comparison of the wild-type alpha-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of bacillus alpha-amylase.

    PubMed

    Lee, Seunjae; Mouri, Yoshiki; Minoda, Masashi; Oneda, Hiroshi; Inouye, Kuniyo

    2006-06-01

    The starch hydrolysis activity and thermal stability of Bacillus amyloliquefaciens alpha-amylase (wild-type enzyme or WT) and its variant enzymes, designated as M77, M111, and 21B, were compared. All have an optimal pH at around 6, as well as almost the same reaction rates and Km and kcat values. The optimal temperature in the absence of Ca2+ ions is 60 degrees C for WT and M77 and 40 degrees C for M111 and 21B. Those of M111 and 21B rose to 50-60 degrees C upon the addition of 5 mM CaCl2, while those of WT and M77 did not change. The dissociation constants Kd for Ca2+ to WT and M77 are much lower than those of M111 and 21B. Asp233 in WT is replaced by Asn in M111 and 21B, while it is retained in M77, suggesting that Asp233 is involved in the thermal stability of the enzyme through Ca2+ ion binding. These findings provide insight into engineering the thermal stability of B. amyloliquefaciens alpha-amylase, which would be useful for its applications in the baking industry and in glucose manufacturing.

  15. Anticariogenic Activity of Black Tea - An Invivo Study

    PubMed Central

    Arya, Vishal; Srivastava, Ankit; Nandlal, Swati

    2016-01-01

    Introduction Teas is known for its anticariogenic properties and various mechanisms have been invoked to explain this effect. One such proposed mechanism is inhibition of salivary alpha amylase activity by endogenous tannins present in tea. Aim The objective of the present study was to determine whether or not the ingestion of black tea decoction inhibits the enzyme salivary amylase and thus interferes with the release of maltose from intraoral entrapped particles of food. Materials and Methods A total of 30 children in the age group of 12 - 15 years were selected for the study. After two hours of fasting subjects consumed two salted crackers for 60 second following which they rinsed with water (control solution) and then with 1.5% black tea decoction (test solution) next day. Retained food particles were recovered from buccal aspect of left mandibular premolar and salivary amylase activity was noted via chromatography. Paired t-test was applied for statistical analysis. Results Maltose to Sucrose ratio was used to evaluate the result. The average ratio was 3.27 for control solution and 1.82 for test solution. The results were statistically highly significant (p <0.005). Conclusion Tea inhibited the activity of salivary amylase and this inhibition assumes a special significance when it is considered that the effect of tea could be manifested over a prolonged period of time, as in a real life situation. PMID:27135007

  16. Enhancement of antioxidant activity, α-glucosidase and α-amylase inhibitory activities by spontaneous and bacterial monoculture fermentation of Indonesian black grape juices

    NASA Astrophysics Data System (ADS)

    Frediansyah, Andri; Nurhayati, Rifa; Romadhoni, Fitrio

    2017-01-01

    This study was conducted to evaluate the in vitro antioxidant activity, α-glucosidase and α-amylase inhibitor activity of fermented black grape (Vitisvinifera) juice. In the present study black grape juice was prepared using spontaneous (SF) and monoculture fermentation (FL) of Lactobacillus plantarum FNCC 0027 and incubated for 48 h. The antioxidant capacity increased after fermentation. FL had the highest DPPH inhibition (81.32±3.45; p ≤ 0.05) compared to SF and unfermented (UF) black grape juice (75.17±1.47 and 65.63±1.02%, respectively). The pH values decreased during fermentation for both, SF and FL. M also had highest inhibition of α-glucosidase (80.15±3.23) and α-amylase (39.95±0.88). Fermentation of black grape juice using monoculture of L. plantarum has higher antioxidant activities and enzyme inhibitor effect than spontaneous and unfermented black grape juices (p ≤ 0.05). Thus fermented black grape juice may have the potential to serve as enhanced functional juice with anti-diabetic properties.

  17. Stunting syndrome in broilers: effect of age and exogenous amylase and protease on performance, development of the digestive tract, digestive enzyme activity, and apparent digestibility.

    PubMed

    Shapiro, F; Nir, I

    1995-12-01

    Day-old male, meat-type chicks raised in brooder batteries were infected by orally administering an inoculum prepared from intestines of broiler chicks infected with stunting syndrome (SS). Naive controls were kept in a parallel room. The chicks were fed a commercial starter diet supplemented with two levels of enzyme preparations to 14 d of age. The experiment was continued to the age of 6 wk in order to estimate compensatory feed intake and growth. In a parallel study, digestibility of the feed was determined from 1 to 3 wk of age with control or inoculated chicks. The enzymes amylase and proteases were produced by Bacillus subtilis and Penicillium emersonii. Enzyme supplementation had no effect on feed intake, growth, or feed utilization, or on digestibility of fat, starch, protein, or energy. Because enzyme supplementation did not consistently affect performance of chicks and no interactions were observed between enzyme supplementation and infection status, data are presented for effects of infection only. Inoculation of SS-infective material reduced performance to 4 wk. Compensatory growth and feed intake were observed from the age of 4 wk onward. At the age of 6 wk the slight retardation of the inoculated chicks was not significant. On Week 1, retention of fat, starch, protein, and energy was significantly depressed in the inoculated chicks. At the age of 2 wk, retention of starch was not depressed, and at the age of 3 wk, the only consistent depression was that observed for fat. The proventriculus weight and content were consistently higher in inoculated chicks, as were the small intestine and intestinal content. The pH of the gizzard content was higher, and that of the small intestine content was lower, in the inoculated birds than in their control counterparts. Stunting syndrome infection was accompanied by a significant depression of trypsin activity in the pancreas at the age of 1 and 2 wk. At these periods, amylase and chymotrypsin were not affected. At

  18. Expression and Localization of α-amylase in the Submandibular and Sublingual Glands of Mice

    PubMed Central

    Yamagishi, Ryoko; Wakayama, Tomohiko; Nakata, Hiroki; Adthapanyawanich, Kannika; Kumchantuek, Tewarat; Yamamoto, Miyuki; Iseki, Shoichi

    2014-01-01

    In the major salivary glands of mice, acinar cells in the parotid gland (PG) are known to be the main site for the production of the digestive enzyme α-amylase, whereas α-amylase production in the submandibular gland (SMG) and sublingual gland (SLG), as well as the cell types responsible for α-amylase production, has been less firmly established. To clarify this issue, we examined the expression and localization of both the mRNA and protein of α-amylase in the major salivary glands of male and female mice by quantitative and histochemical methods. α-amylase mRNA levels were higher in the order of PG, SMG, and SLG. No sexual difference was observed in α-amylase mRNA levels in the PG and SLG, whereas α-amylase mRNA levels in the female SMG were approximately 30% those in the male SMG. Using in situ hybridization and immunohistochemistry, signals for α-amylase mRNA and protein were found to be strongly positive in acinar cells of the PG, serous demilune cells of the SLG, and granular convoluted tubule (GCT) cells of the male SMG, weakly positive in seromucous acinar cells of the male and female SMG, and negative in mucous acinar cells of the SLG. These results clarified that α-amylase is produced mainly by GCT cells and partly by acinar cells in the SMG, whereas it is produced exclusively by serous demilune cells in the SLG of mice. PMID:25320406

  19. A simple microplate-based method for the determination of α-amylase activity using the glucose assay kit (GOD method).

    PubMed

    Visvanathan, Rizliya; Jayathilake, Chathuni; Liyanage, Ruvini

    2016-11-15

    For the first time, a reliable, simple, rapid and high-throughput analytical method for the detection and quantification of α-amylase inhibitory activity using the glucose assay kit was developed. The new method facilitates rapid screening of a large number of samples, reduces labor, time and reagents and is also suitable for kinetic studies. This method is based on the reaction of maltose with glucose oxidase (GOD) and the development of a red quinone. The test is done in microtitre plates with a total volume of 260μL and an assay time of 40min including the pre-incubation steps. The new method is tested for linearity, sensitivity, precision, reproducibility and applicability. The new method is also compared with the most commonly used 3,5-dinitrosalicylic acid (DNSA) method for determining α-amylase activity.

  20. Sol-gel immobilization as a suitable technique for enhancement of α-amylase activity of Aspergillus oryzae PP.

    PubMed

    Evstatieva, Yana; Yordanova, Mariya; Chernev, Georgi; Ruseva, Yanislava; Nikolova, Dilyana

    2014-07-04

    Bioencapsulation of microbial cells in silica-based matrices has proved to be a good strategy to enhance the biosynthetic capabilities and viability of bioproducers. In the present study, mycelium and pellet cultures of strain Aspergillus oryzae PP were successfully immobilized in sol-gel hybrid matrices composed of tetraethylorthosilicate as an inorganic precursor, 5% (w/v) starch and 10 or 15% (w/v) polyethylene oxide, or 10% (w/v) calcium alginate as organic compounds. Biosynthetic activity of immobilized cultures was investigated by batch and fed-batch cultivation and the obtained results of 3042.04 IU cm(-3) were comparable with the enzyme activity of the free cell culture. Immobilized cultures retained their viability and biosynthetic capabilities up to the 744th h during fed-batch fermentation processes. Consequently, sol-gel encapsulation in hybrid matrices could be considered as a promising technique for immobilization of Aspergillus oryzae PP in order to increase the α-amylase production.

  1. Sol–gel immobilization as a suitable technique for enhancement of α-amylase activity of Aspergillus oryzae PP

    PubMed Central

    Evstatieva, Yana; Yordanova, Mariya; Chernev, Georgi; Ruseva, Yanislava; Nikolova, Dilyana

    2014-01-01

    Bioencapsulation of microbial cells in silica-based matrices has proved to be a good strategy to enhance the biosynthetic capabilities and viability of bioproducers. In the present study, mycelium and pellet cultures of strain Aspergillus oryzae PP were successfully immobilized in sol–gel hybrid matrices composed of tetraethylorthosilicate as an inorganic precursor, 5% (w/v) starch and 10 or 15% (w/v) polyethylene oxide, or 10% (w/v) calcium alginate as organic compounds. Biosynthetic activity of immobilized cultures was investigated by batch and fed-batch cultivation and the obtained results of 3042.04 IU cm−3 were comparable with the enzyme activity of the free cell culture. Immobilized cultures retained their viability and biosynthetic capabilities up to the 744th h during fed-batch fermentation processes. Consequently, sol–gel encapsulation in hybrid matrices could be considered as a promising technique for immobilization of Aspergillus oryzae PP in order to increase the α-amylase production. PMID:26740773

  2. Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability.

    PubMed

    Bae, Hee-Kyung; Lee, Soo-Bok; Park, Cheon-Seok; Shim, Jae-Hoon; Lee, Hye-Young; Kim, Myo-Jeong; Baek, Jin-Sook; Roh, Hoe-Jin; Choi, Jin-Hwan; Choe, Eun-Ok; Ahn, Dong-Uk; Park, Kwan-Hwa

    2002-05-22

    Ascorbic acid (1), a natural antioxidant, was modified by employing transglycosylation activity of Bacillus stearothermophilus maltogenic amylase with maltotriose and acarbose as donor molecules to enhance its oxidative stability. The transglycosylation reaction with maltotriose as donor created mono- and di-glycosyl transfer products with an alpha-(1,6)-glycosidic linkage. In addition, two acarviosine-glucosyl transfer products were generated when transglycosylation was performed with acarbose as a donor. All transfer products were observed by TLC and HPLC, and purified by Q-sepharose anion exchange and Biogel P-2 gel permeation chromatographies. LC/MS and (13)C NMR analyses revealed that the structures of the transfer products were 6-O-alpha-D-glucosyl- (2) and 6-O-alpha-D-maltosyl-ascorbic acids (3) in the reaction of maltotriose, and 6-O-alpha-acarviosine-D-glucosyl- (4) and 2-O-alpha-acarviosine-D-glucosyl ascorbic acids (5) in the reaction of acarbose. The stability of the transglycosylated ascorbic acid derivatives was greatly enhanced against oxidation by Cu(2+) ion and ascorbate oxidase. Among them, compound 3 proved to be the most stable against in vitro oxidation. The antioxidant effects of glycosyl-derivatives of ascorbic acid on the lipid oxidation in cooked chicken breast meat patties indicated that they had antioxidant activities similar to that of ascorbic acid. It is suggested that the transglycosylated ascorbic acids can possibly be applied as effective antioxidants with improved stability in food, cosmetic, and other applications.

  3. Electrophoretic amylase fractionation as an aid in diagnosis of pancreatic disease.

    PubMed

    Legaz, M E; Kenny, M A

    1976-01-01

    Six alpha-amylase (EC 3.2.1.1) isoenzymes have been resolved electrophoretically on cellulose acetate membranes in a discontinuous buffer system. The fastest migrating isoenzymes are of salivary origin (S1, S2, S3), the slower ones of pancreatic origin (P1, P2, P3). We determined the amylase isoenzyme distribution in the sera of 240 subjects. A specific pancreatic isoenzyme (P3) was observed in all clinically diagnosed cases of acute or chronic pancreatitis as well as in 15 of 40 renal-transplant patients. Moreover, P3 isoenzyme activity declined during apparent recovery from pancreatitis. The P2 isoenzyme appeared in 95% of all specimens, P1 in only 2%. The pancreatic isoenzymes were preferentially excreted in the urine of both renal-transplant patients and normal individuals. The major salivary isoenzyme, S1, was observed in 95% of all serum and urine samples; however, the S2 and S3 appeared less consistently. Our method is simple and rapid, and quite applicable for use in clinical evaluation of patients with pancreatitis or with certain nonpancreatic dysfunctions.

  4. [Some enzymatic activities of the amniotic fluid in human beings (LAP, GGTP, SGOT, SGPT, acid and alkaline phosphatases, 5' nucleotidase, amylase, beta-glucuronidase and aldolase)].

    PubMed

    Galerne, D; Baudon, J; Bruhat, M; Dastugue, G

    1973-10-01

    Quantitative analyses of 10 enzymes (LAP, GGTP, SGOT, SGPT. acid and alkaline phosphatases, 5' nucleotidase, amylase. beta-glucuronidase and aldolase) in a series of 50 samples of amniotic fluid gave widely-scattered results. In some cases, it was possible to relate high enzymatic activity to a pathological condition, in other cases, the amniotic fluid examined seemed to come from normal, full-term or almost full-term pregnancies without particular signs.

  5. Salivary Iron (Fe) Ion Levels, Serum Markers of Anemia and Caries Activity in Pregnant Women.

    PubMed

    Costa, Elisa Miranda; Azevedo, Juliana Aires Paiva de; Martins, Rafiza Félix Marão; Rodrigues, Vandilson Pereira; Alves, Cláudia Maria Coêlho; Ribeiro, Cecília Cláudia Costa; Thomaz, Erika Bárbara Abreu Fonseca

    2017-03-01

    Introduction Anemia is a very frequent event among pregnant women. There are evidences of differences in the incidence of dental caries between pregnant and non-pregnant women, but the relationship between salivary iron (Fe) and serum markers of anemia and caries development has not been investigated. Objective To evaluate the correlation between salivary (Fe) and serum iron (Fe, ferritin and hemoglobin) parameters in pregnant women with the development of dental caries. Methods A prospective cohort was conducted with 59 women. The outcome of interest was represented by new dental caries lesions during pregnancy, using the Nyvad criteria. Pregnant women were evaluated at three clinical times: up to the 16th week of gestational age (GA) (T1), in the last trimester of pregnancy (T2), and postpartum (T3), at the Mother and Child Unit of University Hospital of the Universidade Federal do Maranhão. A stimulated saliva sample was collected for biochemical analysis of salivary Fe, and a blood sample was collected early in the morning. The correlation between salivary and serum Fe was evaluated through the Pearson correlation test. Analysis of variance (ANOVA) and Kruskal-Wallis were used to compare the means of anemia parameters at different times. The Student's t and Mann-Whitney tests were used to compare the anemia parameters between the groups of pregnant women (with and without new caries lesions). Results Serum Fe concentrations were higher in the first trimester of pregnancy and lower after delivery (p = 0.036). It was also observed that the ferritin concentrations were higher in the first trimester and lower at the end of gestation (p = 0.011). There was no association between the expositions of salivary iron and anemia, and the development of dental caries. There was a positive correlation between serum Fe in T1 and salivary Fe in T2 (p < 0.05). Conclusion The serum markers of anemia were more prevalent in the last trimester of pregnancy.

  6. Cortisol and Children's Adjustment: The Moderating Role of Sympathetic Nervous System Activity

    ERIC Educational Resources Information Center

    El-Sheikh, Mona; Erath, Stephen A.; Buckhalt, Joseph A.; Granger, Douglas A.; Mize, Jacquelyn

    2008-01-01

    We examined relations among cortisol, markers of sympathetic nervous system (SNS) activity (including salivary alpha-amylase and skin conductance level), and children's adjustment. We also tested the Bauer et al. ("Journal of Developmental and Behavioral Pediatrics," 23(2), 102-113, 2002) hypothesis that interactions between the SNS and cortisol…

  7. Salivary Surrogates of Plasma Nitrite and Catecholamines during a 21-Week Training Season in Swimmers

    PubMed Central

    Díaz Gómez, Miguel Mauricio; Bocanegra Jaramillo, Olga Lucia; Teixeira, Renata Roland; Espindola, Foued Salmen

    2013-01-01

    The collection of samples of saliva is noninvasive and straightforward, which turns saliva into an ideal fluid for monitoring the adaptive response to training. Here, we investigated the response of the salivary proteins alpha-amylase (sAA), chromogranin A (sCgA), and the concentration of total protein (sTP) as well as salivary nitrite (sNO2) in relation to plasma catecholamines and plasma nitrite (pNO2), respectively. The variation in these markers was compared to the intensity and load of training during a 21-week training season in 12 elite swimmers. Overall, the salivary proteins tracked the concentration of plasma adrenaline and were inversely correlated with the training outcomes. No correlations were observed between sNO2 and pNO2. However, sNO2 correlated positively with the intensity and load of training. We argue that the decrease in sympathetic activity is responsible for the decrease in the concentration of proteins throughout the training season. Furthermore, the increase in nitrite is likely to reflect changes in hemodynamics and regulation of vascular tone. The association of the salivary markers with the training outcomes underlines their potential as noninvasive markers of training status in professional athletes. PMID:23700456

  8. A heterotetrameric alpha-amylase inhibitor from emmer (Triticum dicoccon Schrank) seeds.

    PubMed

    Capocchi, A; Muccilli, V; Cunsolo, V; Saletti, R; Foti, S; Fontanini, D

    2013-04-01

    Plants have developed a constitutive defense system against pest attacks, which involves the expression of a set of inhibitors acting on heterologous amylases of different origins. Investigating the soluble protein complement of the hulled wheat emmer we have isolated and characterized a heterotetrameric α-amylase inhibitor (ETI). Based on mass spectrometry data, it is an assembly of proteins highly similar to the CM2/CM3/CM16 found in durum wheat. Our data indicate that these proteins can also inhibit exogenous α-amylases in binary assemblies. The calculated dissociation constants (K(i)) for the pancreatic porcine amylase- and human salivary amylase-ETI complexes are similar to those found in durum and soft wheat. Homology modeling of the CM subunits indicate structural similarities with other proteins belonging to the cereal family of trypsin/α-amylase inhibitors; a possible homology modeled structure for a tetrameric assembly of the subunits is proposed.

  9. Effects of Oolong tea polyphenols, EGCG, and EGCG3″Me on pancreatic α-amylase activity in vitro.

    PubMed

    Fei, Qunqin; Gao, Yuan; Zhang, Xin; Sun, Yi; Hu, Bing; Zhou, Li; Jabbar, Saqib; Zeng, Xiaoxiong

    2014-10-01

    In order to investigate the inhibitory effects and possible mechanisms of Oolong tea polyphenols, (-)-epigallocatechin gallate (EGCG) and (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on pancreatic α-amylase, the inhibition, enzyme kinetics, ultraviolet (UV) absorption spectrum and fluorescence spectrum of α-amylase were investigated. The results showed that Oolong tea polyphenols, EGCG, and EGCG3″Me all exhibited inhibitory effects against α-amylase, and their half inhibitory concentration (IC50) values were 0.375, 0.350, and 0.572 mg/mL, respectively. The results of Lineweaver-Burk double reciprocal plot indicated that the inhibitory types of Oolong tea polyphenols and EGCG were competitive, whereas EGCG3″Me was in a noncompetitive pattern. Oolong tea polyphenols, EGCG, and EGCG3″Me all induced red-shift of UV absorbance and quenching of fluorescence of α-amylase, suggesting possible changes in the conformation of α-amylase. The differences of inhibitory effects and inhibition types for EGCG and EGCG3″Me might be due to their structural difference (the hydroxyl group at C-3 in D ring of EGCG substituted by methoxy group, forming EGCG3″Me).

  10. Nano-magnesium aided activity enhancement and biophysical characterization of a psychrophilic α-amylase immobilized on graphene oxide nanosupport.

    PubMed

    Dutta, Nalok; Biswas, Subrata; Saha, Malay Kumar

    2017-03-03

    In the current literature we have devised an immobilization technique for conferring psychrostability to a cold active α-amylase (amy) enzyme by the use of magnesium nanoparticle (MgNP) and graphene oxide (GO). The GO-MgNP-amy nanocomposite showed enhanced enzymatic activity and thermostability at both upper (90°C) and lower (8°C) temperature extremes. The GO-MgNP-amy showed increased affinity towards substrate, reflected in the decrease in its Km by 2.35 and 14.9-fold at 8°C and 90°C, respectively, than the untreated enzyme. GO-MgNP-amy showed 2.34-fold and 4.29-fold increase in Vmax at 8°C and 90°C, respectively, than the untreated enzyme. When compared to native enzyme at 90°C, GO-MgNP-amy had t1/2 (half life) increased by 44-fold with simultaneous increase in Ed by 1.9-fold. Again at 8°C, GO-MgNP-amy had t1/2 increased by 6.48-fold with simultaneous increase in Ed by 2.21-fold when compared to the native enzyme. The enzymatic activity of GO-MgNP-amy was retained even after 12 repeated uses and showed storage stability at 4°C for more than 120 days. The ability of GO-MgNP to sustain and aggravate enzyme activity and stability at temperatures beyond the optimal range can be utilized in bioprocessing industries which requires functioning at these extreme ranges of temperature.

  11. Influence of pH and temperature on the activity of SnO2-bound α-amylase: a genotoxicity assessment of SnO2 nanoparticles.

    PubMed

    Khan, Mohd Jahir; Husain, Qayyum

    2014-01-01

    Immobilization of biologically important molecules on a myriad of nanosized materials has attracted great attention due to their small size, biocompatibility, higher surface-to-volume ratio, and lower toxicity. These properties make nanoparticles (NPs) a superior matrix over bulk material for the immobilization of enzymes and proteins. In the present study, Bacillus amyloliquefaciens α-amylase was immobilized on SnO2 nanoparticles by a simple adsorption mechanism. Nanoparticle-adsorbed enzyme retained 90% of the original enzyme activity. Thermal stability of nanosupport was investigated by thermogravimetric and differential thermal analysis. Scanning electron microscopic studies showed that NPs have porous structure for the high-yield immobilization of α-amylase. The genotoxicity of SnO2-NPs was analyzed by pUC(19) plasmid nicking and comet assay and revealed that no remarkable DNA damage occurred in lymphocytes. The pH-optima was found to be the same for both free and SnO2-NPs bound enzyme, while the temperature-optimum for NPs-adsorbed α-amylase was 5°C higher than its free counterpart. Immobilized enzyme retained more than 70% enzyme activity even after its eight repeated uses.

  12. Salivary cortisol, heart rate, electrodermal activity and subjective stress responses to the Mannheim Multicomponent Stress Test (MMST).

    PubMed

    Reinhardt, Tatyana; Schmahl, Christian; Wüst, Stefan; Bohus, Martin

    2012-06-30

    The availability of effective laboratory paradigms for inducing psychological stress is an important requirement for experimental stress research. Reliable protocols are scarce, usually laborious and manpower-intensive. In order to develop an economical, easily applicable standardized stress protocol, we have recently tailored the Mannheim Multicomponent Stress Test (MMST). This test has been shown to induce relatively high stress responses without focusing on social-evaluative components. In this study we evaluated changes in electrodermal activity and salivary cortisol in response to the MMST. The MMST simultaneously combines cognitive (mental arithmetic), emotional (affective pictures), acoustic (white noise) and motivational stressors (loss of money). This study comprised two independent experiments. For experiment 1, 80 female subjects were recruited; 30 subjects (15 females) participated in experiment 2. Significant changes in electrodermal activity and salivary cortisol levels in response to MMST exposure were found. Subjective stress and heart rate responses were significantly increased in both experiments. These results indicate that the MMST is an economical stress paradigm which is also applicable in larger cohorts or multicenter studies for investigating stress reactions. As social-evaluative threat is not the main stress component of the MMST, this procedure represents a useful and complementary alternative to other established stress protocols.

  13. Aspergillus Oryzae S2 α-Amylase Domain C Involvement in Activity and Specificity: In Vivo Proteolysis, Molecular and Docking Studies

    PubMed Central

    Sahnoun, Mouna; Jemli, Sonia; Trabelsi, Sahar; Ayadi, Leila; Bejar, Samir

    2016-01-01

    We previously reported that Aspergillus oryzae strain S2 had produced two α-amylase isoforms named AmyA and AmyB. The apparent molecular masses revealed by SDS-PAGE were 50 and 42 kDa, respectively. Yet AmyB has a higher catalytic efficiency. Based on a monitoring study of the α-amylase production in both the presence and absence of different protease inhibitors, a chymotrypsin proteolysis process was detected in vivo generating AmyB. A. oryzae S2 α-amylase gene was amplified, cloned and sequenced. The sequence analysis revealed nine exons, eight introns and an encoding open reading frame of 1500 bp corresponding to AmyA isoform. The amino-acid sequence analysis revealed aY371 potential chymotrypsin cleaving site, likely to be the AmyB C-Terminal end and two other potential sites at Y359, and F379. A zymogram with a high acrylamide concentration was used. It highlighted two other closed apparent molecular mass α-amylases termed AmyB1 and AmyB2 reaching40 kDa and 43 kDa. These isoforms could be possibly generated fromY359, and F379secondary cut, respectively. The molecular modeling study showed that AmyB preserved the (β/α)8 barrel domain and the domain B but lacked the C-terminal domain C. The contact map analysis and the docking studies strongly suggested a higher activity and substrate binding affinity for AmyB than AmyA which was previously experimentally exhibited. This could be explained by the easy catalytic cleft accessibility. PMID:27101008

  14. In vitro antioxidant and inhibitory activity of water decoctions of carob tree (Ceratonia siliqua L.) on cholinesterases, α-amylase and α-glucosidase.

    PubMed

    Custódio, Luísa; Patarra, João; Alberício, Fernando; Neng, Nuno Rosa; Nogueira, José Manuel Florêncio; Romano, Anabela

    2015-01-01

    This work reports the in vitro inhibitory activity of water decoctions of leaves, germ flour, pulp, locust bean gum and stem bark of carob tree on α-amylase, α-glucosidase, acetylcholinesterase and butyrylcholinesterase. The antioxidant activity and the chemical characterisation of the extracts made by spectrophotometric assays and by high-performance liquid chromatography are also reported. Leaves and stem bark decoctions strongly inhibited all the enzymes tested, had significant antioxidant activity and the highest total phenolics content. The major compounds were identified as gallic acid in the leaves and gentisic acid in the stem bark.

  15. Levels of Salivary Enzymes of Apolygus Lucorum (Hemiptera: Miridae), From 1st Instar Nymph to Adult, and Their Potential Relation to Bug Feeding

    PubMed Central

    Tan, Xiumei; Xu, Xiuping; Gao, Yong; Yang, Qinmin; Zhu, Yunsheng; Wang, Jiqing; Wan, Fanghao; Zhou, Hongxu

    2016-01-01

    In recent years, Apolygus lucorum has caused increasing damage to cotton and fruit trees in China. The salivary enzymes secreted by A. lucorum when sucking on host plants induce a series of biochemical reactions in plants, and the pre-oral digestion benefits the bug feeding. In this study, the food intake of A. lucorum from 1st instar nymphs to adults was measured, and the corresponding salivary activity of pectinase, amylase, cellulase, protease, polyphenol oxidase and peroxidase was determined. Daily food intake varied with developmental stage, peaking in 3rd and 4th instar nymphs. Pectinase, amylase, cellulase and protease were detected in both nymphal and adult saliva of A. lucorum, while neither polyphenol oxidase nor peroxidase was detected. Protease activity varied with food intake peaking at the 3rd-4th instar, and then slightly decreasing at the 5th instar. Levels of pectinase, amylase and cellulase increased significantly with the daily feeding level until the 3rd instar, corresponding with increasing damage to host plants. The activity of both cellulase and protease had a significant linear relationship with the average daily food intake. The increasing activity of enzymes in saliva explain stage-specific impacts of A. lucorum on the host plants, and suggest that optimal management of A. lucorum would be confined to its control threshold prior to the peak of daily feeding in the 3rd instar. PMID:28002486

  16. Expression of β-Amylase from Alfalfa Taproots1

    PubMed Central

    Gana, Joyce A.; Kalengamaliro, Newton E.; Cunningham, Suzanne M.; Volenec, Jeffrey J.

    1998-01-01

    Alfalfa (Medicago sativa L.) roots contain large quantities of β-amylase, but little is known about its role in vivo. We studied this by isolating a β-amylase cDNA and by examining signals that affect its expression. The β-amylase cDNA encoded a 55.95-kD polypeptide with a deduced amino acid sequence showing high similarity to other plant β-amylases. Starch concentrations, β-amylase activities, and β-amylase mRNA levels were measured in roots of alfalfa after defoliation, in suspension-cultured cells incubated in sucrose-rich or -deprived media, and in roots of cold-acclimated germ plasms. Starch levels, β-amylase activities, and β-amylase transcripts were reduced significantly in roots of defoliated plants and in sucrose-deprived cell cultures. β-Amylase transcript was high in roots of intact plants but could not be detected 2 to 8 d after defoliation. β-Amylase transcript levels increased in roots between September and October and then declined 10-fold in November and December after shoots were killed by frost. Alfalfa roots contain greater β-amylase transcript levels compared with roots of sweetclover (Melilotus officinalis L.), red clover (Trifolium pratense L.), and birdsfoot trefoil (Lotus corniculatus L.). Southern analysis indicated that β-amylase is present as a multigene family in alfalfa. Our results show no clear association between β-amylase activity or transcript abundance and starch hydrolysis in alfalfa roots. The great abundance of β-amylase and its unexpected patterns of gene expression and protein accumulation support our current belief that this protein serves a storage function in roots of this perennial species. PMID:9847126

  17. Characterization of the native form and the carboxy-terminally truncated halotolerant form of α-amylases from Bacillus subtilis strain FP-133.

    PubMed

    Takenaka, Shinji; Miyatake, Ayaka; Tanaka, Kosei; Kuntiya, Ampin; Techapun, Charin; Leksawasdi, Noppol; Seesuriyachan, Phisit; Chaiyaso, Thanongsak; Watanabe, Masanori; Yoshida, Ken-ichi

    2015-06-01

    Two amylases, amylase I and amylase II from Bacillus subtilis strain FP-133, were purified to homogeneity and characterized. Their stabilities toward temperature, pH, and organic solvents, and their substrate specificities toward polysaccharides and oligosaccharides were similar. Under moderately high salt conditions, both amylases were more stable than commercial B. licheniformis amylase, and amylase I retained higher amylase activity than amylase II. The N-terminal amino acid sequence, genomic southern blot analysis, and MALDI-TOFF-MS analysis indicated that the halotolerant amylase I was produced by limited carboxy-terminal truncation of the amylase II peptide. The deduced amino acid sequence of amylase II was >95% identical to that of previously reported B. subtilis α-amylases, but their carboxy-terminal truncation points differed. Three recombinant amylases--full-length amylase corresponding to amylase II, an artificially truncated amylase corresponding to amylase I, and an amylase with a larger artificial C-terminal truncation--were expressed in B. subtilis. The artificially truncated recombinant amylases had the same high amylase activity as amylase I under moderately high salt conditions. Sequence comparisons indicated that an increased ratio of Asp/Glu residues in the enzyme may be one factor responsible for increasing halotolerance.

  18. AmyA, an alpha-amylase with beta-cyclodextrin-forming activity, and AmyB from the thermoalkaliphilic organism Anaerobranca gottschalkii: two alpha-amylases adapted to their different cellular localizations.

    PubMed

    Ballschmiter, Meike; Armbrecht, Martin; Ivanova, Krasimira; Antranikian, Garabed; Liebl, Wolfgang

    2005-07-01

    Two alpha-amylase genes from the thermophilic alkaliphile Anaerobranca gottschalkii were cloned, and the corresponding enzymes, AmyA and AmyB, were investigated after purification of the recombinant proteins. Based on their amino acid sequences, AmyA is proposed to be a lipoprotein with extracellular localization and thus is exposed to the alkaline milieu, while AmyB apparently represents a cytoplasmic enzyme. The amino acid sequences of both enzymes bear high similarity to those of GHF13 proteins. The different cellular localizations of AmyA and AmyB are reflected in their physicochemical properties. The alkaline pH optimum (pH 8), as well as the broad pH range, of AmyA activity (more than 50% activity between pH 6 and pH 9.5) mirrors the conditions that are encountered by an extracellular enzyme exposed to the medium of A. gottschalkii, which grows between pH 6 and pH 10.5. AmyB, on the other hand, has a narrow pH range with a slightly acidic pH optimum at 6 to 6.5, which is presumably close to the pH in the cytoplasm. Also, the intracellular AmyB is less tolerant of high temperatures than the extracellular AmyA. While AmyA has a half-life of 48 h at 70 degrees C, AmyB has a half-life of only about 10 min at that temperature, perhaps due to the lack of stabilizing constituents of the cytoplasm. AmyA and AmyB were very similar with respect to their substrate specificity profiles, clearly preferring amylose over amylopectin, pullulan, and glycogen. Both enzymes also hydrolyzed alpha-, beta-, and gamma-cyclodextrin. Very interestingly, AmyA, but not AmyB, displayed high transglycosylation activity on maltooligosaccharides and also had significant beta-cyclodextrin glycosyltransferase (CGTase) activity. CGTase activity has not been reported for typical alpha-amylases before. The mechanism of cyclodextrin formation by AmyA is unknown.

  19. Advances in microbial amylases.

    PubMed

    Pandey, A; Nigam, P; Soccol, C R; Soccol, V T; Singh, D; Mohan, R

    2000-04-01

    This review makes a comprehensive survey of microbial amylases, i.e. alpha-amylase, beta-amylase and glucoamylase. Amylases are among the most important enzymes and are of great significance in present-day biotechnology. Although they can be derived from several sources, such as plants, animals and micro-organisms, the enzymes from microbial sources generally meet industrial demands. Microbial amylases could be potentially useful in the pharmaceutical and fine-chemical industries if enzymes with suitable properties could be prepared. With the advent of new frontiers in biotechnology, the spectrum of amylase application has widened in many other fields, such as clinical, medicinal and analytical chemistries, as well as their widespread application in starch saccharification and in the textile, food, brewing and distilling industries. In this review, after a brief description of the sources of amylases, we discuss the molecular biology of amylases, describing structures, cloning, sequences, and protoplast fusion and mutagenesis. This is followed by sections on their production and finally the properties of various amylases.

  20. Polymer masked-unmasked protein therapy. 1. Bioresponsive dextrin-trypsin and -melanocyte stimulating hormone conjugates designed for alpha-amylase activation.

    PubMed

    Duncan, Ruth; Gilbert, Helena R P; Carbajo, Rodrigo J; Vicent, María J

    2008-04-01

    Polymer-protein conjugation, particularly PEGylation, is well-established as a means of increasing circulation time, reducing antigenicity, and improving the stability of protein therapeutics. However, PEG has limitations including lack of polymer biodegradability, and conjugation can diminish or modify protein activity. The aim of this study was to explore a novel approach for polymer-protein modification called polymer-masking-unmasking-protein therapy (PUMPT), the hypothesis being that conjugation of a biodegradable polymer to a protein would protect it and mask activity in transit, while enabling controlled reinstatement of activity at the target site by triggered degradation of the polymeric component. To test this hypothesis, dextrin (alpha-1,4 polyglucose, a natural polymer degraded by alpha-amylase) was conjugated to trypsin as a model enzyme or to melanocyte stimulating hormone (MSH) as a model receptor-binding ligand. The effect of dextrin molecular weight (7700, and 47200 g/mol) and degree of succinoylation (9-32 mol %) on its ability to mask/unmask trypsin activity was assessed using N-benzoyl-L-arginine-p-nitroanilide (L-BAPNA). Dextrin conjugation reduced enzyme activity by 34-69% depending on the molecular weight and degree of succinoylation of dextrin. However, incubation with alpha-amylase led to reinstatement of activity to a maximum of 92-115%. The highest molecular dextrin (26 mol % succinoylation) gave optimum trypsin masking-unmasking. This intermediate was used to synthesize a dextrin-MSH conjugate (dextrin Mw = 47200 g/mol; MSH content 37 wt %), and its biological activity (+/-alpha-amylase) was assessed by measuring melanin production by murine melanoma (B16F10) cells. Conjugation reduced melanin production to 11%, but addition of alpha-amylase was able to restore activity to 33% of the control value. These were the first studies to confirm the potential of PUMPT for further application to clinically important protein therapeutics. The

  1. Expression of liver alpha-amylase in obese mouse hepatocytes

    PubMed Central

    Afsartala, Zohreh; Savabkar, Sanaz; Nazemalhosseini Mojarad, Ehsan; Assadollahi, Vahideh; Tanha, Shima; Bijangi, Khosro; Gholami, Mohammadreza

    2016-01-01

    Aim: The aim of this study is to demonstrate the relation between the expression of liver alpha-amylase and obesity. Background: Alpha-amylase catalyses the hydrolysis of 1, 4-alpha-glucosidic linkages in polysaccharides and has three main subtypes, including: salivary, pancreatic, and hepatic. Hepatic alpha-amylase is involved in glycogen metabolism, and has a role in obesity and its management. In this study, we aimed to analyze the expression of liver alpha-amylase in overweight and obese mouse. Material and methods: In this study, NMRI male mice were randomly divided into two groups. The sample group (obese) took a high-fat and carbohydrate diet, while the control group (normal) took a laboratory pellet chow for eight weeks. During this period, their weight was measured. After eight weeks, liver hepatocytes were isolated using an enzymatic digestion method. Immunocytochemistry (ICC) and flow cytometry analysis were performed to measure alpha amylase protein expression in mouse liver hepatocyte cells. Results: A significant difference in the body weight was observed between the two groups (p<0.05). The qualitative protein expression of liver alpha-amylase was found to be higher in the obese group in both tests (immunocytochemistry and flow cytometry). Animals from the test group presented higher alpha-amylase expression, which suggests that this hepatic protein may constitute a potential indicator of susceptibility for fat tissue accumulation and obesity. The present data demonstrates an increased expression of liver amylase in obese mice. Conclusion: These results suggest that liver amylase secretion might be useful for predicting susceptibility to obesity induced by consumption of a high-fat and carbohydrate diet. PMID:27895853

  2. Activation of Salivary Secretion: Coupling of Cell Volume and [Ca2+]i in Single Cells

    NASA Astrophysics Data System (ADS)

    Foskett, J. Kevin; Melvin, James E.

    1989-06-01

    High-resolution differential interference contrast microscopy and digital imaging of the fluorescent calcium indicator dye fura-2 were performed simultaneously in single rat salivary gland acinar cells to examine the effects of muscarinic stimulation on cell volume and cytoplasmic calcium concentration ([Ca2+]i). Agonist stimulation of fluid secretion is initially associated with a rapid tenfold increase in [Ca2+]i as well as a substantial cell shrinkage. Subsequent changes of cell volume in the continued presence of agonist are tightly coupled to dynamic levels of [Ca2+]i, even during [Ca2+]i oscillations. Experiments with Ca2+ chelators and ionophores showed that physiological elevations of [Ca2+]i are necessary and sufficient to cause changes in cell volume. The relation between [Ca2+]i and cell volume suggests that the latter reflects the secretory state of the acinar cell. Agonist-induced changes in [Ca2+]i, by modulating specific ion permeabilities, result in solute movement into or out of the cell. The resultant cell volume changes may be important in modulating salivary secretion.

  3. Characterization and Optimization of Amylase Production in WangLB, a High Amylase-Producing Strain of Bacillus.

    PubMed

    Wang, Shihui; Jeyaseelan, Jenasia; Liu, Yun; Qin, Wensheng

    2016-09-01

    The costs of amylase represent ca. 24 % of the expenditures in the starch industry and an increase in amylase production and/or activity will greatly cut down on production costs. In the present study, we obtained a high amylase-producing strain of bacteria, WangLB, and identified it as a member of the Bacillus genus based on 16S rDNA analysis. The fermentation conditions for amylase production in the strain were optimized, and the maximum amylase activity we obtained was 26,670 ± 1390 U/mL, under the optimized conditions of 48-h incubation in liquid starch medium, 35 °C, pH 10, 1 % v/v inoculum concentration, 20 g/L starch concentration, and 0.1 % w/v peptone. The influences of 16 small organic inducers on amylase production were tested, and the results showed that 20 mmol/L alanine greatly enhanced amylase production to 290 % of the baseline level. We also conducted an amylase enzymology analysis. The molecular weight of the amylase was 55 kD, determined by SDS-PAGE. The optimum temperature and pH for the amylase were 55 °C and pH 9, respectively. The enzyme also showed high activity over a wide range of temperatures (50-85 °C) and pH values (3-10), and the activity of the amylase was Ca(2+) independent. The kinetic parameters K m and V max were 0.37 ± 0.02 mg/mL and 233 U/mg, respectively. Finally, the amylase was applied to the hydrolysis of five different brands of starch. It was found that the hydrolyzability of the substrate by amylase increased along with starch solubility.

  4. Intracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity.

    PubMed

    Schewe, Bettina; Blenau, Wolfgang; Walz, Bernd

    2012-04-15

    Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H(+)-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pH(i)) regulation in unstimulated gland cells is unknown. We used the fluorescent dye BCECF to study intracellular pH(i) regulation microfluorometrically and show that: (1) under resting conditions, the application of Na(+)-free physiological saline induces an intracellular alkalinization attributable to the inhibition of the activity of a Na(+)-dependent glutamate transporter; (2) the maintenance of resting pH(i) is Na(+), Cl(-), concanamycin A and DIDS sensitive; (3) recovery from an intracellular acid load is Na(+) sensitive and requires V-ATPase activity; (4) the Na(+)/H(+) antiporter is not involved in pH(i) recovery after a NH(4)Cl prepulse; and (5) at least one Na(+)-dependent transporter and the V-ATPase maintain recovery from an intracellular acid load. Thus, under resting conditions, the V-ATPase and at least one Na(+)-dependent transporter maintain normal pH(i) values of pH 7.5. We have also detected the presence of a Na(+)-dependent glutamate transporter, which seems to act as an acid loader. Despite this not being a common pH(i)-regulating transporter, its activity affects steady-state pH(i) in C. vicina salivary gland cells.

  5. Kinetics studies on the inhibition mechanism of pancreatic α-amylase by glycoconjugated 1H-1,2,3-triazoles: a new class of inhibitors with hypoglycemiant activity.

    PubMed

    Senger, Mario Roberto; Gomes, Lucas da Costa Andrade; Ferreira, Sabrina Baptista; Kaiser, Carlos Roland; Ferreira, Vitor Francisco; Silva, Floriano Paes

    2012-07-23

    Glycoconjugated 1H-1,2,3-triazoles (GCTs) comprise a new class of glycosidase inhibitors that are under investigation as promising therapeutic agents for a variety of diseases, including type 2 diabetes mellitus. However, few kinetics studies have been performed to clarify the mode of inhibition of GCTs with their target glycosidases. Our group has previously shown that some methyl-β-D-ribofuranosyl-1H-1,2,3-triazoles that inhibit baker's yeast maltase were also able to reduce post-prandial glucose levels in normal rats. We hypothesized that this hypoglycemiant activity was attributable to inhibition of mammalian α-glucosidases involved in sugar metabolism, such as pancreatic α-amylase. Hence, the aim of this work was to test a series of 26 GCTs on porcine pancreatic α-amylase (PPA) and to characterize their inhibition mechanisms. Six GCTs, all ribofuranosyl-derived GCTs, significantly inhibited PPA, with IC(50) values in the middle to high micromolar range. Our results also demonstrated that ribofuranosyl-derived GCTs are reversible, noncompetitive inhibitors when using 2-chloro-4-nitrophenyl-α-D-maltotrioside as a substrate. E/ES affinity ratios (α) ranged from 0.3 to 1.1, with the majority of ribofuranosyl-derived GCTs preferentially forming stable ternary ESI complexes. Competition assays with acarbose showed that ribofuranosyl-derived GCTs bind to PPA in a mutually exclusive fashion. The data presented here show that pancreatic α-amylase is one of the possible molecular targets in the pharmacological activity of ribofuranosyl-derived GCTs. Our results also provide important mechanistic insight that can be of major help to develop this new class of synthetic small molecules into more potent compounds with anti-diabetic activity through rational drug design.

  6. Salivary gland dysfunction following radioactive iodine therapy

    SciTech Connect

    Wiesenfeld, D.; Webster, G.; Cameron, F.; Ferguson, M.M.; MacFadyen, E.E.; MacFarlane, T.W.

    1983-02-01

    Radioactive iodine is used extensively for the treatment of thyrotoxicosis and thyroid carcinoma. Iodine is actively taken up by the salivary glands and, following its use, salivary dysfunction may result as a consequence of radiation damage. The literature is reviewed and a case is reported in which a patient presented with a significant increase in caries rate attributed to salivary dysfunction following radioactive iodine therapy for a thyroid carcinoma.

  7. Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on α-amylase and α-glucosidase activities.

    PubMed

    Hemalatha, P; Bomzan, Dikki Pedenla; Sathyendra Rao, B V; Sreerama, Yadahally N

    2016-05-15

    Whole grain quinoa and its milled fractions were evaluated for their phenolic composition in relation to their antioxidant properties and inhibitory effects on α-amylase and α-glucosidase activities. Compositional analysis by HPLC-DAD showed that the distribution of phenolic compounds in quinoa is not entirely localised in the outer layers of the kernel. Milling of whole grain quinoa resulted in about 30% loss of total phenolic content in milled grain. Ferulic and vanillic acids were the principal phenolic acids and rutin and quercetin were predominant flavonoids detected in whole grain and milled fractions. Quinoa milled fractions exhibited numerous antioxidant activities. Despite having relatively lower phenolic contents, dehulled and milled grain fractions showed significantly (p ⩽ 0.05) higher metal chelating activity than other fractions. Furthermore, extracts of bran and hull fractions displayed strong inhibition towards α-amylase [IC50, 108.68 μg/ml (bran) and 148.23 μg/ml (hulls)] and α-glucosidase [IC50, 62.1 μg/ml (bran) and 68.14 μg/ml (hulls)] activities. Thus, whole grain quinoa and its milled fractions may serve as functional food ingredients in gluten-free foods for promoting health.

  8. Effect of betulin-containing extract from birch tree bark on α-amylase activity in vitro and on weight gain of broiler chickens in vivo.

    PubMed

    Ilyina, Anna; Arredondo-Valdés, Roberto; Farkhutdinov, Salavat; Segura-Ceniceros, Elda Patricia; Martínez-Hernández, José Luis; Zaynullin, Radik; Kunakova, Rayhana

    2014-03-01

    In vitro effect of betulin-containing extract from Betula pendula Roth. bark on alpha-amylase activity was studied, the kinetic mechanism of interaction was proposed and in vivo effect of betulin-containing extract on weight gain and meat quality of broiler chickens was evaluated. The highest level of inhibitory activity (20%) was detected in extract concentration of 1,000 mg/L. Increased extract concentration did not lead to increased enzyme inhibition. Using Dixon and Cornish-Bowden coordinates, the competitive mechanism of inhibition was demonstrated. Calculated kinetic parameters were: Km equal to 0.6 mg/mL, Vmax equal to 2.6 and 2.1 mM/min from Lineweaver-Burk and Dixon coordinates, respectively and Ki equal to 3,670 ± 230 mg/mL. The partial inhibition of enzyme indicates the existence of low concentration of active inhibitory form, which reaches saturation level with increased extract concentration in applied suspension. Therefore, Ki has an apparent constant character. This partial inhibition of amylase activity observed in in vitro assay did not affect weight gain and meat quality of broiler chickens during in vivo assay. Rather, the tendency to increase the weight of edible parts and muscles compared to diet without additive suggests that the extract may be a potential food additive in poultry farming. Additionally, it could be a source for further pharmaceutical and pharmacological research.

  9. Effect of tin oxide nanoparticle binding on the structure and activity of α-amylase from Bacillus amyloliquefaciens

    NASA Astrophysics Data System (ADS)

    Jahir Khan, Mohammad; Qayyum, Shariq; Alam, Fahad; Husain, Qayyum

    2011-11-01

    Proteins adsorbed on nanoparticles (NPs) are being used in biotechnology, biosensors and drug delivery. However, understanding the effect of NPs on the structure of proteins is still in a nascent state. In the present paper tin oxide (SnO2) NPs were synthesized by the reaction of SnCl4·5H2O in methanol via the sol-gel method and characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The binding of these SnO2-NPs with α-amylase was investigated by using UV-vis, fluorescence and circular dichroism (CD) spectroscopic techniques. A strong quenching of tryptophan fluorescence intensity in α-amylase was observed due to formation of a ground state complex with SnO2-NPs. Far-UV CD spectra showed that the secondary structure of α-amylase was changed in the presence of NPs. The Michaelis-Menten constant (Km), was found to be 26.96 and 28.45 mg ml - 1, while Vmax was 4.173 and 3.116 mg ml - 1 min - 1 for free and NP-bound enzyme, respectively.

  10. Effect of tin oxide nanoparticle binding on the structure and activity of α-amylase from Bacillus amyloliquefaciens.

    PubMed

    Khan, Mohammad Jahir; Qayyum, Shariq; Alam, Fahad; Husain, Qayyum

    2011-11-11

    Proteins adsorbed on nanoparticles (NPs) are being used in biotechnology, biosensors and drug delivery. However, understanding the effect of NPs on the structure of proteins is still in a nascent state. In the present paper tin oxide (SnO2) NPs were synthesized by the reaction of SnCl4·5H2O in methanol via the sol-gel method and characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The binding of these SnO2-NPs with α-amylase was investigated by using UV-vis, fluorescence and circular dichroism (CD) spectroscopic techniques. A strong quenching of tryptophan fluorescence intensity in α-amylase was observed due to formation of a ground state complex with SnO2-NPs. Far-UV CD spectra showed that the secondary structure of α-amylase was changed in the presence of NPs. The Michaelis-Menten constant (K(m)), was found to be 26.96 and 28.45 mg ml(-1), while V(max) was 4.173 and 3.116 mg ml(-1) min(-1) for free and NP-bound enzyme, respectively.

  11. Quantitative study of salivary secretion in Parkinson's disease.

    PubMed

    Tumilasci, Omar R; Cersósimo, M G; Belforte, Juan E; Micheli, Federico E; Benarroch, Eduardo E; Pazo, Jorge H

    2006-05-01

    We examined basal and reflex salivary flow rate and composition in 46 patients with Parkinson's disease (PD), both in off and on conditions, compared to 13 age-matched controls without underlying disease or treatment affecting autonomic function. Whole saliva was collected 12 hours after withdrawal of dopaminergic drugs and at the peak of levodopa-induced motor improvement. Twenty-three of the 46 PD patients had received domperidone a week before the study. Basal salivary flow rate was significantly lower in PD patients in the off state compared to controls (P<0.005). Levodopa increased salivary flow rate (P<0.05) both in the domperidone-pretreated and untreated groups. Citric acid stimulated salivary flow rate in both the off and on states in PD patients. This effect was higher in the domperidone-pretreated patients. Salivary concentration of sodium, chloride, and amylase was higher in PD patients than in controls and was not affected by levodopa or domperidone treatment. Levodopa stimulates both basal and reflex salivary flow rate in PD. The mechanism appears to be central, as the effect is not blocked by domperidone. Domperidone may have a peripheral effect that potentiates reflex salivary secretion. Salivary composition is abnormal in PD and is not affected by levodopa treatment.

  12. Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of kongsfjorden and Ny-alesund, Svalbard, Arctic.

    PubMed

    Srinivas, T N R; Nageswara Rao, S S S; Vishnu Vardhan Reddy, P; Pratibha, M S; Sailaja, B; Kavya, B; Hara Kishore, K; Begum, Z; Singh, S M; Shivaji, S

    2009-11-01

    Culturable bacterial diversity of seven marine sediment samples of Kongsfjorden and a sediment and a soil sample from Ny-Alesund, Svalbard, Arctic was studied. The bacterial abundance in the marine sediments of Kongsfjorden varied marginally (0.5 x 10(3)-1.3 x 10(4) cfu/g sediment) and the bacterial number in the two samples collected from the shore of Ny-Alesund also was very similar (0.6 x 10(4) and 3.4 x 10(4), respectively). From the nine samples a total of 103 bacterial isolates were obtained and these isolates could be grouped in to 47 phylotypes based on the 16S rRNA gene sequence belonging to 4 phyla namely Actinobacteria, Bacilli, Bacteroidetes and Proteobacteria. Representatives of the 47 phylotypes varied in their growth temperature range (4-37 degrees C), in their tolerance to NaCl (0.3-2 M NaCl) and growth pH range (2-11). Representatives of 26 phylotypes exhibited amylase and lipase activity either at 5 or 20 degrees C or at both the temperatures. A few of the representatives exhibited amylase and/or lipase activity only at 5 degrees C. None of the phylotypes exhibited protease activity. Most of the phylotypes (38) were pigmented. Fatty acid profile studies indicated that short chain fatty acids, unsaturated fatty acids, branched fatty acids, the cyclic and the cis fatty acids are predominant in the psychrophilic bacteria.

  13. Effect of introducing a disulphide bond between the A and C domains on the activity and stability of Saccharomycopsis fibuligera R64 α-amylase.

    PubMed

    Natalia, Dessy; Vidilaseris, Keni; Ismaya, Wangsa T; Puspasari, Fernita; Prawira, Iman; Hasan, Khomaini; Fibriansah, Guntur; Permentier, Hjalmar P; Nurachman, Zeily; Subroto, Toto; Dijkstra, Bauke W; Soemitro, Soetijoso

    2015-02-10

    Native enzyme and a mutant containing an extra disulphide bridge of recombinant Saccharomycopsis fibuligera R64 α-amylase, designated as Sfamy01 and Sfamy02, respectively, have successfully been overexpressed in the yeast Pichia pastoris KM71H. The purified α-amylase variants demonstrated starch hydrolysis resulting in a mixture of maltose, maltotriose, and glucose, similar to the wild type enzyme. Introduction of the disulphide bridge shifted the melting temperature (TM) from 54.5 to 56 °C and nearly tripled the enzyme half-life time at 65 °C. The two variants have similar kcat/KM values. Similarly, inhibition by acarbose was only slightly affected, with the IC50 of Sfamy02 for acarbose being 40 ± 3.4 μM, while that of Sfamy01 was 31 ± 3.9 μM. On the other hand, the IC50 of Sfamy02 for EDTA was 0.45 mM, nearly two times lower than that of Sfamy01 at 0.77 mM. These results show that the introduction of a disulphide bridge had little effect on the enzyme activity, but made the enzyme more susceptible to calcium ion extraction. Altogether, the new disulphide bridge improved the enzyme stability without affecting its activity, although minor changes in the active site environment cannot be excluded.

  14. Salivary and pellicle proteome: A datamining analysis

    PubMed Central

    Schweigel, Hardy; Wicht, Michael; Schwendicke, Falk

    2016-01-01

    We aimed to comprehensively compare two compartmented oral proteomes, the salivary and the dental pellicle proteome. Systematic review and datamining was used to obtain the physico-chemical, structural, functional and interactional properties of 1,515 salivary and 60 identified pellicle proteins. Salivary and pellicle proteins did not differ significantly in their aliphatic index, hydrophaty, instability index, or isoelectric point. Pellicle proteins were significantly more charged at low and high pH and were significantly smaller (10–20 kDa) than salivary proteins. Protein structure and solvent accessible molecular surface did not differ significantly. Proteins of the pellicle were more phosphorylated and glycosylated than salivary proteins. Ion binding and enzymatic activities also differed significantly. Protein-protein-ligand interaction networks relied on few key proteins. The identified differences between salivary and pellicle proteins could guide proteome compartmentalization and result in specialized functionality. Key proteins could be potential targets for diagnostic or therapeutic application. PMID:27966577

  15. Salivary and pellicle proteome: A datamining analysis.

    PubMed

    Schweigel, Hardy; Wicht, Michael; Schwendicke, Falk

    2016-12-14

    We aimed to comprehensively compare two compartmented oral proteomes, the salivary and the dental pellicle proteome. Systematic review and datamining was used to obtain the physico-chemical, structural, functional and interactional properties of 1,515 salivary and 60 identified pellicle proteins. Salivary and pellicle proteins did not differ significantly in their aliphatic index, hydrophaty, instability index, or isoelectric point. Pellicle proteins were significantly more charged at low and high pH and were significantly smaller (10-20 kDa) than salivary proteins. Protein structure and solvent accessible molecular surface did not differ significantly. Proteins of the pellicle were more phosphorylated and glycosylated than salivary proteins. Ion binding and enzymatic activities also differed significantly. Protein-protein-ligand interaction networks relied on few key proteins. The identified differences between salivary and pellicle proteins could guide proteome compartmentalization and result in specialized functionality. Key proteins could be potential targets for diagnostic or therapeutic application.

  16. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes.

    PubMed

    Brayer, G D; Luo, Y; Withers, S G

    1995-09-01

    substrate and cleavage pattern specificities between these enzymes. Similarly, amino acid differences between human pancreatic and salivary alpha-amylases have been localized and a number of these occur in the vicinity of the active site.

  17. Effect of salivary gland adenocarcinoma cell-derived alpha-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor.

    PubMed

    Matsuura, Takashi; Uematsu, Takashi; Yamaoka, Minoru; Furusawa, Kiyofumi

    2004-03-01

    The aim of this study was to clarify the effects of alpha-N-acetylgalactosaminidase (alpha-NaGalase) produced by human salivary gland adenocarcinoma (SGA) cells on the bioactivity of macrophage-activating factor (GcMAF). High exo-alpha-NaGalase activity was detected in the SGA cell line HSG. HSG alpha-NaGalase had both exo- and endo-enzyme activities, cleaving the Gal-GalNAc and GalNAc residues linked to Thr/Ser but not releasing the [NeuAc2-6]GalNac residue. Furthermore, GcMAF enzymatically prepared from the Gc protein enhanced the superoxide-generation capacity and phagocytic activity of monocytes/macrophages. However, GcMAF treated with purified alpha-NaGalase did not exhibit these effects. Thus, HSG possesses the capacity to produce larger quantities of alpha-NaGalase, which inactivates GcMAF produced from Gc protein, resulting in reduced phagocytic activity and superoxide-generation capacity of monocytes/macrophages. The present data strongly suggest that HSG alpha-NaGalase acts as an immunodeficiency factor in cancer patients.

  18. Encapsulation of amylase in colloidosomes.

    PubMed

    Keen, Polly H R; Slater, Nigel K H; Routh, Alexander F

    2014-03-04

    Aqueous core colloidosomes encapsulating the enzyme amylase were manufactured with a shell comprising polymer latex particles of diameter 153 nm. The colloidosomes were sealed with calcium carbonate by precipitation between an inner phase of Na2CO3 and an outer phase of CaCl2. This seal allowed the retention of small molecules, such as dyes, as well as larger enzyme molecules, for several months. The encapsulated material could be released by dissolution of the CaCO3 with acid, upon a large dilution in water, or by applying a sufficient shear. The degree of release could be controlled since the greater the mass of CaCO3 precipitated onto the colloidosome shell, the greater the dilution or shear required to achieve release. The calcium carbonate seal protected encapsulated amylase from the detrimental effects of components in a liquid laundry detergent for several months so that, on triggered release, the enzyme retained its high activity.

  19. Purification and characterisation of a malto-oligosaccharide-forming amylase active at high pH from Bacillus clausii BT-21.

    PubMed

    Duedahl-Olesen, L; Kragh, K M; Zimmermann, W

    2000-10-20

    Bacillus clausii BT-21 produced an extracellular malto-oligosaccharide-forming amylase active at high pH when grown on starch substrates. The enzyme was purified to homogeneity by affinity and anion-exchange chromatography. The molecular weight of the enzyme estimated by sodium dodecyl sulfate polyacrylamide electrophoresis was 101 kDa. The enzyme showed an optimum of activity at pH 9.5 and 55 degrees C. Maltohexaose was detected as the main initially formed starch hydrolysis product. Maltotetraose and maltose were the main products obtained after hydrolysis of starch by the enzyme for an extended period of time and were not further degraded. The enzyme readily hydrolysed soluble starch, amylopectin and amylose, while cyclodextrins, pullulan or dextran were not degraded. The mode of action during hydrolysis of starch indicated an exo-acting type of amylolytic enzyme mainly producing maltohexaose and maltotetraose. Amino acid sequencing of the enzyme revealed high homology with the maltohexaose-forming amylase from Bacillus sp. H-167.

  20. Optimized conditions for determining activity concentration of alpha-amylase in serum, with 1,4-alpha-D-4-nitrophenylmaltoheptaoside as substrate.

    PubMed

    Rauscher, E; Neumann, U; Schaich, E; von Bülow, S; Wahlefeld, A W

    1985-01-01

    We describe a method for measuring the catalytic activity of alpha-amylase (EC 3.2.1.1) in serum and urine, by use of a defined substrate: 1,4-alpha, D-4-nitrophenyl maltoheptaoside. We use a phosphate buffer of pH 7.10, containing chloride as activator and alpha-glucosidase (EC 3.2.1.20) as the auxiliary enzyme. After a lag phase of 4 min at 25 degrees C or 30 degrees C, or 3 min at 37 degrees C, the increase of absorption of 4-nitrophenol is measured at 410 nm or 405 nm. The pH value of the assay mixture is a compromise between optimum pH for the alpha-amylase reaction, shortest possible lag phase, and an acceptable absorptivity of 4-nitrophenol. Because the dissociation of 4-nitrophenol depends strongly on pH and temperature, we determined its absorptivity with various combinations of these variables in the assay. Heparin-treated plasma can be used, but not EDTA, fluoride, or citrate. Lipemia, hemoglobin less than or equal to mumol/L, bilirubin less than or equal to 170 mumol/L, glucose less than or equal to 100 mmol/L, and ascorbic acid less than or equal to 1 mmol/L of sample do not interfere in the assay.

  1. Automated docking of alpha-(1-->4)- and alpha-(1-->6)-linked glucosyl trisaccharides and maltopentaose into the soybean beta-amylase active site.

    PubMed

    Rockey, W M; Laederach, A; Reilly, P J

    2000-08-01

    The Lamarckian genetic algorithm of AutoDock 3.0 was used to dock alpha-maltotriose, methyl alpha-panoside, methyl alpha-isopanoside, methyl alpha-isomaltotrioside, methyl alpha-(6(1)-alpha-glucopyranosyl)-maltoside, and alpha-maltopentaose into the closed and, except for alpha-maltopentaose, into the open conformation of the soybean beta-amylase active site. In the closed conformation, the hinged flap at the mouth of the active site closes over the substrate. The nonreducing end of alpha-maltotriose docks preferentially to subsites -2 or +1, the latter yielding nonproductive binding. Some ligands dock into less optimal conformations with the nonreducing end at subsite -1. The reducing-end glucosyl residue of nonproductively-bound alpha-maltotriose is close to residue Gln194, which likely contributes to binding to subsite +3. In the open conformation, the substrate hydrogen-bonds with several residues of the open flap. When the flap closes, the substrate productively docks if the nonreducing end is near subsites -2 or -1. Trisaccharides with alpha-(1-->6) bonds do not successfully dock except for methyl alpha-isopanoside, whose first and second glucosyl rings dock exceptionally well into subsites -2 and -1. The alpha-(1-->6) bond between the second and third glucosyl units causes the latter to be improperly positioned into subsite +1; the fact that isopanose is not a substrate of beta-amylase indicates that binding to this subsite is critical for hydrolysis.

  2. Thermal adaptation of α-amylases: a review.

    PubMed

    Hiteshi, Kalpana; Gupta, Reena

    2014-11-01

    The temperature adaptation of α-amylase can be gained by different adjustments in protein structure with consecutive effects on the stability and flexibility of the protein. In this review, meso, thermo and cold-active α-amylases have been compared with respect to their structure and intramolecular interactions. With decrease in temperature, the number of ionic interactions also decreases, leading to greater flexibility of proteins. It has also been observed that the proline and arginine content is higher in thermophilic amylases as compared to meso and psychrophilic amylases, increasing the rigidity and structural stability of protein molecule.

  3. Insecticidal effects of extracts of seven plant species on larval development, alpha-amylase activity and offspring production of Tribolium castaneum (Herbst) (Insecta: Coleoptera: Tenebrionidae).

    PubMed

    Jbilou, R; Amri, H; Bouayad, N; Ghailani, N; Ennabili, A; Sayah, F

    2008-03-01

    Bioinsecticidal effects of methanol extracts from seven plant species on Tribolium castaneum were investigated. Centaurium erythraea, Peganum harmala, Ajuga iva, Aristolochia baetica, Pteridium aquilinum and Raphanus raphanistrum extracts inhibit growth of larvae. C. erythraea was the most toxic with 63% mortality 10 days after treatment, followed by P. harmala with 58%. C. erythraea and P. aquilinum reduce the emergence rate respectively of 66% and 19%. The duration of larval period was shortened by Launaea arborescens, P. aquilinum and A. iva extracts, whereas R. raphanistrum and P. harmala extracts extend the larval period when compared to the control. Extracts of C. erythraea, P. harmala, A. iva and A. baetica inhibited F1 progeny production. Larvae possess three alpha-amylase isoforms as determined by SDS-PAGE. Larvae fed on treated diet had lower alpha-amylase activity than larvae feed on untreated diet. C. erythraea and P. harmala are the most potent extracts. These plant extracts could be useful to reduce seed damage caused by this pest species.

  4. Genetic mapping of quantitative trait loci associated with β-amylase and limit dextrinase activities and β-glucan and protein fraction contents in barley*

    PubMed Central

    Wei, Kang; Xue, Da-wei; Huang, You-zong; Jin, Xiao-li; Wu, Fei-bo; Zhang, Guo-ping

    2009-01-01

    High malting quality of barley (Hordeum vulgare L.) relies on many traits, such as β-amylase and limit dextrinase activities and β-glucan and protein fraction contents. In this study, interval mapping was utilized to detect quantitative trait loci (QTLs) affecting these malting quality parameters using a doubled haploid (DH) population from a cross of CM72 (six-rowed) by Gairdner (two-rowed) barley cultivars. A total of nine QTLs for eight traits were mapped to chromosomes 3H, 4H, 5H, and 7H. Five of the nine QTLs mapped to chromosome 3H, indicating a possible role of loci on chromosome 3H on malting quality. The phenotypic variation accounted by individual QTL ranged from 8.08% to 30.25%. The loci of QTLs for β-glucan and limit dextrinase were identified on chromosomes 4H and 5H, respectively. QTL for hordeins was coincident with the region of silica eluate (SE) protein on 3HS, while QTLs for albumins, globulins, and total protein exhibited overlapping. One locus on chromosome 3H was found to be related to β-amylase, and two loci on chromosomes 5H and 7H were found to be associated with glutelins. The identification of these novel QTLs controlling malting quality may be useful for marker-assisted selection in improving barley malting quality. PMID:19882759

  5. Genetic salivary protein polymorphism in Mexican population.

    PubMed

    Banderas Tarabay, J A; González Begné, M

    1996-01-01

    Genetic polymorphism is the major contributor that affects human salivary composition. In order to determine the molecular phenotypes in saliva, it is important to know the distribution of proteins with specific functions which allows the clinical diagnosis of specific diseases. Unstimulated human whole saliva samples from 120 subjects were subjected to sodium dodecyl sulfate polyacrylamide slab gel electrophoresis (SDS-PAGE). The phenotype distribution of several molecules including MG1, MG2, alpha-Amylase, PRP-I and cystatins were similar. Qualitative and quantitative characteristics were specific in each subject.

  6. Computer-aided subsite mapping of α-amylases.

    PubMed

    Mótyán, János A; Gyémánt, Gyöngyi; Harangi, János; Bagossi, Péter

    2011-02-15

    Subsite mapping is a crucial procedure in the characterization of α-amylases (EC 3.2.1.1), which are extensively used in starch-based industries and in diagnosis of pancreatic and salivary glands disorders. A computer-aided method has been developed for subsite mapping of α-amylases, which substitutes the difficult, expensive, and time-consuming experimental determination of action patterns to crystal structures based energy calculations. Interaction energies between enzymes and carbohydrate substrates were calculated after short energy minimization by a molecular mechanics program. A training set of wild type and mutant amylases with known experimental action patterns of 13 enzymes of wide range of origin was used to set up the procedure. Calculations for training set resulted in good correlation in case of subsite binding energies (r(2)=0.827-0.929) and bond cleavage frequencies (r(2)=0.727-0.835). A set of eight novel barley amylase 1 mutants was used to test our model. Subsite binding energies were predicted with r(2)=0.502 correlation coefficient, while bond cleavage frequency prediction resulted in r(2)=0.538. Our computer-aided procedure may supplement the experimental subsite mapping methods to predict and understand characteristic features of α-amylases.

  7. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    NASA Astrophysics Data System (ADS)

    Pradhan, Swati

    cells were identified in cultured cells from dispersed tissue. Biomarker studies with the salivary enzyme, alpha-amylase, and tight junction proteins, such as zonula occludens-1 and E-cadherin, confirmed the phenotype of these cells. Strong staining for laminin and perlecan/HSPG2 were noted in basement membranes and perlecan also was secreted and organized by cultured acinar populations, which formed lobular structures that mimicked intact glands when cultured on Matrigel(TM) or a bioactive peptide derived from domain IV of perlecan (PlnDIV). On either matrix, large acini-like lobular structures grew and formed connections between the lobes. alpha-Amylase secretion was confirmed by staining and activity assay. Biomarkers including tight junction protein E-cadherin and water channel protein, aquaporin 5 (AQP5) found in tissue, were expressed in cultured acinar cells. Cells cultured on Matrigel(TM) or PlnDIV peptide organized stress fibers and activated focal adhesion kinase (FAK). HA, a natural polysaccharide and a major component of the ECM, can be used to generate soft and pliable hydrogels. A culture system consisting of HA hydrogel and PlnDIV peptide was used to generate a 2.5D culture system. Acinar cells cultured on these hydrogels self-assembled into lobular structures and expressed tight junction components such as ZO-1. Acini-like structures were stained for the presence of alpha-amylase. Live/dead staining revealed the presence of apoptotic cells in the center of the acini-like structures, indicative of lumen formation. The functionality of these acini-like structures was studied by stimulating them with neurotransmitters to enhance their fluid and protein production. Acini-like structures treated with norepinephrine and isoproterenol showed increased granule formation as observed by phase contrast microscopy and alpha-amylase staining in the structures. Lobular structures on hydrogels were treated with acetylcholine to increase fluid production. The increase

  8. Salivary Hsp72 does not track exercise stress and caffeine-stimulated plasma Hsp72 responses in humans.

    PubMed

    Fortes, Matthew B; Whitham, Martin

    2011-05-01

    Heat shock protein 72 (Hsp72) has been detected within saliva, and its presence may contribute to oral defence. It is currently unknown how physiological stress affects salivary Hsp72 or if salivary Hsp72 concentrations reflect plasma Hsp72 concentrations. We studied the effect of exercise upon salivary Hsp72 expression, and using caffeine administration, investigated the role of sympathetic stimulation upon salivary Hsp72 expression. Six healthy males performed two treadmill running exercise bouts in hot conditions (30°C) separated by 1 week in a randomized cross-over design, one with caffeine supplementation (CAF) the other with placebo (PLA). Plasma and saliva samples were collected prior to, during and post-exercise and assayed for Hsp72 concentration by ELISA. Exercise significantly increased plasma Hsp72, but not salivary Hsp72 concentration. Mean salivary Hsp72 concentration (5.1 ± 0.8 ng/ml) was significantly greater than plasma Hsp72 concentration (1.8 ± 0.1 ng/ml), and concentrations of salivary and plasma Hsp72 were unrelated. Caffeine supplementation and exercise increased the concentration of catecholamines, salivary α-amylase and total protein, whilst the salivary Hsp72:α-amylase ratio was lower in CAF. Salivary Hsp72 was not altered by exercise stress nor caffeine supplementation, and concentrations did not track plasma Hsp72 concentration.

  9. α-Amylase inhibitory triterpene from Abrus precatorius leaves.

    PubMed

    Yonemoto, Ryuta; Shimada, Miyuki; Gunawan-Puteri, Maria D P T; Kato, Eisuke; Kawabata, Jun

    2014-08-20

    In the screening experiments for porcine pancreatic α-amylase inhibitors in 18 plants obtained from Indonesia, a potent inhibitory activity was detected in the extract of leaves of Abrus precatorius. The enzyme assay-guided fractionation of the extract led to the isolation of a triterpene ketone, lupenone (1), as a potent α-amylase inhibitor, together with 24-methylenecycloartenone (2) and luteolin (3). The mode of inhibition of compound 1 against porcine pancreatic α-amylase was a mixed inhibition. This is the first report that describes the potent α-amylase inhibitory activity of the low-polar triterpene ketone similar to compound 1. A comparison of the activities of the isolate and related compounds indicated the importance of C-3 ketone and the lupane skeleton in the α-amylase inhibitory activity.

  10. Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: an in vitro study.

    PubMed

    El-Beshbishy, Ha; Bahashwan, Sa

    2012-02-01

    The present study investigated the in vitro hypoglycemic activity of basil (Ocimum basilicum) aqueous extract. Preliminary phytochemical screening of the extract revealed the presence of reducing sugars, cardiac glycosides, tannins, saponins, glycosides, flavonoids and steroids. The total polyphenols content (TPC), flavonoids content (FC), percentage diphenylpicrylhydrazyl (DPPH( · )) radical inhibition and total antioxidant status (TAS) were estimated. The FC was 41 ± 2.2 rutin/g dry extract, the TPC was 146 ± 5.26 mg catechin/g dry extract and the TAS was 5.12 ± 0.7 mmol/L. The %DPPH( · ) free radical inhibition was 60%, 54%, 49% and 43%, respectively, for different extract concentrations; 20, 18.2, 16.3 and 14.5 mg/ml, respectively. The extract elicited significant dose-dependent pattern against rat intestinal sucrase (RIS; IC(50) = 36.72 mg/ml), rat intestinal maltase (RIM; IC(50) = 21.31 mg/ml) and porcine pancreatic α-amylase (PPA; IC(50) = 42.50 mg/ml) inhibitory activities. The inhibition was greater against maltase compared with sucrase. These effects may be attributed to the high TPC and FC levels. The linear regression analysis revealed strong significant positive correlations between %DPPH( · ) radical inhibition and each of %RIS, %RIM and %PPA inhibiting activity. Also, strong significant positive correlations between %RIS and either %RIM or %PPA inhibition activity were observed. We concluded therefore that basil aqueous extract via antioxidant and possibly α-glucosidase and α-amylase inhibiting activities, offered positive benefits to control diabetes.

  11. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity.

    PubMed

    Bozonnet, Sophie; Jensen, Morten T; Nielsen, Morten M; Aghajari, Nushin; Jensen, Malene H; Kramhøft, Birte; Willemoës, Martin; Tranier, Samuel; Haser, Richard; Svensson, Birte

    2007-10-01

    Some starch-degrading enzymes accommodate carbohydrates at sites situated at a certain distance from the active site. In the crystal structure of barley alpha-amylase 1, oligosaccharide is thus bound to the 'sugar tongs' site. This site on the non-catalytic domain C in the C-terminal part of the molecule contains a key residue, Tyr380, which has numerous contacts with the oligosaccharide. The mutant enzymes Y380A and Y380M failed to bind to beta-cyclodextrin-Sepharose, a starch-mimic resin used for alpha-amylase affinity purification. The K(d) for beta-cyclodextrin binding to Y380A and Y380M was 1.4 mm compared to 0.20-0.25 mm for the wild-type, S378P and S378T enzymes. The substitution in the S378P enzyme mimics Pro376 in the barley alpha-amylase 2 isozyme, which in spite of its conserved Tyr378 did not bind oligosaccharide at the 'sugar tongs' in the structure. Crystal structures of both wild-type and S378P enzymes, but not the Y380A enzyme, showed binding of the pseudotetrasaccharide acarbose at the 'sugar tongs' site. The 'sugar tongs' site also contributed importantly to the adsorption to starch granules, as Kd = 0.47 mg.mL(-1) for the wild-type enzyme increased to 5.9 mg.mL(-1) for Y380A, which moreover catalyzed the release of soluble oligosaccharides from starch granules with only 10% of the wild-type activity. beta-cyclodextrin both inhibited binding to and suppressed activity on starch granules for wild-type and S378P enzymes, but did not affect these properties of Y380A, reflecting the functional role of Tyr380. In addition, the Y380A enzyme hydrolyzed amylose with reduced multiple attack, emphasizing that the 'sugar tongs' participates in multivalent binding of polysaccharide substrates.

  12. Salivary diagnostics

    PubMed Central

    Lee, J.M.; Garon, E.; Wong, D.T.

    2010-01-01

    The ability to monitor health status, disease onset and progression, and treatment outcome through non-invasive means is a most desirable goal in the health care promotion and delivery. There are three prerequisites to materialize this goal: specific biomarkers associated with a health or disease state; a non-invasive approach to detect and monitor the biomarkers; and the technologies to discriminate the biomarkers. A national initiative catalyzed by the National Institute of Dental & Craniofacial Research (NIDCR) has created a roadmap to achieve these goals through the use of oral fluids as the diagnostic medium to scrutinize the health and/or disease status of individuals. Progress has shown this is an ideal opportunity to bridge state of the art saliva-based biosensors, optimized to disease discriminatory salivary biomarkers, for diagnostic applications. Oral fluid being the ‘mirror of body’ is a perfect medium to be explored for health and disease surveillance. The translational applications and opportunities are enormous. PMID:19627522

  13. Analysis on evolutionary relationship of amylases from archaea, bacteria and eukaryota.

    PubMed

    Yan, Shaomin; Wu, Guang

    2016-02-01

    Amylase is one of the earliest characterized enzymes and has many applications in clinical and industrial settings. In biotechnological industries, the amylase activity is enhanced through modifying amylase structure and through cloning and expressing targeted amylases in different species. It is important to understand how engineered amylases can survive from generation to generation. This study used phylogenetic and statistical approaches to explore general patterns of amylases evolution, including 3118 α-amylases and 280 β-amylases from archaea, eukaryota and bacteria with fully documented taxonomic lineage. First, the phylogenetic tree was created to analyze the evolution of amylases with focus on individual amylases used in biofuel industry. Second, the average pairwise p-distance was computed for each kingdom, phylum, class, order, family and genus, and its diversity implies multi-time and multi-clan evolution. Finally, the variance was further partitioned into inter-clan variance and intra-clan variance for each taxonomic group, and they represent horizontal and vertical gene transfer. Theoretically, the results show a full picture on the evolution of amylases in manners of vertical and horizontal gene transfer, and multi-time and multi-clan evolution as well. Practically, this study provides the information on the surviving chance of desired amylase in a given taxonomic group, which may potentially enhance the successful rate of cloning and expression of amylase gene in different species.

  14. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true α-Amylase enzyme preparation from Bacillus... preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture... Bacillus stearothermophilus. Its characterizing enzyme activity is α-amylase (1,4 α-D...

  15. Salivary gland biopsy

    MedlinePlus

    Biopsy - salivary gland ... You have several pairs of salivary glands that drain into your mouth: A major pair in front of the ears (parotid glands) Another major pair beneath your jaw (submandibular ...

  16. The effectiveness of the Uchida-Kraepelin test for psychological stress: an analysis of plasma and salivary stress substances

    PubMed Central

    Sugimoto, Koreaki; Kanai, Aya; Shoji, Noriaki

    2009-01-01

    Background The hypothalamic-pituitary-adrenocortical (HPA) axis and sympathetic adrenomedullary (SAM) system are the major stress-response pathways. Plasma adrenocorticotropic hormone (ACTH) represents HPA axis activity, while plasma catecholamines are used as markers of the SAM system. Salivary alpha amylase (AA), chromogranin A (CgA), and immunoglobulin A (IgA) are candidate markers of stress activation, although their role has not been established. The Uchida-Kraepelin (U-K) test is a questionnaire that requires intense concentration and effort, and has been used as a tool to induce mental stress. However, it is not clear whether or not the test is effective as a psychological/mental stressor. Methods In this study, normal young women took the U-K test and serial measurements of plasma ACTH and catecholamines (dopamine, noradrenaline, and adrenaline) (n = 10), as well as salivary AA, CgA, and IgA (n = 16) before, during and after the test. Results We found no changes in any of these parameters at any time point during or after the U-K test. Conclusion Our findings indicate that the U-K test is not a suitable for measuring the psychological/mental stress of young women because the plasma data showed that it did not affect the HPA axis and SAM system. The U-K test should be employed carefully as a psychological/mental stressor due to insufficient scientific evidence of its effectiveness. In addition, salivary AA, CgA, and IgA should not simply be compared with previous reports, because the mechanism of secretion and normal range of each salivary parameter remain unknown. Salivary AA, CgA, and IgA may not be suitable candidate markers of psychological/mental stress. PMID:19341484

  17. Crystal structures of soybean beta-amylase reacted with beta-maltose and maltal: active site components and their apparent roles in catalysis.

    PubMed

    Mikami, B; Degano, M; Hehre, E J; Sacchettini, J C

    1994-06-28

    The crystal structures of catalytically competent soybean beta-amylase, unliganded and bathed with small substrates (beta-maltose, maltal), were determined at 1.9-2.2-A resolution. Two molecules of beta-maltose substrate bind to the protein in tandem, with some maltotetraose enzymic condensation product sharing the same binding sites. The beta-amylase soaked with maltal shows a similar arrangement of two bound molecules of 2-deoxymaltose, the enzymic hydration product. In each case the nonreducing ends of the saccharide ligands are oriented toward the base of the protein's active site pocket. The catalytic center, located between the bound disaccharides and found deeper in the pocket than where the inhibitor alpha-cyclodextrin binds, is characterized by the presence of oppositely disposed carboxyl groups of two conserved glutamic acid residues. The OE2 carboxyl of Glu 186 is below the plane of the penultimate glucose residue (Glc 2) of bound maltotetraose, 2.6 A from the oxygen atom of that ligand's penultimate alpha-1,4-glucosidic linkage. The OE2 carboxyl of Glu 380 lies above the plane of Glc 2, 2.8 A from the O-1 atom of the more deeply bound beta-maltose. Saccharide binding does not alter the spatial coordinates of these two carboxyl groups or the overall conformation of the 57-kDa protein. However, the saccharide complexes of the active enzyme are associated with a significant (10 A) local conformational change in a peptide segment of a loop (L3) that borders the active site pocket.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Major water-soluble polyphenols, proanthocyanidins, in leaves of persimmon (Diospyros kaki) and their alpha-amylase inhibitory activity.

    PubMed

    Kawakami, Kayoko; Aketa, Saiko; Nakanami, Mitsuhiro; Iizuka, Shinzo; Hirayama, Masao

    2010-01-01

    The amounts and compositions of polyphenol in persimmon leaves and persimmon leaf tea were investigated. The predominant polyphenols in fresh leaves were water-soluble, and the contents reached a maximum (2.40% w/w) in June, and then gradually decreased. Separation of them followed by thiolytic degradation revealed that the major components were unique proanthocyanidin oligomers consisting of four heterogeneous extension units, including epigallocatechin-3-O-gallate. Persimmon leaf tea also contained similar proanthocyanidins with similar compositional units. Oral administration of starch with polyphenol concentrate of persimmon leaf tea resulted in a significant and dose-dependent decrease in the blood glucose level in Wistar rats. This effect is considered to be due to inhibition of pancreas alpha-amylase. These results indicate that persimmon leaf tea containing peculiar proanthocyanidins has a significant role in suppressing blood glucose elevation after starch intake, and that the best harvest time is June.

  19. Alpha-amylase inhibitor, CS-1036 binds to serum amylase in a concentration-dependent and saturable manner.

    PubMed

    Honda, Tomohiro; Kaneno-Urasaki, Yoko; Ito, Takashi; Kimura, Takako; Matsushima, Nobuko; Okabe, Hiromi; Yamasaki, Atsushi; Izumi, Takashi

    2014-03-01

    (2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036), which is an α-amylase inhibitor, exhibited biphasic and sustained elimination with a long t1/2 (18.4-30.0 hours) in rats and monkeys, but exhibited a short t1/2 (3.7-7.9 hours) in humans. To clarify the species differences in the t1/2, the plasma protein binding of CS-1036 was evaluated by ultrafiltration. A concentration-dependent and saturable plasma protein binding of CS-1036 was observed in rats and monkeys with the dissociation rate constant (KD) of 8.95 and 27.2 nM, and maximal binding capacity (Bmax) of 52.8 and 22.1 nM, respectively. By the assessments of the recombinant amylase and immunoprecipitation, the major binding protein of CS-1036 in rats was identified as salivary amylase (KD 5.64 nM). CS-1036 also showed concentration-dependent and saturable binding to human salivary and pancreatic amylase, with similar binding affinity in rats. However, the protein binding of CS-1036 was constant in human plasma (≤10.2%) due to the lower serum amylase level compared with rats and monkeys. From the calculation of the unbound fraction (fu) in plasma based on in vitro KD and Bmax, the dose-dependent increase in fu after oral administration is speculated to lead to a dose-dependent increase in total body clearance and a high area under the curve/dose at lower doses, such as 0.3 mg/kg in rats.

  20. Salivary mucins inhibit antibacterial activity of the cathelicidin-derived LL-37 peptide but not the cationic steroid CSA-13

    PubMed Central

    Bucki, Robert; Namiot, Dorota B.; Namiot, Zbigniew; Savage, Paul B.; Janmey, Paul A.

    2008-01-01

    Objectives Cationic antimicrobial peptides (CAPs) are the effector molecules of innate immunity, similar in potency to classic antibiotics that function in the first-line of defence against infectious agents. The purpose of this study was to investigate the effects of negatively charged mucins on the antibacterial activity of the positively charged cathelicidin LL-37 peptide, its synthetic analogue WLBU2 and the antimicrobial cationic steroid CSA-13. Methods Mucin, DNA, F-actin and hCAP-18/LL-37 in saliva samples were evaluated by microscopy or immunoblotting. Bacterial killing assays and determination of MICs were used to determine bactericidal activity. Binding of rhodamine-B-labelled LL-37 peptide to mucin was fluorimetrically assessed. Results Microscopic evaluation of saliva after addition of rhodamine-B-labelled LL-37 showed localization similar to that observed after the addition of a specific mucin-binding lectin. Immunoblotting confirmed the presence of hCAP-18/LL-37 in saliva samples and LL-37 peptide bound to isolated submaxillary gland mucin-coated plates. Mucin/LL-37 binding was partially prevented by treatment of mucin with neuraminidase, indicating involvement of sialic acid moieties. Decreased LL-37 and WLBU2 antibacterial activity was observed in the presence of mucin or dialysed human saliva, whereas CSA-13 antibacterial activity was significantly resistant to inhibition by mucins. Conclusions This study shows that the antibacterial LL-37 peptide and its synthetic analogue WLBU2 are inhibited by salivary mucin and that the cationic steroid CSA-13 retains most of its function in the presence of an equal amount of mucin or saliva. PMID:18456648

  1. Effects of a new microbial α-amylase inhibitor protein on Helicoverpa armigera larvae.

    PubMed

    Zeng, Fanrong; Wang, Xiaojing; Cui, Jinjie; Ma, Yan; Li, Qiannan

    2013-03-06

    A new microbial α-amylase inhibitor gene was cloned and characterized. The encoded, recombinant, α-amylase inhibitor protein was induced and expressed by isopropyl β-d-1-thiogalactopyranoside (IPTG) in Escherichia coli M15 cells. The effects of the α-amylase inhibitor protein on Helicoverpa armigera larvae were studied. Compared to the control, the weight of H. armigera larvae fed the diet with recombinant α-amylase inhibitor protein added at a concentration of 20 μg/g was reduced by 49.8%. The total soluble protein of H. armigera larvae fed the diet with the α-amylase inhibitor protein added was also reduced by 36.8% compared to the control. The recombinant α-amylase inhibitor protein showed inhibition activity against α-amylase of H. armigera. These results suggested that this α-amylase inhibitor protein may be a promising bioinsecticide candidate for controlling H. armigera.

  2. Dietary effects of harmine, a β-carboline alkaloid, on development, energy reserves and α-amylase activity of Plodia interpunctella Hübner (Lepidoptera: Pyralidae)

    PubMed Central

    Bouayad, Noureddin; Rharrabe, Kacem; Lamhamdi, Mostafa; Nourouti, Naima Ghailani; Sayah, Fouad

    2010-01-01

    The physiological and developmental effects of harmine, a β-carboline alkaloid, on the insect pest Plodia interpunctella have been analyzed. When added at the larval diet, harmine induced a strong reduction of larvae weight, cannibalism between larvae, in addition to significant mortality. On the other hand, it caused a remarkable development disruption, manifested by both delay and reduction of pupation and adult emergence. Using spectrophotometric assays, we have shown that harmine ingestion provoked a severe reduction in protein, glycogen and lipid contents. Beside, when larvae fed harmine, the activity of the digestive enzyme α-amylase was strongly reduced. In conclusion, our experiments clearly show the susceptibility of P. interpunctella to harmine ingestion revealing the potent bioinsecticidal effect of harmine. PMID:23961164

  3. Lufaxin, a Novel Factor Xa Inhibitor from the Salivary Gland of the sand fly Lutzomyia longipalpis, Blocks PAR2 Activation and Inhibits Inflammation and Thrombosis in Vivo

    PubMed Central

    Collin, Nicolas; Assumpção, Teresa C. F.; Mizurini, Daniella M.; Gilmore, Dana; Dutra-Oliveira, Angélica; Kotsyfakis, Michalis; Sá-Nunes, Anderson; Teixeira, Clarissa; Ribeiro, José M. C.; Monteiro, Robson Q.; Valenzuela, Jesus G.; Francischetti, Ivo M. B.

    2012-01-01

    Objective Blood-sucking arthropods salivary glands (SGs) contain a remarkable diversity of antihemostatics. The aim of this study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. Methods and Results Several L. longipalpis salivary proteins were expressed in HEK293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, non-competitive, and reversible inhibitor of Factor Xa (FXa). Notably, Lufaxin primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, DEGR- FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both PT and aPTT. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with a KD ~3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents PAR2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl3-induced carotid artery thrombus formation and prolongs aPTT ex vivo, implying that it works as an anticoagulant in vivo. Finally, SG of sandflies was found to inhibit FXa and to interact with the enzyme. Conclusion Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and antiinflamatory activities. It is a useful tool to understand FXa structural features and its role in pro-hemostatic and pro-inflammatory events. PMID:22796577

  4. Occurrence of α-Amylase in the Axis of Germinating Peas

    PubMed Central

    Davis, Bill D.

    1977-01-01

    α-Amylase was found in the axis portion of ungerminated pea seeds (Pisum sativum var. Alaska). The occurrence of this enzyme was demonstrated with crude homogenates (also containing β-amylase) using three different methods: the hydrolysis of β-limit dextrin, the change in absorption spectra for the iodine-starch complex, and the increase in reducing materials relative to the decrease in starch. The first method was used to quantitate the changes in α-amylase activity during germination. The increase in total amylase activity (primarily β-amylase) paralleled germination; the accumulation of α-amylase activity was not initiated for an additional day. The increased α-amylase activity was related to epicotyl growth. Approximately half of this activity was found in the etiolated stem, the distribution being higher in growing than in nongrowing portions. PMID:16660127

  5. [Mechanism of amylase action on glucoside starch bonds].

    PubMed

    Zherebtsov, N A; Zabelina, L F; Ektoba, A I

    1976-12-01

    Functional groups of glucoamylase and alpha-amylase from Asp. awamori, alpha-amylase from Asp. oryzae and alpha- and beta-amylases from barley malt are identified. Kinetic curves of the activity dependency on pH, values of ionization heats and photooxidative inactivation draw to the conclusion that carboxyl-imidazole system enters into the active site of the enzymes. A hypothetic mechanism of hydrolysis of alpha-1,4-glucoside bond in starch molecule by alpha- and beta-amylases and of alpha-1,4- and alpha-1,6-glucoside bonds by glucoamylase is given. A theory of induced correspondence of enzyme and substrate satisfactorily explains the specificity of the enzyme action and the cause of complete starch convertion into glucose under glucoamylase action and of terminal starch hydrolysis by alpha- and beta-amylases.

  6. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity.

    PubMed Central

    Buisson, G; Duée, E; Haser, R; Payan, F

    1987-01-01

    The crystal structure of porcine pancreatic alpha-amylase (PPA) has been solved at 2.9 A resolution by X-ray crystallographic methods. The enzyme contains three domains. The larger, in the N-terminal part, consists of 330 amino acid residues. This central domain has the typical parallel-stranded alpha-beta barrel structure (alpha beta)8, already found in a number of other enzymes like triose phosphate isomerase and pyruvate kinase. The C-terminal domain forms a distinct globular unit where the chain folds into an eight-stranded antiparallel beta-barrel. The third domain lies between a beta-strand and a alpha-helix of the central domain, in a position similar to those found for domain B in triose phosphate isomerase and pyruvate kinase. It is essentially composed of antiparallel beta-sheets. The active site is located in a cleft within the N-terminal central domain, at the carboxy-end of the beta-strands of the (alpha beta)8 barrel. Binding of various substrate analogues to the enzyme suggests that the amino acid residues involved in the catalytic reaction are a pair of aspartic acids. A number of other residues surround the substrate and seem to participate in its binding via hydrogen bonds and hydrophobic interactions. The 'essential' calcium ion has been located near the active site region and between two domains, each of them providing two calcium ligands. On the basis of sequence comparisons this calcium binding site is suggested to be a common structural feature of all alpha-amylases. It represents a new type of calcium-protein interaction pattern.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 5. Fig. 7. PMID:3502087

  7. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity.

    PubMed

    Buisson, G; Duée, E; Haser, R; Payan, F

    1987-12-20

    The crystal structure of porcine pancreatic alpha-amylase (PPA) has been solved at 2.9 A resolution by X-ray crystallographic methods. The enzyme contains three domains. The larger, in the N-terminal part, consists of 330 amino acid residues. This central domain has the typical parallel-stranded alpha-beta barrel structure (alpha beta)8, already found in a number of other enzymes like triose phosphate isomerase and pyruvate kinase. The C-terminal domain forms a distinct globular unit where the chain folds into an eight-stranded antiparallel beta-barrel. The third domain lies between a beta-strand and a alpha-helix of the central domain, in a position similar to those found for domain B in triose phosphate isomerase and pyruvate kinase. It is essentially composed of antiparallel beta-sheets. The active site is located in a cleft within the N-terminal central domain, at the carboxy-end of the beta-strands of the (alpha beta)8 barrel. Binding of various substrate analogues to the enzyme suggests that the amino acid residues involved in the catalytic reaction are a pair of aspartic acids. A number of other residues surround the substrate and seem to participate in its binding via hydrogen bonds and hydrophobic interactions. The 'essential' calcium ion has been located near the active site region and between two domains, each of them providing two calcium ligands. On the basis of sequence comparisons this calcium binding site is suggested to be a common structural feature of all alpha-amylases. It represents a new type of calcium-protein interaction pattern.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Is There Consistency between the Binding Affinity and Inhibitory Potential of Natural Polyphenols as α-amylase Inhibitors?

    PubMed

    Xu, Wei; Shao, Rong; Xiao, Jianbo

    2016-07-26

    The inhibitory potential of natural polyphenols for α-amylases has attracted great interests among researchers. The structure-affinity properties of natural polyphenols binding to α-amylase and the structure-activity relationship of dietary polyphenols inhibiting α-amylase were deeply investigated. There is a lack of consistency between the structure-affinity relationship and the structure-activity relationship of natural polyphenols as α-amylase inhibitors. Is it consistent between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors? It was found that the consistency between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors is not equivocal. For example, there is no consistency between the binding affinity and the inhibitory potential of quercetin and its glycosides as α-amylase inhibitors. However, catechins with higher α-amylase inhibitory potential exhibited higher affinity with α-amylase.

  9. [Microbe amylases: characteristic, properties and practical use].

    PubMed

    Kubrak, O I; Lushchak, V I

    2007-01-01

    Current data concerning structure, properties and methods of purification ofmicrobial amylolytic enzymes are summarized in this paper. A short characteristic of the main methods of amylase activity measuring is presented, the advantages and disadvantages of each method are shown. It is proposed that novel techniques of enzyme immobilization stabilize the structure of amylases and allow their multiple uses. Scientific interest to amylases is analyzed that is explained by a number of their unique properties such as thermostability and pH-tolerance. Authors have demonstrated some examples of the practical using ofamylases in different fields of industry: textile, paper, food industries, brewing and wine-making. The prospects of their possible using in detergent preparing for laundries and dishwashers are presented. It is supposed that future investigations in this trend for isolating new amrnylases from native producers will be developed.

  10. Temperature impacts the multiple attack action of amylases.

    PubMed

    Bijttebier, Annabel; Goesaert, Hans; Delcour, Jan A

    2007-03-01

    The action pattern of several amylases was studied at 35, 50, and 70 degrees C using potato amylose, a soluble (Red Starch) and insoluble (cross-linked amylose) chromophoric substrate. With potato amylose as substrate, Bacillus stearothermophilus alpha-amylase (BStA) and porcine pancreatic alpha-amylase displayed a high degree of multiple attack (DMA, i.e., the number of bonds broken during the lifetime of an enzyme-substrate complex minus one), the fungal alpha-amylase from Aspergillus oryzae a low DMA, and the alpha-amylases from B. licheniformis, Thermoactinomyces vulgaris, B. amyloliquifaciens, and B. subtilis an intermediate DMA. These data are discussed in relation to structural properties of the enzymes. The level of multiple attack (LMA), based on the relation between the drop in iodine binding of amylose and the increase in total reducing value, proved to be a good alternative for DMA measurements. The LMA of the endo-amylases increased with temperature to a degree depending on the amylase. In contrast, BStA showed a decreased LMA when temperature was raised. Furthermore, different enzymes had different activities on Red Starch and cross-linked amylose. Hence, next to the temperature, the action pattern of alpha-amylases is influenced by structural parameters of the starch substrate.

  11. Development of a workflow for screening and identification of α-amylase inhibitory peptides from food source using an integrated Bioinformatics-phage display approach: Case study - Cumin seed.

    PubMed

    Siow, Hwee-Leng; Lim, Theam Soon; Gan, Chee-Yuen

    2017-01-01

    The main objective of this study was to develop an efficient workflow to discover α-amylase inhibitory peptides from cumin seed. A total of 56 unknown peptides was initially found in the cumin seed protein hydrolysate. They were subjected to 2 different in silico screenings and 6 peptides were shortlisted. The peptides were then subjected to in vitro selection using phage display technique and 3 clones (CSP3, CSP4 and CSP6) showed high affinity in binding α-amylase. These clones were subjected to the inhibitory test and only CSP4 and CSP6 exhibited high inhibitory activity. Therefore, these peptides were chemically synthesized for validation purposes. CSP4 exhibited inhibition of bacterial and human salivary α-amylases with IC50 values of 0.11 and 0.04μmol, respectively, whereas CSP6 was about 0.10 and 0.15μmol, respectively. Results showed that the strength of each protocol has been successfully combined as deemed fit to enhance the α-amylase inhibitor peptide discovery.

  12. Validation of an assay for quantification of alpha-amylase in saliva of sheep

    PubMed Central

    Fuentes-Rubio, Maria; Fuentes, Francisco; Otal, Julio; Quiles, Alberto; Hevia, María Luisa

    2016-01-01

    The objective of this study was to develop a time-resolved immunofluorometric assay (TR-IFMA) for quantification of salivary alpha-amylase in sheep. For that purpose, after the design of the assay, an analytical and a clinical validation were carried out. The analytical validation of the assay showed intra- and inter-assay coefficients of variation (CVs) of 6.1% and 10.57%, respectively and an analytical limit of detection of 0.09 ng/mL. The assay also demonstrated a high level of accuracy, as determined by linearity under dilution. For clinical validation, a model of acute stress testing was conducted to determine whether expected significant changes in alpha-amylase were picked up in the newly developed assay. In that model, 11 sheep were immobilized and confronted with a sheepdog to induce stress. Saliva samples were obtained before stress induction and 15, 30, and 60 min afterwards. Salivary cortisol was measured as a reference of stress level. The results of TR-IFMA showed a significant increase (P < 0.01) in the concentration of alpha-amylase in saliva after stress induction. The assay developed in this study could be used to measure salivary alpha-amylase in the saliva of sheep and this enzyme could be a possible noninvasive biomarker of stress in sheep. PMID:27408332

  13. Validation of an assay for quantification of alpha-amylase in saliva of sheep.

    PubMed

    Fuentes-Rubio, Maria; Fuentes, Francisco; Otal, Julio; Quiles, Alberto; Hevia, María Luisa

    2016-07-01

    The objective of this study was to develop a time-resolved immunofluorometric assay (TR-IFMA) for quantification of salivary alpha-amylase in sheep. For that purpose, after the design of the assay, an analytical and a clinical validation were carried out. The analytical validation of the assay showed intra- and inter-assay coefficients of variation (CVs) of 6.1% and 10.57%, respectively and an analytical limit of detection of 0.09 ng/mL. The assay also demonstrated a high level of accuracy, as determined by linearity under dilution. For clinical validation, a model of acute stress testing was conducted to determine whether expected significant changes in alpha-amylase were picked up in the newly developed assay. In that model, 11 sheep were immobilized and confronted with a sheepdog to induce stress. Saliva samples were obtained before stress induction and 15, 30, and 60 min afterwards. Salivary cortisol was measured as a reference of stress level. The results of TR-IFMA showed a significant increase (P < 0.01) in the concentration of alpha-amylase in saliva after stress induction. The assay developed in this study could be used to measure salivary alpha-amylase in the saliva of sheep and this enzyme could be a possible noninvasive biomarker of stress in sheep.

  14. Alpha-amylase reactivity in relation to psychopathic traits in adults.

    PubMed

    Glenn, Andrea L; Remmel, Rheanna J; Raine, Adrian; Schug, Robert A; Gao, Yu; Granger, Douglas A

    2015-04-01

    Recent investigations of the psychobiology of stress in antisocial youth have benefited from a multi-system measurement model. The inclusion of salivary alpha-amylase (sAA), a surrogate marker of autonomic/sympathetic nervous system (ANS) activity, in addition to salivary cortisol, a biomarker of the hypothalamic-pituitary-adrenal (HPA) axis functioning, has helped define a more complete picture of individual differences and potential dysfunction in the stress response system of these individuals. To the authors' knowledge, no studies have examined sAA in relation to antisocial behavior in adults or in relation to psychopathic traits specifically. In the present study, we examined sAA, in addition to salivary cortisol, in a relatively large sample (n=158) of adult males (M age=36.81, range=22-67 years; 44% African-American, 34% Caucasian, 16% Hispanic) recruited from temporary employment agencies with varying levels of psychopathic traits. Males scoring highest in psychopathy were found to have attenuated sAA reactivity to social stress compared to those scoring lower in psychopathy. No differential relationships with the different factors of psychopathy were observed. In contrast to studies of antisocial youth, there were no interactions between sAA and cortisol levels in relation to psychopathy, but there was a significant interaction between pre-stressor levels of sAA and cortisol. Findings reveal potential regulatory deficits in the fast-acting, 'fight or flight', component of the stress response in adult males with psychopathic traits, as well as abnormalities in how this system may interact with the HPA axis.

  15. Alpha-Amylase Reactivity in Relation to Psychopathic Traits in Adults

    PubMed Central

    Glenn, Andrea L.; Remmel, Rheanna J.; Raine, Adrian; Schug, Robert A.; Gao, Yu; Granger, Douglas A.

    2015-01-01

    Recent investigations of the psychobiology of stress in antisocial youth have benefited from a multi-system measurement model. The inclusion of salivary alpha-amylase (sAA), a surrogate marker of autonomic/sympathetic nervous system (ANS) activity, in addition to salivary cortisol, a biomarker of the hypothalamic-pituitary-adrenal (HPA) axis functioning, has helped define a more complete picture of individual differences and potential dysfunction in the stress response system of these individuals. To the authors' knowledge, no studies have examined sAA in relation to antisocial behavior in adults or in relation to psychopathic traits specifically. In the present study, we examined sAA, in addition to salivary cortisol, in a relatively large sample (n = 158) of adult males (M age = 36.81, range = 22-67 years; 44% African-American, 34% Caucasian, 16% Hispanic) recruited from temporary employment agencies with varying levels of psychopathic traits. Males scoring highest in psychopathy were found to have attenuated sAA reactivity to social stress compared to those scoring lower in psychopathy. No differential relationships with the different factors of psychopathy were observed. In contrast to studies of antisocial youth, there were no interactions between sAA and cortisol levels in relation to psychopathy, but there was a significant interaction between pre-stressor levels of sAA and cortisol. Findings reveal potential regulatory deficits in the fast-acting, ‘fight or flight’, component of the stress response in adult males with psychopathic traits, as well as abnormalities in how this system may interact with the HPA axis. PMID:25662339

  16. What interactions drive the salivary mucosal pellicle formation?

    PubMed Central

    Gibbins, Hannah L.; Yakubov, Gleb E.; Proctor, Gordon B.; Wilson, Stephen; Carpenter, Guy H.

    2014-01-01

    The bound salivary pellicle is essential for protection of both the enamel and mucosa in the oral cavity. The enamel pellicle formation is well characterised, however the mucosal pellicle proteins have only recently been clarified and what drives their formation is still unclear. The aim of this study was to examine the salivary pellicle on particles with different surface properties (hydrophobic or hydrophilic with a positive or negative charge), to determine a suitable model to mimic the mucosal pellicle. A secondary aim was to use the model to test how transglutaminase may alter pellicle formation. Particles were incubated with resting whole mouth saliva, parotid saliva and submandibular/sublingual saliva. Following incubation and two PBS and water washes bound salivary proteins were eluted with two concentrations of SDS, which were later analysed using SDS-PAGE and Western blotting. Experiments were repeated with purified transglutaminase to determine how this epithelial-derived enzyme may alter the bound pellicle. Protein pellicles varied according to the starting salivary composition and the particle chemistry. Amylase, the single most abundant protein in saliva, did not bind to any particle indicating specific protein binding. Most proteins bound through hydrophobic interactions and a few according to their charges. The hydrophobic surface most closely matched the known salivary mucosal pellicle by containing mucins, cystatin and statherin but an absence of amylase and proline-rich proteins. This surface was further used to examine the effect of added transglutaminase. At the concentrations used only statherin showed any evidence of crosslinking with itself or another saliva protein. In conclusion, the formation of the salivary mucosal pellicle is probably mediated, at least in part, by hydrophobic interactions to the epithelial cell surface. PMID:24921197

  17. GA Enhanced a-Amylase Synthesis in Halved Grains of Barley (Hordeum vulgare): A Simple Laboratory Demonstration

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1972-01-01

    A laboratory demonstration is suggested for the formation of a-amylase enzyme in halved grains of barley. Data presented in the article provide some information of the pattern of a- and b-amylase activity during germination. (PS)

  18. Integrating Terminal Truncation and Oligopeptide Fusion for a Novel Protein Engineering Strategy To Improve Specific Activity and Catalytic Efficiency: Alkaline α-Amylase as a Case Study

    PubMed Central

    Yang, Haiquan; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua; Chen, Jian

    2013-01-01

    In this work, we integrated terminal truncation and N-terminal oligopeptide fusion as a novel protein engineering strategy to improve specific activity and catalytic efficiency of alkaline α-amylase (AmyK) from Alkalimonas amylolytica. First, the C terminus or N terminus of AmyK was partially truncated, yielding 12 truncated mutants, and then an oligopeptide (AEAEAKAKAEAEAKAK) was fused at the N terminus of the truncated AmyK, yielding another 12 truncation-fusion mutants. The specific activities of the truncation-fusion mutants AmyKΔC500-587::OP and AmyKΔC492-587::OP were 25.5- and 18.5-fold that of AmyK, respectively. The kcat/Km was increased from 1.0 × 105 liters · mol−1 · s−1 for AmyK to 30.6 × and 23.2 × 105 liters · mol−1 · s−1 for AmyKΔC500-587::OP and AmyKΔC492-587::OP, respectively. Comparative analysis of structure models indicated that the higher flexibility around the active site may be the main reason for the improved catalytic efficiency. The proposed terminal truncation and oligopeptide fusion strategy may be effective to engineer other enzymes to improve specific activity and catalytic efficiency. PMID:23956385

  19. Inhibition of Sunn pest, Eurygaster integriceps, α-amylases by α-amylase inhibitors (T-αAI) from Triticale.

    PubMed

    Mehrabadi, Mohammad; Bandani, Ali R; Saadati, Fatemeh

    2010-01-01

    The effect of triticale α-amylases inhibitors on starch hydrolysis catalyzed by the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) midgut amylases was examined. Biochemical studgawies showed that inhibitors from Triticale (a hybrid of wheat and rye) had inhibitiory effects on E. integriceps α-amylases. The effects of the triticale α-amylase inhibitor (T-αAI) on α-amylase of E. integriceps showed a dose dependent manner of inhibition, e.g. less inhibition of enzyme activity (around 10%) with a lower dose (0.25 mg protein) and high inhibition of enzyme activity (around 80%) when a high dose of inhibitor was used (1.5 mg protein). The enzyme kinetic studies using Michaelis-Menten and Lineweaver-Burk equations showed the K(m) remained constant (0.58%) but the maximum velocity (V(max)) decreased in the presence of a crude extract of Triticale inhibitors, indicating mixed inhibition. The temperature giving 50% inactivation of enzyme (T(50)) during a 30-min incubation at pH 7.0 was 73° C. The maximum inhibitory activity was achieved at 35° C and pH 5.0. Gel assays showed the meaningful inhibition of E. integriceps α-amylases by various concentrations of Triticale inhibitors. Based on the data presented in this study, it could be said that the T-αAI has good inhibitory activity on E. integriceps gut α-amylase.

  20. Inhibition of Sunn Pest, Eurygaster integriceps, α-Amylases by α-Amylase Inhibitors (T-αAI) from Triticale

    PubMed Central

    Mehrabadi, Mohammad; Bandani, Ali R.; Saadati, Fatemeh

    2010-01-01

    The effect of triticale α-amylases inhibitors on starch hydrolysis catalyzed by the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) midgut amylases was examined. Biochemical studgawies showed that inhibitors from Triticale (a hybrid of wheat and rye) had inhibitiory effects on E. integriceps α-amylases. The effects of the triticale α-amylase inhibitor (T-αAI) on α-amylase of E. integriceps showed a dose dependent manner of inhibition, e.g. less inhibition of enzyme activity (around 10%) with a lower dose (0.25 mg protein) and high inhibition of enzyme activity (around 80%) when a high dose of inhibitor was used (1.5 mg protein). The enzyme kinetic studies using Michaelis-Menten and Lineweaver-Burk equations showed the Km remained constant (0.58%) but the maximum velocity (Vmax) decreased in the presence of a crude extract of Triticale inhibitors, indicating mixed inhibition. The temperature giving 50% inactivation of enzyme (T50) during a 30-min incubation at pH 7.0 was 73° C. The maximum inhibitory activity was achieved at 35° C and pH 5.0. Gel assays showed the meaningful inhibition of E. integriceps α-amylases by various concentrations of Triticale inhibitors. Based on the data presented in this study, it could be said that the T-αAI has good inhibitory activity on E. integriceps gut α-amylase. PMID:21062146

  1. Sodium tungstate on some biochemical parameters of the parotid salivary gland of streptozotocin-induced diabetic rats: a short-term study.

    PubMed

    Leite, Mariana Ferreira; Nicolau, José

    2009-02-01

    Several studies have shown the antidiabetic properties of sodium tungstate. In this study, we evaluated some biochemical parameters of the parotid salivary gland of streptozotocin-induced diabetic rats treated with sodium tungstate solution (2 mg/ml). The studied groups were: untreated control (UC), treated control (TC), untreated diabetic (UD), and treated diabetic (TD). After 2 and 6 weeks of treatment, parotid gland was removed and total protein and sialic acid (free and total) concentration and amylase and peroxidase activities were determined. Data were compared by variance analysis and Tukey test (p < 0.05). The sodium tungstate treatment modestly decreased the glycemia of streptozotocin-induced diabetic rats. At week 2 of the study, parotid gland of diabetic rats presented a reduction of total protein concentration (55%) and an increase of amylase (120%) and peroxidase (160%) activities, free (150%) and total (170%) sialic acid concentration. No alteration in the evaluated parameters at week 6 of the study was observed. Sodium tungstate presented no significant effect in parotid gland. Our results suggest that diabetes causes initial modification in biochemical composition of parotid. However, this gland showed a recovery capacity after 6 week of the experimental time. Sodium tungstate has no effect in peripheral tissues, such as salivary glands.

  2. Salivary Gland Cancer: Risk Factors

    MedlinePlus

    ... continue reading this guide. ‹ Salivary Gland Cancer - Medical Illustrations up Salivary Gland Cancer - Screening › f t k ... Net Guide Salivary Gland Cancer Introduction Statistics Medical Illustrations Risk Factors Screening Symptoms and Signs Diagnosis Subtypes ...

  3. The Enzyme-Like Domain of Arabidopsis Nuclear β-Amylases Is Critical for DNA Sequence Recognition and Transcriptional Activation[C][W][OPEN

    PubMed Central

    Soyk, Sebastian; Šimková, Klára; Zürcher, Evelyne; Luginbühl, Leonie; Brand, Luise H.; Vaughan, Cara K.; Wanke, Dierk; Zeeman, Samuel C.

    2014-01-01

    Plant BZR1-BAM transcription factors contain a β-amylase (BAM)–like domain, characteristic of proteins involved in starch breakdown. The enzyme-derived domains appear to be noncatalytic, but they determine the function of the two Arabidopsis thaliana BZR1-BAM isoforms (BAM7 and BAM8) during transcriptional initiation. Removal or swapping of the BAM domains demonstrates that the BAM7 BAM domain restricts DNA binding and transcriptional activation, while the BAM8 BAM domain allows both activities. Furthermore, we demonstrate that BAM7 and BAM8 interact on the protein level and cooperate during transcriptional regulation. Site-directed mutagenesis of residues in the BAM domain of BAM8 shows that its function as a transcriptional activator is independent of catalysis but requires an intact substrate binding site, suggesting it may bind a ligand. Microarray experiments with plants overexpressing truncated versions lacking the BAM domain indicate that the pseudo-enzymatic domain increases selectivity for the preferred cis-regulatory element BBRE (BZR1-BAM Responsive Element). Side specificity toward the G-box may allow crosstalk to other signaling networks. This work highlights the importance of the enzyme-derived domain of BZR1-BAMs, supporting their potential role as metabolic sensors. PMID:24748042

  4. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties.

    PubMed

    Diz, Mariângela S; Carvalho, Andre O; Ribeiro, Suzanna F F; Da Cunha, Maura; Beltramini, Leila; Rodrigues, Rosana; Nascimento, Viviane V; Machado, Olga L T; Gomes, Valdirene M

    2011-07-01

    Lipid transfer proteins (LTPs) were thus named because they facilitate the transfer of lipids between membranes in vitro. This study was triggered by the characterization of a 9-kDa LTP from Capsicum annuum seeds that we call Ca-LTP(1) . Ca-LTP(1) was repurified, and in the last chromatographic purification step, propanol was used as the solvent in place of acetonitrile to maintain the protein's biological activity. Bidimensional electrophoresis of the 9-kDa band, which corresponds to the purified Ca-LTP(1) , showed the presence of three isoforms with isoelectric points (pIs) of 6.0, 8.5 and 9.5. Circular dichroism (CD) analysis suggested a predominance of α-helices, as expected for the structure of an LTP family member. LTPs immunorelated to Ca-LTP(1) from C. annuum were also detected by western blotting in exudates released from C. annuum seeds and also in other Capsicum species. The tissue and subcellular localization of Ca-LTP(1) indicated that it was mainly localized within dense vesicles. In addition, isolated Ca-LTP(1) exhibited antifungal activity against Colletotrichum lindemunthianum, and especially against Candida tropicalis, causing several morphological changes to the cells including the formation of pseudohyphae. Ca-LTP(1) also caused the yeast plasma membrane to be permeable to the dye SYTOX green, as verified by fluorescence microscopy. We also found that Ca-LTP(1) is able to inhibit mammalian α-amylase activity in vitro.

  5. Amylases in Pea Tissues with Reduced Chloroplast Density and/or Function.

    PubMed

    Saeed, M; Duke, S H

    1990-12-01

    Pea (Pisum sativum L.) tissues with reduced chloroplast density (e.g. petals and stems) or function (i.e. senescent leaves and leaves darkened for prolonged periods) were surveyed to determine whether tissues with genetically or environmentally reduced chloroplast density and/or function also have significantly different amylolytic enzyme activities and/or isoform patterns than leaf tissues with totally competent chloroplasts. Native PAGE followed by electrophoretically blotting through a starch or beta-limit dextrin containing gel and KI/I(2) staining revealed that the primary amylases in leaves, stems, petals, and roots were the primarily vacuolar beta-amylase (EC 3.2.1.2) and the primarily apoplastic alpha-amylase (EC 3.2.1.1). Among tissues of light grown pea plants, petals contained the highest levels of total amylolytic (primarily beta-amylase) activity and considerably higher ratios of beta- to alpha-amylase. In aerial tissues there was an inverse relationship between chlorophyll and starch concentration, and beta-amylase activity. In sections of petals and stems there was a pronounced inverse relationship between chlorophyll concentration and the activity of alpha-amylase. Senescing leaves of pea, as determined by age, and protein and chlorophyll content, contained 3.8-fold (fresh weight basis) and 32-fold (protein basis) higher alpha-amylase activity than fully mature leaves. Leaves maintained in darkness for 12 days displayed a 14-fold (fresh weight basis) increase in alpha-amylase activity over those grown under continuous light. In senescence and prolonged darkness studies, the alpha-amylase that was greatly increased in activity was the primarily apoplastic alpha-amylase. These studies indicate that there is a pronounced inverse relationship between chloroplast function and levels of apoplastic alpha-amylase activity and in some cases an inverse relationship between chloroplast density and/or function and vacuolar beta-amylase activity.

  6. Salivary gland disorders.

    PubMed

    Mandel, Louis

    2014-11-01

    Patients with salivary gland disease present with certain objective and/or subjective signs. An accurate diagnosis for these patients requires a range of techniques that includes the organized integration of information derived from their history, clinical examination, imaging, serology, and histopathology. This article highlights the signs and symptoms of the salivary gland disorders seen in the Salivary Gland Center, and emphasizes the methodology used to achieve a definitive diagnosis and therapy.

  7. Bacillus thuringiensis HCB6 Amylase Immobilization by Chitosan Beads

    NASA Astrophysics Data System (ADS)

    Zusfahair; Ningsih, D. R.; Kartika, D.; Fatoni, A.; Zuliana, A. L.

    2017-02-01

    The purpose of this study was to optimize the amylase immobilization using a chitosan bead and to characterize immobilized amylase of Bacillus thuringiensis Bacteria HCB6. This study was started of amylase production, continued by immobilization optimization including ratio of chitosan:enzymes, enzyme-matrix contact time, substrate concentration, pH effect, incubation temperature effect, reaction time, and stability of immobilized enzyme. Amylase activity assay was dinitro salicylic (DNS) method. The results showed the optimum chitosan:enzyme ratio was 2.5: 1 (v/v), immobilization contact time of 18 hours and immobilization efficiency of 87.93%. Furthermore, immobilized amylase of B. thuringiensis HCB6 showed optimum substrate concentration of 1.5%, optimum pH of 6, optimum incubation temperature of 37 ° C, and the reaction time of 30 minutes. The Michaelis-Menten constant KM value for free and immobilized amylase were 5.30% and 1.33% respectively. Immobilized amylase can be used up to five times with the remaining activity of 43.3%.

  8. Antiviral Cystine Knot α-Amylase Inhibitors from Alstonia scholaris*

    PubMed Central

    Nguyen, Phuong Quoc Thuc; Ooi, Justin Seng Geap; Nguyen, Ngan Thi Kim; Wang, Shujing; Huang, Mei; Liu, Ding Xiang; Tam, James P.

    2015-01-01

    Cystine knot α-amylase inhibitors are cysteine-rich, proline-rich peptides found in the Amaranthaceae and Apocynaceae plant species. They are characterized by a pseudocyclic backbone with two to four prolines and three disulfides arranged in a knotted motif. Similar to other knottins, cystine knot α-amylase inhibitors are highly resistant to degradation by heat and protease treatments. Thus far, only the α-amylase inhibition activity has been described for members of this family. Here, we show that cystine knot α-amylase inhibitors named alstotides discovered from the Alstonia scholaris plant of the Apocynaceae family display antiviral activity. The alstotides (As1–As4) were characterized by both proteomic and genomic methods. All four alsotides are novel, heat-stable and enzyme-stable and contain 30 residues. NMR determination of As1 and As4 structures reveals their conserved structural fold and the presence of one or more cis-proline bonds, characteristics shared by other cystine knot α-amylase inhibitors. Genomic analysis showed that they contain a three-domain precursor, an arrangement common to other knottins. We also showed that alstotides are antiviral and cell-permeable to inhibit the early phase of infectious bronchitis virus and Dengue infection, in addition to their ability to inhibit α-amylase. Taken together, our results expand membership of cystine knot α-amylase inhibitors in the Apocynaceae family and their bioactivity, functional promiscuity that could be exploited as leads in developing therapeutics. PMID:26546678

  9. Effectiveness in learning complex problem solving and salivary ion indices of psychological stress and activation.

    PubMed

    Richter, P; Hinton, J W; Reinhold, S

    1998-11-01

    Following Hinton et al. (1992, Biol. Psychol. 33, 63-71) and Richter et al. (1995, Biol. Psychol. 39, 131-142) ionic concentration of [K+] in unstimulated saliva was predicted to rise with perceived challenge, while lowered [Na+] was expected when experiencing psychological stress (PS). Subjects had to learn an engaging complex problem-solving 'game', via positive and negative feed-back on three 'games' lasting 2.5-3.0 h overall. Comparisons were made between three groups: (1) high success; (2) partial success ('strugglers'); and (3) total failure to learn. Saliva was sampled after resting and after each of three 'games'. Successful learners had a significant rise in [K+] on the first 'game' followed by a significant fall, consistent with task-challenge reaction followed by fast autonomic adaptation with successful learning. The 'strugglers' [Na+] fell significantly over the 'games', indicating mineralocorticoid-induced PS response of Na+ reabsorption. The 'total failure' subjects had generally significantly higher [K+] than the successful ones, showing raised tonic sympathetic relative to parasympathetic activity--this outcome being interpreted from interference theories. The 'failures' also had significantly higher tonic [Na+] on 'games'--indicating low PS as predicted from McGrath's (1976) theory.

  10. Activation of histamine H4 receptor inhibits TNFα/IMD-0354-induced apoptosis in human salivary NS-SV-AC cells.

    PubMed

    Stegajev, Vasili; Kouri, Vesa-Petteri; Salem, Abdelhakim; Rozov, Stanislav; Stark, Holger; Nordström, Dan C E; Konttinen, Yrjö T

    2014-12-01

    Apoptosis is involved in the pathogenesis of Sjögren's syndrome (SS), an autoimmune disease affecting exocrine glands. Our recent studies revealed diminished histamine H4 receptor (H₄R) expression and impaired histamine transport in the salivary gland epithelial cells in SS. The aim was now to test if nanomolar histamine and high-affinity H₄R signaling affect apoptosis of human salivary gland epithelial cell. Simian virus 40-immortalized acinar NS-SV-AC cells were cultured in serum-free keratinocyte medium ± histamine H₄R agonist HST-10. Expression and internalization of H₄R were studied by immunofluorescence staining ± clathrin inhibitor methyl-β-cyclodextrin (MβCD). Apoptosis induced using tumor necrosis factor-α with nuclear factor-κB inhibitor IMD-0354 was studied using phase contrast microscopy, Western blot, flow cytometry and polymerase chain reaction (qRT-PCR). HST-10-stimulated H₄R internalization was inhibited by MβCD. Western blotting revealed diminished phosphorylated c-Jun N-terminal kinase JNK, but unchanged levels of phosphorylated extracellular signal regulated kinase pERK1/2 in H₄R-stimulated samples compared to controls. qRT-PCR showed up-regulated expression of anti-apoptotic B cell lymphoma-extra large/Bcl-xL mRNAs and proteins, whereas pro-apoptotic Bcl-2-associated X protein/BAX remained unchanged in H4R-stimulated samples. H₄R stimulation diminished cleavage of PARP and flow cytometry showed significant dose-dependent inhibitory effect of H₄R stimulation on apoptosis. As far as we know this is the first study showing inhibitory effect of H₄R activation on apoptosis of human salivary gland cells. Diminished H₄R-mediated activation may contribute to loss of immune tolerance in autoimmune diseases and in SS in particular.

  11. Measures of Autonomic Nervous System

    DTIC Science & Technology

    2011-04-01

    Gastro- intestinal Pupillary Response Respiratory Salivary Amylase Vascular Manipulative Body-Based/ Tension-Release Practices Trauma...Physiological Activities ANS Physiological Activities Cardiac Pupillary Response Catecholamines Respiration Cortisol Salivary Amylase Galvanic Skin...Measures of Autonomic Nervous System Regulation Salivary Amylase Measurement Most measures of salivary amylase

  12. Antimicrobial activity and mechanism of action of a novel cationic α-helical octadecapeptide derived from α-amylase of rice.

    PubMed

    Taniguchi, Masayuki; Ochiai, Akihito; Takahashi, Kiyoshi; Nakamichi, Shun-ichi; Nomoto, Takafumi; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2015-03-01

    AmyI-1-18, an octadecapeptide derived from α-amylase (AmyI-1) of rice (Oryza sativa L. japonica), is a novel cationic α-helical antimicrobial peptide (AMP) that contains two lysine and two arginine residues. The antimicrobial activity of AmyI-1-18 against human pathogens was quantitatively evaluated using a chemiluminescence method that measures ATP derived from viable cells. Of the ten kinds of human pathogens, AmyI-1-18 exhibited antimicrobial activity against nine. Its 50% growth-inhibitory concentrations (ICs50 ) against Porphyromonas gingivalis, Propionibacterium acnes, Pseudomonas aeruginosa, Candida albicans, and Streptococcus mutans were 13, 19, 50, 64, and 77 μM, respectively. AmyI-1-18 had little or no hemolytic activity even at 500 μM, and showed negligible cytotoxicity up to 1200 μM. The degree of 3,3'-dipropylthiadicarbocyanine iodide release from P. gingivalis cells induced by the addition of AmyI-1-18 was significantly lower than that induced by the addition of melittin. Flow cytometric analysis showed that the percentages of P. aeruginosa, S. mutans, and C. albicans cells stained with propidium iodide (PI), a DNA-intercalating dye, were 89%, 43%, and 3%, respectively, when AmyI-1-18 was added at a concentration equal to its 4×IC50 . Therefore, the antimicrobial activity of AmyI-1-18 against P. aeruginosa and S. mutans appears to be mainly attributable to its membrane-disrupting activity. In contrast, its antimicrobial activity against P. gingivalis and C. albicans most likely depends upon interactions with intracellular targets other than their cell membranes. Collectively, these results indicate that AmyI-1-18 is useful as a safe and potent AMP against the pathogens described above in many fields of healthcare.

  13. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants.

    PubMed

    Kotkar, Hemlata M; Sarate, Priya J; Tamhane, Vaijayanti A; Gupta, Vidya S; Giri, Ashok P

    2009-08-01

    Midgut digestive amylases and proteinases of Helicoverpa armigera, a polyphagous and devastating insect pest of economic importance have been studied. We also identified the potential of a sorghum amylase inhibitor against H. armigera midgut amylase. Amylase activities were detected in all the larval instars, pupae, moths and eggs; early instars had lower amylase levels which steadily increased up to the sixth larval instar. Qualitative and quantitative differences in midgut amylases of H. armigera upon feeding on natural and artificial diets were evident. Natural diets were categorized as one or more members of legumes, vegetables, flowers and cereals belonging to different plant families. Amylase activity and isoform patterns varied depending on host plant and/or artificial diet. Artificial diet-fed H. armigera larvae had comparatively high amylase activity and several unique amylase isoforms. Correlation of amylase and proteinase activities of H. armigera with the protein and carbohydrate content of various diets suggested that H. armigera regulates the levels of these digestive enzymes in response to macromolecular composition of the diet. These adjustments in the digestive enzymes of H. armigera may be to obtain better nourishment from the diet and avoid toxicity due to nutritional imbalance. H. armigera, a generalist feeder experiences a great degree of nutritional heterogeneity in its diet. An investigation of the differences in enzyme levels in response to macronutrient balance and imbalance highlight their importance in insect nutrition.

  14. Diosgenin from Dioscorea bulbifera: novel hit for treatment of type II diabetes mellitus with inhibitory activity against α-amylase and α-glucosidase.

    PubMed

    Ghosh, Sougata; More, Piyush; Derle, Abhishek; Patil, Ajay B; Markad, Pramod; Asok, Adersh; Kumbhar, Navanath; Shaikh, Mahemud L; Ramanamurthy, Boppana; Shinde, Vaishali S; Dhavale, Dilip D; Chopade, Balu A

    2014-01-01

    Diabetes mellitus is a multifactorial metabolic disease characterized by post-prandial hyperglycemia (PPHG). α-amylase and α-glucosidase inhibitors aim to explore novel therapeutic agents. Herein we report the promises of Dioscorea bulbifera and its bioactive principle, diosgenin as novel α-amylase and α-glucosidase inhibitor. Among petroleum ether, ethyl acetate, methanol and 70% ethanol (v/v) extracts of bulbs of D. bulbifera, ethyl acetate extract showed highest inhibition upto 72.06 ± 0.51% and 82.64 ± 2.32% against α-amylase and α-glucosidase respectively. GC-TOF-MS analysis of ethyl acetate extract indicated presence of high diosgenin content. Diosgenin was isolated and identified by FTIR, 1H NMR and 13C NMR and confirmed by HPLC which showed an α-amylase and α-glucosidase inhibition upto 70.94 ± 1.24% and 81.71 ± 3.39%, respectively. Kinetic studies confirmed the uncompetitive mode of binding of diosgenin to α-amylase indicated by lowering of both Km and Vm. Interaction studies revealed the quenching of intrinsic fluorescence of α-amylase in presence of diosgenin. Similarly, circular dichroism spectrometry showed diminished negative humped peaks at 208 nm and 222 nm. Molecular docking indicated hydrogen bonding between carboxyl group of Asp300, while hydrophobic interactions between Tyr62, Trp58, Trp59, Val163, His305 and Gln63 residues of α-amylase. Diosgenin interacted with two catalytic residues (Asp352 and Glu411) from α-glucosidase. This is the first report of its kind that provides an intense scientific rationale for use of diosgenin as novel drug candidate for type II diabetes mellitus.

  15. Salivary cytokines as a minimally-invasive measure of immune functioning in young children: correlates of individual differences and sensitivity to laboratory stress.

    PubMed

    Riis, Jenna L; Granger, Douglas A; DiPietro, Janet A; Bandeen-Roche, Karen; Johnson, Sara B

    2015-03-01

    There is growing interest in minimally-invasive measures of environmentally-responsive biological systems in developmental science. Contributing to that endeavor, this study explores the intercorrelations, correlates, and task-sensitivity of proinflammatory salivary cytokines in childhood. Saliva was sampled from 125 healthy five-year old children (49% male) across a series of cognitive and emotional challenge laboratory tasks. Samples were assayed for cytokines (IL-1β, IL-6, IL-8, TNFα), and markers of hypothalamic-pituitary-adrenal (HPA) and autonomic nervous system (ANS) activation (salivary cortisol and alpha-amylase [sAA]). Cytokines were positively intercorrelated and task-sensitivity varied. Except IL-8, cytokines were elevated in children with oral health issues and tobacco smoke exposure. Among boys, cytokines were positively related to sAA and negatively related to cortisol. The findings suggest that in healthy children, salivary cytokine levels reflect compartmentalized oral immune activity. Associations between ANS and HPA activity and cytokines in saliva may present opportunities for minimally-invasive methods to explore neuroendocrine-immune interactions during development.

  16. Transcriptome analysis of the salivary glands of potato leafhopper, Empoasca fabae.

    PubMed

    DeLay, Bridget; Mamidala, Praveen; Wijeratne, Asela; Wijeratne, Saranga; Mittapalli, Omprakash; Wang, Jian; Lamp, William

    2012-12-01

    The potato leafhopper, Empoasca fabae, is a pest of economic crops in the United States and Canada, where it causes damage known as hopperburn. Saliva, along with mechanical injury, leads to decreases in gas exchange rates, stunting and chlorosis. Although E. fabae saliva is known to induce plant responses, little knowledge exists of saliva composition at the molecular level. We subjected the salivary glands of E. fabae to Roche 454-pyrosequencing which resulted significant number (30,893) of expressed sequence tags including 2805 contigs and 28,088 singletons. A high number of sequences (78%) showed similarity to other insect species in GenBank, including Triboliumcastaneum, Drosophilamelanogaster and Acrythosiphonpisum. KEGG analysis predicted the presence of pathways for purine and thiamine metabolic, biosynthesis of secondary metabolites, drug metabolism, and lysine degradation. Pfam analysis showed a high number of cellulase and carboxylesterase protein domains. Expression analysis of candidate genes (alpha amylase, lipase, pectin lyase, etc.) among different tissues revealed tissue-specific expression of digestive enzymes in E. fabae. This is the first study to characterize the sialotranscriptome of E. fabae and the first for any species in the family of Cicadellidae. Due to the status of these insects as economic pests, knowledge of which genes are active in the salivary glands is important for understanding their impact on host plants.

  17. Salivary Gland Cancer

    MedlinePlus

    ... contains antibodies that can kill germs. Salivary gland cancer is a type of head and neck cancer. It is rare. It may not cause any ... pain in your face Doctors diagnose salivary gland cancer using a physical exam, imaging tests, and a ...

  18. Salivary gland disorders.

    PubMed

    Mandel, Louis

    2011-01-01

    Salivary gland abnormalities and salivary dysfunction are important orofacial disorders. Patients with such problems are usually seen in the dental office for evaluation and therapy, and the dental practitioner is required to make a diagnosis and institute care. Therefore, it is necessary for the dentist to be knowledgeable regarding the more common pathologic entities that involve the salivary apparatus, and also be familiar with the diagnostic and therapeutic tools that are available. Successful diagnosis is dependent on the organized integration of the information derived from past history, clinical examination, salivary volume study, imaging, serology, and histopathologic examination. This article discusses the most common disorders seen in the Salivary Gland Center and indicates the current approaches to diagnosis. Improvement in diagnostic skills will avoid serious complications and lead to specific and effective therapy.

  19. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries

    NASA Astrophysics Data System (ADS)

    Hosseinipour, Seyyedeh Leila; Khiabani, Mahmoud Sowti; Hamishehkar, Hamed; Salehi, Roya

    2015-09-01

    Enzymes play an essential role in catalyzing various reactions. However, their instability upon repetitive/prolonged use, elevated temperature, acidic or alkaline pH remains an area of concern. α-Amylase, a widely used enzyme in food industries for starch hydrolysis, was covalently immobilized on the surface of two developed matrices, amino-functionalized silica-coated magnetite nanoparticles (AFSMNPs) alone and covered with chitosan. The synthesis steps and characterizations of NPs were examined by FT-IR, VSM, and SEM. Modified nanoparticles with average diameters of 20-80 nm were obtained. Enzyme immobilization efficiencies of 89 and 74 were obtained for AFSMNPs and chitosan-coated AFSMNPs, respectively. The optimum pH obtained was 6.5 and 8.0 for the enzyme immobilized on AFSMNPs and chitosan-coated AFSMNPs, respectively. Optimum temperature for the immobilized enzyme shifted toward higher temperatures. Considerable enhancements in thermal stabilities were observed for the immobilized enzyme at elevated temperatures up to 80 °C. A frequent use experiment demonstrated that the immobilized enzyme retained 74 and 85 % of its original activity even after 20 times of repeated use in AFSMNPs and chitosan-coated AFSMNPs, respectively. Storage stability demonstrated that free enzyme lost its activity completely within 30 days. But, immobilized enzyme on AFSMNPs and chitosan-coated AFSMNPs preserved 65.73 and 78.63 % of its initial activity, respectively, after 80 days of incubation. In conclusion, a substantial improvement in the performance of the immobilized enzyme with reference to the free enzyme was obtained. Furthermore, the relative activities of immobilized enzyme are superior than free enzyme over the broader pH and temperature ranges.

  20. [Amylases of the fungus Aspergillus flavipes associated with Fucus evanescens].

    PubMed

    Frolova, G M; Sil'chenko, A S; Pivkin, M V; Mikhaĭlov, V V

    2002-01-01

    A promising producer of extracellular amylases, Aspergillus flavipes, was selected from 245 strains of marine fungi. Depending on the conditions of growth, this strain produced diverse amylolytic complexes. When grown on medium containing peptone and yeast extract (pH 7.0), A. flavipes synthesized three forms of amylase, differing in pH optimum (5.5, 6.0, and 7.5). A single form of the enzyme was synthesized either in the absence of peptone from the medium or at the initial pH value of the medium, equal to 8.6. The activity of the isolated amylase forms decreased in the presence of proteolytic enzymes. New, highly stable forms of amylase (with pH optima of 5.5 and 7.5 and maximum activity at 60-80 degrees C) were synthesized in the presence of diisopropyl fluorophosphate, an inhibitor of proteases.

  1. Extracellular Transglucosylase and α-Amylase of Streptococcus equinus1

    PubMed Central

    Boyer, Ernest W.; Hartman, Paul A.

    1971-01-01

    Culture filtrates of Streptococcus equinus 1091 contained α-amylase and transglucosylase. The effects of calcium carbonate, age of inoculum, concentration of maltose, and duration of the fermentation on α-amylase and transglucosylase production were determined. The extracellular α-amylase was purified 48-fold and was free of transglucosylase activity. The α-amylase (amylose substrate) required Cl− for maximum activity; ethylenediaminetetraacetic acid (EDTA) partially inhibited activity, but CaCl2 prevented EDTA inhibition. The temperature optimum was 38 C at pH 7.0, and the pH optimum was 7.0 at 37 C in the presence of CaCl2. Predominant final products of amylose hydrolysis, in order of decreasing prevalence, were maltose, maltotriose, maltotetraose, and glucose. The α-amylase showed no evidence of multiple attack. The extracellular transglucosylase was purified 27-fold, but a small amount of α-amylase remained. Transglucosylase activity (amylose substrate) was not increased in the presence of CaCl2. The temperature optimum was 37 C at pH 6.5, and the pH optimum was 6.0 at 37 C. Carbohydrates that served as acceptors for the transglucosylase to degrade amylose were, in order of decreasing acceptor efficiency: d-glucose, d-mannose, l-sorbose, maltose, sucrose, and trehalose. The extracellular transglucosylase of S. equinus 1091 synthesized higher maltodextrins in the medium when the cells were grown in the presence of maltose. Images PMID:4995651

  2. MS characterization of multiple forms of alpha-amylase in human saliva.

    PubMed

    Hirtz, Christophe; Chevalier, François; Centeno, Delphine; Rofidal, Valerie; Egea, Jean-Christophe; Rossignol, Michel; Sommerer, Nicolas; Deville de Périère, Dominique

    2005-11-01

    Alpha-amylase is a major and well-characterized component of human saliva. Recent proteomic studies suggested that this protein could be observed in more than twenty spots on 2-D gels of salivary proteins. The aim of this work was to investigate this unexpected redundancy. 2-D gel electrophoresis was combined with systematic MALDI-TOF MS analysis. More than 140 protein spots identifying the alpha-amylase were shown to constitute a stable but very complex pattern. Careful analysis of mass spectra and simultaneous hierarchical clustering of the observed peptides and of the electrophoretic features of spots allowed one to define three major groups. A main class grouping 90 spots was shown to correspond to full length alpha-amylases that can be assumed to include isoforms and post-translationally modified forms, a subset of this class being demonstrated to be N-glycosylated. A second group included short alpha-amylases that are differently truncated in a non-random manner, very likely in the oral cavity. The last class grouped alpha-amylase forms showing both the N- and C-terminal sequences of the enzyme but displaying a molecular weight that was up to 50% lower than that of the native protein. It is speculated that the last group of alpha-amylase spots could correspond to proteins submitted to internal deletions prior to the secretion.

  3. Acyclic peptide inhibitors of amylases.

    PubMed

    Pohl, Nicola

    2005-12-01

    In this issue of Chemistry and Biology, a library screening approach reveals a linear octapeptide inhibitor of alpha-amylases reached by de novo design . The selected molecule shares characteristics with naturally occurring protein inhibitors -- a result that suggests general rules for the design of peptide-based amylase inhibitors may be achievable.

  4. Stabilization of α-amylase by using anionic surfactant during the immobilization process

    NASA Astrophysics Data System (ADS)

    El-Batal, A. I.; Atia, K. S.; Eid, M.

    2005-10-01

    This work describes the entrapment of α-amylase into butylacrylate-acrylic acid copolymer (BuA/AAc) using γ irradiation. The effect of an anionic surfactant (AOT), the reuse efficiency, and kinetic behavior of immobilized α-amylase were studied. Covering of α-amylase with bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) made the enzyme more stable than the uncovered form. The hydrolytic activity of the pre-coated immobilized α-amylase was increased below the critical micelle concentration (cmc) (10 mmol/L). The results showed an increase in the relative activity with increase in the degree of hydration. The pre-coated immobilized α-amylase showed a higher k/K and lower activation energy compared to the free and uncoated-immobilized preparation, respectively. The results suggest that the immobilization of α-amylase is a potentially useful approach for commercial starch hydrolysis in two-phase systems.

  5. Relaxation - Induced by Vibroacoustic Stimulation via a Body Monochord and via Relaxation Music - Is Associated with a Decrease in Tonic Electrodermal Activity and an Increase of the Salivary Cortisol Level in Patients with Psychosomatic Disorders.

    PubMed

    Sandler, Hubertus; Fendel, Uta; Buße, Petra; Rose, Matthias; Bösel, Rainer; Klapp, Burghard F

    2017-01-01

    Vibroacoustic stimulation by a Body Monochord can induce relaxation states of various emotional valence. The skin conductance level (SCL) of the tonic electrodermal activity is an indicator of sympathetic arousal of the autonomic nervous system and thus an indicator of the relaxation response. Salivary cortisol is considered to be a stress indicator of the HPA-axis. The effects of the treatment with a Body Monochord and listening to relaxation music (randomized chronological presentation) on SCL and salivary cortisol in relation to the emotional valence of the experience were examined in patients with psychosomatic disorders (N = 42). Salivary cortisol samples were collected immediately before and after the expositions. Subjective experience was measured via self-rating scales. Overall, both the exposure to the Body Monochord as well as the exposure to the relaxation music induced an improvement of patients' mood and caused a highly significant reduction of SCL. A more emotionally positive experience of relaxation correlated with a slightly stronger reduction of the SCL. Both treatment conditions caused a slight increase in salivary cortisol, which was significant after exposure to the first treatment. The increase of salivary cortisol during a relaxation state is contrary to previous findings. It is possible that the relaxation state was experienced as an emotional challenge, due to inner images and uncommon sensations that might have occurred.

  6. Relaxation – Induced by Vibroacoustic Stimulation via a Body Monochord and via Relaxation Music – Is Associated with a Decrease in Tonic Electrodermal Activity and an Increase of the Salivary Cortisol Level in Patients with Psychosomatic Disorders

    PubMed Central

    Sandler, Hubertus; Fendel, Uta; Buße, Petra; Rose, Matthias; Bösel, Rainer; Klapp, Burghard F.

    2017-01-01

    Vibroacoustic stimulation by a Body Monochord can induce relaxation states of various emotional valence. The skin conductance level (SCL) of the tonic electrodermal activity is an indicator of sympathetic arousal of the autonomic nervous system and thus an indicator of the relaxation response. Salivary cortisol is considered to be a stress indicator of the HPA-axis. The effects of the treatment with a Body Monochord and listening to relaxation music (randomized chronological presentation) on SCL and salivary cortisol in relation to the emotional valence of the experience were examined in patients with psychosomatic disorders (N = 42). Salivary cortisol samples were collected immediately before and after the expositions. Subjective experience was measured via self-rating scales. Overall, both the exposure to the Body Monochord as well as the exposure to the relaxation music induced an improvement of patients’ mood and caused a highly significant reduction of SCL. A more emotionally positive experience of relaxation correlated with a slightly stronger reduction of the SCL. Both treatment conditions caused a slight increase in salivary cortisol, which was significant after exposure to the first treatment. The increase of salivary cortisol during a relaxation state is contrary to previous findings. It is possible that the relaxation state was experienced as an emotional challenge, due to inner images and uncommon sensations that might have occurred. PMID:28114399

  7. Exploring salivary proteomes in edentulous patients with type 2 diabetes.

    PubMed

    Border, Michael B; Schwartz, Sarah; Carlson, Jim; Dibble, Christopher F; Kohltfarber, Heidi; Offenbacher, Steven; Buse, John B; Bencharit, Sompop

    2012-04-01

    Type 2 diabetes and tooth loss are linked both epidemiologically and pathophysiologically. We applied label-free differential protein expression analysis using multidimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) to explore the proteomic profile of saliva samples collected from selected type 2 diabetic edentulous patients and non-diabetic controls. Ninety-six peptides corresponding to 52 proteins were differentially expressed between the diabetic edentulous patients and controls (p < 0.05). Some diabetes-related inflammatory biomarkers including glyceraldehyde-3-phosphate dehydrogenase and serum amyloid A were detected with levels increased in diabetic samples. Other biomarkers including amylase, palate, lung and nasal epithelium associated protein (PLUNC), and serotransferrin levels were decreased in diabetic samples. In contrast with previous findings, salivary carbonic anhydrase 6 and alpha-2 macroglobulin levels, however, were decreased in this diabetic patient population. Cluster analysis and principle component analysis demonstrated a differential pattern of protein biomarker expression between diabetic and control subjects. Western blot analysis was completed to confirm the relatively lower expression level of two biomarkers, including PLUNC and amylase in the diabetic group compared to control subjects. The presence of salivary biomarkers specific for diabetes in edentulous subjects mimics those in serum, especially those related to inflammatory/lipid metabolism. While this exploratory study requires further validation with a larger population, it provides proof-of-principle for salivary proteomics for edentulous subjects with diabetes.

  8. [Purification and characterization of thermostable amylases from two bacterial species].

    PubMed

    Dong, Yongcun; Liu, Yang; Chen, Yuanyuan; Niu, Dandan; Zhang, Liang; Shi, Guiyang; Wang, Zhengxiang

    2008-02-01

    Two thermophilic bacterial isolates, strain 173 and strain 174, with raw starch-digesting activities were selected from thermophilic bacteria growing in hot spring of Tengchong County, Yunnan Province, China. By amplification, sequencing and alignment analysis of 16S ribosomal DNAs, they were identified as members of genus Geobacillus. In shaker flask culture Geobacillus sp. 173 produced 14.5 U/mL amylase and for Geobacillus sp. 174 with 12.9 U/mL. Both amylases were purified by starch absorption-desorption and chromatograph. The amylases from strain 173 and strain 174 purified to about 50 and 29 folds were respectively achieved with an overall yield of 34% and 41%. The maximum gelatinized-starch-digesting activity of the purified amylases were at 70 degrees C and pH 5.0 - 5.5. The high raw-starch-digesting activity of these enzymes were observed at 50 degrees C - 60 degrees C (from strain 173) and 40 degrees C - 60 degrees C (from strain 174). Both enzymes were not sensitive to ions including mental ions (Na+, K+, Mg2+, Ca2+, Mn2+, Zn2+) and others (EDTA, Citrate), but were slightly inhibited by ions such as Co2+, Cu2+ for amylase from strain 173 and Cu2+ for amylase from strain 174. Both enzyme had specificity of starch substrates.

  9. Effects of arginine and leucine substitutions on anti-endotoxic activities and mechanisms of action of cationic and amphipathic antimicrobial octadecapeptide from rice α-amylase.

    PubMed

    Taniguchi, Masayuki; Ochiai, Akihito; Toyoda, Ryu; Sato, Teppei; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2017-03-01

    Previously, we showed that the antimicrobial cationic and amphipathic octadecapeptide AmyI-1-18 from rice α-amylase (AmyI-1) inhibited the endotoxic activity of lipopolysaccharide (LPS) from Escherichia coli. In addition, we demonstrated that several AmyI-1-18 analogs containing arginine or leucine substitutions, which were designed on the basis of the helical wheel projection of AmyI-1-18, exhibited higher antimicrobial activity against human pathogenic microorganisms than AmyI-1-18. In the present study, anti-inflammatory (anti-endotoxic) activities of five AmyI-1-18 analogs containing arginine or leucine substitutions were investigated. Two single arginine-substituted and two single leucine-substituted AmyI-1-18 analogs inhibited the production of LPS-induced nitric oxide in mouse macrophages (RAW264) more effectively than AmyI-1-18. These data indicate that enhanced cationic and hydrophobic properties of AmyI-1-18 are associated with improved anti-endotoxic activity. In subsequent chromogenic Limulus amebocyte lysate assays, 50% inhibitory concentrations (IC50 ) of the three AmyI-1-18 analogs (G12R, D15R, and E9L) were 0.11-0.13 μm, indicating higher anti-endotoxic activity than that of AmyI-1-18 (IC50, 0.22 μm), and specific LPS binding activity. In agreement, surface plasmon resonance analyses confirmed direct LPS binding of three AmyI-1-18 analogs. In addition, AmyI-1-18 analogs exhibited little or no cytotoxic activity against RAW264 cells, indicating that enhancements of anti-inflammatory and LPS-neutralizing activities following replacement of arginine or leucine did not result in significant increases in cytotoxicity. This study shows that the arginine-substituted and leucine-substituted AmyI-1-18 analogs with improved anti-endotoxic and antimicrobial activities have clinical potential as dual-function host defense agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  10. The Relationship between Plasma and Salivary NOx

    PubMed Central

    Clodfelter, William H.; Basu, Swati; Bolden, Crystal; Dos Santos, Patricia C.; King, S. Bruce; Kim-Shapiro, Daniel B.

    2015-01-01

    Several studies have shown that fasting plasma nitrite (NO2−) is an indicator of endothelial nitric oxide synthase (NOS) activity while plasma nitrate (NO3−) or the sum of NO2− and NO3− (NOx) do not reflect NOS function. Plasma NO2− can also be elevated through dietary NO3− where the NO3− is partially reduced to NO2− by oral bacteria and enters the plasma through the digestive system. NO3− is taken up from plasma by salivary glands and the cycle repeats itself. Thus, one may propose that salivary NO2− is an indicator of plasma NO2− and consequently of NO production. Many brands of nitric oxide (NO) saliva test strips have been developed that suggest that their product is indicative of circulatory NO availability. However, data supporting a relationship between salivary and plasma NO2− or NO bioavailability is lacking. Here we have measured basal salivary and plasma NO2− and NO3− to determine if any correlation exists between these in 13 adult volunteers. We found no significant correlation between basal salivary and plasma NO2−. Also no correlation exists between salivary NO3− and plasma NO2−. However, we did see a correlation between salivary NO3− and plasma NO3−, and between salivary NO2− and plasma NO3−. In a separate study, we compared the efficiency of salivary NO3− reduction with the efficacy of increasing plasma NO3− and NO2− after drinking beet juice, a high NO3−-containing beverage, in 10 adult volunteers. No significant correlation was observed between the ex vivo salivary reduction of NO3− to NO2− and plasma increases in NO3− or NO2−. These results suggest that measures of salivary NO3−, NO2− or NOx are not good indicators of endothelial function. In addition, the efficiency of saliva to reduce NO3− to NO2− ex-vivo does not demonstrate one’s ability to increase plasma NO2− following consumption of dietary NO3−. PMID:25910583

  11. Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry.

    PubMed

    Singh, Shalini; Singh, Sanamdeep; Bali, Vrinda; Sharma, Lovleen; Mangla, Jyoti

    2014-01-01

    The study aimed at isolation and screening of fungal amylase producer, optimization of solid state fermentation conditions for maximum amylase production by the best amylase producer, and characterization of the crude amylases, so produced. Aspergillus fumigatus NTCC1222 showed the highest amylase activity (164.1 U/mL) in secondary screening under SSF conditions and was selected for further studies. The test strain showed maximum amylase production (341.7 U/mL) and supernatant protein concentration (9.7 mg/mL) for incubation period (6 days), temperature (35 °C), initial pH (6.0), nutrient salt solution as moistening agent, and beef extract as nitrogen source. Pomegranate peel produced maximum amylase activity, but wheat bran (only slightly lesser amylase activity as compared to that of pomegranate peel) was chosen for further studies, keeping in mind the seasonal availability of pomegranate peel. TLC confirmed the amylase produced to be α -type and 60 kDa was the molecular weight of the partially purified amylase. The enzyme showed maximum enzyme activity at pH 6.0, temperature of 55 °C, and incubation time of 60 minutes. UV (616.0 U/mL) and chemical (814.2 U/mL) mutation enhanced amylase activity as compared to wild test strain. The study indicates that Aspergillus fumigatus NTCC1222 can be an important source of amylase and the crude enzyme, hence obtained, can be cost effectively applied in multiple sections of textile wet processing.

  12. Production of Fungal Amylases Using Cheap, Readily Available Agriresidues, for Potential Application in Textile Industry

    PubMed Central

    Singh, Sanamdeep; Bali, Vrinda; Mangla, Jyoti

    2014-01-01

    The study aimed at isolation and screening of fungal amylase producer, optimization of solid state fermentation conditions for maximum amylase production by the best amylase producer, and characterization of the crude amylases, so produced. Aspergillus fumigatus NTCC1222 showed the highest amylase activity (164.1 U/mL) in secondary screening under SSF conditions and was selected for further studies. The test strain showed maximum amylase production (341.7 U/mL) and supernatant protein concentration (9.7 mg/mL) for incubation period (6 days), temperature (35°C), initial pH (6.0), nutrient salt solution as moistening agent, and beef extract as nitrogen source. Pomegranate peel produced maximum amylase activity, but wheat bran (only slightly lesser amylase activity as compared to that of pomegranate peel) was chosen for further studies, keeping in mind the seasonal availability of pomegranate peel. TLC confirmed the amylase produced to be α-type and 60 kDa was the molecular weight of the partially purified amylase. The enzyme showed maximum enzyme activity at pH 6.0, temperature of 55°C, and incubation time of 60 minutes. UV (616.0 U/mL) and chemical (814.2 U/mL) mutation enhanced amylase activity as compared to wild test strain. The study indicates that Aspergillus fumigatus NTCC1222 can be an important source of amylase and the crude enzyme, hence obtained, can be cost effectively applied in multiple sections of textile wet processing. PMID:24527439

  13. The effect of single and repeated bouts of prolonged cycling and circadian variation on saliva flow rate, immunoglobulin A and alpha-amylase responses.

    PubMed

    Li, Tzai-Li; Gleeson, Michael

    2004-01-01

    The purpose of this study was to establish the effect of exercise at different times of day on saliva flow rate, immunoglobulin A (sIgA) concentration and secretion rate, and alpha-amylase activity, and to establish how these parameters change following a second exercise bout performed on the same day. In a counterbalanced design, eight male volunteers participated in three experimental trials separated by at least 4 days. On the trial with afternoon exercise only, the participants cycled for 2 h at 60% VO2max starting at 14:00 h. On the other two trials, participants performed either two bouts of exercise at 60% VO2max for 2 h (the first started at 09:00 h and the second started at 14:00 h) or a separate resting trial. Unstimulated saliva samples were obtained 10 min before exercise, after 58 - 60 min and during the last 2 min of exercise, and at 1 h and 2 h after exercise. Venous blood samples were taken 5 min before exercise and immediately after exercise for both bouts. Participants remained fasted between 23:00 h on the day before the trials and 18:00 h on the day of the trial. Circadian variations were found in sIgA concentration, which decreased with time from its highest value in the early morning to its lowest value in the evening, and salivary alpha-amylase secretion rate, which increased from its lowest value in the morning to its highest value in the late afternoon. Cycling at 60% VO2max for 2 h significantly decreased saliva flow rate, increased sIgA concentration and alpha-amylase activity, but did not influence sIgA secretion rate. Performing prolonged cycling at different times of day did not differentially affect the salivary and plasma hormonal responses in the short term. Performance of a second prolonged exercise bout elicited a greater plasma stress hormone response but did not appear to compromise oral immunity acutely. These findings also suggest that, in terms of saliva secretion, sIgA and alpha-amylase responses, a 3 h rest is enough to

  14. Effect of exogenous xylanase, amylase, and protease as single or combined activities on nutrient digestibility and growth performance of broilers fed corn/soy diets.

    PubMed

    Amerah, A M; Romero, L F; Awati, A; Ravindran, V

    2017-04-01

    Two trials (a 42-d performance and a 21-d cohort digestibility) were conducted to evaluate the performance and nutrient digestibility of broilers fed corn diets supplemented with exogenous xylanase, amylase, and protease as single or combined activities. A nutritionally adequate, positive control (PC) diet was formulated. The negative control (NC) diet was formulated to be lower in metabolizable energy (∼86 kcal/kg diet) and digestible amino acids (1 to 2%) compared to PC. The other 4 treatments were based on the NC and they were either supplemented with xylanase (X), amylase (A), protease (P), or a combination of X, A, and P (XAP; to provide 2,000 U of X, 200 U of A, and 4,000 U of P/kg diet). All diets were marginal in AvP and Ca and contained a background of phytase (1,000 FTU/kg). In each trial, male broiler (Ross 308) chicks were allocated to the 5 treatments (10 replicates of 20 birds/pen and 9 replicates of 8 birds/cage for the performance and digestibility trials, respectively). In the digestibility trial, ileal digesta was collected on d21 for the determination of nutrient utilization. Data were subjected to one-way ANOVA and means were separated by Tukey's HSD test. Only the XAP improved (P < 0.05) AMEn compared to NC. X, A or XAP improved (P < 0.05) N digestibility and apparent ileal digestible energy (AIDE). Both P and XAP improved N retention. The relative improvement in energy digestibility due to enzyme supplementation was greater at the ileal level than that measured in the excreta. The measured changes on AIDE due to supplemental enzymes were much higher than the sum of calculated contributions from starch, fat, and protein. Supplementation of all enzymes reduced (P < 0.05) ileal flow of soluble rhamnose and mannose relative to NC. In the performance trial, both X and XAP improved (P < 0.05) weight gain (WG) and only XAP improved (P < 0.05) FCR compared to NC during the starter phase (1-21d). Over the entire period (1-42d), WG and FI

  15. Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on alpha-amylase activity and in vitro digestibility of starch in raw and processed flours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of condensed tannins (CT) on in vitro starch digestibility in cooked, wholegrain sorghum flours and on corn starch was investigated. CT extracts were also tested for their inhibitory effect on alpha-amylases. Rapidly digestible starch, slowly digestible starch, and resistant starch were n...

  16. Additive-dominance genetic model analyses for late-maturity alpha-amylase activity in a bread wheat factorial crossing population.

    PubMed

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Ibrahim, Amir M H

    2015-12-01

    Elevated level of late maturity α-amylase activity (LMAA) can result in low falling number scores, reduced grain quality, and downgrade of wheat (Triticum aestivum L.) class. A mating population was developed by crossing parents with different levels of LMAA. The F2 and F3 hybrids and their parents were evaluated for LMAA, and data were analyzed using the R software package 'qgtools' integrated with an additive-dominance genetic model and a mixed linear model approach. Simulated results showed high testing powers for additive and additive × environment variances, and comparatively low powers for dominance and dominance × environment variances. All variance components and their proportions to the phenotypic variance for the parents and hybrids were significant except for the dominance × environment variance. The estimated narrow-sense heritability and broad-sense heritability for LMAA were 14 and 54%, respectively. High significant negative additive effects for parents suggest that spring wheat cultivars 'Lancer' and 'Chester' can serve as good general combiners, and that 'Kinsman' and 'Seri-82' had negative specific combining ability in some hybrids despite of their own significant positive additive effects, suggesting they can be used as parents to reduce LMAA levels. Seri-82 showed very good general combining ability effect when used as a male parent, indicating the importance of reciprocal effects. High significant negative dominance effects and high-parent heterosis for hybrids demonstrated that the specific hybrid combinations; Chester × Kinsman, 'Lerma52' × Lancer, Lerma52 × 'LoSprout' and 'Janz' × Seri-82 could be generated to produce cultivars with significantly reduced LMAA level.

  17. Alpha-amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors.

    PubMed

    Valencia, A; Bustillo, A E; Ossa, G E; Chrispeels, M J

    2000-03-01

    The adult coffee berry borer (Hypothenemus hampei Ferrari [Coleoptera: Scolytidae]), a major insect pest of coffee, has two major digestive alpha-amylases that can be separated by isoelectric focusing. The alpha-amylase activity has a broad pH optimum between 4.0 and 7.0. Using pH indicators, the pH of the midgut was determined to be between 4.5 and 5.2. At pH 5.0, the coffee berry borer alpha-amylase activity is inhibited substantially (80%) by relatively low levels of the amylase inhibitor (alphaAI-1) from the common bean, Phaseolus vulgaris L., and much less so by the amylase inhibitor from Amaranthus. We used an in-gel zymogram assay to demonstrate that seed extracts can be screened to find suitable inhibitors of amylases. The prospect of using the genes that encode these inhibitors to make coffee resistant to the coffee berry borer via genetic engineering is discussed.

  18. [Salivary gland diseases].

    PubMed

    Gudziol, H

    1995-11-01

    Only about 1% of head and neck tumors are neoplasms of the salivary glands. The majority [80%] of these tumors are benign. Pleomorphic adenomas, the most frequent benign tumors of the salivary glands, can transform into malignancy, especially after a long duration. Treatment of salivary gland tumors consists of complete surgical excision by a surgeon experienced in microsurgery of the facial nerve. Acute suppurative and viral sialadenitis is usually treated by the general practitioner either symptomatically or, if possible, specifically. Chronic sialadenitis, sialadenosis, Sjögren's syndrome, and Frey's syndrome often need long-term follow-up and medical treatment, which is also usually delivered by the general practitioner, after the diagnosis has been established. Trauma to the salivary gland with transsection of the duct or facial nerve needs immediate microsurgical repair by an otolaryngologist. Sialolithiasis is also treated surgically in most cases.

  19. Improved activity and modulated action pattern obtained by random mutagenesis at the fourth beta-alpha loop involved in substrate binding to the catalytic (beta/alpha)8-barrel domain of barley alpha-amylase 1.

    PubMed

    Matsui, I; Svensson, B

    1997-09-05

    The functionality of the sequence Arg183-Gly184-Tyr185 of the substrate binding fourth beta-alpha loop in the (beta/alpha)8-barrel of barley alpha-amylase isozyme 1 (AMY1) was studied by random mutagenesis. A motif of polar Gly184 hydrophobic residues was present in active mutants, selected by starch plate screening of yeast transformants. Gly184 was important, probably due to the carbonyl group binding to Ca2+ and the spatial proximity of Phe181. Mutation of both flanking residues as in Ser183-Gly184-Met185 (SGM-) and TGL-AMY1 decreased the Ca2+ affinity. SGM-AMY1 has 2-fold increased activity for amylose but reduced activity on maltooligosaccharides, whereas KGY-AMY1 has up to 3-fold elevated activity toward the oligosaccharides. TGL-AMY1 has modest activity on all substrates. Shifted action pattern on maltooligosaccharides for NGY-, SGM-, and TGL-AMY1 support that Arg183 in wild type is located at subsites +1 and +2, accommodating two sugar rings toward the reducing end from the site of cleavage. In the crystal structure of barley alpha-amylase 2 (AMY2), Lys182 (equivalent to AMY1 Arg183) is hydrogen-bonded with sugar OH-3 in subsite +2. Higher Ki app for acarbose inhibition of KGY-AMY1 and parent AMY1 compared with the other mutants suggests favorable substrate interactions for Arg/Lys183. KGY-AMY1 was not inhibited by the AMY2-specific proteinaceous barley alpha-amylase/subtilisin inhibitor, although Lys182 of AMY2 is salt-linked to the inhibitor.

  20. Purification and Characterization of Pea Epicotyl beta-Amylase.

    PubMed

    Lizotte, P A; Henson, C A; Duke, S H

    1990-03-01

    The most abundant beta-amylase (EC 3.2.1.2) in pea (Pisum sativum L.) was purified greater than 880-fold from epicotyls of etiolated germinating seedlings by anion exchange and gel filtration chromatography, glycogen precipitation, and preparative electrophoresis. The electrophoretic mobility and relative abundance of this beta-amylase are the same as that of an exoamylase previously reported to be primarily vacuolar. The enzyme was determined to be a beta-amylase by end product analysis and by its inability to hydrolyze beta-limit dextrin and to release dye from starch azure. Pea beta-amylase is an approximate 55 to 57 kilodalton monomer with a pl of 4.35, a pH optimum of 6.0 (soluble starch substrate), an Arrhenius energy of activation of 6.28 kilocalories per mole, and a K(m) of 1.67 milligrams per milliliter (soluble starch). The enzyme is strongly inhibited by heavy metals, p-chloromer-curiphenylsulfonic acid and N-ethylmaleimide, but much less strongly by iodoacetamide and iodoacetic acid, indicating cysteinyl sulfhydryls are not directly involved in catalysis. Pea beta-amylase is competitively inhibited by its end product, maltose, with a K(i) of 11.5 millimolar. The enzyme is partially inhibited by Schardinger maltodextrins, with alpha-cyclohexaamylose being a stronger inhibitor than beta-cycloheptaamylose. Moderately branched glucans (e.g. amylopectin) were better substrates for pea beta-amylase than less branched or non-branched (amyloses) or highly branched (glycogens) glucans. The enzyme failed to hydrolyze native starch grains from pea and glucans smaller than maltotetraose. The mechanism of pea beta-amylase is the multichain type. Possible roles of pea beta-amylase in cellular glucan metabolism are discussed.

  1. Polyaniline-graphene based α-amylase biosensor with a linear dynamic range in excess of 6 orders of magnitude.

    PubMed

    Teixeira, Sofia Rodrigues; Lloyd, Catherine; Yao, Seydou; Andrea Salvatore Gazze; Whitaker, Iain S; Francis, Lewis; Conlan, R Steven; Azzopardi, Ernest

    2016-11-15

    α-amylase is an established marker for diagnosis of pancreatic and salivary disease, and recent research has seen a substantial expansion of its use in therapeutic and diagnostic applications for infection, cancer and wound healing. The lack of bedside monitoring devices for α-amylase detection has hitherto restricted the clinical progress of such applications. We have developed a highly sensitive α-amylase immunosensor platform, produced via in situ electropolymerization of aniline onto a screen-printed graphene support (SPE). Covalently binding an α-amylase specific antibody to a polyaniline (PANI) layer and controlling device assembly using electrochemical impedance spectroscopy (EIS), we have achieved a highly linear response against α-amylase concentration. Each stage of the assembly was characterized using a suite of high-resolution topographical, chemical and mechanical techniques. Quantitative, highly sensitive detection was demonstrated using an artificially spiked human blood plasma samples. The device has a remarkably wide limit of quantification (0.025-1000IU/L) compared to α-amylase assays in current clinical use. With potential for simple scale up to volume manufacturing though standard semiconductor production techniques and subsequently clinical application, this biosensor will enable clinical benefit through early disease detection, and better informed administration of correct therapeutic dose of drugs used to treat α-amylase related diseases.

  2. Diurnal alpha amylase patterns in adolescents: associations with puberty and momentary mood states.

    PubMed

    Adam, Emma K; Till Hoyt, Lindsay; Granger, Douglas A

    2011-12-01

    Salivary alpha amylase (sAA) has been proposed as a marker of autonomic nervous system activity. Few studies have examined sAA basal activity and reactivity in naturalistic settings, or developmental changes in sAA. In 50 adolescents, diary-reported moods and sAA levels were gathered across two typical weekdays. As in adults, basal sAA levels were low at waking and increased across the day. More advanced pubertal development was associated with higher waking sAA levels; males had smaller sAA increases across the day. High arousal positive emotions (feeling strong, active, excited) were associated with acute sAA increases; high arousal negative emotions (angry, stressed, nervous, worried) predicted sAA increases among youth with high average levels of these emotions. Findings suggest that basal sAA levels increase with puberty, and that acute sAA increases may reflect levels of emotional arousal, including high arousal positive emotions, rather than being specific to stress or emotions of negative valence.

  3. Optimization of Amylase Production from B. amyloliquefaciens (MTCC 1270) Using Solid State Fermentation

    PubMed Central

    Saha, Koel; Maity, Sujan; Roy, Sudeshna; Pathak, Rishija; Majumdar, Susmita

    2014-01-01

    Demand for microbial amylase production persists because of its immense importance in wide spectrum industries. The present work has been initiated with a goal of optimization of solid state fermentation condition for amylase using agroindustrial waste and microbial strain like B. amyloliquefaciens (MTCC 1270). In an aim to improve the productivity of amylase, fermentation has been carried out in the presence of calcium (Ca+2), Nitrate (NO3−), and chloride ions (Cl−) as well as in the presence of D-inositol and mannitol. Amylase needs calcium ion for the preservation of its structure, activity and stability that proves beneficial also for amylase production using solid state fermentation. The inclusion of ions and sugars in the SSF media is promising which can be explained by the protection offered by them against thermal decay of amylase at various incubation periods at 37°C. PMID:24949017

  4. Digestive amylase of a primitive animal, the scorpion: purification and biochemical characterization.

    PubMed

    Louati, Hanen; Zouari, Nacim; Fendri, Ahmed; Gargouri, Youssef

    2010-04-01

    Scorpion, one of the most ancient invertebrates was chosen, as a model of a primitive animal, to purify and characterize an amylase located in the hepatopancreas. The scorpion digestive amylase (SDA) was purified. Pure SDA was obtained after heat treatment followed by ammonium sulfate fractionation and three steps of chromatography. The pure amylase is not glycosylated and has a molecular mass of 59,101 Da determined by MALDI-TOF MS analysis. The maximal amylase activity was measured at pH 7.0 and 50 degrees C, in the presence of Ca2+ and using potato starch as substrate. The enzyme was able to hydrolyze also, glycogen and amylose. The 23 NH2-terminal amino acid SDA residues were sequenced. The sequence obtained is similar to those of mammalian and avian pancreatic amylases. Nevertheless, polyclonal antibodies directed against SDA failed to recognize classical digestive amylases like the porcine pancreatic one.

  5. Effect of Cell Phone Use on Salivary Total Protein, Enzymes and Oxidative Stress Markers in Young Adults: A Pilot Study

    PubMed Central

    Joy, Jasmi; Sunitha, Venkatesh; Rai, Manoj P.; Rao, Suresh; Nambranathayil, Shafeeque; Baliga, Manjeshwar Shrinath

    2015-01-01

    Introduction: The present study aimed to assess the levels of salivary enzymes, protein and oxidant-antioxidant system in young college-going cell phone users. Materials and Methods: The cell users (students) were categorized in to two groups – less mobile users and high mobile users, based on the duration and frequency of cell use. Unstimulated whole saliva samples of the volunteers were analysed for amylase, lactate dehydrogenase (LDH), malondialdehdye (MDA) and glutathione (GSH). Results: High mobile users had significantly higher levels of amylase (p = 0.001), LDH (p = 0.002) and MDA (p = 0.002) in saliva, when compared to less mobile users. The marginal decrease in salivary total proteins, GSH and flow rate were statistically not significant (p >0.05). Conclusion: Significant changes in salivary enzymes and MDA suggest adverse effect of high use of cell phones on cell health. PMID:25859446

  6. Biochemical properties of alpha-amylase from peel of Citrus sinensis cv. Abosora.

    PubMed

    Mohamed, Saleh Ahmed; Drees, Ehab A; El-Badry, Mohamed O; Fahmy, Afaf S

    2010-04-01

    alpha-Amylase activity was screened in the peel, as waste fruit, of 13 species and cultivars of Egyptian citrus. The species Citrus sinensis cv. Abosora had the highest activity. alpha-Amylase AI from Abosora peel was purified to homogeneity using anion and cation-exchange, and gel filtration chromatographies. Molecular weight of alpha-amylase AI was found to be 42 kDa. The hydrolysis properties of alpha-amylase AI toward different substrates indicated that corn starch is the best substrate. The alpha-amylase had the highest activity toward glycogen compared with amylopectin and dextrin. Potato starch had low affinity toward alpha-amylase AI but it did not hydrolyze beta-cyclodextrin and dextran. Apparent Km for alpha-amylase AI was 5 mg (0.5%) starch/ml. alpha-Amylase AI showed optimum activity at pH 5.6 and 40 degrees C. The enzyme was thermally stable up to 40 degrees C and inactivated at 70 degrees C. The effect of mono and divalent metal ions were tested for the alpha-amylase AI. Ba2+ was found to have activating effect, where as Li+ had negligible effect on activity. The other metals caused inhibition effect. Activity of the alpha-amylase AI was increased one and half in the presence of 4 mM Ca2+ and was found to be partially inactivated at 10 mM Ca2+. The reduction of starch viscosity indicated that the enzyme is endoamylase. The results suggested that, in addition to citrus peel is a rich source of pectins and flavanoids, alpha-amylase AI from orange peel could be involved in the development and ripening of citrus fruit and may be used for juice processing.

  7. Pro-inflammatory cytokines enhance ERAD and ATF6α pathway activity in salivary glands of Sjögren's syndrome patients.

    PubMed

    Barrera, María-José; Aguilera, Sergio; Castro, Isabel; Cortés, Juan; Bahamondes, Verónica; Quest, Andrew F G; Molina, Claudio; González, Sergio; Hermoso, Marcela; Urzúa, Ulises; Leyton, Cecilia; González, María-Julieta

    2016-12-01

    Salivary gland (SG) acinar-cells are susceptible to endoplasmic reticulum (ER) stress related to their secretory activity and the complexity of synthesized secretory products. SGs of Sjögren's syndrome patients (SS)-patients show signs of inflammation and altered proteostasis, associated with low IRE1α/XBP-1 pathway activity without avert increases in apoptosis. Acinar-cells may avoid apoptosis by activation of the ATF6α pathway and ER-associated protein degradation (ERAD). The aim of this study was to evaluate the role of pro-inflammatory cytokines in ATF6α pathway/ERAD activation and cell viability in labial salivary glands (LSG) of SS-patients. In biopsies from SS-patients increased ATF6α signaling pathway activity, as evidenced by generation of the ATF6f cleavage fragment, and increased expression of ERAD machinery components, such as EDEM1, p97, SEL1L, gp78, UBE2J1, UBE2G2, HERP and DERLIN1, were observed compared to controls. Alternatively, for pro- (active-caspase-3) and anti-apoptotic (cIAP2) markers no significant difference between the two experimental groups was detected. Increased presence of ATF6f and ERAD molecules correlated significantly with increased expression of pro-inflammatory cytokines. These observations were corroborated in vitro in 3D-acini treated with TNF-α and/or IFN-γ, where an increase in the expression and activation of the ATF6α sensor and ERAD machinery components was detected under ER stress conditions, while changes in cell viability and caspase-3 activation were not observed. Cytokine stimulation protected cells from death when co-incubated with an ERAD machinery inhibitor. Alternatively, when cytokines were eliminated from the medium prior to ERAD inhibition, cell death increased, suggesting that the presence of pro-inflammatory cytokines in the medium is essential to maintain cell viability. In conclusion, the ATF6α pathway and the ERAD machinery are active in LSG of SS-patients. Both were also activated by TNF

  8. Suppression of white light generation (supercontinuum) in biological media: a pilot study using human salivary proteins

    NASA Astrophysics Data System (ADS)

    Santhosh, C.; Dharmadhikari, A. K.; Alti, K.; Dharmadhikari, J. A.; Mathur, D.

    2007-02-01

    Propagation of ultrashort pulses of intense, infrared light through transparent medium gives rise to a visually spectacular phenomenon known as supercontinuum (white light) generation wherein the spectrum of transmitted light is very considerably broader than that of the incident light. We have studied the propagation of ultrafast (<45 fs) pulses of intense infrared light through biological media (water, and water doped with salivary proteins) which reveal that white light generation is severely suppressed in the presence of a major salivary protein, α-amylase.

  9. Cloning and starch degradation profile of maltotriose-producing amylases from Streptomyces species.

    PubMed

    Kashiwagi, Norimasa; Miyake, Michiru; Hirose, Shuichi; Sota, Masahiro; Ogino, Chiaki; Kondo, Akihiko

    2014-11-01

    The end products from starch hydrolysis by amylases have important applications in various industries. Here, two amylases derived from two Streptomyces species that hydrolyze soluble starch from potato produced maltotriose as the primary maltooligosaccharide product. The genes, annotated as putative glycoside hydrolases, were cloned and expressed in Streptomyces lividans. These amylases displayed hydrolysis activity from pH 3 to 9.5 and were not affected by Ca(2+.) Optimal production of maltotriose was between 20 and 30 °C at pH 6.5. At the optimal temperature, both amylases produced maltotriose-rich end products rather than either maltose or maltotetraose.

  10. Salivary and serum analysis in children diagnosed with pneumonia.

    PubMed

    Klein Kremer, Adi; Kuzminsky, Ela; Bentur, Lea; Nagler, Rafael M

    2014-06-01

    The aim of the current study was to evaluate specific markers for pneumonia by using a non-invasive assessment of inflammatory/oxidative biomarkers in saliva accompanying a routine serum analysis. No study evaluating saliva of children with pneumonia has been published previously. Salivary analysis was performed in 15 children diagnosed with lobar pneumonia and in a parallel group of 16 children matching in age and gender in whom there was no respiratory illness, and compared to the serum analysis obtained routinely in both groups of children. Salivary flow rate was lower in the patients' group as was uric acid concentration (by 60%). Increase in salivary concentrations of almost all parameters analyzed was found: Ca, P, and Mg concentrations were higher in the patients' group by 23%, 55%, and 33%, respectively, while LDH, total protein amylase and albumin concentrations were higher by 275%, 79%, and 42%, respectively. In the serum, white cell counts and neutrophils were significantly higher, and sodium level significantly lower in the patients' group. Compositional changes were in the range of 3-80% while the saliva alterations were more profound, in the range of 42-275%. The results demonstrated in the current study indicate salivary analysis as a potentially novel tool for children with pneumonia. Human salivary collection and analysis is a non-invasive tool that could provide additional information for diagnosis and follow-up of pneumonia, especially in children. This is especially beneficial for pediatric patients, as salivary collection is simple, non-invasive, and patient-friendly.

  11. Paper-based α-amylase detector for point-of-care diagnostics.

    PubMed

    Dutta, Satarupa; Mandal, Nilanjan; Bandyopadhyay, Dipankar

    2016-04-15

    We report the fabrication of a paper-sensor for quantitative detection of α-amylase activity in human blood serum. Pieces of filter papers were coated with starch-iodine solution leading to an intense blue coloration on the surface. Dispensing α-amylase solution on the starch-iodine coated paper reduced the intensity of the color because of starch-hydrolysis catalyzed by amylase. The variation in the intensity of the color with the concentration of amylase was estimated in three stages: (i) initially, the paper-surface was illuminated with a light emitting diode, (ii) then, the transmitted (reflected) rays emitted through (from) the paper were collected on a photoresistor, and (iii) the variations in the electrical resistance of the photoresistor were correlated with the amylase concentration in analyte. The resistance of photoresistor decreased monotonically with an increase in amylase concentration because the intensity of the reflected (transmitted) rays collected from (through) the paper increased with reduction in the color intensity on the paper surface. Since a specific bio-reaction was employed to detect the activity of amylase, the sensor was found to be equally efficient in detecting unknown quantities of amylase in human blood serum. The reported sensor has shown the potential to graduate into a point-of-care detection tool for α-amylase.

  12. Deep metaproteomic analysis of human salivary supernatant.

    PubMed

    Jagtap, Pratik; McGowan, Thomas; Bandhakavi, Sricharan; Tu, Zheng Jin; Seymour, Sean; Griffin, Timothy J; Rudney, Joel D

    2012-04-01

    The human salivary proteome is extremely complex, including proteins from salivary glands, serum, and oral microbes. Much has been learned about the host component, but little is known about the microbial component. Here we report a metaproteomic analysis of salivary supernatant pooled from six healthy subjects. For deep interrogation of the salivary proteome, we combined protein dynamic range compression (DRC), multidimensional peptide fractionation, and high-mass accuracy MS/MS with a novel two-step peptide identification method using a database of human proteins plus those translated from oral microbe genomes. Peptides were identified from 124 microbial species as well as uncultured phylotypes such as TM7. Streptococcus, Rothia, Actinomyces, Prevotella, Neisseria, Veilonella, Lactobacillus, Selenomonas, Pseudomonas, Staphylococcus, and Campylobacter were abundant among the 65 genera from 12 phyla represented. Taxonomic diversity in our study was broadly consistent with metagenomic studies of saliva. Proteins mapped to 20 KEGG pathways, with carbohydrate metabolism, amino acid metabolism, energy metabolism, translation, membrane transport, and signal transduction most represented. The communities sampled appear to be actively engaged in glycolysis and protein synthesis. This first deep metaproteomic catalog from human salivary supernatant provides a baseline for future studies of shifts in microbial diversity and protein activities potentially associated with oral disease.

  13. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.

    PubMed

    Obreque-Slíer, Elías; Peña-Neira, Alvaro; López-Solís, Remigio

    2010-03-24

    Red wine astringency has been associated with interactions of tannins with salivary proteins. Tannins are active protein precipitants. Not much evidence exists demonstrating contribution of other wine components to astringency. We aimed to investigate an eventual role of ethanol both in astringency and salivary protein-enological tannin interactions. A trained sensory panel scored perceived astringency. Salivary protein-tannin interactions were assessed by observing both tannin-dependent changes in salivary protein diffusion on cellulose membranes and tannin-induced salivary protein precipitation. Proanthocyanidins and gallotannins in aqueous and hydroalcoholic solutions were assayed. A biphasic mode of diffusion on cellulose membranes displayed by salivary proteins was unaffected after dilution with water or enological concentrations of ethanol. At those concentrations ethanol was not astringent. In aqueous solution, tannins provoked both restriction of salivary protein diffusion, protein precipitation, and astringency. Those effects were exacerbated by 13% ethanol. In summary, enological concentrations of ethanol exacerbate astringency and salivary protein-tannin interactions.

  14. Salivary Mucin 19 Glycoproteins

    PubMed Central

    Culp, David J.; Robinson, Bently; Cash, Melanie N.; Bhattacharyya, Indraneel; Stewart, Carol; Cuadra-Saenz, Giancarlo

    2015-01-01

    Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19−/− mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19−/− mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19−/− mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19−/− mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed. PMID:25512380

  15. On the mechanism of alpha-amylase.

    PubMed

    Oudjeriouat, Naïma; Moreau, Yann; Santimone, Marius; Svensson, Birte; Marchis-Mouren, Guy; Desseaux, Véronique

    2003-10-01

    Two inhibitors, acarbose and cyclodextrins (CD), were used to investigate the active site structure and function of barley alpha-amylase isozymes, AMY1 and AMY2. The hydrolysis of DP 4900-amylose, reduced (r) DP18-maltodextrin and maltoheptaose (catalysed by AMY1 and AMY2) was followed in the absence and in the presence of inhibitor. Without inhibitor, the highest activity was obtained with amylose, kcat/Km decreased 103-fold using rDP18-maltodextrin and 10(5) to 10(6)-fold using maltoheptaose as substrate. Acarbose is an uncompetitive inhibitor with inhibition constant (L1i) for amylose and maltodextrin in the micromolar range. Acarbose did not bind to the active site of the enzyme, but to a secondary site to give an abortive ESI complex. Only AMY2 has a second secondary binding site corresponding to an ESI2 complex. In contrast, acarbose is a mixed noncompetitive inhibitor of maltoheptaose hydrolysis. Consequently, in the presence of this oligosaccharide substrate, acarbose bound both to the active site and to a secondary binding site. alpha-CD inhibited the AMY1 and AMY2 catalysed hydrolysis of amylose, but was a very weak inhibitor compared to acarbose.beta- and gamma-CD are not inhibitors. These results are different from those obtained previously with PPA. However in AMY1, as already shown for amylases of animal and bacterial origin, in addition to the active site, one secondary carbohydrate binding site (s1) was necessary for activity whereas two secondary sites (s1 and s2) were required for the AMY2 activity. The first secondary site in both AMY1 and AMY2 was only functional when substrate was bound in the active site. This appears to be a general feature of the alpha-amylase family.

  16. Characterization of a starch-hydrolyzing α-amylase produced by Aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment

    PubMed Central

    Wang, Shihui; Lin, Chaoyang; Liu, Yun; Shen, Zhicheng; Jeyaseelan, Jenasia; Qin, Wensheng

    2016-01-01

    Aspergillus niger is the most commonly used fungus for commercial amylase production, the increase of amylase activity will be beneficial to the amylase industry. Herein we report a high α-amylase producing (HAP) A. niger WLB42 mutated from A. niger A4 by ethyl methanesulfonate treatment. The fermentation conditions for the amylase production were optimized. The results showed that both the amylase activity and total protein content reached highest after 48-h incubation in liquid medium using starch as the sole carbon source. The enzyme production reached maximum at temperature of 30°C, pH 7, with 40 g/L starch in the medium inoculated with 1.4% v/v spore. When 0.3% w/v urea was added to the liquid medium as a nitrogen source, the amylase activity was elevated by 20%. Nine monosaccharides and derivatives were tested for α-amylase induction, glucose was the best inducer. Furthermore, the enzymology characterization of amylase was conducted. The molecular weight of amylase was determined to be 50 kD by SDS-PAGE. The amylase had maximum activity at 45°C and pH 7. The activity could be dramatically triggered by adding 1 mM Co2+, increased to 250%. The activity was inhibited by detergents SDS and Triton X-100. Six different brands of starch were tested for amylase activity, the results demonstrated that the more soluble of the starch, the higher hydrolyzability of the substrate by amylase. PMID:27335681

  17. Structural basis for the inhibition of mammalian and insect alpha-amylases by plant protein inhibitors.

    PubMed

    Payan, Françoise

    2004-02-12

    Alpha-amylases are ubiquitous proteins which play an important role in the carbohydrate metabolism of microorganisms, animals and plants. Living organisms use protein inhibitors as a major tool to regulate the glycolytic activity of alpha-amylases. Most of the inhibitors for which three-dimensional (3-D) structures are available are directed against mammalian and insect alpha-amylases, interacting with the active sites in a substrate-like manner. In this review, we discuss the detailed inhibitory mechanism of these enzymes in light of the recent determination of the 3-D structures of pig pancreatic, human pancreatic, and yellow mealworm alpha-amylases in complex with plant protein inhibitors. In most cases, the mechanism of inhibition occurs through the direct blockage of the active center at several subsites of the enzyme. Inhibitors exhibiting "dual" activity against mammalian and insect alpha-amylases establish contacts of the same type in alternative ways.

  18. The Heterochromatic Rolled Gene of Drosophila Melanogaster Is Extensively Polytenized and Transcriptionally Active in the Salivary Gland Chromocenter

    PubMed Central

    Berghella, L.; Dimitri, P.

    1996-01-01

    This paper reports a cytogenetic and molecular study of the structural and functional organization of the Drosophila melanogaster chromocenter. The relations between mitotic (constitutive) heterochromatin and α- and β-heterochromatin are not fully understood. In the present work, we have studied the polytenization of the rolled (rl) locus, a 100-kb genomic region that maps to the proximal heterochromatin of chromosome 2 and has been previously thought to contribute to α-heterochromatin. We show that rolled undergoes polytenization in salivary gland chromosomes to a degree comparable to that of euchromatic genes, despite its deep heterochromatic location. In contrast, both the Bari-1 sequences and the AAGAC satellite repeats, located respectively to the left and right of rl, are severely underrepresented and thus both appear to be α-heterochromatic. In addition, we found that rl is transcribed in polytene tissues. Together, the results reported here indicate that functional sequences located within the proximal constitutive heterochromatin can undergo polytenization, contributing to the formation of β-heterochromatin. The implications of this finding to chromocenter structure are discussed. PMID:8878678

  19. Enrichment and Purification of Polyphenol Extract from Sphallerocarpus gracilis Stems and Leaves and in Vitro Evaluation of DNA Damage-Protective Activity and Inhibitory Effects of α-Amylase and α-Glucosidase.

    PubMed

    Ma, Tingting; Sun, Xiangyu; Tian, Chengrui; Luo, Jiyang; Zheng, Cuiping; Zhan, Jicheng

    2015-12-02

    An efficient preparative separation method for Sphallerocarpus gracilis stems and leaves polyphenols (SGslP) was established in this study. An X-5 macroporous adsorption resin was selected for the purification of the SGslP, and the polyphenol content of the purified SGslP (PSGslP) was increased 5.11-fold from 8.29% to 42.38% after one treatment run. The chemical composition of the PSGslP was analyzed by HPLC-MS/MS, and the predominant compounds were found to be luteolin-7-glucoside, acacetin-7-acetyglycoside and its isomers. In addition, the PSGslP was evaluated in vitro to determine the DNA damage-protective activity and inhibitory effects of α-amylase and α-glucosidase. The results indicated that the PSGslP exhibited significant protective activities against both ROO• and •OH radical-induced DNA damage. Moreover, the PSGslP exerted a dose-dependent inhibition effect on α-glucosidase but no inhibitory effect on α-amylase. These findings indicate that the Sphallerocarpus gracilis stems and leaves are good natural sources of antioxidants and are potent inhibitors of α-glucosidase activity and are potential anti-diabetic inhibitor.

  20. Immobilization of α-Amylase onto Luffa operculata Fibers

    PubMed Central

    Morais, Ricardo R.; Pascoal, Aline M.; Caramori, Samantha S.; Lopes, Flavio M.; Fernandes, Kátia F.

    2013-01-01

    A commercial amylase (amy) was immobilized by adsorption onto Luffa operculata fibers (LOFs). The derivative LOF-amy presented capacity to hydrolyze starch continuously and repeatedly for over three weeks, preserving more than 80% of the initial activity. This system hydrolyzed more than 97% of starch during 5 min, at room temperature. LOF-amy was capable to hydrolyze starch from different sources, such as maize (93.96%), wheat (85.24%), and cassava (79.03%). A semi-industrial scale reactor containing LOF-amy was prepared and showed the same yield of the laboratory-scale system. After five cycles of reuse, the LOF-amy reactor preserved over 80% of the initial amylase activity. Additionally, the LOF-amy was capable to operate as a kitchen grease trap component in a real situation during 30 days, preserving 30% of their initial amylase activity. PMID:23606948

  1. Purification and characterization of α-Amylase from Miswak Salvadora persica

    PubMed Central

    2014-01-01

    Background The miswak (Salvadora persica) is a natural toothbrush. It is well known that very little information has been reported on enzymes in miswak as medicinal plant. Recently, we study peroxidase in miswak. In the present study, the main goal of this work is to purify and characterize α-amylase from miswak. The second goal is to study the storage stability of α-amylase in toothpaste. Method The purification method included chromatographaphy of miswak α-amylase on DEAE-Sepharose column and Sephacryl S-200 column. Molecular weight was determined by gel filtration and SDS-PAGE. Results Five α-amylases A1, A4a, A4b, A5a and A5b from miswak were purified and they had molecular weights of 14, 74, 16, 30 and 20 kDa, respectively. α-Amylases had optimum pH from 6 to 8. Affinity of the substrates toward all enzymes was studied. Miswak α-amylases A1, A4a, A4b, A5a and A5b had Km values for starch and glycogen of 3.7, 3.7, 7.1, 0.52, 4.3 mg/ml and 5.95, 5.9 4.16, 6.3, 6.49 mg/ml, respectively. The optimum temperature for five enzymes ranged 40°C- 60°C. Miswak α-amylases were stable up to 40°C- 60°C after incubation for 30 min. Ca+2 activated all the miswak α-amylases, while Ni2+, Co+2 and Zn+2 activated or inhibited some of these enzymes. The metal chelators, EDTA, sodium citrate and sodium oxalate had inhibitory effects on miswak α-amylases. PMSF, p-HMB, DTNB and 1,10 phenanthroline caused inhibitory effect on α-amylases. The analysis of hydrolytic products after starch hydrolysis by miswak α-amylases on paper chromatography revealed that glucose, maltose, maltotriose and oligosaccharide were the major products. Crude miswak α-amylase in the toothpaste retained 55% of its original activity after 10 months of storage at room temperature. Conclusions From these findings, α-amylases from miswak can be considered as beneficial enzymes for pharmaceuticals. Therefore, we study the storage stability of the crude α-amylase of miswak, which contained the five

  2. Further Experiments on Gibberellin-Stimulated Amylase Production in Cereal Grains

    ERIC Educational Resources Information Center

    Coppage, Jo; Hill, T. A.

    1973-01-01

    Experiments conducted on wheat and barley grains to analyze activities of alpha- and beta-amylase enzymes. Gibberellins were used exogenously. Techniques are described in detail. Results on different cultivars revealed that beta-amylase was not an invariable result of imbibition. Techniques employed can be used by school students. (PS)

  3. Salivary enzymes and exhaled air affect Streptococcus salivarius growth and physiological state in complemented artificial saliva.

    PubMed

    Roger, P; Harn-Arsa, S; Delettre, J; Béal, C

    2011-12-01

    To better understand the phenomena governing the establishment of the oral bacterium Streptococcus salivarius in the mouth, the effect of some environmental factors has been studied in complemented artificial saliva, under oral pH and temperature conditions. Three salivary enzymes at physiological concentrations were tested: peroxidase, lysozyme and amylase, as well as injection of exhaled air. Injection of air containing 5% CO2 and 16% O2 induced a deleterious effect on S. salivarius K12, mainly by increasing redox potential. Addition of lysozyme slightly affected the physiological state of S. salivarius by altering membrane integrity. In contrast, peroxidase was not detrimental as it made it possible to decrease the redox potential. The addition of amylase reduced the specific growth rate of S. salivarius by formation of a complex with amylase and mucins, but led to high final biomass, as a result of enzymatic degradation of some nutrients. Finally, this work demonstrated that salivary enzymes had a slight impact on S. salivarius behaviour. It can thus be concluded that this bacterium was well adapted to in-mouth conditions, as it was able to resist certain salivary enzymes, even if tolerance to expired air was affected, as a result of an increased redox potential.

  4. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    NASA Astrophysics Data System (ADS)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  5. Argania spinosa var. mutica and var. apiculata: variation of fatty-acid composition, phenolic content, and antioxidant and α-amylase-inhibitory activities among varieties, organs, and development stages.

    PubMed

    El Adib, Saifeddine; Aissi, Oumayma; Charrouf, Zoubida; Ben Jeddi, Fayçal; Messaoud, Chokri

    2015-09-01

    Argania spinosa includes two varieties, var. apiculata and var. mutica. These argan varieties were introduced into Tunisia in ancient times and are actually cultivated in some botanic gardens. Little is known about the chemical differentiation among these argan varieties. Hence, the aim of this study was to determine the fatty-acid composition, the total phenolic and flavonoid contents, and the antioxidant and α-amylase-inhibitory activities of leaf, seed, and pulp extracts of both argan varieties harvested during the months of January to April. The fatty-acid distribution was found to depend on the argan variety, the plant organ, and the harvest time. Significant variations in the phenolic contents were observed between the investigated varieties as well as between leaves, pulps, and seeds of each variety. As expected, phenolic compounds were found to be contributors to the antioxidant and α-amylase-inhibitory activities of both argan varieties. The chemical differentiation observed among the two argan varieties, based mainly on the fatty-acid composition, might have some chemotaxonomic value.

  6. Marine Microbial Amylases: Properties and Applications.

    PubMed

    Suriya, J; Bharathiraja, S; Krishnan, M; Manivasagan, P; Kim, S-K

    2016-01-01

    Amylases are crucial enzymes which hydrolyze internal glycosidic linkages in starch and produce as primary products dextrins and oligosaccharides. Amylases are classified into α-amylase, β-amylase, and glucoamylase based on their three-dimensional structures, reaction mechanisms, and amino acid sequences. Amylases have innumerable applications in clinical, medical, and analytical chemistries as well as in food, detergent, textile, brewing, and distilling industries. Amylases can be produced from plants, animals, and microbial sources. Due to the advantages in microbial production, it meets commercial needs. The pervasive nature, easy production, and wide range of applications make amylase an industrially pivotal enzyme. This chapter will focus on amylases found in marine microorganisms, their potential industrial applications, and how these enzymes can be improved to the required bioprocessing conditions.

  7. Isolation of Mutants Defective in α-Amylase from Bacillus subtilis: Genetic Analyses

    PubMed Central

    Yamaguchi, Kazuo; Nagata, Yoshiho; Maruo, Bunji

    1974-01-01

    The rate of α-amylase (EC 3.2.1.1) synthesis in Bacillus subtilis is regulated by a gene, amyR, located near a structural gene, amyE, for the enzyme. To construct a fine map of the amyR-amyE region, we isolated 28 mutants defective in α-amylase activity. Eleven mutants out of 28 showed no α-amylase activity, whereas the other 17 showed less α-amylase activity than the parent. Out of 17 partially positive α-amylase mutants, 10 produced temperature-sensitive enzymes, and 4 produced immunologically altered enzymes, two of which are concurrently temperature-sensitive, and 5 produced smaller amounts of α-amylases which are indistinguishable from normal enzyme in their temperature sensitivity and immunological properties. Two out of 11 α-amylase-negative mutants produced material that cross-reacted with anti-amylase serum, and 3 mutants carried suppressible mutations by the suppressor described by Okubo. Mapping data indicate that all 28 mutation sites are located in the amyE region, and none of the groups of the mutants mentioned above contains lesions that are clustered in a single region of amyE. The amyR gene seems most likely to adjoin the terminal region of amyE. PMID:4212116

  8. Vampire bat salivary plasminogen activator promotes rapid and sustained reperfusion without concomitant systemic plasminogen activation in a canine model of arterial thrombosis.

    PubMed

    Mellott, M J; Stabilito, I I; Holahan, M A; Cuca, G C; Wang, S; Li, P; Barrett, J S; Lynch, J J; Gardell, S J

    1992-02-01

    The efficacy of recombinant vampire bat salivary plasminogen activator (bat-PA) as a thrombolytic agent was compared with that of human tissue-type plasminogen activator (t-PA) in a canine model of arterial thrombosis. An occlusive thrombus was formed in the femoral artery by insertion of a thrombogenic copper coil; femoral arterial blood flow was monitored with a Doppler flow meter. Bat-PA and t-PA, when administered by 5-minute intravenous infusion (14 nmol/kg), reperfused seven out of eight and four out of eight dogs, respectively. The median reperfusion times in the bat-PA and t-PA groups were 24 and greater than or equal to 131 minutes, respectively. The mean reperfusion times (+/- SEM) in the recanalized bat-PA- and t-PA-treated dogs were similar (20 +/- 5 and 11 +/- 2 minutes, respectively, p = NS). Maximal blood flow after reperfusion was greater with bat-PA than with t-PA (80 +/- 10% and 41 +/- 15% of control flow, respectively, p less than 0.05). Furthermore, the median reocclusion time was markedly delayed in the bat-PA group relative to the t-PA group (131 versus 34 minutes, respectively, p less than 0.05). Plasma fibrinogen and plasminogen were not significantly depleted by the administration of t-PA or bat-PA. However, plasma alpha 2-antiplasmin activity was moderately depressed in the t-PA group relative to the bat-PA group (p less than 0.05). The clearance profile for t-PA was monoexponential, with a half-life (t1/2) of 2.4 +/- 0.3 minutes and a mean residence time of 3.5 +/- 0.4 minutes. The clearance profile for bat-PA was biexponential, with a t1/2 alpha of 0.9 +/- 0.2 minutes, a t1/2 beta of 20.2 +/- 2.7 minutes, and a mean residence time of 21.3 +/- 4.3 minutes. The steady-state volume of distribution displayed by bat-PA was 16-fold greater than that of t-PA. Zymography of serial plasma samples from the bat-PA-treated dogs failed to demonstrate the apparent generation of a complex between bat-PA and plasminogen activator inhibitor-1; the

  9. Assessment of salivary gland function in patients after successful kidney transplantation using (99m)Tc-pertechnetate salivary gland scintigraphy.

    PubMed

    Orsal, Ebru; Seven, Bedri; Keles, Mustafa; Ayan, Arif Kursad; Cankaya, Erdem; Ozkan, Ozalkan

    2013-01-01

    Chronic renal failure and its treatment can induce oral health problems and salivary glands dysfunction. The purpose of this study was to assess salivary glands function in patients with kidney transplantation using technetium-99m pertechnetate ((99m)Tc-P) salivary glands scintigraphy. We prospectively studied 34 patients with kidney transplantation (30 males and 4 females,mean age 39.76±11.6 years) and 28 healthy controls (12 males and 16 females, mean age 36.1±9.5 years). Salivary gland scintigraphy was performed nearly 4.4±2.9 years after successful kidney transplantation. Dynamic salivary glands scintigraphy was performed during 25min after the intravenous administration of 185MBq of (99m)Tc-P. Time-activity curves and glands functional parameters were calculated for the parotid and submandibular salivary glands: uptake ratio, maximum accumulation of the radionuclide, and excretion fraction. Statistical analysis of the functional parameters showed no significant differences between patients with kidney transplantation and healthy controls (P>0.05). In conclusion, this study showed that using (99m)Tc-P salivary gland scintigraphy, salivary glands function of patients with successful kidney transplantation do not differ statistically from those in healthy controls.

  10. Capillary electrophoresis as a screening tool for alpha amylase inhibitors in plant extracts

    PubMed Central

    Hamdan, Imad I.; Afifi, Fatima U.

    2010-01-01

    Capillary electrophoresis (CE) method was developed for screening plant extract for potential alpha amylase (AA) inhibitory activity. The method was validated against a well established UV method. Overall, the proposed method was shown able to detect plants with significant alpha amylase inhibitory activity but not those with rather clinically insignificant activities. Fifty plant species were screened using both the proposed CE method and the UV method and seven plant species were found to possess significant AA inhibitory activities. Two plant species were proved to have alpha amylase inhibitory activity for the first time. PMID:24115900

  11. Pictorial essay: Salivary gland imaging

    PubMed Central

    Rastogi, Rajul; Bhargava, Sumeet; Mallarajapatna, Govindarajan Janardan; Singh, Sudhir Kumar

    2012-01-01

    Salivary glands are the first organs of digestion secreting their digestive juices into the oral cavity. Parotid, submandibular, and sublingual glands are the major paired salivary glands in the decreasing order of their size. In addition, multiple small minor salivary glands are noted randomly distributed in the upper aerodigestive tract, including paranasal sinuses and parapharyngeal spaces. The imaging is directed to the major salivary glands. Commonly used imaging methods include plain radiography and conventional sialography. Recently, high-resolution ultrasonography (HRUS) is being increasingly used for targeted salivary gland imaging. However, the advent of cross-sectional imaging techniques such as computed tomography (CT) and magnetic resonance imaging (MRI) have revolutionized the imaging of salivary glands. This article illustrates the role of imaging in evaluating the variegated disease pattern of the major salivary glands. PMID:23833425

  12. Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations.

    PubMed

    Mitidieri, Sydnei; Souza Martinelli, Anne Helene; Schrank, Augusto; Vainstein, Marilene Henning

    2006-07-01

    There is a wide range of biotechnological applications for amylases, including the textile, pharmaceutical, food and laundry industries. Hydrolytic enzymes are 100% biodegradable and enzymatic detergents can achieve effective cleaning with lukewarm water. Microorganisms and culture media were tested for amylase production and the best producer was Aspergillus niger L119 (3.9 U ml(-1) +/- 0.2) in submerged culture and its amylase demonstrated excellent activity at 50-55 degrees C and pH 4.0, remaining stable at 53 degrees C for up to 200 h. In order to establish the potential uses of this enzyme in detergents, different formulations were tested using the A. niger amylase extract. Enzyme activity was compared with three commercial formulations. The detergents are used in hospitals to clean surgical and endoscopy equipment. The presence of amylase in the formulation is because of its action within hospital drainage system, whether or not it has any function in cleaning the equipment.

  13. Diet and the evolution of human amylase gene copy number variation

    PubMed Central

    Perry, George H.; Dominy, Nathaniel J.; Claw, Katrina G.; Lee, Arthur S.; Fiegler, Heike; Redon, Richard; Werner, John; Villanea, Fernando A.; Mountain, Joanna L.; Misra, Rajeev; Carter, Nigel P.; Lee, Charles; Stone, Anne C.

    2008-01-01

    Starch consumption is a prominent characteristic of agricultural societies and hunter-gatherers in arid environments. In contrast, rainforest and circum-arctic hunter-gatherers and some pastoralists consume much less starch1-3. This behavioral variation raises the possibility that different selective pressures have acted on amylase, the enzyme responsible for starch hydrolysis4. We found that salivary amylase gene (AMY1) copy number is correlated positively with salivary amylase protein levels, and that individuals from populations with high-starch diets have on average more AMY1 copies than those with traditionally low-starch diets. Comparisons with other loci in a subset of these populations suggest that the level of AMY1 copy number differentiation is unusual. This example of positive selection on a copy number variable gene is one of the first in the human genome. Higher AMY1 copy numbers and protein levels likely improve the digestion of starchy foods, and may buffer against the fitness-reducing effects of intestinal disease. PMID:17828263

  14. Human Salivary Aldehyde Dehydrogenase: Purification, Kinetic Characterization and Effect of Ethanol, Hydrogen Peroxide and Sodium Dodecyl Sulfate on the Activity of the Enzyme.

    PubMed

    Alam, Md Fazle; Laskar, Amaj Ahmed; Choudhary, Hadi Hasan; Younus, Hina

    2016-09-01

    Human salivary aldehyde dehydrogenase (hsALDH) enzyme appears to be the first line of defense in the body against exogenous toxic aldehydes. However till date much work has not been done on this important member of the ALDH family. In this study, we have purified hsALDH to homogeneity by diethylaminoethyl-cellulose (DEAE-cellulose) ion-exchange chromatography in a single step. The molecular mass of the homodimeric enzyme was determined to be approximately 108 kDa. Four aromatic substrates; benzaldehyde, cinnamaldehyde, 2-naphthaldehyde and 6-methoxy-2-naphthaldehyde were used for determining the activity of pure hsALDH. K m values for these substrates were calculated to be 147.7, 5.31, 0.71 and 3.31 μM, respectively. The best substrates were found to be cinnamaldehyde and 2-naphthaldehyde since they exhibited high V max /K m values. 6-methoxy-2-naphthaldehyde substrate was used for further kinetic characterization of pure hsALDH. The pH and temperature optima of hsALDH were measured to be pH 8 and 45 °C, respectively. The pure enzyme is highly unstable at high temperatures. Ethanol, hydrogen peroxide and SDS activate hsALDH, therefore it is safe and beneficial to include them in mouthwashes and toothpastes in low concentrations.

  15. Alpha-amylase from the Hyperthermophilic Archaeon Thermococcus thioreducens

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, E. C. M. J.; Pusey, M. L.; Ng, M. L.; Garriott, O. K.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments such as hot springs. The ability of survival at extreme conditions has rendered enzymes from extremophiles to be of interest in industrial applications. One approach to producing these extremozymes entails the expression of the enzyme-encoding gene in a mesophilic host such as E.coli. This method has been employed in the effort to produce an alpha-amylase from a hyperthermophile (an organism that displays optimal growth above 80 C) isolated from a hydrothermal vent at the Rainbow vent site in the Atlantic Ocean. alpha-amylases catalyze the hydrolysis of starch to produce smaller sugars and constitute a class of industrial enzymes having approximately 25% of the enzyme market. One application for thermostable alpha-amylases is the starch liquefaction process in which starch is converted into fructose and glucose syrups. The a-amylase encoding gene from the hyperthermophile Thermococcus thioreducens was cloned and sequenced, revealing high similarity with other archaeal hyperthermophilic a-amylases. The gene encoding the mature protein was expressed in E.coli. Initial characterization of this enzyme has revealed an optimal amylolytic activity between 85-90 C and around pH 5.3-6.0.

  16. An approach to remove alpha amylase for proteomic analysis of low abundance biomarkers in human saliva.

    PubMed

    Deutsch, Omer; Fleissig, Yoram; Zaks, Batia; Krief, Guy; Aframian, Doron J; Palmon, Aaron

    2008-11-01

    Proteomic characterization of human whole saliva for the identification of disease-specific biomarkers is guaranteed to be an easy-to-use and powerful diagnostic tool for defining the onset, progression and prognosis of human systemic diseases and, in particular, oral diseases. The high abundance of proteins, mainly alpha amylase, hampers the detection of low abundant proteins appearing in the disease state and therefore should be removed. In the present study a 2-DE was used to analyze human whole saliva following the removal of alpha amylase by affinity adsorption to potato starch. After alpha amylase removal whole saliva was analyzed by SDS-PAGE showing at least sixfold removal efficiency and by an alpha amylase activity assay showing 97% reduced activity. MS identification of the captured alpha amylase after elution demonstrated specific removal; 2-DE analysis showed the selective removal of alpha amylase and consequently increased gel resolution. MS identification of protein spots in the 60 kDa area revealed 15 proteins, which were masked before alpha amylase removal. In conclusion, treatment of human whole saliva with an alpha amylase removal device increases gel resolution and enables a higher protein sample for analysis.

  17. A fluid response: Alpha-amylase reactions to acute laboratory stress are related to sample timing and saliva flow rate.

    PubMed

    Nagy, Tamás; van Lien, René; Willemsen, Gonneke; Proctor, Gordon; Efting, Marieke; Fülöp, Márta; Bárdos, György; Veerman, Enno C I; Bosch, Jos A

    2015-07-01

    Salivary alpha-amylase (sAA) is used as a sympathetic (SNS) stress marker, though its release is likely co-determined by SNS and parasympathetic (PNS) activation. The SNS and PNS show asynchronous changes during acute stressors, and sAA responses may thus vary with sample timing. Thirty-four participants underwent an eight-minute memory task (MT) and cold pressor task (CPT). Cardiovascular SNS (pre-ejection period, blood pressure) and PNS (heart rate variability) activity were monitored continuously. Unstimulated saliva was collected repeatedly during and after each laboratory stressor, and sAA concentration (U/ml) and secretion (U/minute) determined. Both stressors increased anxiety. The MT caused an immediate and continued cardiac SNS activation, but sAA concentration increased at task cessation only (+54%); i.e., when there was SNS-PNS co-activation. During the MT sAA secretion even decreased (-35%) in conjunction with flow rate and vagal tone. The CPT robustly increased blood pressure but not sAA. In summary, sAA fluctuations did not parallel changes in cardiac SNS activity or anxiety. sAA responses seem contingent on sample timing and flow rate, likely involving both SNS and PNS influences. Verification using other stressors and contexts seems warranted.

  18. Trastuzumab in Treating Patients With Metastatic or Recurrent Salivary Gland Cancer

    ClinicalTrials.gov

    2013-02-27

    High-grade Salivary Gland Mucoepidermoid Carcinoma; Recurrent Salivary Gland Cancer; Salivary Gland Acinic Cell Tumor; Salivary Gland Adenocarcinoma; Salivary Gland Poorly Differentiated Carcinoma; Stage IVA Salivary Gland Cancer; Stage IVB Salivary Gland Cancer; Stage IVC Salivary Gland Cancer

  19. Full-fledged proteomic analysis of bioactive wheat amylase inhibitors by a 3-D analytical technique: Identification of new heterodimeric aggregation states.

    PubMed

    Zoccatelli, Gianni; Dalla Pellegrina, Chiara; Mosconi, Silvia; Consolini, Marica; Veneri, Gianluca; Chignola, Roberto; Peruffo, Angelo; Rizzi, Corrado

    2007-02-01

    Wheat proteinaceous alpha-amylase inhibitors (alpha-AIs) are increasingly investigated for their agronomical role as natural defence molecules of plants against the attack of insects and pests, but also for their effects on human health. The wheat genomes code for several bioactive alpha-AIs that share sequence homology, but differ in their specificity against alpha-amylases from different species and for their aggregation states. Wheat alpha-AIs are traditionally classified as belonging to the three classes of tetrameric, homodimeric and monomeric forms, each class being constituted by a number of polypeptides that display different electrophoretic mobilities. Here we describe a proteomic approach for the identification of bioactive alpha-AIs from wheat and, in particular, a 3-D technique that allows to best identify and characterize the dimeric fraction. The technique takes advantage of the thermal resistance of alpha-AIs (resistant to T > 70 degrees C) and consists in the separation of protein mixtures by 2-D polyacrylamide/starch electrophoresis under nondissociating PAGE (ND-PAGE, first dimension) and dissociating (urea-PAGE or U-PAGE second dimension) conditions, followed by in-gel spontaneous reaggregation of protein complexes and identification of the alpha-amylase inhibitory activity (antizymogram, third dimension) using enzymes from human salivary glands and from the larvae of Tenebrio molitor coleopter (yellow mealworm). Dimeric alpha-AIs from Triticum aestivum (bread wheat) were observed to exist as heterodimers. The formation of heterodimeric complexes was also confirmed by in vitro reaggregation assays carried out on RP-HPLC purified wheat dimeric alpha-AIs, and their bioactivity assayed by antizymogram analysis. The present 3-D analytical technique can be exploited for fast, full-fledged identification and characterization of wheat alpha-AIs.

  20. Salivary composition in obese vs normal-weight subjects: towards a role in postprandial lipid metabolism?

    PubMed

    Vors, C; Drai, J; Gabert, L; Pineau, G; Laville, M; Vidal, H; Guichard, E; Michalski, M-C; Feron, G

    2015-09-01

    In the pathophysiological context of obesity, oral exposure to dietary fat can modulate lipid digestion and absorption, but underlying in-mouth mechanisms have not been clearly identified. Therefore, we tested the hypothesis that salivary components related to dietary fat sensitivity would differ according to body mass index (BMI) and postprandial lipid metabolism in young men. Saliva was collected from nine normal-weight (BMI=22.3±0.5 kg m(-2)) and nine non-morbid obese (BMI=31.7±0.3 kg m(-2)) men before an 8-h postprandial metabolic exploration test involving the consumption of a 40-g fat meal, in which obese subjects revealed a delayed postprandial lipid metabolism. Nine salivary characteristics (flow, protein content, lipolysis, amylase, proteolysis, total antioxidant status, lysozyme, lipocalin 1 and carbonic anhydrase-VI) were investigated. We show that, under fasting conditions, salivary lipolysis was lower in obese vs normal-weight subjects, whereas proteolysis and carbonic anhydrase VI were higher. We reveal through multivariate and Mann-Whitney analysis that differences in fasting salivary lipolysis and proteolysis between both groups are related to differences in postprandial lipid metabolism including exogenous fatty-acid absorption and β-oxidation. These results suggest a potential role of salivary composition on postprandial lipid metabolism and bring novel causal hypotheses on the links between salivary composition, sensitivity to dietary fat oral income and postprandial lipid metabolism according to BMI.

  1. Relationship between parotid amylase secretion and osmolality in the gastric contents of rats fed a pelleted or liquid diet.

    PubMed

    Kurahashi, M; Inomata, K

    1999-12-01

    The relationship between parotid amylase secretion and the osmolality in the gastric contents of rats fed a pelleted or liquid diet was investigated. In sham-operated rats fed a pelleted diet, amylase activity in the parotid glands decreased, amylase activity in the plasma increased, and there was strong amylase activity in the gastric contents. As a result, both reducing sugar concentration and osmolality in the gastric contents increased. In parotid duct-ligated rats, the feeding of a pelleted diet affected neither parotid nor plasma amylase activity and there was little amylase activity in the gastric contents; this resulted in decreased starch digestion. The amylase activity in the gastric contents of rats fed a liquid diet was lower than that of rats fed the pelleted diet. Both the reducing sugar concentration and osmolality in the gastric contents of rats fed the liquid diet were lower than those of rats fed the pelleted diet. However, both the reducing sugar concentration and osmolality in the gastric contents of rats fed the liquid diet were higher than those in the liquid diet itself. A small quantity of parotid amylase seems to effectively digest a large part of the starch in the stomaches of rats fed the liquid diet. These findings suggest that amylase secreted from parotid glands increases osmolality in the gastric contents via the production of reducing sugars from starch in rats when fed either pelleted or liquid diets.

  2. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship.

    PubMed

    Melnick, Michael; Sedghizadeh, Parish P; Allen, Carl M; Jaskoll, Tina

    2012-02-01

    Human cytomegalovirus (hCMV) infection is common. Although still controversial, there is growing evidence that active hCMV infection is associated with a variety of malignancies, including brain, breast, lung, colon, and prostate. Given that hCMV is frequently resident in salivary gland (SG) ductal epithelium, we hypothesized that hCMV would be important to the pathogenesis of SG mucoepidermoid carcinoma (MEC). This was initially supported by our finding that purified CMV induces malignant transformation in SG cells in an in vitro mouse model, and utilizes a pathogenic pathway previously reported for human MEC. Here we present the histologic and molecular characterizations of 39 human SG MECs selected randomly from a repository of cases spanning 2004-2011. Serial sections were obtained from formalin-fixed, paraffin embedded, tissue blocks from previous incisional or excisional biopsies. Immunohistochemical assays were performed for active hCMV proteins (IE1 and pp65) and the activated COX/AREG/EGFR/ERK signaling pathway. All four prospective causal criteria for viruses and cancer are fully satisfied: (1) protein markers for active hCMV are present in 97% of MECs; (2) markers of active hCMV are absent in non-neoplastic SG tissues; (3) hCMV-specific proteins (IE1, pp65) are in specific cell types and expression is positively correlated with severity; (4) hCMV correlates and colocalizes with an upregulation and activation of an established oncogenic signaling pathway (COX/AREG/EGFR/ERK). Thus, the evidential support reported here and previously in a mouse model is strongly confirmatory of a causal relationship between hCMV and SG mucoepidermoid carcinoma. To our knowledge, this is the first demonstration of hCMV's role in human oncogenesis that fully responds to all of Koch's Postulates as revised for viruses and cancer. In the absence of any contrary evidence, hCMV can reasonably be designated an "oncovirus."

  3. [Mechanism of substance P-induced salivary secretion in the rat: effect of substance P on autonomic nervous system and prostaglandin synthesis (author's transl)].

    PubMed

    Kudo, T

    1980-03-01

    Salivary flow and amylase secretion induced by substance P(SP) administered intraventricularly were considerably less than that by SP given intravenously (i.v.). Salivary flow induced by SP (i.v.) was partially inhibited by baclofen, atropine, d-tubocurarine, alcuronium, phenylephrine and PGE2, while it was enhanced by arachidonic acid and indomethacin. Salivary amylase secretion induced by SP given i.v. was enhanced markedly by isoproterenol, phenoxybenzamine, phentolamine and No. 865-123 (an adrenergic neuron blocking agent), and moderately by baclofen, PGE2 and arachidonic acid, while it was not influenced by propranolol. The enhancements of amylase secretion by adrenergic alpha-blockers were completely inhibited by propranolol. The in vitro examination using rat brain synaptosomes showed that SP promoted markedly the synthesis of PGs, especially of PGE2. These results suggest that the SP-receptor has a nicotinic receptor-like property and may be closely related to adrenergic alpha-receptors situated postsynaptically and presynaptically and to postsynaptic PGE2-receptors. From these results, it is concluded that SP-induced salivary flow and amylase secretion are modulated by the promotion of PGs synthesis in the autonomic nervous system.

  4. Beta-amylase-resistant amylose. Effect of urea on the limited hydrolysis of amylose by beta-amylase.

    PubMed

    Patil, N B

    1976-02-01

    Amylose prepared from starch dispersed in 10M-urea, pH6.2, was found to be resistant to the action of beta-amylase and phosphorylase, though it was degraded by alpha-amylase. Amylose isolated by conventional methods was similarly refractory after urea treatment, and was hydrolysed by beta-amylase to the extent of 32-35%; it had no inhibitory effect towards beta-amylase. The physical and chemical properties of the modified amylose were in general comparable with those of normal amylose with a beta-amylolysis limit of 94-98%. Starch and amylopectin were unaffected by urea treatment, i.e. the presence of amylopectin protected amylose against changes induced in it by urea. It is speculated that urea treatment "freezes" amylose molecules in a conformation that renders non-reducing termini inaccessible to the active site of the exo-enzymes. Such changes may limit the degradative action of beta-amylase and phosphorylase.

  5. Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera.

    PubMed

    Tan, Yuqing; Chang, Sam K C; Zhang, Yan

    2017-01-01

    Antioxidant-rich plant foods can inhibit starch and lipid digestions that are relevant to diabetes management. Two high-antioxidant black legumes, black soybean (Glycine max) and black turtle bean (Phaseolus vulgaris), belonging to two different genera were used to investigate their capacity against digestive enzymes. Phenolic substances were compared in crude, semi-purified extracts (semi-purified by XAD-7 column), and fractions (fractionationed by Sephadex LH-20 column) from these two legumes. In addition, their antioxidant capacities and abilities to inhibit digestive enzymes were characterized. Results showed that Fraction V from black soybean was the most effective (IC50: 0.25mg/mL) against α-amylase; Fraction V from black turtle bean was the most potent (IC50: 0.25μg/mL) against α-glucosidase; Fraction IV from black turtle bean was the most powerful (IC50: 76μg/mL) against lipase. Of the pure phenolic compounds tested, myricetin showed the highest inhibition of α-amylase, α-glucosidase and lipase (IC50: 0.38mg/mL, 0.87μg/mL and 15μg/mL, respectively).

  6. Establishing population distribution of drug-metabolizing enzyme activities for the use of salivary caffeine as a dynamic liver function marker in a Singaporean Chinese population.

    PubMed

    Chia, Hazel Yiting; Yau, Wai-Ping; Ho, Han Kiat

    2016-04-01

    The salivary paraxanthine/caffeine molar ratio has been proposed as a novel dynamic liver function test to guide dose adjustments of drugs hepatically cleared by CYP1A2. Its usability requires an established population norm as well as the factors influencing the ratio and actual concentrations. To address this knowledge gap, salivary caffeine and paraxanthine concentrations were measured at 4 h post caffeine dose in healthy Chinese individuals who had undergone 24 h of caffeine abstinence. The metabolic ratio was calculated and statistical analysis was performed. From the 52 participants (26 males; 30 regular caffeine consumers) recruited, the salivary paraxanthine/caffeine molar ratio was normally distributed with a mean and SD of 0.5 ± 0.2. No statistically significant factors (BMI, body weight, gender and regularity of caffeine intake) affecting the metabolic ratio were found. The caffeine concentration and total caffeine plus paraxanthine concentrations were lower in males than in females, and lower in regular caffeine consumers than in non-regular caffeine consumers. The 4 h salivary metabolic ratio (mean: 0.5) was generally not significantly different from the literature reported salivary, serum and plasma ratios measured at 4-9 h in healthy individuals (mean range 0.4-0.7) but was significantly higher than the literature reported 6 h plasma ratio and salivary ratios measured at 1-6 h in patients with liver disease or mild abnormal liver function tests (mean range 0.03-0.2). Overall, the population norm of the salivary metabolic ratio in a Singaporean Chinese population established in this study is distinct from individuals with liver disease or mild abnormal liver function tests and provides the benchmark for dosage adjustments of drugs metabolized by CYP1A2. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Determination of the In Vitro and In Vivo Antimicrobial Activity on Salivary Streptococci and Lactobacilli and Chemical Characterisation of the Phenolic Content of a Plantago lanceolata Infusion

    PubMed Central

    Roberto, Lia; Ingenito, Aniello; Roscetto, Emanuela

    2015-01-01

    Introduction. Plant extracts may be suitable alternative treatments for caries. Aims. To investigate the in vitro and in vivo antimicrobial effects of Plantago lanceolata herbal tea (from flowers and leaves) on cariogenic bacteria and to identify the major constituents of P. lanceolata plant. Materials and Methods. The MIC and MBC against cariogenic bacteria were determined for P. lanceolata tea. Subsequently, a controlled random clinical study was conducted. Group A was instructed to rinse with a P. lanceolata mouth rinse, and Group B received a placebo mouth rinse for seven days. The salivary colonisation by streptococci and lactobacilli was investigated prior to treatment and on the fourth and seventh days. Finally, the P. lanceolata tea was analysed for its polyphenolic content, and major phenolics were identified. Results and Discussion. P. lanceolata teas demonstrate good in vitro antimicrobial activity. The in vivo test showed that Group A subjects presented a significant decrease in streptococci compared to Group B. The phytochemical analysis revealed that flavonoids, coumarins, lipids, cinnamic acids, lignans, and phenolic compounds are present in P. lanceolata infusions. Conclusions. P. lanceolata extract could represent a natural anticariogenic agent via an antimicrobial effect and might be useful as an ancillary measure to control the proliferation of cariogenic flora. PMID:25767805

  8. Evidence that cleavage of the precursor enzyme by autocatalysis caused secretion of multiple amylases by Aspergillus niger.

    PubMed

    Ravi-Kumar, K; Venkatesh, K S; Umesh-Kumar, S

    2004-01-16

    The observation that a mutant strain of Aspergillus niger isolated for protease overproduction accumulated Taka-amylase supported an earlier report that processing of the precursor amylase by protease resulted in the secretion of multiple amylases. Studies using a mutant strain revealed that such processing was not due to aspergillopepsin but to autocatalysis by an inherent protease activity of the precursor and glucoamylase. Alignment of protease sequences with glucoamylase showed regions of consensus with serine carboxypeptidase of A. niger. Thus point mutations in this region due to ultraviolet radiation apparently caused the mutant to evolve with enhanced protease activity that degraded the precursor and accumulated Taka-amylase.

  9. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation

    PubMed Central

    Raul, Dibyangana; Mukhopadhyay, Suchita; Kumar Das, Shrayan; Gupta, Suvroma

    2014-01-01

    Amylase is an enzyme that catalyzes the breakdown of starch into sugars and plays a pivotal role in a variety of areas like use as digestives, for the production of ethanol and high fructose corn syrup, detergents, desiring of textiles, modified starches, hydrolysis of oil-field drilling fluids, and paper recycling. In the present work, solid state fermentation (SSF) for α-amylase production has been used in lieu of submerged fermentation (SmF) due to its simple technique, low capital investment, lower levels of catabolite repression, and better product recovery. Bacillus subtilis has been well known as producer of alpha amylase and was tested using solid state fermentation for 48 hours at 37°C with wheat bran as substrate. Comparison between different fermentation hours demonstrated high yield of alpha amylase after 48 hours. This alpha amylase has optimum pH and temperature at 7.1 and 40°C, respectively. With the goal to purify alpha amylase, 30–70% (NH4)2SO4 cut concentrated the amylase activity threefold with respect to crude fermented extract. This was verified in quantitative DNS assay method as well as in zymogram gel profile. The exact molecular weight of the amylase is yet to be determined with the aid of other protein purification techniques. PMID:24672727

  10. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation.

    PubMed

    Raul, Dibyangana; Biswas, Tania; Mukhopadhyay, Suchita; Kumar Das, Shrayan; Gupta, Suvroma

    2014-01-01

    Amylase is an enzyme that catalyzes the breakdown of starch into sugars and plays a pivotal role in a variety of areas like use as digestives, for the production of ethanol and high fructose corn syrup, detergents