Sample records for salivary androgen-binding protein

  1. Characterization of two forms of mouse salivary androgen-binding protein (ABP): implications for evolutionary relationships and ligand-binding function.

    PubMed

    Karn, Robert C; Laukaitis, Christina M

    2003-06-17

    Mouse salivary androgen-binding protein (ABP) is a member of the secretoglobin family produced in the submaxillary glands of house mice (Mus musculus). We report the cDNA sequences and amino acid sequences of the beta and gamma subunits of ABP from a mouse cDNA library, identifying the two subunits by their pIs and molecular weights. An anomalously high molecular weight of the alpha subunit is likely due to glycosylation at a single site. A phylogenetic comparison of the three subunits of ABP with the chains of other mammalian secretoglobins shows that ABP is most closely related to mouse lachrymal protein and to the major cat allergen Fel dI. An evaluation of the most conserved residues in ABP and the other secretoglobins, in light of structural data reported by others [Callebaut, I., Poupon, A., Bally, R., Demaret, J.-P., Housset, D., Delettre, J., Hossenlopp, P., and Mornon, J.-P. (2000) Ann. N.Y. Acad. Sci. 923, 90-112; Pattabiraman, N., Matthews, J., Ward, K., Mantile-Selvaggi, G., Miele, L., and Mukherjee, A. (2000) Ann. N.Y. Acad. Sci. 923, 113-127], allows us to draw conclusions about the critical residues important in ligand binding by the two different ABP dimers and to assess the importance of ligand binding in the function of the molecule. In addition to the cDNAs, which represent those of the musculus subspecies of Mus musculus, we also report the coding regions of the beta and gamma subunit cDNAs from two other mouse inbred strains which represent the other two subspecies: M. musculus domesticus and M. musculus castaneus. The high nonsynonymous/synonymous substitution rate ratios (K(a)/K(s)) for both the beta and gamma subunits suggest that these two proteins are evolving under strong directional selection, as has been reported for the alpha subunit [Hwang, J., Hofstetter, J., Bonhomme, F., and Karn, R. (1997) J. Hered. 88, 93-97; Karn, R., and Clements, M. (1999) Biochem. Genet. 37, 187-199].

  2. Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes.

    PubMed

    Soares, Susana; Ferrer-Galego, Raúl; Brandão, Elsa; Silva, Mafalda; Mateus, Nuno; Freitas, Victor de

    2016-10-10

    The most widely accepted mechanism to explain astringency is the interaction and precipitation of salivary proteins by food tannins, in particular proline-rich proteins. However, other mechanisms have been arising to explain astringency, such as binding of tannins to oral cells. In this work, an experimental method was adapted to study the possible contribution of both salivary proteins and oral cells to astringency induced by grape seed procyanidin fractions. Overall, in the absence of salivary proteins, the extent of procyanidin complexation with oral cells increased with increasing procyanidin degree of polymerization (mDP). Procyanidin fractions rich in monomers were the ones with the lowest ability to bind to oral cells. In the presence of salivary proteins and for procyanidins with mDP 2 the highest concentrations (1.5 and 2.0 mM) resulted in an increased binding of procyanidins to oral cells. This was even more evident for fractions III and IV at 1.0 mM and upper concentrations. Regarding the salivary proteins affected, it was possible to observe a decrease of P-B peptide and aPRP proteins for fractions II and III. This decrease is greater as the procyanidins' mDP increases. In fact, for fraction IV an almost total depletion of all salivary proteins was observed. This decrease is due to the formation of insoluble salivary protein/procyanidin complexes. Altogether, these data suggest that some procyanidins are able to bind to oral cells and that the salivary proteins interact with procyanidins forming salivary protein/procyanidin complexes that are also able to link to oral cells. The procyanidins that remain unbound to oral cells are able to bind to salivary proteins forming a large network of salivary protein/procyanidin complexes. Overall, the results presented herein provide one more step to understand food oral astringency onset.

  3. In Silico and In Vitro Investigation of the Piperine's Male Contraceptive Effect: Docking and Molecular Dynamics Simulation Studies in Androgen-Binding Protein and Androgen Receptor.

    PubMed

    Chinta, Gopichand; Ramya Chandar Charles, Mariasoosai; Klopčič, Ivana; Sollner Dolenc, Marija; Periyasamy, Latha; Selvaraj Coumar, Mohane

    2015-07-01

    Understanding the molecular mechanism of action of traditional medicines is an important step towards developing marketable drugs from them. Piperine, an active constituent present in the Piper species, is used extensively in Ayurvedic medicines (practiced on the Indian subcontinent). Among others, piperine is known to possess a male contraceptive effect; however, the molecular mechanism of action for this effect is not very clear. In this regard, detailed docking and molecular dynamics simulation studies of piperine with the androgen-binding protein and androgen receptors were carried out. Androgen receptors control male sexual behavior and fertility, while the androgen-binding protein binds testosterone and maintains its concentration at optimal levels to stimulate spermatogenesis in the testis. It was found that piperine docks to the androgen-binding protein, similar to dihydrotestosterone, and to androgen receptors, similar to cyproterone acetate (antagonist). Also, the piperine-androgen-binding protein and piperine-androgen receptors interactions were found to be stable throughout 30 ns of molecular dynamics simulation. Further, two independent simulations for 10 ns each also confirmed the stability of these interactions. Detailed analysis of the piperine-androgen-binding protein interactions shows that piperine interacts with Ser42 of the androgen-binding protein and could block the binding with its natural ligands dihydrotestosterone/testosterone. Moreover, piperine interacts with Thr577 of the androgen receptors in a manner similar to the antagonist cyproterone acetate. Based on the in silico results, piperine was tested in the MDA-kb2 cell line using the luciferase reporter gene assay and was found to antagonize the effect of dihydrotestosterone at nanomolar concentrations. Further detailed biochemical experiments could help to develop piperine as an effective male contraceptive agent in the future. Georg Thieme Verlag KG Stuttgart · New York.

  4. Anopheles gambiae Circumsporozoite Protein–Binding Protein Facilitates Plasmodium Infection of Mosquito Salivary Glands

    PubMed Central

    Wang, Jiuling; Zhang, Yue; Zhao, Yang O.; Li, Michelle W. M.; Zhang, Lili; Dragovic, Srdjan; Abraham, Nabil M.; Fikrig, Erol

    2013-01-01

    Malaria, a mosquito-borne disease caused by Plasmodium species, causes substantial morbidity and mortality throughout the world. Plasmodium sporozoites mature in oocysts formed in the mosquito gut wall and then invade the salivary glands, where they remain until transmitted to the vertebrate host during a mosquito bite. The Plasmodium circumsporozoite protein (CSP) binds to salivary glands and plays a role in the invasion of this organ by sporozoites. We identified an Anopheles salivary gland protein, named CSP-binding protein (CSPBP), that interacts with CSP. Downregulation of CSPBP in mosquito salivary glands inhibited invasion by Plasmodium organisms. In vivo bioassays showed that mosquitoes that were fed blood with CSPBP antibody displayed a 25% and 90% reduction in the parasite load in infected salivary glands 14 and 18 days after the blood meal, respectively. These results suggest that CSPBP is important for the infection of the mosquito salivary gland by Plasmodium organisms and that blocking CSPBP can interfere with the Plasmodium life cycle. PMID:23801601

  5. Human Common Salivary Protein 1 (CSP-1) Promotes Binding of Streptococcus mutans to Experimental Salivary Pellicle and Glucans Formed on Hydroxyapatite Surface

    PubMed Central

    Ambatipudi, Kiran S.; Hagen, Fred K.; Delahunty, Claire M.; Han, Xuemei; Shafi, Rubina; Hryhorenko, Jennifer; Gregoire, Stacy; Marquis, Robert E.; Melvin, James E.; Koo, Hyun; Yates, John R.

    2010-01-01

    Summary The saliva proteome includes host defense factors and specific bacterial-binding proteins that modulate microbial growth and colonization of tooth surface in the oral cavity. A multidimensional mass spectrometry approach identified the major host-derived salivary proteins which interacted with Streptococcus mutans (strain UA159), the primary microorganism associated with the pathogenesis of dental caries. Two abundant host proteins were found to tightly bind to S. mutans cells, common salivary protein-1 (CSP-1) and deleted in malignant brain tumor 1 (DMBT1, also known as salivary agglutinin or gp340). In contrast to gp340, limited functional information is available on CSP-1. The sequence of CSP-1 shares 38.1% similarity with rat CSP-1. Recombinant CSP-1 (rCSP-1) protein did not cause aggregation of S. mutans cells and was devoid of any significant biocidal activity (2.5 to 10 μg/ml). However, S. mutans cells exposed to rCSP-1 (10 μg/ml) in saliva displayed enhanced adherence to experimental salivary pellicle and to glucans in the pellicle formed on hydroxyapatite surfaces. Thus, our data demonstrate that the host salivary protein CSP-1 binds to S. mutans cells and may influence the initial colonization of this pathogenic bacterium onto tooth surface. PMID:20858015

  6. Androgen-sensitive spermine-binding protein of rat ventral prostate. Purification of the protein and characterization of the hormonal effect.

    PubMed Central

    Mezzetti, G; Loor, R; Liao, S

    1979-01-01

    The rat ventral prostate contains a cytosol protein that can non-covalently bind spermine much more tightly than spermidine or other natural diamines. The protein has been purified to homogeneity, as judged by electrophoresis in urea- and sodium dodecyl sulphate-containing polyacrylamide gels. The protein, with or without spermine bound to it, sediments at 3 S in a sucrose gradient with or without 0.4 M-KCl. The molecular weight of the protein is about 30 000. Each molecule of the binding protein can bind one molecule of spermine. In the prostate of rats injected with cycloheximide, the protein appears to have a half-life of about 3.5 h. The spermine-binding activity of an acidic fraction obtained by DEAE-cellulose chromatography of the prostate cytosol proteins is reduced by about 40--60% within 20--40 h after castration. This effect is reversed very rapidly within 15--30 min by intraperitoneal injection of 5 alpha-dihydrotestosterone. The hormonal effect is androgen-specific and is not mimicked by dexamethasone or oestradiol-17 beta. The androgen effect was reduced significantly when rats were injected with cycloheximide or actinomycin D, suggesting that the acidic protein may be one of the earliest proteins induced by androgen in the rat ventral prostate. Images Fig. 1. PMID:534539

  7. No major role for binding by salivary proteins as a defense against dietary tannins in Mediterranean goats.

    PubMed

    Hanovice-Ziony, Michal; Gollop, Nathan; Landau, Serge Yan; Ungar, Eugene David; Muklada, Hussein; Glasser, Tzach Aharon; Perevolotsky, Avi; Walker, John Withers

    2010-07-01

    We investigated whether Mediterranean goats use salivary tannin-binding proteins to cope with tannin-rich forages by determining the affinity of salivary or parotid gland proteins for tannic acid or quebracho tannin. Mixed saliva, sampled from the oral cavity, or parotid gland contents were compared to the intermediate affinity protein bovine serum albumin with a competitive binding assay. Goats that consume tannin-rich browse (Damascus) and goats that tend to avoid tannins (Mamber) were sequentially fed high (Pistacia lentiscus L.), low (vetch hay), or zero (wheat hay) tannin forages. Affinity of salivary proteins for tannins did not differ between goat breeds and did not respond to presence or absence of tannins in the diet. Proteins in mixed saliva had slightly higher affinity for tannins than those in parotid saliva, but neither source contained proteins with higher affinity for tannins than bovine serum albumin. Similarly, 3 months of browsing in a tannin-rich environment had little effect on the affinity of salivary proteins for tannin in adult goats of either breed. We sampled mixed saliva from young kids before they consumed forage and after 3 months of foraging in a tannin-rich environment. Before foraging, the saliva of Mamber kids had higher affinity for tannic acid (but not quebracho tannin) than the saliva of Damascus kids, but there was no difference after 3 months of exposure to tannin-rich browse, and the affinity of the proteins was always similar to the affinity of bovine serum albumin. Our results suggest there is not a major role for salivary tannin-binding proteins in goats. Different tendencies of goat breeds to consume tannin-rich browse does not appear be related to differences in salivary tannin-binding proteins.

  8. Did Androgen-Binding Protein Paralogs Undergo Neo- and/or Subfunctionalization as the Abp Gene Region Expanded in the Mouse Genome?

    PubMed Central

    Karn, Robert C.; Chung, Amanda G.; Laukaitis, Christina M.

    2014-01-01

    The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution. PMID:25531410

  9. Did androgen-binding protein paralogs undergo neo- and/or Subfunctionalization as the Abp gene region expanded in the mouse genome?

    PubMed

    Karn, Robert C; Chung, Amanda G; Laukaitis, Christina M

    2014-01-01

    The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution.

  10. Expression of androgen-binding protein (ABP) in human cardiac myocytes.

    PubMed

    Schock, H W; Herbert, Z; Sigusch, H; Figulla, H R; Jirikowski, G F; Lotze, U

    2006-04-01

    Cardiomyocytes are known to be androgen targets. Changing systemic steroid levels are thought to be linked to various cardiac ailments, including dilated cardiomyopathy (DCM). The mode of action of gonadal steroid hormones on the human heart is unknown to date. In the present study, we used high-resolution immunocytochemistry on semithin sections (1 microm thick), IN SITU hybridization, and mass spectrometry to investigate the expression of androgen-binding protein (ABP) in human myocardial biopsies taken from male patients with DCM. We observed distinct cytoplasmic ABP immunoreactivity in a fraction of the myocytes. IN SITU hybridization with synthetic oligonucleotide probes revealed specific hybridization signals in these cells. A portion of the ABP-positive cells contained immunostaining for androgen receptor. With SELDI TOF mass spectrometry of affinity purified tissue extracts of human myocardium, we confirmed the presence of a 50 kDa protein similar to ABP. Our observations provide evidence of an intrinsic expression of ABP in human heart. ABP may be secreted from myocytes in a paracrine manner perhaps to influence the bioavailabity of gonadal steroids in myocardium.

  11. Salivary tannin-binding proteins are a pervasive strategy used by the folivorous/frugivorous black howler monkey.

    PubMed

    Espinosa-Gómez, Fabiola Carolina; Serio-Silva, Juan Carlos; Santiago-García, Juan Diego; Sandoval-Castro, Carlos Alfredo; Hernández-Salazar, Laura Teresa; Mejía-Varas, Fernando; Ojeda-Chávez, Javier; Chapman, Colin Austin

    2018-02-01

    Dietary tannins can affect protein digestion and absorption, be toxic, and influence food selection by being astringent and bitter tasting. Animals that usually ingest tannins may regularly secrete tannin-binding salivary proteins (TBSPs) to counteract the negative effects of tannins or TBSPs production can be induced by a tannin-rich diet. In the wild, many primates regularly eat a diet that contains tannin-rich leaves and unripe fruit and it has been speculated that they have the physiological ability to cope with dietary tannins; however, details of their strategy remains unclear. Our research details the salivary protein composition of wild and zoo-living black howler monkeys (Alouatta pigra) feeding on natural versus manufactured low-tannin diets, and examines differences in TBSPs, mainly proline-rich proteins (PRPs), to determine whether production of these proteins is dependent on the tannin content of their food. We measured the pH, flow rate, and concentration of total protein and trichloroacetic acid soluble proteins (an index of PRPs) in saliva. Howler monkeys produced slightly alkaline saliva that may aid in the binding interaction between tannin and salivary proteins. We used gel electrophoresis to describe the salivary protein profile and this analysis along with a tannin-binding assay allowed us to detect several TBSPs in all individuals. We found no differences in the characteristics of saliva between wild and zoo-living monkeys. Our results suggest that black howler monkeys always secrete TBSPs even when fed on foods low in tannins. This strategy of constantly using this salivary anti-tannin defense enables them to obtain nutrients from plants that sometimes contain high levels of tannins and may help immediately to overcome the astringent sensation of their food allowing howler monkeys to eat tanniferous plants. © 2018 Wiley Periodicals, Inc.

  12. Folding of a salivary intrinsically disordered protein upon binding to tannins.

    PubMed

    Canon, Francis; Ballivian, Renaud; Chirot, Fabien; Antoine, Rodolphe; Sarni-Manchado, Pascale; Lemoine, Jérôme; Dugourd, Philippe

    2011-05-25

    We used ion mobility spectrometry to explore conformational adaptability of intrinsically disordered proteins bound to their targets in complex mixtures. We investigated the interactions between a human salivary proline-rich protein IB5 and a model of wine and tea tannin: epigallocatechin gallate (EgCG). Collisional cross sections of naked IB5 and IB5 complexed with N = 1-15 tannins were recorded. The data demonstrate that IB5 undergoes an unfolded to folded structural transition upon binding with EgCG.

  13. Studies of an Androgen-Binding Protein Knockout Corroborate a Role for Salivary ABP in Mouse Communication

    PubMed Central

    Chung, Amanda G.; Belone, Phillip M.; Bímová, Barbora Vošlajerová; Karn, Robert C.; Laukaitis, Christina M.

    2017-01-01

    The house mouse Androgen-binding protein (Abp) gene family is comprised of 64 paralogs, 30 Abpa and 34 Abpbg, encoding the alpha (ABPA) and beta-gamma (ABPBG) protein subunits that are disulfide-bridged to form dimers in secretions. Only 14 Abp genes are expressed in distinct patterns in the lacrimal (11) and submandibular glands (3). We created a knockout mouse line lacking two of the three genes expressed in submandibular glands, Abpa27 and Abpbg27, by replacing them with the neomycin resistance gene. The knockout genotype (−/−) showed no Abpa27 or Abpbg27 transcripts in submandibular gland complementary DNA (cDNA) libraries and there was a concomitant lack of protein expression of ABPA27 and ABPBG27 in the −/− genotype saliva, shown by elimination of these two proteins from the saliva proteome and the loss of cross-reactive material in the acinar cells of the submandibular glands. We also observed a decrease in BG26 protein in the −/− animals, suggesting monomer instability. Overall, we observed no major phenotypic changes in the −/− genotype, compared with their +/+ and +/− siblings raised in a laboratory setting, including normal growth curves, tissue histology, fecundity, and longevity. The only difference is that male and female C57BL/6 mice preferred saliva of the opposite sex containing ABP statistically significantly more than saliva of the opposite sex without ABP in a Y-maze test. These results show for the first time that mice can sense the presence of ABP between saliva targets with and without ABPs, and that they spend more time investigating the target containing ABP. PMID:28159752

  14. Studies of an Androgen-Binding Protein Knockout Corroborate a Role for Salivary ABP in Mouse Communication.

    PubMed

    Chung, Amanda G; Belone, Phillip M; Bímová, Barbora Vošlajerová; Karn, Robert C; Laukaitis, Christina M

    2017-04-01

    The house mouse Androgen-binding protein ( Abp ) gene family is comprised of 64 paralogs, 30 Abpa and 34 Abpbg , encoding the alpha (ABPA) and beta-gamma (ABPBG) protein subunits that are disulfide-bridged to form dimers in secretions. Only 14 Abp genes are expressed in distinct patterns in the lacrimal (11) and submandibular glands (3). We created a knockout mouse line lacking two of the three genes expressed in submandibular glands, Abpa27 and Abpbg27 , by replacing them with the neomycin resistance gene. The knockout genotype (-/-) showed no Abpa27 or Abpbg27 transcripts in submandibular gland complementary DNA (cDNA) libraries and there was a concomitant lack of protein expression of ABPA27 and ABPBG27 in the -/- genotype saliva, shown by elimination of these two proteins from the saliva proteome and the loss of cross-reactive material in the acinar cells of the submandibular glands. We also observed a decrease in BG26 protein in the -/- animals, suggesting monomer instability. Overall, we observed no major phenotypic changes in the -/- genotype, compared with their +/+ and +/- siblings raised in a laboratory setting, including normal growth curves, tissue histology, fecundity, and longevity. The only difference is that male and female C57BL/6 mice preferred saliva of the opposite sex containing ABP statistically significantly more than saliva of the opposite sex without ABP in a Y-maze test. These results show for the first time that mice can sense the presence of ABP between saliva targets with and without ABPs, and that they spend more time investigating the target containing ABP. Copyright © 2017 by the Genetics Society of America.

  15. Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity

    PubMed Central

    Caljon, Guy; Ridder, Karin De; Stijlemans, Benoît; Coosemans, Marc; Magez, Stefan; De Baetselier, Patrick; Van Den Abbeele, Jan

    2012-01-01

    Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans) saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2) display DNA/RNA non-specific, high affinity nucleic acid binding with KD values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents. PMID:23110062

  16. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer.

    PubMed

    Biron, Eric; Bédard, François

    2016-07-01

    The androgen receptor (AR) is a key regulator for the growth, differentiation and survival of prostate cancer cells. Identified as a primary target for the treatment of prostate cancer, many therapeutic strategies have been developed to attenuate AR signaling in prostate cancer cells. While frontline androgen-deprivation therapies targeting either the production or action of androgens usually yield favorable responses in prostate cancer patients, a significant number acquire treatment resistance. Known as the castration-resistant prostate cancer (CRPC), the treatment options are limited for this advanced stage. It has been shown that AR signaling is restored in CRPC due to many aberrant mechanisms such as AR mutations, amplification or expression of constitutively active splice-variants. Coregulator recruitment is a crucial regulatory step in AR signaling and the direct blockade of coactivator binding to AR offers the opportunity to develop therapeutic agents that would remain effective in prostate cancer cells resistant to conventional endocrine therapies. Structural analyses of the AR have identified key surfaces involved in protein-protein interaction with coregulators that have been recently used to design and develop promising AR-coactivator binding inhibitors. In this review we will discuss the design and development of small-molecule inhibitors targeting the AR-coactivator interactions for the treatment of prostate cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Regulation of Androgen Receptor-Mediated Transcription by RPB5 Binding Protein URI/RMP ▿

    PubMed Central

    Mita, Paolo; Savas, Jeffrey N.; Djouder, Nabil; Yates, John R.; Ha, Susan; Ruoff, Rachel; Schafler, Eric D.; Nwachukwu, Jerome C.; Tanese, Naoko; Cowan, Nicholas J.; Zavadil, Jiri; Garabedian, Michael J.; Logan, Susan K.

    2011-01-01

    Androgen receptor (AR)-mediated transcription is modulated by interaction with coregulatory proteins. We demonstrate that the unconventional prefoldin RPB5 interactor (URI) is a new regulator of AR transcription and is critical for antagonist (bicalutamide) action. URI is phosphorylated upon androgen treatment, suggesting communication between the URI and AR signaling pathways. Whereas depletion of URI enhances AR-mediated gene transcription, overexpression of URI suppresses AR transcriptional activation and anchorage-independent prostate cancer cell growth. Repression of AR-mediated transcription is achieved, in part, by URI binding and regulation of androgen receptor trapped clone 27 (Art-27), a previously characterized AR corepressor. Consistent with this idea, genome-wide expression profiling in prostate cancer cells upon depletion of URI or Art-27 reveals substantially overlapping patterns of gene expression. Further, depletion of URI increases the expression of the AR target gene NKX-3.1, decreases the recruitment of Art-27, and increases AR occupancy at the NKX-3.1 promoter. While Art-27 can bind AR directly, URI is bound to chromatin prior to hormone-dependent recruitment of AR, suggesting a role for URI in modulating AR recruitment to target genes. PMID:21730289

  18. The nature of the hydroxyapatite-binding site in salivary acidic proline-rich proteins.

    PubMed

    Bennick, A; Cannon, M; Madapallimattam, G

    1979-10-01

    Protein A and C, which are major components of the acidic proline-rich proteins in human saliva, were digested, before or after adsorption to hydroxyapatite, with alkaline phosphatase, trypsin, thermolysin and a proteinase preparation from salivary sediment. The results demonstrate that the binding site is located in the proline-poor N-terminal part of the protein, possibly between residues 3 and 25. Phosphoserine is necessary for maximal adsorption of the proteins to hydroxyapatite. When proteins A and C are adsorbed to hydroxyapatite before proteolytic digestion there is a protection of some of the susceptible bonds in the N-terminal part of the proteins and a gradual removal of the proline-rich C-terminal part. Thermolysin can cleave susceptible bonds in the part of the protein that remains bound to hydroxyapatite, but at least some of the resulting peptides are retained on the mineral. Since the ability of the proteins to inhibit hydroxyapatite formation and to bind calcium is located in the N-terminal proline-poor part, it is possible that these activities are retained after proteolytic digestion of the adsorbed proteins.

  19. Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340.

    PubMed

    Prakobphol, A; Xu, F; Hoang, V M; Larsson, T; Bergstrom, J; Johansson, I; Frängsmyr, L; Holmskov, U; Leffler, H; Nilsson, C; Borén, T; Wright, J R; Strömberg, N; Fisher, S J

    2000-12-22

    Salivary agglutinin is a high molecular mass component of human saliva that binds Streptococcus mutans, an oral bacterium implicated in dental caries. To study its protein sequence, we isolated the agglutinin from human parotid saliva. After trypsin digestion, a portion was analyzed by matrix-assisted laser/desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), which gave the molecular mass of 14 unique peptides. The remainder of the digest was subjected to high performance liquid chromatography, and the separated peptides were analyzed by MALDI-TOF/post-source decay; the spectra gave the sequences of five peptides. The molecular mass and peptide sequence information showed that salivary agglutinin peptides were identical to sequences in lung (lavage) gp-340, a member of the scavenger receptor cysteine-rich protein family. Immunoblotting with antibodies that specifically recognized either lung gp-340 or the agglutinin confirmed that the salivary agglutinin was gp-340. Immunoblotting with an antibody specific to the sialyl Le(x) carbohydrate epitope detected expression on the salivary but not the lung glycoprotein, possible evidence of different glycoforms. The salivary agglutinin also interacted with Helicobacter pylori, implicated in gastritis and peptic ulcer disease, Streptococcus agalactiae, implicated in neonatal meningitis, and several oral commensal streptococci. These results identify the salivary agglutinin as gp-340 and suggest it binds bacteria that are important determinants of either the oral ecology or systemic diseases.

  20. Bioavailability of Oral Hydrocortisone Corrected for Binding Proteins and Measured by LC-MS/MS Using Serum Cortisol and Salivary Cortisone.

    PubMed

    Johnson, T N; Whitaker, M J; Keevil, B; Ross, R J

    2018-01-01

    The assessment absolute bioavailability of oral hydrocortisone is complicated by its saturable binding to cortisol binding globulin (CBG). Previous assessment of bioavailability used a cortisol radioimmunoassay which has cross reactivity with other steroids. Salivary cortisone is a measure of free cortisol and LC-MS/MS is the gold standard method for measuring steroids. We here report the absolute bioavailability of hydrocortisone calculated using serum cortisol and salivary cortisone measured by LC-MS/MS. 14 healthy male dexamethasone suppressed volunteers were administered 20 mg hydrocortisone either intravenously or orally by tablet. Samples of serum and saliva were taken and measured for cortisol and cortisone by LC-MS/MS. Serum cortisol was corrected for saturable binding using published data and pharmacokinetic parameters derived using the program WinNonlin. The mean (95% CI) bioavailability of oral hydrocortisone calculated from serum cortisol, unbound serum cortisol and salivary cortisone was 1.00 (0.89-1.14); 0.88 (0.75-1.05); and 0.93 (0.83-1.05), respectively. The data confirm that, after oral administration, hydrocortisone is completely absorbed. The data derived from serum cortisol corrected for protein binding, and that from salivary cortisone, are similar supporting the concept that salivary cortisone reflects serum free cortisol levels and that salivary cortisone can be used as a non-invasive method for measuring the pharmacokinetics of hydrocortisone.

  1. New procyanidin B3-human salivary protein complexes by mass spectrometry. Effect of salivary protein profile, tannin concentration, and time stability.

    PubMed

    Perez-Gregorio, Maria Rosa; Mateus, Nuno; De Freitas, Victor

    2014-10-15

    Several factors could influence the tannin-protein interaction such as the human salivary protein profile, the tannin tested, and the tannin/protein ratio. The goal of this study aims to study the effect of different salivas (A, B, and C) and different tannin concentrations (0.5 and 1 mg/mL) on the interaction process as well as the complex's stability over time. This study is focused on the identification of new procyanidin B3-human salivary protein complexes. Thus, 48 major B3-human salivary protein aggregates were identified regardless of the saliva and tannin concentration tested. A higher number of aggregates was found at lower tannin concentration. Moreover, the number of protein moieties involved in the aggregation process was higher when the tannin concentration was also higher. The selectivity of the different groups of proteins to bind tannin was also confirmed. It was also verified that the B3-human salivary protein complexes formed evolved over time.

  2. A Novel Defensive Mechanism against Acetaminophen Toxicity in the Mouse Lateral Nasal Gland: Role of CYP2A5-Mediated Regulation of Testosterone Homeostasis and Salivary Androgen-Binding Protein Expression

    PubMed Central

    Zhou, Xin; Wei, Yuan; Xie, Fang; Laukaitis, Christina M.; Karn, Robert C.; Kluetzman, Kerri; Gu, Jun; Zhang, Qing-Yu; Roberts, Dean W.

    2011-01-01

    To identify novel factors or mechanisms that are important for the resistance of tissues to chemical toxicity, we have determined the mechanisms underlying the previously observed increases in resistance to acetaminophen (APAP) toxicity in the lateral nasal gland (LNG) of the male Cyp2g1-null/Cyp2a5-low mouse. Initial studies established that Cyp2a5-null mice, but not a newly generated strain of Cyp2g1-null mice, were resistant to APAP toxicity in the LNG; therefore, subsequent studies were focused on the Cyp2a5-null mice. Compared with the wild-type (WT) male mouse, the Cyp2a5-null male mouse had intact capability to metabolize APAP to reactive intermediates in the LNG, as well as unaltered circulating levels of APAP, APAP-GSH, APAP-glucuronide, and APAP-sulfate. However, it displayed reduced tissue levels of APAP and APAP-GSH and increased tissue levels of testosterone and salivary androgen-binding protein (ABP) in the LNG. Furthermore, we found that ABP was able to compete with GSH and cellular proteins for adduction with reactive metabolites of APAP in vitro. The amounts of APAP-ABP adducts formed in vivo were greater, whereas the amounts of APAP adducts formed with other cellular proteins were substantially lower, in the LNG of APAP-treated male Cyp2a5-null mice compared with the LNG of APAP-treated male WT mice. We propose that through its critical role in testosterone metabolism, CYP2A5 regulates 1) the bioavailability of APAP and APAP-GSH (presumably through modulation of the rates of xenobiotic excretion from the LNG) and 2) the expression of ABP, which can quench reactive APAP metabolites and thereby spare critical cellular proteins from inactivation. PMID:21252290

  3. Characterization of the Binding of a Potent Synthetic Androgen, Methyltrienolone, to Human Tissues

    PubMed Central

    Menon, Mani; Tananis, Catherine E.; Hicks, L. Louise; Hawkins, Edward F.; McLoughlin, Martin G.; Walsh, Patrick C.

    1978-01-01

    The potent synthetic androgen methytrienolone (R 1881), which does not bind to serum proteins, was utilized to characterize binding to receptors in human androgen responsive tissues. Cytosol extracts prepared from hypertrophic prostates (BPH) were utilized as the source of receptor for the initial studies. High affinity binding was detected in the cytosol of 29 of 30 samples of BPH (average number of binding sites, 45.8±4.7 fmol/mg of protein; dissociation constant, 0.9±0.2 nM). This binding had the characteristics of a receptor: heat lability, precipitability by 0-33% ammonium sulfate and by protamine sulfate, and 8S sedimentation coefficient. High affinity binding was also detected in cytosol prepared from seminal vesicle, epididymis, and genital skin but not in non-genital skin or muscle. However, similar binding was demonstrated in the cytosol of human uterus. The steroid specificities of binding to the cytosol of male tissues of accessory reproduction and of uterus were similar in that progestational agents were more effective competitors than natural androgens. Binding specificities in cytosol prepared from genital skin were distinctly different and were similar to those of ventral prostate from the castrated rat in that dihydrotestosterone was much more potent than progestins in competition. Thus binding of R 1881 to the cytosol of prostate, epididymis, and seminal vesicle has some characteristics of binding to a progesterone receptor. When the nuclear extract from BPH was analyzed, high affinity binding was demonstrated that conformed to the specificities of binding to an androgen receptor. Here dihydrotestosterone was a more potent competitor than progestational agents. Similar patterns of binding were detected in the crude nuclear extracts from seminal vesicle, epididymis, and genital skin but not in uterus, muscle, or non-genital skin. We conclude that the androgen receptor is not demonstrable in the cytosol of prostate, epididymis, or seminal vesicle

  4. Single amino acid substitutions at 2 of 14 positions in an ultra-conserved region of the androgen receptor yield an androgen-binding domain that is reversibly thermolabile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliou, M.; Lumbroso, R.; Alvarado, C.

    1994-09-01

    The stereochemistry of the androgen receptor (AR) that is responsible for androgen-specific binding and for its contribution to the transregulatory attributes of an androgen-receptor complex are unknown. Our objective is to define structure-function relations of the human AR by correlating germline missense mutations at its X-linked locus with its resultant misbehavior. Subjects with Arg773Cys have complete androgen insensitivity. We and several other laboratories have reported that their genital skin fibroblasts (GSF) have negligible androgen-binding activity at 37{degrees}. We have found that Phe763Leu also causes CAI, but with approximately 10 fmol/mg protein androgen-binding activity at 37{degrees} (R-deficient). Within COS-1 cells transfectedmore » with each mutant AR cDNA, Phe763Leu and Arg773Cys androgen-binding activities are reversibly thermolabile, by a factor of 2, at 37{degrees} versus 22{degrees}, only in the presence of androgen; in the absence of androgen they are thermostable at 37{degrees}. We have discovered that (for a reason yet unknown) the GSF from a third family with Arg773Cys (and no other coding sequence mutation) have 20-40 mol/mg protein of androgen-binding activity at 37{degrees} when measured with 3-6 nFM androgen. This activity reversibly doubles at 22{degrees}. The reversible thermolability of an AR with Arg773Cys (and probably with Phe763Leu) is demonstrable within GSF. Ligand-dependence of this thermolability implies that ligand induces these mutant AR to undergo a deviant conformational change in, or near, a 14-aa region that shares 90% identity/similarity with its closest receptor relatives.« less

  5. Definitive treatment of androgen receptor-positive salivary duct carcinoma with androgen deprivation therapy and external beam radiotherapy.

    PubMed

    Soper, Margaret S; Iganej, Shawn; Thompson, Lester D R

    2014-01-01

    Salivary duct carcinoma (SDC) is an aggressive malignancy with high recurrence rates. Standard management includes surgical resection followed by adjuvant radiation. Androgen receptor positivity has been described to be present in 40% to 90% of SDCs, and a recent case series showed a benefit to androgen deprivation therapy (ADT) in recurrent or metastatic disease. We present the case of an 87-year-old woman with a locally advanced androgen receptor-positive parotid SDC treated definitively with ADT and external beam radiotherapy, a regimen modeled after the treatment of prostate cancer. She had a complete response on positron emission tomography (PET)/CT scan and had no evidence of disease 24 months after the completion of treatment. To our knowledge, this case report is the first to describe the use of ADT plus radiation to definitively treat SDC. This regimen could be considered in patients with androgen receptor-positive SDCs who are considered unresectable or who refuse surgery. Copyright © 2013 Wiley Periodicals, Inc.

  6. Salivary testosterone and a trinucleotide (CAG) length polymorphism in the androgen receptor gene predict amygdala reactivity in men.

    PubMed

    Manuck, Stephen B; Marsland, Anna L; Flory, Janine D; Gorka, Adam; Ferrell, Robert E; Hariri, Ahmad R

    2010-01-01

    In studies employing functional magnetic resonance imaging (fMRI), reactivity of the amygdala to threat-related sensory cues (viz., facial displays of negative emotion) has been found to correlate positively with interindividual variability in testosterone levels of women and young men and to increase on acute administration of exogenous testosterone. Many of the biological actions of testosterone are mediated by intracellular androgen receptors (ARs), which exert transcriptional control of androgen-dependent genes and are expressed in various regions of the brain, including the amygdala. Transactivation potential of the AR decreases (yielding relative androgen insensitivity) with expansion a polyglutamine stretch in the N-terminal domain of the AR protein, as encoded by a trinucleotide (CAG) repeat polymorphism in exon 1 of the X-chromosome AR gene. Here we examined whether amygdala reactivity to threat-related facial expressions (fear, anger) differs as a function of AR CAG length variation and endogenous (salivary) testosterone in a mid-life sample of 41 healthy men (mean age=45.6 years, range: 34-54 years; CAG repeats, range: 19-29). Testosterone correlated inversely with participant age (r=-0.39, p=0.012) and positively with number of CAG repeats (r=0.45, p=0.003). In partial correlations adjusted for testosterone level, reactivity in the ventral amygdala was lowest among men with largest number of CAG repeats. This inverse association was seen in both the right (r(p)=-0.34, p<0.05) and left (r(p)=-0.32, p<0.05) hemisphere. Activation of dorsal amygdala, correlated positively with individual differences in salivary testosterone, also in right (r=0.40, p<0.02) and left (r=0.32, p<0.05) hemisphere, but was not affected by number of CAG repeats. Hence, androgenic influences on threat-related reactivity in the ventral amygdala may be moderated partially by CAG length variation in the AR gene. Because individual differences in salivary testosterone also predicted

  7. Absence of Capsule Reveals Glycan-Mediated Binding and Recognition of Salivary Mucin MUC7 by Streptococcus pneumoniae

    PubMed Central

    Thamadilok, Supaporn; Roche-Håkansson, Hazeline; Håkansson, Anders P.; Ruhl, Stefan

    2015-01-01

    SUMMARY Salivary proteins modulate bacterial colonization in the oral cavity and interact with systemic pathogens that pass through the oropharynx. An interesting example is the opportunistic respiratory pathogen Streptococcus pneumoniae that normally resides in the nasopharynx, but belongs to the greater Mitis group of streptococci, most of which colonize the oral cavity. S. pneumoniae also expresses a serine-rich repeat (SRR) adhesin, PsrP, that is a homologue to oral Mitis group SRR adhesins, such as Hsa of S. gordonii and SrpA of S. sanguinis. Since the latter bind to salivary glycoproteins through recognition of terminal sialic acids, we wanted to determine whether S. pneumoniae also binds to salivary proteins through possibly the same mechanism. We found that only a capsule-free mutant of S. pneumoniae TIGR4 binds to salivary proteins, most prominently to mucin MUC7, but that this binding was not mediated through PsrP or recognition of sialic acid. We also found, however, that PsrP is involved in agglutination of human red blood cells (RBCs). After removal of PsrP, an additional previously masked lectin-like adhesin activity mediating agglutination of sialidase-treated RBCs becomes revealed. Using a custom-spotted glycoprotein and neoglycoprotein dot blot array, we identify candidate glycan motifs recognized by PsrP and by the putative S. pneumoniae adhesin that could perhaps be responsible for pneumococcal binding to salivary MUC7 and glycoproteins on RBCs. PMID:26172471

  8. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.

    PubMed

    Hong, Huixiao; Branham, William S; Ng, Hui Wen; Moland, Carrie L; Dial, Stacey L; Fang, Hong; Perkins, Roger; Sheehan, Daniel; Tong, Weida

    2015-02-01

    One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered. Published by Oxford University Press on behalf of the Society of Toxicology 2014. This work is written by US Government employees and is in the public domain in the US.

  9. Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells

    PubMed Central

    Ma, Yi; Yang, Hao-Zheng; Xu, Long-Mei; Huang, Yi-Ran; Dai, Hui-Li; Kang, Xiao-Nan

    2015-01-01

    Dysregulation of androgen-binding protein (ABP) is associated with a number of endocrine and andrology diseases. However, the ABP metabolism in Sertoli cells is largely unknown. We report that autophagy degrades ABP in rat Sertoli cells, and the autophagic clearance of ABP is regulated by testosterone, which prolongs the ABP biological half-life by inhibiting autophagy. Further studies identified that the autophagic clearance of ABP might be selectively regulated by testosterone, independent of stress (hypoxia)-induced autophagic degradation. These data demonstrate that testosterone up-regulates ABP expression at least partially by suppressing the autophagic degradation. We report a novel finding with respect to the mechanisms by which ABP is cleared, and by which the process is regulated in Sertoli cells. PMID:25745956

  10. A substitutional mutation in the DNA binding domain of the androgen receptor causes complete androgen insensitivity syndrome.

    PubMed

    Komori, S; Sakata, K; Kasumi, H; Tsuji, Y; Hamada, K; Koyama, K

    1999-10-01

    DNA analysis of the androgen receptor gene in a patient with complete androgen insensitivity syndrome identified a substitutional mutation (tyrosine converted to cysteine at position 571) in the DNA binding domain. In vitro transfection experiments with the patients' androgen receptor gene, indicated normal expression of the androgen receptor in transfected COS-7 cells compared to the wild type gene. There was also no evidence of impaired thermal stability of the 5 alpha-dihydrotestosterone-androgen receptor complex. However, the capacity of the androgen receptor to activate target gene transcription was found to be completely disrupted in a luciferase assay. These results confirmed that only one substitutional mutation in the DNA binding domain was related to the pathogenesis of the complete androgen insensitivity syndrome.

  11. Strains of Actinomyces naeslundii and Actinomyces viscosus Exhibit Structurally Variant Fimbrial Subunit Proteins and Bind to Different Peptide Motifs in Salivary Proteins

    PubMed Central

    Li, Tong; Johansson, Ingegerd; Hay, Donald I.; Strömberg, Nicklas

    1999-01-01

    Oral strains of Actinomyces spp. express type 1 fimbriae, which are composed of major FimP subunits, and bind preferentially to salivary acidic proline-rich proteins (APRPs) or to statherin. We have mapped genetic differences in the fimP subunit genes and the peptide recognition motifs within the host proteins associated with these differential binding specificities. The fimP genes were amplified by PCR from Actinomyces viscosus ATCC 19246, with preferential binding to statherin, and from Actinomyces naeslundii LY7, P-1-K, and B-1-K, with preferential binding to APRPs. The fimP gene from the statherin-binding strain 19246 is novel and has about 80% nucleotide and amino acid sequence identity to the highly conserved fimP genes of the APRP-binding strains (about 98 to 99% sequence identity). The novel FimP protein contains an amino-terminal signal peptide, randomly distributed single-amino-acid substitutions, and structurally different segments and ends with a cell wall-anchoring and a membrane-spanning region. When agarose beads with CNBr-linked host determinant-specific decapeptides were used, A. viscosus 19246 bound to the Thr42Phe43 terminus of statherin and A. naeslundii LY7 bound to the Pro149Gln150 termini of APRPs. Furthermore, while the APRP-binding A. naeslundii strains originate from the human mouth, A. viscosus strains isolated from the oral cavity of rat and hamster hosts showed preferential binding to statherin and contained the novel fimP gene. Thus, A. viscosus and A. naeslundii display structurally variant fimP genes whose protein products are likely to interact with different peptide motifs and to determine animal host tropism. PMID:10225854

  12. Taking the Starch out of Oral Biofilm Formation: Molecular Basis and Functional Significance of Salivary α-Amylase Binding to Oral Streptococci

    PubMed Central

    Nikitkova, Anna E.; Haase, Elaine M.

    2013-01-01

    α-Amylase-binding streptococci (ABS) are a heterogeneous group of commensal oral bacterial species that comprise a significant proportion of dental plaque microfloras. Salivary α-amylase, one of the most abundant proteins in human saliva, binds to the surface of these bacteria via specific surface-exposed α-amylase-binding proteins. The functional significance of α-amylase-binding proteins in oral colonization by streptococci is important for understanding how salivary components influence oral biofilm formation by these important dental plaque species. This review summarizes the results of an extensive series of studies that have sought to define the molecular basis for α-amylase binding to the surface of the bacterium as well as the biological significance of this phenomenon in dental plaque biofilm formation. PMID:23144140

  13. Oral Fusobacterium nucleatum subsp. polymorphum binds to human salivary α-amylase.

    PubMed

    Zulfiqar, M; Yamaguchi, T; Sato, S; Oho, T

    2013-12-01

    Fusobacterium nucleatum acts as an intermediate between early and late colonizers in the oral cavity. In this study, we showed that F. nucleatum subsp. polymorphum can bind to a salivary component with a molecular weight of approximately 110 kDa and identified the protein and another major factor of 55 kDa, as salivary α-amylase by time-of-flight mass spectrometry and immuno-reactions. Salivary α-amylase is present in both monomeric and dimeric forms and we found that formation of the dimer depends on copper ions. The F. nucleatum adhered to both monomeric and dimeric salivary α-amylases, but the numbers of bacteria bound to the dimeric form were more than those bound to the monomeric form. The degree of adherence of F. nucleatum to four α-amylases from different sources was almost the same, however its binding to β-amylase was considerably decreased. Among four α-amylase inhibitors tested, acarbose and type 1 and 3 inhibitors derived from wheat flour showed significant activity against the adhesion of F.nucleatum to monomeric and dimeric amylases, however voglibose had little effect. Moreover F. nucleatum cells inhibited the enzymatic activity of salivary α-amylase in a dose-dependent manner. These results suggest that F. nucleatum plays more important and positive role as an early colonizer for maturation of oral microbial colonization. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Salivary protein adsorption and Streptococccus gordonii adhesion to dental material surfaces.

    PubMed

    Schweikl, Helmut; Hiller, Karl-Anton; Carl, Ulrich; Schweiger, Rainer; Eidt, Andreas; Ruhl, Stefan; Müller, Rainer; Schmalz, Gottfried

    2013-10-01

    The initial adhesion of microorganisms to clinically used dental biomaterials is influenced by physico-chemical parameters like hydrophobicity and pre-adsorption of salivary proteins. Here, polymethyl methacrylate (PMMA), polyethylene (PE), polytetrafluoroethylene (PTFE), silicone (Mucopren soft), silorane-based (Filtek Silorane) and methacrylate-based (Tetric EvoCeram) dental composites, a conventional glassionomer cement as well as cobalt-chromium-molybdenum (Co28Cr6Mo) and titanium (Ti6Al4V) were tested for adsorption of salivary proteins and adhesion of Streptococcus gordonii DL1. Wettability of material surfaces precoated with salivary proteins or left in phosphate-buffered saline was determined by the measurement of water contact angles. Amounts of adsorbed proteins were determined directly on material surfaces after biotinylation of amino groups and detection by horseradish peroxidase-conjugated avidin-D. The same technique was used to analyze for the binding of biotinylated bacteria to material surfaces. The highest amount of proteins (0.18μg/cm(2)) adsorbed to hydrophobic PTFE samples, and the lowest amount (0.025μg/cm(2)) was detected on silicone. The highest number of S. gordonii (3.2×10(4)CFU/mm(2)) adhered to the hydrophilic glassionomer cement surface coated with salivary proteins, and the lowest number (4×10(3)CFU/mm(2)) was found on the hydrophobic silorane-based composite. Hydrophobicity of pure material surfaces and the number of attached microorganisms were weakly negatively correlated. No such correlation between hydrophobicity and the number of bacteria was detected when surfaces were coated with salivary proteins. Functional groups added by the adsorption of specific salivary proteins to material surfaces are more relevant for initial bacterial adhesion than hydrophobicity as a physical property. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency

    PubMed Central

    Ma, Wen; Waffo-Teguo, Pierre; Jourdes, Michael; Li, Hua

    2016-01-01

    Astringency perception, as an essential parameter for high-quality red wine, is principally elicited by condensed tannins in diversified chemical structures. Condensed tannins, which are also known as proanthocyanidins (PAs), belong to the flavonoid class of polyphenols and are incorporated by multiple flavan-3-ols units according to their degree of polymerization (DP). However, the influence of DP size of PAs on astringency perception remains unclear for decades. This controversy was mainly attributed to the lack of efficient strategies to isolate the PAs in non-galloylated forms and with individual degree size from grape/wine. In the present study, the astringency intensity of purified and identified grape oligomeric tannins (DP ranged from 1 to 5) was firstly explored. A novel non-solid phase strategy was used to rapidly exclude the galloylated PAs from the non-galloylated PAs and fractionate the latter according to their DP size. Then, a series of PAs with individual DP size and galloylation were purified by an approach of preparative hydrophilic interaction chromatography. Furthermore, purified compounds were identified by both normal phase HPLC-FLD and reverse phase UHPLC-ESI-Q-TOF. Finally, the contribution of the astringency perception of the individual purified tannins was examined with a salivary protein binding ability test. The results were observed by HPLC-FLD and quantified by changes in PA concentration remaining in the filtrate. In summary, a new approach without a solid stationary phase was developed to isolate PAs according to their DP size. And a positive relationship between the DP of PAs and salivary protein affinity was revealed. PMID:27518822

  16. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency.

    PubMed

    Ma, Wen; Waffo-Teguo, Pierre; Jourdes, Michael; Li, Hua; Teissedre, Pierre-Louis

    2016-01-01

    Astringency perception, as an essential parameter for high-quality red wine, is principally elicited by condensed tannins in diversified chemical structures. Condensed tannins, which are also known as proanthocyanidins (PAs), belong to the flavonoid class of polyphenols and are incorporated by multiple flavan-3-ols units according to their degree of polymerization (DP). However, the influence of DP size of PAs on astringency perception remains unclear for decades. This controversy was mainly attributed to the lack of efficient strategies to isolate the PAs in non-galloylated forms and with individual degree size from grape/wine. In the present study, the astringency intensity of purified and identified grape oligomeric tannins (DP ranged from 1 to 5) was firstly explored. A novel non-solid phase strategy was used to rapidly exclude the galloylated PAs from the non-galloylated PAs and fractionate the latter according to their DP size. Then, a series of PAs with individual DP size and galloylation were purified by an approach of preparative hydrophilic interaction chromatography. Furthermore, purified compounds were identified by both normal phase HPLC-FLD and reverse phase UHPLC-ESI-Q-TOF. Finally, the contribution of the astringency perception of the individual purified tannins was examined with a salivary protein binding ability test. The results were observed by HPLC-FLD and quantified by changes in PA concentration remaining in the filtrate. In summary, a new approach without a solid stationary phase was developed to isolate PAs according to their DP size. And a positive relationship between the DP of PAs and salivary protein affinity was revealed.

  17. A Crayfish Insulin-like-binding Protein

    PubMed Central

    Rosen, Ohad; Weil, Simy; Manor, Rivka; Roth, Ziv; Khalaila, Isam; Sagi, Amir

    2013-01-01

    Across the animal kingdom, the involvement of insulin-like peptide (ILP) signaling in sex-related differentiation processes is attracting increasing attention. Recently, a gender-specific ILP was identified as the androgenic sex hormone in Crustacea. However, moieties modulating the actions of this androgenic insulin-like growth factor were yet to be revealed. Through molecular screening of an androgenic gland (AG) cDNA library prepared from the crayfish Cherax quadricarinatus, we have identified a novel insulin-like growth factor-binding protein (IGFBP) termed Cq-IGFBP. Based on bioinformatics analyses, the deduced Cq-IGFBP was shown to share high sequence homology with IGFBP family members from both invertebrates and vertebrates. The protein also includes a sequence determinant proven crucial for ligand binding, which according to three-dimensional modeling is assigned to the exposed outer surface of the protein. Recombinant Cq-IGFBP (rCq-IGFBP) protein was produced and, using a “pulldown” methodology, was shown to specifically interact with the insulin-like AG hormone of the crayfish (Cq-IAG). Particularly, using both mass spectral analysis and an immunological tool, rCq-IGFBP was shown to bind the Cq-IAG prohormone. Furthermore, a peptide corresponding to residues 23–38 of the Cq-IAG A-chain was found sufficient for in vitro recognition by rCq-IGFBP. Cq-IGFBP is the first IGFBP family member shown to specifically interact with a gender-specific ILP. Unlike their ILP ligands, IGFBPs are highly conserved across evolution, from ancient arthropods, like crustaceans, to humans. Such conservation places ILP signaling at the center of sex-related phenomena in early animal development. PMID:23775079

  18. A Sand Fly Salivary Protein Vaccine Shows Efficacy Against Vector-Transmitted Cutaneous Leishmaniasis in Nonhuman Primates

    DTIC Science & Technology

    2015-06-03

    demonstrating its immunogenicity in humans. PdSP15 sequence and structure show no homol- ogy to mammalian proteins, further demonstrating its potential...sequence or structure homology to known human proteins The protective salivary antigen PdSP15 shares sequence homology only to the small odorant binding...salivary proteins PpSP15 and PsSP15, respectively (Fig. 4B). To exclude any structural similarities to human pro teins, the crystal structure of PdPS15

  19. Novel Family of Insect Salivary Inhibitors Blocks Contact Pathway Activation by Binding to Polyphosphate, Heparin, and Dextran Sulfate

    PubMed Central

    Alvarenga, Patricia H.; Xu, Xueqing; Oliveira, Fabiano; Chagas, Andrezza C.; Nascimento, Clarissa R.; Francischetti, Ivo M.B.; Juliano, Maria A.; Juliano, Luiz; Scharfstein, Julio; Valenzuela, Jesus G.; Ribeiro, José M.C.; Andersen, John F.

    2014-01-01

    Objective Polyphosphate and heparin are anionic polymers released by activated mast cells and platelets that are known to stimulate the contact pathway of coagulation. These polymers promote both the autoactivation of factor XII and the assembly of complexes containing factor XI, prekallikrein, and high-molecular-weight kininogen. We are searching for salivary proteins from blood-feeding insects that counteract the effect of procoagulant and proinflammatory factors in the host, including elements of the contact pathway. Approach and Results Here, we evaluate the ability of the sand fly salivary proteins, PdSP15a and PdSP15b, to inhibit the contact pathway by disrupting binding of its components to anionic polymers. We attempt to demonstrate binding of the proteins to polyphosphate, heparin, and dextran sulfate. We also evaluate the effect of this binding on contact pathway reactions. We also set out to determine the x-ray crystal structure of PdSP15b and examine the determinants of relevant molecular interactions. Both proteins bind polyphosphate, heparin, and dextran sulfate with high affinity. Through this mechanism they inhibit the autoactivation of factor XII and factor XI, the reciprocal activation of factor XII and prekallikrein, the activation of factor XI by thrombin and factor XIIa, the cleavage of high-molecular-weight kininogen in plasma, and plasma extravasation induced by polyphosphate. The crystal structure of PdSP15b contains an amphipathic helix studded with basic side chains that forms the likely interaction surface. Conclusions The results of these studies indicate that the binding of anionic polymers by salivary proteins is used by blood feeders as an antihemostatic/anti-inflammatory mechanism. PMID:24092749

  20. A comparison of progestin and androgen receptor binding using the CoMFA technique

    NASA Astrophysics Data System (ADS)

    Loughney, Deborah A.; Schwender, Charles F.

    1992-12-01

    A series of 48 steroids has been studied with the SYBYL QSAR module using Relative Binding Affinities (RBAs) to progesterone and androgen receptors obtained from the literature. Models for the progesterone and androgen data were developed. Both models show regions where sterics and electrostatics correlate to binding affinity but are different for androgen and progesterone which suggests differences possibly important for receptor selectivity. The progesterone model is more predictive than the androgen (predictive r2 of 0.725 vs. 0.545 for progesterone and androgen, respectively).

  1. The low dose gamma ionising radiation impact upon cooperativity of androgen-specific proteins.

    PubMed

    Filchenkov, Gennady N; Popoff, Eugene H; Naumov, Alexander D

    2014-01-01

    The paper deals with effects of the ionising radiation (γ-IR, 0.5 Gy) upon serum testosterone (T), characteristics of testosterone-binding globulin (TeBG) and androgen receptor (AR) in parallel with observation of androgen (A) responsive enzyme activity - hexokinase (HK). The interdependence or relationships of T-levels with parameters of the proteins that provide androgenic regulation are consequently analyzed in post-IR dynamics. The IR-stress adjustment data reveal expediency of TeBG- and AR-cooperativity measurements for more precise assessments of endocrine A-control at appropriate emergencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Paxillin and embryonic PolyAdenylation Binding Protein (ePABP) engage to regulate androgen-dependent Xenopus laevis oocyte maturation - A model of kinase-dependent regulation of protein expression.

    PubMed

    Miedlich, Susanne U; Taya, Manisha; Young, Melissa Rasar; Hammes, Stephen R

    2017-06-15

    Steroid-triggered Xenopus laevis oocyte maturation is an elegant physiologic model of nongenomic steroid signaling, as it proceeds completely independent of transcription. We previously demonstrated that androgens are the main physiologic stimulator of oocyte maturation in Xenopus oocytes, and that the adaptor protein paxillin plays a crucial role in mediating this process through a positive feedback loop in which paxillin first enhances Mos protein translation, ensued by Erk2 activation and Erk-dependent phosphorylation of paxillin on serine residues. Phosphoserine-paxillin then further augments Mos protein translation and downstream Erk2 activation, resulting in meiotic progression. We hypothesized that paxillin enhances Mos translation by interacting with embryonic PolyAdenylation Binding Protein (ePABP) on polyadenylated Mos mRNA. Knockdown of ePABP phenocopied paxillin knockdown, with reduced Mos protein expression, Erk2 and Cdk1 activation, as well as oocyte maturation. In both Xenopus oocytes and mammalian cells (HEK-293), paxillin and ePABP constitutively interacted. Testosterone (Xenopus) or EGF (HEK-293) augmented ePABP-paxillin binding, as well as ePABP binding to Mos mRNA (Xenopus), in an Erk-dependent fashion. Thus, ePABP and paxillin work together in an Erk-dependent fashion to enhance Mos protein translation and promote oocyte maturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterization of salivary alpha-amylase binding to Streptococcus sanguis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, F.A.; Bergey, E.J.; Reddy, M.S.

    1989-09-01

    The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase was the prominent salivary component eluted from S. sanguis. Studies with {sup 125}I-labeled HSMSL or {sup 125}I-labeled HPS also demonstrated a componentmore » with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of ({sup 125}I)alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch.« less

  4. Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F.

    2008-08-19

    Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to themore » lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.« less

  5. Seminal Plasma Proteins as Androgen Receptor Coregulators Promote Prostate Cancer Growth

    DTIC Science & Technology

    2014-10-01

    structural proteins in human semen containing a high concentration of Zn2+, and their physiological functions have been well characterized...Specifically, semenogelins, upon binding to Zn2+, play an important role in gel-like formation of the semen [1]. After ejaculation, these proteins are degraded...determined whether SgI regulated the expression of PSA, an androgen- inducible AR target and also known to proteolyze SgI in semen [1,2], in prostate

  6. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay
    Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. Wilson
    U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  7. [Influence of fluorine on expression of androgen-binding protein and inhibin B mRNA in rat testis sertoli cells].

    PubMed

    Xu, Rui; Shang, Weichao; Liu, Jianmin; Duan, Liju; Ba, Yue; Zhang, Huizhen; Cheng, Xuemin; Cui, Liuxin

    2010-09-01

    To study the influence of fluorine on the transcription level of androgen binding protein (ABP) and inhibin B (INHB) mRNA in testis sertoli cells of Sprague Dawley rats. A method was set up the model to culture the Sertoli cells. Use a series of concentrations of NaF solutions of 2.5, 5.0, 10.0 and 20.0 mg/L to poison the cells and then, measure the relative expression amount of ABP and INHB mRNA by RT-PCR method. (1) Compare the relative expression amount of ABP mRNA of each group of different concentration with the control group. 2.5 mg/L group was higher than that in the control group, and the difference has the statistical significance (P < 0.05). The 5.0 mg/L group was also higher than that of the control group, and the difference has no statistical significance (P > 0.05). (2) Compare the relative expression amount of INH B mRNA of each group of different concentration with the control group. Both the 2.5 mg/L group and the 5.0 mg/L group were higher than that in the control group, and the difference has the statistical significance (P < 0.05). The rest 2 groups were lower than that in the control group and the difference has no statistical significance (P > 0.05). In the range of concentrations between 2.5 and 20.0 mg/L, no distinct influence of fluorine on the expression of androgen binding protein (ABP) and inhibin B (INHB) mRNA in testis sertoli cells of Sprague Dawley rats.

  8. Selective androgen receptor modulators: in pursuit of tissue-selective androgens.

    PubMed

    Omwancha, Josephat; Brown, Terry R

    2006-10-01

    The androgen receptor mediates the androgenic and anabolic activity of the endogenous steroids testosterone and 5alpha-dihydrotestosterone. Current knowledge of the androgen receptor protein structure, and the molecular mechanisms surrounding the binding properties and activities of agonists and antagonists has led to the design and development of novel nonsteroidal ligands with selected tissue-specific androgen receptor agonist and antagonist activities. The activity of these compounds, termed selective androgen receptor modulators (SARMs), is directed toward the maintenance or enhancement of anabolic effects on bone and muscle with minimal androgenic effects on prostate growth. SARMs are of potential therapeutic value in the treatment of male hypogonadism, osteoporosis, frailty and muscle wasting, burn injury and would healing, anemia, mood and depression, benign prostatic hyperplasia and prostate cancer.

  9. Evidence that a laminin-like insect protein mediates early events in the interaction of a Phytoparasite with its vector's salivary gland.

    PubMed

    de Almeida Dias, Felipe; Souza dos Santos, Andre Luis; Santos Lery, Letícia Miranda; Alves e Silva, Thiago Luiz; Oliveira, Mauricio Martins; Bisch, Paulo Mascarello; Saraiva, Elvira Maria; Souto-Padrón, Thaïs Cristina; Lopes, Angela Hampshire

    2012-01-01

    Phytomonas species are plant parasites of the family Trypanosomatidae, which are transmitted by phytophagous insects. Some Phytomonas species cause major agricultural damages. The hemipteran Oncopeltus fasciatus is natural and experimental host for several species of trypanosomatids, including Phytomonas spp. The invasion of the insect vectors' salivary glands is one of the most important events for the life cycle of Phytomonas species. In the present study, we show the binding of Phytomonas serpens at the external face of O. fasciatus salivary glands by means of scanning electron microscopy and the in vitro interaction of living parasites with total proteins from the salivary glands in ligand blotting assays. This binding occurs primarily through an interaction with a 130 kDa salivary gland protein. The mass spectrometry of the trypsin-digest of this protein matched 23% of human laminin-5 β3 chain precursor sequence by 16 digested peptides. A protein sequence search through the transcriptome of O. fasciatus embryo showed a partial sequence with 51% similarity to human laminin β3 subunit. Anti-human laminin-5 β3 chain polyclonal antibodies recognized the 130 kDa protein by immunoblotting. The association of parasites with the salivary glands was strongly inhibited by human laminin-5, by the purified 130 kDa insect protein, and by polyclonal antibodies raised against the human laminin-5 β3 chain. This is the first report demonstrating that a laminin-like molecule from the salivary gland of O. fasciatus acts as a receptor for Phytomonas binding. The results presented in this investigation are important findings that will support further studies that aim at developing new approaches to prevent the transmission of Phytomonas species from insects to plants and vice-versa.

  10. Evidence That a Laminin-Like Insect Protein Mediates Early Events in the Interaction of a Phytoparasite with Its Vector's Salivary Gland

    PubMed Central

    Dias, Felipe de Almeida; dos Santos, Andre Luis Souza; Lery, Letícia Miranda Santos; Alves e Silva, Thiago Luiz; Oliveira, Mauricio Martins; Bisch, Paulo Mascarello; Saraiva, Elvira Maria; Souto-Padrón, Thaïs Cristina; Lopes, Angela Hampshire

    2012-01-01

    Phytomonas species are plant parasites of the family Trypanosomatidae, which are transmitted by phytophagous insects. Some Phytomonas species cause major agricultural damages. The hemipteran Oncopeltus fasciatus is natural and experimental host for several species of trypanosomatids, including Phytomonas spp. The invasion of the insect vectors' salivary glands is one of the most important events for the life cycle of Phytomonas species. In the present study, we show the binding of Phytomonas serpens at the external face of O. fasciatus salivary glands by means of scanning electron microscopy and the in vitro interaction of living parasites with total proteins from the salivary glands in ligand blotting assays. This binding occurs primarily through an interaction with a 130 kDa salivary gland protein. The mass spectrometry of the trypsin-digest of this protein matched 23% of human laminin-5 β3 chain precursor sequence by 16 digested peptides. A protein sequence search through the transcriptome of O. fasciatus embryo showed a partial sequence with 51% similarity to human laminin β3 subunit. Anti-human laminin-5 β3 chain polyclonal antibodies recognized the 130 kDa protein by immunoblotting. The association of parasites with the salivary glands was strongly inhibited by human laminin-5, by the purified 130 kDa insect protein, and by polyclonal antibodies raised against the human laminin-5 β3 chain. This is the first report demonstrating that a laminin-like molecule from the salivary gland of O. fasciatus acts as a receptor for Phytomonas binding. The results presented in this investigation are important findings that will support further studies that aim at developing new approaches to prevent the transmission of Phytomonas species from insects to plants and vice-versa. PMID:23118944

  11. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY.
    MC Cardon, PC Hartig,LE Gray, Jr. and VS Wilson.
    U.S. EPA, ORD, NHEERL, RTD, Research Triangle Park, NC, USA.
    Typically, in vitro hazard assessments for ...

  12. Identification and characterization of a salivary-pellicle-binding peptide by phage display.

    PubMed

    Cukkemane, Nivedita; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Veerman, Enno C I

    2014-05-01

    Dental biofilms are associated with oral diseases, making their control necessary. One way to control them is to prevent initial bacterial adherence to the salivary pellicle and thereby eventually decrease binding of late colonizing potential pathogens. The goal of this study was to generate a salivary-pellicle-binding peptide (SPBP) with antifouling activity towards primary colonizing bacteria. In order to achieve this goal we aimed to: (i) identify novel SPBPs by phage display; (ii) characterize the binding and antifouling properties of the selected SPBPs. A library of 2×10(9) phages displaying a random sequence of 12-mer peptides was used to identify peptides that bound selectively to the in vitro salivary pellicle. Three rounds of panning resulted in the selection of 10 pellicle-binding phages, each displaying a novel peptide sequence. The peptides were synthesized and their binding to the in vitro salivary pellicle was characterized in the presence and absence of calcium ions and Tween-20. The antifouling property of hydroxyapatite (HA) and saliva-coated HA discs treated with and without SPBPs were evaluated against Streptococcus gordonii. Ten unique SPBPs were identified using the phage display. One of these peptides, SPBP 10 (NSAAVRAYSPPS), exhibited significant binding to the in vitro salivary pellicle which was neither influenced by calcium ions, nor affected by up to 0.5% Tween-20. Its antifouling property against S. gordonii was significantly higher on the treated surfaces than on untreated surfaces. Use of the phage display library enabled us to find a specific SPBP with antifouling property towards S. gordonii. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Estimation of salivary glucose, salivary amylase, salivary total protein and salivary flow rate in diabetics in India.

    PubMed

    Panchbhai, Arati S; Degwekar, Shirish S; Bhowte, Rahul R

    2010-09-01

    Diabetes is known to influence salivary composition and function, eventually affecting the oral cavity. We thus evaluated saliva samples for levels of glucose, amylase and total protein, and assessed salivary flow rate in diabetics and healthy non-diabetics. We also analyzed these parameters with regard to duration and type of diabetes mellitus and gender, and aimed to assess the interrelationships among the variables included in the study. A total of 120 age- and sex-matched participants were divided into 3 groups of 40 each; the uncontrolled diabetic group, the controlled diabetic group and the healthy non-diabetic group. Salivary investigations were performed using unstimulated whole saliva. Mean salivary glucose levels were found to be significantly elevated in both uncontrolled and controlled diabetics, as compared to healthy non-diabetics. There were significant decreases in mean salivary amylase levels in controlled diabetics when compared to healthy non-diabetics. Other than salivary glucose, no other parameters were found to be markedly affected in diabetes mellitus. Further research is needed to explore the clinical implications of these study results.

  14. An odorant-binding protein as a new allergen from Siberian hamster (Phodopus sungorus).

    PubMed

    Torres, J A; Pastor-Vargas, C; de las Heras, M; Vivanco, F; Cuesta, Javier; Sastre, J

    2012-01-01

    A case of anaphylaxis following a bite from a Siberian hamster (SH; Phodopus sungorus) is described. Skin prick tests with hair, urine and salivary gland extracts from SH were positive, while the tests were negative for hair extracts from other rodents. IgE immunoblotting with the patient serum revealed 3 IgE-binding bands of about 18, 21 and 23 kDa. When the patient's serum was preincubated with rabbit, mouse and gerbil hair extracts, no inhibition of the 3 SH IgE-binding bands was demonstrated. Proteins extracted from the 3 bands were analyzed by N-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry, and peptides were sequenced. IgE-binding bands were identified as being an odorant-binding protein belonging to the lipocalin family. Analysis of the 3 IgE-binding bands found in the hair, urine and salivary glands of SH showed a new allergenic protein lacking cross-reactivity with allergens from other rodents. The 3 bands likely correspond to isoforms of a single allergen. Copyright © 2011 S. Karger AG, Basel.

  15. A salivary EF-hand calcium-binding protein of the brown planthopper Nilaparvata lugens functions as an effector for defense responses in rice

    PubMed Central

    Ye, Wenfeng; Yu, Haixin; Jian, Yukun; Zeng, Jiamei; Ji, Rui; Chen, Hongdan; Lou, Yonggen

    2017-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a major pest of rice in Asia, is able to successfully puncture sieve tubes in rice with its piercing stylet and then to ingest phloem sap. How BPH manages to continuously feed on rice remains unclear. Here, we cloned the gene NlSEF1, which is highly expressed in the salivary glands of BPH. The NlSEF1 protein has EF-hand Ca2+-binding activity and can be secreted into rice plants when BPH feed. Infestation of rice by BPH nymphs whose NlSEF1 was knocked down elicited higher levels of Ca2+ and H2O2 but not jasmonic acid, jasmonoyl-isoleucine (JA-Ile) and SA in rice than did infestation by control nymphs; Consistently, wounding plus the recombination protein NlSEF1 suppressed the production of H2O2 in rice. Bioassays revealed that NlSEF1-knockdown BPH nymphs had a higher mortality rate and lower feeding capacity on rice than control nymphs. These results indicate that the salivary protein in BPH, NlSEF1, functions as an effector and plays important roles in interactions between BPH and rice by mediating the plant’s defense responses. PMID:28098179

  16. Response of Fatty Acid Synthesis Genes to the Binding of Human Salivary Amylase by Streptococcus gordonii

    PubMed Central

    Nikitkova, Anna E.; Haase, Elaine M.; Vickerman, M. Margaret; Gill, Steven R.

    2012-01-01

    Streptococcus gordonii, an important primary colonizer of dental plaque biofilm, specifically binds to salivary amylase via the surface-associated amylase-binding protein A (AbpA). We hypothesized that a function of amylase binding to S. gordonii may be to modulate the expression of chromosomal genes, which could influence bacterial survival and persistence in the oral cavity. Gene expression profiling by microarray analysis was performed to detect genes in S. gordonii strain CH1 that were differentially expressed in response to the binding of purified human salivary amylase versus exposure to purified heat-denatured amylase. Selected genes found to be differentially expressed were validated by quantitative reverse transcription-PCR (qRT-PCR). Five genes from the fatty acid synthesis (FAS) cluster were highly (10- to 35-fold) upregulated in S. gordonii CH1 cells treated with native amylase relative to those treated with denatured amylase. An abpA-deficient strain of S. gordonii exposed to amylase failed to show a response in FAS gene expression similar to that observed in the parental strain. Predicted phenotypic effects of amylase binding to S. gordonii strain CH1 (associated with increased expression of FAS genes, leading to changes in fatty acid synthesis) were noted; these included increased bacterial growth, survival at low pH, and resistance to triclosan. These changes were not observed in the amylase-exposed abpA-deficient strain, suggesting a role for AbpA in the amylase-induced phenotype. These results provide evidence that the binding of salivary amylase elicits a differential gene response in S. gordonii, resulting in a phenotypic adjustment that is potentially advantageous for bacterial survival in the oral environment. PMID:22247133

  17. Immune recognition of salivary proteins from the cattle tick Rhipicephalus microplus differs according to the genotype of the bovine host.

    PubMed

    Garcia, Gustavo Rocha; Maruyama, Sandra Regina; Nelson, Kristina T; Ribeiro, José Marcos Chaves; Gardinassi, Luiz Gustavo; Maia, Antonio Augusto Mendes; Ferreira, Beatriz Rossetti; Kooyman, Frans N J; de Miranda Santos, Isabel K F

    2017-03-14

    Males of the cattle tick Rhipicephalus microplus produce salivary immunoglobulin-binding proteins and allotypic variations in IgG are associated with tick loads in bovines. These findings indicate that antibody responses may be essential to control tick infestations. Infestation loads with cattle ticks are heritable: some breeds carry high loads of reproductively successful ticks, in others, few ticks feed and they reproduce inefficiently. Different patterns of humoral immunity against tick salivary proteins may explain these phenotypes. We describe the profiles of humoral responses against tick salivary proteins elicited during repeated artificial infestations of bovines of a tick-resistant (Nelore) and a tick-susceptible (Holstein) breed. We measured serum levels of total IgG1, IgG2 and IgE immunoglobulins and of IgG1 and IgG2 antibodies specific for tick salivary proteins. With liquid chromatography followed by mass spectrometry we identified tick salivary proteins that were differentially recognized by serum antibodies from tick-resistant and tick-susceptible bovines in immunoblots of tick salivary proteins separated by two-dimensional electrophoresis. Baseline levels of total IgG1 and IgG2 were significantly higher in tick-susceptible Holsteins compared with resistant Nelores. Significant increases in levels of total IgG1, but not of IgG2 accompanied successive infestations in both breeds. Resistant Nelores presented with significantly higher levels of salivary-specific antibodies before and at the first challenge with tick larvae; however, by the third challenge, tick-susceptible Holsteins presented with significantly higher levels of IgG1 and IgG2 tick salivary protein-specific antibodies. Importantly, sera from tick-resistant Nelores reacted with 39 tick salivary proteins in immunoblots of salivary proteins separated in two dimensions by electrophoresis versus only 21 spots reacting with sera from tick-susceptible Holsteins. Levels of tick saliva

  18. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.

    PubMed

    Obreque-Slíer, Elías; Peña-Neira, Alvaro; López-Solís, Remigio

    2010-03-24

    Red wine astringency has been associated with interactions of tannins with salivary proteins. Tannins are active protein precipitants. Not much evidence exists demonstrating contribution of other wine components to astringency. We aimed to investigate an eventual role of ethanol both in astringency and salivary protein-enological tannin interactions. A trained sensory panel scored perceived astringency. Salivary protein-tannin interactions were assessed by observing both tannin-dependent changes in salivary protein diffusion on cellulose membranes and tannin-induced salivary protein precipitation. Proanthocyanidins and gallotannins in aqueous and hydroalcoholic solutions were assayed. A biphasic mode of diffusion on cellulose membranes displayed by salivary proteins was unaffected after dilution with water or enological concentrations of ethanol. At those concentrations ethanol was not astringent. In aqueous solution, tannins provoked both restriction of salivary protein diffusion, protein precipitation, and astringency. Those effects were exacerbated by 13% ethanol. In summary, enological concentrations of ethanol exacerbate astringency and salivary protein-tannin interactions.

  19. Androgen-induced alterations in endometrial proteins crucial in recurrent miscarriages.

    PubMed

    Rahman, Tanzil Ur; Ullah, Kamran; Guo, Meng-Xi; Pan, Hai-Tao; Liu, Juan; Ren, Jun; Jin, Lu-Yang; Zhou, Yu-Zhong; Cheng, Yi; Sheng, Jian-Zhong; Huang, He-Feng

    2018-05-15

    High androgen level impairs endometrial receptivity in women experiences the recurrent miscarriage. The mechanism of androgen actions on endometrium is still uncertain. We hypothesized that androgen has a direct effect on the endometrium in women with recurrent miscarriage. In the present study, we assess the impact of androgen (A 2 ) at high concentration (10 -7 M) on Ishikawa cells compared with the physiological concentration of androgen (10 -9 M). To go into deeper analysis, we use global stable isotopes labeled profiling tactic using iTRAQ reagents, followed by 2D LC-MS/MS. We determine 175 non-redundant proteins, and 18 of these were quantified. The analysis of differentially expressed proteins (DEPs) identified 8 up-regulated proteins and 10 down-regulated in the high androgen group. These DEPs were examined by ingenuity pathway (IPA) analysis and established that these proteins might play vital roles in recurrent miscarriage and endometrium receptivity. In addition, proteins cyclin-dependent kinase inhibitor 2a (CDKN2a), endothelial protein C receptor (EPCR), armadillo repeat for velocardiofacial (ARVCF) were independently confirmed using western blot. Knockdown of CDKN2a significantly decreased the expression level of CDKN2a protein in ishikawa cells, and decreased migration ( p < 0.01), invasion ( p < 0.05), proliferation ( p < 0.05), and the rate of Jar spheroid attachment ( p < 0.05) to Ishikawa cell monolayer. The present results suggest that androgen at high concentration could alter the expression levels of proteins related to endometrium development and embryo implantation, which might be a cause of the impaired endometrial receptivity and miscarriage.

  20. Proline-Rich Salivary Proteins Have Extended Conformations

    PubMed Central

    Boze, Hélène; Marlin, Thérèse; Durand, Dominique; Pérez, Javier; Vernhet, Aude; Canon, Francis; Sarni-Manchado, Pascale; Cheynier, Véronique; Cabane, Bernard

    2010-01-01

    Abstract Three basic proline-rich salivary proteins have been produced through the recombinant route. IB5 is a small basic proline-rich protein that is involved in the binding of plant tannins in the oral cavity. II-1 is a larger protein with a closely related backbone; it is glycosylated, and it is also able to bind plant tannins. II-1ng has the same polypeptidic backbone as II-1, but it is not glycosylated. Small angle x-ray scattering experiments on dilute solutions of these proteins confirm that they are intrinsically disordered. IB5 and II-1ng can be described through a chain model including a persistence length and cross section. The measured radii of gyration (Rg = 27.9 and 41.0 ± 1 Å respectively) and largest distances (rmax = 110 and 155 ± 10 Å respectively) show that their average conformations are rather extended. The length of the statistical segment (twice the persistence length) is b = 30 Å, which is larger than the usual value (18 Å − 20 Å) for unstructured polypeptide chains. These characteristics are presumably related to the presence of polyproline helices within the polypeptidic backbones. For both proteins, the radius of gyration of the chain cross-section is Rc = 2.7 ± 0.2Å. The glycosylated protein II-1 has similar conformations but the presence of large polyoside sidegroups yields the structure of a branched macromolecule with the same hydrophobic backbone and hydrophilic branches. It is proposed that the unusually extended conformations of these proteins in solution facilitate the capture of plant tannins in the oral cavity. PMID:20643086

  1. Cigarette smoke-induced reduction in binding of the salivary translocator protein is not mediated by free radicals.

    PubMed

    Nagler, R; Savulescu, D; Gavish, M

    2016-02-01

    Oral cancer is the most common malignancy of the head and neck and its main inducer is exposure to cigarette smoke (CS) in the presence of saliva. It is commonly accepted that CS contributes to the pathogenesis of oral cancer via reactive free radicals and volatile aldehydes. The 18 kDa translocator protein (TSPO) is an intracellular receptor involved in proliferation and apoptosis, and has been linked to various types of cancer. The presence of TSPO in human saliva has been linked to oral cancer, and its binding affinity to its ligand is reduced following exposure to CS. In the present study we wished to further investigate the mechanism behind the CS-induced reduction of TSPO binding by exploring the possible mediatory role of reactive oxygen species (ROS) and volatile aldehydes in this process. We first analyzed TSPO binding in control saliva and in saliva exposed to CS in the presence and absence of various antioxidants. These experiments found that TSPO binding ability was not reversed by any of the antioxidants added, suggesting that CS exerts its effect on TSPO via mechanisms that do not involve volatile aldehydes and free radicals tested. Next, we analyzed TSPO binding in saliva following addition of exogenous ROS in the form of H2O2. These experiments found that TSPO binding was enhanced due to the treatment, once again showing that the CS-induced TSPO binding reduction is not mediated by this common form of ROS. However, the previously reported CS-induced reduction in salivary TSPO binding together with the role of TSPO in cells and its link to cancer strongly suggest that TSPO has a critical role in the pathogenesis of CS-induced oral cancer. The importance of further elucidating the mechanisms behind it should be emphasized. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Rapid bursts of androgen-binding protein (Abp) gene duplication occurred independently in diverse mammals

    PubMed Central

    2008-01-01

    Background The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) α, β and γ subunits. Further investigation of 14 α-like (Abpa) and 13 β- or γ-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Results Here, we interrogate the latest 'finished' mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. Conclusion We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes' participation in chemosensation and/or sexual identification. PMID:18269759

  3. Rapid bursts of androgen-binding protein (Abp) gene duplication occurred independently in diverse mammals.

    PubMed

    Laukaitis, Christina M; Heger, Andreas; Blakley, Tyler D; Munclinger, Pavel; Ponting, Chris P; Karn, Robert C

    2008-02-12

    The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) alpha, beta and gamma subunits. Further investigation of 14 alpha-like (Abpa) and 13 beta- or gamma-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Here, we interrogate the latest 'finished' mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes' participation in chemosensation and/or sexual identification.

  4. Interplay of biopharmaceutics, biopharmaceutics drug disposition and salivary excretion classification systems

    PubMed Central

    Idkaidek, Nasir M.

    2013-01-01

    The aim of this commentary is to investigate the interplay of Biopharmaceutics Classification System (BCS), Biopharmaceutics Drug Disposition Classification System (BDDCS) and Salivary Excretion Classification System (SECS). BCS first classified drugs based on permeability and solubility for the purpose of predicting oral drug absorption. Then BDDCS linked permeability with hepatic metabolism and classified drugs based on metabolism and solubility for the purpose of predicting oral drug disposition. On the other hand, SECS classified drugs based on permeability and protein binding for the purpose of predicting the salivary excretion of drugs. The role of metabolism, rather than permeability, on salivary excretion is investigated and the results are not in agreement with BDDCS. Conclusion The proposed Salivary Excretion Classification System (SECS) can be used as a guide for drug salivary excretion based on permeability (not metabolism) and protein binding. PMID:24493977

  5. Salivary protein polymorphisms and risk of dental caries: a systematic review.

    PubMed

    Lips, Andrea; Antunes, Leonardo Santos; Antunes, Lívia Azeredo; Pintor, Andrea Vaz Braga; Santos, Diana Amado Baptista Dos; Bachinski, Rober; Küchler, Erika Calvano; Alves, Gutemberg Gomes

    2017-06-05

    Dental caries is an oral pathology associated with both lifestyle and genetic factors. The caries process can be influenced by salivary composition, which includes ions and proteins. Studies have described associations between salivary protein polymorphisms and dental caries experience, while others have shown no association with salivary proteins genetic variability. The aim of this study is to assess the influence of salivary protein polymorphisms on the risk of dental caries by means of a systematic review of the current literature. An electronic search was performed in PubMed, Scopus, and Virtual Health Library. The following search terms were used: "dental caries susceptibility," "dental caries," "polymorphism, genetics," "saliva," "proteins," and "peptides." Related MeSH headings and free terms were included. The inclusion criteria comprised clinical investigations of subjects with and without caries. After application of these eligibility criteria, the selected articles were qualified by assessing their methodological quality. Initially, 338 articles were identified from the electronic databases after exclusion of duplicates. Exclusion criteria eliminated 322 articles, and 16 remained for evaluation. Eleven articles found a consistent association between salivary protein polymorphisms and risk of dental caries, for proteins related to antimicrobial activity (beta defensin 1 and lysozyme-like protein), pH control (carbonic anhydrase VI), and bacterial colonization/adhesion (lactotransferrin, mucin, and proline-rich protein Db). This systematic review demonstrated an association between genetic polymorphisms and risk of dental caries for most of the salivary proteins.

  6. The green tea polyphenol (-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health.

    PubMed

    Hara, Kumiko; Ohara, Masaru; Hayashi, Ikue; Hino, Takamune; Nishimura, Rumi; Iwasaki, Yoriko; Ogawa, Tetsuji; Ohyama, Yoshihiko; Sugiyama, Masaru; Amano, Hideaki

    2012-04-01

    Green tea is a popular drink throughout the world, and it contains various components, including the green tea polyphenol (-)-epigallocatechin gallate (EGCG). Tea interacts with saliva upon entering the mouth, so the interaction between saliva and EGCG interested us, especially with respect to EGCG-protein binding. SDS-PAGE revealed that several salivary proteins were precipitated after adding EGCG to saliva. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting indicated that the major proteins precipitated by EGCG were alpha-amylase, S100, and cystatins. Surface plasmon resonance revealed that EGCG bound to alpha-amylase at dissociation constant (K(d)) = 2.74 × 10(-6) M, suggesting that EGCG interacts with salivary proteins with a relatively strong affinity. In addition, EGCG inhibited the activity of alpha-amylase by non-competitive inhibition, indicating that EGCG is effective at inhibiting the formation of fermentable carbohydrates involved in caries formation. Interestingly, alpha-amylase reduced the antimicrobial activity of EGCG against the periodontal bacterium Aggregatibacter actinomycetemcomitans. Therefore, we considered that EGCG-salivary protein interactions might have both protective and detrimental effects with respect to oral health. © 2012 Eur J Oral Sci.

  7. What interactions drive the salivary mucosal pellicle formation?

    PubMed Central

    Gibbins, Hannah L.; Yakubov, Gleb E.; Proctor, Gordon B.; Wilson, Stephen; Carpenter, Guy H.

    2014-01-01

    The bound salivary pellicle is essential for protection of both the enamel and mucosa in the oral cavity. The enamel pellicle formation is well characterised, however the mucosal pellicle proteins have only recently been clarified and what drives their formation is still unclear. The aim of this study was to examine the salivary pellicle on particles with different surface properties (hydrophobic or hydrophilic with a positive or negative charge), to determine a suitable model to mimic the mucosal pellicle. A secondary aim was to use the model to test how transglutaminase may alter pellicle formation. Particles were incubated with resting whole mouth saliva, parotid saliva and submandibular/sublingual saliva. Following incubation and two PBS and water washes bound salivary proteins were eluted with two concentrations of SDS, which were later analysed using SDS-PAGE and Western blotting. Experiments were repeated with purified transglutaminase to determine how this epithelial-derived enzyme may alter the bound pellicle. Protein pellicles varied according to the starting salivary composition and the particle chemistry. Amylase, the single most abundant protein in saliva, did not bind to any particle indicating specific protein binding. Most proteins bound through hydrophobic interactions and a few according to their charges. The hydrophobic surface most closely matched the known salivary mucosal pellicle by containing mucins, cystatin and statherin but an absence of amylase and proline-rich proteins. This surface was further used to examine the effect of added transglutaminase. At the concentrations used only statherin showed any evidence of crosslinking with itself or another saliva protein. In conclusion, the formation of the salivary mucosal pellicle is probably mediated, at least in part, by hydrophobic interactions to the epithelial cell surface. PMID:24921197

  8. Androgen responsiveness of the new human endometrial cancer cell line MFE-296.

    PubMed

    Hackenberg, R; Beck, S; Filmer, A; Hushmand Nia, A; Kunzmann, R; Koch, M; Slater, E P; Schulz, K D

    1994-04-01

    MFE-296 endometrial cancer cells express androgen receptors in vitro. These cells, which are tumorigenic in nude mice, are derived from a moderately differentiated human endometrial adenocarcinoma. They express vimentin and the cytokeratins 7, 8, 18, and 19. Karyotyping revealed near-tetraploidy for most of the cells. No marker chromosomes were observed. DNA analyses confirmed the genetic identity of the cell line and the patient from whom the cell line was derived. Proliferation of MFE-296 cells was inhibited by the progestin R5020 and the androgen dihydrotestosterone (DHT). The inhibition of proliferation by DHT was antagonized by the antiandrogen Casodex, demonstrating the involvement of the androgen receptor. Androgen binding was determined at 22,000 binding sites per cell using a whole-cell assay (KD = 0.05 nM) and 30 fmol/mg protein with the dextran charcoal method; 7 fmol/mg protein of progesterone receptors were found, whereas estrogen receptors were below 5 fmol/mg protein. The androgen receptor was functionally intact, as demonstrated by transfection experiments with a reporter-gene construct, containing an androgen-responsive element. In MFE-296 cells the content of the androgen receptor was up-regulated by its own ligand.

  9. Endocrine Disrupting Chemicals Mediated through Binding Androgen Receptor Are Associated with Diabetes Mellitus

    PubMed Central

    Sakkiah, Sugunadevi; Wang, Tony; Zou, Wen; Wang, Yuping; Pan, Bohu; Tong, Weida; Hong, Huixiao

    2017-01-01

    Endocrine disrupting chemicals (EDCs) can mimic natural hormone to interact with receptors in the endocrine system and thus disrupt the functions of the endocrine system, raising concerns on the public health. In addition to disruption of the endocrine system, some EDCs have been found associated with many diseases such as breast cancer, prostate cancer, infertility, asthma, stroke, Alzheimer’s disease, obesity, and diabetes mellitus. EDCs that binding androgen receptor have been reported associated with diabetes mellitus in in vitro, animal, and clinical studies. In this review, we summarize the structural basis and interactions between androgen receptor and EDCs as well as the associations of various types of diabetes mellitus with the EDCs mediated through androgen receptor binding. We also discuss the perspective research for further understanding the impact and mechanisms of EDCs on the risk of diabetes mellitus. PMID:29295509

  10. Selectivity in progesterone and androgen receptor binding of progestagens used in oral contraceptives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloosterboer, H.J.; Vonk-Noordegraaf, C.A.; Turpijn, E.W.

    1988-09-01

    The relative binding affinities (RBAs) of four progestational compounds (norethisterone, levonorgestrel, 3-keto-desogestrel and gestodene) for the human progesterone and androgen receptors were measured in MCF-7 cytosol and intact MCF-7 cells. For the binding to the progesterone receptor, both Org 2058 and Org 3236 (or 3-keto-desogestrel) were used as labelled ligands. The following ranking (low to high) for the RBA of the nuclear (intact cells) progesterone receptor irrespective of the ligand used is found: norethisterone much less than levonorgestrel less than 3-keto-destogestrel less than gestodene. The difference between the various progestagens is significant with the exception of that between 3-keto-desogestrel andmore » gestodene, when Org 2058 is used as ligand. For the cytosolic progesterone receptor, the same order is found with the exception that similar RBAs are found for gestodene and 3-keto-desogestrel. The four progestagens clearly differ with respect to binding to the androgen receptor using dihydrotestosterone as labelled ligand in intact cells; the ranking (low to high) is: norethisterone less than 3 keto-desogestrel less than levonorgestrel and gestodene. The difference between 3-keto-desogestrel and levonorgestrel or gestodene is significant. The selectivity indices (ratio of the mean RBA for the progesterone receptor to that of androgen receptor) in intact cells are significantly higher for 3-keto-desogestrel and gestodene than for levonorgestrel and norethisterone. From these results we conclude that the introduction of the 18-methyl in norethisterone (levonorgestel) increases both the binding to the progesterone and androgen receptors.« less

  11. Sex hormone-binding globulin regulation of androgen bioactivity in vivo: validation of the free hormone hypothesis

    PubMed Central

    Laurent, Michaël R.; Hammond, Geoffrey L.; Blokland, Marco; Jardí, Ferran; Antonio, Leen; Dubois, Vanessa; Khalil, Rougin; Sterk, Saskia S.; Gielen, Evelien; Decallonne, Brigitte; Carmeliet, Geert; Kaufman, Jean-Marc; Fiers, Tom; Huhtaniemi, Ilpo T.; Vanderschueren, Dirk; Claessens, Frank

    2016-01-01

    Sex hormone-binding globulin (SHBG) is the high-affinity binding protein for androgens and estrogens. According to the free hormone hypothesis, SHBG modulates the bioactivity of sex steroids by limiting their diffusion into target tissues. Still, the in vivo physiological role of circulating SHBG remains unclear, especially since mice and rats lack circulating SHBG post-natally. To test the free hormone hypothesis in vivo, we examined total and free sex steroid concentrations and bioactivity on target organs in mice expressing a human SHBG transgene. SHBG increased total androgen and estrogen concentrations via hypothalamic-pituitary feedback regulation and prolonged ligand half-life. Despite markedly raised total sex steroid concentrations, free testosterone was unaffected while sex steroid bioactivity on male and female reproductive organs was attenuated. This occurred via a ligand-dependent, genotype-independent mechanism according to in vitro seminal vesicle organ cultures. These results provide compelling support for the determination of free or bioavailable sex steroid concentrations in medicine, and clarify important comparative differences between translational mouse models and human endocrinology. PMID:27748448

  12. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.

    PubMed

    Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T

    2003-01-01

    The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.

  13. Amino acid substitutions in the hormone-binding domain of the human androgen receptor alter the stability of the hormone receptor complex.

    PubMed Central

    Marcelli, M; Zoppi, S; Wilson, C M; Griffin, J E; McPhaul, M J

    1994-01-01

    We have investigated the basis of androgen resistance in seven unrelated individuals with complete testicular feminization or Reifenstein syndrome caused by single amino acid substitutions in the hormone-binding domain of the androgen receptor. Monolayer-binding assays of cultured genital skin fibroblasts demonstrated absent ligand binding, qualitative abnormalities of androgen binding, or a decreased amount of qualitatively normal receptor. The consequences of these mutations were examined by introducing the mutations by site-directed mutagenesis into the androgen receptor cDNA sequence and expressing the mutant cDNAs in mammalian cells. The effects of the amino acid substitutions on the binding of different androgens and on the capacity of the ligand-bound receptors to activate a reporter gene were investigated. Substantial differences were found in the responses of the mutant androgen receptors to incubation with testosterone, 5 alpha-dihydrotestosterone, and mibolerone. In several instances, increased doses of hormone or increased frequency of hormone addition to the incubation medium resulted in normal or near normal activation of a reporter gene by cells expressing the mutant androgen receptors. These studies suggest that the stability of the hormone receptor complex is a major determinant of receptor function in vivo. Images PMID:7929841

  14. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators.

    PubMed

    Bohl, Casey E; Wu, Zengru; Chen, Jiyun; Mohler, Michael L; Yang, Jun; Hwang, Dong Jin; Mustafa, Suni; Miller, Duane D; Bell, Charles E; Dalton, James T

    2008-10-15

    Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential in osteoporosis, male hormone replacement, and muscle wasting. Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent synthetic nonsteroidal SARMs with a substituted pendant arene referred to as the B-ring. We found that hydrophilic B-ring para-substituted analogs exhibit an additional region of hydrogen bonding not seen with steroidal compounds and that multiple halogen substitutions affect the B-ring conformation and aromatic interactions with Trp741. This information elucidates interactions important for high AR binding affinity and provides new insight for structure-based drug design.

  15. Salivary amylase induction by tannin-enriched diets as a possible countermeasure against tannins.

    PubMed

    da Costa, G; Lamy, E; Capela e Silva, F; Andersen, J; Sales Baptista, E; Coelho, A V

    2008-03-01

    Tannins are characterized by protein-binding affinity. They have astringent/bitter properties that act as deterrents, affecting diet selection. Two groups of salivary proteins, proline-rich proteins and histatins, are effective precipitators of tannin, decreasing levels of available tannins. The possibility of other salivary proteins having a co-adjuvant role on host defense mechanisms against tannins is unknown. In this work, we characterized and compared the protein profile of mice whole saliva from animals fed on three experimental diets: tannin-free diet, diet with the incorporation of 5% hydrolyzable tannins (tannic acid), or diet with 5% condensed tannins (quebracho). Protein analysis was performed by one-dimensional gel electrophoresis combined with Matrix-Assisted Laser Desorption Ionization-Time of Flight mass spectrometry to allow the dynamic study of interactions between diet and saliva. Since abundant salivary proteins obscure the purification and identification of medium and low expressed salivary proteins, we used centrifugation to obtain saliva samples free from proteins that precipitate after tannin binding. Data from Peptide Mass Fingerprinting allowed us to identify ten different proteins, some of them showing more than one isoform. Tannin-enriched diets were observed to change the salivary protein profile. One isoform of alpha-amylase was overexpressed with both types of tannins. Aldehyde reductase was only identified in saliva of the quebracho group. Additionally, a hypertrophy of parotid salivary gland acini was observed by histology, along with a decrease in body mass in the first 4 days of the experimental period.

  16. Application of protein expression profiling to screen chemicals for androgenic activity.

    PubMed

    Hemmer, Michael J; Salinas, Kimberly A; Harris, Peggy S

    2011-05-01

    Protein expression changes can be used for detection of biomarkers that can be applied diagnostically to screen chemicals for endocrine modifying activity. In this study, surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) coupled with a short term fish assay was used to investigate changes in plasma protein expression as a means to screen chemicals for androgenic activity. Adult gravid female sheepshead minnows (Cyprinodon variegatus) were placed into separate aquaria for seawater control, ethanol solvent control, and the following androgen agonist treatments at 5.0μg/L: dihydrotestosterone (DHT), methyldihydrotestosterone (MDHT), testosterone (T), methyltestosterone (MT) and trenbolone (TB). Treatments of 0.6μg/L endosulfan and 40μg/L chlorpyrifos (CP) served as non-androgenic negative stressor controls. Test concentrations were maintained using an intermittent flow-through dosing apparatus supplying exposure water at 20L/h. Fish were sampled at 7 days, the plasma diluted, processed on weak cation exchange CM10 ProteinChip arrays and analyzed. Spectral processing resulted in 249 individual m/z peak clusters for the androgen exposed fish. Partial least squares-discriminant analysis was used to develop an androgen-responsive model using sample spectra from exposures with DHT and unexposed solvent control fish as the training set. The androgen classification model performed with ≥79% specificity (% true negative) and ≥70% sensitivity (% true positive) for non-aromatizable androgens. The aromatizable androgens T and MT were classified as androgenic with specificities of 42 and 79%, respectively. The reduction in sensitivity observed with T is thought to be caused by its metabolic conversion to an estrogen by aromatase. The results of these studies show diagnostic plasma protein expression models can correctly classify chemicals by their androgenic activity using a combination of high throughput mass spectrometry and

  17. Na+-glucose cotransporter SGLT1 protein in salivary glands: potential involvement in the diabetes-induced decrease in salivary flow.

    PubMed

    Sabino-Silva, R; Freitas, H S; Lamers, M L; Okamoto, M M; Santos, M F; Machado, U F

    2009-03-01

    Oral health complications in diabetes include decreased salivary secretion. The SLC5A1 gene encodes the Na(+)-glucose cotransporter SGLT1 protein, which not only transports glucose, but also acts as a water channel. Since SLC5A1 expression is altered in kidneys of diabetic subjects, we hypothesize that it could also be altered in salivary glands, contributing to diabetic dysfunction. The present study shows a diabetes-induced decrease (p < 0.001) in salivary secretion, which was accompanied by enhanced (p < 0.05) SGLT1 mRNA expression in parotid (50%) and submandibular (30%) glands. Immunohistochemical analysis of parotid gland of diabetic rats revealed that SGLT1 protein expression increased in the luminal membrane of ductal cells, which can stimulate water reabsorption from primary saliva. Furthermore, SGLT1 protein was reduced in myoepithelial cells of the parotid from diabetic animals, and that, by reducing cellular contractile activity, might also be related to reduced salivary flux. Six-day insulin-treated diabetic rats reversed all alterations. In conclusion, diabetes increases SLC5A1 gene expression in salivary glands, increasing the SGLT1 protein content in the luminal membrane of ductal cells, which, by increasing water reabsorption, might explain the diabetes-induced decrease in salivary secretion.

  18. Regulation of expression of Na+,K+-ATPase in androgen-dependent and androgen-independent prostate cancer

    PubMed Central

    Blok, L J; Chang, G T G; Steenbeek-Slotboom, M; Weerden, W M van; Swarts, H G P; Pont, J J H H M De; Steenbrugge, G J van; Brinkmann, A O

    1999-01-01

    The β1-subunit of Na+,K+-ATPase was isolated and identified as an androgen down-regulated gene. Expression was observed at high levels in androgen-independent as compared to androgen-dependent (responsive) human prostate cancer cell lines and xenografts when grown in the presence of androgens. Down-regulation of the β1-subunit was initiated at concentrations between 0.01 nM and 0.03 nM of the synthetic androgen R1881 after relatively long incubation times (> 24 h). Using polyclonal antibodies, the concentration of β1-subunit protein, but not of the α1-subunit protein, was markedly reduced in androgen-dependent human prostate cancer cells (LNCaP-FGC) cultured in the presence of androgens. In line with these observations it was found that the protein expression of total Na+,K+-ATPase in the membrane (measured by 3H-ouabain binding) was also markedly decreased. The main function of Na+,K+-ATPase is to maintain sodium and potassium homeostasis in animal cells. The resulting electrochemical gradient is facilitative for transport of several compounds over the cell membrane (for example cisplatin, a chemotherapeutic agent experimentally used in the treatment of hormone-refractory prostate cancer). Here we observed that a ouabain-induced decrease of Na+,K+-ATPase activity in LNCaP-FGC cells results in reduced sensitivity of these cells to cisplatin-treatment. Surprisingly, androgen-induced decrease of Na+,K+-ATPase expression, did not result in significant protection against the chemotherapeutic agent. © 1999 Cancer Research Campaign PMID:10487609

  19. Turbidity as a measure of salivary protein reactions with astringent substances.

    PubMed

    Horne, John; Hayes, John; Lawless, Harry T

    2002-09-01

    Binding of tannins to proline-rich proteins has been proposed as an initial step in the development of astringent sensations. In beer and fruit juices, formation of tannin-protein complexes leads to the well-known effect of haze development or turbidity. Two experiments examined the development of turbidity in human saliva when mixed with tannins as a potential in vitro correlate of astringent sensations. In the first study, haze was measured in filtered human saliva mixed with a range of tannic acid concentrations known to produce supra-threshold psychophysical responses. The second study examined relationships among individual differences in haze development and the magnitude of astringency ratings. Mostly negative correlations were found, consistent with the notion that high levels of salivary proteins protect oral tissues from the drying effects of tannic acid.

  20. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Il Hwan; Pham, Van; Jablonka, Willy

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes, Culex, and Anopheles mosquito species. Using isothermal titration calorimetry,more » we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary “long” D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.« less

  1. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone.

    PubMed

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G; Ribeiro, José M C; Andersen, John F

    2017-09-15

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes , Culex , and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary "long" D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10 R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  2. Towards a Proteomic Catalogue and Differential Annotation of Salivary Gland Proteins in Blood Fed Malaria Vector Anopheles culicifacies by Mass Spectrometry.

    PubMed

    Rawal, Ritu; Vijay, Sonam; Kadian, Kavita; Singh, Jagbir; Pande, Veena; Sharma, Arun

    2016-01-01

    In order to understand the importance of functional proteins in mosquito behavior, following blood meal, a baseline proteomic dataset is essential for providing insights into the physiology of blood feeding. Therefore, in this study as first step, in solution and 1-D electrophoresis digestion approach combined with tandem mass spectrometry (nano LC-MS/MS) and computational bioinformatics for data mining was used to prepare a baseline proteomic catalogue of salivary gland proteins of sugar fed An. culicifacies mosquitoes. A total of 106 proteins were identified and analyzed by SEQUEST algorithm against mosquito protein database from Uniprot/NCBI. Importantly, D7r1, D7r2, D7r4, salivary apyrase, anti-platelet protein, calreticulin, antigen 5 family proteins were identified and grouped on the basis of biological and functional roles. Secondly, differential protein expression and annotations between salivary glands of sugar fed vs blood fed mosquitoes was analyzed using 2-Delectrophoresis combined with MALDI-TOF mass spectrometry. The alterations in the differential expression of total 38 proteins was observed out of which 29 proteins like beclin-1, phosphorylating proteins, heme oxygenase 1, ferritin, apoptotic proteins, coagulation and immunity like, serine proteases, serpins, c-type lectin and protein in regulation of blood feeding behavior were found to be up regulated while 9 proteins related to blood feeding, juvenile hormone epoxide hydrolase ii, odorant binding proteins and energy metabolic enzymes were found to be down regulated. To our knowledge, this study provides a first time baseline proteomic dataset and functional annotations of An. culicifacies salivary gland proteins that may be involved during the blood feeding. Identification of differential salivary proteins between sugar fed and blood fed mosquitoes and their plausible role may provide insights into the physiological processes associated with feeding behavior and sporozoite transmission during the

  3. Towards a Proteomic Catalogue and Differential Annotation of Salivary Gland Proteins in Blood Fed Malaria Vector Anopheles culicifacies by Mass Spectrometry

    PubMed Central

    Rawal, Ritu; Vijay, Sonam; Kadian, Kavita; Singh, Jagbir; Pande, Veena; Sharma, Arun

    2016-01-01

    In order to understand the importance of functional proteins in mosquito behavior, following blood meal, a baseline proteomic dataset is essential for providing insights into the physiology of blood feeding. Therefore, in this study as first step, in solution and 1-D electrophoresis digestion approach combined with tandem mass spectrometry (nano LC-MS/MS) and computational bioinformatics for data mining was used to prepare a baseline proteomic catalogue of salivary gland proteins of sugar fed An. culicifacies mosquitoes. A total of 106 proteins were identified and analyzed by SEQUEST algorithm against mosquito protein database from Uniprot/NCBI. Importantly, D7r1, D7r2, D7r4, salivary apyrase, anti-platelet protein, calreticulin, antigen 5 family proteins were identified and grouped on the basis of biological and functional roles. Secondly, differential protein expression and annotations between salivary glands of sugar fed vs blood fed mosquitoes was analyzed using 2-Delectrophoresis combined with MALDI-TOF mass spectrometry. The alterations in the differential expression of total 38 proteins was observed out of which 29 proteins like beclin-1, phosphorylating proteins, heme oxygenase 1, ferritin, apoptotic proteins, coagulation and immunity like, serine proteases, serpins, c-type lectin and protein in regulation of blood feeding behavior were found to be up regulated while 9 proteins related to blood feeding, juvenile hormone epoxide hydrolase ii, odorant binding proteins and energy metabolic enzymes were found to be down regulated. To our knowledge, this study provides a first time baseline proteomic dataset and functional annotations of An. culicifacies salivary gland proteins that may be involved during the blood feeding. Identification of differential salivary proteins between sugar fed and blood fed mosquitoes and their plausible role may provide insights into the physiological processes associated with feeding behavior and sporozoite transmission during the

  4. Development of Protein Degradation Inducers of Androgen Receptor by Conjugation of Androgen Receptor Ligands and Inhibitor of Apoptosis Protein Ligands.

    PubMed

    Shibata, Norihito; Nagai, Katsunori; Morita, Yoko; Ujikawa, Osamu; Ohoka, Nobumichi; Hattori, Takayuki; Koyama, Ryokichi; Sano, Osamu; Imaeda, Yasuhiro; Nara, Hiroshi; Cho, Nobuo; Naito, Mikihiko

    2018-01-25

    Targeted protein degradation using small molecules is a novel strategy for drug development. We have developed hybrid molecules named specific and nongenetic inhibitor of apoptosis protein [IAP]-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to degrade target proteins. Here, we show novel SNIPERs capable of inducing proteasomal degradation of the androgen receptor (AR). Through derivatization of the SNIPER(AR) molecule at the AR ligand and IAP ligand and linker, we developed 42a (SNIPER(AR)-51), which shows effective protein knockdown activity against AR. Consistent with the degradation of the AR protein, 42a inhibits AR-mediated gene expression and proliferation of androgen-dependent prostate cancer cells. In addition, 42a efficiently induces caspase activation and apoptosis in prostate cancer cells, which was not observed in the cells treated with AR antagonists. These results suggest that SNIPER(AR)s could be leads for an anticancer drug against prostate cancers that exhibit AR-dependent proliferation.

  5. Salivary Defense Proteins: Their Network and Role in Innate and Acquired Oral Immunity

    PubMed Central

    Fábián, Tibor Károly; Hermann, Péter; Beck, Anita; Fejérdy, Pál; Fábián, Gábor

    2012-01-01

    There are numerous defense proteins present in the saliva. Although some of these molecules are present in rather low concentrations, their effects are additive and/or synergistic, resulting in an efficient molecular defense network of the oral cavity. Moreover, local concentrations of these proteins near the mucosal surfaces (mucosal transudate), periodontal sulcus (gingival crevicular fluid) and oral wounds and ulcers (transudate) may be much greater, and in many cases reinforced by immune and/or inflammatory reactions of the oral mucosa. Some defense proteins, like salivary immunoglobulins and salivary chaperokine HSP70/HSPAs (70 kDa heat shock proteins), are involved in both innate and acquired immunity. Cationic peptides and other defense proteins like lysozyme, bactericidal/permeability increasing protein (BPI), BPI-like proteins, PLUNC (palate lung and nasal epithelial clone) proteins, salivary amylase, cystatins, prolin-rich proteins, mucins, peroxidases, statherin and others are primarily responsible for innate immunity. In this paper, this complex system and function of the salivary defense proteins will be reviewed. PMID:22605979

  6. Putative Prostate Cancer Risk SNP in an Androgen Receptor‐Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites

    PubMed Central

    Bu, Huajie; Narisu, Narisu; Schlick, Bettina; Rainer, Johannes; Manke, Thomas; Schäfer, Georg; Pasqualini, Lorenza; Chines, Peter; Schweiger, Michal R.; Fuchsberger, Christian

    2015-01-01

    ABSTRACT Genome‐wide association studies have identified genomic loci, whose single‐nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the mechanisms of most of these variants are largely unknown. We integrated chromatin‐immunoprecipitation‐coupled sequencing and microarray expression profiling in TMPRSS2‐ERG gene rearrangement positive DUCaP cells with the GWAS PCa risk SNPs catalog to identify disease susceptibility SNPs localized within functional androgen receptor‐binding sites (ARBSs). Among the 48 GWAS index risk SNPs and 3,917 linked SNPs, 80 were found located in ARBSs. Of these, rs11891426:T>G in an intron of the melanophilin gene (MLPH) was within a novel putative auxiliary AR‐binding motif, which is enriched in the neighborhood of canonical androgen‐responsive elements. T→G exchange attenuated the transcriptional activity of the ARBS in an AR reporter gene assay. The expression of MLPH in primary prostate tumors was significantly lower in those with the G compared with the T allele and correlated significantly with AR protein. Higher melanophilin level in prostate tissue of patients with a favorable PCa risk profile points out a tumor‐suppressive effect. These results unravel a hidden link between AR and a functional putative PCa risk SNP, whose allele alteration affects androgen regulation of its host gene MLPH. PMID:26411452

  7. Membrane androgen receptor characteristics of human ZIP9 (SLC39A) zinc transporter in prostate cancer cells: Androgen-specific activation and involvement of an inhibitory G protein in zinc and MAP kinase signaling.

    PubMed

    Thomas, Peter; Pang, Yefei; Dong, Jing

    2017-05-15

    Characteristics of novel human membrane androgen receptor (mAR), ZIP9 (SLC39A9), were investigated in ZIP9-transfected PC-3 cells (PC3-ZIP9). Ligand blot analysis showed plasma membrane [ 3 H]-T binding corresponds to the position of ZIP9 on Western blots which suggests ZIP9 can bind [ 3 H]-T alone, without a protein partner. Progesterone antagonized testosterone actions, blocking increases in zinc, Erk phosphorylation and apoptosis, further evidence that ZIP9 is specifically activated by androgens. Pre-treatment with GTPγS and pertussis toxin decreased plasma membrane [ 3 H]-T binding and blocked testosterone-induced increases in Erk phosphorylation and intracellular zinc, indicating ZIP9 is coupled to an inhibitory G protein (Gi) that mediates both MAP kinase and zinc signaling. Testosterone treatment of nuclei and mitochondria which express ZIP9 decreased their zinc contents, suggesting ZIP9 also regulates free zinc through releasing it from these intracellular organelles. The results show ZIP9 is a specific Gi coupled-mAR mediating testosterone-induced MAP kinase and zinc signaling in PC3-ZIP9 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Substitution of synthetic chimpanzee androgen receptor for human androgen receptor in competitive binding and transcriptional activation assays for EDC screening

    EPA Science Inventory

    The potential effect of receptor-mediated endocrine modulators across species is of increasing concern. In attempts to address these concerns we are developing androgen and estrogen receptor binding assays using recombinant hormone receptors from a number of species across differ...

  9. Visualising Androgen Receptor Activity in Male and Female Mice

    PubMed Central

    Dart, D. Alwyn; Waxman, Jonathan; Aboagye, Eric O.; Bevan, Charlotte L.

    2013-01-01

    Androgens, required for normal development and fertility of males and females, have vital roles in the reproductive tract, brain, cardiovascular system, smooth muscle and bone. Androgens function via the androgen receptor (AR), a ligand-dependent transcription factor. To assay and localise AR activity in vivo we generated the transgenic “ARE-Luc” mouse, expressing a luciferase reporter gene under the control of activated endogenous AR. In vivo imaging of androgen-mediated luciferase activity revealed several strongly expressing tissues in the male mouse as expected and also in certain female tissues. In males the testes, prostate, seminal vesicles and bone marrow all showed high AR activity. In females, strong activity was seen in the ovaries, uterus, omentum tissue and mammary glands. In both sexes AR expression and activity was also found in salivary glands, the eye (and associated glands), adipose tissue, spleen and, notably, regions of the brain. Luciferase protein expression was found in the same cell layers as androgen receptor expression. Additionally, mouse AR expression and activity correlated well with AR expression in human tissues. The anti-androgen bicalutamide reduced luciferase signal in all tissues. Our model demonstrates that androgens can act in these tissues directly via AR, rather than exclusively via androgen aromatisation to estrogens and activation of the estrogen receptor. Additionally, it visually demonstrates the fundamental importance of AR signalling outside the normal role in the reproductive organs. This model represents an important tool for physiological and developmental analysis of androgen signalling, and for characterization of known and novel androgenic or antiandrogenic compounds. PMID:23940781

  10. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1

    PubMed Central

    Nambiar, Dhanya K.; Deep, Gagan; Singh, Rana P.; Agarwal, Chapla; Agarwal, Rajesh

    2014-01-01

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis. PMID:25294820

  11. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1.

    PubMed

    Nambiar, Dhanya K; Deep, Gagan; Singh, Rana P; Agarwal, Chapla; Agarwal, Rajesh

    2014-10-30

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis.

  12. Modulation of the cytosolic androgen receptor in striated muscle by sex steroids

    NASA Technical Reports Server (NTRS)

    Rance, N. E.; Max, S. E.

    1982-01-01

    The influence of orchiectomy (GDX) and steroid administration on the level of the cytosolic androgen receptor in the rat levator ani muscle and in rat skeletal muscles (tibialis anterior and extensor digitorum longus) was studied. Androgen receptor binding to muscle cytosol was measured using H-3 methyltrienolone (R1881) as ligand, 100 fold molar excess unlabeled R1881 to assess nonspecific binding, and 500 fold molar excess of triamcinolone acetonide to prevent binding to glucocorticoid and progestin receptors. Results demonstrate that modification of the levels of sex steroids can alter the content of androgen receptors of rat striated muscle. Data suggest that: (1) cytosolic androgen receptor levels increase after orchiectomy in both levator ani muscle and skeletal muscle; (2) the acute increase in receptor levels is blocked by an inhibitor of protein synthesis; and (3) administration of estradiol-17 beta to castrated animals increases receptor binding in levator ani muscle but not in skeletal muscle.

  13. Assessment of a recombinant androgen receptor binding assay: initial steps towards validation.

    PubMed

    Freyberger, Alexius; Weimer, Marc; Tran, Hoai-Son; Ahr, Hans-Jürgen

    2010-08-01

    Despite more than a decade of research in the field of endocrine active compounds with affinity for the androgen receptor (AR), still no validated recombinant AR binding assay is available, although recombinant AR can be obtained from several sources. With funding from the European Union (EU)-sponsored 6th framework project, ReProTect, we developed a model protocol for such an assay based on a simple AR binding assay recently developed at our institution. Important features of the protocol were the use of a rat recombinant fusion protein to thioredoxin containing both the hinge region and ligand binding domain (LBD) of the rat AR (which is identical to the human AR-LBD) and performance in a 96-well plate format. Besides two reference compounds [dihydrotestosterone (DHT), androstenedione] ten test compounds with different affinities for the AR [levonorgestrel, progesterone, prochloraz, 17alpha-methyltestosterone, flutamide, norethynodrel, o,p'-DDT, dibutylphthalate, vinclozolin, linuron] were used to explore the performance of the assay. At least three independent experiments per compound were performed. The AR binding properties of reference and test compounds were well detected, in terms of the relative ranking of binding affinities, there was good agreement with published data obtained from experiments using recombinant AR preparations. Irrespective of the chemical nature of the compound, individual IC(50)-values for a given compound varied by not more than a factor of 2.6. Our data demonstrate that the assay reliably ranked compounds with strong, weak, and no/marginal affinity for the AR with high accuracy. It avoids the manipulation and use of animals, as a recombinant protein is used and thus contributes to the 3R concept. On the whole, this assay is a promising candidate for further validation. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Selection shaped the evolution of mouse androgen-binding protein (ABP) function and promoted the duplication of Abp genes.

    PubMed

    Karn, Robert C; Laukaitis, Christina M

    2014-08-01

    In the present article, we summarize two aspects of our work on mouse ABP (androgen-binding protein): (i) the sexual selection function producing incipient reinforcement on the European house mouse hybrid zone, and (ii) the mechanism behind the dramatic expansion of the Abp gene region in the mouse genome. Selection unifies these two components, although the ways in which selection has acted differ. At the functional level, strong positive selection has acted on key sites on the surface of one face of the ABP dimer, possibly to influence binding to a receptor. A different kind of selection has apparently driven the recent and rapid expansion of the gene region, probably by increasing the amount of Abp transcript, in one or both of two ways. We have shown previously that groups of Abp genes behave as LCRs (low-copy repeats), duplicating as relatively large blocks of genes by NAHR (non-allelic homologous recombination). The second type of selection involves the close link between the accumulation of L1 elements and the expansion of the Abp gene family by NAHR. It is probably predicated on an initial selection for increased transcription of existing Abp genes and/or an increase in Abp gene number providing more transcriptional sites. Either or both could increase initial transcript production, a quantitative change similar to increasing the volume of a radio transmission. In closing, we also provide a note on Abp gene nomenclature.

  15. Minoxidil may suppress androgen receptor-related functions.

    PubMed

    Hsu, Cheng-Lung; Liu, Jai-Shin; Lin, An-Chi; Yang, Chih-Hsun; Chung, Wen-Hung; Wu, Wen-Guey

    2014-04-30

    Although minoxidil has been used for more than two decades to treat androgenetic alopecia (AGA), an androgen-androgen receptor (AR) pathway-dominant disease, its precise mechanism of action remains elusive. We hypothesized that minoxidil may influence the AR or its downstream signaling. These tests revealed that minoxidil suppressed AR-related functions, decreasing AR transcriptional activity in reporter assays, reducing expression of AR targets at the protein level, and suppressing AR-positive LNCaP cell growth. Dissecting the underlying mechanisms, we found that minoxidil interfered with AR-peptide, AR-coregulator, and AR N/C-terminal interactions, as well as AR protein stability. Furthermore, a crystallographic analysis using the AR ligand-binding domain (LBD) revealed direct binding of minoxidil to the AR in a minoxidil-AR-LBD co-crystal model, and surface plasmon resonance assays demonstrated that minoxidil directly bound the AR with a K(d) value of 2.6 µM. Minoxidil also suppressed AR-responsive reporter activity and decreased AR protein stability in human hair dermal papilla cells. The current findings provide evidence that minoxidil could be used to treat both cancer and age-related disease, and open a new avenue for applications of minoxidil in treating androgen-AR pathway-related diseases.

  16. Minoxidil may suppress androgen receptor-related functions

    PubMed Central

    Hsu, Cheng-Lung; Liu, Jai-Shin; Lin, An-Chi; Yang, Chih-Hsun; Chung, Wen-Hung; Wu, Wen-Guey

    2014-01-01

    Although minoxidil has been used for more than two decades to treat androgenetic alopecia (AGA), an androgen-androgen receptor (AR) pathway-dominant disease, its precise mechanism of action remains elusive. We hypothesized that minoxidil may influence the AR or its downstream signaling. These tests revealed that minoxidil suppressed AR-related functions, decreasing AR transcriptional activity in reporter assays, reducing expression of AR targets at the protein level, and suppressing AR-positive LNCaP cell growth. Dissecting the underlying mechanisms, we found that minoxidil interfered with AR-peptide, AR-coregulator, and AR N/C-terminal interactions, as well as AR protein stability. Furthermore, a crystallographic analysis using the AR ligand-binding domain (LBD) revealed direct binding of minoxidil to the AR in a minoxidil-AR-LBD co-crystal model, and surface plasmon resonance assays demonstrated that minoxidil directly bound the AR with a Kd value of 2.6 μM. Minoxidil also suppressed AR-responsive reporter activity and decreased AR protein stability in human hair dermal papilla cells. The current findings provide evidence that minoxidil could be used to treat both cancer and age-related disease, and open a new avenue for applications of minoxidil in treating androgen-AR pathway-related diseases. PMID:24742982

  17. The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling.

    PubMed

    Correa, Ricardo G; Krajewska, Maryla; Ware, Carl F; Gerlic, Motti; Reed, John C

    2014-03-30

    Prostate cancer (PCa) is among the leading causes of cancer-related death in men. Androgen receptor (AR) signaling plays a seminal role in prostate development and homeostasis, and dysregulation of this pathway is intimately linked to prostate cancer pathogenesis and progression. Here, we identify the cytosolic NLR-related protein NWD1 as a novel modulator of AR signaling. We determined that expression of NWD1 becomes elevated during prostate cancer progression, based on analysis of primary tumor specimens. Experiments with cultured cells showed that NWD1 expression is up-regulated by the sex-determining region Y (SRY) family proteins. Gene silencing procedures, in conjunction with transcriptional profiling, showed that NWD1 is required for expression of PDEF (prostate-derived Ets factor), which is known to bind and co-regulate AR. Of note, NWD1 modulates AR protein levels. Depleting NWD1 in PCa cell lines reduces AR levels and suppresses activity of androgen-driven reporter genes. NWD1 knockdown potently suppressed growth of androgen-dependent LNCaP prostate cancer cells, thus showing its functional importance in an AR-dependent tumor cell model. Proteomic analysis suggested that NWD1 associates with various molecular chaperones commonly related to AR complexes. Altogether, these data suggest a role for tumor-associated over-expression of NWD1 in dysregulation of AR signaling in PCa.

  18. Functional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: identification of a protective salivary protein against Leishmania braziliensis infection.

    PubMed

    de Moura, Tatiana R; Oliveira, Fabiano; Carneiro, Marcia W; Miranda, José Carlos; Clarêncio, Jorge; Barral-Netto, Manoel; Brodskyn, Cláudia; Barral, Aldina; Ribeiro, José M C; Valenzuela, Jesus G; de Oliveira, Camila I

    2013-01-01

    Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects salivary components that change the environment at the feeding site. Mice immunized with Phlebotomus papatasi salivary gland (SG) homogenate are protected against Leishmania major infection, while immunity to Lutzomyia intermedia SG homogenate exacerbated experimental Leishmania braziliensis infection. In humans, antibodies to Lu. intermedia saliva are associated with risk of acquiring L. braziliensis infection. Despite these important findings, there is no information regarding the repertoire of Lu. intermedia salivary proteins. A cDNA library from the Salivary Glands (SGs) of wild-caught Lu. intermedia was constructed, sequenced, and complemented by a proteomic approach based on 1D SDS PAGE and mass/mass spectrometry to validate the transcripts present in this cDNA library. We identified the most abundant transcripts and proteins reported in other sand fly species as well as novel proteins such as neurotoxin-like proteins, peptides with ML domain, and three small peptides found so far only in this sand fly species. DNA plasmids coding for ten selected transcripts were constructed and used to immunize BALB/c mice to study their immunogenicity. Plasmid Linb-11--coding for a 4.5-kDa protein--induced a cellular immune response and conferred protection against L. braziliensis infection. This protection correlated with a decreased parasite load and an increased frequency of IFN-γ-producing cells. We identified the most abundant and novel proteins present in the SGs of Lu. intermedia, a vector of cutaneous leishmaniasis in the Americas. We also show for the first time that immunity to a single salivary protein from Lu. intermedia can protect against cutaneous leishmaniasis caused by L. braziliensis.

  19. Discovery Proteomics Identifies a Molecular Link between the Coatomer Protein Complex I and Androgen Receptor-dependent Transcription*

    PubMed Central

    Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Lee, Jinhee; Wright, Michael E.

    2016-01-01

    Aberrant androgen receptor (AR)-dependent transcription is a hallmark of human prostate cancers. At the molecular level, ligand-mediated AR activation is coordinated through spatial and temporal protein-protein interactions involving AR-interacting proteins, which we designate the “AR-interactome.” Despite many years of research, the ligand-sensitive protein complexes involved in ligand-mediated AR activation in prostate tumor cells have not been clearly defined. Here, we describe the development, characterization, and utilization of a novel human LNCaP prostate tumor cell line, N-AR, which stably expresses wild-type AR tagged at its N terminus with the streptavidin-binding peptide epitope (streptavidin-binding peptide-tagged wild-type androgen receptor; SBP-AR). A bioanalytical workflow involving streptavidin chromatography and label-free quantitative mass spectrometry was used to identify SBP-AR and associated ligand-sensitive cytosolic proteins/protein complexes linked to AR activation in prostate tumor cells. Functional studies verified that ligand-sensitive proteins identified in the proteomic screen encoded modulators of AR-mediated transcription, suggesting that these novel proteins were putative SBP-AR-interacting proteins in N-AR cells. This was supported by biochemical associations between recombinant SBP-AR and the ligand-sensitive coatomer protein complex I (COPI) retrograde trafficking complex in vitro. Extensive biochemical and molecular experiments showed that the COPI retrograde complex regulates ligand-mediated AR transcriptional activation, which correlated with the mobilization of the Golgi-localized ARA160 coactivator to the nuclear compartment of prostate tumor cells. Collectively, this study provides a bioanalytical strategy to validate the AR-interactome and define novel AR-interacting proteins involved in ligand-mediated AR activation in prostate tumor cells. Moreover, we describe a cellular system to study how compartment-specific AR

  20. Proteomic Analysis of the Androgen Receptor via MS-compatible Purification of Biotinylated Protein on Streptavidin Resin

    PubMed Central

    Austin, Ryan J.; Smidansky, Heidi M.; Holstein, Carly A.; Chang, Deborah K.; Epp, Angela; Josephson, Neil C.; Martin, Daniel B.

    2012-01-01

    The strength of the streptavidin/biotin interaction poses challenges for the recovery of biotinylated molecules from streptavidin resins. As an alternative to high temperature elution in urea containing buffers, we show mono-biotinylated proteins can be released with relatively gentle heating in the presence of biotin and 2% SDS/Rapigest, avoiding protein carbamylation and minimizing streptavidin dissociation. We demonstrate the utility of this mild elution strategy in two studies of the human androgen receptor (AR). In the first, in which formaldehyde crosslinked complexes are analyzed in yeast, a mass spectrometry-based comparison of the AR complex using SILAC reveals an association between the androgen activated AR and the Hsp90 chaperonin, while Hsp70 chaperonins associate specifically with the unliganded complex. In the second study, the endogenous AR is quantified in the LNCaP cell line by absolute SILAC and MRM-MS showing approximately 127,000 AR copies per cell, substantially more than previously measured using radioligand binding. PMID:22116683

  1. Interactions between whey proteins and salivary proteins as related to astringency of whey protein beverages at low pH.

    PubMed

    Ye, A; Streicher, C; Singh, H

    2011-12-01

    Whey protein beverages have been shown to be astringent at low pH. In the present study, the interactions between model whey proteins (β-lactoglobulin and lactoferrin) and human saliva in the pH range from 7 to 2 were investigated using particle size, turbidity, and ζ-potential measurements and sodium dodecyl sulfate-PAGE. The correlation between the sensory results of astringency and the physicochemical data was discussed. Strong interactions between β-lactoglobulin and salivary proteins led to an increase in the particle size and turbidity of mixtures of both unheated and heated β-lactoglobulin and human saliva at pH ∼3.4. However, the large particle size and high turbidity that occurred at pH 2.0 were the result of aggregation of human salivary proteins. The intense astringency in whey protein beverages may result from these increases in particle size and turbidity at these pH values and from the aggregation and precipitation of human salivary proteins alone at pH <3.0. The involvement of salivary proteins in the interaction is a key factor in the perception of astringency in whey protein beverages. At any pH, the increases in particle size and turbidity were much smaller in mixtures of lactoferrin and saliva, which suggests that aggregation and precipitation may not be the only mechanism linked to the perception of astringency in whey protein. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Inhibitors for Androgen Receptor Activation Surfaces

    DTIC Science & Technology

    2008-09-01

    such as FKBP52 or HSP90 bind in vivo, and started a collaboration with Marc Cox at UT El Paso to test these possibilities. Our assays of mutated amino...will complete testing the compounds in full length AR constructs and publish the results. We have begun two collaborations, one with Marc Cox on...Prof. Marc Cox and Dr. Paul Rennie to identify proteins that bind to BF3 so that we may form crystals of the receptor with these proteins and learn more about function of the human androgen receptor.

  3. Molecular Interaction Between Salivary Proteins and Food Tannins.

    PubMed

    Silva, Mafalda Santos; García-Estévez, Ignacio; Brandão, Elsa; Mateus, Nuno; de Freitas, Victor; Soares, Susana

    2017-08-09

    Polyphenols interaction with salivary proteins (SP) has been related with organoleptic features such as astringency. The aim of this work was to study the interaction between some human SP and tannins through two spectroscopic techniques, fluorescence quenching, and saturation transfer difference-nuclear magnetic resonance (STD-NMR). Generally, the results showed a significant interaction between SP and both condensed tannins and ellagitannins. Herein, STD-NMR proved to be a useful tool to map tannins' epitopes of binding, while fluorescence quenching allowed one to discriminate binding affinities. Ellagitannins showed the greatest binding constants values (K SV from 20.1 to 94.1 mM -1 ; K A from 0.7 to 8.3 mM -1 ) in comparison with procyanidins (K SV from 5.4 to 40.0 mM -1 ; K A from 1.1 to 2.7 mM -1 ). In fact, punicalagin was the tannin that demonstrated the highest affinity for all three SP. Regarding SP, P-B peptide was the one with higher affinity for ellagitannins. On the other hand, cystatins showed in general the lower K SV and K A values. In the case of condensed tannins, statherin was the SP with the highest affinity, contrasting with the other two SP. Altogether, these results are evidence that the distinct SP present in the oral cavity have different abilities to interact with food tannins class.

  4. Host association influences variation at salivary protein genes in the bat ectoparasite Cimex adjunctus.

    PubMed

    Talbot, Benoit; Vonhof, Maarten J; Broders, Hugh G; Fenton, Brock; Keyghobadi, Nusha

    2018-05-01

    Parasite-host relationships create strong selection pressures that can lead to adaptation and increasing specialization of parasites to their hosts. Even in relatively loose host-parasite relationships, such as between generalist ectoparasites and their hosts, we may observe some degree of specialization of parasite populations to one of the multiple potential hosts. Salivary proteins are used by blood-feeding ectoparasites to prevent hemostasis in the host and maximize energy intake. We investigated the influence of association with specific host species on allele frequencies of salivary protein genes in Cimex adjunctus, a generalist blood-feeding ectoparasite of bats in North America. We analysed two salivary protein genes: an apyrase, which hydrolyses ATP at the feeding site and thus inhibits platelet aggregation, and a nitrophorin, which brings nitrous oxide to the feeding site, inhibiting platelet aggregation and vasoconstriction. We observed more variation at both salivary protein genes among parasite populations associated with different host species than among populations from different spatial locations associated with the same host species. The variation in salivary protein genes among populations on different host species was also greater than expected under a neutral scenario of genetic drift and gene flow. Finally, host species was an important predictor of allelic divergence in genotypes of individual C. adjunctus at both salivary protein genes. Our results suggest differing selection pressures on these two salivary protein genes in C. adjunctus depending on the host species. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  5. Functional Transcriptomics of Wild-Caught Lutzomyia intermedia Salivary Glands: Identification of a Protective Salivary Protein against Leishmania braziliensis Infection

    PubMed Central

    Carneiro, Marcia W.; Miranda, José Carlos; Clarêncio, Jorge; Barral-Netto, Manoel; Brodskyn, Cláudia; Barral, Aldina; Ribeiro, José M. C.; Valenzuela, Jesus G.; de Oliveira, Camila I.

    2013-01-01

    Background Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects salivary components that change the environment at the feeding site. Mice immunized with Phlebotomus papatasi salivary gland (SG) homogenate are protected against Leishmania major infection, while immunity to Lutzomyia intermedia SG homogenate exacerbated experimental Leishmania braziliensis infection. In humans, antibodies to Lu. intermedia saliva are associated with risk of acquiring L. braziliensis infection. Despite these important findings, there is no information regarding the repertoire of Lu. intermedia salivary proteins. Methods and Findings A cDNA library from the Salivary Glands (SGs) of wild-caught Lu. intermedia was constructed, sequenced, and complemented by a proteomic approach based on 1D SDS PAGE and mass/mass spectrometry to validate the transcripts present in this cDNA library. We identified the most abundant transcripts and proteins reported in other sand fly species as well as novel proteins such as neurotoxin-like proteins, peptides with ML domain, and three small peptides found so far only in this sand fly species. DNA plasmids coding for ten selected transcripts were constructed and used to immunize BALB/c mice to study their immunogenicity. Plasmid Linb-11—coding for a 4.5-kDa protein—induced a cellular immune response and conferred protection against L. braziliensis infection. This protection correlated with a decreased parasite load and an increased frequency of IFN-γ-producing cells. Conclusions We identified the most abundant and novel proteins present in the SGs of Lu. intermedia, a vector of cutaneous leishmaniasis in the Americas. We also show for the first time that immunity to a single salivary protein from Lu. intermedia can protect against cutaneous leishmaniasis caused by L. braziliensis. PMID:23717705

  6. The presence of an insulin-like androgenic gland factor (IAG) and insulin-like peptide binding protein (ILPBP) in the ovary of the blue crab, Callinectes sapidus and their roles in ovarian development.

    PubMed

    Huang, Xiaoshuai; Ye, Haihui; Chung, J Sook

    2017-08-01

    Insulin-like androgenic gland factor (IAG) that is produced by the male androgenic gland (AG), plays a role in sexual differentiation and maintenance of male secondary sex characteristics in decapod crustaceans. With an earlier finding of IAG expression in a female Callinectes sapidus ovary, we aimed to examine a putative role of IAG during the ovarian development of this species. To this end, the full-length cDNA sequence of the ovarian CasIAG (termed CasIAG-ova) has been isolated. The predicted mature peptide sequence of CasIAG-ova is identical to that of the IAG from the AG, except in their signal peptide regions. The CasIAG-ova contains an alternative initiation codon (UUG) as the start codon, which suggests that the translational regulation of CasIAG-ova may differ from that of the IAG from AG. To define the function of CasIAG-ova, the expressions of CasIAG-ova as well as its putative binding protein, insulin-like peptide binding protein (ILPBP), are measured in the ovaries at various developmental stages obtained from different seasons. Season affects both CasIAG and ILPBP expression in the ovary. Overall, summer females at earlier ovarian stages contain high levels of CasIAG and ILPBP than spring or fall females. These findings indicate that CasIAG-ova and CasILPBP may be involved in the ovarian development. When comparing the levels of CasIAG and CasILPBP in the ovary, the latter are much higher (∼10-10000 fold) than the former. Expression patterns of CasILPBP differ from those of CasIAG-ova during ovarian development and by season, suggesting that ILPBP may have an additional role in ovarian development rather than a function of a putative binding protein of IAG. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Seminal Plasma Proteins as Androgen Receptor Corregulators Promote Prostate Cancer Growth

    DTIC Science & Technology

    2016-12-01

    lines as well as the peptides described above, we will assess the efficacy of SgI peptides on tumor growth in a mouse xenograft model. Opportunities...Award Number: W81XWH-13-1-0412 TITLE: Seminal Plasma Proteins as Androgen Receptor Corregulators Promote Prostate Cancer Growth PRINCIPAL...SUBTITLE Seminal Plasma Proteins as Androgen Receptor Corregulators Promote Prostate Cancer Growth 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13

  8. The Salivary Protein Repertoire of the Polyphagous Spider Mite Tetranychus urticae: A Quest for Effectors.

    PubMed

    Jonckheere, Wim; Dermauw, Wannes; Zhurov, Vladimir; Wybouw, Nicky; Van den Bulcke, Jan; Villarroel, Carlos A; Greenhalgh, Robert; Grbić, Mike; Schuurink, Rob C; Tirry, Luc; Baggerman, Geert; Clark, Richard M; Kant, Merijn R; Vanholme, Bartel; Menschaert, Gerben; Van Leeuwen, Thomas

    2016-12-01

    The two-spotted spider mite Tetranychus urticae is an extremely polyphagous crop pest. Alongside an unparalleled detoxification potential for plant secondary metabolites, it has recently been shown that spider mites can attenuate or even suppress plant defenses. Salivary constituents, notably effectors, have been proposed to play an important role in manipulating plant defenses and might determine the outcome of plant-mite interactions. Here, the proteomic composition of saliva from T. urticae lines adapted to various host plants-bean, maize, soy, and tomato-was analyzed using a custom-developed feeding assay coupled with nano-LC tandem mass spectrometry. About 90 putative T. urticae salivary proteins were identified. Many are of unknown function, and in numerous cases belonging to multimembered gene families. RNAseq expression analysis revealed that many genes coding for these salivary proteins were highly expressed in the proterosoma, the mite body region that includes the salivary glands. A subset of genes encoding putative salivary proteins was selected for whole-mount in situ hybridization, and were found to be expressed in the anterior and dorsal podocephalic glands. Strikingly, host plant dependent expression was evident for putative salivary proteins, and was further studied in detail by micro-array based genome-wide expression profiling. This meta-analysis revealed for the first time the salivary protein repertoire of a phytophagous chelicerate. The availability of this salivary proteome will assist in unraveling the molecular interface between phytophagous mites and their host plants, and may ultimately facilitate the development of mite-resistant crops. Furthermore, the technique used in this study is a time- and resource-efficient method to examine the salivary protein composition of other small arthropods for which saliva or salivary glands cannot be isolated easily. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. The Salivary Protein Repertoire of the Polyphagous Spider Mite Tetranychus urticae: A Quest for Effectors*

    PubMed Central

    Jonckheere, Wim; Zhurov, Vladimir; Villarroel, Carlos A.; Greenhalgh, Robert; Grbić, Mike; Schuurink, Rob C.; Tirry, Luc; Kant, Merijn R.; Vanholme, Bartel

    2016-01-01

    The two-spotted spider mite Tetranychus urticae is an extremely polyphagous crop pest. Alongside an unparalleled detoxification potential for plant secondary metabolites, it has recently been shown that spider mites can attenuate or even suppress plant defenses. Salivary constituents, notably effectors, have been proposed to play an important role in manipulating plant defenses and might determine the outcome of plant-mite interactions. Here, the proteomic composition of saliva from T. urticae lines adapted to various host plants—bean, maize, soy, and tomato—was analyzed using a custom-developed feeding assay coupled with nano-LC tandem mass spectrometry. About 90 putative T. urticae salivary proteins were identified. Many are of unknown function, and in numerous cases belonging to multimembered gene families. RNAseq expression analysis revealed that many genes coding for these salivary proteins were highly expressed in the proterosoma, the mite body region that includes the salivary glands. A subset of genes encoding putative salivary proteins was selected for whole-mount in situ hybridization, and were found to be expressed in the anterior and dorsal podocephalic glands. Strikingly, host plant dependent expression was evident for putative salivary proteins, and was further studied in detail by micro-array based genome-wide expression profiling. This meta-analysis revealed for the first time the salivary protein repertoire of a phytophagous chelicerate. The availability of this salivary proteome will assist in unraveling the molecular interface between phytophagous mites and their host plants, and may ultimately facilitate the development of mite-resistant crops. Furthermore, the technique used in this study is a time- and resource-efficient method to examine the salivary protein composition of other small arthropods for which saliva or salivary glands cannot be isolated easily. PMID:27703040

  10. Structural Changes Due to Antagonist Binding in Ligand Binding Pocket of Androgen Receptor Elucidated Through Molecular Dynamics Simulations.

    PubMed

    Sakkiah, Sugunadevi; Kusko, Rebecca; Pan, Bohu; Guo, Wenjing; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2018-01-01

    When a small molecule binds to the androgen receptor (AR), a conformational change can occur which impacts subsequent binding of co-regulator proteins and DNA. In order to accurately study this mechanism, the scientific community needs a crystal structure of the Wild type AR (WT-AR) ligand binding domain, bound with antagonist. To address this open need, we leveraged molecular docking and molecular dynamics (MD) simulations to construct a structure of the WT-AR ligand binding domain bound with antagonist bicalutamide. The structure of mutant AR (Mut-AR) bound with this same antagonist informed this study. After molecular docking analysis pinpointed the suitable binding orientation of a ligand in AR, the model was further optimized through 1 μs of MD simulations. Using this approach, three molecular systems were studied: (1) WT-AR bound with agonist R1881, (2) WT-AR bound with antagonist bicalutamide, and (3) Mut-AR bound with bicalutamide. Our structures were very similar to the experimentally determined structures of both WT-AR with R1881 and Mut-AR with bicalutamide, demonstrating the trustworthiness of this approach. In our model, when WT-AR is bound with bicalutamide, Val716/Lys720/Gln733, or Met734/Gln738/Glu897 move and thus disturb the positive and negative charge clumps of the AF2 site. This disruption of the AF2 site is key for understanding the impact of antagonist binding on subsequent co-regulator binding. In conclusion, the antagonist induced structural changes in WT-AR detailed in this study will enable further AR research and will facilitate AR targeting drug discovery.

  11. BPI-fold (BPIF) containing/plunc protein expression in human fetal major and minor salivary glands.

    PubMed

    Alves, Daniel Berretta Moreira; Bingle, Lynne; Bingle, Colin David; Lourenço, Silvia Vanessa; Silva, Andréia Aparecida; Pereira, Débora Lima; Vargas, Pablo Agustin

    2017-01-16

    The aim of this study was to determine expression, not previously described, of PLUNC (palate, lung, and nasal epithelium clone) (BPI-fold containing) proteins in major and minor salivary glands from very early fetal tissue to the end of the second trimester and thus gain further insight into the function of these proteins. Early fetal heads, and major and minor salivary glands were collected retrospectively and glands were classified according to morphodifferentiation stage. Expression of BPI-fold containing proteins was localized through immunohistochemistry. BPIFA2, the major BPI-fold containing protein in adult salivary glands, was detected only in the laryngeal pharynx; the lack of staining in salivary glands suggested salivary expression is either very late in development or is only in adult tissues. Early expression of BPIFA1 was seen in the trachea and nasal cavity with salivary gland expression only seen in late morphodifferentiation stages. BPIFB1 was seen in early neural tissue and at later stages in submandibular and sublingual glands. BPIFA1 is significantly expressed in early fetal oral tissue but BPIFB1 has extremely limited expression and the major salivary BPIF protein (BPIFA2) is not produced in fetal development. Further studies, with more sensitive techniques, will confirm the expression pattern and enable a better understanding of embryonic BPIF protein function.

  12. TET2 binds the androgen receptor and loss is associated with prostate cancer

    PubMed Central

    Nickerson, ML; Das, S; Im, KM; Turan, S; Berndt, SI; Li, H; Lou, H; Brodie, SA; Billaud, JN; Zhang, T; Bouk, AJ; Butcher, D; Wang, Z; Sun, L; Misner, K; Tan, W; Esnakula, A; Esposito, D; Huang, WY; Hoover, RN; Tucker, MA; Keller, JR; Boland, J; Brown, K; Anderson, SK; Moore, LE; Isaacs, WB; Chanock, SJ; Yeager, M; Dean, M; Andresson, T

    2016-01-01

    Genetic alterations associated with prostate cancer (PCa) may be identified by sequencing metastatic tumor genomes to identify molecular markers at this lethal stage of disease. Previously, we characterized somatic alterations in metastatic tumors in the methylcytosine dioxygenase ten-eleven translocation 2 (TET2), which is altered in 5–15% of myeloid, kidney, colon and prostate cancers. Genome-wide association studies previously identified non-coding risk variants associated with PCa and melanoma. We performed fine-mapping of PCa risk across TET2 using genotypes from the PEGASUS case-control cohort and identified six new risk variants in introns 1 and 2. Oligonucleotides containing two risk variants were bound by the transcription factor octamer-binding protein 1 (Oct1/POU2F1) and TET2 and Oct1 expression were positively correlated in prostate tumors. TET2 is expressed in normal prostate tissue and reduced in a subset of tumors from the Cancer Genome Atlas (TCGA). Small interfering RNA (siRNA)-mediated TET2 knockdown (KD) increases LNCaP cell proliferation, migration, and wound healing, verifying loss drives a cancer phenotype. Endogenous TET2 bound the androgen receptor (AR) and AR-coactivator proteins in LNCaP cell extracts, and TET2 KD increases prostate-specific antigen (KLK3/PSA) expression. Published data reveal TET2 binding sites and hydroxymethylcytosine (hmC) proximal to KLK3. A gene co-expression network identified using TCGA prostate tumor RNA-sequencing identifies co-regulated cancer genes associated with 2-oxoglutarate (2-OG) and succinate metabolism, including TET2, lysine demethylase (KDM) KDM6A, BRCA1-associated BAP1, and citric acid cycle enzymes IDH1/2, SDHA/B, and FH. The co-expression signature is conserved across 31 TCGA cancers suggesting a putative role for TET2 as an energy sensor (of 2-OG) that modifies aspects of androgen-AR signaling. Decreased TET2 mRNA expression in TCGA PCa tumors is strongly associated with reduced patient survival

  13. Salivary proteins and early childhood caries: A gel electrophoretic analysis

    PubMed Central

    Bhalla, Sumati; Tandon, Shobha; Satyamoorthy, K.

    2010-01-01

    Background: Early childhood caries (ECC) is a common disease process that afflicts a large proportion of the child population worldwide. Extensive research in past indicates that it is the result of bacterial infection, also influenced by host and dietary factors. Current caries research seeks to identify risk factors as well as natural oral defenses that may protect against or prevent caries development. Saliva, in spite of being the strongest defense system, still has a wide array of properties and proteins whose role is yet not clearly known. Aim: To compare the resting human whole salivary characteristics in children with ECC and those who are caries free. Settings and Design: The study was conducted over a period of 9 months in 4- to 6-year-old 100 children comprising two groups – 50 with ECC and 50 caries free. Materials and Methods: The whole salivary flow rate, pH, mean protein concentration, and the electrophoretic profile of salivary proteins by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) were compared among both groups. Statistical Analysis: The SPSS (version 11.0) software package was used to conduct the chi-square, Fisher's exact and Pearson's chi-square tests to compare the data. Results: On gel electrophoresis, there was a significant difference among both groups with caries-free subjects having a higher number of proline-rich protein bands, substantiating the protective role of this protein. A significantly higher number of glycoprotein bands were observed in the whole saliva of subjects with ECC. A significant inverse correlation between the mean protein concentration and the whole salivary flow rate was observed in both groups. PMID:22114372

  14. Effect of mobile phone use on salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein of the parotid gland.

    PubMed

    Hashemipour, M S; Yarbakht, M; Gholamhosseinian, A; Famori, H

    2014-05-01

    The possibility of side effects associated with the electromagnetic waves emitted from mobile phones is a controversial issue. The present study aimed to evaluate the effect of mobile phone use on parotid gland salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein. Stimulated salivary samples were collected simultaneously from both parotid glands of 86 healthy volunteers. Salivary flow rate and salivary concentrations of proteins, amylase, lipase, lysozyme, lactoferrin, peroxidase, C-reactive protein and immunoglobulin A, were measured. Data were analysed using t-tests and one-way analyses of variance. Salivary flow rate and parotid gland salivary concentrations of protein were significantly higher on the right side compared to the left in those that predominantly held mobile phones on the right side. In addition, there was a decrease in concentrations of amylase, lipase, lysozyme, lactoferrin and peroxidase. The side of dominant mobile phone use was associated with differences in salivary flow rate and parotid gland salivary concentrations, in right-dominant users. Although mobile phone use influenced salivary composition, the relationship was not significant.

  15. Comparative genomics and evolution of the amylase-binding proteins of oral streptococci.

    PubMed

    Haase, Elaine M; Kou, Yurong; Sabharwal, Amarpreet; Liao, Yu-Chieh; Lan, Tianying; Lindqvist, Charlotte; Scannapieco, Frank A

    2017-04-20

    Successful commensal bacteria have evolved to maintain colonization in challenging environments. The oral viridans streptococci are pioneer colonizers of dental plaque biofilm. Some of these bacteria have adapted to life in the oral cavity by binding salivary α-amylase, which hydrolyzes dietary starch, thus providing a source of nutrition. Oral streptococcal species bind α-amylase by expressing a variety of amylase-binding proteins (ABPs). Here we determine the genotypic basis of amylase binding where proteins of diverse size and function share a common phenotype. ABPs were detected in culture supernatants of 27 of 59 strains representing 13 oral Streptococcus species screened using the amylase-ligand binding assay. N-terminal sequences from ABPs of diverse size were obtained from 18 strains representing six oral streptococcal species. Genome sequencing and BLAST searches using N-terminal sequences, protein size, and key words identified the gene associated with each ABP. Among the sequenced ABPs, 14 matched amylase-binding protein A (AbpA), 6 matched amylase-binding protein B (AbpB), and 11 unique ABPs were identified as peptidoglycan-binding, glutamine ABC-type transporter, hypothetical, or choline-binding proteins. Alignment and phylogenetic analyses performed to ascertain evolutionary relationships revealed that ABPs cluster into at least six distinct, unrelated families (AbpA, AbpB, and four novel ABPs) with no phylogenetic evidence that one group evolved from another, and no single ancestral gene found within each group. AbpA-like sequences can be divided into five subgroups based on the N-terminal sequences. Comparative genomics focusing on the abpA gene locus provides evidence of horizontal gene transfer. The acquisition of an ABP by oral streptococci provides an interesting example of adaptive evolution.

  16. Self-perceived oral health and salivary proteins in children with type 1 diabetes.

    PubMed

    Javed, F; Sundin, U; Altamash, M; Klinge, B; Engström, P-E

    2009-01-01

    The aim was to validate self-perceived oral health with salivary IgG as an inflammatory parameter in children with type 1 diabetes. Unstimulated whole saliva samples were collected from 36 children with well controlled and 12 with poorly controlled type 1 diabetes and 40 non-diabetic children (Controls). Salivary flow rate, random blood glucose level, salivary protein concentration and immunoglobulin A and G levels were recorded using standard techniques. Data concerning oral health and diabetes status were collected. Self-perceived gingival bleeding (bleeding gums), bad breath and dry mouth were higher in diabetic children when compared with those in controls (P < 0.05). Gingival bleeding was frequently perceived by children with poorly controlled compared to well-controlled type 1 diabetes (P < 0.05) and controls (P < 0.001). Bad breath was common perceived by children with poorly controlled compared to well-controlled type 1 diabetes (P < 0.05) and controls (P < 0.0001). Salivary flow rate was lower in the diabetic children compared to controls (P < 0.01) with no difference between children with poorly controlled and well-controlled type 1 diabetes. Salivary IgG per mg protein concentration was higher in the diabetics when compared with the control group (P < 0.0001). IgG per mg protein levels were also higher in children with poorly controlled when compared with well-controlled type 1 diabetes (P < 0.05). There was no difference in IgA per mg protein and total protein concentrations between children with poorly controlled and well-controlled type 1 diabetes. Self-perceived gingival bleeding and salivary IgG per mg protein concentration were increased in children with type 1 diabetes compared with controls. These variables were also increased in children with poorly controlled compared with well-controlled type 1 diabetes.

  17. Study of human salivary proline-rich proteins interaction with food tannins.

    PubMed

    Soares, Susana; García-Estévez, Ignacio; Ferrer-Galego, Raúl; Brás, Natércia F; Brandão, Elsa; Silva, Mafalda; Teixeira, Natércia; Fonseca, Fátima; Sousa, Sérgio F; Ferreira-da-Silva, Frederico; Mateus, Nuno; de Freitas, Victor

    2018-03-15

    In this work, saturation transfer difference-NMR, isothermal microcalorimetry and molecular dynamics simulations have been used to study the individual interactions between basic, glycosylated and acidic proline-rich proteins (bPRPS, gPRPs, aPRPs) and P-B peptide with some representative food tannins [procyanidin B2, procyanidin B2 3'-O-gallate (B2g) and procyanidin trimer (catechin-4-8-catechin-4-8-catechin)]. Results showed that P-B peptide was in general the salivary protein (SP) with higher affinity whereas aPRPs showed lower affinity to the studied procyanidins. Moreover, B2g was the procyanidin with higher affinity for all SP. Hydrophobic and hydrogen bonds were present in all interactions but the major driving force depended on the procyanidin-SP pair. Furthermore, proline clusters or residues in their vicinity were identified as the probable sites of proteins for interaction with procyanidins. For bPRP and aPRP a significant change to less extended conformations was observed, while P-B peptide did not display any structural rearrangement upon procyanidins binding. Copyright © 2017. Published by Elsevier Ltd.

  18. Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: Evidence for further genetic heterogeneity in this syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.R.; Lubahn, D.B.; Wilson, E.M.

    1988-11-01

    The cloning of a cDNA for the human androgen receptor gene has resulted in the availability for cDNA probes that span various parts of the gene, including the entire steroid-binding domain and part of the DNA-binding domain, as well as part of the 5' region of the gene. The radiolabeled probes were used to screen for androgen receptor mutations on Southern blots prepared by restriction endonuclease digestion of genomic DNA from human subjects with complete androgen insensitivity syndrome (AIS). In this investigation, the authors considered only patients presenting complete AIS and with the androgen receptor (-) form as the mostmore » probably subjects to show a gene deletion. One subject from each of six unrelated families with the receptor (-) form of complete AIS and 10 normal subjects were studied. In the 10 normal subjects and in 5 of the 6 patients, identical DNA restriction fragment patterns were observed with EcoRI and BamHI. Analysis of other members of this family confirmed the apparent gene deletion. The data provide direct proof that complete AIS in some families can result from a deletion of the androgen receptor structural gene. However, other families do not demonstrate such a deletion, suggesting that point mutations may also result in the receptor (-) form of complete AIS, adding further to the genetic heterogeneity of this syndrome.« less

  19. Androgens and bone health.

    PubMed

    Hansen, K A; Tho, S P

    1998-01-01

    Osteoporosis is one of the most common metabolic bone diseases in the adult population and its prevalence will continue to rise as our population grows older. In both sexes, hypogonadism is associated with accelerated loss of bone and development of osteoporosis. Adrenal and gonadal androgen levels decline with advancing age in both sexes. Androgens act by either directly binding to androgen receptors, or by aromatization of androgens to estrogens and subsequently interacting with estrogen receptors. Both pathways are important for skeletal health. Direct androgen binding to an androgen receptor may play a more important role in early skeletal development and determination of sexual dimorphic traits. While bone remodeling, which is important in maintaining healthy bone through life, is primarily stimulated by estrogen, studies in the rat and human support the complex action of androgens and estrogens in bone modeling and remodeling, and hence the development and maintenance of healthy bone. In postmenopausal females, the addition of androgens to hormone replacement therapy results in significant additional improvement in bone mineral density compared to estrogen replacement alone. Accumulating evidence indicate that androgens play an important role in the health of bone and the potential benefit of adding these agents to hormone replacement regimens.

  20. BA321, a novel carborane analog that binds to androgen and estrogen receptors, acts as a new selective androgen receptor modulator of bone in male mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Kenta; Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588; Hirata, Michiko

    Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as amore » pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. - Highlights: • A novel carborane compound BA321 binds to both AR and ERs, ERα and ERβ. • BA321 restores bone loss in orchidectomized mice without effects on sex organ. • BA321 acts as an estrogen agonist in bone and uterus in ovariectomized mice. • BA321 may be a new SARM to prevent the loss of musculoskeletal mass in elder men.« less

  1. TAT-Mediated Delivery of Tousled Protein to Salivary Glands Protects Against Radiation-Induced Hypofunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunavala-Dossabhoy, Gulshan, E-mail: gsunav@lsuhsc.edu; Palaniyandi, Senthilnathan; Richardson, Charles

    2012-09-01

    Purpose: Patients treated with radiotherapy for head-and-neck cancer invariably suffer its deleterious side effect, xerostomia. Salivary hypofunction ensuing from the irreversible destruction of glands is the most common and debilitating oral complication affecting patients undergoing regional radiotherapy. Given that the current management of xerostomia is palliative and ineffective, efforts are now directed toward preventive measures to preserve gland function. The human homolog of Tousled protein, TLK1B, facilitates chromatin remodeling at DNA repair sites and improves cell survival against ionizing radiation (IR). Therefore, we wanted to determine whether a direct transfer of TLK1B protein to rat salivary glands could protect againstmore » IR-induced salivary hypofunction. Methods: The cell-permeable TAT-TLK1B fusion protein was generated. Rat acinar cell line and rat salivary glands were pretreated with TAT peptide or TAT-TLK1B before IR. The acinar cell survival in vitro and salivary function in vivo were assessed after radiation. Results: We demonstrated that rat acinar cells transduced with TAT-TLK1B were more resistant to radiation (D{sub 0} = 4.13 {+-} 1.0 Gy; {alpha}/{beta} = 0 Gy) compared with cells transduced with the TAT peptide (D{sub 0} = 4.91 {+-} 1.0 Gy; {alpha}/{beta} = 20.2 Gy). Correspondingly, retroductal instillation of TAT-TLK1B in rat submandibular glands better preserved salivary flow after IR (89%) compared with animals pretreated with Opti-MEM or TAT peptide (31% and 39%, respectively; p < 0.01). Conclusions: The results demonstrate that a direct transfer of TLK1B protein to the salivary glands effectively attenuates radiation-mediated gland dysfunction. Prophylactic TLK1B-protein therapy could benefit patients undergoing radiotherapy for head-and-neck cancer.« less

  2. Pollen feeding proteomics: Salivary proteins of the passion flower butterfly, Heliconius melpomene.

    PubMed

    Harpel, Desiree; Cullen, Darron A; Ott, Swidbert R; Jiggins, Chris D; Walters, James R

    2015-08-01

    While most adult Lepidoptera use flower nectar as their primary food source, butterflies in the genus Heliconius have evolved the novel ability to acquire amino acids from consuming pollen. Heliconius butterflies collect pollen on their proboscis, moisten the pollen with saliva, and use a combination of mechanical disruption and chemical degradation to release free amino acids that are subsequently re-ingested in the saliva. Little is known about the molecular mechanisms of this complex pollen feeding adaptation. Here we report an initial shotgun proteomic analysis of saliva from Heliconius melpomene. Results from liquid-chromatography tandem mass-spectrometry confidently identified 31 salivary proteins, most of which contained predicted signal peptides, consistent with extracellular secretion. Further bioinformatic annotation of these salivary proteins indicated the presence of four distinct functional classes: proteolysis (10 proteins), carbohydrate hydrolysis (5), immunity (6), and "housekeeping" (4). Additionally, six proteins could not be functionally annotated beyond containing a predicted signal sequence. The presence of several salivary proteases is consistent with previous demonstrations that Heliconius saliva has proteolytic capacity. It is likely that these proteins play a key role in generating free amino acids during pollen digestion. The identification of proteins functioning in carbohydrate hydrolysis is consistent with Heliconius butterflies consuming nectar, like other lepidopterans, as well as pollen. Immune-related proteins in saliva are also expected, given that ingestion of pathogens is a likely route to infection. The few "housekeeping" proteins are likely not true salivary proteins and reflect a modest level of contamination that occurred during saliva collection. Among the unannotated proteins were two sets of paralogs, each seemingly the result of a relatively recent tandem duplication. These results offer a first glimpse into the

  3. Plasma sex steroid binding in Chiroptera.

    PubMed

    Kwiecinski, G G; Damassa, D A; Gustafson, A W; Armao, M E

    1987-04-01

    Plasma steroid binding was examined in samples obtained from seven species of bats representing four different families. A specific sex steroid-binding protein (SBP) was identified by steady-state polyacrylamide gel electrophoresis in representatives of two families, the phyllostomids and the vespertilionids. In these species, as in primates, SBP not only exhibited high affinity for the androgens testosterone and dihydrotestosterone (DHT), but also for estradiol. A specific SBP was not identified in the tropical American vampire bat or in the two species of pteropodids examined. In all species examined, except for the vampire bat, a specific corticosteroid-binding globulin (CBG) was also identified. In addition to binding glucocorticoids, CBG in these species appeared to bind androgens as well.

  4. Collection of salivary proteins of psyllids (Hemiptera: Psylloidea)

    USDA-ARS?s Scientific Manuscript database

    Phloem-feeding insects discharge into the phloem of host plants copious amounts of enzymatically active saliva which prevents phloem occlusion and suppresses plant defenses. Although previous reports have documented the composition and roles of salivary proteins from aphids, there are no published ...

  5. Sialome of a Generalist Lepidopteran Herbivore: Identification of Transcripts and Proteins from Helicoverpa armigera Labial Salivary Glands

    PubMed Central

    Celorio-Mancera, Maria de la Paz; Courtiade, Juliette; Muck, Alexander; Heckel, David G.; Musser, Richard O.; Vogel, Heiko

    2011-01-01

    Although the importance of insect saliva in insect-host plant interactions has been acknowledged, there is very limited information on the nature and complexity of the salivary proteome in lepidopteran herbivores. We inspected the labial salivary transcriptome and proteome of Helicoverpa armigera, an important polyphagous pest species. To identify the majority of the salivary proteins we have randomly sequenced 19,389 expressed sequence tags (ESTs) from a normalized cDNA library of salivary glands. In parallel, a non-cytosolic enriched protein fraction was obtained from labial salivary glands and subjected to two-dimensional gel electrophoresis (2-DE) and de novo peptide sequencing. This procedure allowed comparison of peptides and EST sequences and enabled us to identify 65 protein spots from the secreted labial saliva 2DE proteome. The mass spectrometry analysis revealed ecdysone, glucose oxidase, fructosidase, carboxyl/cholinesterase and an uncharacterized protein previously detected in H. armigera midgut proteome. Consistently, their corresponding transcripts are among the most abundant in our cDNA library. We did find redundancy of sequence identification of saliva-secreted proteins suggesting multiple isoforms. As expected, we found several enzymes responsible for digestion and plant offense. In addition, we identified non-digestive proteins such as an arginine kinase and abundant proteins of unknown function. This identification of secreted salivary gland proteins allows a more comprehensive understanding of insect feeding and poses new challenges for the elucidation of protein function. PMID:22046331

  6. Zebrafish (Danio rerio) androgen receptor: sequence homology and up-regulation by the fungicide vinclozolin.

    PubMed

    Smolinsky, Amanda N; Doughman, Jennifer M; Kratzke, Liên-Thành C; Lassiter, Christopher S

    2010-03-01

    Steroid hormones regulate gene expression in organisms by binding to receptor proteins. These hormones include the androgens, which signal through androgen receptors (ARs). Endocrine disrupters (EDCs) are chemicals in the environment that adversely affect organisms by binding to nuclear receptors, including ARs. Vinclozolin, a fungicide used on fruit and vegetable crops, is a known anti-androgen, a type of EDC that blocks signals from testosterone and its derivatives. In order to better understand the effects of EDCs, further research on androgen receptors and other hormone signaling pathways is necessary. In this study, we demonstrate the evolutionary conservation between the genomic structure of the human and zebrafish ar genes and find that ar mRNA expression increases in zebrafish embryos exposed to vinclozolin, which may be evolutionarily conserved as well. At 48 and 72 h post-fertilization, vinclozolin-treated embryos express ar mRNA 8-fold higher than the control level. These findings suggest that zebrafish embryos attempt to compensate for the presence of an anti-androgen by increasing the number of androgen receptors available.

  7. Androgen Modulation of Foxp1 and Foxp2 in the Developing Rat Brain: Impact on Sex Specific Vocalization

    PubMed Central

    Perez-Pouchoulen, Miguel; Roby, Clinton R.; Ryan, Timothy E.; McCarthy, Margaret M.

    2014-01-01

    Sex differences in vocal communication are prevalent in both the animals and humans. The mechanism(s) mediating gender differences in human language are unknown, although, sex hormones, principally androgens, play a central role in the development of vocalizations in a wide variety of animal species. The discovery of FOXP2 has added an additional avenue for exploring the origins of language and animal communication. The FOXP2 gene is a member of the forkhead box P (FOXP) family of transcription factors. Prior to the prenatal androgen surge in male fetuses, we observed no sex difference for Foxp2 protein levels in cultured cells. In contrast, 24 hours after the onset of the androgen surge, we found a sex difference for Foxp2 protein levels in cultured cortical cells with males having higher levels than females. Furthermore, we observed the potent nonaromatizable androgen dihydrotestosterone altered not only Foxp2 mRNA and protein levels but also Foxp1. Androgen effects on both Foxp2 and Foxp1 were found to occur in the striatum, cerebellar vermis, and cortex. Immunofluorescence microscopy and coimmunoprecipitation demonstrate Foxp2 and the androgen receptor protein interact. Databases for transcription factor binding sites predict a consensus binding motif for androgen receptor on the Foxp2 promoter regions. We also observed a sex difference in rat pup vocalization with males vocalizing more than females and treatment of females with dihydrotestosterone eliminated the sex difference. We propose that androgens might be an upstream regulator of both Foxp2 and Foxp1 expression and signaling. This has important implications for language and communication as well as neuropsychiatric developmental disorders involving impairments in communication. PMID:25247470

  8. Androgen modulation of Foxp1 and Foxp2 in the developing rat brain: impact on sex specific vocalization.

    PubMed

    Bowers, J Michael; Perez-Pouchoulen, Miguel; Roby, Clinton R; Ryan, Timothy E; McCarthy, Margaret M

    2014-12-01

    Sex differences in vocal communication are prevalent in both the animals and humans. The mechanism(s) mediating gender differences in human language are unknown, although, sex hormones, principally androgens, play a central role in the development of vocalizations in a wide variety of animal species. The discovery of FOXP2 has added an additional avenue for exploring the origins of language and animal communication. The FOXP2 gene is a member of the forkhead box P (FOXP) family of transcription factors. Prior to the prenatal androgen surge in male fetuses, we observed no sex difference for Foxp2 protein levels in cultured cells. In contrast, 24 hours after the onset of the androgen surge, we found a sex difference for Foxp2 protein levels in cultured cortical cells with males having higher levels than females. Furthermore, we observed the potent nonaromatizable androgen dihydrotestosterone altered not only Foxp2 mRNA and protein levels but also Foxp1. Androgen effects on both Foxp2 and Foxp1 were found to occur in the striatum, cerebellar vermis, and cortex. Immunofluorescence microscopy and coimmunoprecipitation demonstrate Foxp2 and the androgen receptor protein interact. Databases for transcription factor binding sites predict a consensus binding motif for androgen receptor on the Foxp2 promoter regions. We also observed a sex difference in rat pup vocalization with males vocalizing more than females and treatment of females with dihydrotestosterone eliminated the sex difference. We propose that androgens might be an upstream regulator of both Foxp2 and Foxp1 expression and signaling. This has important implications for language and communication as well as neuropsychiatric developmental disorders involving impairments in communication.

  9. Updating the salivary gland transcriptome of Phlebotomus papatasi (Tunisian strain): the search for sand fly-secreted immunogenic proteins for humans.

    PubMed

    Abdeladhim, Maha; Jochim, Ryan C; Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M C; Valenzuela, Jesus G

    2012-01-01

    Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi-a model sand fly for Leishmania-vector-host molecular interactions-is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas.

  10. Fulvestrant (ICI 182,780) down-regulates androgen receptor expression and diminishes androgenic responses in LNCaP human prostate cancer cells.

    PubMed

    Bhattacharyya, Rumi S; Krishnan, Aruna V; Swami, Srilatha; Feldman, David

    2006-06-01

    The androgen receptor (AR) plays a key role in the development and progression of prostate cancer. Targeting the AR for down-regulation would be a useful strategy for treating prostate cancer, especially hormone-refractory or androgen-independent prostate cancer. In the present study, we showed that the antiestrogen fulvestrant [ICI 182,780 (ICI)] effectively suppressed AR expression in several human prostate cancer cells, including androgen-independent cells. In LNCaP cells, ICI (10 micromol/L) treatment decreased AR mRNA expression by 43% after 24 hours and AR protein expression by approximately 50% after 48 hours. We further examined the mechanism of AR down-regulation by ICI in LNCaP cells. ICI did not bind to the T877A-mutant AR present in the LNCaP cells nor did it promote proteasomal degradation of the AR. ICI did not affect AR mRNA or protein half-life. However, ICI decreased the activity of an AR promoter-luciferase reporter plasmid transfected into LNCaP cells, suggesting a direct repression of AR gene transcription. As a result of AR down-regulation by ICI, androgen induction of prostate-specific antigen mRNA and protein expression were substantially attenuated. Importantly, LNCaP cell proliferation was significantly inhibited by ICI treatment. Following 6 days of ICI treatment, a 70% growth inhibition was seen in androgen-stimulated LNCaP cells. These data show that the antiestrogen ICI is a potent AR down-regulator that causes significant inhibition of prostate cancer cell growth. Our study suggests that AR down-regulation by ICI would be an effective strategy for the treatment of all prostate cancer, especially AR-dependent androgen-independent prostate cancer.

  11. Parallel diurnal fluctuation of testosterone, androstenedione, dehydroepiandrosterone and 17OHprogesterone as assessed in serum and saliva: validation of a novel liquid chromatography-tandem mass spectrometry method for salivary steroid profiling.

    PubMed

    Mezzullo, Marco; Fazzini, Alessia; Gambineri, Alessandra; Di Dalmazi, Guido; Mazza, Roberta; Pelusi, Carla; Vicennati, Valentina; Pasquali, Renato; Pagotto, Uberto; Fanelli, Flaminia

    2017-08-28

    Salivary androgen testing represents a valuable source of biological information. However, the proper measurement of such low levels is challenging for direct immunoassays, lacking adequate accuracy. In the last few years, many conflicting findings reporting low correlation with the serum counterparts have hampered the clinical application of salivary androgen testing. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) makes it possible to overcome previous analytical limits, providing new insights in endocrinology practice. Salivary testosterone (T), androstenedione (A), dehydroepiandrosterone (DHEA) and 17OHprogesterone (17OHP) were extracted from 500µL of saliva, separated in 9.5 min LC-gradient and detected by positive electrospray ionization - multiple reaction monitoring. The diurnal variation of salivary and serum androgens was described by a four paired collection protocol (8 am, 12 am, 4 pm and 8 pm) in 19 healthy subjects. The assay allowed the quantitation of T, A, DHEA and 17OHP down to 3.40, 6.81, 271.0 and 23.7 pmol/L, respectively, with accuracy between 83.0 and 106.1% for all analytes. A parallel diurnal rhythm in saliva and serum was observed for all androgens, with values decreasing from the morning to the evening time points. Salivary androgen levels revealed a high linear correlation with serum counterparts in both sexes (T: R>0.85; A: R>0.90; DHEA: R>0.73 and 17OHP: R>0.89; p<0.0001 for all). Our LC-MS/MS method allowed a sensitive evaluation of androgen salivary levels and represents an optimal technique to explore the relevance of a comprehensive androgen profile as measured in saliva for the study of androgen secretion modulation and activity in physiologic and pathologic states.

  12. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment

    PubMed Central

    Hemadi, Abdullah S; Huang, Ruijie; Zhou, Yuan; Zou, Jing

    2017-01-01

    Early childhood caries (ECC) is a term used to describe dental caries in children aged 6 years or younger. Oral streptococci, such as Streptococcus mutans and Streptococcus sorbrinus, are considered to be the main etiological agents of tooth decay in children. Other bacteria, such as Prevotella spp. and Lactobacillus spp., and fungus, that is, Candida albicans, are related to the development and progression of ECC. Biomolecules in saliva, mainly proteins, affect the survival of oral microorganisms by multiple innate defensive mechanisms, thus modulating the oral microflora. Therefore, the protein composition of saliva can be a sensitive indicator for dental health. Resistance or susceptibility to caries may be significantly correlated with alterations in salivary protein components. Some oral microorganisms and saliva proteins may serve as useful biomarkers in predicting the risk and prognosis of caries. Current research has generated abundant information that contributes to a better understanding of the roles of microorganisms and salivary proteins in ECC occurrence and prevention. This review summarizes the microorganisms that cause caries and tooth-protective salivary proteins with their potential as functional biomarkers for ECC risk assessment. The identification of biomarkers for children at high risk of ECC is not only critical for early diagnosis but also important for preventing and treating the disease. PMID:29125139

  13. Interaction entropy for protein-protein binding

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.

    2017-03-01

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  14. Interaction entropy for protein-protein binding.

    PubMed

    Sun, Zhaoxi; Yan, Yu N; Yang, Maoyou; Zhang, John Z H

    2017-03-28

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interactionentropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interactionentropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  15. Updating the Salivary Gland Transcriptome of Phlebotomus papatasi (Tunisian Strain): The Search for Sand Fly-Secreted Immunogenic Proteins for Humans

    PubMed Central

    Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M. C.; Valenzuela, Jesus G.

    2012-01-01

    Introduction Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi–a model sand fly for Leishmania-vector-host molecular interactions–is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. Methods and Findings A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Conclusions Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas. PMID:23139741

  16. Profiling of Human Acquired Immunity Against the Salivary Proteins of Phlebotomus papatasi Reveals Clusters of Differential Immunoreactivity

    PubMed Central

    Geraci, Nicholas S.; Mukbel, Rami M.; Kemp, Michael T.; Wadsworth, Mariha N.; Lesho, Emil; Stayback, Gwen M.; Champion, Matthew M.; Bernard, Megan A.; Abo-Shehada, Mahmoud; Coutinho-Abreu, Iliano V.; Ramalho-Ortigão, Marcelo; Hanafi, Hanafi A.; Fawaz, Emadeldin Y.; El-Hossary, Shabaan S.; Wortmann, Glenn; Hoel, David F.; McDowell, Mary Ann

    2014-01-01

    Phlebotomus papatasi sand flies are among the primary vectors of Leishmania major parasites from Morocco to the Indian subcontinent and from southern Europe to central and eastern Africa. Antibody-based immunity to sand fly salivary gland proteins in human populations remains a complex contextual problem that is not yet fully understood. We profiled the immunoreactivities of plasma antibodies to sand fly salivary gland sonicates (SGSs) from 229 human blood donors residing in different regions of sand fly endemicity throughout Jordan and Egypt as well as 69 US military personnel, who were differentially exposed to P. papatasi bites and L. major infections in Iraq. Compared with plasma from control region donors, antibodies were significantly immunoreactive to five salivary proteins (12, 26, 30, 38, and 44 kDa) among Jordanian and Egyptian donors, with immunoglobulin G4 being the dominant anti-SGS isotype. US personnel were significantly immunoreactive to only two salivary proteins (38 and 14 kDa). Using k-means clustering, donors were segregated into four clusters distinguished by unique immunoreactivity profiles to varying combinations of the significantly immunogenic salivary proteins. SGS-induced cellular proliferation was diminished among donors residing in sand fly-endemic regions. These data provide a clearer picture of human immune responses to sand fly vector salivary constituents. PMID:24615125

  17. Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein.

    PubMed

    Steely, Andrea M; Willoughby, Jamin A; Sundar, Shyam N; Aivaliotis, Vasiliki I; Firestone, Gary L

    2017-10-01

    Androgen receptor (AR) expression and activity is highly linked to the development and progression of prostate cancer and is a target of therapeutic strategies for this disease. We investigated whether the antimalarial drug artemisinin, which is a sesquiterpene lactone isolated from the sweet wormwood plant Artemisia annua, could alter AR expression and responsiveness in cultured human prostate cancer cell lines. Artemisinin treatment induced the 26S proteasome-mediated degradation of the receptor protein, without altering AR transcript levels, in androgen-responsive LNCaP prostate cancer cells or PC-3 prostate cancer cells expressing exogenous wild-type AR. Furthermore, artemisinin stimulated AR ubiquitination and AR receptor interactions with the E3 ubiquitin ligase MDM2 in LNCaP cells. The artemisinin-induced loss of AR protein prevented androgen-responsive cell proliferation and ablated total AR transcriptional activity. The serine/threonine protein kinase AKT-1 was shown to be highly associated with artemisinin-induced proteasome-mediated degradation of AR protein. Artemisinin treatment activated AKT-1 enzymatic activity, enhanced receptor association with AKT-1, and induced AR serine phosphorylation. Treatment of LNCaP cells with the PI3-kinase inhibitor LY294002, which inhibits the PI3-kinase-dependent activation of AKT-1, prevented the artemisinin-induced AR degradation. Furthermore, in transfected receptor-negative PC-3 cells, artemisinin failed to stimulate the degradation of an altered receptor protein (S215A/S792A) with mutations in its two consensus AKT-1 serine phosphorylation sites. Taken together, our results indicate that artemisinin induces the degradation of AR protein and disrupts androgen responsiveness of human prostate cancer cells, suggesting that this natural compound represents a new potential therapeutic molecule that selectively targets AR levels.

  18. Deleted in malignant brain tumors-1 protein (DMBT1): a pattern recognition receptor with multiple binding sites.

    PubMed

    Ligtenberg, Antoon J M; Karlsson, Niclas G; Veerman, Enno C I

    2010-01-01

    Deleted in Malignant Brain Tumors-1 protein (DMBT1), salivary agglutinin (DMBT1(SAG)), and lung glycoprotein-340 (DMBT1(GP340)) are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW). Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.

  19. Salivary duct carcinoma with rhabdoid features: Report of 2 cases with immunohistochemical and ultrastructural analyses

    PubMed Central

    Kusafuka, Kimihide; Onitsuka, Tetsuro; Muramatsu, Koji; Miki, Tomoko; Murai, Chika; Suda, Toshihito; Fuke, Tomohito; Kamijo, Tomoyuki; Iida, Yoshiyuki; Nakajima, Takashi

    2014-01-01

    Background Salivary duct carcinoma with rhabdoid features is extremely rare. Methods We report 2 cases of salivary duct carcinoma with rhabdoid features treated at our institution. Results Case 1 was a 44-year-old Japanese man who had swelling in the left parotid region. This tumor consisted of residual pleomorphic adenoma and widely invasive carcinoma, which showed a diffuse growth pattern by atypical rhabdoid cells. Case 2 was a 66-year-old Japanese man who had swelling of the right cervical region. This submandibular tumor was also composed of both residual pleomorphic adenoma region and invasive adenocarcinoma components, whereas some metastatic lesions were purely composed of rhabdoid cells. Such cells were strongly and diffusely positive for cytokeratins (CKs), gross cystic disease fluid protein-15 (GCDFP), and androgen receptor (AR). Case 1 was also positive for Her-2 and p53. Conclusion Both patients were diagnosed with carcinoma ex pleomorphic adenoma and their carcinomatous components were composed of salivary duct carcinoma with rhabdoid features, which is a highly aggressive tumor, similar to salivary duct carcinoma. © 2013 The Authors. Head & Neck published by Wiley Periodicals, Inc. Head Neck 36: E28–E35, 2014 PMID:24038506

  20. Salivary proline-rich proteins and gluten: Do structural similarities suggest a role in celiac disease?

    PubMed

    Tian, Na; Messana, Irene; Leffler, Daniel A; Kelly, Ciaran P; Hansen, Joshua; Cabras, Tiziana; D'Alessandro, Alfredo; Schuppan, Detlef; Castagnola, Massimo; Helmerhorst, Eva J

    2015-10-01

    Gluten proteins, the culprits in celiac disease (CD), show striking similarities in primary structure with human salivary proline-rich proteins (PRPs). Both are enriched in proline and glutamine residues that often occur consecutively in their sequences. We investigated potential differences in the spectrum of salivary PRPs in health and CD. Stimulated salivary secretions were collected from CD patients, patients with refractory CD, patients with gastrointestinal complaints but no CD, and healthy controls. PRP isoforms/peptides were characterized by anionic and SDS-PAGE, PCR, and LC-ESI-MS. The gene frequencies of the acidic PRP isoforms PIF, Db, Pa, PRP1, and PRP2 did not differ between groups. At the protein level, PRPs peptides showed minor group differences, but these could not differentiate the CD and/or refractory CDs groups from the controls. This extensive study established that salivary PRPs, despite similarity to gluten proteins, show no apparent correlation with CD and thus will not serve as diagnostic markers for the disease. The structural basis for the tolerance to the gluten-like PRP proteins in CD is worthy of further exploration and may lead to the development of gluten-like analogs lacking immunogenicity that could be used therapeutically. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen-independent prostate cancer cell growth.

    PubMed

    Wolff, Dennis W; Xie, Yan; Deng, Caishu; Gatalica, Zoran; Yang, Mingjie; Wang, Bo; Wang, Jincheng; Lin, Ming-Fong; Abel, Peter W; Tu, Yaping

    2012-04-01

    G-protein-coupled receptor (GPCR)-stimulated androgen-independent activation of androgen receptor (AR) contributes to acquisition of a hormone-refractory phenotype by prostate cancer. We previously reported that regulator of G-protein signaling (RGS) 2, an inhibitor of GPCRs, inhibits androgen-independent AR activation (Cao et al., Oncogene 2006;25:3719-34). Here, we show reduced RGS2 protein expression in human prostate cancer specimens compared to adjacent normal or hyperplastic tissue. Methylation-specific PCR analysis and bisulfite sequencing indicated that methylation of the CpG island in the RGS2 gene promoter correlated with RGS2 downregulation in prostate cancer. In vitro methylation of this promoter suppressed reporter gene expression in transient transfection studies, whereas reversal of this promoter methylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induced RGS2 reexpression in androgen-independent prostate cancer cells and inhibited their growth under androgen-deficient conditions. Interestingly, the inhibitory effect of 5-Aza-dC was significantly reduced by an RGS2-targeted short hairpin RNA, indicating that reexpressed RGS2 contributed to this growth inhibition. Restoration of RGS2 levels by ectopic expression in androgen-independent prostate cancer cells suppressed growth of xenografts in castrated mice. Thus, RGS2 promoter hypermethylation represses its expression and unmasks a latent pathway for AR transactivation in prostate cancer cells. Targeting this reversible process may provide a new strategy for suppressing prostate cancer progression by reestablishing its androgen sensitivity. Copyright © 2011 UICC.

  2. Titanium Surface Roughing Treatments contribute to Higher Interaction with Salivary Proteins MG2 and Lactoferrin.

    PubMed

    Cavalcanti, Yuri Wanderley; Soare, Rodrigo Villamarim; Leite Assis, Marina Araújo; Zenóbio, Elton Gonçalves; Girundi, Francisco Mauro da Silva

    2015-02-01

    Some surface treatments performed on titanium can alter the composition of salivary pellicle formed on this abiotic surface. Such treatments modify the titanium's surface properties and can promote higher adsorption of proteins, which allow better integration of titanium to the biotic system. This study aimed to evaluate the interactions between salivary proteins and titanium disks with different surface treatments. Machined titanium disks (n = 48) were divided into four experimental groups (n = 12), according to their surface treatments: surface polishing (SP); acid etching (A); spot-blasting plus acid etching (SB-A); spot-blasting followed by acid etching and nano-functionalization (SB-A-NF). Titanium surfaces were characterized by surface roughness and scanning electron microscopy (SEM). Specimens were incubated with human saliva extracted from submandibular and sublingual glands. Total salivary protein adsorbed to titanium was quantified and samples were submitted to western blotting for mucin glycoprotein 2 (MG2) and lactoferrin identification. Surface roughness was statistically higher for SB-A and SB-A-NF groups. Scanning electron microscopy images confirmed that titanium surface treatments increased surface roughness with higher number of porous and scratches for SB-A and SB-A-NF groups. Total protein adsorption was significantly higher for SB-A and SB-A-NF groups (p < 0.05), which also presented higher interactions with MG2 and lactoferrin proteins. The roughing of titanium surface by spot-blasting plus acid etching treatments contribute to higher interaction with salivary proteins, such as MG2 and lactoferrin. Titanium surface roughing increases the interactions of the substratum with salivary proteins, which can influence the integration of dental implants and their components to the oral environment. However, those treatments should be used carefully intraorally, avoiding increase biofilm formation.

  3. Anopheles salivary gland proteomes from major malaria vectors

    PubMed Central

    2012-01-01

    Background Antibody responses against Anopheles salivary proteins can indicate individual exposure to bites of malaria vectors. The extent to which these salivary proteins are species-specific is not entirely resolved. Thus, a better knowledge of the diversity among salivary protein repertoires from various malaria vector species is necessary to select relevant genus-, subgenus- and/or species-specific salivary antigens. Such antigens could be used for quantitative (mosquito density) and qualitative (mosquito species) immunological evaluation of malaria vectors/host contact. In this study, salivary gland protein repertoires (sialomes) from several Anopheles species were compared using in silico analysis and proteomics. The antigenic diversity of salivary gland proteins among different Anopheles species was also examined. Results In silico analysis of secreted salivary gland protein sequences retrieved from an NCBInr database of six Anopheles species belonging to the Cellia subgenus (An. gambiae, An. arabiensis, An. stephensi and An. funestus) and Nyssorhynchus subgenus (An. albimanus and An. darlingi) displayed a higher degree of similarity compared to salivary proteins from closely related Anopheles species. Additionally, computational hierarchical clustering allowed identification of genus-, subgenus- and species-specific salivary proteins. Proteomic and immunoblot analyses performed on salivary gland extracts from four Anopheles species (An. gambiae, An. arabiensis, An. stephensi and An. albimanus) indicated that heterogeneity of the salivary proteome and antigenic proteins was lower among closely related anopheline species and increased with phylogenetic distance. Conclusion This is the first report on the diversity of the salivary protein repertoire among species from the Anopheles genus at the protein level. This work demonstrates that a molecular diversity is exhibited among salivary proteins from closely related species despite their common pharmacological

  4. The hrp23 Protein in the Balbiani Ring Pre-mRNP Particles Is Released Just before or at the Binding of the Particles to the Nuclear Pore Complex

    PubMed Central

    Sun, Xin; Alzhanova-Ericsson, Alla T.; Visa, Neus; Aissouni, Youssef; Zhao, Jian; Daneholt, Bertil

    1998-01-01

    Balbiani ring (BR) pre-mRNP particles reside in the nuclei of salivary glands of the dipteran Chironomus tentans and carry the message for giant-sized salivary proteins. In the present study, we identify and characterize a new protein component in the BR ribonucleoprotein (RNP) particles, designated hrp23. The protein with a molecular mass of 20 kD has a single RNA-binding domain and a glycine-arginine-serine–rich auxiliary domain. As shown by immunoelectron microscopy, the hrp23 protein is added to the BR transcript concomitant with transcription, is still present in the BR particles in the nucleoplasm, but is absent from the BR particles that are bound to the nuclear pore complex or are translocating through the central channel of the complex. Thus, hrp23 is released just before or at the binding of the particles to the nuclear pore complex. It is noted that hrp23 behaves differently from two other BR RNP proteins earlier studied: hrp36 and hrp45. These proteins both reach the nuclear pore complex, and hrp36 even accompanies the RNA into the cytoplasm. It is concluded that each BR RNA-binding protein seems to have a specific flow pattern, probably related to the particular role of the protein in gene expression. PMID:9732280

  5. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Vasiliou, D M; Pinsky, L

    1996-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. We have added (if available) data on the androgen binding phenotype of the mutant AR, the clinical phenotype of the affected persons, the family history and whether the pathogenicity of a mutation has been proven. Exonic mutations are now listed in 5'-->3' sequence regardless of type and single base pair changes are presented in codon context. Splice site and intronic mutations are listed separately. The database has allowed us to substantiate and amplify the observation of mutational hot spots within exons encoding the AR androgen binding domain. The database is available from EML (ftp://www.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker file (MC33@musica.mcgill.ca).

  6. Regulation of Steroid Hormone Receptor Function By the 52-kDa FK506-Binding Protein (FKBP52)

    PubMed Central

    Sivils, Jeffrey C.; Storer, Cheryl L.; Galigniana, Mario D.; Cox, Marc B.

    2011-01-01

    The large FK506-binding protein FKBP52 has been characterized as an important positive regulator of androgen, glucocorticoid and progesterone receptor signaling pathways. FKBP52 associates with receptor-Hsp90 complexes and is proposed to have roles in both receptor hormone binding and receptor subcellular localization. Data from biochemical and cellular studies has been corroborated in whole animal models as fkbp52-deficient male and female mice display characteristics of androgen, glucocorticoid and/or progesterone insensitivity. FKBP52 receptor specificity and the specific phenotypes displayed by the fkbp52-deficient mice have firmly established FKBP52 as a promising target for the treatment of a variety of hormone-dependent diseases. Recent studies demonstrated that the FKBP52 FK1 domain and the proline-rich loop within this domain are functionally important for FKBP52 regulation of receptor function. Based on these data, efforts are currently underway to target the FKBP52 FK1 domain and the proline-rich loop with small molecule inhibitors. PMID:21511531

  7. PTTG1, A novel androgen responsive gene is required for androgen-induced prostate cancer cell growth and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zheng; Jin, Bo; Jin, Yaqiong

    Androgens (AR) play an important role in initiation and progression of prostate cancer. It has been shown that AR exert their effects mainly through the androgen-activated AR which binds to androgen response elements (AREs) in the regulatory regions of target genes to regulate the transcription of androgen-responsive genes, thus, identification of AR downstream target gene is critical to understand androgen function in prostate cancer. In this study, our results showed that androgen treatment of LNCaP cells induced PTTG1 expression, which was blocked by the androgen receptor antagonist, Casodex. Bioinformatics analysis and experiments using PTTG1 promoter deletion mutants showed that themore » PTTG1 promoter contains a putative androgen response element (ARE), which localizes in the −851 to −836 region of the promoter. Androgen activated androgen receptor (AR) binding to this ARE was confirmed by Chromatin immunoprecipitation (ChIP) assay. Furthermore, Knockdown of PTTG1 expression using short hairpin RNA significantly reduced androgen-induced LNCaP cell growth and invasion. In addition, we showed PTTG1 is highly expressed in metastasis prostate cancer tissue. These results suggest that PTTG1 is a novel downstream target gene of androgen receptor and take part in prostate cancer proliferation and metastasis. - Highlights: • Androgen treatment of LNCaP cells induced PTTG1 expression. • Knockdown of PTTG1 expression significantly reduced androgen-induced LNCaP cell growth and invasion. • PTTG1 is highly expressed in metastasis prostate cancer tissue. • PTTG1 is a novel downstream target gene of androgen receptor.« less

  8. [Effect of citric acid stimulation on salivary alpha-amylase, total protein, salivary flow rate and pH value in Pi deficiency children].

    PubMed

    Yang, Ze-min; Chen, Long-hui; Lin, Jing; Zhang, Min; Yang, Xiao-rong; Chen, Wei-wen

    2015-02-01

    To compare the effect of citric acid stimulation on salivary alpha-amylase (sAA), total protein (TP), salivary flow rate, and pH value between Pi deficiency (PD) children and healthy children, thereby providing evidence for Pi controlling saliva theory. Twenty PD children were recruited, and 29 healthy children were also recruited at the same time. Saliva samples from all subjects were collected before and after citric acid stimulation. The sAA activity and amount, TP contents, salivary flow rate, and pH value were determined and compared. (1) Citric acid stimulation was able to significantly increase salivary flow rate, pH value, sAA activities, sAA specific activity and sAA amount (including glycosylated and non-glycosylated sAA amount) in healthy children (P<0.05), while it could markedly increase salivary flow rate, pH value, and glycosylated sAA levels in PD children (P<0.05); (2) Although there was no statistical difference in determined salivary indices between the two groups (P>0.05), salivary indices except salivary flow rate and glycosylated sAA levels decreased more in PD children. There was statistical difference in sAA activity ratio, sAA specific activity ratio, and the ratio of glycosylated sAA levels between PD children and healthy children (P<0.05). PD children had decreased response to citric acid stimulation.

  9. Androgen receptor stimulates bone sialoprotein (BSP) gene transcription via cAMP response element and activator protein 1/glucocorticoid response elements.

    PubMed

    Takai, Hideki; Nakayama, Youhei; Kim, Dong-Soon; Arai, Masato; Araki, Shouta; Mezawa, Masaru; Nakajima, Yu; Kato, Naoko; Masunaga, Hiroshi; Ogata, Yorimasa

    2007-09-01

    Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. Androgens are steroid hormones that are essential for skeletal development. The androgen receptor (AR) is a transcription factor and a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. To determine the molecular mechanism involved in the stimulation of bone formation, we have analyzed the effects of androgens and AR effects on BSP gene transcription. AR protein levels were increased after AR overexpression in ROS17/2.8 cells. BSP mRNA levels were increased by AR overexpression. However, the endogenous and overexpressed BSP mRNA levels were not changed by DHT (10(-8) M, 24 h). Whereas luciferase (LUC) activities in all constructs, including a short construct (nts -116 to +60), were increased by AR overexpression, the basal and LUC activities enhanced by AR overexpression were not induced by DHT (10(-8)M, 24 h). The effect of AR overexpression was abrogated by 2 bp mutations in either the cAMP response element (CRE) or activator protein 1 (AP1)/glucocorticoid response element (GRE). Gel shift analyses showed that AR overexpression increased binding to the CRE and AP1/GRE elements. Notably, the CRE-protein complexes were supershifted by phospho-CREB antibody, and CREB, c-Fos, c-Jun, and AR antibodies disrupted the complexes formation. The AP1/GRE-protein complexes were supershifted by c-Fos antibody and c-Jun, and AR antibodies disrupted the complexes formation. These studies demonstrate that AR stimulates BSP gene transcription by targeting the CRE and AP1/GRE elements in the promoter of the rat BSP gene.

  10. The role of androgens and polymorphisms in the androgen receptor in the epidemiology of breast cancer

    PubMed Central

    Lillie, Elizabeth O; Bernstein, Leslie; Ursin, Giske

    2003-01-01

    Testosterone binds to the androgen receptor in target tissue to mediate its effects. Variations in testosterone levels and androgen receptor activity may play a role in the etiology of breast cancer. Here, we review the epidemiologic evidence linking endogenous testosterone to breast cancer risk. Paradoxically, results from observational studies that have examined polymorphisms in the androgen receptor suggest that the low-activity androgen receptor increases breast cancer risk. We review the quality of this evidence and conclude with a discussion of how the androgen receptor and testosterone results coincide. PMID:12793900

  11. BINDING OF STEROIDS AND ENVIRONMENTAL CHEMICALS TO THE RAINBOW TROUT ANDROGEN RECEPTOR ALPHA EXPRESSED IN COS CELLS

    EPA Science Inventory

    Binding of Steroids and Environmental Chemicals to the Rainbow Trout Androgen Receptor Alpha Expressed in COS Cells.

    Mary C. Cardon, L. Earl Gray. Jr., Phillip C. Hartig and Vickie S. Wilson
    U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology...

  12. Age and gender related changes of salivary total protein levels for forensic application.

    PubMed

    Bhuptani, D; Kumar, S; Vats, M; Sagav, R

    2018-05-30

    Saliva is one of the most commonly encountered biological fluids found at the crime scene. Forensic science including forensic odontology is focused on the positive identification of individuals. The salivary protein profiling can help in personalization by the changes associated with age throughout life and gender. These changes also seem to vary with the dietary habits, environmental factors and geographical areas. Thus, the aim of present study is to estimate these changes in salivary total protein concentration and profiling in individuals of Gujarat, India. The association of total protein concentration and protein content with the age, gender, tooth eruption, functions of the protein and its physiological significance are also intended for study in this population. One hundred unstimulated whole saliva samples from study subjects of Gujarat population were collected and grouped based on age and gender. Total protein concentration was determined by Bradford assay; also protein was separated and analyzed using Sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS PAGE). T Test and ANOVA were used for statistical analysis. The concentration of Total Protein was found to be between 2-4 mg/ml. It showed a positive correlation with age and gender. It can be concluded more protein bands were prominently present in the adolescents group followed by children and lastly in the adults groups.More high (more than 80 kDa) and low (less than 30 kDa) molecular weight proteins are seen in children and adolescents than adults. SDS PAGE allowed identification and comparison of group variabilities in protein profiles. The total salivary protein showed an association between the parameters under this study which will aid in the individual identification in the field of forensics.

  13. Cytosolic androgen receptor in regenerating rat levator ani muscle.

    PubMed Central

    Max, S R; Mufti, S; Carlson, B M

    1981-01-01

    The development of the cytosolic androgen receptor was studied after degeneration and regeneration of the rat levator ani muscle after a crush lesion. Muscle regeneration appears to recapitulate myogenesis in many respects. It therefore provides a model tissue in sufficiently in large quantity for investigating the ontogenesis of the androgen receptor. The receptor in the cytosol of the normal levator ani muscle has binding characteristics similar to those of the cytosolic receptor in other androgen-sensitive tissues. By day 3 after a crush lesion of the levator ani muscle, androgen binding decreased to 25% of control values. This decrease was followed by a 4-5 fold increase in hormone binding, which attained control values by day 7 after crush. Androgen binding remained stable at the control value up to day 60 after crushing. These results were correlated with the morphological development of the regenerating muscle after crushing. It is concluded that there is little, if any, androgen receptor present in the early myoblastic stages of regeneration; rather, synthesis of the receptor may occur after the fusion of myoblasts and during the differentiation of myotubes into cross-striated muscle fibres. Images PLATE 1 PLATE 2 PMID:6977357

  14. Annotated Differentially Expressed Salivary Proteins of Susceptible and Insecticide-Resistant Mosquitoes of Anopheles stephensi

    PubMed Central

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito—parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins

  15. Annotated differentially expressed salivary proteins of susceptible and insecticide-resistant mosquitoes of Anopheles stephensi.

    PubMed

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito-parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins

  16. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  17. Testosterone regulates keratin 33B expression in rat penis growth through androgen receptor signaling

    PubMed Central

    Ma, Yan-Min; Wu, Kai-Jie; Dang, Qiang; Shi, Qi; Gao, Yang; Guo, Peng; Xu, Shan; Wang, Xin-Yang; He, Da-Lin; Gong, Yong-Guang

    2014-01-01

    Androgen therapy is the mainstay of treatment for the hypogonadotropic hypogonadal micropenis because it obviously enhances penis growth in prepubescent microphallic patients. However, the molecular mechanisms of androgen treatment leading to penis growth are still largely unknown. To clarify this well-known phenomenon, we successfully generated a castrated male Sprague Dawley rat model at puberty followed by testosterone administration. Interestingly, compared with the control group, testosterone treatment stimulated a dose-dependent increase of penis weight, length, and width in castrated rats accompanied with a dramatic recovery of the pathological changes of the penis. Mechanistically, testosterone administration substantially increased the expression of androgen receptor (AR) protein. Increased AR protein in the penis could subsequently initiate transcription of its target genes, including keratin 33B (Krt33b). Importantly, we demonstrated that KRT33B is generally expressed in the rat penis and that most KRT33B expression is cytoplasmic. Furthermore, AR could directly modulate its expression by binding to a putative androgen response element sequence of the Krt33b promoter. Overall, this study reveals a novel mechanism facilitating penis growth after testosterone treatment in precastrated prepubescent animals, in which androgen enhances the expression of AR protein as well as its target genes, such as Krt33b. PMID:24994782

  18. Testosterone regulates keratin 33B expression in rat penis growth through androgen receptor signaling.

    PubMed

    Ma, Yan-Min; Wu, Kai-Jie; Dang, Qiang; Shi, Qi; Gao, Yang; Guo, Peng; Xu, Shan; Wang, Xin-Yang; He, Da-Lin; Gong, Yong-Guang

    2014-01-01

    Androgen therapy is the mainstay of treatment for the hypogonadotropic hypogonadal micropenis because it obviously enhances penis growth in prepubescent microphallic patients. However, the molecular mechanisms of androgen treatment leading to penis growth are still largely unknown. To clarify this well-known phenomenon, we successfully generated a castrated male Sprague Dawley rat model at puberty followed by testosterone administration. Interestingly, compared with the control group, testosterone treatment stimulated a dose-dependent increase of penis weight, length, and width in castrated rats accompanied with a dramatic recovery of the pathological changes of the penis. Mechanistically, testosterone administration substantially increased the expression of androgen receptor (AR) protein. Increased AR protein in the penis could subsequently initiate transcription of its target genes, including keratin 33B (Krt33b). Importantly, we demonstrated that KRT33B is generally expressed in the rat penis and that most KRT33B expression is cytoplasmic. Furthermore, AR could directly modulate its expression by binding to a putative androgen response element sequence of the Krt33b promoter. Overall, this study reveals a novel mechanism facilitating penis growth after testosterone treatment in precastrated prepubescent animals, in which androgen enhances the expression of AR protein as well as its target genes, such as Krt33b.

  19. Molecular Diversity between Salivary Proteins from New World and Old World Sand Flies with Emphasis on Bichromomyia olmeca, the Sand Fly Vector of Leishmania mexicana in Mesoamerica

    PubMed Central

    Townsend, Shannon; Pasos-Pinto, Silvia; Sanchez, Laura; Rasouli, Manoochehr; B. Guimaraes-Costa, Anderson; Aslan, Hamide; Francischetti, Ivo M. B.; Oliveira, Fabiano; Becker, Ingeborg; Kamhawi, Shaden; Ribeiro, Jose M. C.; Jochim, Ryan C.; Valenzuela, Jesus G.

    2016-01-01

    Background Sand fly saliva has been shown to have proteins with potent biological activities, salivary proteins that can be used as biomarkers of vector exposure, and salivary proteins that are candidate vaccines against different forms of leishmaniasis. Sand fly salivary gland transcriptomic approach has contributed significantly to the identification and characterization of many of these salivary proteins from important Leishmania vectors; however, sand fly vectors in some regions of the world are still neglected, as Bichromomyia olmeca (formerly known as Lutzomyia olmeca olmeca), a proven vector of Leishmania mexicana in Mexico and Central America. Despite the importance of this vector in transmitting Leishmania parasite in Mesoamerica there is no information on the repertoire of B. olmeca salivary proteins and their relationship to salivary proteins from other sand fly species. Methods and Findings A cDNA library of the salivary glands of wild-caught B. olmeca was constructed, sequenced, and analyzed. We identified transcripts encoding for novel salivary proteins from this sand fly species and performed a comparative analysis between B. olmeca salivary proteins and those from other sand fly species. With this new information we present an updated catalog of the salivary proteins specific to New World sand flies and salivary proteins common to all sand fly species. We also report in this work the anti-Factor Xa activity of Lofaxin, a salivary anticoagulant protein present in this sand fly species. Conclusions This study provides information on the first transcriptome of a sand fly from Mesoamerica and adds information to the limited repertoire of salivary transcriptomes from the Americas. This comparative analysis also shows a fast degree of evolution in salivary proteins from New World sand flies as compared with Old World sand flies. PMID:27409591

  20. High abundance androgen receptor in goldfish brain: characteristics and seasonal changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasmanik, M.; Callard, G.V.

    1988-08-01

    Testosterone (T) exerts its actions in brain directly via androgen receptors or, after aromatization to estradiol, via estrogen receptors. Brain aromatase activity in teleost fish is 100-1000 times greater than in mammals and would be expected to significantly reduce the quantity of androgen available for receptor binding. Experiments were carried out on the goldfish Carassius auratus to determine if androgen receptors are present in teleost brain and whether their physicochemical properties reflect elevated aromatase. Cytosolic and nuclear extracts were assayed with the use of (/sup 3/H)T and charcoal, Sephadex LH-20, or DNA-cellulose chromatography to separate bound and free steroids. Bindingmore » activity was saturable and had an equally high affinity for T and 5 alpha-dihydrotestosterone. Although mibolerone was a relatively weak competitor, the putative teleost androgen 11-ketotestosterone, methyltrienolone (R1881), estradiol, progesterone, and cortisol were poor ligands. Characteristics that distinguish this receptor from a steroid-binding protein in goldfish serum are the presence of binding activity in both nuclear and cytosolic extracts, a low rate of ligand-receptor dissociation, electrophoretic mobility, sedimentation properties in low vs. high salt, and tissue distribution. DNA cellulose-adhering and nonadhering forms were detected, but these did not differ in other variables measured. Although goldfish androgen receptors resembled those of mammals in all important physicochemical characteristics, they were unusually abundant compared to levels in rat brain, but comparable to levels in prostate and other male sex hormone target organs. Moreover, there were seasonal variations in total receptors, with a peak at spawning (April) 4- to 5-fold higher than values in reproductively inactive fish.« less

  1. Salivary carbonic anhydrase VI and its relation to salivary flow rate and buffer capacity in pregnant and non-pregnant women.

    PubMed

    Kivelä, Jyrki; Laine, Merja; Parkkila, Seppo; Rajaniemi, Hannu

    2003-08-01

    Previous studies have shown that pregnancy may have unfavourable effects on oral health. The pH and buffer capacity (BC) of paraffin-stimulated saliva, for example, have been found to decrease towards late pregnancy. Salivary carbonic anhydrase VI (CA VI) probably protects the teeth by accelerating the neutralization of hydrogen ions in the enamel pellicle on dental surfaces. Since estrogens and androgens are known to regulate CA expression in some tissues, we studied here whether salivary CA VI concentration shows pregnancy-related changes. Paraffin-stimulated salivary samples were collected from nine pregnant women 1 month before delivery and about 2 months afterwards and assayed for salivary CA VI concentration, BC and flow rate. The enzyme concentration was determined using a specific time-resolved immunofluorometric assay. The control group consisted of 17 healthy non-pregnant women. The results indicated that salivary CA VI levels varied markedly among individuals, but no significant differences in mean concentrations were seen between the samples collected during late pregnancy and postpartum. BC values were lower during pregnancy, however. Our findings suggest that CA VI secretion is not significantly affected by the hormonal alterations associated with pregnancy, and confirm the earlier reports that CA VI is not involved in the regulation of actual salivary BC.

  2. Glycoinositolphospholipids from Trypanosomatids Subvert Nitric Oxide Production in Rhodnius prolixus Salivary Glands

    PubMed Central

    Gazos-Lopes, Felipe; Mesquita, Rafael Dias; Silva-Cardoso, Lívia; Senna, Raquel; Silveira, Alan Barbosa; Jablonka, Willy; Cudischevitch, Cecília Oliveira; Carneiro, Alan Brito; Machado, Ednildo Alcantara; Lima, Luize G.; Monteiro, Robson Queiroz; Nussenzveig, Roberto Henrique; Folly, Evelize; Romeiro, Alexandre; Vanbeselaere, Jorick; Mendonça-Previato, Lucia; Previato, José Osvaldo; Valenzuela, Jesus G.; Ribeiro, José Marcos Chaves; Atella, Georgia Correa; Silva-Neto, Mário Alberto Cardoso

    2012-01-01

    Background Rhodnius prolixus is a blood-sucking bug vector of Trypanosoma cruzi and T. rangeli. T. cruzi is transmitted by vector feces deposited close to the wound produced by insect mouthparts, whereas T. rangeli invades salivary glands and is inoculated into the host skin. Bug saliva contains a set of nitric oxide-binding proteins, called nitrophorins, which deliver NO to host vessels and ensure vasodilation and blood feeding. NO is generated by nitric oxide synthases (NOS) present in the epithelium of bug salivary glands. Thus, T. rangeli is in close contact with NO while in the salivary glands. Methodology/Principal Findings Here we show by immunohistochemical, biochemical and molecular techniques that inositolphosphate-containing glycolipids from trypanosomatids downregulate NO synthesis in the salivary glands of R. prolixus. Injecting insects with T. rangeli-derived glycoinositolphospholipids (Tr GIPL) or T. cruzi-derived glycoinositolphospholipids (Tc GIPL) specifically decreased NO production. Salivary gland treatment with Tc GIPL blocks NO production without greatly affecting NOS mRNA levels. NOS protein is virtually absent from either Tr GIPL- or Tc GIPL-treated salivary glands. Evaluation of NO synthesis by using a fluorescent NO probe showed that T. rangeli-infected or Tc GIPL-treated glands do not show extensive labeling. The same effect is readily obtained by treatment of salivary glands with the classical protein tyrosine phosphatase (PTP) inhibitor, sodium orthovanadate (SO). This suggests that parasite GIPLs induce the inhibition of a salivary gland PTP. GIPLs specifically suppressed NO production and did not affect other anti-hemostatic properties of saliva, such as the anti-clotting and anti-platelet activities. Conclusions/Significance Taken together, these data suggest that trypanosomatids have overcome NO generation using their surface GIPLs. Therefore, these molecules ensure parasite survival and may ultimately enhance parasite transmission

  3. Androgen receptor (AR) inhibitor ErbB3-binding protein-1 (Ebp1) is not targeted by the newly identified AR controlling signaling axis heat-shock protein HSP27 and microRNA miR-1 in prostate cancer cells.

    PubMed

    Stope, Matthias B; Peters, Stefanie; Großebrummel, Hannah; Zimmermann, Uwe; Walther, Reinhard; Burchardt, Martin

    2015-03-01

    Androgen receptor (AR) networks are predominantly involved in prostate cancer (PCa) progression; consequently, factors of AR regulation represent promising targets for PCa therapy. The ErbB3-binding protein 1 (Ebp1) is linked to AR suppression and chemoresistance by so far unknown mechanisms. In this study, an assumed regulation of Ebp1 by the newly identified AR controlling signaling axis heat-shock protein 27 (HSP27)-microRNA-1 (miR-1) was examined. Transfection experiments were carried out overexpressing and knockdown HSP27 and miR-1, respectively, in LNCaP and PC-3 cells. Afterward, HSP27- and miR-1-triggered Ebp1 protein expression was monitored by Western blotting. AR-positive LNCaP cells and AR-negative PC-3 cells possessed diverse basal expression levels of Ebp1. However, subsequent studies revealed no differences in cellular Ebp1 concentrations after modulation of HSP27 and miR-1. Furthermore, docetaxel incubation experiments exhibited no effects on Ebp1 protein synthesis. In PCa, Ebp1 has been described as a regulator of AR functionality and as an effector of PCa therapy resistance. Our data suggest that Ebp1 functionality is independent from heat-shock-protein-regulated progression networks in PCa.

  4. Computational prediction of human salivary proteins from blood circulation and application to diagnostic biomarker identification.

    PubMed

    Wang, Jiaxin; Liang, Yanchun; Wang, Yan; Cui, Juan; Liu, Ming; Du, Wei; Xu, Ying

    2013-01-01

    Proteins can move from blood circulation into salivary glands through active transportation, passive diffusion or ultrafiltration, some of which are then released into saliva and hence can potentially serve as biomarkers for diseases if accurately identified. We present a novel computational method for predicting salivary proteins that come from circulation. The basis for the prediction is a set of physiochemical and sequence features we found to be discerning between human proteins known to be movable from circulation to saliva and proteins deemed to be not in saliva. A classifier was trained based on these features using a support-vector machine to predict protein secretion into saliva. The classifier achieved 88.56% average recall and 90.76% average precision in 10-fold cross-validation on the training data, indicating that the selected features are informative. Considering the possibility that our negative training data may not be highly reliable (i.e., proteins predicted to be not in saliva), we have also trained a ranking method, aiming to rank the known salivary proteins from circulation as the highest among the proteins in the general background, based on the same features. This prediction capability can be used to predict potential biomarker proteins for specific human diseases when coupled with the information of differentially expressed proteins in diseased versus healthy control tissues and a prediction capability for blood-secretory proteins. Using such integrated information, we predicted 31 candidate biomarker proteins in saliva for breast cancer.

  5. Computational Prediction of Human Salivary Proteins from Blood Circulation and Application to Diagnostic Biomarker Identification

    PubMed Central

    Wang, Jiaxin; Liang, Yanchun; Wang, Yan; Cui, Juan; Liu, Ming; Du, Wei; Xu, Ying

    2013-01-01

    Proteins can move from blood circulation into salivary glands through active transportation, passive diffusion or ultrafiltration, some of which are then released into saliva and hence can potentially serve as biomarkers for diseases if accurately identified. We present a novel computational method for predicting salivary proteins that come from circulation. The basis for the prediction is a set of physiochemical and sequence features we found to be discerning between human proteins known to be movable from circulation to saliva and proteins deemed to be not in saliva. A classifier was trained based on these features using a support-vector machine to predict protein secretion into saliva. The classifier achieved 88.56% average recall and 90.76% average precision in 10-fold cross-validation on the training data, indicating that the selected features are informative. Considering the possibility that our negative training data may not be highly reliable (i.e., proteins predicted to be not in saliva), we have also trained a ranking method, aiming to rank the known salivary proteins from circulation as the highest among the proteins in the general background, based on the same features. This prediction capability can be used to predict potential biomarker proteins for specific human diseases when coupled with the information of differentially expressed proteins in diseased versus healthy control tissues and a prediction capability for blood-secretory proteins. Using such integrated information, we predicted 31 candidate biomarker proteins in saliva for breast cancer. PMID:24324552

  6. Apocrine Secretion in Drosophila Salivary Glands: Subcellular Origin, Dynamics, and Identification of Secretory Proteins

    PubMed Central

    Farkaš, Robert; Ďatková, Zuzana; Mentelová, Lucia; Löw, Péter; Beňová-Liszeková, Denisa; Beňo, Milan; Sass, Miklós; Řehulka, Pavel; Řehulková, Helena; Raška, Otakar; Kováčik, Lubomír; Šmigová, Jana; Raška, Ivan; Mechler, Bernard M.

    2014-01-01

    In contrast to the well defined mechanism of merocrine exocytosis, the mechanism of apocrine secretion, which was first described over 180 years ago, remains relatively uncharacterized. We identified apocrine secretory activity in the late prepupal salivary glands of Drosophila melanogaster just prior to the execution of programmed cell death (PCD). The excellent genetic tools available in Drosophila provide an opportunity to dissect for the first time the molecular and mechanistic aspects of this process. A prerequisite for such an analysis is to have pivotal immunohistochemical, ultrastructural, biochemical and proteomic data that fully characterize the process. Here we present data showing that the Drosophila salivary glands release all kinds of cellular proteins by an apocrine mechanism including cytoskeletal, cytosolic, mitochondrial, nuclear and nucleolar components. Surprisingly, the apocrine release of these proteins displays a temporal pattern with the sequential release of some proteins (e.g. transcription factor BR-C, tumor suppressor p127, cytoskeletal β-tubulin, non-muscle myosin) earlier than others (e.g. filamentous actin, nuclear lamin, mitochondrial pyruvate dehydrogenase). Although the apocrine release of proteins takes place just prior to the execution of an apoptotic program, the nuclear DNA is never released. Western blotting indicates that the secreted proteins remain undegraded in the lumen. Following apocrine secretion, the salivary gland cells remain quite vital, as they retain highly active transcriptional and protein synthetic activity. PMID:24732043

  7. Mithramycin inhibits epithelial-to-mesenchymal transition and invasion by downregulating SP1 and SNAI1 in salivary adenoid cystic carcinoma.

    PubMed

    Li, Jiasu; Gao, Hongmei; Meng, Lingxu; Yin, Lin

    2017-06-01

    Mithramycin exhibits certain anticancer effects in glioma, metastatic cerebral carcinoma, malignant lymphoma, chorionic carcinoma and breast cancer. However, its effects on salivary adenoid cystic carcinoma remain unclear. Here, we report that mithramycin significantly inhibited epithelial-to-mesenchymal transition and invasion in human salivary adenoid cystic carcinoma cell lines. The underlying mechanism for this activity was further demonstrated to involve decreasing the expression of the transcription factors specificity protein 1 and SNAI1. Specificity protein 1 is a pro-tumourigenic transcription factor that is overexpressed in SACC-LM and SACC-83 cells, and its expression is inhibited by mithramycin. Moreover, chromatin immunoprecipitation assays showed that specificity protein 1 induced SNAI1 transcription through direct binding to the SNAI1 promoter. In summary, this study uncovered the mechanism through which mithramycin inhibits epithelial-to-mesenchymal transition and invasion in salivary adenoid cystic carcinoma cell lines, namely, via downregulating specificity protein 1 and SNAI1 expression, which suggests mithramycin may be a promising therapeutic option for salivary adenoid cystic carcinoma.

  8. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer.

    PubMed

    Urbanucci, Alfonso; Barfeld, Stefan J; Kytölä, Ville; Itkonen, Harri M; Coleman, Ilsa M; Vodák, Daniel; Sjöblom, Liisa; Sheng, Xia; Tolonen, Teemu; Minner, Sarah; Burdelski, Christoph; Kivinummi, Kati K; Kohvakka, Annika; Kregel, Steven; Takhar, Mandeep; Alshalalfa, Mohammed; Davicioni, Elai; Erho, Nicholas; Lloyd, Paul; Karnes, R Jeffrey; Ross, Ashley E; Schaeffer, Edward M; Vander Griend, Donald J; Knapp, Stefan; Corey, Eva; Feng, Felix Y; Nelson, Peter S; Saatcioglu, Fahri; Knudsen, Karen E; Tammela, Teuvo L J; Sauter, Guido; Schlomm, Thorsten; Nykter, Matti; Visakorpi, Tapio; Mills, Ian G

    2017-06-06

    Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF) binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4) have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC). Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC). We show that the deregulation of androgen receptor (AR) expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs) mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10) for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Salivary proline-rich protein may reduce tannin-iron chelation: a systematic narrative review.

    PubMed

    Delimont, Nicole M; Rosenkranz, Sara K; Haub, Mark D; Lindshield, Brian L

    2017-01-01

    Tannins are often cited for antinutritional effects, including chelation of non-heme iron. Despite this, studies exploring non-heme iron bioavailability inhibition with long-term consumption have reported mixed results. Salivary proline-rich proteins (PRPs) may mediate tannin-antinutritional effects on non-heme iron bioavailability. To review evidence regarding biochemical binding mechanisms and affinity states between PRPs and tannins, as well as effects of PRPs on non-heme iron bioavailability with tannin consumption in vivo. Narrative systematic review and meta-analysis. Common themes in biochemical modeling and affinity studies were collated for summary and synthesis; data were extracted from in vivo experiments for meta-analysis. Thirty-two studies were included in analysis. Common themes that positively influenced tannin-PRP binding included specificity of tannin-PRP binding, PRP and tannin stereochemistry. Hydrolyzable tannins have different affinities than condensed tannins when binding to PRPs. In vivo, hepatic iron stores and non-heme iron absorption are not significantly affected by tannin consumption ( d  = -0.64-1.84; -2.7-0.13 respectively), and PRP expression may increase non-heme iron bioavailability with tannin consumption. In vitro modeling suggests that tannins favor PRP binding over iron chelation throughout digestion. Hydrolyzable tannins are not representative of tannin impact on non-heme iron bioavailability in food tannins because of their unique structural properties and PRP affinities. With tannin consumption, PRP production is increased, and may be an initial line of defense against tannin-non-heme iron chelation in vivo . More research is needed to compare competitive binding of tannin-PRP to tannin-non-heme iron complexes, and elucidate PRPs' role in adaption to non-heme iron bioavailability in vivo.

  10. In Vitro Identification of Histatin 5 Salivary Complexes

    PubMed Central

    Moffa, Eduardo B.; Machado, Maria A. A. M.; Mussi, Maria C. M.; Xiao, Yizhi; Garrido, Saulo S.; Giampaolo, Eunice T.; Siqueira, Walter L.

    2015-01-01

    With recent progress in the analysis of the salivary proteome, the number of salivary proteins identified has increased dramatically. However, the physiological functions of many of the newly discovered proteins remain unclear. Closely related to the study of a protein’s function is the identification of its interaction partners. Although in saliva some proteins may act primarily as single monomeric units, a significant percentage of all salivary proteins, if not the majority, appear to act in complexes with partners to execute their diverse functions. Coimmunoprecipitation (Co-IP) and pull-down assays were used to identify the heterotypic complexes between histatin 5, a potent natural antifungal protein, and other salivary proteins in saliva. Classical protein–protein interaction methods in combination with high-throughput mass spectrometric techniques were carried out. Co-IP using protein G magnetic Sepharose TM beads suspension was able to capture salivary complexes formed between histatin 5 and its salivary protein partners. Pull-down assay was used to confirm histatin 5 protein partners. A total of 52 different proteins were identified to interact with histatin 5. The present study used proteomic approaches in conjunction with classical biochemical methods to investigate protein–protein interaction in human saliva. Our study demonstrated that when histatin 5 is complexed with salivary amylase, one of the 52 proteins identified as a histatin 5 partner, the antifungal activity of histatin 5 is reduced. We expected that our proteomic approach could serve as a basis for future studies on the mechanism and structural-characterization of those salivary protein interactions to understand their clinical significance. PMID:26544073

  11. Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins.

    PubMed

    Carvalho, Elisabete; Mateus, Nuno; Plet, Benoit; Pianet, Isabelle; Dufourc, Erick; De Freitas, Victor

    2006-11-15

    Alpha-amylase, a major human salivary protein, and IB8c, a representative of the proline-rich proteins, were obtained by isolation from saliva and by solid-phase synthesis, respectively. The interactions between these proteins and condensed tannins isolated from grape seeds were studied at different protein and tannin concentrations by measuring their aggregation. Pectic polysaccharides were isolated from wine, and their effect on protein tannin aggregation was assessed. The results presented in this study showed that the most acidic fractions of arabinogalactan proteins have the ability to inhibit the formation of aggregates between the grape seed tannins and the two different salivary proteins. Rhamnogalacturonan II has the same ability toward alpha-amylase but not IB8c under the conditions of the present study. Polysaccharides show effects at concentrations at which they are present in wine, which could mean an influence in wine astringency. The interaction between condensed tannins and alpha-amylase is differently affected by ionic strength when compared with IB8c.

  12. A salivary sheath protein essential for the interaction of the brown planthopper with rice plants.

    PubMed

    Huang, Hai-Jian; Liu, Cheng-Wen; Cai, Ye-Fang; Zhang, Min-Zhu; Bao, Yan-Yuan; Zhang, Chuan-Xi

    2015-11-01

    Salivary secretions, including gel saliva and watery saliva, play crucial roles in the interaction between the insect and plant during feeding. In this study, we identified a salivary gland-specific gene encoding a salivary sheath protein (NlShp) in Nilaparvata lugens. NlShp has two alternative splicing variants; both are expressed at high levels during the nymph and adult stages. Immunohistochemical staining showed that the NlShp were synthesized in the principal gland cells of the salivary gland. LC-MS/MS and western blot analysis confirmed that NlShp was one of the components of the salivary sheath. Simultaneously knocking down the two NlShp variants by RNA interference inhibited both salivary flange and salivary sheath formation and resulted in a lethal phenotype within four days for the brown planthopper (BPH) feeding on rice plants, indicating that the salivary sheath and salivary flanges were essential for plant-associated feeding. Despite the salivary sheath deficiency, no obvious phenotype was observed in the NlShp-knockdown BPHs fed on artificial diet. The electrical penetration graph (EPG) results showed that salivary sheath-deficient BPHs exhibited a prolonged nonpenetration period, scarce sap period, and increased stylet movement on rice plants and eventually starved to death. Our results provided evidence that the interaction between the salivary sheath and host plant might be a critical step in successful BPH feeding. According to present research, we propose a salivary sheath required feeding model for piercing-sucking insects and provide a potential target for rice planthopper management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites

    PubMed Central

    Sima, Michal; Ferencova, Blanka; Warburg, Alon; Rohousova, Iva; Volf, Petr

    2016-01-01

    Background Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Methodology/Principal Findings Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Conclusions/Significance Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody

  14. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites.

    PubMed

    Sima, Michal; Ferencova, Blanka; Warburg, Alon; Rohousova, Iva; Volf, Petr

    2016-03-01

    Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.

  15. Effect of cigarette smoke on salivary proteins and enzyme activities.

    PubMed

    Nagler, R; Lischinsky, S; Diamond, E; Drigues, N; Klein, I; Reznick, A Z

    2000-07-15

    Exposure of human plasma in vitro to gas-phase cigarette smoke (CS) causes a marked modification of plasma proteins as measured by protein carbonyl assay. Aldehydes present in CS may cause this elevation of protein carbonyls by reacting with sulfhydryl groups of proteins. Saliva is the first body fluid to confront the inhaled CS. Thus, in vitro exposure of saliva to nine "puffs" of CS also showed a distinct increase in protein carbonyls. Ascorbate and desferrioxamine mesylate had little effect on protein carbonyl formation, while GSH and N-acetylcysteine considerably inhibited the accumulation of protein carbonyls due to CS exposure. Following the exposure to CS, the activities of several salivary enzymes-amylase, lactic dehydrogenase (LDH), and acid phosphatase-were found to be significantly reduced (34, 57, and 77%, respectively). However, CS had no effect on the activities of aspartate aminotransferase and alkaline phosphatase. Addition of 1 mM of GSH and N-acetylcysteine considerably protected LDH and amylase activities, suggesting that sulfhydryl groups are affected in LDH and amylase. On the other hand, addition of 1 mM ascorbate caused a further loss of LDH and amylase activities, which could be partially prevented by the addition of desferrioxamine mesylate, implicating metal-catalyzed oxidation processes. Finally, loss of acid phosphatase activity was completely unaffected by any of the above antioxidants. It is concluded that the loss of salivary enzyme activities may be due to various agents in the CS that affect the enzyme activities via different mechanisms. Copyright 2000 Academic Press.

  16. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry.

    PubMed

    Carolan, James C; Fitzroy, Carol I J; Ashton, Peter D; Douglas, Angela E; Wilkinson, Thomas L

    2009-05-01

    Nine proteins secreted in the saliva of the pea aphid Acyrthosiphon pisum were identified by a proteomics approach using GE-LC-MS/MS and LC-MS/MS, with reference to EST and genomic sequence data for A. pisum. Four proteins were identified by their sequences: a homolog of angiotensin-converting enzyme (an M2 metalloprotease), an M1 zinc-dependant metalloprotease, a glucose-methanol-choline (GMC)-oxidoreductase and a homolog to regucalcin (also known as senescence marker protein 30). The other five proteins are not homologous to any previously described sequence and included an abundant salivary protein (represented by ACYPI009881), with a predicted length of 1161 amino acids and high serine, tyrosine and cysteine content. A. pisum feeds on plant phloem sap and the metalloproteases and regucalcin (a putative calcium-binding protein) are predicted determinants of sustained feeding, by inactivation of plant protein defences and inhibition of calcium-mediated occlusion of phloem sieve elements, respectively. The amino acid composition of ACYPI009881 suggests a role in the aphid salivary sheath that protects the aphid mouthparts from plant defences, and the oxidoreductase may promote gelling of the sheath protein or mediate oxidative detoxification of plant allelochemicals. Further salivary proteins are expected to be identified as more sensitive MS technologies are developed.

  17. Humoral response of captive zebra sharks Stegostoma fasciatum to salivary gland proteins of the leech Branchellion torpedinis.

    PubMed

    Marancik, David P; Leary, John H; Fast, Mark M; Flajnik, Martin F; Camus, Alvin C

    2012-10-01

    Parasitism by the marine leech Branchellion torpedinis is known to cause disease and mortality in captive elasmobranchs and is difficult to control when inadvertently introduced into public aquaria. Preliminary characterization of the salivary gland transcriptome of B. torpedinis has identified anticoagulants, proteases, and immunomodulators that may be secreted into host tissues to aid leech feeding. This retrospective study examined antigen-specific serum IgM responses in captive zebra sharks Stegostoma fasciatum to leech salivary gland extract. Antibody response was examined by ELISA and Western blot assays in 20 serum samples from six zebra sharks, with a 5 year history of leech infection, and 18 serum samples from 8 captive bred zebra sharks, with no history of leech exposure. ELISA demonstrated significantly higher serum IgM titers to salivary gland extract in exposed zebra sharks compared to the non-exposed population. No obvious trends in antibody titers were appreciated in exposed zebra sharks over a four-year period. One-dimensional and two-dimensional Western blot assays revealed IgM targeted specific salivary gland proteins within the 40, 55, 70 and 90 kD range. Antigenic proteins identified by liquid chromatography-tandem mass spectrometry and de novo peptide sequencing include a secreted disintegrin, metalloproteinase and thrombospondin motif containing protein (ADAMTS), tubulin, aldehyde dehydrogenase and two unknown proteins. Humoral immune responses to leech salivary gland proteins warrants further investigation as there may be options to exploit immune mechanisms to reduce parasite burdens in aquaria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Bmp7 and Lef1 are the downstream effectors of androgen signaling in androgen-induced sex characteristics development in medaka.

    PubMed

    Ogino, Yukiko; Hirakawa, Ikumi; Inohaya, Keiji; Sumiya, Eri; Miyagawa, Shinichi; Denslow, Nancy; Yamada, Gen; Tatarazako, Norihisa; Iguchi, Taisen

    2014-02-01

    Androgens play key roles in the morphological specification of male type sex attractive and reproductive organs, whereas little is known about the developmental mechanisms of such secondary sex characters. Medaka offers a clue about sexual differentiation. They show a prominent masculine sexual character for appendage development, the formation of papillary processes in the anal fin, which has been induced in females by exogenous androgen exposure. This current study shows that the development of papillary processes is promoted by androgen-dependent augmentation of bone morphogenic protein 7 (Bmp7) and lymphoid enhancer-binding factor-1 (Lef1). Androgen receptor (AR) subtypes, ARα and ARβ, are expressed in the distal region of outgrowing bone nodules of developing papillary processes. Development of papillary processes concomitant with the induction of Bmp7 and Lef1 in the distal bone nodules by exposure to methyltestosterone was significantly suppressed by an antiandrogen, flutamide, in female medaka. When Bmp signaling was inhibited in methyltestosterone-exposed females by its inhibitor, dorsomorphin, Lef1 expression was suppressed accompanied by reduced proliferation in the distal bone nodules and retarded bone deposition. These observations indicate that androgen-dependent expressions of Bmp7 and Lef1 are required for the bone nodule outgrowth leading to the formation of these secondary sex characteristics in medaka. The formation of androgen-induced papillary processes may provide insights into the mechanisms regulating the specification of sexual features in vertebrates.

  19. Induction of Salivary Proteins Modifies Measures of Both Orosensory and Postingestive Feedback during Exposure to a Tannic Acid Diet

    PubMed Central

    Torregrossa, Ann-Marie; Nikonova, Larissa; Bales, Michelle B.; Villalobos Leal, Maria; Smith, James C.; Contreras, Robert J.; Eckel, Lisa A.

    2014-01-01

    There are hundreds of proteins in saliva. Although it has long been hypothesized that these proteins modulate taste by interacting with taste receptors or taste stimuli, the functional impact of these proteins on feeding remains relatively unexplored. We have developed a new technique for saliva collection that does not interfere with daily behavioral testing and allows us to explore the relationship between feeding behavior and salivary protein expression. First, we monitored the alterations in salivary protein expression while simultaneously monitoring the animals' feeding behavior and meal patterns on a custom control diet or on the same diet mixed with 3% tannic acid. We demonstrated that six protein bands increased in density with dietary tannic acid exposure. Several of these bands were significantly correlated with behaviors thought to represent both orosensory and postingestive signaling. In a follow-up experiment, unconditioned licking to 0.01–3% tannic acid solutions was measured during a brief-access taste test before and after exposure to the tannic acid diet. In this experiment, rats with salivary proteins upregulated found the tannin solution less aversive (i.e., licked more) than those in the control condition. These data suggest a role for salivary proteins in mediating changes in both orosensory and postingestive feedback. PMID:25162297

  20. Binding of corroded ions to human saliva.

    PubMed

    Mueller, H J

    1985-05-01

    Employing equilibrium dialysis, the binding abilities of Cu, Al, Co and Cr ions from corroded Cu-Al and Co-Cr dental casting alloys towards human saliva and two of its gel chromatographic fractions were determined. Results indicate that both Cu and Co bind to human saliva i.e. 0.045 and 0.027 mg/mg protein, respectively. Besides possessing the largest binding ability, Cu also possessed the largest binding capacity. The saturation of Cu binding was not reached up to the limit of 0.35 mg protein/ml employed in the tests, while Co reached full saturation at about 0.2 mg protein/ml. Chromium showed absolutely no binding to human saliva while Al ions did not pass through the dialysis membranes. Compared to the binding with solutions that were synthetically made up to contain added salivary-type proteins, it is shown that the binding to human saliva is about 1 order of magnitude larger, at least for Cu ions.

  1. Proteome analysis of gut and salivary gland proteins of fifth-instar nymph and adults of the sunn pest, Eurygaster integriceps.

    PubMed

    Bezdi, Mohammad Saadati; Toorchi, Mahmoud; Pourabad, Reza Farshbaf; Zarghami, Nosratollah; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2012-10-01

    In the digestive system of the sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), the salivary gland has a key role in extra oral digestion and the gut is the main site for digestion of food. In this study, proteomics was used to study the role of proteins involved in digestion. The amount of feeding on wheat grain by adult insects increased by comparison to fifth-instar nymphs. Proteins of the gut and salivary gland in adults and fifth-instar nymphs were analyzed 1 day after feeding. The proteins related to digestion, metabolism, and defense against toxins were accumulated in the gut of adult insects. Three plant proteins including serpin, dehydroascorbate reductase, and β-amylase were accumulated in guts of adults. In the salivary gland, phospholipase A2 and arginine kinase were increased in adults. Heat shock protein 70 increased in the gut of fifth-instar nymphs. Proteomic analysis revealed that most of changed proteins in digestive system of sunn pest were increased in adults. This study provided more targets derived from gut and salivary gland for pest management. © 2012 Wiley Periodicals, Inc.

  2. Androgen abuse in the community.

    PubMed

    Melnik, Bodo C

    2009-06-01

    To provide information of the current prevalence of illicit use of androgens by individuals of the community. Prevalence of abuse of androgens in individuals of the general population has reached alarming dimensions. Use of androgens is no longer limited to competitive sports, but has spread to leisure and fitness sports, bodybuilding, and nonathletes motivated to increase muscular mass and physical attractiveness. Alarming studies from Germany demonstrated that members of the healthcare systems provide illegal androgens to 48.1% of abusers visiting fitness centers. The new trend to combine androgens with growth hormone, insulin, and insulinotropic milk protein-fortified drinks may potentiate health risks of androgen abuse. The use of androgens has changed from being a problem restricted to sports to one of public health concern. The potential health hazards of androgen abuse are underestimated in the medical community, which unfortunately contributes to illegal distribution of androgens. Both the adverse effects of current androgen abuse especially in young men as well as the chronic toxicity from past long-term abuse of now middle-aged men has to be considered as a growing public health problem. In the future, an increasing prevalence of androgen misuse in combination with other growth-promoting hormones and insulinotropic milk protein products has to be expected, which may have further promoting effects on the prevalence of chronic western diseases.

  3. Determining the time androgens and sex hormone-binding globulin take to return to baseline after discontinuation of oral contraceptives in women with polycystic ovary syndrome: a prospective study.

    PubMed

    Sánchez, Luis A; Pérez, Marilda; Centeno, Indira; David, Marisa; Kahi, Doris; Gutierrez, Elizabeth

    2007-03-01

    In this study, discontinuation of oral contraceptive pills in women with polycystic ovary syndrome was followed by the return of all measured androgens and sex hormone-binding globulin levels to basal values after 8 weeks. These observations are pertinent to the measurement of androgens and sex hormone-binding globulin levels in subjects who currently are taking oral contraceptive pills and have symptoms that are related to polycystic ovary syndrome.

  4. NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer

    PubMed Central

    Tsao, Yeou-Ping; Huang, Hsiang-Po; Chen, Show-Li

    2017-01-01

    Both nuclear receptor interaction protein (NRIP) and DNA damage binding protein 2 (DDB2) belong to the Cullin 4 (CUL4)-DDB1 binding protein family and are androgen receptor (AR)-interacting proteins. Here, we investigated the expression patterns of the NRIP, DDB2 and AR proteins in human prostate cancer tissues and found that the expression levels of NRIP and AR were higher, but the DDB2 level was lower, in prostate cancer tissues than in non-neoplastic controls, suggesting NRIP as a candidate tumor promoter and DDB2 as a tumor suppressor in prostate cancer. Furthermore, both NRIP and DDB2 shared the same AR binding domain; they were competitors for the AR, but not for DDB1 binding, in the AR-DDB2-DDB1-CUL4A complex. Conclusively, NRIP stabilizes the AR protein by displacing DDB2 from the AR-DDB2 complex. Consistent with our hypothesis, a specific expression pattern with high levels of NRIP and AR, together with a low level of DDB2, was found more frequently in the human prostate cancer tissues with a cribriform pattern than in non-cribriform tumors, suggesting that disruption of the balance between NRIP and DDB2 may change AR protein homeostasis and contribute to pathogenesis in certain aggressive types of prostate cancer. PMID:28212551

  5. NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer.

    PubMed

    Chen, Hsin-Hsiung; Fan, Ping; Chang, Szu-Wei; Tsao, Yeou-Ping; Huang, Hsiang-Po; Chen, Show-Li

    2017-03-28

    Both nuclear receptor interaction protein (NRIP) and DNA damage binding protein 2 (DDB2) belong to the Cullin 4 (CUL4)-DDB1 binding protein family and are androgen receptor (AR)-interacting proteins. Here, we investigated the expression patterns of the NRIP, DDB2 and AR proteins in human prostate cancer tissues and found that the expression levels of NRIP and AR were higher, but the DDB2 level was lower, in prostate cancer tissues than in non-neoplastic controls, suggesting NRIP as a candidate tumor promoter and DDB2 as a tumor suppressor in prostate cancer. Furthermore, both NRIP and DDB2 shared the same AR binding domain; they were competitors for the AR, but not for DDB1 binding, in the AR-DDB2-DDB1-CUL4A complex. Conclusively, NRIP stabilizes the AR protein by displacing DDB2 from the AR-DDB2 complex. Consistent with our hypothesis, a specific expression pattern with high levels of NRIP and AR, together with a low level of DDB2, was found more frequently in the human prostate cancer tissues with a cribriform pattern than in non-cribriform tumors, suggesting that disruption of the balance between NRIP and DDB2 may change AR protein homeostasis and contribute to pathogenesis in certain aggressive types of prostate cancer.

  6. How Proteins Bind Macrocycles

    PubMed Central

    Villar, Elizabeth A.; Beglov, Dmitri; Chennamadhavuni, Spandan; Porco, John A.; Kozakov, Dima; Vajda, Sandor; Whitty, Adrian

    2014-01-01

    The potential utility of synthetic macrocycles as drugs, particularly against low druggability targets such as protein-protein interactions, has been widely discussed. There is little information, however, to guide the design of macrocycles for good target protein-binding activity or bioavailability. To address this knowledge gap we analyze the binding modes of a representative set of macrocycle-protein complexes. The results, combined with consideration of the physicochemical properties of approved macrocyclic drugs, allow us to propose specific guidelines for the design of synthetic macrocycles libraries possessing structural and physicochemical features likely to favor strong binding to protein targets and also good bioavailability. We additionally provide evidence that large, natural product derived macrocycles can bind to targets that are not druggable by conventional, drug-like compounds, supporting the notion that natural product inspired synthetic macrocycles can expand the number of proteins that are druggable by synthetic small molecules. PMID:25038790

  7. Suppression of white light generation (supercontinuum) in biological media: a pilot study using human salivary proteins

    NASA Astrophysics Data System (ADS)

    Santhosh, C.; Dharmadhikari, A. K.; Alti, K.; Dharmadhikari, J. A.; Mathur, D.

    2007-02-01

    Propagation of ultrashort pulses of intense, infrared light through transparent medium gives rise to a visually spectacular phenomenon known as supercontinuum (white light) generation wherein the spectrum of transmitted light is very considerably broader than that of the incident light. We have studied the propagation of ultrafast (<45 fs) pulses of intense infrared light through biological media (water, and water doped with salivary proteins) which reveal that white light generation is severely suppressed in the presence of a major salivary protein, α-amylase.

  8. Dietary Vitamin C, E and β-Carotene Intake Does Not Significantly Affect Plasma or Salivary Antioxidant Indices and Salivary C-Reactive Protein in Older Subjects

    PubMed Central

    Gawron-Skarbek, Anna; Prymont-Przymińska, Anna; Godala, Małgorzata; Kolmaga, Agnieszka; Nowak, Dariusz; Szatko, Franciszek; Kostka, Tomasz

    2017-01-01

    It is not clear whether habitual dietary intake influences the antioxidant or inflammatory status. The aim of the present study was to assess the impact of antioxidative vitamins C, E, and β-carotene obtained from daily food rations on plasma and salivary Total Antioxidant Capacity (TAC), uric acid and salivary C-reactive protein (CRP). The study involved 80 older subjects (66.9 ± 4.3 years), divided into two groups: group 1 (n = 43) with lower and group 2 (n = 37) with higher combined vitamins C, E and β-carotene intake. A 24-h dietary recall was obtained from each individual. TAC was assessed simultaneously with two methods in plasma (Ferric Reducing Ability of Plasma—FRAP, 2.2-diphenyl-1-picryl-hydrazyl—DPPH) and in saliva (FRAS and DPPHS test). Lower vitamin C intake corresponded to higher FRAS. There were no other correlations between vitamins C, E or β-carotene intake and antioxidant indices. Salivary CRP was not related to any antioxidant indices. FRAS was decreased in group 2 (p < 0.01) but no other group differences for salivary or for plasma antioxidant parameters and salivary CRP were found. Habitual, not extra supplemented dietary intake does not significantly affect plasma or salivary TAC and salivary CRP. PMID:28698489

  9. Dietary Vitamin C, E and β-Carotene Intake Does Not Significantly Affect Plasma or Salivary Antioxidant Indices and Salivary C-Reactive Protein in Older Subjects.

    PubMed

    Gawron-Skarbek, Anna; Guligowska, Agnieszka; Prymont-Przymińska, Anna; Godala, Małgorzata; Kolmaga, Agnieszka; Nowak, Dariusz; Szatko, Franciszek; Kostka, Tomasz

    2017-07-09

    It is not clear whether habitual dietary intake influences the antioxidant or inflammatory status. The aim of the present study was to assess the impact of antioxidative vitamins C, E, and β-carotene obtained from daily food rations on plasma and salivary Total Antioxidant Capacity (TAC), uric acid and salivary C-reactive protein (CRP). The study involved 80 older subjects (66.9 ± 4.3 years), divided into two groups: group 1 ( n = 43) with lower and group 2 ( n = 37) with higher combined vitamins C, E and β-carotene intake. A 24-h dietary recall was obtained from each individual. TAC was assessed simultaneously with two methods in plasma (Ferric Reducing Ability of Plasma-FRAP, 2.2-diphenyl-1-picryl-hydrazyl-DPPH) and in saliva (FRAS and DPPHS test). Lower vitamin C intake corresponded to higher FRAS. There were no other correlations between vitamins C, E or β-carotene intake and antioxidant indices. Salivary CRP was not related to any antioxidant indices. FRAS was decreased in group 2 ( p < 0.01) but no other group differences for salivary or for plasma antioxidant parameters and salivary CRP were found. Habitual, not extra supplemented dietary intake does not significantly affect plasma or salivary TAC and salivary CRP.

  10. Salivary protein concentration, flow rate, buffer capacity and pH estimation: A comparative study among young and elderly subjects, both normal and with gingivitis and periodontitis.

    PubMed

    Shaila, Mulki; Pai, G Prakash; Shetty, Pushparaj

    2013-01-01

    To evaluate the salivary protein concentration in gingivitis and periodontitis patients and compare the parameters like salivary total protein, salivary albumin, salivary flow rate, pH, buffer capacity and flow rate in both young and elderly patients with simple methods. One hundred and twenty subjects were grouped based on their age as young and elderly. Each group was subgrouped (20 subjects) as controls, gingivitis and periodontitis. Unstimulated whole saliva was collected from patients and flow rate was noted down during collection of the sample. Salivary protein estimation was done using the Biuret method and salivary albumin was assessed using the Bromocresol green method. pH was estimated with a pHmeter and buffering capacity was analyzed with the titration method. Student's t-test, Fisher's test (ANOVA) and Tukey HSD (ANOVA) tests were used for statistical analysis. A very highly significant rise in the salivary total protein and albumin concentration was noted in gingivitis and periodontitis subjects of both young and elderly. An overall decrease in salivary flow rate was observed among the elderly, and also the salivary flow rate of women was significantly lower than that of men. Significant associations between salivary total protein and albumin in gingivitis and periodontitis were found with simple biochemical tests. A decrease in salivary flow rate among elderly and among women was noted.

  11. TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer

    PubMed Central

    Nyquist, Michael D.; Li, Yingming; Hwang, Tae Hyun; Manlove, Luke S.; Vessella, Robert L.; Silverstein, Kevin A. T.; Voytas, Daniel F.; Dehm, Scott M.

    2013-01-01

    Androgen receptor (AR) target genes direct development and survival of the prostate epithelial lineage, including prostate cancer (PCa). Thus, endocrine therapies that inhibit the AR ligand-binding domain (LBD) are effective in treating PCa. AR transcriptional reactivation is central to resistance, as evidenced by the efficacy of AR retargeting in castration-resistant PCa (CRPC) with next-generation endocrine therapies abiraterone and enzalutamide. However, resistance to abiraterone and enzalutamide limits this efficacy in most men, and PCa remains the second-leading cause of male cancer deaths. Here we show that AR gene rearrangements in CRPC tissues underlie a completely androgen-independent, yet AR-dependent, resistance mechanism. We discovered intragenic AR gene rearrangements in CRPC tissues, which we modeled using transcription activator-like effector nuclease (TALEN)-mediated genome engineering. This modeling revealed that these AR gene rearrangements blocked full-length AR synthesis, but promoted expression of truncated AR variant proteins lacking the AR ligand-binding domain. Furthermore, these AR variant proteins maintained the constitutive activity of the AR transcriptional program and a CRPC growth phenotype independent of full-length AR or androgens. These findings demonstrate that AR gene rearrangements are a unique resistance mechanism by which AR transcriptional activity can be uncoupled from endocrine regulation in CRPC. PMID:24101480

  12. Replacement of arginine 773 by cysteine or histidine in the human androgen receptor causes complete androgen insensitivity with different receptor phenotypes

    PubMed Central

    Prior, Lynn; Bordet, Sylvie; Trifiro, Mark A.; Mhatre, Anand; Kaufman, Morris; Pinsky, Leonard; Wrogeman, Klaus; Belsham, Denise D.; Pereira, Fred; Greenberg, Cheryl; Trapman, Jan; Brinkman, Albert O.; Chang, Chawnshang; Liao, Shutsung

    1992-01-01

    We have discovered two different point mutations in a single codon of the X-linked androgen-receptor (AR) gene in two pairs of unrelated families who have complete androgen insensitivity (resistance) associated with different AR phenotypes in their genital skin fibroblasts. One mutation is a C-to-T transition at a CpG sequence near the 5' terminus of exon 6; it changes the sense of codon 773 from arginine to cysteine, ablates specific androgen-binding activity at 37°C, and eliminates a unique KpnI site at the intron-exon boundary. The other mutation is a G-to-A transition that changes amino acid 773 to histidine and eliminates an SphI site. This mutant AR has a normal androgen-binding capacity at 37°C but has a reduced affinity for androgens and is thermolabile in their presence. Transient transfection of COS cells with cDNA expression vectors yielded little androgen-binding activity at 37°C from Arg773Cys and abundant activity with abnormal properties from Arg773His, thereby proving the pathogenicity of both sequence alterations. This conclusion coincides with the following facts about evolutionary preservation of the position homologous to Arg773 in the AR: it is occupied by Arg or lysine in the progesterone, glucocorticoid, and mineralocorticoid receptors, and it is within a 14-amino-acid region of their steroid-binding domains that share ∼85% amino acid identity. ImagesFigure 7Figure 2Figure 3Figure 5Figure 6Figure 8 PMID:1609793

  13. Detecting cis-regulatory binding sites for cooperatively binding proteins

    PubMed Central

    van Oeffelen, Liesbeth; Cornelis, Pierre; Van Delm, Wouter; De Ridder, Fedor; De Moor, Bart; Moreau, Yves

    2008-01-01

    Several methods are available to predict cis-regulatory modules in DNA based on position weight matrices. However, the performance of these methods generally depends on a number of additional parameters that cannot be derived from sequences and are difficult to estimate because they have no physical meaning. As the best way to detect cis-regulatory modules is the way in which the proteins recognize them, we developed a new scoring method that utilizes the underlying physical binding model. This method requires no additional parameter to account for multiple binding sites; and the only necessary parameters to model homotypic cooperative interactions are the distances between adjacent protein binding sites in basepairs, and the corresponding cooperative binding constants. The heterotypic cooperative binding model requires one more parameter per cooperatively binding protein, which is the concentration multiplied by the partition function of this protein. In a case study on the bacterial ferric uptake regulator, we show that our scoring method for homotypic cooperatively binding proteins significantly outperforms other PWM-based methods where biophysical cooperativity is not taken into account. PMID:18400778

  14. Glucan Binding Protein C of Streptococcus mutans Mediates both Sucrose-Independent and Sucrose-Dependent Adherence.

    PubMed

    Mieher, Joshua L; Larson, Matthew R; Schormann, Norbert; Purushotham, Sangeetha; Wu, Ren; Rajashankar, Kanagalaghatta R; Wu, Hui; Deivanayagam, Champion

    2018-07-01

    The high-resolution structure of glucan binding protein C (GbpC) at 1.14 Å, a sucrose-dependent virulence factor of the dental caries pathogen Streptococcus mutans , has been determined. GbpC shares not only structural similarities with the V regions of AgI/II and SspB but also functional adherence to salivary agglutinin (SAG) and its scavenger receptor cysteine-rich domains (SRCRs). This is not only a newly identified function for GbpC but also an additional fail-safe binding mechanism for S. mutans Despite the structural similarities with S. mutans antigen I/II (AgI/II) and SspB of Streptococcus gordonii , GbpC remains unique among these surface proteins in its propensity to adhere to dextran/glucans. The complex crystal structure of GbpC with dextrose (β-d-glucose; Protein Data Bank ligand BGC) highlights exclusive structural features that facilitate this interaction with dextran. Targeted deletion mutant studies on GbpC's divergent loop region in the vicinity of a highly conserved calcium binding site confirm its role in biofilm formation. Finally, we present a model for adherence to dextran. The structure of GbpC highlights how artfully microbes have engineered the lectin-like folds to broaden their functional adherence repertoire. Copyright © 2018 American Society for Microbiology.

  15. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding.

    PubMed

    Cala, Olivier; Dufourc, Erick J; Fouquet, Eric; Manigand, Claude; Laguerre, Michel; Pianet, Isabelle

    2012-12-18

    While the definition of tannins has been historically associated with its propensity to bind proteins in a nonspecific way, it is now admitted that specific interaction also occurs. The case of the astringency perception is a good example to illustrate this phenomenon: astringency is commonly described as a tactile sensation induced by the precipitation of a complex composed of proline-rich proteins present in the human saliva and tannins present in beverages such as tea or red wines. In the present work, the interactions between a human saliva protein segment and three different procyanidins (B1, B3, and C2) were investigated at the atomic level by NMR and molecular dynamics. The data provided evidence for (i) an increase in affinity compared to shortest human saliva peptides, which is accounted for by protein "wraping around" the tannin, (ii) a specificity in the interaction below tannin critical micelle concentration (CMC) of ca. 10 mM, with an affinity scale such that C2 > B1 > B3, and (iii) a nonspecific binding above tannin CMC that conducts irremediably to the precipitation of the tannins/protein complex. Such physicochemical findings describe in accurate terms saliva protein-tannin interactions and provide support for a more subtle description by oenologists of wine astringency perception in the mouth.

  16. Mosquito salivary allergen Aed a 3: cloning, comprehensive molecular analysis, and clinical evaluation.

    PubMed

    Peng, Z; Xu, W W; Sham, Y; Lam, H; Sun, D; Cheng, L; Rasic, N F; Guan, Q; James, A A; Simons, F E R

    2016-05-01

    Allergic reactions to mosquito bites are an increasing clinical concern. Due to the lack of availability of mosquito salivary allergens, they are underdiagnosed. Here, we reported a newly cloned mosquito Aedes (Ae.) aegypti salivary allergen. A cDNA encoding a 30-kDa Ae. aegypti salivary protein, designated Aed a 3, was isolated from an expression library. The full-length cDNA was cloned into a baculovirus expression vector, and recombinant Aed a 3 (rAed a 3) was expressed, purified, and characterized. Skin prick tests with purified rAed a 3 and Ae. aegypti bite tests were performed in 43 volunteers. Serum rAed a 3-specific IgE levels were measured in 28 volunteers. The primary nucleotide sequence, deduced amino acid sequence, and IgE-binding sites of Aed a 3 were identified. rAed a 3-selected antibodies recognized a 30-kDa Ae. aegypti saliva protein. rAed a 3 bound IgE in mosquito-allergic volunteers and the binding could be inhibited by the addition of natural mosquito extract dose dependently. Immediate skin test reactions to rAed a 3 correlated significantly with mosquito bite-induced reactions. Of the bite test-positive volunteers, 32% had a positive rAed a 3 skin test and 46% had specific IgE. No bite test-negative volunteers reacted to rAed a 3 in either the skin tests or the IgE assays, confirming the specificity of the assay. Aed a 3 that corresponds to the Aegyptin protein is a major mosquito salivary allergen. Its recombinant form has biological activity and is suitable for use in skin tests and specific IgE assays in mosquito-allergic individuals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Selective androgen receptor modulators as function promoting therapies.

    PubMed

    Bhasin, Shalender; Jasuja, Ravi

    2009-05-01

    The past decade has witnessed an unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Although steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5alpha-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with androgen receptor (AR) contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand-binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis.

  18. Salivary antimicrobial proteins associate with age-related changes in streptococcal composition in dental plaque.

    PubMed

    Malcolm, J; Sherriff, A; Lappin, D F; Ramage, G; Conway, D I; Macpherson, L M D; Culshaw, S

    2014-12-01

    Secretion of antimicrobial proteins (AMPs) and salivary antibodies can modify biofilm formation at host body surfaces. In adolescents, associations have been reported between dental caries and salivary AMPs. AMPs demonstrate direct antimicrobial effects at high concentrations, and at lower more physiological concentrations they mediate changes in host cell defenses, which may alter the local environment and indirectly shape local biofilm formation. The expression of salivary AMPs in preschool children, at an age when the oral bacteria are known to change, has not been investigated. We sought to investigate salivary AMP expression in the context of previously well-documented changes in the oral cavities of this age group including salivary immunoglobulin A (IgA), oral bacteria and dental caries. Dental plaque and saliva were collected from 57 children aged 12-24 months at baseline, of whom 23 children were followed-up at 3 years of age. At each time, saliva was assessed for LL37, human neutrophil peptides 1-3, calprotectin, lactoferrin, salivary IgA, total plaque bacteria and Streptococcus mutans. Over time, concentrations of AMPs, S. mutans and bacteria-specific salivary IgA increased. Caries experience was also recorded when children were 3 years old. Concentrations of AMPs were highest in the saliva of 3-year-old children with the greatest burden of S. mutans. These data suggest that salivary AMPs are variable over time and between individuals, and are linked with bacterial colonization. At follow up, the majority of children remained caries free. Larger longitudinal studies are required to confirm whether salivary AMP levels are predictive of caries and whether their modulation offers therapeutic benefit. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Correlation between salivary secretion and salivary AQP5 levels in health and disease.

    PubMed

    Wang, Di; Iwata, Fusako; Muraguchi, Masahiro; Ooga, Keiko; Ohmoto, Yasukazu; Takai, Masaaki; Mori, Toyoki; Ishikawa, Yasuko

    2009-01-01

    Saliva samples are useful for noninvasive diagnosis of oral and systemic diseases. The water channel protein aquaporin-5 (AQP5) is released into human saliva. Salivary AQP5 levels show a diurnal variation with the secretion of high levels during the waking hours. An age-related decrease in salivary AQP5 levels parallels a decrease in the volume of saliva. Cevimeline, a muscarinic acetylcholine receptor (mAChR) agonist, induces the release of AQP5. Changes in salivary AQP5 levels after cevimeline administration occur simultaneously with changes in saliva flow rate. AQP5 and lipid rafts are released separately from human salivary glands upon M(3) mAChR stimulation. In patients with diabetes mellitus or Sjögren's syndrome, a decrease in salivary secretion occurs concomitantly with low salivary AQP5 levels. Salivary AQP5 levels correlate with salivary secretion in both healthy and disease states, suggesting that changes in salivary AQP5 levels can be used as an indicator of salivary flow rate and the effect of M(3) mAChR agonists on human salivary glands.

  20. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein.

    PubMed

    Oshiro, Satoshi; Honda, Shinya

    2014-04-18

    Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.

  1. Salivary gland proteome analysis reveals modulation of anopheline unique proteins in insensitive acetylcholinesterase resistant Anopheles gambiae mosquitoes.

    PubMed

    Cornelie, Sylvie; Rossignol, Marie; Seveno, Martial; Demettre, Edith; Mouchet, François; Djègbè, Innocent; Marin, Philippe; Chandre, Fabrice; Corbel, Vincent; Remoué, Franck; Mathieu-Daudé, Françoise

    2014-01-01

    Insensitive acetylcholinesterase resistance due to a mutation in the acetylcholinesterase (ace) encoding ace-1 gene confers cross-resistance to organophosphate and carbamate insecticides in Anopheles gambiae populations from Central and West Africa. This mutation is associated with a strong genetic cost revealed through alterations of some life history traits but little is known about the physiological and behavioural changes in insects bearing the ace-1(R) allele. Comparative analysis of the salivary gland contents between An. gambiae susceptible and ace-1(R) resistant strains was carried out to charaterize factors that could be involved in modifications of blood meal process, trophic behaviour or pathogen interaction in the insecticide-resistant mosquitoes. Differential analysis of the salivary gland protein profiles revealed differences in abundance for several proteins, two of them showing major differences between the two strains. These two proteins identified as saglin and TRIO are salivary gland-1 related proteins, a family unique to anopheline mosquitoes, one of them playing a crucial role in salivary gland invasion by Plasmodium falciparum sporozoites. Differential expression of two other proteins previously identified in the Anopheles sialome was also observed. The differentially regulated proteins are involved in pathogen invasion, blood feeding process, and protection against oxidation, relevant steps in the outcome of malaria infection. Further functional studies and insect behaviour experiments would confirm the impact of the modification of the sialome composition on blood feeding and pathogen transmission abilities of the resistant mosquitoes. The data supports the hypothesis of alterations linked to insecticide resistance in the biology of the primary vector of human malaria in Africa.

  2. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach.

    PubMed

    Brandão, Elsa; Silva, Mafalda Santos; García-Estévez, Ignacio; Williams, Pascale; Mateus, Nuno; Doco, Thierry; de Freitas, Victor; Soares, Susana

    2017-12-01

    Polysaccharides are described to inhibit aggregation between food polyphenols and salivary proteins (SP) and may hence lead to astringency modulation. In this work, the effect of two wine polysaccharides (arabinogalactan proteins-AGPs and rhamnogalacturonan II- RGII) on SP-polyphenol interaction was evaluated. In general, both polysaccharides were effective to inhibit or reduce SP-polyphenol interaction and aggregation. They can act by two different mechanisms (ternary or competitive) depending on the SP-tannin pair. In the case of salivary P-B peptide, AGPs and RGII seem to act by a ternary mechanism, in which they surround this complex, enhancing its solubility. Concerning acidic proline-rich proteins (aPRPs), it was possible to observe both mechanisms, depending on the tannin and the polysaccharide involved. Overall, this work point out for a specific property of wine polysaccharides important to modulate this and other beverages and food astringency perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cheilitis glandularis: immunohistochemical expression of protein water channels (aquaporins) in minor labial salivary glands.

    PubMed

    Nico, M M S; Melo, J N; Lourenço, S V

    2014-03-01

    Cheilitis glandularis (CG) is a rare condition in which thick saliva is secreted from dilated ostia of swollen minor salivary glands from the lips. Aquaporins (AQPs) are membrane proteins that exhibit channel activity specific for water and small solutes. AQPs are essential for corporal homeostasis, and are widely expressed through human tissues. Most AQPs studies are based on renal and nervous pathophysiology; few involve salivary glands. Some previous investigators hypothesized that minor salivary gland structure and function is normal on CG. To study possible salivary synthesis alterations in CG, we compared the expression of AQPs present in minor salivary glands in specimens with CG and controls by using immunohistochemistry.   Seven cases of CG and three normal controls were studied. Intensity and patterns of expression of AQP 1, 2 and 8 differed in CG compared with controls. AQP 4 and 5 (the most important AQP in salivary function) showed identical patterns in CG and controls. Our findings suggest that the expression and arguably, function of some of the AQPs may be altered in CG; consequently, water flow mechanism abnormalities with possible alteration in salivary composition seem to occur. External factors (mainly UV rays) seem to play an important role in CG; nonetheless, our findings suggest that there might be some degree of alteration on water transportation. © 2013 The Authors. Journal of the European Academy of Dermatology and Venereology © 2013 European Academy of Dermatology and Venereology.

  4. Dipetalodipin, a Novel Multifunctional Salivary Lipocalin That Inhibits Platelet Aggregation, Vasoconstriction, and Angiogenesis through Unique Binding Specificity for TXA2, PGF2α, and 15(S)-HETE*

    PubMed Central

    Assumpção, Teresa C. F.; Alvarenga, Patricia H.; Ribeiro, José M. C.; Andersen, John F.; Francischetti, Ivo M. B.

    2010-01-01

    Dipetalodipin (DPTL) is an 18 kDa protein cloned from salivary glands of the triatomine Dipetalogaster maxima. DPTL belongs to the lipocalin superfamily and has strong sequence similarity to pallidipin, a salivary inhibitor of collagen-induced platelet aggregation. DPTL expressed in Escherichia coli was found to inhibit platelet aggregation by collagen, U-46619, or arachidonic acid without affecting aggregation induced by ADP, convulxin, PMA, and ristocetin. An assay based on incubation of DPTL with small molecules (e.g. prostanoids, leukotrienes, lipids, biogenic amines) followed by chromatography, mass spectrometry, and isothermal titration calorimetry showed that DPTL binds with high affinity to carbocyclic TXA2, TXA2 mimetic (U-46619), TXB2, PGH2 mimetic (U-51605), PGD2, PGJ2, and PGF2α. It also interacts with 15(S)-HETE, being the first lipocalin described to date to bind to a derivative of 15-lipoxygenase. Binding was not observed to other prostaglandins (e.g. PGE1, PGE2, 8-iso-PGF2α, prostacyclin), leukotrienes (e.g,. LTB4, LTC4, LTD4, LTE4), HETEs (e.g. 5(S)-HETE, 12(S)-HETE, 20-HETE), lipids (e.g. arachidonic acid, PAF), and biogenic amines (e.g. ADP, serotonin, epinephrine, norepinephrine, histamine). Consistent with its binding specificity, DPTL prevents contraction of rat uterus stimulated by PGF2α and induces relaxation of aorta previously contracted with U-46619. Moreover, it inhibits angiogenesis mediated by 15(S)-HETE and did not enhance inhibition of collagen-induced platelet aggregation by SQ29548 (TXA2 antagonist) and indomethacin. A 3-D model for DPTL and pallidipin is presented that indicates the presence of a conserved Arg39 and Gln135 in the binding pocket of both lipocalins. Results suggest that DPTL blocks platelet aggregation, vasoconstriction, and angiogenesis through binding to distinct eicosanoids involved in inflammation. PMID:20889972

  5. Sex-hormone-binding globulin.

    PubMed

    Anderson, D C

    1974-01-01

    A review was made to understand how plasma binding protein might influence sex-hormone action in target tissues. Steroids are predominately bound to plasma proteins and only unbound steroids enter the cells. Sex-hormone-binding globulin (SHBG) binds to both the main circulating steroid T and E2 but changes in SHBG concentrations exert significant results. Increased SHBG levels increase estrogen production and decreases T activity; whereas, increased androgens increase T action and inhibit SHBG production. These disturbances in hormone maintenance may lead to abnormal adult sex differentiation such as hirsutism and forms of hynaecomastia. By developing SHBG concentration measurement methods-responses of hirsutism to glucocorticoid or estrogem may be assessed. In addition, the effect of thyroid hormones on SHBG may also have therapeutic implications in endocrine disease.

  6. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © 2014 Wiley Periodicals, Inc.

  7. CELLULAR AND SECRETORY PROTEINS OF THE SALIVARY GLANDS OF SCIARA COPROPHILA DURING THE LARVAL-PUPAL TRANSFORMATION

    PubMed Central

    Been, Anita C.; Rasch, Ellen M.

    1972-01-01

    The cellular and secretory proteins of the salivary gland of Sciara coprophila during the stages of the larval-pupal transformation were examined by electrophoresis in 0.6 mm sheets of polyacrylamide gel with both SDS-continuous and discontinuous buffer systems. After SDS-electrophoresis, all electrophoretograms of both reduced and nonreduced proteins from single glands stained with Coomassie brilliant blue revealed a pattern containing the same 25 bands during the stages of the larval-pupal transformation. With the staining procedures used in this study, qualitative increases and decreases were detected in existing proteins and enzymes. There was no evidence, however, for the appearance of new protein species that could be correlated with the onset of either pupation or gland histolysis. Electrophoretograms of reduced samples of anterior versus posterior gland parts indicated that no protein in the basic pattern of 25 bands was unique to either the anterior or posterior gland part. Electrophoretograms of reduced samples of secretion collected from either actively feeding or "cocoon"-building animals showed an electrophoretic pattern containing up to six of the 25 protein fractions detected in salivary gland samples, with varied amounts of these same six proteins in electrophoretograms of secretion samples from a given stage. Zymograms of non-specific esterases in salivary gland samples revealed a progressive increase in the amount of esterase reaction produce in one major band and some decrease in the second major band during later stages of the larval-pupal transformation. PMID:4116523

  8. Hsp90 can Accommodate the Simultaneous Binding of the FKBP52 and HOP Proteins

    PubMed Central

    Hildenbrand, Zacariah L.; Molugu, Sudheer K.; Herrera, Nadia; Ramirez, Citlally; Xiao, Chuan; Bernal, Ricardo A.

    2011-01-01

    The regulation of steroidogenic hormone receptor-mediated activity plays an important role in the development of hormone-dependent cancers. For example, during prostate carcinogenesis, the regulatory function played by the androgen receptor is often converted from a growth suppressor to an oncogene thus promoting prostate cancer cell survival and eventual metastasis. Within the cytoplasm, steroid hormone receptor activity is regulated by the Hsp90 chaperone in conjunction with a series of co-chaperone proteins. Collectively, Hsp90 and its binding associates form a large heteromeric complex that scaffold the fully mature receptor for binding with the respective hormone. To date our understanding of the interactions between Hsp90 with the various TPR domain-containing co-chaperone proteins is limited due to a lack of available structural information. Here we present the stable formation of Hsp902-FKBP521- HOP2 and Hsp902-FKBP521-p232-HOP2 complexes as detected by immunoprecipitation, time course dynamic light scattering and electron microscopy. The simultaneous binding of FKBP52 and HOP to the Hsp90 dimer provide direct evidence of a novel chaperone sub-complex that likely plays a transient role in the regulation of the fully mature steroid hormone receptor. PMID:21378414

  9. In Situ Protein Binding Assay Using Fc-Fusion Proteins.

    PubMed

    Padmanabhan, Nirmala; Siddiqui, Tabrez J

    2017-01-01

    This protocol describes an in situ protein-protein interaction assay between tagged recombinant proteins and cell-surface expressed synaptic proteins. The assay is arguably more sensitive than other traditional protein binding assays such as co-immunoprecipitation and pull-downs and provides a visual readout for binding. This assay has been widely used to determine the dissociation constant of binding of trans-synaptic adhesion proteins. The step-wise description in the protocol should facilitate the adoption of this method in other laboratories.

  10. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morooka, Nobukatsu, E-mail: amorooka@gunma-u.ac.jp; Ueguri, Kei; Yee, Karen Kar Lye

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatorymore » macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.« less

  11. Androgen receptor polyglutamine repeat length (AR-CAGn) modulates the effect of testosterone on androgen-associated somatic traits in Filipino young adult men.

    PubMed

    Ryan, Calen P; Georgiev, Alexander V; McDade, Thomas W; Gettler, Lee T; Eisenberg, Dan T A; Rzhetskaya, Margarita; Agustin, Sonny S; Hayes, M Geoffrey; Kuzawa, Christopher W

    2017-06-01

    The androgen receptor (AR) mediates expression of androgen-associated somatic traits such as muscle mass and strength. Within the human AR is a highly variable glutamine short-tandem repeat (AR-CAGn), and CAG repeat number has been inversely correlated to AR transcriptional activity in vitro. However, evidence for an attenuating effect of long AR-CAGn on androgen-associated somatic traits has been inconsistent in human populations. One possible explanation for this lack of consistency is that the effect of AR-CAGn on AR bioactivity in target tissues likely varies in relation to circulating androgen levels. We tested whether relationships between AR-CAGn and several androgen-associated somatic traits (waist circumference, lean mass, arm muscle area, and grip strength) were modified by salivary (waking and pre-bed) and circulating (total) testosterone (T) levels in young adult males living in metropolitan Cebu, Philippines (n = 675). When men's waking T was low, they had a reduction in three out of four androgen-associated somatic traits with lengthening AR-CAGn (p < .1), consistent with in vitro research. However, when waking T was high, we observed the opposite effect-lengthening AR-CAGn was associated with an increase in these same somatic traits. Our finding that longer AR-CAGn predicts greater androgen-associated trait expression among high-T men runs counter to in vitro work, but is generally consistent with the few prior studies to evaluate similar interactions in human populations. Collectively, these results raise questions about the applicability of findings derived from in vitro AR-CAGn studies to the receptor's role in maintaining androgen-associated somatic traits in human populations. © 2017 Wiley Periodicals, Inc.

  12. Effect of starch and amylase on the expression of amylase-binding protein A in Streptococcus gordonii

    PubMed Central

    Nikitkova, A.E.; Haase, E.M.; Scannapieco, F.A.

    2012-01-01

    SUMMARY Streptococcus gordonii is a common oral commensal bacterial species in tooth biofilm (dental plaque) and specifically binds to salivary amylase through the surface exposed amylase-binding protein A (AbpA). When S. gordonii cells are pretreated with amylase, amylase bound to AbpA facilitates growth with starch as a primary nutrition source. The goal of this study was to explore possible regulatory effects of starch, starch metabolites and amylase on the expression of S. gordonii AbpA. An amylase ligand-binding assay was used to assess the expression of AbpA in culture supernatants and on bacterial cells from S. gordonii grown in defined medium supplemented with 1% starch, 0.5 mg ml−1 amylase, with starch and amylase together, or with various linear malto-oligosaccharides. Transcription of abpA was determined by reverse transcription quantitative polymerase chain reaction. AbpA was not detectable in culture supernatants containing either starch alone or amylase alone. In contrast, the amount of AbpA was notably increased when starch and amylase were both present in the medium. The expression of abpA was significantly increased (P < 0.05) following 40 min of incubation in defined medium supplemented with starch and amylase. Similar results were obtained in the presence of maltose and other short-chain malto-oligosacchrides. These results suggest that the products of starch hydrolysis produced from the action of salivary α-amylase, particularly maltose and maltotriose, regulate AbpA expression in S. gordonii. PMID:22759313

  13. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells.

    PubMed

    Ghotbaddini, Maryam; Powell, Joann B

    2015-07-06

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  14. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells.

    PubMed

    Hsieh, Chen-Lin; Cai, Changmeng; Giwa, Ahmed; Bivins, Aaronica; Chen, Shao-Yong; Sabry, Dina; Govardhan, Kumara; Shemshedini, Lirim

    2008-07-01

    Cellular changes that affect the androgen receptor (AR) can cause prostate cancer to transition from androgen dependent to androgen independent, which is usually lethal. One common change in prostate tumors is overexpression of the AR, which has been shown to lead to androgen-independent growth of prostate cancer cells. This led us to hypothesize that expression of a hyperactive AR would be sufficient for androgen-independent growth of prostate cancer cells. To test this hypothesis, stable lune cancer prostate (LNCaP) cell lines were generated, which express a virion phosphoprotein (VP)16-AR hybrid protein that contains full-length AR fused to the strong viral transcriptional activation domain VP16. This fusion protein elicited as much as a 20-fold stronger transcriptional activity than the natural AR. Stable expression of VP16-AR in LNCaP cells yielded androgen-independent cell proliferation, while under the same growth conditions the parental LNCaP cells exhibited only androgen-dependent growth. These results show that expression of a hyperactive AR is sufficient for androgen-independent growth of prostate cancer cells. To study the molecular basis of this enhanced growth, we measured the expression of soluble guanylyl cyclase-alpha1 (sGCalpha1), a subunit of the sGC, an androgen-regulated gene that has been shown to be involved in prostate cancer cell growth. Interestingly, the expression of sGCalpha1 is androgen independent in VP16-AR-expressing cells, in contrast to its androgen-induced expression in control LNCaP cells. RNA(I)-dependent inhibition of sGCalpha1 expression resulted in significantly reduced proliferation of VP16-AR cells, implicating an important role for sGCalpha1 in the androgen-independent growth of these cells.

  15. Immunohistochemical localization of Clara cell secretory proteins (CC10-CC26) and Annexin-1 protein in rat major salivary glands

    PubMed Central

    Cecchini, Maria Paola; Merigo, Flavia; Cristofoletti, Mirko; Osculati, Francesco; Sbarbati, Andrea

    2009-01-01

    The oral cavity is continuously bathed by saliva secreted by the major and minor salivary glands. Saliva is the first biological medium to confront external materials that are taken into the body as part of food or drink or inhaled volatile substances, and it contributes to the first line of oral defence. In humans, it has been shown that sputum and a variety of biological fluids contain Clara cell secretory proteins (CC10–CC26). Various studies of the respiratory apparatus have suggested their protective effect against inflammatory response and oxidative stress. Recently, CC10 deficiency has been related to the protein Annexin-1 (ANXA1), which has immunomodulatory and anti-inflammatory properties. Considering the defensive role of both Clara cell secretory proteins and ANXA1 in the respiratory apparatus, and the importance of salivary gland secretion in the first line of oral defence, we decided to evaluate the expression of CC10, CC26 and ANXA1 proteins in rat major salivary glands using immunohistochemistry. CC10 expression was found only in the ductal component of the sublingual gland. Parotid and submandibular glands consistently lacked CC10 immunoreactivity. In the parotid gland, both acinar and ductal cells were always CC26-negative, whereas in the submandibular gland, immunostaining was localized in the ductal component and in the periodic acid Schiff (PAS)-positive area. In the sublingual gland, ductal cells were always positive. Acinar cells were not immunostained at all. ANXA1 was expressed in ductal cells in all three major glands. In parotid and sublingual glands, acinar cells were negative. In submandibular glands, immunostaining was present in the mucous PAS-positive portion, whereas serous acinar cells were consistently negative. The existence of some CC10-CC26–ANXA1-positive cells in rat salivary glandular tissue is an interesting preliminary finding which could support the hypothesis, suggested for airway tissue, that these proteins have a

  16. Molecular characterization and functional significance of the Vti family of SNARE proteins in tick salivary glands

    PubMed Central

    Villarreal, Ashley M.; Adamson, Steven W.; Browning, Rebecca E.; Khem Raj, B.C.; Sajid, Muhammad Sohail; Karim, Shahid

    2013-01-01

    Exocytosis involves membrane fusion between secretory vesicles and the plasma membrane. The Soluble N-ethylmaleimide-sensitive factor attachment proteins (SNAPs) and their receptor proteins (SNAREs) interact to fuse vesicles with the membrane and trigger the release of their sialosecretome out of the tick salivary gland cells. In this study, we examined the functional significance of the Vti family of SNARE proteins of blood-feeding Amblyomma maculatum and A. americanum. Vti1A and Vti1B have been implicated in multiple functional roles in vesicle transport. QRT-PCR studies demonstrated that the highest transcriptional expression of vti1a and vti1b genes occurs in unfed salivary glands, suggesting that elevated secretory vesicle formation occurs prior to feeding but continues at low rates after blood feeding commences. Vti1A and Vti1B localize to the secretory vesicles in unfed tick salivary glands in immunofluorescence microscopy studies. Knockdown of vti1a and vti1b by RNA interference resulted in a significant decrease in the engorged tick weight compared to the control during prolonged blood-feeding on the host. RNA interference of vti1a or vti1b impaired oviposition and none of the ticks produced eggs masses. Surprisingly, the double knockdown did not produce a strong phenotype and ticks fed normally on the host and produced egg masses, suggesting a compensatory mechanism exists within the secretory system which may have been activated in the double knockdown. These results suggest an important functional role of the Vti family of SNARE proteins in tick blood feeding and ultimately oviposition. Understanding the basic functions of the Vti family of SNARE proteins in salivary glands may lead to better ways to prevent tick attachment and transmission of tick-borne diseases. PMID:23499931

  17. The physiological and pharmacological basis for the ergogenic effects of androgens in elite sports.

    PubMed

    Choong, Karen; Lakshman, Kishore M; Bhasin, Shalender

    2008-05-01

    Androgen doping in power sports is undeniably rampant worldwide. There is strong evidence that androgen administration in men increases skeletal muscle mass, maximal voluntary strength and muscle power. However, we do not have good experimental evidence to support the presumption that androgen administration improves physical function or athletic performance. Androgens do not increase specific force or whole body endurance measures. The anabolic effects of testosterone on the skeletal muscle are mediated through androgen receptor signaling. Testosterone promotes myogenic differentiation of multipotent mesenchymal stem cells and inhibits their differentiation into the adipogenic lineage. Testosterone binding to androgen receptor induces a conformational change in androgen receptor protein, causing it to associate with beta-catenin and TCF-4 and activate downstream Wnt target genes thus promoting myogenic differentiation. The adverse effects of androgens among athletes and recreational bodybuilders are under reported and include acne, deleterious changes in the cardiovascular risk factors, including a marked decrease in plasma high-density lipoproteins (HDL) cholesterol level, suppression of spermatogenesis resulting in infertility, increase in liver enzymes, hepatic neoplasms, mood and behavioral disturbances, and long term suppression of the endogenous hypothalamic-pituitary-gonadal axis. Androgens are often used in combination with other drugs which may have serious adverse events of their own. In spite of effective methods for detecting androgen doping, the policies for screening of athletes are highly variable in different countries and organizations and even existing policies are not uniformly enforced. 2008, Asian Journal of Andrology, SIMM and SJTU. All rights reserved.

  18. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    PubMed

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in

  19. Functions of Intracellular Retinoid Binding-Proteins.

    PubMed

    Napoli, Joseph L

    Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.

  20. Characterization of Guinea Pig Antibody Responses to Salivary Proteins of Triatoma infestans for the Development of a Triatomine Exposure Marker

    PubMed Central

    Dorňáková, Veronika; Salazar-Sanchez, Renzo; Borrini-Mayori, Katty; Carrion-Navarro, Oscar; Levy, Michael Z.; Schaub, Günter A.; Schwarz, Alexandra

    2014-01-01

    Background Salivary proteins of Triatoma infestans elicit humoral immune responses in their vertebrate hosts. These immune responses indicate exposure to triatomines and thus can be a useful epidemiological tool to estimate triatomine infestation. In the present study, we analyzed antibody responses of guinea pigs to salivary antigens of different developmental stages of four T. infestans strains originating from domestic and/or peridomestic habitats in Argentina, Bolivia, Chile and Peru. We aimed to identify developmental stage- and strain-specific salivary antigens as potential markers of T. infestans exposure. Methodology and Principal Findings In SDS-PAGE analysis of salivary proteins of T. infestans the banding pattern differed between developmental stages and strains of triatomines. Phenograms constructed from the salivary profiles separated nymphal instars, especially the 5th instar, from adults. To analyze the influence of stage- and strain-specific differences in T. infestans saliva on the antibody response of guinea pigs, twenty-one guinea pigs were exposed to 5th instar nymphs and/or adults of different T. infestans strains. Western blot analyses using sera of exposed guinea pigs revealed stage- and strain-specific variations in the humoral response of animals. In total, 27 and 17 different salivary proteins reacted with guinea pig sera using IgG and IgM antibodies, respectively. Despite all variations of recognized salivary antigens, an antigen of 35 kDa reacted with sera of almost all challenged guinea pigs. Conclusion Salivary antigens are increasingly considered as an epidemiological tool to measure exposure to hematophagous arthropods, but developmental stage- and strain-specific variations in the saliva composition and the respective differences of immunogenicity are often neglected. Thus, the development of a triatomine exposure marker for surveillance studies after triatomine control campaigns requires detailed investigations. Our study resulted

  1. Rational design and synthesis of androgen receptor-targeted nonsteroidal anti-androgen ligands for the tumor-specific delivery of a doxorubicin-formaldehyde conjugate.

    PubMed

    Cogan, Peter S; Koch, Tad H

    2003-11-20

    The synthesis and preliminary evaluation of a doxorubicin-formaldehyde conjugate tethered to the nonsteroidal antiandrogen, cyanonilutamide (RU 56279), for the treatment of prostate cancer are reported. The relative ability of the targeting group to bind to the human androgen receptor was studied as a function of tether. The tether served to attach the antiandrogen to the doxorubicin-formaldehyde conjugate via an N-Mannich base of a salicylamide derivative. The salicylamide was selected to serve as a trigger release mechanism to separate the doxorubicin-formaldehyde conjugate from the targeting group after it has bound to the androgen receptor. The remaining part of the tether consisted of a linear group that spanned from the 5-position of the salicylamide to the 3'-position of cyanonilutamide. The structures explored for the linear region of the tether were derivatives of di(ethylene glycol), tri(ethylene glycol), N,N'-disubstituted-piperazine, and 2-butyne-1,4-diol. Relative binding affinity of the tethers bound to the targeting group for human androgen receptor were measured using a (3)H-Mibolerone competition assay and varied from 18% of nilutamide binding for the butynediol-based linear region to less than 1% for one of the piperazine derivatives. The complete targeted drug with the butynediol-based linear region has a relative binding affinity of 10%. This relative binding affinity is encouraging in light of the cocrystal structure of human androgen receptor ligand binding domain bound to the steroid Metribolone which predicts very limited space for a tether connecting the antiandrogen on the inside to the cytotoxin on the outside.

  2. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  3. Engineered proteins as specific binding reagents.

    PubMed

    Binz, H Kaspar; Plückthun, Andreas

    2005-08-01

    Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.

  4. Seasonal changes in plasma androgens, glucocorticoids and glucocorticoid-binding proteins in the marsupial sugar glider Petaurus breviceps.

    PubMed

    Bradley, A J; Stoddart, D M

    1992-01-01

    An investigation spanning two breeding seasons was carried out to examine endocrine changes associated with reproduction in a wild population of the marsupial sugar glider Petaurus breviceps, a small arboreal gliding possum. Using techniques of equilibrium dialysis and polyacrylamide gel electrophoresis at steady-state conditions, a high-affinity, low-capacity glucocorticoid-binding protein was demonstrated in the plasma of Petaurus breviceps. Equilibrium dialysis at 36 degrees C using cortisol gave a high-affinity binding constant of 95 +/- 5.2 litres/mumol for a presumed corticosteroid-binding globulin (CBG) while the binding constant for the cortisol-albumin interaction was 3.5 +/- 0.4 litres/mmol. There was no difference between the sexes in the affinity of binding of cortisol to CBG; however, the cortisol-binding capacity underwent seasonal variation in both sexes. Progesterone was bound strongly to the presumed CBG while neither oestradiol nor aldosterone appeared to be bound with high affinity to P. breviceps plasma. In the males, peaks in the plasma concentration of testosterone coincided with the July-September breeding season in both years. A significant inverse relationship was shown to exist between the plasma testosterone concentration and the CBG-binding capacity. In both sexes an increase occurred in the plasma concentration of free cortisol during the first breeding season, a pattern which was not repeated in the subsequent breeding season, possibly due to a lower population density in that year.

  5. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less

  6. Androgen receptor: structure, role in prostate cancer and drug discovery

    PubMed Central

    Tan, MH Eileen; Li, Jun; Xu, H Eric; Melcher, Karsten; Yong, Eu-leong

    2015-01-01

    Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2–3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein. PMID:24909511

  7. A Role for Salivary Peptides in the Innate Defense Against Enterotoxigenic Escherichia coli.

    PubMed

    Brown, Jeffrey W; Badahdah, Arwa; Iticovici, Micah; Vickers, Tim J; Alvarado, David M; Helmerhorst, Eva J; Oppenheim, Frank G; Mills, Jason C; Ciorba, Matthew A; Fleckenstein, James M; Bullitt, Esther

    2018-04-11

    Diarrheal disease from enterotoxigenic Escherichia coli (ETEC) causes significant worldwide morbidity and mortality in young children residing in endemic countries and is the leading cause of traveler's diarrhea. As ETEC enters the body through the oral cavity and cotransits the digestive tract with salivary components, we hypothesized that the antimicrobial activity of salivary proteins might extend beyond the oropharynx into the proximal digestive tract. Here, we show that the salivary peptide histatin-5 binds colonization factor antigen I pili, thereby blocking adhesion of ETEC to intestinal epithelial cells. Mechanistically, we demonstrate that histatin-5 stiffens the typically dynamic pili, abolishing their ability to function as spring-like shock absorbers, thereby inhibiting colonization within the turbulent vortices of chyme in the gastrointestinal tract. Our data represent the first report of a salivary component exerting specific antimicrobial activity against an enteric pathogen and suggest that histatin-5 and related peptides might be exploited for prophylactic and/or therapeutic uses. Numerous viruses, bacteria, and fungi traverse the oropharynx to cause disease, so there is considerable opportunity for various salivary components to neutralize these pathogens prior to arrival at their target organ. Identification of additional salivary components with unexpectedly broad antimicrobial spectra should be a priority.

  8. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  9. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  10. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    PubMed

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Next-Generation Sequencing of Protein-Coding and Long Non-protein-Coding RNAs in Two Types of Exosomes Derived from Human Whole Saliva.

    PubMed

    Ogawa, Yuko; Tsujimoto, Masafumi; Yanoshita, Ryohei

    2016-01-01

    Exosomes are small extracellular vesicles containing microRNAs and mRNAs that are produced by various types of cells. We previously used ultrafiltration and size-exclusion chromatography to isolate two types of human salivary exosomes (exosomes I, II) that are different in size and proteomes. We showed that salivary exosomes contain large repertoires of small RNAs. However, precise information regarding long RNAs in salivary exosomes has not been fully determined. In this study, we investigated the compositions of protein-coding RNAs (pcRNAs) and long non-protein-coding RNAs (lncRNAs) of exosome I, exosome II and whole saliva (WS) by next-generation sequencing technology. Although 11% of all RNAs were commonly detected among the three samples, the compositions of reads mapping to known RNAs were similar. The most abundant pcRNA is ribosomal RNA protein, and pcRNAs of some salivary proteins such as S100 calcium-binding protein A8 (protein S100-A8) were present in salivary exosomes. Interestingly, lncRNAs of pseudogenes (presumably, processed pseudogenes) were abundant in exosome I, exosome II and WS. Translationally controlled tumor protein gene, which plays an important role in cell proliferation, cell death and immune responses, was highly expressed as pcRNA and pseudogenes in salivary exosomes. Our results show that salivary exosomes contain various types of RNAs such as pseudogenes and small RNAs, and may mediate intercellular communication by transferring these RNAs to target cells as gene expression regulators.

  12. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  13. Effect of a protein-rich meal on urinary and salivary free amino acid concentrations in human subjects.

    PubMed

    Brand, H S; Jörning, G G; Chamuleau, R A; Abraham-Inpijn, L

    1997-08-08

    The aim of the present study was to investigate whether in healthy volunteers acute changes in plasma free amino acid composition after a protein-rich test meal are reflected in the urinary and salivary concentrations of the corresponding amino acids. The ingestion of a protein-rich meal elicited a significant increase of plasma and urine amino acid concentrations. The postprandial salivary amino acid excretion showed only minor changes. For several amino acids (alanine, arginine, asparagine, glycine, threonine and valine) significant relations were observed between the increase in concentration of these amino acids in venous plasma and urine. In whole saliva, only threonine and valine showed a significant relationship with the corresponding plasma concentration. Our data suggest that the urinary amino acid excretion of several amino acids has the potential for estimating short-term changes in plasma concentrations. Determination of salivary amino acid concentrations seems less appropriate for this purpose.

  14. Targeting androgen receptor and JunD interaction for prevention of prostate cancer progression.

    PubMed

    Mehraein-Ghomi, Farideh; Kegel, Stacy J; Church, Dawn R; Schmidt, Joseph S; Reuter, Quentin R; Saphner, Elizabeth L; Basu, Hirak S; Wilding, George

    2014-05-01

    Multiple studies show that reactive oxygen species (ROS) play a major role in prostate cancer (PCa) development and progression. Previously, we reported an induction of Spermidine/Spermine N(1) -Acetyl Transferase (SSAT) by androgen-activated androgen receptor (AR)-JunD protein complex that leads to over-production of ROS in PCa cells. In our current research, we identify small molecules that specifically block AR-JunD in this ROS-generating metabolic pathway. A high throughput assay based on Gaussia Luciferase reconstitution was used to identify inhibitors of the AR-JunD interaction. Selected hits were further screened using a fluorescence polarization competitor assay to eliminate those that bind to the AR Ligand Binding Domain (LBD), in order to identify molecules that specifically target events downstream to androgen activation of AR. Eleven molecules were selected for studies on their efficacy against ROS generation and growth of cultured human PCa cells by DCFH dye-oxidation assay and DNA fluorescence assay, respectively. In situ Proximity Ligation Assay (PLA), SSAT promoter-luciferase reporter assay, and western blotting of apoptosis and cell cycle markers were used to study mechanism of action of the lead compound. Selected lead compound GWARJD10 with EC(50) 10 μM against ROS production was shown to block AR-JunD interaction in situ as well as block androgen-induced SSAT gene expression at IC(50) 5 μM. This compound had no effect on apoptosis markers, but reduced cyclin D1 protein level. Inhibitor of AR-JunD interaction, GWARJD10 shows promise for prevention of progression of PCa at an early stage of the disease by blocking growth and ROS production. © 2014 Wiley Periodicals, Inc.

  15. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target

    PubMed Central

    Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.

    2016-01-01

    Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335

  16. Unstimulated salivary flow, pH, proteins and oral health in patients with Juvenile Idiopathic Arthritis.

    PubMed

    Kobus, Agnieszka; Kierklo, Anna; Zalewska, Anna; Kuźmiuk, Anna; Szajda, Sławomir Dariusz; Ławicki, Sławomir; Bagińska, Joanna

    2017-06-02

    There have been inconsistent conclusions regarding salivary abnormalities and their effect on oral health of Juvenile Idiopathic Arthritis (JIA) patients. The purpose of the study was to evaluate the flow rate and selected biochemical parameters of unstimulated whole saliva in correlation to oral health in JIA children. Thirty-four JIA patients and 34 age- and sex-matched controls not affected by JIA (C) were divided into two groups: with mixed and permanent dentition. DMFT/dmft, gingival and simplified oral hygiene indices were evaluated. Salivary flow rate, pH, lysozyme, lactoferrin, salivary protein concentrations and peroxidase activity were assessed. The salivary flow rate was significantly lower in the total JIA group (0.41 ml/min) as compared with the C (0.51 ml/min) and in the permanent dentition of JIA children (0.43 ml/min) as compared with the C (0.61 ml/min). A significantly lower pH was observed in total (6.74), mixed (6.7) and permanent (6.76) dentition of JIA groups in comparison to the C (7.25, 7.21, 7.28 respectively). The specific activity of peroxidase was significantly higher in JIA patients (total 112.72 IU/l, mixed dentition 112.98 IU/l, permanent dentition 112.5 IU/l) than in the C group (total 70.03 IU/l, mixed dentition 71.83 IU/l, permanent dentition 68.61 IU/l). The lysozyme concentration in JIA patients (total and permanent dentition groups) was significantly higher than in the C group. There were no significant differences in lactoferrin and salivary protein concentrations. There were no statistically significant differences in oral status between JIA patients and C, respectively: DMFT = 5.71, dmft = 3.73, OHI-S = 0.95, GI = 0.25 and DMFT 5.71, dmft = 3.73, OHI-S = 0.85, GI = 0.24. The specific activity of peroxidase in the unstimulated whole saliva was inversely correlated with the GI index, whereas the salivary lysozyme concentration was inversely correlated with the dmft index in JIA patients. In

  17. Salivary cortisol and cortisone in the clinical setting.

    PubMed

    Blair, Joanne; Adaway, Jo; Keevil, Brian; Ross, Richard

    2017-06-01

    A resurgence of interest in salivary biomarkers has generated evidence for their value in assessing adrenal function. The advantages of salivary measurements include only free hormone is detected, samples can be collected during normal daily routines and stress-induced cortisol release is less likely to occur than during venepuncture. We review the use of salivary biomarkers to diagnose and monitor patients for conditions of cortisol excess and deficiency and discuss the value of measuring salivary cortisone versus salivary cortisol. Developments in laboratory techniques have enabled the measurement of salivary hormones with a high level of sensitivity and specificity. In states of altered cortisol binding, salivary biomarkers are more accurate measures of adrenal reserve than serum cortisol. Salivary cortisone is a superior marker of serum cortisol compared with salivary cortisol, specifically when serum cortisol is low and during hydrocortisone therapy when contamination of saliva may result in misleading salivary cortisol concentrations. Salivary cortisol and cortisone can be used to assess cortisol excess, deficiency and hydrocortisone replacement, with salivary cortisone having the advantage of detection when serum cortisol levels are low and there is no interference from oral hydrocortisone.

  18. Androgen receptors in the pelvic diaphragm muscles of dogs with and without perineal hernia.

    PubMed

    Mann, F A; Nonneman, D J; Pope, E R; Boothe, H W; Welshons, W V; Ganjam, V K

    1995-01-01

    Levator ani and coccygeus muscle estrogen and androgen receptors were measured in 6, healthy, > or = 5-year-old, noncastrated, male Beagles (controls) and in 24 dogs with perineal hernia. Estrogen and androgen receptor analyses were performed on levator ani and coccygeus muscle specimens obtained from control dogs at the time of castration; contralateral levator ani and coccygeus muscle specimens were assayed 2 months after castration. During herniorrhaphy of dogs with perineal hernia, levator ani (non-castrated, n = 12; castrated, n = 7) and/or coccygeus (noncastrated, n = 5; castrated, n = 4) muscle biopsy specimens were obtained for estrogen and androgen receptor analyses. For estrogen and androgen receptor assays, each muscle biopsy specimen was homogenized in Tris-EDTA-glycerol buffer, and centrifuged at 30,000 x g; extracts were used for binding with ligands: [3H]methyltrienolone (3HR1881) for androgen receptors, and [3H]estradiol-17 beta for estrogen receptors. Extracts were incubated overnight at 0 to 4 C. Nonspecific binding was estimated, using 100-fold concentration of cold ligands. Bound and free hormones were separated, using hydroxylapatite batch assay. Receptor numbers for each tissue were calculated as femtomoles (fmol) per milligram of protein. Quantified data were compared between precastration and postcastration controls, using a paired t-test. One-way ANOVA and Bonferroni post-hoc test were used to compare values for precastration controls, postcastration controls, castrated dogs with perineal hernia, and noncastrated dogs with perineal hernia. Significance was set at P < 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. [Glutamate-binding membrane proteins from human platelets].

    PubMed

    Gurevich, V S; Popov, Iu G; Gorodinskiĭ, A I; Dambinova, S A

    1991-09-01

    Solubilization of the total membrane fraction of human platelets in a 2% solution of sodium deoxycholate and subsequent affinity chromatography on glutamate agarose resulted in two protein fractions possessing a glutamate-binding activity. As can be evidenced from radioligand binding data, the first fraction contains two types of binding sites (Kd1 = 1 microM, Bmax 1 = 100 pmol/mg of protein; Kd2 = 9.3 microMm Bmax2 = 395 pmol/mg of protein). The second fraction has only one type of binding sites (Kd = 1 microM, Bmax = = 110 pmol/mg of protein). SDS-PAAG electrophoresis revealed the presence in the first fraction of proteins with Mr of 14, 24, 56 and 155 kDa, whereas the second fraction was found to contain 14, 46, 71 and 155 kDa proteins. Solid phase immunoenzymatic analysis using poly- and monoclonal specific antibodies against mammalian brain glutamate-binding proteins revealed a marked immunochemical similarity of the isolated protein fractions with human brain synaptic membrane glutamate-binding proteins.

  20. Protein Binding: Do We Ever Learn?▿

    PubMed Central

    Zeitlinger, Markus A.; Derendorf, Hartmut; Mouton, Johan W.; Cars, Otto; Craig, William A.; Andes, David; Theuretzbacher, Ursula

    2011-01-01

    Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested. PMID:21537013

  1. The salivary secretome of the tsetse fly Glossina pallidipes (Diptera: Glossinidae) infected by salivary gland hypertrophy virus.

    PubMed

    Kariithi, Henry M; Ince, Ikbal A; Boeren, Sjef; Abd-Alla, Adly M M; Parker, Andrew G; Aksoy, Serap; Vlak, Just M; Oers, Monique M van

    2011-11-01

    The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs. After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (∼1.8%) Glossina and three (∼12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins. SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies to block SGHV infections in tsetse production facilities such as

  2. The Salivary Secretome of the Tsetse Fly Glossina pallidipes (Diptera: Glossinidae) Infected by Salivary Gland Hypertrophy Virus

    PubMed Central

    Kariithi, Henry M.; Ince, Ikbal A.; Boeren, Sjef; Abd-Alla, Adly M. M.; Parker, Andrew G.; Aksoy, Serap; Vlak, Just M.; van Oers, Monique M.

    2011-01-01

    Background The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs. Methodology/Principal Findings After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (∼1.8%) Glossina and three (∼12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins. Conclusions/Significance SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies

  3. Anabolic Androgenic Steroid (AAS) Related Deaths: Autoptic, Histopathological and Toxicological Findings

    PubMed Central

    Frati, Paola; Busardò, Francesco P.; Cipolloni, Luigi; Dominicis, Enrico De; Fineschi, Vittorio

    2015-01-01

    Anabolic androgenic steroids (AASs) represent a large group of synthetic derivatives of testosterone, produced to maximize anabolic effects and minimize the androgenic ones. AAS can be administered orally, parenterally by intramuscular injection and transdermally. Androgens act by binding to the nuclear androgen receptor (AR) in the cytoplasm and then translocate into the nucleus. This binding results in sequential conformational changes of the receptor affecting the interaction between receptor and protein, and receptor and DNA. Skeletal muscle can be considered as the main target tissue for the anabolic effects of AAS, which are mediated by ARs which after exposure to AASs are up-regulated and their number increases with body building. Therefore, AASs determine an increase in muscle size as a consequence of a dose-dependent hypertrophy resulting in an increase of the cross-sectional areas of both type I and type II muscle fibers and myonuclear domains. Moreover, it has been reported that AASs can increase tolerance to exercise by making the muscles more capable to overload therefore shielding them from muscle fiber damage and improving the level of protein synthesis during recovery. Despite some therapeutic use of AASs, there is also wide abuse among athletes especially bodybuilders in order to improve their performances and to increase muscle growth and lean body mass, taking into account the significant anabolic effects of these drugs. The prolonged misuse and abuse of AASs can determine several adverse effects, some of which may be even fatal especially on the cardiovascular system because they may increase the risk of sudden cardiac death (SCD), myocardial infarction, altered serum lipoproteins, and cardiac hypertrophy. The aim of this review is to focus on deaths related to AAS abuse, trying to evaluate the autoptic, histopathological and toxicological findings in order to investigate the pathophysiological mechanism that underlines this type of death, which

  4. Simultaneous ultramicroanalysis of both 17-keto-and 17beta-hydroxy androgens in biological fluids.

    PubMed

    Ganjam, V K

    1976-11-01

    Sensitive methods for quantifying androgens were lacking. Therefore, a relatively simple procedure for separating steroids was combined with highly specific assay methods so that eight androgens could be measured with high accuracy, precision and sensitivity. Semi-automated separations on Sephadex LH-20 columns used heptane:methylene chloride:ethanol:water (50:50:1:0.12) and a flow rate of 17.0 min/ml. The six peaks eluted contained androstenedine; androsterone, epiandrosterone and dihydrotestosterone; testosterone and dehydroepiandrosterone; 3alpha-androstanediol; 3beta-androstanediol; and androstenediol. Androstenedione, dehydroepiandrosterone and androstenediol were quantified using specific antisera (sensitivity less than or equal to 75 pg). Testosterone and dihydrotestosterone were measured by competitive protein-binding assays using rabbit TeBG (sensitivity less than or equal to 150 pg). 3alpha- and 3beta-androstanediol were similarly assayed using human TeBG (sensitivity approximately 150 pg). Androsterone was reduced with NaBH4 and the resulting 3alpha-androstanediol was assayed using human TeBG (sensitivity approximately 200 pg). Inter- and intra-assay variations were less than 10% for radioimmunoassays and less than 16% for competitive protein-binding assays over the entire dose response curve.

  5. Identification of AOSC-binding proteins in neurons

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Nie, Qin; Xin, Xianliang; Geng, Meiyu

    2008-11-01

    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer’s Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  6. Substrate prediction of Ixodes ricinus salivary lipocalins differentially expressed during Borrelia afzelii infection

    NASA Astrophysics Data System (ADS)

    Valdés, James J.; Cabezas-Cruz, Alejandro; Sima, Radek; Butterill, Philip T.; Růžek, Daniel; Nuttall, Patricia A.

    2016-09-01

    Evolution has provided ticks with an arsenal of bioactive saliva molecules that counteract host defense mechanisms. This salivary pharmacopoeia enables blood-feeding while enabling pathogen transmission. High-throughput sequencing of tick salivary glands has thus become a major focus, revealing large expansion within protein encoding gene families. Among these are lipocalins, ubiquitous barrel-shaped proteins that sequester small, typically hydrophobic molecules. This study was initiated by mining the Ixodes ricinus salivary gland transcriptome for specific, uncharacterized lipocalins: three were identified. Differential expression of these I. ricinus lipocalins during feeding at distinct developmental stages and in response to Borrelia afzelii infection suggests a role in transmission of this Lyme disease spirochete. A phylogenetic analysis using 803 sequences places the three I. ricinus lipocalins with tick lipocalins that sequester monoamines, leukotrienes and fatty acids. Both structural analysis and biophysical simulations generated robust predictions showing these I. ricinus lipocalins have the potential to bind monoamines similar to other tick species previously reported. The multidisciplinary approach employed in this study characterized unique lipocalins that play a role in tick blood-feeding and transmission of the most important tick-borne pathogen in North America and Eurasia.

  7. Monoclonal antibodies to human vitamin D-binding protein.

    PubMed Central

    Pierce, E A; Dame, M C; Bouillon, R; Van Baelen, H; DeLuca, H F

    1985-01-01

    Monoclonal antibodies to vitamin D-binding protein isolated from human serum have been produced. The antibodies obtained have been shown to be specific for human vitamin D-binding protein by three independent assays. The antibodies recognize human vitamin D-binding protein specifically in an enzyme-linked immunosorbent assay. Human vitamin D-binding protein is detected specifically in both pure and crude samples by a radiometric immunosorbent assay (RISA) and by an immunoprecipitation assay. The anti-human vitamin D-binding protein antibodies cross-react with monkey and pig vitamin D-binding protein, but not with vitamin D-binding protein from rat, mouse, or chicken, as determined by the RISA and immunoprecipitation assays. Images PMID:3936035

  8. Modeling Ionization Events iduced by Protein Protein Binding

    NASA Astrophysics Data System (ADS)

    Mitra, Rooplekha; Shyam, Radhey; Alexov, Emil

    2009-11-01

    The association of two or more biological macromolecules dramatically change the environment of the amino acids situated at binding interface and could change ionization states of titratable groups. The change of ionization due to the binding results in proton uptake/release and causes pH-dependence of the binding free energy. We apply computational method, as implemented in Multi Conformation Continuum Electrostatics (MCCE) algorithm, to study protonation evens on a large set of protein-protein complexes. Our results indicate that proton uptake/release is a common phenomena in protein binding since in vast majority of the cases (70%) the binding caused at least 0.5 units proton change. The proton uptake/release was further investigated with respect to interfacial area and charges of the monomers and it was found that macroscopic characteristics are not important determinants. Instead, charge complementarity across the interface and the number of unpaired ionizable groups at the interface are the primary source of proton uptake/release.

  9. Smoking influences salivary histamine levels in periodontal disease.

    PubMed

    Bertl, K; Haririan, H; Laky, M; Matejka, M; Andrukhov, O; Rausch-Fan, X

    2012-05-01

    Histamine, a potent vasoactive amine, is increased in saliva of periodontitis patients. The present study aimed to further investigate the diagnostic potential of histamine for periodontal disease and assessed smoking, a major risk factor of periodontitis, as a possible influencing factor. Salivary and serum samples of 106 participants (60 periodontitis patients, 46 controls) were collected. Salivary histamine was determined by a commercially available ELISA kit, and serum C-reactive protein was measured by a routine laboratory test. Cigarettes per day and packyears were assessed as smoking exposure parameters. Statistically significantly increased levels of salivary histamine and serum C-reactive protein were detected between the patient and control group (P = 0.022 and P = 0.001). Salivary histamine levels were significantly higher in smoking compared with non-smoking patients (P < 0.001), and salivary histamine as well as serum C-reactive protein correlated significantly positively with smoking exposure parameters (P < 0.05). Smoking, an established and common risk factor of periodontitis, was assessed as a possible influencing factor for salivary histamine. Most interestingly, salivary histamine differed highly significantly between smoking and non-smoking periodontitis patients. Our results suggest a possible involvement of histamine in tobacco-exacerbated periodontal disease, but do not suggest salivary histamine as a reliable diagnostic marker for periodontitis. © 2011 John Wiley & Sons A/S.

  10. Immunogenic Salivary Proteins of Triatoma infestans: Development of a Recombinant Antigen for the Detection of Low-Level Infestation of Triatomines

    PubMed Central

    Schwarz, Alexandra; Helling, Stefan; Collin, Nicolas; Teixeira, Clarissa R.; Medrano-Mercado, Nora; Hume, Jen C. C.; Assumpção, Teresa C.; Marcus, Katrin; Stephan, Christian; Meyer, Helmut E.; Ribeiro, José M. C.; Billingsley, Peter F.; Valenzuela, Jesus G.; Sternberg, Jeremy M.; Schaub, Günter A.

    2009-01-01

    Background Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans. Methodology/Principal Findings T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia. Conclusions/Significance The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for

  11. Precipitation of salivary proteins after the interaction with wine: the effect of ethanol, pH, fructose, and mannoproteins.

    PubMed

    Rinaldi, Alessandra; Gambuti, Angelita; Moio, Luigi

    2012-04-01

    Astringency is a complex sensation mainly caused by the precipitation of salivary proteins with polyphenols. In wine it can be enhanced or reduced depending on the composition of the medium. In order to investigate the effect of ethanol, tartaric acid, fructose, and commercial mannoproteins (MPs) addition on the precipitation of salivary proteins, the saliva precipitation index (SPI) was determined by means of the sodium dodecyl sulphate polyacrylamide gel electrophoresis of human saliva after the reaction with Merlot wines and model solutions. Gelatin index, ethanol index, and Folin-Ciocalteu index were also determined. As resulted by Pearson's correlation, data on SPI were well correlated with the sensory analysis performed on the same samples. In a second experiment, increasing the ethanol (11%-13%-17%), MPs (0-2-8 g/L), fructose (0-2-6 g/L) level, and pH values (2.9-3.0-3.6), a decrease in the precipitation of salivary proteins was observed. A difference in the SPI between model solution and red wine stated that an influence of wine matrix on the precipitation of salivary proteins occurred. Results provide interesting suggestions for enologists, which could modulate the astringency of red wine by: (i) leaving some residual reducing sugars (such as fructose) in red wine during winemaking of grapes rich in tannins; (ii) avoiding the lowering of pH; (iii) adding commercial mannoproteins or promoting a "sur lie" aging; and (iv) harvesting grapes at high technological maturity in order to obtain wines with a satisfactory alcoholic content when possible. © 2012 Institute of Food Technologists®

  12. Determining the binding affinities of phenolic compounds to proteins by quenching of the intrinsic tryptophan fluorescence.

    PubMed

    Rawel, Harshadrai M; Frey, Simone K; Meidtner, Karina; Kroll, Jürgen; Schweigert, Florian J

    2006-08-01

    The noncovalent binding of selected phenolic compounds (chlorogenic-, ferulic-, gallic acid, quercetin, rutin, and isoquercetin) to proteins (HSA, BSA, soy glycinin, and lysozyme) was studied by an indirect method applying the quenching of intrinsic tryptophan fluorescence. From the data obtained, the binding constants were calculated by nonlinear regression (one site binding; y = Bx/k + x). It has been reported that tannins inhibit human salivary amylase and that these complexes may reduce the development of cariogenic plaques. Further, amylase contains two tryptophan residues in its active site. Therefore, in a second part of the study involving 31 human subjects, evidence was sought for noncovalent interactions between the phenols of green tea and saliva proteins as measured by the fluorescence intensity. Amylase activity was determined before and after the addition of green tea to saliva of 31 subjects. Forty percent of the subjects showed an increase in amylase activity contrary to studies reporting only a decrease in activity. The interactions of tannin with amylase result in a decrease of its activity. It still remains to be elucidated why amylase does not react uniformly under conditions of applying green tea to saliva. Further, in terms of using phenols as caries inhibitors this finding should be of importance.

  13. Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus

    PubMed Central

    Hostomská, Jitka; Volfová, Věra; Mu, Jianbing; Garfield, Mark; Rohoušová, Iva; Volf, Petr; Valenzuela, Jesus G; Jochim, Ryan C

    2009-01-01

    Background Sand fly saliva plays an important role in blood feeding and Leishmania transmission as it was shown to increase parasite virulence. On the other hand, immunity to salivary components impedes the establishment of infection. Therefore, it is most desirable to gain a deeper insight into the composition of saliva in sand fly species which serve as vectors of various forms of leishmaniases. In the present work, we focused on Phlebotomus (Adlerius) arabicus, which was recently shown to transmit Leishmania tropica, the causative agent of cutaneous leishmaniasis in Israel. Results A cDNA library from salivary glands of P. arabicus females was constructed and transcripts were sequenced and analyzed. The most abundant protein families identified were SP15-like proteins, ParSP25-like proteins, D7-related proteins, yellow-related proteins, PpSP32-like proteins, antigen 5-related proteins, and 34 kDa-like proteins. Sequences coding for apyrases, hyaluronidase and other putative secreted enzymes were also represented, including endonuclease, phospholipase, pyrophosphatase, amylase and trehalase. Mass spectrometry analysis confirmed the presence of 20 proteins predicted to be secreted in the salivary proteome. Humoral response of mice bitten by P. arabicus to salivary antigens was assessed and many salivary proteins were determined to be antigenic. Conclusion This transcriptomic analysis of P. arabicus salivary glands is the first description of salivary proteins of a sand fly in the subgenus Adlerius. Proteomic analysis of P. arabicus salivary glands produced the most comprehensive account in a single sand fly species to date. Detailed information and phylogenetic relationships of the salivary proteins are provided, expanding the knowledge base of molecules that are likely important factors of sand fly-host and sand fly-Leishmania interactions. Enzymatic and immunological investigations further demonstrate the value of functional transcriptomics in advancing

  14. Odorant-binding proteins from a primitive termite.

    PubMed

    Ishida, Yuko; Chiang, Vicky P; Haverty, Michael I; Leal, Walter S

    2002-09-01

    Hitherto, odorant-binding proteins (OBPs) have been identified from insects belonging to more highly evolved insect orders (Lepidoptera, Coleoptera, Diptera, Hymenoptera, and Hemiptera), whereas only chemosensory proteins have been identified from more primitive species, such as orthopteran and phasmid species. Here, we report for the first time the isolation and cloning of odorant-binding proteins from a primitive termite species, the dampwood termite. Zootermopsis nevadensis nevadensis (Isoptera: Termopsidae). A major antennae-specific protein was detected by native PAGE along with four other minor proteins, which were also absent in the extract from control tissues (hindlegs). Multiple cDNA cloning led to the full characterization of the major antennae-specific protein (ZnevOBP1) and to the identification of two other antennae-specific cDNAs, encoding putative odorant-binding proteins (ZnevOBP2 and ZnevOBP3). N-terminal amino acid sequencing of the minor antennal bands and cDNA cloning showed that olfaction in Z. n. nevadensis may involve multiple odorant-binding proteins. Database searches suggest that the OBPs from this primitive termite are homologues of the pheromone-binding proteins from scarab beetles and antennal-binding proteins from moths.

  15. Computational search for aflatoxin binding proteins

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Jinfeng; Zhang, Lujia; He, Xiao; Zhang, John Z. H.

    2017-10-01

    Aflatoxin is one of the mycotoxins that contaminate various food products. Among various aflatoxin types (B1, B2, G1, G2 and M1), aflatoxin B1 is the most important and the most toxic one. In this study, through computational screening, we found that several proteins may bind specifically with different type of aflatoxins. Combination of theoretical methods including target fishing, molecular docking, molecular dynamics (MD) simulation, MM/PBSA calculation were utilized to search for new aflatoxin B1 binding proteins. A recently developed method for calculating entropic contribution to binding free energy called interaction entropy (IE) was employed to compute the binding free energy between the protein and aflatoxin B1. Through comprehensive comparison, three proteins, namely, trihydroxynaphthalene reductase, GSK-3b, and Pim-1 were eventually selected as potent aflatoxin B1 binding proteins. GSK-3b and Pim-1 are drug targets of cancers or neurological diseases. GSK-3b is the strongest binder for aflatoxin B1.

  16. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    PubMed

    2003-01-01

    Somatomedin-1 binding protein-3 [insulin-like growth factor-1 binding protein-3, SomatoKine] is a recombinant complex of insulin-like growth factor-1 (rhIGF-1) and binding protein-3 (IGFBP-3), which is the major circulating somatomedin (insulin-like growth factor) binding protein; binding protein-3 regulates the delivery of somatomedin-1 to target tissues. Somatomedin-1 binding protein-3 has potential as replacement therapy for somatomedin-1 which may become depleted in indications such as major surgery, organ damage/failure and traumatic injury, resulting in catabolism. It also has potential for the treatment of osteoporosis; diseases associated with protein wasting including chronic renal failure, cachexia and severe trauma; and to attenuate cardiac dysfunction in a variety of disease states, including after severe burn trauma. Combined therapy with somatomedin-1 and somatomedin-1 binding protein-3 would prolong the duration of action of somatomedin-1 and would reduce or eliminate some of the undesirable effects associated with somatomedin-1 monotherapy. Somatomedin-1 is usually linked to binding protein-3 in the normal state of the body, and particular proteases clip them apart in response to stresses and release somatomedin-1 as needed. Therefore, somatomedin-1 binding protein-3 is a self-dosing system and SomatoKine would augment the natural supply of these linked compounds. Somatomedin-1 binding protein-3 was developed by Celtrix using its proprietary recombinant protein production technology. Subsequently, Celtrix was acquired by Insmed Pharmaceuticals on June 1 2000. Insmed and Avecia, UK, have signed an agreement for the manufacturing of SomatoKine and its components, IGF-1 and binding protein-3. CGMP clinical production of SomatoKine and its components will be done in Avecia's Advanced Biologics Centre, Billingham, UK, which manufactures recombinant-based medicines and vaccines with a capacity of up to 1000 litres. In 2003, manufacturing of SomatoKine is

  17. Effects of Diabetes on Salivary Gland Protein Expression of Tetrahydrobiopterin and Nitric Oxide Synthesis and Function.

    PubMed

    Stewart, Cassandra R; Obi, Nneka; Epane, Elodie C; Akbari, Alexander A; Halpern, Leslie; Southerland, Janet H; Gangula, Pandu R

    2016-06-01

    Xerostomia is defined as dry mouth resulting from a change in the amount or composition of saliva and is often a major oral health complication associated with diabetes mellitus (DM). Studies have shown that xerostomia is more common in females at the onset of DM. Evidence suggests that nitric oxide (NO) plays a critical role in healthy salivary gland function. However, the specific mechanisms by which NO regulates salivary gland function at the onset of DM have yet to be determined. This study has two aims: 1) to determine whether protein expression or dimerization of NO synthase enzymes (neuronal [nNOS] and endothelial [eNOS]) are altered in the onset of diabetic xerostomia; and 2) to determine whether the changes in nNOS/eNOS protein expression or dimerization are correlated with changes in NO cofactor tetrahydrobiopterin (BH4) biosynthetic enzymes (guanosine triphosphate cyclohydrolase-1 and dihydrofolate reductase). Functional and Western blot studies were performed in streptozotocin-induced and control Sprague-Dawley female rats with DM (type 1 [t1DM]) using standardized protocols. Confirmation of xerostomia was determined by increased water intake and decreased salivary flow rate. The results showed that in female rats with DM, salivary hypofunction is correlated with decreased submandibular and parotid gland sizes. The results also show a decrease in NOS and BH4 biosynthetic enzyme in submandibular glands. These results indicate that a decrease in submandibular NO-BH4 protein expression may provide insight pertaining to mechanisms for the development of hyposalivation in DM-induced xerostomia. Furthermore, understanding the role of the NO-BH4 pathway may give insight into possible treatment options for the patient with DM experiencing xerostomia.

  18. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth.

    PubMed

    Deng, X; Shao, G; Zhang, H-T; Li, C; Zhang, D; Cheng, L; Elzey, B D; Pili, R; Ratliff, T L; Huang, J; Hu, C-D

    2017-03-02

    Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetic inactivation of several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression.

  19. Tighter Ligand Binding Can Compensate for Impaired Stability of an RNA-Binding Protein.

    PubMed

    Wallis, Christopher P; Richman, Tara R; Filipovska, Aleksandra; Rackham, Oliver

    2018-06-15

    It has been widely shown that ligand-binding residues, by virtue of their orientation, charge, and solvent exposure, often have a net destabilizing effect on proteins that is offset by stability conferring residues elsewhere in the protein. This structure-function trade-off can constrain possible adaptive evolutionary changes of function and may hamper protein engineering efforts to design proteins with new functions. Here, we present evidence from a large randomized mutant library screen that, in the case of PUF RNA-binding proteins, this structural relationship may be inverted and that active-site mutations that increase protein activity are also able to compensate for impaired stability. We show that certain mutations in RNA-protein binding residues are not necessarily destabilizing and that increased ligand-binding can rescue an insoluble, unstable PUF protein. We hypothesize that these mutations restabilize the protein via thermodynamic coupling of protein folding and RNA binding.

  20. Up-Regulation of Follistatin-Like 1 By the Androgen Receptor and Melanoma Antigen-A11 in Prostate Cancer.

    PubMed

    Su, Shifeng; Parris, Amanda B; Grossman, Gail; Mohler, James L; Wang, Zengjun; Wilson, Elizabeth M

    2017-04-01

    High affinity androgen binding to the androgen receptor (AR) activates genes required for male sex differentiation and promotes the development and progression of prostate cancer. Human AR transcriptional activity involves interactions with coregulatory proteins that include primate-specific melanoma antigen-A11 (MAGE-A11), a coactivator that increases AR transcriptional activity during prostate cancer progression to castration-resistant/recurrent prostate cancer (CRPC). Microarray analysis and quantitative RT-PCR were performed to identify androgen-regulated MAGE-A11-dependent genes in LAPC-4 prostate cancer cells after lentivirus shRNA knockdown of MAGE-A11. Chromatin immunoprecipitation was used to assess androgen-dependent AR recruitment, and immunocytochemistry to localize an androgen-dependent protein in prostate cancer cells and tissue and in the CWR22 human prostate cancer xenograft. Microarray analysis of androgen-treated LAPC-4 prostate cancer cells indicated follistatin-like 1 (FSTL1) is up-regulated by MAGE-A11. Androgen-dependent up-regulation of FSTL1 was inhibited in LAPC-4 cells by lentivirus shRNA knockdown of AR or MAGE-A11. Chromatin immunoprecipitation demonstrated AR recruitment to intron 10 of the FSTL1 gene that contains a classical consensus androgen response element. Increased levels of FSTL1 protein in LAPC-4 cells correlated with higher levels of MAGE-A11 relative to other prostate cancer cells. FSTL1 mRNA levels increased in CRPC and castration-recurrent CWR22 xenografts in association with predominantly nuclear FSTL1. Increased nuclear localization of FSTL1 in prostate cancer was suggested by predominantly cytoplasmic FSTL1 in benign prostate epithelial cells and predominantly nuclear FSTL1 in epithelial cells in CRPC tissue and the castration-recurrent CWR22 xenograft. AR expression studies showed nuclear colocalization of AR and endogenous FSTL1 in response to androgen. AR and MAGE-A11 cooperate in the up-regulation of FSTL1 to

  1. High expression of Polycomb group protein EZH2 predicts poor survival in salivary gland adenoid cystic carcinoma.

    PubMed

    Vékony, H; Raaphorst, F M; Otte, A P; van Lohuizen, M; Leemans, C R; van der Waal, I; Bloemena, E

    2008-06-01

    The prognosis of adenoid cystic carcinoma (ACC), a malignant salivary gland tumour, depends on clinicopathological parameters. To decipher the biological behaviour of ACC, and to identify patients at risk of developing metastases, additional markers are needed. Expression of the cell cycle proteins p53, cyclin D1, p16(INK4a), E2F1 and Ki-67, together with the Polycomb group (PcG) proteins BMI-1, MEL-18, EZH2 and EED was investigated immunohistochemically 21 formalin-fixed, paraffin-embedded primary ACCs in relation to tumour characteristics. ACC revealed significantly increased expression of the cell cycle proteins compared to normal salivary tissue (n = 17). Members of the two PcG complexes displayed mutually exclusive expression in normal salivary gland tissue, with BMI-1 and MEL-18 being abundantly present. In ACC, this expression pattern was disturbed, with EZH2 and EED showing significantly increased expression levels. In univariate analysis, presence of recurrence, poor differentiation and high EZH2 levels (>25% immunopositivity) significantly correlated with unfavourable outcome. ACCs with high proliferative rate (>25% Ki-67 immunopositivity) significantly correlated with high levels of EZH2 and p16. Only the development of recurrence was an independent prognostic factor of survival in multivariate analysis. Expression of PcG complexes and of essential cell cycle proteins is highly deregulated in ACC. Also, EZH2 expression has prognostic relevance in this malignancy.

  2. Salivary lipids: A review.

    PubMed

    Matczuk, Jan; Żendzian-Piotrowska, Małgorzata; Maciejczyk, Mateusz; Kurek, Krzysztof

    2017-09-01

    Saliva is produced by both large and small salivary glands and may be considered one of the most important factors influencing the behavior of oral cavity homeostasis. Secretion of saliva plays an important role in numerous significant biological processes. Saliva facilitates chewing and bolus formation as well as performs protective functions and determines the buffering and antibacterial prosperities of the oral environment. Salivary lipids appear to be a very important component of saliva, as their qualitative and quantitative composition can be changed in various pathological states and human diseases. It has been shown that disturbances in salivary lipid homeostasis are involved in periodontal diseases as well as various systemic disorders (e.g. cystic fibrosis, diabetes and Sjögren's syndrome). However, little is known about the role and composition of salivary lipids and their interaction with other important ingredients of human saliva, including proteins, glycoproteins and salivary mucins. The purpose of this review paper is to present the latest knowledge on salivary lipids in healthy conditions and in oral and systemic diseases.

  3. Transcriptomic Analysis of the Salivary Glands of an Invasive Whitefly

    PubMed Central

    Su, Yun-Lin; Li, Jun-Min; Li, Meng; Luan, Jun-Bo; Ye, Xiao-Dong; Wang, Xiao-Wei; Liu, Shu-Sheng

    2012-01-01

    Background Some species of the whitefly Bemisia tabaci complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce. Methodology/Principal Findings We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of B. tabaci complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding. Conclusions/Significance: The combined method of cDNA amplification, Illumina sequencing and de novo assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands

  4. Despite sequence homologies to gluten, salivary proline-rich proteins do not elicit immune responses central to the pathogenesis of celiac disease.

    PubMed

    Tian, Na; Leffler, Daniel A; Kelly, Ciaran P; Hansen, Joshua; Marietta, Eric V; Murray, Joseph A; Schuppan, Detlef; Helmerhorst, Eva J

    2015-12-01

    Celiac disease (CD) is an inflammatory disorder triggered by ingested gluten, causing immune-mediated damage to the small-intestinal mucosa. Gluten proteins are strikingly similar in amino acid composition and sequence to proline-rich proteins (PRPs) in human saliva. On the basis of this feature and their shared destination in the gastrointestinal tract, we hypothesized that salivary PRPs may modulate gluten-mediated immune responses in CD. Parotid salivary secretions were collected from CD patients, refractory CD patients, non-CD patients with functional gastrointestinal complaints, and healthy controls. Structural similarities of PRPs with gluten were probed with anti-gliadin antibodies. Immune responses to PRPs were investigated toward CD patient-derived peripheral blood mononuclear cells and in a humanized transgenic HLA-DQ2/DQ8 mouse model for CD. Anti-gliadin antibodies weakly cross-reacted with the abundant salivary amylase but not with PRPs. Likewise, the R5 antibody, recognizing potential antigenic gluten epitopes, showed negligible reactivity to salivary proteins from all groups. Inflammatory responses in peripheral blood mononuclear cells were provoked by gliadins whereas responses to PRPs were similar to control levels, and PRPs did not compete with gliadins in immune stimulation. In vivo, PRP peptides were well tolerated and nonimmunogenic in the transgenic HLA-DQ2/DQ8 mouse model. Collectively, although structurally similar to dietary gluten, salivary PRPs were nonimmunogenic in CD patients and in a transgenic HLA-DQ2/DQ8 mouse model for CD. It is possible that salivary PRPs play a role in tolerance induction to gluten early in life. Deciphering the structural basis for the lack of immunogenicity of salivary PRPs may further our understanding of the toxicity of gluten. Copyright © 2015 the American Physiological Society.

  5. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer.

    PubMed

    Myung, Jae-Kyung; Wang, Gang; Chiu, Helen H L; Wang, Jun; Mawji, Nasrin R; Sadar, Marianne D

    2017-01-01

    Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD.

  6. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer

    PubMed Central

    Myung, Jae-Kyung; Wang, Gang; Chiu, Helen H. L.; Wang, Jun; Mawji, Nasrin R.; Sadar, Marianne D.

    2017-01-01

    Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD. PMID:28306720

  7. Oriental herbs as a source of novel anti-androgen and prostate cancer chemopreventive agents.

    PubMed

    Lu, Junxuan; Kim, Sung-Hoon; Jiang, Cheng; Lee, HyoJeong; Guo, Junming

    2007-09-01

    Androgen and androgen receptor (AR) signaling are crucial for the genesis of prostate cancer (PCa), which can often develop into androgen-ligand-independent diseases that are lethal to the patients. Recent studies show that even these hormone-refractory PCa require ligand-independent AR signaling for survival. As current chemotherapy is largely ineffective for PCa and has serious toxic sideeffects, we have initiated a collaborative effort to identify and develop novel, safe and naturally occurring agents that target AR signaling from Oriental medicinal herbs for the chemoprevention and treatment of PCa. We highlight our discovery of decursin from an Oriental formula containing Korean Angelica gigas Nakai (Dang Gui) root as a novel anti-androgen/AR agent. We have identified the following mechanisms to account for the specific anti-AR actions: rapid block of AR nuclear translocation, inhibition of binding of 5alpha-dihydrotestesterone to AR and increased proteasomal degradation of AR protein. Furthermore, decursin lacks the agonist activity of the "pure" anti-androgen bicalutamide and is more potent than bicalutamide in inducing PCa apoptosis. Structure-activity analyses reveal a critical requirement of the side-chain on decursin or its structural isomer decursinol angelate for anti-AR, cell cycle arrest and proapoptotic activities. This work demonstrates the feasibility of using activity-guided fractionation in cell culture assays combined with mechanistic studies to identify novel anti-androgen/ AR agents from complex herbal mixtures.

  8. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency.

    PubMed

    Sun, Baoshan; de Sá, Marta; Leandro, Conceição; Caldeira, Ilda; Duarte, Filomena L; Spranger, Isabel

    2013-01-30

    Recent studies have indicated the presence of significant amount of highly polymerized and soluble proanthocyanidins in red wine and such compounds interacted readily with proteins, suggesting that they might be particularly astringent. Thus, the objective of this work was to verify the astringency of polymeric proanthocyanidins and their contribution to red wine astringency. The precipitation reactions of the purified oligomeric procyanidins (degree of polymerization ranging from 2 to 12-15) and polymeric procyanidins (degree of polymerization ranging from 12-15 to 32-34) with human salivary proteins were studied; salivary proteins composition changes before and after the reaction was verified by SDS-PAGE and procyanidins composition changes by spectrometric, direct HPLC and thiolysis-HPLC methods. The astringency intensity of these two procyanidin fractions was evaluated by a sensory analysis panel. For verifying the correlation between polymeric proanthocyanidins and young red wine astringency, the levels of total oligomeric and total polymeric proanthocyanidins and other phenolic composition in various young red wines were quantified and the astringency intensities of these wines were evaluated by a sensory panel. The results showed that polymeric proanthocyanidins had much higher reactivity toward human salivary proteins and higher astringency intensity than the oligomeric ones. Furthermore, young red wine astringency intensities were highly correlated to levels of polymeric proanthocyanidins, particularly at low concentration range (correlation coefficient r = 0.9840) but not significant correlated to total polyphenols (r = 0.2343) or other individual phenolic compounds (generally r < 0.3). These results indicate the important contribution of polymeric proanthocyanidins to red wine astringency and the levels of polymeric polyphenols in red wines may be used as an indicator for its astringency.

  9. Mass Spectrometry Based Proteomic Analysis of Salivary Glands of Urban Malaria Vector Anopheles stephensi

    PubMed Central

    Vijay, Sonam

    2014-01-01

    Salivary gland proteins of Anopheles mosquitoes offer attractive targets to understand interactions with sporozoites, blood feeding behavior, homeostasis, and immunological evaluation of malaria vectors and parasite interactions. To date limited studies have been carried out to elucidate salivary proteins of An. stephensi salivary glands. The aim of the present study was to provide detailed analytical attributives of functional salivary gland proteins of urban malaria vector An. stephensi. A proteomic approach combining one-dimensional electrophoresis (1DE), ion trap liquid chromatography mass spectrometry (LC/MS/MS), and computational bioinformatic analysis was adopted to provide the first direct insight into identification and functional characterization of known salivary proteins and novel salivary proteins of An. stephensi. Computational studies by online servers, namely, MASCOT and OMSSA algorithms, identified a total of 36 known salivary proteins and 123 novel proteins analysed by LC/MS/MS. This first report describes a baseline proteomic catalogue of 159 salivary proteins belonging to various categories of signal transduction, regulation of blood coagulation cascade, and various immune and energy pathways of An. stephensi sialotranscriptome by mass spectrometry. Our results may serve as basis to provide a putative functional role of proteins in concept of blood feeding, biting behavior, and other aspects of vector-parasite host interactions for parasite development in anopheline mosquitoes. PMID:25126571

  10. Mass spectrometry based proteomic analysis of salivary glands of urban malaria vector Anopheles stephensi.

    PubMed

    Vijay, Sonam; Rawat, Manmeet; Sharma, Arun

    2014-01-01

    Salivary gland proteins of Anopheles mosquitoes offer attractive targets to understand interactions with sporozoites, blood feeding behavior, homeostasis, and immunological evaluation of malaria vectors and parasite interactions. To date limited studies have been carried out to elucidate salivary proteins of An. stephensi salivary glands. The aim of the present study was to provide detailed analytical attributives of functional salivary gland proteins of urban malaria vector An. stephensi. A proteomic approach combining one-dimensional electrophoresis (1DE), ion trap liquid chromatography mass spectrometry (LC/MS/MS), and computational bioinformatic analysis was adopted to provide the first direct insight into identification and functional characterization of known salivary proteins and novel salivary proteins of An. stephensi. Computational studies by online servers, namely, MASCOT and OMSSA algorithms, identified a total of 36 known salivary proteins and 123 novel proteins analysed by LC/MS/MS. This first report describes a baseline proteomic catalogue of 159 salivary proteins belonging to various categories of signal transduction, regulation of blood coagulation cascade, and various immune and energy pathways of An. stephensi sialotranscriptome by mass spectrometry. Our results may serve as basis to provide a putative functional role of proteins in concept of blood feeding, biting behavior, and other aspects of vector-parasite host interactions for parasite development in anopheline mosquitoes.

  11. Sex hormone-binding globulin is associated with androgen deficiency features independently of total testosterone.

    PubMed

    Rastrelli, Giulia; Corona, Giovanni; Cipriani, Sarah; Mannucci, Edoardo; Maggi, Mario

    2018-04-01

    It is recognized that total testosterone (TT) does not sufficiently describe androgen status when sex hormone-binding globulin (SHBG) is altered. However, in humans, evidence supporting the existence of a hypogonadism due to low T bioactivity is scanty. The aim of the study was to assess whether changes in SHBG levels, independently of TT, are associated with subjective and objective androgen-dependent parameters. Cross-sectional observation. Two thousand six hundred and twenty-two men (aged 51.1 ± 13.5 years) attending a Sexual Medicine and Andrology Outpatient Clinic for sexual dysfunctions. All patients underwent a standardized diagnostic protocol before starting any treatment. Clinical and biochemical parameters have been collected. Higher ANDROTEST score has been used as a comprehensive marker of more severe hypogonadal symptoms. Prostate-specific antigen (PSA) and haematocrit have been used as objective surrogate markers of T bioactivity. After adjusting for TT and lifestyle, SHBG showed a significant positive association with ANDROTEST score (B = 0.79 [0.61; 0.96], P < .0001). Conversely, higher SHBG, independently of TT, was negatively related to PSA (B = -0.86 [-0.83; -0.89]; P < .0001) and haematocrit (B = -0.64 [-0.88; -0.40]; P < .0001), after adjustment for the aforementioned confounders along with age and body mass index. Furthermore, a relationship between SHBG and lipids or blood pressure was found, with lower SHBG levels associated with a worse metabolic profile, independently of TT. Higher SHBG, independently of TT, is associated with either subjective or objective androgen deficiency features. This indicates that besides a hypogonadism due to an impaired T production, a hypogonadism due to a lower biological activity of T does exist. © 2017 John Wiley & Sons Ltd.

  12. A Catalogue of Altered Salivary Proteins Secondary to Invasive Ductal Carcinoma: A Novel In Vivo Paradigm to Assess Breast Cancer Progression

    PubMed Central

    Streckfus, Charles F.; Bigler, Lenora

    2016-01-01

    The objective of this manuscript is to introduce a catalogue of salivary proteins that are altered secondary to carcinoma of the breast. The catalogue of salivary proteins is a compilation of twenty years of research by the authors and consists of 233 high and low abundant proteins which have been identified by LC-MS/MS mass spectrometry, 2D-gel analysis and by enzyme-linked immunosorbent assay. The body of research suggests that saliva is a fluid suffused with solubilized by-products of oncogenic expression and that these proteins may be useful in the study of breast cancer progress, treatment efficacy and the tailoring of individualized patient care. PMID:27477923

  13. Characterization, stoichiometry, and stability of salivary protein-tannin complexes by ESI-MS and ESI-MS/MS.

    PubMed

    Canon, Francis; Paté, Franck; Meudec, Emmanuelle; Marlin, Thérèse; Cheynier, Véronique; Giuliani, Alexandre; Sarni-Manchado, Pascale

    2009-12-01

    Numerous protein-polyphenol interactions occur in biological and food domains particularly involving proline-rich proteins, which are representative of the intrinsically unstructured protein group (IUP). Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), which also gives access to ligand binding stoichiometry. Surprisingly, the study of interactions between polyphenolic molecules and proteins is still an area where ESI-MS has poorly benefited, whereas it has been extensively applied to the detection of noncovalent complexes. Electrospray ionization mass spectrometry has been applied to the detection and the characterization of the complexes formed between tannins and a human salivary proline-rich protein (PRP), namely IB5. The study of the complex stability was achieved by low-energy collision-induced dissociation (CID) measurements, which are commonly implemented using triple quadrupole, hybrid quadrupole time-of-flight, or ion trap instruments. Complexes composed of IB5 bound to a model polyphenol EgCG have been detected by ESI-MS and further analyzed by MS/MS. Mild ESI interface conditions allowed us to observe intact noncovalent PRP-tannin complexes with stoichiometries ranging from 1:1 to 1:5. Thus, ESI-MS shows its efficiency for (1) the study of PRP-tannin interactions, (2) the determination of stoichiometry, and (3) the study of complex stability. We were able to establish unambiguously both their stoichiometries and their overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Our results prove that IB5.EgCG complexes are maintained intact in the gas phase.

  14. Oral contraceptives increase insulin-like growth factor binding protein-1 concentration in women with polycystic ovarian disease.

    PubMed

    Suikkari, A M; Tiitinen, A; Stenman, U H; Seppälä, M; Laatikainen, T

    1991-05-01

    Insulin-like growth factor-I (IGF-I) stimulates ovarian androgen production. Insulin-like growth factor binding protein-1 (IGFBP-1) inhibits IGF actions in vitro. To investigate the effect of oral contraceptive (OC) pills, given for 3 months, on serum gonadotropin, androgen, IGF-I, and IGFBP-1 concentrations, and glucose tolerance in seven women with polycystic ovarian disease (PCOD) and in five healthy control subjects. Seven women with PCOD and five healthy control subjects. An oral glucose tolerance test (OGTT) was performed before and after treatment with OC. After treatment with OC, serum luteinizing hormone, androstenedione, and free testosterone levels decreased, and sex hormone-binding globulin concentration increased in the women with PCOD as well as in the control subjects. The cumulative response of serum insulin to OGTT was larger in the women with PCOD than in the control subjects both before and after treatment. Serum IGF-I concentration, which was unchanged during OGTT, decreased from basal level of 326 +/- 70 micrograms/L to 199 +/- 28 micrograms/L after treatment with OC in the women with PCOD, whereas no change was found in the control subjects (from 235 +/- 11 micrograms/L to 226 +/- 11 micrograms/L). Treatment with OC caused an increase of the mean basal IGFBP-1 concentration from 24 +/- 7 micrograms/L to 73 +/- 14 micrograms/L in the women with PCOD. This increase was constant during the OGTT. In the control subjects, treatment with OC did not result in any significant change in IGFBP-1 concentrations (from 44 +/- 11 micrograms/L to 61 +/- 9 micrograms/L). The combination of decreased total IGF-I concentration and increased IGFBP-1 concentration induced by OC may decrease ovarian androgen production in PCOD.

  15. A novel biomarker associated with distress in humans: calcium-binding protein, spermatid-specific 1 (CABS1)

    PubMed Central

    Ritz, Thomas; Rosenfield, David; St. Laurent, Chris D.; Trueba, Ana F.; Werchan, Chelsey A.; Vogel, Pia D.; Auchus, Richard J.; Reyes-Serratos, Eduardo

    2017-01-01

    Calcium-binding protein spermatid-specific 1 (CABS1) is expressed in the human submandibular gland and has an anti-inflammatory motif similar to that in submandibular rat 1 in rats. Here, we investigate CABS1 in human saliva and its association with psychological and physiological distress and inflammation in humans. Volunteers participated across three studies: 1) weekly baseline measures; 2) a psychosocial speech and mental arithmetic stressor under evaluative threat; and 3) during academic exam stress. Salivary samples were analyzed for CABS1 and cortisol. Additional measures included questionnaires of perceived stress and negative affect; exhaled nitric oxide; respiration and cardiac activity; lung function; and salivary and nasal inflammatory markers. We identified a CABS1 immunoreactive band at 27 kDa in all participants and additional molecular mass forms in some participants. One week temporal stability of the 27-kDa band was satisfactory (test–retest reliability estimate = 0.62–0.86). Acute stress increased intensity of 18, 27, and 55 kDa bands; 27-kDa increases were associated with more negative affect and lower heart rate, sympathetic activity, respiration rate, and minute ventilation. In both acute and academic stress, changes in 27 kDa were positively associated with salivary cortisol. The 27-kDa band was also positively associated with VEGF and salivary leukotriene B4 levels. Participants with low molecular weight CABS1 bands showed reduced habitual stress and negative affect in response to acute stress. CABS1 is readily detected in human saliva and is associated with psychological and physiological indicators of stress. The role of CABS1 in inflammatory processes, stress, and stress resilience requires careful study. PMID:28381457

  16. Clinical role of protein binding of quinolones.

    PubMed

    Bergogne-Bérézin, Eugénie

    2002-01-01

    Protein binding of antibacterials in plasma and tissues has long been considered a component of their pharmacokinetic parameters, playing a potential role in distribution, excretion and therapeutic effectiveness. Since the beginning of the 'antibacterial era', this factor has been extensively analysed for all antibacterial classes, showing that wide variations of the degree of protein binding occur even in the same antibacterial class, as with beta-lactams. As the understanding of protein binding grew, the complexity of the binding system was increasingly perceived and its dynamic character described. Studies of protein binding of the fluoroquinolones have shown that the great majority of these drugs exhibit low protein binding, ranging from approximately 20 to 40% in plasma, and that they are bound predominantly to albumin. The potential role in pharmacokinetics-pharmacodynamics of binding of fluoroquinolones to plasma, tissue and intracellular proteins has been analysed, but it has not been established that protein binding has any significant direct or indirect impact on therapeutic effectiveness. Regarding the factors influencing the tissue distribution of antibacterials, physicochemical characteristics and the small molecular size of fluoroquinolones permit a rapid penetration into extravascular sites and intracellularly, with a rapid equilibrium being established between intravascular and extravascular compartments. The high concentrations of these drugs achieved in tissues, body fluids and intracellularly, in addition to their wide antibacterial spectrum, mean that fluoroquinolones have therapeutic effectiveness in a large variety of infections. The tolerability of quinolones has generally been reported as good, based upon long experience in using pefloxacin, ciprofloxacin and ofloxacin in clinical practice. Among more recently developed molecules, good tolerability has been reported for levofloxacin, moxifloxacin and gatifloxacin, but certain other new

  17. Androgens and the male reproductive tract: an overview of classical roles and current perspectives.

    PubMed

    Patrão, Marilia T C C; Silva, Erick J R; Avellar, Maria Christina W

    2009-11-01

    Androgens are steroid hormones that play key roles in the development and maintenance of male phenotype and reproductive function. These hormones also affect the function of several non-reproductive organs, such as bone and skeletal muscle. Endogenous androgens exert most of their effects by genomic mechanisms, which involve hormone binding to the androgen receptor (AR), a ligand-activated transcription factor, resulting in the modulation of gene expression. AR-induced non-genomic mechanisms have also been reported. A large number of steroidal and non-steroidal AR-ligands have been developed for therapeutic use, including the treatment of male hypogonadism (AR agonists) and prostate diseases (AR antagonists), among other pathological conditions. Here, the AR gene and protein structure, mechanism of action and AR gene homologous regulation were reviewed. The AR expression pattern, its in vivo regulation and physiological relevance in the developing and adult testis and epididymis, which are sites of sperm production and maturation, respectively, were also presented.

  18. The Tick Salivary Protein Sialostatin L2 Inhibits Caspase-1-Mediated Inflammation during Anaplasma phagocytophilum Infection

    PubMed Central

    Chen, Gang; Wang, Xiaowei; Severo, Maiara S.; Sakhon, Olivia S.; Sohail, Mohammad; Brown, Lindsey J.; Sircar, Mayukh; Snyder, Greg A.; Sundberg, Eric J.; Ulland, Tyler K.; Olivier, Alicia K.; Andersen, John F.; Zhou, Yi; Shi, Guo-Ping; Sutterwala, Fayyaz S.; Kotsyfakis, Michail

    2014-01-01

    Saliva from arthropod vectors facilitates blood feeding by altering host inflammation. Whether arthropod saliva counters inflammasome signaling, a protein scaffold that regulates the activity of caspase-1 and cleavage of interleukin-1β (IL-1β) and IL-18 into mature molecules, remains elusive. In this study, we provide evidence that a tick salivary protein, sialostatin L2, inhibits inflammasome formation during pathogen infection. We show that sialostatin L2 targets caspase-1 activity during host stimulation with the rickettsial agent Anaplasma phagocytophilum. A. phagocytophilum causes macrophage activation and hemophagocytic syndrome features. The effect of sialostatin L2 in macrophages was not due to direct caspase-1 enzymatic inhibition, and it did not rely on nuclear factor κB or cathepsin L signaling. Reactive oxygen species from NADPH oxidase and the Loop2 domain of sialostatin L2 were important for the regulatory process. Altogether, our data expand the knowledge of immunoregulatory pathways of tick salivary proteins and unveil an important finding in inflammasome biology. PMID:24686067

  19. Small molecule screening reveals a transcription-independent pro-survival function of androgen receptor in castration-resistant prostate cancer

    PubMed Central

    Narizhneva, Natalia V.; Tararova, Natalia D.; Ryabokon, Petro; Shyshynova, Inna; Prokvolit, Anatoly; Komarov, Pavel G.; Purmal, Andrei A.; Gudkov, Andrei V.; Gurova, Katerina V.

    2010-01-01

    In prostate cancer (PCa) patients, initial responsiveness to androgen deprivation therapy is frequently followed by relapse due to development of treatment-resistant androgen-independent PCa. This is typically associated with acquisition of mutations in AR that allow activity as a transcription factor in the absence of ligand, indicating that androgen-independent PCa remains dependent on AR function. Our strategy to effectively target AR in androgen-independent PCa involved using a cell-based readout to isolate small molecules that inhibit AR transactivation function through mechanisms other than modulation of ligand binding. A number of the identified inhibitors were toxic to AR-expressing PCa cells regardless of their androgen dependence. Among these, some only suppressed PCa cell growth (ARTIS), while others induced cell death (ARTIK). ARTIK, but not ARTIS, compounds caused disappearance of AR protein from treated cells. siRNA against AR behaved like ARTIK compounds, while a dominant negative AR mutant that prevents AR-mediated transactivation but does not eliminate the protein showed only a growth suppressive effect. These observations reveal a transcription-independent function of AR that is essential for PCa cell viability and, therefore, is an ideal target for anti-PCa treatment. Indeed, several of the identified AR inhibitors demonstrated in vivo efficacy in mouse models of PCa and are candidates for pharmacologic optimization. PMID:19946220

  20. The complexity of minocycline serum protein binding.

    PubMed

    Zhou, Jian; Tran, Brian T; Tam, Vincent H

    2017-06-01

    Serum protein binding is critical for understanding the pharmacology of antimicrobial agents. Tigecycline and eravacycline were previously reported to have atypical non-linear protein binding; the percentage of free fraction decreased with increasing total concentration. In this study, we extended the investigation to other tetracyclines and examined the factors that might impact protein binding. Different minocycline concentrations (0.5-50 mg/L) and perfusion media (saline, 0.1 M HEPES buffer and 0.1 and 1 M PBS) were examined by in vitro microdialysis. After equilibration, two dialysate samples were taken from each experiment and the respective antimicrobial agent concentrations were analysed by validated LC-MS/MS methods. For comparison, the serum protein bindings of doxycycline and levofloxacin were also determined. The free fraction of minocycline decreased with increasing total concentration, and the results depended on the perfusion media used. The trends of minocycline protein binding in mouse and human sera were similar. In addition, serum protein binding of doxycycline showed the same concentration-dependent trend as minocycline, while the results of levofloxacin were concentration independent. The serum protein bindings of minocycline and doxycycline are negatively correlated with their total concentrations. It is possible that all tetracyclines share the same pharmacological property. Moreover, the specific perfusion media used could also impact the results of microdialysis. Additional studies are warranted to understand the mechanism(s) and clinical implications of serum protein binding of tetracyclines. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Surface properties of adipocyte lipid-binding protein: Response to lipid binding, and comparison with homologous proteins.

    PubMed

    LiCata, V J; Bernlohr, D A

    1998-12-01

    Adipocyte lipid-binding protein (ALBP) is one of a family of intracellular lipid-binding proteins (iLBPs) that bind fatty acids, retinoids, and other hydrophobic ligands. The different members of this family exhibit a highly conserved three-dimensional structure; and where structures have been determined both with (holo) and without (apo) bound lipid, observed conformational changes are extremely small (Banaszak, et al., 1994, Adv. Prot. Chem. 45, 89; Bernlohr, et al., 1997, Annu. Rev. Nutr. 17, 277). We have examined the electrostatic, hydrophobic, and water accessible surfaces of ALBP in the apo form and of holo forms with a variety of bound ligands. These calculations reveal a number of previously unrecognized changes between apo and holo ALBP, including: 1) an increase in the overall protein surface area when ligand binds, 2) expansion of the binding cavity when ligand is bound, 3) clustering of individual residue exposure increases in the area surrounding the proposed ligand entry portal, and 4) ligand-binding dependent variation in the topology of the electrostatic potential in the area surrounding the ligand entry portal. These focused analyses of the crystallographic structures thus reveal a number of subtle but consistent conformational and surface changes that might serve as markers for differential targeting of protein-lipid complexes within the cell. Most changes are consistent from ligand to ligand, however there are some ligand-specific changes. Comparable calculations with intestinal fatty-acid-binding protein and other vertebrate iLBPs show differences in the electrostatic topology, hydrophobic topology, and in localized changes in solvent exposure near the ligand entry portal. These results provide a basis toward understanding the functional and mechanistic differences among these highly structurally homologous proteins. Further, they suggest that iLBPs from different tissues exhibit one of two predominant end-state structural distributions of the

  2. Sterol Carrier Protein-2: Binding Protein for Endocannabinoids

    PubMed Central

    Liedhegner, Elizabeth Sabens; Vogt, Caleb D.; Sem, Daniel S.; Cunningham, Christopher W.

    2015-01-01

    The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ΔG values of −3.6 and −4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (−6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA. PMID:24510313

  3. Establishment of immortal multipotent rat salivary progenitor cell line toward salivary gland regeneration.

    PubMed

    Yaniv, Adi; Neumann, Yoav; David, Ran; Stiubea-Cohen, Raluca; Orbach, Yoav; Lang, Stephan; Rotter, Nicole; Dvir-Ginzberg, Mona; Aframian, Doron J; Palmon, Aaron

    2011-01-01

    Adult salivary gland stem cells are promising candidates for cell therapy and tissue regeneration in cases of irreversible damage to salivary glands in head and neck cancer patients undergoing irradiation therapy. At present, the major restriction in handling such cells is their relatively limited life span during in vitro cultivation, resulting in an inadequate experimental platform to explore the salivary gland-originated stem cells as candidates for future clinical application in therapy. We established a spontaneous immortal integrin α6β1-expressing cell line of adult salivary progenitor cells from rats (rat salivary clone [RSC]) and investigated their ability to sustain cellular properties. This line was able to propagate for more than 400 doublings without loss of differentiation potential. RSC could differentiate in vitro to both acinar- and ductal-like structures and could be further manipulated upon culturing on a 3D scaffolds with different media supplements. Moreover, RSC expressed salivary-specific mRNAs and proteins as well as epithelial stem cell markers, and upon differentiation process their expression was changed. These results suggest RSC as a good model for further studies exploring cellular senescence, differentiation, and in vitro tissue engineering features as a crucial step toward reengineering irradiation-impaired salivary glands.

  4. Structure and Function of Lipopolysaccharide Binding Protein

    NASA Astrophysics Data System (ADS)

    Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.

    1990-09-01

    The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.

  5. Roles of Copper-Binding Proteins in Breast Cancer.

    PubMed

    Blockhuys, Stéphanie; Wittung-Stafshede, Pernilla

    2017-04-20

    Copper ions are needed in several steps of cancer progression. However, the underlying mechanisms, and involved copper-binding proteins, are mainly elusive. Since most copper ions in the body (in and outside cells) are protein-bound, it is important to investigate what copper-binding proteins participate and, for these, how they are loaded with copper by copper transport proteins. Mechanistic information for how some copper-binding proteins, such as extracellular lysyl oxidase (LOX), play roles in cancer have been elucidated but there is still much to learn from a biophysical molecular viewpoint. Here we provide a summary of copper-binding proteins and discuss ones reported to have roles in cancer. We specifically focus on how copper-binding proteins such as mediator of cell motility 1 (MEMO1), LOX, LOX-like proteins, and secreted protein acidic and rich in cysteine (SPARC) modulate breast cancer from molecular and clinical aspects. Because of the importance of copper for invasion/migration processes, which are key components of cancer metastasis, further insights into the actions of copper-binding proteins may provide new targets to combat cancer.

  6. Kinetic and Thermodynamic Characterization of Dihydrotestosterone-Induced Conformational Perturbations in Androgen Receptor Ligand-Binding Domain

    PubMed Central

    Jasuja, Ravi; Ulloor, Jagadish; Yengo, Christopher M.; Choong, Karen; Istomin, Andrei Y.; Livesay, Dennis R.; Jacobs, Donald J.; Swerdloff, Ronald S.; Mikšovská, Jaroslava; Larsen, Randy W.; Bhasin, Shalender

    2009-01-01

    Ligand-induced conformational perturbations in androgen receptor (AR) are important in coactivator recruitment and transactivation. However, molecular rearrangements in AR ligand-binding domain (AR-LBD) associated with agonist binding and their kinetic and thermodynamic parameters are poorly understood. We used steady-state second-derivative absorption and emission spectroscopy, pressure and temperature perturbations, and 4,4′-bis-anilinonaphthalene 8-sulfonate (bis-ANS) partitioning to determine the kinetics and thermodynamics of the conformational changes in AR-LBD after dihydrotestosterone (DHT) binding. In presence of DHT, the second-derivative absorption spectrum showed a red shift and a change in peak-to-peak distance. Emission intensity increased upon DHT binding, and center of spectral mass was blue shifted, denoting conformational changes resulting in more hydrophobic environment for tyrosines and tryptophans within a more compact DHT-bound receptor. In pressure perturbation calorimetry, DHT-induced energetic stabilization increased the Gibbs free energy of unfolding to 8.4 ± 1.3 kcal/mol from 3.5 ± 1.6 kcal/mol. Bis-ANS partitioning studies revealed that upon DHT binding, AR-LBD underwent biphasic rearrangement with a high activation energy (13.4 kcal/mol). An initial, molten globule-like burst phase (k ∼30 sec−1) with greater solvent accessibility was followed by rearrangement (k ∼0.01 sec−1), leading to a more compact conformation than apo-AR-LBD. Molecular simulations demonstrated unique sensitivity of tyrosine and tryptophan residues during pressure unfolding with rearrangement of residues in the coactivator recruitment surfaces distant from the ligand-binding pocket. In conclusion, DHT binding leads to energetic stabilization of AR-LBD domain and substantial rearrangement of residues distant from the ligand-binding pocket. DHT binding to AR-LBD involves biphasic receptor rearrangement including population of a molten globule

  7. The hydroxyapatite-binding regions of a rat salivary glycoprotein.

    PubMed

    Embery, G; Green, D R

    1989-09-01

    The regions of a salivary sulphated glycoprotein which are involved in its attachment to hydroxyapatite (Biogel HTP) have been characterised. The sulphated glycoprotein, a 35S-labelled preparation from mixed palatal and buccal minor gland secretions of the rat was bound onto hydroxyapatite and the resultant glycoprotein-hydroxyapatite complex was sequentially digested with pronase E and alpha-L-fucosidase, a treatment which released 86.8% +/- 1.7% of the radioactivity of the initially bound glycoprotein. The fragments which remained attached to the hydroxyapatite after enzymic digestion were fractionated on Sephadex G-25 and analysed for carbohydrate and amino acid components. A range of amino acids were detected which could reflect both glycosylated and non-glycosylated-binding regions. Sialic acid, although considered to be involved in the attachment process was not detected in any of the fragments remaining after enzymic digestion, a finding which provides indirect evidence that the enzymically liberated products do not subsequently re-attach to the hydroxyapatite surface. The notable feature of the fractions with average Mr estimated at 1000 or less is the high proportion of N-acetylhexosamine and N-acetylgalactosamine. It is apparent that the hexosamine residues, which normally bear the ester sulphate moieties of sulphated glycoproteins, play an important role in the attachment of sulphated glycoproteins to hydroxyapatite.

  8. Apyrase activity and adenosine diphosphate induced platelet aggregation inhibition by the salivary gland proteins of Culicoides variipennis, the North American vector of bluetongue viruses.

    PubMed

    Pérez de León, A A; Tabachnick, W J

    1996-02-01

    Salivary gland homogenates of Culicoides variipennis, the primary vector of bluetongue (BLU) viruses in North America, were analyzed for apyrase activity. Apyrase (ATP diphosphohydrolase, EC 3.6.1.5) is an anti-hemostatic and anti-inflammatory salivary enzyme of most hematophagous arthropods. The enzyme activity was measured by the release of orthophosphate using ATP, ADP, and AMP as substrates with Ca2+ as the divalent cation. ATPase (11.5 +/- 1 mU/pair of glands), ADPase (7.3 +/- 0.7 mU/pair of glands), and insignificant (P < 0.05) AMPase (0.07 mU/pair of glands) activities were detected in female salivary glands. Male salivary glands contained lower amounts of ATPase and ADPase activity (P < 0.05). The ATPase and ADPase activities were greatest at pH 8.5, and were similarly activated by Mg2+. Molecular sieving HPLC of salivary gland homogenates generated a single peak which coincided with ATPase and ADPase, but no AMPase, activity; the protein has an estimated molecular mass of 35,000 Da. ATPase and ADPase activity, and total protein concentration, were reduced (P < 0.05) in the salivary glands of females after taking a blood meal from a sheep. Salivary gland homogenates also inhibited ADP-induced platelet aggregation in vitro. It is concluded that the salivary ATPase and ADPase activities of C. variipennis reside in one enzyme, and that this enzyme is likely an apyrase. The apyrase activity is thought to be responsible for the inhibition of ADP-induced platelet aggregation, as indicated by the apparent discharge of apyrase from salivary glands into the host during blood feeding. This suggests that apyrase is one of the salivary proteins present in C. variipennis acting as antigens in the development of Culicoides hypersensitivity in ruminants and horses. Apyrase may inhibit an inflammatory response at the feeding site through the subsequent degradation of its end-product, AMP, to adenosine, a potent anti-inflammatory substance, by the ecto-5' nucleotidase

  9. Exploring Androgen-Regulated Pathways in Teleost Fish Using Transcriptomics and Proteomics

    PubMed Central

    Martyniuk, Christopher J.; Denslow, Nancy D.

    2012-01-01

    In the environment, there are aquatic pollutants that disrupt androgen signaling in fish. Laboratory and field-based experiments have utilized omics technologies to characterize the molecular mechanisms underlying androgen-receptor agonism/antagonism. Transcriptomics and proteomics studies with 17β-trenbolone, a growth-promoting pharmaceutical found in water systems surrounding cattle feed lots, and androgens such as 17α-methyltestosterone and 17α-methyldihydrotestosterone, have been conducted in ovary and liver of fish that include the fathead minnow (FHM) (Pimephales promelas), common carp (Cyprinus carpio), Qurt medaka (Oryzias latipes), and zebrafish (Danio rerio). In this mini-review, we survey recent omics studies in fish and reveal that, despite the diversity of species and tissues examined, there are common cellular responses that are observed with waterborne androgenic treatments. Recurring themes in gene ontology include apoptosis, transport and oxidation of lipids, synthesis and transport of hormones, immune response, protein metabolism, and cell proliferation. However, we also discuss other mechanisms other than androgen receptor (AR) activation, such as responses to toxicant stress, estrogen receptor agonism, aromatization of androgens into estrogens, and inhibitory feedback mechanisms by high levels of androgens that may also explain molecular responses in fish. To further explore androgen-responsive protein networks, a sub-network enrichment analysis was performed on protein data collected from the livers of female FHMs exposed to 17β-trenbolone. We construct a putative AR-regulated protein/cell process network in the liver that includes B-lymphocyte differentiation, xenobiotic clearance, low-density lipoprotein oxidation, proliferation of smooth muscle cells, and permeability of blood vessels. We demonstrate that construction of protein networks can offer insight into cell processes that are potentially regulated by androgens. PMID:22596056

  10. Effect of Cell Phone Use on Salivary Total Protein, Enzymes and Oxidative Stress Markers in Young Adults: A Pilot Study

    PubMed Central

    Joy, Jasmi; Sunitha, Venkatesh; Rai, Manoj P.; Rao, Suresh; Nambranathayil, Shafeeque; Baliga, Manjeshwar Shrinath

    2015-01-01

    Introduction: The present study aimed to assess the levels of salivary enzymes, protein and oxidant-antioxidant system in young college-going cell phone users. Materials and Methods: The cell users (students) were categorized in to two groups – less mobile users and high mobile users, based on the duration and frequency of cell use. Unstimulated whole saliva samples of the volunteers were analysed for amylase, lactate dehydrogenase (LDH), malondialdehdye (MDA) and glutathione (GSH). Results: High mobile users had significantly higher levels of amylase (p = 0.001), LDH (p = 0.002) and MDA (p = 0.002) in saliva, when compared to less mobile users. The marginal decrease in salivary total proteins, GSH and flow rate were statistically not significant (p >0.05). Conclusion: Significant changes in salivary enzymes and MDA suggest adverse effect of high use of cell phones on cell health. PMID:25859446

  11. Hormone Treatment and Muscle Anabolism during Aging: Androgens

    PubMed Central

    Dillon, E. Lichar; Durham, William J.; Urban, Randall J.; Sheffield-Moore, Melinda

    2010-01-01

    Aging is associated with a gradual decline in circulating testosterone concentrations and decreased musculature in men. While testosterone administration is often considered when symptoms of hypogonadism are presented, the long-term effects of androgen use on muscle physiology are not yet fully understood. The definition of hypogonadism in men remains obscure but is generally indicated by total testosterone concentrations less than a threshold value of 300-500 ng/dL. Androgen replacement therapy is generally safe in men and women with low endogenous testosterone concentrations. The development of selective androgen receptor modulators (SARMs) may provide additional options in treatment of hypogonadism while lowering the potential of side effects often associated with long-term androgen use. Androgen administration, either alone or in combination with other treatments, can be successful in improving muscle mass by increasing protein anabolism and reducing protein catabolism in men and women. Further research is necessary to optimize the anabolic and anticatabolic properties of androgens for treatment and prevention of muscle loss in men and women. PMID:20452103

  12. Isolation from genomic DNA of sequences binding specific regulatory proteins by the acceleration of protein electrophoretic mobility upon DNA binding.

    PubMed

    Subrahmanyam, S; Cronan, J E

    1999-01-21

    We report an efficient and flexible in vitro method for the isolation of genomic DNA sequences that are the binding targets of a given DNA binding protein. This method takes advantage of the fact that binding of a protein to a DNA molecule generally increases the rate of migration of the protein in nondenaturing gel electrophoresis. By the use of a radioactively labeled DNA-binding protein and nonradioactive DNA coupled with PCR amplification from gel slices, we show that specific binding sites can be isolated from Escherichia coli genomic DNA. We have applied this method to isolate a binding site for FadR, a global regulator of fatty acid metabolism in E. coli. We have also isolated a second binding site for BirA, the biotin operon repressor/biotin ligase, from the E. coli genome that has a very low binding efficiency compared with the bio operator region.

  13. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer

    PubMed Central

    Siddiqui, Imtiaz A.; Asim, Mohammad; Hafeez, Bilal B.; Adhami, Vaqar M.; Tarapore, Rohinton S.; Mukhtar, Hasan

    2011-01-01

    Androgen deprivation therapy is the major treatment for advanced prostate cancer (PCa). However, it is a temporary remission, and the patients almost inevitably develop hormone refractory prostate cancer (HRPC). HRPC is almost incurable, although most HRPC cells still express androgen receptor (AR) and depend on the AR for growth, making AR a prime drug target. Here, we provide evidence that epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, is a direct antagonist of androgen action. In silico modeling and FRET-based competition assay showed that EGCG physically interacts with the ligand-binding domain of AR by replacing a high-affinity labeled ligand (IC50 0.4 μM). The functional consequence of this interaction was a decrease in AR-mediated transcriptional activation, which was due to EGCG mediated inhibition of interdomain N-C termini interaction of AR. Treatment with EGCG also repressed the transcriptional activation by a hotspot mutant AR (T877A) expressed ectopically as well as the endogenous AR mutant. As the physiological consequence of AR antagonism, EGCG repressed R1881-induced PCa cell growth. In a xenograft model, EGCG was found to inhibit AR nuclear translocation and protein expression. We also observed a significant down-regulation of androgen-regulated miRNA-21 and up-regulation of a tumor suppressor, miRNA-330, in tumors of mice treated with EGCG. Taken together, we provide evidence that EGCG functionally antagonizes androgen action at multiple levels, resulting in inhibition of PCa growth.—Siddiqui, I. A., Asim, M., Hafeez, B. B., Adhami, V. M., Tarapore, R. S., Mukhtar, H. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. PMID:21177307

  14. Immunostaining of the androgen receptor and sequence analysis of its DNA-binding domain in canine prostate cancer.

    PubMed

    Lai, Chen-Li; van den Ham, René; Mol, Jan; Teske, Erik

    2009-09-01

    Prostate cancer in the dog (cPC) has many features in common with hormone refractory human prostate cancer. As cPC is seen more often in castrated dogs, the contribution of the androgen receptor (AR) to the development of prostate cancer remains questionable. The aim of the present study was to evaluate the presence of the AR by immunohistochemistry in cPC. AR staining was observed in most tumors from intact and castrated dogs, but the proportion of positive cells and the staining intensity were much lower than in the prostate of healthy, non-castrated dogs. Most of the positive staining was seen in the cytoplasm rather than in the nuclei of the tumor cells. The predominant cytoplasmic localization was not related to mutations in exon 3 of the DNA-binding domain of the AR, as shown by sequence analysis of microdissected AR positive tumor cells. Other mechanisms that lead to an impaired androgen-AR signaling or a basal/stem cell like origin may explain the low cytoplasmic AR staining in cPC.

  15. New Binding Mode to TNF-Alpha Revealed by Ubiquitin-Based Artificial Binding Protein

    PubMed Central

    Hoffmann, Andreas; Kovermann, Michael; Lilie, Hauke; Fiedler, Markus; Balbach, Jochen; Rudolph, Rainer; Pfeifer, Sven

    2012-01-01

    A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF)-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1∶3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins – designed ankyrin repeat proteins – without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies. PMID:22363609

  16. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    PubMed

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  17. Effect of propofol on androgen receptor activity in prostate cancer cells.

    PubMed

    Tatsumi, Kenichiro; Hirotsu, Akiko; Daijo, Hiroki; Matsuyama, Tomonori; Terada, Naoki; Tanaka, Tomoharu

    2017-08-15

    Androgen receptor is a nuclear receptor and transcription factor activated by androgenic hormones. Androgen receptor activity plays a pivotal role in the development and progression of prostate cancer. Although accumulating evidence suggests that general anesthetics, including opioids, affect cancer cell growth and impact patient prognosis, the effect of those drugs on androgen receptor in prostate cancer is not clear. The purpose of this study was to investigate the effect of the general anesthetic propofol on androgen receptor activity in prostate cancer cells. An androgen-dependent human prostate cancer cell line (LNCaP) was stimulated with dihydrotestosterone (DHT) and exposed to propofol. The induction of androgen receptor target genes was investigated using real-time reverse transcription polymerase chain reaction, and androgen receptor protein levels and localization patterns were analyzed using immunoblotting and immunofluorescence assays. The effect of propofol on the proliferation of LNCaP cells was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Propofol significantly inhibited DHT-induced expression of androgen receptor target genes in a dose- and time-dependent manner, and immunoblotting and immunofluorescence assays indicated that propofol suppressed nuclear levels of androgen receptor proteins. Exposure to propofol for 24h suppressed the proliferation of LNCaP cells, whereas 4h of exposure did not exert significant effects. Together, our results indicate that propofol suppresses nuclear androgen receptor protein levels, and inhibits androgen receptor transcriptional activity and proliferation in LNCaP cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Factor VII and protein C are phosphatidic acid-binding proteins.

    PubMed

    Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H

    2013-08-20

    Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.

  19. Metal-binding proteins as metal pollution indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennig, H.F.

    1986-03-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effectsmore » on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass.« less

  20. Phage display of engineered binding proteins.

    PubMed

    Levisson, Mark; Spruijt, Ruud B; Winkel, Ingrid Nolla; Kengen, Servé W M; van der Oost, John

    2014-01-01

    In current purification processes optimization of the capture step generally has a large impact on cost reduction. At present, valuable biomolecules are often produced in relatively low concentrations and, consequently, the eventual selective separation from complex mixtures can be rather inefficient. A separation technology based on a very selective high-affinity binding may overcome these problems. Proteins in their natural environment manifest functionality by interacting specifically and often with relatively high affinity with other molecules, such as substrates, inhibitors, activators, or other proteins. At present, antibodies are the most commonly used binding proteins in numerous applications. However, antibodies do have limitations, such as high production costs, low stability, and a complex patent landscape. A novel approach is therefore to use non-immunoglobulin engineered binding proteins in affinity purification. In order to obtain engineered binders with a desired specificity, a large mutant library of the new to-be-developed binding protein has to be created and screened for potential binders. A powerful technique to screen and select for proteins with desired properties from a large pool of variants is phage display. Here, we indicate several criteria for potential binding protein scaffolds and explain the principle of M13 phage display. In addition, we describe experimental protocols for the initial steps in setting up a M13 phage display system based on the pComb3X vector, including construction of the phagemid vector, production of phages displaying the protein of interest, and confirmation of display on the M13 phage.

  1. Antifreeze Protein Binds Irreversibly to Ice

    NASA Astrophysics Data System (ADS)

    Braslavsky, I.; Pertaya, N.; di Prinzio, C. L.; Wilen, L.; Thomson, E.; Wettlaufer, J. S.; Marshall, C. B.; Davies, P. L.

    2006-03-01

    Many organisms are protected from freezing by antifreeze proteins (AFPs), which bind to ice and prevent its growth by a mechanism not completely understood. Although it has been postulated that AFPs would have to bind irreversibly to arrest the growth of an ice crystal bathed in excess liquid water, the binding forces seem insufficient to support such a tight interaction. By putting a fluorescent tag on a fish AFP, we were able to visualize AFP binding to ice and demonstrate, by lack of recovery after photo-bleaching, that it is indeed irreversible. Because even the most avid protein/ligand interactions exhibit reversibility, this finding is key to understanding the mechanism of antifreeze proteins, which are becoming increasingly valuable in cryopreservation and improving the frost tolerance of crops.

  2. Theoretical studies of protein-protein and protein-DNA binding rates

    NASA Astrophysics Data System (ADS)

    Alsallaq, Ramzi A.

    Proteins are folded chains of amino acids. Some of the amino acids (e.g. Lys, Arg, His, Asp, and Glu) carry charges under physiological conditions. Proteins almost always function through binding to other proteins or ligands, for example barnase is a ribonuclease protein, found in the bacterium Bacillus amyloliquefaceus. Barnase degrades RNA by hydrolysis. For the bacterium to inhibit the potentially lethal action of Barnase within its own cell it co-produces another protein called barstar which binds quickly, and tightly, to barnase. The biological function of this binding is to block the active site of barnase. The speeds (rates) at which proteins associate are vital to many biological processes. They span a wide range (from less than 103 to 108 M-1s-1 ). Rates greater than ˜ 106 M -1s-1 are typically found to be manifestations of enhancements by long-range electrostatic interactions between the associating proteins. A different paradigm appears in the case of protein binding to DNA. The rate in this case is enhanced through attractive surface potential that effectively reduces the dimensionality of the available search space for the diffusing protein. This thesis presents computational and theoretical models on the rate of association of ligands/proteins to other proteins or DNA. For protein-protein association we present a general strategy for computing protein-protein rates of association. The main achievements of this strategy is the ability to obtain a stringent reaction criteria based on the landscape of short-range interactions between the associating proteins, and the ability to compute the effect of the electrostatic interactions on the rates of association accurately using the best known solvers for Poisson-Boltzmann equation presently available. For protein-DNA association we present a mathematical model for proteins targeting specific sites on a circular DNA topology. The main achievements are the realization that a linear DNA with reflecting ends

  3. Molecular and Immunogenic Properties of Apyrase SP01B and D7-Related SP04 Recombinant Salivary Proteins of Phlebotomus perniciosus from Madrid, Spain

    PubMed Central

    Martín-Martín, Inés

    2013-01-01

    Sand fly salivary proteins are on the spotlight to become vaccine candidates against leishmaniasis and to markers of exposure to sand fly bites due to the host immune responses they elicit. Working with the whole salivary homogenate entails serious drawbacks such as the need for maintaining sand fly colonies and the laborious task of glands dissection. In order to overcome these difficulties, producing recombinant proteins of different vectors has become a major task. In this study, a cDNA library was constructed with the salivary glands of Phlebotomus perniciosus from Madrid, Spain, the most widespread vector of Leishmania infantum in the Mediterranean basin. Analysis of the cDNA sequences showed several polymorphisms among the previously described salivary transcripts. The apyrase SP01B and the D7-related protein SP04 were successfully cloned, expressed in Escherichia coli, and purified. Besides, recombinant proteins were recognized by sera of hamsters and mice previously immunized with saliva through the exposure to uninfected sand fly bites. These results suggest that these two recombinant proteins conserved their immunogenic properties after expression in a prokaryote system. Therefore, this work contributes to expand the knowledge of P. perniciosus saliva that would be eventually used for the development of tools for vector control programs. PMID:24171166

  4. Salivary Mucin 19 Glycoproteins

    PubMed Central

    Culp, David J.; Robinson, Bently; Cash, Melanie N.; Bhattacharyya, Indraneel; Stewart, Carol; Cuadra-Saenz, Giancarlo

    2015-01-01

    Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19−/− mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19−/− mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19−/− mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19−/− mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed. PMID:25512380

  5. Evaluation of the relationship between passive smoking and salivary electrolytes, protein, secretory IgA, sialic acid and amylase in young children.

    PubMed

    Avşar, Aysun; Darka, Ozge; Bodrumlu, Ebru Hazar; Bek, Yüksel

    2009-05-01

    To evaluate the relationship between passive smoking as determined by salivary cotinine levels and salivary electrolytes, protein, secretory IgA, sialic acid and amylase in children. Saliva was collected from 90 passive smoker (PS) subjects (the study group) and 90 healthy age-matched children (the control group). The study group was divided into three subgroups according the number of cigarettes smoked. Socio-economic status, dental and dietary habits were recorded by questionnaire. Stimulated salivary calcium (Ca), phosphate (P), sodium (Na), potassium (P), total protein, amylase activity, sialic acid level, secretory IgA concentration and cotinine level were analysed. All data were analysed using SPSS, version 13.0. Socio-economic status, dental and dietary habits were similar between the two groups. The salivary electrolytes concentrations did not reveal significant difference between the two groups (p>0.05). The mean cotinine levels of PS children were 1.58+/-4.3 ng/mL. The salivary concentrations of protein were similar between the two groups (p>0.05). The salivary secretory IgA concentration was significantly lower in the PS group than controls. The sialic acid level and amylase activity in PS group were found significantly higher compared with the controls (p<0.05). No difference was observed for all these parameters with sex (p>0.05). When saliva samples were analysed for output, the sialic acid level and amylase activity increased significantly in PS subjects (p<0.05). Further, the output of secretory IgA concentration was found significantly lower compared with the controls (p<0.05). In conclusion, we show that passive smoking was associated with a decrease in secretory IgA concentration, whereas with increase in amylase activity and sialic acid level of stimulated whole saliva in young children.

  6. Lactoferrin-binding proteins in Shigella flexneri.

    PubMed Central

    Tigyi, Z; Kishore, A R; Maeland, J A; Forsgren, A; Naidu, A S

    1992-01-01

    The ability of Shigella flexneri to interact with lactoferrin (Lf) was examined with a 125I-labeled protein-binding assay. The percent binding of human lactoferrin (HLf) and bovine lactoferrin (BLf) to 45 S. flexneri strains was 19 +/- 3 and 21 +/- 3 (mean +/- standard error of the mean), respectively. 125I-labeled HLf and BLf binding to strain M90T reached an equilibrium within 2 h. Unlabeled HLf and BLf displaced the 125I-HLf-bacteria interaction in a dose-dependent manner. The Lf-bacterium complex was uncoupled by KSCN or urea, but not by NaCl. The interaction was specific, and approximately 4,800 HLf binding sites (affinity constant [Ka], 690 nM) or approximately 5,700 BLf binding sites (Ka, 104 nM) per cell were estimated in strain M90T by a Scatchard plot analysis. The native cell envelope (CE) and outer membrane (OM) did not reveal Lf-binding components in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, after being boiled, the CE and OM preparations showed three distinct horseradish peroxidase-Lf reactive bands of about 39, 22, and 16 kDa. The 39-kDa component was also reactive to a monoclonal antibody specific for porin (PoI) proteins of members of the family Enterobacteriaceae. The Lf-binding protein pattern was similar with BLf or HLf, for Crb+ and Crb- strains. The protein-Lf complex was dissociable by KSCN or urea and was stable after treatment with NaCl. Variation (loss) in the O chain of lipopolysaccharide (LPS) markedly enhanced the Lf-binding capacity in the isogenic rough strain SFL1070-15 compared with its smooth parent strain, SFL1070. These data establish that Lf binds to specific components in the bacterial OM; the heat-modifiable, anti-PoI-reactive, and LPS-associated properties suggested that the Lf-binding proteins are porins in S. flexneri. Images PMID:1319403

  7. Mapping of ligand-binding cavities in proteins.

    PubMed

    Andersson, C David; Chen, Brian Y; Linusson, Anna

    2010-05-01

    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs. 2009 Wiley-Liss, Inc.

  8. Mapping of Ligand-Binding Cavities in Proteins

    PubMed Central

    Andersson, C. David; Chen, Brian Y.; Linusson, Anna

    2010-01-01

    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterise and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity and charge). This approach can provide valuable information on the similarities, and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterisation and mapping of “orphan structures”, selection of protein structures for docking studies in structure-based design and identification of proteins for selectivity screens in drug design programs. PMID:20034113

  9. Sperm-binding fibronectin type II-module proteins are genetically linked and functionally related.

    PubMed

    Ekhlasi-Hundrieser, Mahnaz; Schäfer, Bettina; Philipp, Ute; Kuiper, Heidi; Leeb, Tosso; Mehta, Meenal; Kirchhoff, Christiane; Töpfer-Petersen, Edda

    2007-05-01

    Fibronectin type II (Fn2) module-containing proteins in the male genital tract are characterized by different numbers of Fn2 modules. Predominantly two classes exist which are distinct by having either two or four Fn2 modules. Minor variants with three Fn2 modules were also found in the human and the porcine epididymis. To reveal their relationship, mRNAs and proteins of representatives of these classes were studied in human, in Sus scrofa, and in rodents. Adult boars expressed members of both classes, i.e. ELSPBP1 and pB1, in subsequent regions of the epididymis, and both were under androgenic control. Human and rodent epididymides, on the other hand, alternatively contained only representatives of one of these two classes, i.e. ELSPBP1 in the human and two different pB1-related counterparts in rodents. ELSPBP1 and pB1-related genomic sequences were closely linked in chromosomal regions HSA 19q and SSC 6 q11-q21; conserved synteny between these regions is well established. On the other hand, in a syntenic region on mouse chromosome 7, ELSPBP1-related sequences were lacking. Tight binding to the sperm membrane via a choline-mediated mechanism was a common feature of the two classes of Fn2-module proteins, suggesting related function(s). However, differences in their regionalized expression patterns along the male genital tract as well as in association sites on the sperm surface suggested a species-specific sequential order in sperm binding.

  10. Sequence-Based Prediction of RNA-Binding Residues in Proteins.

    PubMed

    Walia, Rasna R; El-Manzalawy, Yasser; Honavar, Vasant G; Dobbs, Drena

    2017-01-01

    Identifying individual residues in the interfaces of protein-RNA complexes is important for understanding the molecular determinants of protein-RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein-RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein-RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner.

  11. High-Mobility Group Chromatin Proteins 1 and 2 Functionally Interact with Steroid Hormone Receptors To Enhance Their DNA Binding In Vitro and Transcriptional Activity in Mammalian Cells

    PubMed Central

    Boonyaratanakornkit, Viroj; Melvin, Vida; Prendergast, Paul; Altmann, Magda; Ronfani, Lorenza; Bianchi, Marco E.; Taraseviciene, Laima; Nordeen, Steven K.; Allegretto, Elizabeth A.; Edwards, Dean P.

    1998-01-01

    We previously reported that the chromatin high-mobility group protein 1 (HMG-1) enhances the sequence-specific DNA binding activity of progesterone receptor (PR) in vitro, thus providing the first evidence that HMG-1 may have a coregulatory role in steroid receptor-mediated gene transcription. Here we show that HMG-1 and the highly related HMG-2 stimulate DNA binding by other steroid receptors, including estrogen, androgen, and glucocorticoid receptors, but have no effect on DNA binding by several nonsteroid nuclear receptors, including retinoid acid receptor (RAR), retinoic X receptor (RXR), and vitamin D receptor (VDR). As highly purified recombinant full-length proteins, all steroid receptors tested exhibited weak binding affinity for their optimal palindromic hormone response elements (HREs), and the addition of purified HMG-1 or -2 substantially increased their affinity for HREs. Purified RAR, RXR, and VDR also exhibited little to no detectable binding to their cognate direct repeat HREs but, in contrast to results with steroid receptors, the addition of HMG-1 or HMG-2 had no stimulatory effect. Instead, the addition of purified RXR enhanced RAR and VDR DNA binding through a heterodimerization mechanism and HMG-1 or HMG-2 had no further effect on DNA binding by RXR-RAR or RXR-VDR heterodimers. HMG-1 and HMG-2 (HMG-1/-2) themselves do not bind to progesterone response elements, but in the presence of PR they were detected as part of an HMG-PR-DNA ternary complex. HMG-1/-2 can also interact transiently in vitro with PR in the absence of DNA; however, no direct protein interaction was detected with VDR. These results, taken together with the fact that PR can bend its target DNA and that HMG-1/-2 are non-sequence-specific DNA binding proteins that recognize DNA structure, suggest that HMG-1/-2 are recruited to the PR-DNA complex by the combined effect of transient protein interaction and DNA bending. In transient-transfection assays, coexpression of HMG-1 or HMG-2

  12. Development of cell-penetrating bispecific antibodies targeting the N-terminal domain of androgen receptor for prostate cancer therapy.

    PubMed

    Goicochea, Nancy L; Garnovskaya, Maria; Blanton, Mary G; Chan, Grace; Weisbart, Richard; Lilly, Michael B

    2017-12-01

    Castration-resistant prostate cancer cells exhibit continued androgen receptor signaling in spite of low levels of ligand. Current therapies to block androgen receptor signaling act by inhibiting ligand production or binding. We developed bispecific antibodies capable of penetrating cells and binding androgen receptor outside of the ligand-binding domain. Half of the bispecific antibody molecule consists of a single-chain variable fragment of 3E10, an anti-DNA antibody that enters cells. The other half is a single-chain variable fragment version of AR441, an anti-AR antibody. The resulting 3E10-AR441 bispecific antibody enters human LNCaP prostate cells and accumulates in the nucleus. The antibody binds to wild-type, mutant and splice variant androgen receptor. Binding affinity of 3E10-AR441 to androgen receptor (284 nM) was lower than that of the parental AR441 mAb (4.6 nM), but could be improved (45 nM) through alternative placement of the affinity tags, and ordering of the VH and VK domains. The 3E10-AR441 bispecific antibody blocked genomic signaling by wild-type or splice variant androgen receptor in LNCaP cells. It also blocked non-genomic signaling by the wild-type receptor. Furthermore, bispecific antibody inhibited the growth of C4-2 prostate cancer cells under androgen-stimulated conditions. The 3E10-AR441 biAb can enter prostate cancer cells and inhibits androgen receptor function in a ligand-independent manner. It may be an attractive prototype agent for prostate cancer therapy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Salivary proteomics of healthy dogs: An in depth catalog.

    PubMed

    Torres, Sheila M F; Furrow, Eva; Souza, Clarissa P; Granick, Jennifer L; de Jong, Ebbing P; Griffin, Timothy J; Wang, Xiong

    2018-01-01

    To provide an in-depth catalog of the salivary proteome and endogenous peptidome of healthy dogs, evaluate proteins and peptides with antimicrobial properties, and compare the most common salivary proteins and peptides between different breed phylogeny groups. 36 healthy dogs without evidence of periodontal disease representing four breed phylogeny groups, based upon single nucleotide polymorphism haplotypes (ancient, herding/sighthound, and two miscellaneous groups). Saliva collected from dogs was pooled by phylogeny group and analyzed using nanoscale liquid chromatography-tandem mass spectrometry. Resulting tandem mass spectra were compared to databases for identification of endogenous peptides and inferred proteins. 2,491 proteins and endogenous peptides were found in the saliva of healthy dogs with no periodontal disease. All dog phylogeny groups' saliva was rich in proteins and peptides with antimicrobial functions. The ancient breeds group was distinct in that it contained unique proteins and was missing many proteins and peptides present in the other groups. Using a sophisticated nanoscale liquid chromatography-tandem mass spectrometry, we were able to identify 10-fold more salivary proteins than previously reported in dogs. Seven of the top 10 most abundant proteins or peptides serve immune functions and many more with various antimicrobial mechanisms were found. This is the most comprehensive analysis of healthy canine saliva to date, and will provide the groundwork for future studies analyzing salivary proteins and endogenous peptides in disease states.

  14. 14-3-3η Amplifies Androgen Receptor Actions in Prostate Cancer

    PubMed Central

    Titus, Mark A.; Tan, Jiann-an; Gregory, Christopher W.; Ford, O. Harris; Subramanian, Romesh R.; Fu, Haian; Wilson, Elizabeth M.; Mohler, James L.; French, Frank S.

    2009-01-01

    Purpose Androgen receptor (AR) abundance and AR-regulated gene expression in castration-recurrent prostate cancer (CaP) are indicative of AR activation in the absence of testicular androgen. AR transactivation of target genes in castration-recurrent CaP occurs in part through mitogen signaling that amplifies the actions of AR and its coregulators. Herein we report on the role of 14-3-3η in AR action. Experimental Design and Results AR and 14-3-3η co-localized in COS cell nuclei with and without androgen and 14-3-3η promoted AR nuclear localization in the absence of androgen. 14-3-3η interacted with AR in cell-free binding and coimmunoprecipitation assays. In the recurrent human CaP cell line, CWR-R1, native endogenous AR transcriptional activation was stimulated by 14-3-3η at low DHT concentrations and was increased by EGF. Moreover, the DHT and EGF dependent increase in AR transactivation was inhibited by a dominant negative 14-3-3η. In the CWR22 CaP xenograft model, 14-3-3η expression was increased by androgen, suggesting a feed-forward mechanism that potentiates both 14-3-3η and AR actions. 14-3-3η mRNA and protein decreased following castration of tumor bearing mice and increased in tumors of castrate mice after treatment with testosterone. CWR22 tumors that recurred 5 months after castration contained 14-3-3η levels similar to the androgen-stimulated tumors removed before castration. In a human prostate tissue microarray of clinical specimens, 14-3-3η localized with AR in nuclei and the similar amounts expressed in castration-recurrent CaP, androgen-stimulated CaP and benign prostatic hyperplasia were consistent with AR activation in recurrent CaP. Conclusion 14-3-3η enhances androgen and mitogen induced AR transcriptional activity in castration-recurrent CaP. PMID:19996220

  15. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  16. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  17. Salivary Sialic Acid Levels in Smokeless Tobacco Users

    PubMed Central

    Farhad Mollashahi, Leila; Honarmand, Marieh; Nakhaee, Alireza; Mollashahi, Ghasem

    2016-01-01

    Background Smokeless tobacco chewing is one of the known risk factors for oral cancer. It is consumed widely by residents of southeastern Iran. Objectives In this study, salivary free and total sialic acid, and total protein were compared in paan consumers and non-consumers. Patients and Methods In this cross-sectional study, unstimulated saliva of 94 subjects (44 paan consumers and 50 non-consumers) who were referred to the oral medicine department of the dentistry school of Zahedan were collected. Salivary free and total sialic acid, and total protein concentration were measured by standard biochemical methods, and the obtained data were analyzed using SPSS 20 through the non-parametric Mann-Whitney test. Results The concentration of salivary free sialic acid (23.21 ± 18.98 mg/L) was significantly increased in paan consumers. The concentration of salivary Total sialic acid (TSA) (39.57 ± 26.58 mg/L) and total protein (0.77 ± 0.81 mg/mL) showed increases in paan consumers, however, the results were not statistically significant. Conclusions Salivary free and total sialic acid, and total protein were higher in the paan consumers compared to non-consumers. Due to the carcinogenic effect of smokeless tobacco, measurement of these parameters in saliva may be useful in early detection of oral cancer. PMID:27622172

  18. Whey Protein Concentrate WPC-80 Improves Antioxidant Defense Systems in the Salivary Glands of 14-Month Wistar Rats.

    PubMed

    Falkowski, Mateusz; Maciejczyk, Mateusz; Koprowicz, Tomasz; Mikołuć, Bożena; Milewska, Anna; Zalewska, Anna; Car, Halina

    2018-06-17

    Whey protein concentrate (WPC) is characterized by powerful antioxidant properties, but its effect on redox homeostasis of salivary glands of aging organisms is still unknown. In this study, we are the first to evaluate the antioxidant barrier of salivary glands of 14-month Wistar rats fed WPC-80. Total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) as well as concentrations of reduced glutathione (GSH) are estimated in the submandibular and parotid glands of rats administered WPC-80 intragastrically for a period of 7 and 14 days. We demonstrate a significant increase in GSH, GPx and SOD in the salivary glands of rats fed WPC-80 for 14 days and a significant increase in TAS, GPx and SOD in the parotid glands of rats fed WPC-80 for 7 days compared to control rats. The beneficial effects of WPC-80 on salivary glands are also demonstrated by lower TOS and OSI in the parotid glands of rats fed WPC-80 compared to the submandibular glands. In summary, we demonstrate that WPC-80 improves redox homeostasis in salivary glands, particularly in the parotid glands of old rats.

  19. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  20. Interplay between binding affinity and kinetics in protein-protein interactions.

    PubMed

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Upper-body resistance exercise augments vastus lateralis androgen receptor-DNA binding and canonical Wnt/β-catenin signaling compared to lower-body resistance exercise in resistance-trained men without an acute increase in serum testosterone.

    PubMed

    Spillane, Mike; Schwarz, Neil; Willoughby, Darryn S

    2015-06-01

    The purpose of the study was to determine the effect of single bouts of lower-body (LB) and upper- and lower-body (ULB) resistance exercise on serum testosterone concentrations and the effects on muscle testosterone, dihydrotestosterone (DHT), androgen receptor (AR) protein content, and AR-DNA binding. A secondary purpose was to determine the effects on serum wingless-type MMTV integration site (Wnt4) levels and skeletal muscle β-catenin content. In a randomized cross-over design, exercise bouts consisted of a LB and ULB protocol, and each bout was separated by 1 week. Blood and muscle samples were obtained before exercise and 3 and 24h post-exercise; blood samples were also obtained at 0.5, 1, and 2 h post-exercise. Statistical analyses were performed by separate two-way factorial analyses of variance (ANOVA) with repeated measures. No significant differences from baseline were observed in serum total and free testosterone and skeletal muscle testosterone and DHT with either protocol (p>0.05). AR protein was significantly increased at 3 h post-exercise and decreased at 24 h post-exercise for ULB, whereas AR-DNA binding was significantly increased at 3 and 24h post-exercise (p<0.05). In response to ULB, serum Wnt4 was significantly increased at 0.5, 1, and 2 h post-exercise (p<0.05) and β-catenin was significantly increased at 3 and 24 h post-exercise (p<0.05). It was concluded that, despite a lack of increase in serum testosterone and muscle androgen concentrations from either mode of resistance exercise, ULB resistance exercise increased Wnt4/β-catenin signaling and AR-DNA binding. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Cellular androgen content influences enzalutamide agonism of F877L mutant androgen receptor

    PubMed Central

    Coleman, Daniel J.; Van Hook, Kathryn; King, Carly J.; Schwartzman, Jacob; Lisac, Robert; Urrutia, Joshua; Sehrawat, Archana; Woodward, Josha; Wang, Nicholas J.; Gulati, Roman; Thomas, George V.; Beer, Tomasz M.; Gleave, Martin; Korkola, James E.; Gao, Lina; Heiser, Laura M.; Alumkal, Joshi J.

    2016-01-01

    Prostate cancer is the most commonly diagnosed and second-most lethal cancer among men in the United States. The vast majority of prostate cancer deaths are due to castration-resistant prostate cancer (CRPC) – the lethal form of the disease that has progressed despite therapies that interfere with activation of androgen receptor (AR) signaling. One emergent resistance mechanism to medical castration is synthesis of intratumoral androgens that activate the AR. This insight led to the development of the AR antagonist enzalutamide. However, resistance to enzalutamide invariably develops, and disease progression is nearly universal. One mechanism of resistance to enzalutamide is an F877L mutation in the AR ligand-binding domain that can convert enzalutamide to an agonist of AR activity. However, mechanisms that contribute to the agonist switch had not been fully clarified, and there were no therapies to block AR F877L. Using cell line models of castration-resistant prostate cancer (CRPC), we determined that cellular androgen content influences enzalutamide agonism of mutant F877L AR. Further, enzalutamide treatment of AR F877L-expressing cell lines recapitulated the effects of androgen activation of F877L AR or wild-type AR. Because the BET bromodomain inhibitor JQ-1 was previously shown to block androgen activation of wild-type AR, we tested JQ-1 in AR F877L-expressing CRPC models. We determined that JQ-1 suppressed androgen or enzalutamide activation of mutant F877L AR and suppressed growth of mutant F877L AR CRPC tumors in vivo, demonstrating a new strategy to treat tumors harboring this mutation. PMID:27276681

  3. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus.

    PubMed

    Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji

    2012-01-01

    Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β(2)-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus.

  4. Obstructing Androgen Receptor Activation in Prostate Cancer Cells Through Post-translational Modification by NEDD8

    DTIC Science & Technology

    2012-11-01

    FACS flow cytometer analysis . In addition, we will measure the steady state protein level of p53, p21, p27, and pRb. In the Jab1 silencing cell...affected by DHT treatment, and the endogenous AR level was not affected by Jab1 silencing. Interestingly, Western blot analysis of immunoprecipitated AR...Avantaggiati, and R. G. Pestell . 2003. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol

  5. Changes in human parotid salivary protein and sialic acid levels during pregnancy.

    PubMed

    D'Alessandro, S; Curbelo, H M; Tumilasci, O R; Tessler, J A; Houssay, A B

    1989-01-01

    Saliva was collected with a Carlson-Crittenden device, under citric acid stimulation, in 107 pregnant women, 9 puerperal and 7 non-pregnant controls. No significant changes were found in salivary flow rate, pH and amylase levels. The total protein levels were decreased during pregnancy and the puerperium. The sialic acid levels decreased gradually but markedly during pregnancy, returning to normal levels in the puerperium. These changes in parotid saliva may be related to the hormonal changes of pregnancy.

  6. Development of a Multiplexed Liquid Chromatography Multiple-Reaction-Monitoring Mass Spectrometry (LC-MRM/MS) Method for Evaluation of Salivary Proteins as Oral Cancer Biomarkers.

    PubMed

    Chen, Yi-Ting; Chen, Hsiao-Wei; Wu, Chun-Feng; Chu, Lichieh Julie; Chiang, Wei-Fang; Wu, Chih-Ching; Yu, Jau-Song; Tsai, Cheng-Han; Liang, Kung-Hao; Chang, Yu-Sun; Wu, Maureen; Ou Yang, Wei-Ting

    2017-05-01

    Multiple (selected) reaction monitoring (MRM/SRM) of peptides is a growing technology for target protein quantification because it is more robust, precise, accurate, high-throughput, and multiplex-capable than antibody-based techniques. The technique has been applied clinically to the large-scale quantification of multiple target proteins in different types of fluids. However, previous MRM-based studies have placed less focus on sample-preparation workflow and analytical performance in the precise quantification of proteins in saliva, a noninvasively sampled body fluid. In this study, we evaluated the analytical performance of a simple and robust multiple reaction monitoring (MRM)-based targeted proteomics approach incorporating liquid chromatography with mass spectrometry detection (LC-MRM/MS). This platform was used to quantitatively assess the biomarker potential of a group of 56 salivary proteins that have previously been associated with human cancers. To further enhance the development of this technology for assay of salivary samples, we optimized the workflow for salivary protein digestion and evaluated quantification performance, robustness and technical limitations in analyzing clinical samples. Using a clinically well-characterized cohort of two independent clinical sample sets (total n = 119), we quantitatively characterized these protein biomarker candidates in saliva specimens from controls and oral squamous cell carcinoma (OSCC) patients. The results clearly showed a significant elevation of most targeted proteins in saliva samples from OSCC patients compared with controls. Overall, this platform was capable of assaying the most highly multiplexed panel of salivary protein biomarkers, highlighting the clinical utility of MRM in oral cancer biomarker research. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Development of a Multiplexed Liquid Chromatography Multiple-Reaction-Monitoring Mass Spectrometry (LC-MRM/MS) Method for Evaluation of Salivary Proteins as Oral Cancer Biomarkers*

    PubMed Central

    Chen, Hsiao-Wei; Wu, Chun-Feng; Chu, Lichieh Julie; Chiang, Wei-Fang; Wu, Chih-Ching; Yu, Jau-Song; Tsai, Cheng-Han; Liang, Kung-Hao; Chang, Yu-Sun; Wu, Maureen; Ou Yang, Wei-Ting

    2017-01-01

    Multiple (selected) reaction monitoring (MRM/SRM) of peptides is a growing technology for target protein quantification because it is more robust, precise, accurate, high-throughput, and multiplex-capable than antibody-based techniques. The technique has been applied clinically to the large-scale quantification of multiple target proteins in different types of fluids. However, previous MRM-based studies have placed less focus on sample-preparation workflow and analytical performance in the precise quantification of proteins in saliva, a noninvasively sampled body fluid. In this study, we evaluated the analytical performance of a simple and robust multiple reaction monitoring (MRM)-based targeted proteomics approach incorporating liquid chromatography with mass spectrometry detection (LC-MRM/MS). This platform was used to quantitatively assess the biomarker potential of a group of 56 salivary proteins that have previously been associated with human cancers. To further enhance the development of this technology for assay of salivary samples, we optimized the workflow for salivary protein digestion and evaluated quantification performance, robustness and technical limitations in analyzing clinical samples. Using a clinically well-characterized cohort of two independent clinical sample sets (total n = 119), we quantitatively characterized these protein biomarker candidates in saliva specimens from controls and oral squamous cell carcinoma (OSCC) patients. The results clearly showed a significant elevation of most targeted proteins in saliva samples from OSCC patients compared with controls. Overall, this platform was capable of assaying the most highly multiplexed panel of salivary protein biomarkers, highlighting the clinical utility of MRM in oral cancer biomarker research. PMID:28235782

  8. Simplagrin, a Platelet Aggregation Inhibitor from Simulium nigrimanum Salivary Glands Specifically Binds to the Von Willebrand Factor Receptor in Collagen and Inhibits Carotid Thrombus Formation In Vivo

    PubMed Central

    Chagas, Andrezza C.; McPhie, Peter; San, Hong; Narum, David; Reiter, Karine; Tokomasu, Fuyuki; Brayner, Fabio A.; Alves, Luiz C.; Ribeiro, José M. C.; Calvo, Eric

    2014-01-01

    Background Among the several challenges faced by bloodsucking arthropods, the vertebrate hemostatic response against blood loss represents an important barrier to efficient blood feeding. Here we report the first inhibitor of collagen-induced platelet aggregation derived from the salivary glands of a black fly (Simulium nigrimanum), named Simplagrin. Methods and Findings Simplagrin was expressed in mammalian cells and purified by affinity-and size-exclusion chromatography. Light-scattering studies showed that Simplagrin has an elongated monomeric form with a hydrodynamic radius of 5.6 nm. Simplagrin binds to collagen (type I-VI) with high affinity (2–15 nM), and this interaction does not involve any significant conformational change as determined by circular dichroism spectroscopy. Simplagrin-collagen interaction is both entropically and enthalpically driven with a large negative ΔG, indicating that this interaction is favorable and occurs spontaneously. Simplagrin specifically inhibits von Willebrand factor interaction with collagen type III and completely blocks platelet adhesion to collagen under flow conditions at high shear rates; however, Simplagrin failed to block glycoprotein VI and Iα2β1 interaction to collagen. Simplagrin binds to RGQOGVMGF peptide with an affinity (KD 11 nM) similar to that of Simplagrin for collagen. Furthermore, Simplagrin prevents laser-induced carotid thrombus formation in vivo without significant bleeding in mice and could be useful as an antithrombotic agent in thrombosis related disease. Conclusion Our results support the orthology of the Aegyptin clade in bloodsucking Nematocera and the hypothesis of a faster evolutionary rate of salivary function of proteins from blood feeding arthropods. PMID:24921659

  9. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  10. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  11. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  12. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  13. Endoplasmic reticulum stress causes autophagy and apoptosis leading to cellular redistribution of the autoantigens Ro/Sjögren's syndrome-related antigen A (SSA) and La/SSB in salivary gland epithelial cells.

    PubMed

    Katsiougiannis, S; Tenta, R; Skopouli, F N

    2015-08-01

    The aim of this study was to examine the levels of endoplasmic reticulum (ER) stress in minor salivary glands, to investigate the interplay between ER stress-induced autophagy and apoptosis in human salivary gland (HSG) cells and to test the effect of ER stress-induced apoptosis on the cellular redistribution of the two major Sjögren's syndrome (SS) autoantigens Ro/Sjögren's syndrome-related antigen A (SSA) and La/Sjögren's syndrome-related antigen B (SSB). Minor salivary gland biopsies from SS patients and sicca controls were examined by immunohistochemistry for the expression of 78 kDa glucose-regulated protein/binding immunoglobulin protein (GRP78/BiP) as an indicator of unfolded protein response (UPR). HSG cells were treated with thapsigargin (TG) and cell viability, autophagy and apoptosis were assessed. Immunoblot was applied to detect the conversion of LC3I to LC3II and the protein levels of GRP78/BiP and X-box binding protein-1 (XBP-1). Apoptosis was evaluated by a single-stranded DNA enzyme-linked immunosorbent assay (ELISA). Ro/SSA and La/SSB localization was visualized using immunofluorescence. GRP78/BiP was expressed by acinar and ductal epithelial cells in salivary glands of patients and sicca controls. TG treatment induced autophagy, as indicated by enhanced protein expression of LC3II. The protein levels of UPR marker XBP-1 were increased after TG treatment, while GRP78/BiP levels were decreased. TG treatment resulted in induction of HSG apoptosis. Ro/SSA and La/SSB autoantigens were localized predominantly to the cytoplasm in resting cells, while they were redistributed to cell membrane and blebs in the apoptotic cells. In conclusion, ER stress is activated in minor salivary gland epithelial cells from SS patients and controls. ER stress-induced apoptosis in HSG cells leads to cell surface and apoptotic blebs relocalization of Ro/SSA and La/SSB autoantigens. © 2015 British Society for Immunology.

  14. Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation.

    PubMed

    Gaughan, Luke; Logan, Ian R; Neal, David E; Robson, Craig N

    2005-01-01

    The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors and plays a critical role in regulating the expression of genes involved in androgen-dependent and -independent tumour formation. Regulation of the AR is achieved by alternate binding of either histone acetyltransferase (HAT)-containing co-activator proteins, or histone deacetylase 1 (HDAC1). Factors that control AR stability may also constitute an important regulatory mechanism, a notion that has been confirmed with the finding that the AR is a direct target for Mdm2-mediated ubiquitylation and proteolysis. Using chromatin immunoprecipitation (ChIP) and re-ChIP analyses, we show that Mdm2 associates with AR and HDAC1 at the active androgen-responsive PSA promoter in LNCaP prostate cancer cells. Furthermore, we demonstrate that Mdm2-mediated modification of AR and HDAC1 catalyses protein destabilization and attenuates AR sactivity, suggesting that ubiquitylation of the AR and HDAC1 may constitute an additional mechanism for regulating AR function. We also show that HDAC1 and Mdm2 function co-operatively to reduce AR-mediated transcription that is attenuated by the HAT activity of the AR co-activator Tip60, suggesting interplay between acetylation status and receptor ubiquitylation in AR regulation. In all, our data indicates a novel role for Mdm2 in regulating components of the AR transcriptosome.

  15. Prenatal Androgen Exposure Causes Hypertension and Gut Microbiota Dysbiosis.

    PubMed

    Sherman, Shermel; Sarsour, Nadeen; Salehi, Marziyeh; Schroering, Allen; Mell, Blair; Joe, Bina; Hill, Jennifer W

    2018-02-22

    Conditions of excess androgen in women, such as polycystic ovary syndrome (PCOS), often exhibit intergenerational transmission. One way in which the risk for PCOS may be increased in daughters of affected women is through exposure to elevated androgens in utero. Hyperandrogenemic conditions have serious health consequences, including increased risk for hypertension and cardiovascular disease. Recently, gut dysbiosis has been found to induce hypertension in rats, such that blood pressure can be normalized through fecal microbial transplant. Therefore, we hypothesized that the hypertension seen in PCOS has early origins in gut dysbiosis caused by in utero exposure to excess androgen. We investigated this hypothesis with a model of prenatal androgen (PNA) exposure and maternal hyperandrogenemia by single-injection of testosterone cypionate or sesame oil vehicle (VEH) to pregnant dams in late gestation. We then completed a gut microbiota and cardiometabolic profile of the adult female offspring. The metabolic assessment revealed that adult PNA rats had increased body weight and increased mRNA expression of adipokines: adipocyte binding protein 2, adiponectin, and leptin in inguinal white adipose tissue. Radiotelemetry analysis revealed hypertension with decreased heart rate in PNA animals. The fecal microbiota profile of PNA animals contained higher relative abundance of bacteria associated with steroid hormone synthesis, Nocardiaceae and Clostridiaceae, and lower abundance of Akkermansia, Bacteroides, Lactobacillus, Clostridium. The PNA animals also had an increased relative abundance of bacteria associated with biosynthesis and elongation of unsaturated short chain fatty acids (SCFAs). We found that prenatal exposure to excess androgen negatively impacted cardiovascular function by increasing systolic and diastolic blood pressure and decreasing heart rate. Prenatal androgen was also associated with gut microbial dysbiosis and altered abundance of bacteria involved in

  16. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus

    PubMed Central

    Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji

    2012-01-01

    Thioredoxin binding protein −2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein −2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein −2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein −2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein −2 in metabolic control. Enhancement of thioredoxin binding protein −2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein −2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein −2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β2-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus. PMID:22247597

  17. Salivary gland dysfunction markers in type 2 diabetes mellitus patients.

    PubMed

    Aitken-Saavedra, Juan; Rojas-Alcayaga, Gonzalo; Maturana-Ramírez, Andrea; Escobar-Álvarez, Alejandro; Cortes-Coloma, Andrea; Reyes-Rojas, Montserrat; Viera-Sapiain, Valentina; Villablanca-Martínez, Claudia; Morales-Bozo, Irene

    2015-10-01

    Diabetes mellitus (DM) is a chronic disease of the carbohydrate metabolism that, when not rigorously controlled, compromises systemic and organ integrity, thereby causing renal diseases, blindness, neuropathy, arteriosclerosis, infections, and glandular dysfunction, including the salivary glands. The aim of this study was to determine the relationship between the qualitative and quantitative parameters of salivary alteration, which are indicators of salivary gland dysfunction, and the level of metabolic control of type 2 diabetes patients. A convenience sample of 74 voluntary patients with type 2 DM was selected, each of whom donated a sample of unstimulated saliva. Salivary parameters such as salivary flow rate, protein concentration, pH, and xerostomia were studied. There is a positive relationship between the level of metabolic control measured with HbA1 and the protein concentration in saliva (Spearman rho = 0.329 and p = 0.004). The same assay showed an inverse correlation between HbA1 and pH (Spearman rho = -0.225 and p = 0.05). The protein concentration in saliva and, to a lesser extent, the pH may be useful as glandular dysfunction indicators in DM2 patients. Saliva, type 2 diabetes mellitus, pH, protein concentration, xerostomia.

  18. No Detectable Hypoxia in Malignant Salivary Gland Tumors: Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijffels, Karien; Hoogsteen, Ilse J.; Lok, Jasper

    2009-04-01

    Purpose: Hypoxia is detected in most solid tumors and is associated with malignant progression and adverse treatment outcomes. However, the oxygenation status of malignant salivary gland tumors has not been previously studied. The aim of this study was to investigate the potential clinical relevance of hypoxia in this tumor type. Methods and Materials: Twelve patients scheduled for surgical resection of a salivary gland tumor were preoperatively injected with the hypoxia marker pimonidazole and the proliferation marker iododeoxyuridine. Tissue samples of the dissected tumor were immunohistochemically stained for blood vessels, pimonidazole, carbonic anhydrase-IX, glucose transporters-1 and -3 (Glut-1, Glut-3), hypoxia-inducible factor-1{alpha},more » iododeoxyuridine, and epidermal growth factor receptor. The tissue sections were quantitatively assessed by computerized image analysis. Results: The tissue material from 8 patients was of sufficient quality for quantitative analysis. All tumors were negative for pimonidazole binding, as well as for carbonic anhydrase-IX, Glut-1, Glut-3, and hypoxia-inducible factor-1{alpha}. The vascular density was high, with a median value of 285 mm{sup -2} (range, 209-546). The iododeoxyuridine-labeling index varied from <0.1% to 12.2% (median, 2.2%). Epidermal growth factor receptor expression levels were mostly moderate to high. In one-half of the cases, nuclear expression of epidermal growth factor receptor was observed. Conclusion: The absence of detectable pimonidazole binding, as well as the lack of expression of hypoxia-associated proteins in all tumors, indicates that malignant salivary gland tumors are generally well oxygenated. It is unlikely that hypoxia is a relevant factor for their clinical behavior and treatment responsiveness.« less

  19. The MTA family proteins as novel histone H3 binding proteins.

    PubMed

    Wu, Meng; Wang, Lina; Li, Qian; Li, Jiwen; Qin, Jun; Wong, Jiemin

    2013-01-03

    The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.

  20. The MTA family proteins as novel histone H3 binding proteins

    PubMed Central

    2013-01-01

    Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail. PMID:23286669

  1. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties.

    PubMed

    Putta, Priya; Rankenberg, Johanna; Korver, Ruud A; van Wijk, Ringo; Munnik, Teun; Testerink, Christa; Kooijman, Edgar E

    2016-11-01

    Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins. Copyright © 2016. Published by Elsevier B.V.

  2. Salivary proteomics of healthy dogs: An in depth catalog

    PubMed Central

    Furrow, Eva; Souza, Clarissa P.; Granick, Jennifer L.; de Jong, Ebbing P.; Griffin, Timothy J.; Wang, Xiong

    2018-01-01

    Objective To provide an in-depth catalog of the salivary proteome and endogenous peptidome of healthy dogs, evaluate proteins and peptides with antimicrobial properties, and compare the most common salivary proteins and peptides between different breed phylogeny groups. Methods 36 healthy dogs without evidence of periodontal disease representing four breed phylogeny groups, based upon single nucleotide polymorphism haplotypes (ancient, herding/sighthound, and two miscellaneous groups). Saliva collected from dogs was pooled by phylogeny group and analyzed using nanoscale liquid chromatography-tandem mass spectrometry. Resulting tandem mass spectra were compared to databases for identification of endogenous peptides and inferred proteins. Results 2,491 proteins and endogenous peptides were found in the saliva of healthy dogs with no periodontal disease. All dog phylogeny groups’ saliva was rich in proteins and peptides with antimicrobial functions. The ancient breeds group was distinct in that it contained unique proteins and was missing many proteins and peptides present in the other groups. Conclusions and clinical relevance Using a sophisticated nanoscale liquid chromatography-tandem mass spectrometry, we were able to identify 10-fold more salivary proteins than previously reported in dogs. Seven of the top 10 most abundant proteins or peptides serve immune functions and many more with various antimicrobial mechanisms were found. This is the most comprehensive analysis of healthy canine saliva to date, and will provide the groundwork for future studies analyzing salivary proteins and endogenous peptides in disease states. PMID:29329347

  3. A brave new world of RNA-binding proteins.

    PubMed

    Hentze, Matthias W; Castello, Alfredo; Schwarzl, Thomas; Preiss, Thomas

    2018-05-01

    RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.

  4. Sensory perception of and salivary protein response to astringency as a function of the 6-n-propylthioural (PROP) bitter-taste phenotype.

    PubMed

    Melis, Melania; Yousaf, Neeta Y; Mattes, Mitchell Z; Cabras, Tiziana; Messana, Irene; Crnjar, Roberto; Tomassini Barbarossa, Iole; Tepper, Beverly J

    2017-05-01

    Individual differences in astringency perception are poorly understood. Astringency from tannins stimulates the release of specific classes of salivary proteins. These proteins form complexes with tannins, altering their perceived astringency and reducing their bioavailability. We studied the bitter compound, 6-n-propylthioural (PROP), as a phenotypic marker for variation in astringency perception and salivary protein responses. Seventy-nine subjects classified by PROP taster status rated cranberry juice cocktail (CJC; with added sugar) supplemented with 0, 1.5 or 2.0g/L tannic acid (TA). Saliva for protein analyses was collected at rest, or after stimulation with TA or cranberry juice (CJ; without added sugar). CJC with 1.5g/L tannic acid was found to be less astringent, and was liked more by PROP non-taster males than PROP taster males, consistent with the expectation that non-tasters are less sensitive to astringency. Levels of acidic Proline Rich Proteins (aPRPs) and basic Proline Rich Proteins (bPRPs) decreased after TA, while levels of aPRPs, bPRPs and Cystatins unexpectedly rose after CJ. Increases in bPRPs and Cystatins were only observed in PROP tasters. The PROP phenotype plays a gender-specific, but somewhat limited role in the perceived astringency of tannic-acid supplemented, cranberry juice cocktail. The PROP phenotype (regardless of gender) may also be involved in the release of salivary proteins previously implicated in oral health. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  6. Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif.

    PubMed Central

    Grange, T; de Sa, C M; Oddos, J; Pictet, R

    1987-01-01

    We have isolated a full length cDNA (cDNA) coding for the human poly(A) binding protein. The cDNA derived 73 kd basic translation product has the same Mr, isoelectric point and peptidic map as the poly(A) binding protein. DNA sequence analysis reveals a 70,244 dalton protein. The N terminal part, highly homologous to the yeast poly(A) binding protein, is sufficient for poly(A) binding activity. This domain consists of a four-fold repeated unit of approximately 80 amino acids present in other nucleic acid binding proteins. In the C terminal part there is, as in the yeast protein, a sequence of approximately 150 amino acids, rich in proline, alanine and glutamine which together account for 48% of the residues. A 2,9 kb mRNA corresponding to this cDNA has been detected in several vertebrate cell types and in Drosophila melanogaster at every developmental stage including oogenesis. Images PMID:2885805

  7. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  8. RNA-Binding Proteins in Female Reproductive Pathologies.

    PubMed

    Khalaj, Kasra; Miller, Jessica E; Fenn, Christian R; Ahn, SooHyun; Luna, Rayana L; Symons, Lindsey; Monsanto, Stephany P; Koti, Madhuri; Tayade, Chandrakant

    2017-06-01

    RNA-binding proteins are key regulatory molecules involved primarily in post-transcriptional gene regulation of RNAs. Post-transcriptional gene regulation is critical for adequate cellular growth and survival. Recent reports have shown key interactions between these RNA-binding proteins and other regulatory elements, such as miRNAs and long noncoding RNAs, either enhancing or diminishing their response to RNA stabilization. Many RNA-binding proteins have been reported to play a functional role in mediation of cytokines involved in inflammation and immune dysfunction, and some have been classified as global post-transcriptional regulators of inflammation. The ubiquitous expression of RNA-binding proteins in a wide variety of cell types and their unique mechanisms of degradative action provide evidence that they are involved in reproductive tract pathologies. Aberrant inflammation and immune dysfunction are major contributors to the pathogenesis and disease pathophysiology of many reproductive pathologies, including ovarian and endometrial cancers in the female reproductive tract. Herein, we discuss various RNA-binding proteins and their unique contributions to female reproductive pathologies with a focus on those mediated by aberrant inflammation and immune dysfunction. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  10. Alpha-amylase inhibitor, CS-1036 binds to serum amylase in a concentration-dependent and saturable manner.

    PubMed

    Honda, Tomohiro; Kaneno-Urasaki, Yoko; Ito, Takashi; Kimura, Takako; Matsushima, Nobuko; Okabe, Hiromi; Yamasaki, Atsushi; Izumi, Takashi

    2014-03-01

    (2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036), which is an α-amylase inhibitor, exhibited biphasic and sustained elimination with a long t1/2 (18.4-30.0 hours) in rats and monkeys, but exhibited a short t1/2 (3.7-7.9 hours) in humans. To clarify the species differences in the t1/2, the plasma protein binding of CS-1036 was evaluated by ultrafiltration. A concentration-dependent and saturable plasma protein binding of CS-1036 was observed in rats and monkeys with the dissociation rate constant (KD) of 8.95 and 27.2 nM, and maximal binding capacity (Bmax) of 52.8 and 22.1 nM, respectively. By the assessments of the recombinant amylase and immunoprecipitation, the major binding protein of CS-1036 in rats was identified as salivary amylase (KD 5.64 nM). CS-1036 also showed concentration-dependent and saturable binding to human salivary and pancreatic amylase, with similar binding affinity in rats. However, the protein binding of CS-1036 was constant in human plasma (≤10.2%) due to the lower serum amylase level compared with rats and monkeys. From the calculation of the unbound fraction (fu) in plasma based on in vitro KD and Bmax, the dose-dependent increase in fu after oral administration is speculated to lead to a dose-dependent increase in total body clearance and a high area under the curve/dose at lower doses, such as 0.3 mg/kg in rats.

  11. Differential regulation of the androgen receptor by protein phosphatase regulatory subunits

    PubMed Central

    Grey, James; Jones, Dominic; Wilson, Laura; Nakjang, Sirintra; Clayton, Jake; Temperley, Richard; Clark, Emma; Gaughan, Luke; Robson, Craig

    2018-01-01

    The Androgen Receptor (AR) is a key molecule in the development, maintenance and progression of prostate cancer (PC). However, the relationship between the AR and co-regulatory proteins that facilitate AR activity in castrate resistant settings remain understudied. Here we show that protein phosphatase 1 regulatory subunits, identified from a phosphatase RNAi screen, direct PP1 catalytic subunits to a varied yet significant response in AR function. As such, we have characterised the PP1β holoenzyme, myosin phosphatase (MLCP), as a novel ligand independent regulator of the AR. Sustained MLCP activity through down-regulation of the MLCP inhibitory subunit, PPP1R14C, results in impaired AR nuclear translocation, protein stability and transcriptional activity in distinct models of PC progression, culminating in restoration of a non-malignant prostate genotype. Phenotypically, a marked reduction in cell proliferation and migration, characterised by G1 cell cycle arrest is observed, confirming PP1 holoenzyme disruption as a novel treatment approach in PC. PMID:29423094

  12. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone

    PubMed Central

    Góral, Agnieszka; Bieganowski, Paweł; Prus, Wiktor; Krzemień-Ojak, Łucja; Kądziołka, Beata; Fabczak, Hanna; Filipek, Anna

    2016-01-01

    The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery. PMID:27249023

  13. Hyaluronate-binding proteins of murine brain.

    PubMed

    Marks, M S; Chi-Rosso, G; Toole, B P

    1990-01-01

    The distribution of hyaluronate-binding activity was determined in the soluble and membrane fractions derived from adult mouse brain by sonication in low-ionic-strength buffer. Approximately 60% of the total activity was recovered in the soluble fraction and 33% in membrane fractions. In both cases, the hyaluronate-binding activities were found to be of high affinity (KD = 10(-9) M), specific for hyaluronate, and glycoprotein in nature. Most of the hyaluronate-binding activity from the soluble fraction chromatographed in the void volume of Sepharose CL-4B and CL-6B. Approximately 50% of this activity was highly negatively charged, eluting from diethylaminoethyl (DEAE)-cellulose in 0.5 M NaCl, and contained chondroitin sulfate chains. This latter material also reacted with antibodies raised against cartilage link protein and the core protein of cartilage proteoglycan. Thus, the binding and physical characteristics of this hyaluronate-binding activity are consistent with those of a chondroitin sulfate proteoglycan aggregate similar to that found in cartilage. A 500-fold purification of this proteoglycan-like, hyaluronate-binding material was achieved by wheat germ agglutinin affinity chromatography, molecular sieve chromatography on Sepharose CL-6B, and ion exchange chromatography on DEAE-cellulose. Another class of hyaluronate-binding material (25-50% of that recovered) eluted from DEAE with 0.24 M NaCl; this material had the properties of a complex glycoprotein, did not contain chondroitin sulfate, and did not react with the antibodies against cartilage link protein and proteoglycan. Thus, adult mouse brain contains at least three different forms of hyaluronate-binding macromolecules. Two of these have properties similar to the link protein and proteoglycan of cartilage proteoglycan aggregates; the third is distinguishable from these entities.

  14. Immune response against the coiled coil domain of Sjögren's syndrome associated autoantigen Ro52 induces salivary gland dysfunction.

    PubMed

    Sroka, Magdalena; Bagavant, Harini; Biswas, Indranil; Ballard, Abigail; Deshmukh, Umesh S

    2018-01-31

    The structural domains of Ro52, termed the RING, B-box, coiled coil (CC) and B30.2/SPRY are targets of anti-Ro52 in multiple autoimmune disorders. In Sjögren's syndrome patients, the presence of anti-Ro52 is associated with higher disease severity, and in mice, they induce salivary gland hypofunction. This study was undertaken to investigate whether immune responses against different domains of Ro52, influences salivary gland disease in mice. Female NZM2758 mice were immunised with Ro52 domains expressed as recombinant fusion proteins with maltose binding protein (MBP) [MBP-RING-B-box, MBP-CC, MBP-CC(ΔC19), MBP-B30.2/SPRY]. Sera from immunised mice were studied for IgG antibodies to Ro52 by immunoprecipitation, and to salivary gland cells by immunofluorescence. Pilocarpine-induced saliva production was measured to evaluate salivary gland function. Submandibular glands were investigated by histopathology for inflammation and by immune-histochemistry for IgG deposition. Mice immunised with different Ro52-domains had comparable reactivity to Ro52 and to salivary gland cells. However, only mice immunised with the CC domain and its C-terminal truncated version CC(ΔC19) showed a significant drop in saliva production. None of the mice developed severe salivary gland inflammation. The salivary gland hypofunction significantly correlated with increased intra-lobar IgG deposits in the submandibular salivary glands. Our data demonstrate that epitope specificity of anti-Ro52 antibodies plays a critical role in the induction of glandular dysfunction. Clearly, screening Sjögren's syndrome patients for relative levels of Ro52 domain specific antibodies will be more informative for associating anti-Ro52 with clinical measures of the disorder.

  15. Clinical relevance of drug binding to plasma proteins

    NASA Astrophysics Data System (ADS)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  16. Anchoring tick salivary anti-complement proteins IRAC I and IRAC II to membrane increases their immunogenicity

    PubMed Central

    Gillet, Laurent; Schroeder, Hélène; Mast, Jan; Thirion, Muriel; Renauld, Jean-Christophe; Dewals, Benjamin; Vanderplasschen, Alain

    2009-01-01

    Tick salivary proteins are promising targets for the development of anti-tick vaccines. Recently, we described two paralogous anti-complement proteins, called Ixodes ricinus anti-complement (IRAC) proteins I and II, that are co-expressed in tick I. ricinus salivary glands. However, our previous attempts to immunize rabbits against IRAC via infection with recombinant Bovine herpesvirus 4 (BoHV-4) vectors invariably failed although both recombinants expressed high levels of functional IRAC proteins in vitro. As IRAC are soluble monovalent antigens, one of the possible explanations is that monovalent ligation of the B-cell receptor induces receptor activation but fails to promote antigen presentation, a phenomenon that is thought to induce a state of B-cell tolerance. In the present study, we tried to increase IRAC immunogenicity by expressing them as oligovalent antigens. To this end, IRAC were fused to membrane anchors and BoHV-4 vectors expressing these recombinant forms were produced. The immunization potentials of recombinant viruses expressing either secreted or transmembrane IRAC proteins were then compared. While the former did not induce a detectable immune response against IRAC, the latter led to high titres of anti-IRAC antibodies that only marginally affected tick blood feeding. All together, the data presented in this study demonstrate that the immunogenicity of a soluble antigen can be greatly improved by anchoring it in membrane. PMID:19531344

  17. Anchoring tick salivary anti-complement proteins IRAC I and IRAC II to membrane increases their immunogenicity.

    PubMed

    Gillet, Laurent; Schroeder, Hélène; Mast, Jan; Thirion, Muriel; Renauld, Jean-Christophe; Dewals, Benjamin; Vanderplasschen, Alain

    2009-01-01

    Tick salivary proteins are promising targets for the development of anti-tick vaccines. Recently, we described two paralogous anti-complement proteins, called Ixodes ricinus anti-complement (IRAC) proteins I and II, that are co-expressed in tick I. ricinus salivary glands. However, our previous attempts to immunize rabbits against IRAC via infection with recombinant Bovine herpesvirus 4 (BoHV-4) vectors invariably failed although both recombinants expressed high levels of functional IRAC proteins in vitro. As IRAC are soluble monovalent antigens, one of the possible explanations is that monovalent ligation of the B-cell receptor induces receptor activation but fails to promote antigen presentation, a phenomenon that is thought to induce a state of B-cell tolerance. In the present study, we tried to increase IRAC immunogenicity by expressing them as oligovalent antigens. To this end, IRAC were fused to membrane anchors and BoHV-4 vectors expressing these recombinant forms were produced. The immunization potentials of recombinant viruses expressing either secreted or transmembrane IRAC proteins were then compared. While the former did not induce a detectable immune response against IRAC, the latter led to high titres of anti-IRAC antibodies that only marginally affected tick blood feeding. All together, the data presented in this study demonstrate that the immunogenicity of a soluble antigen can be greatly improved by anchoring it in membrane.

  18. Molecular beacons for DNA binding proteins: an emerging technology for detection of DNA binding proteins and their ligands.

    PubMed

    Dummitt, Benjamin; Chang, Yie-Hwa

    2006-06-01

    Quantitation of the level or activity of specific proteins is one of the most commonly performed experiments in biomedical research. Protein detection has historically been difficult to adapt to high throughput platforms because of heavy reliance upon antibodies for protein detection. Molecular beacons for DNA binding proteins is a recently developed technology that attempts to overcome such limitations. Protein detection is accomplished using inexpensive, easy-to-synthesize oligonucleotides, accompanied by a fluorescence readout. Importantly, detection of the protein and reporting of the signal occur simultaneously, allowing for one-step protocols and increased potential for use in high throughput analysis. While the initial iteration of the technology allowed only for the detection of sequence-specific DNA binding proteins, more recent adaptations allow for the possibility of development of beacons for any protein, independent of native DNA binding activity. Here, we discuss the development of the technology, the mechanism of the reaction, and recent improvements and modifications made to improve the assay in terms of sensitivity, potential for multiplexing, and broad applicability.

  19. Salivary and serum cortisol levels in newborn infants.

    PubMed

    Forclaz, María V; Moratto, Eduardo; Pennisi, Alicia; Falco, Silvina; Olsen, Graciela; Rodríguez, Patricia; Papazian, Regina; Bergadá, Ignacio

    2017-06-01

    Given that serum cortisol level interpretation in newborn infants (NBIs) is hard, the objective of this study was to correlate baseline salivary and serum cortisol levels and to describe salivary cortisol levels in the first month of life. Descriptive, prospective, longitudinal, and correlational study. Term NBIs were selected from the Division of Neonatology of Hospital Nacional Profesor Alejandro Posadas in 2014. Cortisol was measured in saliva specimens while cortisol, cortisol-binding globulin, and albumin were measured in blood specimens. A linear correlation was performed to relate serum and salivary cortisol levels; Friedman test was conducted to compare cortisol levels during the first month of life, and the difference was used to analyze the performance of values equal to or lower than the first quartile. Fifty-five NBIs were studied. Serum cortisol: 7.65 (1.0-18.1 gg/dL); salivary cortisol: 35.88 (5.52-107.64 mmol/L); cortisol-binding globulin: 22.07 (16.5-33.0 gg/mL), expressed as median and range. The correlation coefficient between serum and salivary cortisol was 0.54, P = 0.001. Cortisol performance during the first month of life showed no statistically significant differences, and the difference between the second and the first specimen of values equal to or lower than the first quartile increased in 10 out of 12 patients. The measurement of cortisol in saliva reflects serum cortisol levels in normal NBIs. Some patients had low levels of cortisol at 36 hours of life and showed a trend towards a spontaneous increase during the first month of life.

  20. Isolation and characterizations of oxalate-binding proteins in the kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roop-ngam, Piyachat; Chaiyarit, Sakdithep; Pongsakul, Nutkridta

    Highlights: Black-Right-Pointing-Pointer The first large-scale characterizations of oxalate-binding kidney proteins. Black-Right-Pointing-Pointer The recently developed oxalate-conjugated EAH Sepharose 4B beads were applied. Black-Right-Pointing-Pointer 38 forms of 26 unique oxalate-binding kidney proteins were identified. Black-Right-Pointing-Pointer 25/26 (96%) of identified proteins had 'L-x(3,5)-R-x(2)-[AGILPV]' domain. -- Abstract: Oxalate-binding proteins are thought to serve as potential modulators of kidney stone formation. However, only few oxalate-binding proteins have been identified from previous studies. Our present study, therefore, aimed for large-scale identification of oxalate-binding proteins in porcine kidney using an oxalate-affinity column containing oxalate-conjugated EAH Sepharose 4B beads for purification followed by two-dimensional gel electrophoresis (2-DE) tomore » resolve the recovered proteins. Comparing with those obtained from the controlled column containing uncoupled EAH-Sepharose 4B (to subtract the background of non-specific bindings), a total of 38 protein spots were defined as oxalate-binding proteins. These protein spots were successfully identified by quadrupole time-of-flight mass spectrometry (MS) and/or tandem MS (MS/MS) as 26 unique proteins, including several nuclear proteins, mitochondrial proteins, oxidative stress regulatory proteins, metabolic enzymes and others. Identification of oxalate-binding domain using the PRATT tool revealed 'L-x(3,5)-R-x(2)-[AGILPV]' as a functional domain responsible for oxalate-binding in 25 of 26 (96%) unique identified proteins. We report herein, for the first time, large-scale identification and characterizations of oxalate-binding proteins in the kidney. The presence of positively charged arginine residue in the middle of this functional domain suggested its significance for binding to the negatively charged oxalate. These data will enhance future stone research, particularly on stone

  1. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.

    PubMed

    Jia, Lin; Wu, Dinglan; Wang, Yuliang; You, Wenxing; Wang, Zhu; Xiao, Lijia; Cai, Ganhui; Xu, Zhenyu; Zou, Chang; Wang, Fei; Teoh, Jeremy Yuen-Chun; Ng, Chi-Fai; Yu, Shan; Chan, Franky L

    2018-03-20

    The metastatic castration-resistant prostate cancer (CRPC) is a lethal form of prostate cancer, in which the expression of androgen receptor (AR) is highly heterogeneous. Indeed, lower AR expression and attenuated AR signature activity is shown in CRPC tissues, especially in the subset of neuroendocrine prostate cancer (NEPC) and prostate cancer stem-like cells (PCSCs). However, the significance of AR downregulation in androgen insensitivity and de-differentiation of tumor cells in CRPC is poorly understood and much neglected. Our previous study shows that the orphan nuclear receptor TLX (NR2E1), which is upregulated in prostate cancer, plays an oncogenic role in prostate carcinogenesis by suppressing oncogene-induced senescence. In the present study, we further established that TLX exhibited an increased expression in metastatic CRPC. Further analyses showed that overexpression of TLX could confer resistance to androgen deprivation and anti-androgen in androgen-dependent prostate cancer cells in vitro and in vivo, whereas knockdown of endogenous TLX could potentiate the sensitivity to androgen deprivation and anti-androgen in prostate cancer cells. Our study revealed that the TLX-induced resistance to androgen deprivation and anti-androgen was mediated through its direct suppression of AR gene transcription and signaling in both androgen-stimulated and -unstimulated prostate cancer cells. We also characterized that TLX could bind directly to AR promoter and repress AR transcription by recruitment of histone modifiers, including HDAC1, HDAC3, and LSD1. Together, our present study shows, for the first time, that TLX can contribute to androgen insensitivity in CRPC via repression of AR gene transcription and signaling, and also implicates that targeting the druggable TLX may have a potential therapeutic significance in CRPC management, particularly in NEPC and PCSCs.

  2. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    PubMed

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  3. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    PubMed

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  4. Functional Evaluation of Proteins in Watery and Gel Saliva of Aphids

    PubMed Central

    van Bel, Aart J. E.; Will, Torsten

    2016-01-01

    Gel and watery saliva are regarded as key players in aphid–pIant interactions. The salivary composition seems to be influenced by the variable environment encountered by the stylet tip. Milieu sensing has been postulated to provide information needed for proper stylet navigation and for the required switches between gel and watery saliva secretion during stylet progress. Both the chemical and physical factors involved in sensing of the stylet’s environment are discussed. To investigate the salivary proteome, proteins were collected from dissected gland extracts or artificial diets in a range of studies. We discuss the advantages and disadvantages of either collection method. Several proteins were identified by functional assays or by use of proteomic tools, while most of their functions still remain unknown. These studies disclosed the presence of at least two proteins carrying numerous sulfhydryl groups that may act as the structural backbone of the salivary sheath. Furthermore, cell-wall degrading proteins such a pectinases, pectin methylesterases, polygalacturonases, and cellulases as well as diverse Ca2+-binding proteins (e.g., regucalcin, ARMET proteins) were detected. Suppression of the plant defense may be a common goal of salivary proteins. Salivary proteases are likely involved in the breakdown of sieve-element proteins to invalidate plant defense or to increase the availability of organic N compounds. Salivary polyphenoloxidases, peroxidases and oxidoreductases were suggested to detoxify, e.g., plant phenols. During the last years, an increasing number of salivary proteins have been categorized under the term ‘effector’. Effectors may act in the suppression (C002 or MIF cytokine) or the induction (e.g., Mp10 or Mp 42) of plant defense, respectively. A remarkable component of watery saliva seems the protein GroEL that originates from Buchnera aphidicola, the obligate symbiont of aphids and probably reflects an excretory product that induces plant

  5. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  6. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation.

    PubMed

    Yang, Shu; Zhang, Jiyuan; Zhang, Yalong; Wan, Xuechao; Zhang, Congzhe; Huang, Xiaohui; Huang, Wenhua; Pu, Honglei; Pei, Chaohan; Wu, Hai; Huang, Yan; Huang, Shengdong; Li, Yao

    2015-06-15

    Androgen receptor (AR) is a ligand dependent transcription factor that regulates the transcription of target genes. AR activity is closely involved in the maintenance and progression of prostate cancer. After the binding with androgen, AR moves into nucleus and binds to DNA sequence containing androgen response elements (ARE). Flavin-dependent monoamine oxidase KDM1A is necessary for AR driven transcription while the mechanism remains unclear. The association between androgen-dependent transcription and oxidation was tested through pharmaceutical inhibitions and siRNA knockdown of DNA oxidation repair components in prostate cancer cells. The recruitment of involved proteins and the histone methylation dynamics on ARE region was explored by chromatin immunoprecipitation (ChIP). Oxidation inhibition reduced AR dependent expression of KLK3, TMPRSS2, hsa-miR-125b2, and hsa-miR-133b. And such reduction could be restored by H2 O2 treatment. KDM1A recruitment and H3K4me2 demethylation on ARE regions, which produce H2 O2 , are associated with AR targets transcription. AR targets transcription and coupled oxidation recruit 8-oxoguanine-DNA glycosylase (OGG1) and the nuclease APEX1 to ARE regions. Such recruitment depends on KDM1A, and is necessary for AR targets transcription. Our work underlined the importance of histone demethylation and DNA oxidation/repairing machinery in androgen-dependent transcription. The present finds have implications for research into new druggable targets for prostate cancer relying on the cascade of AR activity regulation. © 2015 Wiley Periodicals, Inc.

  7. Isolation of copper-binding proteins from activated sludge culture.

    PubMed

    Fukushi, K; Kato, S; Antsuki, T; Omura, T

    2001-01-01

    Six copper-binding microbial proteins were isolated from activated sludge cultures grown on media containing copper at various concentrations. Molecular weights among isolated proteins were ranged from 1.3k to 1 74k dalton. Isolated proteins were compared for their copper binding capabilities. Proteins isolated from cultures grown in the presence of copper in the growth media exhibited higher copper binding capabilities than those isolated from the culture grown in the absence of copper. The highest metal uptake of 61.23 (mol copper/mol protein) was observed by a protein isolated from a culture grown with copper at a concentration of 0.25 mM. This isolated protein (CBP2) had a molecular weight of 24k dalton. Other protein exhibited copper binding capability of 4.8-32.5 (mol copper/mol protein).

  8. Salivary gland dysfunction markers in type 2 diabetes mellitus patients

    PubMed Central

    Aitken-Saavedra, Juan; Rojas-Alcayaga, Gonzalo; Maturana-Ramírez, Andrea; Escobar-Álvarez, Alejandro; Cortes-Coloma, Andrea; Reyes-Rojas, Montserrat; Viera -Sapiain, Valentina; Villablanca-Martínez, Claudia

    2015-01-01

    Background Diabetes mellitus (DM) is a chronic disease of the carbohydrate metabolism that, when not rigorously controlled, compromises systemic and organ integrity, thereby causing renal diseases, blindness, neuropathy, arteriosclerosis, infections, and glandular dysfunction, including the salivary glands. The aim of this study was to determine the relationship between the qualitative and quantitative parameters of salivary alteration, which are indicators of salivary gland dysfunction, and the level of metabolic control of type 2 diabetes patients. Material and Methods A convenience sample of 74 voluntary patients with type 2 DM was selected, each of whom donated a sample of unstimulated saliva. Salivary parameters such as salivary flow rate, protein concentration, pH, and xerostomia were studied. Results There is a positive relationship between the level of metabolic control measured with HbA1 and the protein concentration in saliva (Spearman rho = 0.329 and p = 0.004). The same assay showed an inverse correlation between HbA1 and pH (Spearman rho = -0.225 and p = 0.05). Conclusions The protein concentration in saliva and, to a lesser extent, the pH may be useful as glandular dysfunction indicators in DM2 patients. Key words:Saliva, type 2 diabetes mellitus, pH, protein concentration, xerostomia. PMID:26535097

  9. Regulators of Androgen Action Resource: a one-stop shop for the comprehensive study of androgen receptor action.

    PubMed

    DePriest, Adam D; Fiandalo, Michael V; Schlanger, Simon; Heemers, Frederike; Mohler, James L; Liu, Song; Heemers, Hannelore V

    2016-01-01

    Androgen receptor (AR) is a ligand-activated transcription factor that is the main target for treatment of non-organ-confined prostate cancer (CaP). Failure of life-prolonging AR-targeting androgen deprivation therapy is due to flexibility in steroidogenic pathways that control intracrine androgen levels and variability in the AR transcriptional output. Androgen biosynthesis enzymes, androgen transporters and AR-associated coregulators are attractive novel CaP treatment targets. These proteins, however, are characterized by multiple transcript variants and isoforms, are subject to genomic alterations, and are differentially expressed among CaPs. Determining their therapeutic potential requires evaluation of extensive, diverse datasets that are dispersed over multiple databases, websites and literature reports. Mining and integrating these datasets are cumbersome, time-consuming tasks and provide only snapshots of relevant information. To overcome this impediment to effective, efficient study of AR and potential drug targets, we developed the Regulators of Androgen Action Resource (RAAR), a non-redundant, curated and user-friendly searchable web interface. RAAR centralizes information on gene function, clinical relevance, and resources for 55 genes that encode proteins involved in biosynthesis, metabolism and transport of androgens and for 274 AR-associated coregulator genes. Data in RAAR are organized in two levels: (i) Information pertaining to production of androgens is contained in a 'pre-receptor level' database, and coregulator gene information is provided in a 'post-receptor level' database, and (ii) an 'other resources' database contains links to additional databases that are complementary to and useful to pursue further the information provided in RAAR. For each of its 329 entries, RAAR provides access to more than 20 well-curated publicly available databases, and thus, access to thousands of data points. Hyperlinks provide direct access to gene

  10. Protein-protein binding before and after photo-modification of albumin

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo

    2016-03-01

    Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.

  11. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    PubMed

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  12. Sequence-Based Prediction of RNA-Binding Residues in Proteins

    PubMed Central

    Walia, Rasna R.; EL-Manzalawy, Yasser; Honavar, Vasant G.; Dobbs, Drena

    2017-01-01

    Identifying individual residues in the interfaces of protein–RNA complexes is important for understanding the molecular determinants of protein–RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein–RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein–RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner. PMID:27787829

  13. Induction of autophagy in the porcine corpus luteum of pregnancy following anti-androgen treatment.

    PubMed

    Grzesiak, M; Knapczyk-Stwora, K; Slomczynska, M

    2016-12-01

    Experimentally induced androgen deficiency during late pregnancy leads to decreased progesterone synthesis in the porcine corpus luteum (CL), which suggested an onset of functional luteolysis. It was shown that luteal regression in mammals involves not only apoptosis but also autophagy. Therefore, this study aimed to examine whether anti-androgen flutamide treatment during late pregnancy in pigs induces apoptosis and/or autophagy within luteal cells. Flutamide (50 mg/kg b.w.) was administered into pregnant gilts between 83 - 89 (GD90F) or 101 - 107 (GD108F) gestational days (GD). CLs were retrieved on day 90 or 108 of pregnancy (n = 3/each group). Detection of apoptosis was performed by TUNEL assay and assessment of cleaved caspase 3 level. Both assays revealed that luteal rate of apoptosis was unaffected by flutamide treatment either in the GD90F or GD108F groups. Moreover, pro-apoptotic protein Bax was downregulated on GD108. The autophagy was examined by expression of two markers, LC3-II and Lamp1. Flutamide led to greater expression of LC3-II protein form in the GD90F and GD108F groups. Likewise, the mRNA and protein levels of Lamp1 were elevated in both flutamide-treated groups. The activation of autophagy is regulated by Beclin 1 and the increased Beclin 1 mRNA and protein expression was found in the GD90F and GD108F groups. Beclin 1 is a Bcl-2-binding protein, thus Beclin1/Bcl-2 interactions were examined using immunoprecipitation. Beclin 1/Bcl-2 complexes were less abundant following flutamide treatment in both flutamide-exposed groups. In summary, we concluded that androgen deficiency induced autophagy by disrupting Beclin 1/Bcl-2 interplay in the porcine CL during pregnancy. The role of autophagy in luteal regression in pigs requires further evaluation.

  14. Characterization of binding of N'-nitrosonornicotine to protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, M.F.

    1986-01-01

    The NADPH-dependent activation of the carcinogenic nitrosamine, N'-nitrosonornicotine (NNN) to a reactive intermediate which binds covalently to protein was assessed using male Sprague-Dawley rat liver and lung microsomes. The NADPH-dependent covalent binding of (/sup 14/C)NNN to liver and lung microsomes was linear with time up to 90 and 45 min, respectively and was also linear with protein concentrations up to 3.0 and 2.0 mg/ml, respectively. The apparent K/sub m/ and V/sub max/ of the NADPH-dependent binding to liver microsomes were determined from the initial velocities. Addition of the thiols glutathione, cystein, N-acetylcysteine or 2-mercapthoethanol significantly decreased the non-NADPH-dependent binding tomore » liver microsomal protein, but did not affect the NADPH-dependent binding. Glutathione was required in order to observe any NADPH-dependent binding to lung microsomal protein. In lung microsomes, SKF-525A significantly decreased the NADPH-dependent binding by 79%. Replacement of an air atmosphere with N/sub 2/ or CO:O/sub 2/ (8:2) significantly decreased the NADPH-dependent binding of (/sup 14/C)NNN to liver microsomal protein by 40% or 27% respectively. Extensive covalent binding of (/sup 14/C)NNN to liver and muscle microsomal protein occurred in the absence of an NADPH-generating system, in the presence of 50% methanol and also to bovine serum albumin, indicating a nonenzymatic reaction. These data indicate that cytochrome P-450 is at least in part responsible for the metabolic activation of the carcinogen NNN, but also suggest additional mechanisms of activation.« less

  15. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    PubMed

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hair and Salivary Testosterone, Hair Cortisol, and Externalizing Behaviors in Adolescents.

    PubMed

    Grotzinger, Andrew D; Mann, Frank D; Patterson, Megan W; Tackett, Jennifer L; Tucker-Drob, Elliot M; Harden, K Paige

    2018-05-01

    Although testosterone is associated with aggression in the popular imagination, previous research on the links between testosterone and human aggression has been inconsistent. This inconsistency might be because testosterone's effects on aggression depend on other moderators. In a large adolescent sample ( N = 984, of whom 460 provided hair samples), we examined associations between aggression and salivary testosterone, hair testosterone, and hair cortisol. Callous-unemotional traits, parental monitoring, and peer environment were examined as potential moderators of hormone-behavior associations. Salivary testosterone was not associated with aggression. Hair testosterone significantly predicted increased aggression, particularly at low levels of hair cortisol (i.e., Testosterone × Cortisol interaction). This study is the first to examine the relationship between hair hormones and externalizing behaviors and adds to the growing literature that indicates that androgenic effects on human behavior are contingent on aspects of the broader endocrine environment-in particular, levels of cortisol.

  17. Associations of Salivary BPIFA1 Protein in Chronic Periodontitis Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Tang, Chen-Yi

    2017-01-01

    Aims To explore the differences in salivary BPI fold containing family A, member 1 (BPIFA1) concentration among type 2 diabetes mellitus (T2DM) subjects with various severities of chronic periodontitis and to determine whether BPIFA1 in saliva can be used as a potential biomarker of T2DM. Methods Unstimulated saliva samples were collected from 44 subjects with T2DM and 44 without T2DM (NDM). Additionally, demographic data and general health parameters, including fasting blood glucose (FBG) and body mass index (BMI), were collected. We also detected full-mouth clinical periodontal parameters including probing pocket depth (PPD), clinical attachment level (CAL), bleeding index (BI), and plaque index (PLI). Salivary BPIFA1, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) concentrations were also detected. Results BPIFA1 in saliva was detected at relatively high levels. T2DM subjects had decreased salivary BPIFA1 concentrations (P = 0.031). In T2DM subjects with nonperiodontitis or severe periodontitis, the level of BPIFA1 was significantly lower compared with that of NDM. Salivary TNF-α concentration displayed a similar trend to BPIFA1 in the NDM group. Conclusions BPIFA1 protein is rich in saliva and might be used as a potential predictive biomarker of T2DM, especially in patients with severe periodontitis and nonperiodontitis. This trial is registered with ChiCTR-ROC-17010310. PMID:29109737

  18. Lipids and lipid binding proteins: a perfect match.

    PubMed

    Glatz, Jan F C

    2015-02-01

    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Vector-transmitted disease vaccines: targeting salivary proteins in transmission (SPIT).

    PubMed

    McDowell, Mary Ann

    2015-08-01

    More than half the population of the world is at risk for morbidity and mortality from vector-transmitted diseases, and emerging vector-transmitted infections are threatening new populations. Rising insecticide resistance and lack of efficacious vaccines highlight the need for novel control measures. One such approach is targeting the vector-host interface by incorporating vector salivary proteins in anti-pathogen vaccines. Debate remains about whether vector saliva exposure exacerbates or protects against more severe clinical manifestations, induces immunity through natural exposure or extends to all vector species and associated pathogens. Nevertheless, exploiting this unique biology holds promise as a viable strategy for the development of vaccines against vector-transmitted diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Androgen antagonists in androgen target tissues.

    PubMed

    Tindall, D J; Chang, C H; Lobl, T J; Cunningham, G R

    1984-01-01

    Most antiandrogens appear to act by binding to the androgen receptor and competitively inhibiting the binding of testosterone and cihydrotestosterone to the receptor. Focusing on those compounds which appear to inhibit androgen receptor mediated responses, this review discusses the chemistry of those antiandrogens which have been studied to the extent that their mechanism of action is at least partially understood, outlines the mechanism of androgen action as it is currently understood and suggests how antiandrogens might fit in with this mechanism, indicates the major metabolites of several important antiandrogens, and discusses the clinical applications of several antiandrogens. Cyproterone acetate has been studied extensively as a potential male contraceptive. Although it was recognized that 100 mg of cyproterone acetate per day inhibited spermatogenesis, that dose also reduced libido and potency. Following the administration of 10 or 20 mg of cyproterone acetate per day to 15 males for 26 weeks, the following observations were made: the number of motile sperm was reduced; the quality of their motion was impaired; and the ability of the sperm to penetrate cervical mucus was decreased. Sperm density was also suppressed, but neither it nor sperm motility were inhibited to the extent necessary for contraception. Antiandrogens have been demonstrated to be beneficial in treating 5 clinical syndromes or diseases: acne, seborrhea, hirsutism with or without menstrual abnormalities; precocious puberty; benign prostatic hypertrophy; cancer of the prostate; and sexual deviates. Since 3 of these conditions are very common, effective and safe treatment would have a large market. At this time, antiandrogens are widely used in Europe for treatment of seborrhea, acne, and hirsutism and a large Veterans Administration Cooperative Study in the US was approved but has not yet been funded to compare antiandrogens with other treatments for cancer of the prostate. Studies to assess

  2. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    PubMed

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Correlation between structure, protein composition, morphogenesis and cytopathology of Glossina pallidipes salivary gland hypertrophy virus.

    PubMed

    Kariithi, Henry M; van Lent, Jan W M; Boeren, Sjef; Abd-Alla, Adly M M; Ince, Ikbal Agah; van Oers, Monique M; Vlak, Just M

    2013-01-01

    The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) is a dsDNA virus with rod-shaped, enveloped virions. Its 190 kb genome contains 160 putative protein-coding ORFs. Here, the structural components, protein composition and associated aspects of GpSGHV morphogenesis and cytopathology were investigated. Four morphologically distinct structures: the nucleocapsid, tegument, envelope and helical surface projections, were observed in purified GpSGHV virions by electron microscopy. Nucleocapsids were present in virogenic stroma within the nuclei of infected salivary gland cells, whereas enveloped virions were located in the cytoplasm. The cytoplasm of infected cells appeared disordered and the plasma membranes disintegrated. Treatment of virions with 1 % NP-40 efficiently partitioned the virions into envelope and nucleocapsid fractions. The fractions were separated by SDS-PAGE followed by in-gel trypsin digestion and analysis of the tryptic peptides by liquid chromatography coupled to electrospray and tandem mass spectrometry. Using the MaxQuant program with Andromeda as a database search engine, a total of 45 viral proteins were identified. Of these, ten and 15 were associated with the envelope and the nucleocapsid fractions, respectively, whilst 20 were detected in both fractions, most likely representing tegument proteins. In addition, 51 host-derived proteins were identified in the proteome of the virus particle, 13 of which were verified to be incorporated into the mature virion using a proteinase K protection assay. This study provides important information about GpSGHV biology and suggests options for the development of future anti-GpSGHV strategies by interfering with virus-host interactions.

  4. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    NASA Astrophysics Data System (ADS)

    Pradhan, Swati

    Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar

  5. Immunization with LJM11 salivary protein protects against infection with Leishmania braziliensis in the presence of Lutzomyia longipalpis saliva.

    PubMed

    Cunha, Jurema M; Abbehusen, Melissa; Suarez, Martha; Valenzuela, Jesus; Teixeira, Clarissa R; Brodskyn, Cláudia I

    2018-01-01

    Leishmania is transmitted in the presence of sand fly saliva. Protective immunity generated by saliva has encouraged identification of a vector salivary-based vaccine. Previous studies have shown that immunization with LJM11, a salivary protein from Lutzomyia longipalpis, is able to induce a Th1 immune response and protect mice against bites of Leishmania major-infected Lutzomyia longipalpis. Here, we further investigate if immunization with LJM11 recombinant protein is able to confer cross-protection against infection with Leishmania braziliensis associated with salivary gland sonicate (SGS) from Lutzomyia intermedia or Lu. longipalpis. Mice immunized with LJM11 protein exhibited an increased production of anti-LJM11 IgG, IgG1 and IgG2a and a DTH response characterized by an inflammatory infiltrate with the presence of CD4 + IFN-γ + T cells. LJM11-immunized mice were intradermally infected in the ear with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia SGS. A significant reduction of parasite numbers in the ear and lymph node in the group challenged with L. braziliensis plus Lu. longipalpis SGS was observed, but not when the challenge was performed with L. braziliensis plus Lu. intermedia SGS. A higher specific production of IFN-γ and absence of IL-10 by lymph node cells were only observed in LJM11 immunized mice after infection. After two weeks, a similar frequency of CD4 + IFN-γ + T cells was detected in LJM11 and BSA groups challenged with L. braziliensis plus Lu. longipalpis SGS, suggesting that early events possibly triggered by immunization are essential for protection against Leishmania infection. Our findings support the specificity of saliva-mediated immune responses and reinforce the importance of identifying cross-protective salivary antigens. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Therapeutic potential of the SARMs: revisiting the androgen receptor for drug discovery.

    PubMed

    Segal, Scott; Narayanan, Ramesh; Dalton, James T

    2006-04-01

    Selective androgen receptor modulators (SARMS) bind to the androgen receptor and demonstrate anabolic activity in a variety of tissues; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents are able to induce bone and muscle growth, as well as shrinking the prostate. The potential of SARMS is to maximise the positive attributes of steroidal androgens as well as minimising negative effects, thus providing therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, end-stage renal disease, osteoporosis, frailty and hypogonadism. This review summarises androgen physiology, the current status of the R&D of SARMS and potential therapeutic indications for this emerging class of drugs.

  7. MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.

    PubMed

    Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R

    2016-07-08

    Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  9. Trans‐acting translational regulatory RNA binding proteins

    PubMed Central

    Harvey, Robert F.; Smith, Tom S.; Mulroney, Thomas; Queiroz, Rayner M. L.; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa

    2018-01-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans‐acting regulatory RNA‐binding proteins (RBPs) are necessary to provide mRNA‐specific translation, and these interact with 5′ and 3′ untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans‐acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans‐acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans‐acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: 1RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes2Translation > Translation Regulation3Translation > Translation Mechanisms PMID:29341429

  10. Estimation of salivary flow rate, pH, buffer capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries severity, age and gender.

    PubMed

    Pandey, Pallavi; Reddy, N Venugopal; Rao, V Arun Prasad; Saxena, Aditya; Chaudhary, C P

    2015-03-01

    The aim of the study was to evaluate salivary flow rate, pH, buffering capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries, age and gender. The study population consisted of 120 healthy children aged 7-15 years that was further divided into two groups: 7-10 years and 11-15 years. In this 60 children with DMFS/dfs = 0 and 60 children with DMFS/dfs ≥5 were included. The subjects were divided into two groups; Group A: Children with DMFS/dfs = 0 (caries-free) Group B: Children with DMFS/dfs ≥5 (caries active). Unstimulated saliva samples were collected from all groups. Flow rates were determined, and samples analyzed for pH, buffer capacity, calcium, total protein and total antioxidant status. Salivary antioxidant activity is measured with spectrophotometer by an adaptation of 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonate) assays. The mean difference of the two groups; caries-free and caries active were proved to be statistically significant (P < 0.05) for salivary calcium, total protein and total antioxidant level for both the sexes in the age group 7-10 years and for the age 11-15 years the mean difference of the two groups were proved to be statistically significant (P < 0.05) for salivary calcium level for both the sexes. Salivary total protein and total antioxidant level were proved to be statistically significant for male children only. In general, total protein and total antioxidants in saliva were increased with caries activity. Calcium content of saliva was found to be more in caries-free group and increased with age.

  11. Differential display RT PCR of total RNA from human foreskin fibroblasts for investigation of androgen-dependent gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitsche, E.M.; Moquin, A.; Adams, P.S.

    1996-05-03

    Male sexual differentiation is a process that involves androgen action via the androgen receptor. Defects in the androgen receptor, many resulting from point mutations in the androgen receptor gene, lead to varying degrees of impaired masculinization in chromosomally male individuals. To date no specific androgen regulated morphogens involved in this process have been identified and no marker genes are known that would help to predict further virilization in infants with partial androgen insensitivity. In the present study we first show data on androgen regulated gene expression investigated by differential display reverse transcription PCR (dd RT PCR) on total RNA frommore » human neonatal genital skin fibroblasts cultured in the presence or absence of 100 nM testosterone. Using three different primer combinations, 54 cDNAs appeared to be regulated by androgens. Most of these sequences show the characteristics of expressed mRNAs but showed no homology to sequences in the database. However 15 clones with significant homology to previously cloned sequences were identified. Seven cDNAs appear to be induced by androgen withdrawal. Of these, five are similar to ETS (expression tagged sequences) from unknown genes; the other two show significant homology to the cDNAs of ubiquitin and human guanylate binding protein 2 (GBP-2). In addition, we have identified 8 cDNA clones which show homologies to other sequences in the database and appear to be upregulated in the presence of testosterone. Three differential expressed sequences show significant homology to the cDNAs of L-plastin and one to the cDNA of testican. This latter gene codes for a proteoglycan involved in cell social behavior and therefore of special interest in this context. The results of this study are of interest in further investigation of normal and disturbed androgen-dependent gene expression. 49 refs., 2 figs., 5 tabs.« less

  12. A new dawn for androgens: Novel lessons from 11-oxygenated C19 steroids.

    PubMed

    Pretorius, Elzette; Arlt, Wiebke; Storbeck, Karl-Heinz

    2017-02-05

    The abundant adrenal C19 steroid 11β-hydroxyandrostenedione (11OHA4) has been written off as a dead-end product of adrenal steroidogenesis. However, recent evidence has demonstrated that 11OHA4 is the precursor to the potent androgenic 11-oxygenated steroids, 11-ketotestosterone and 11-ketodihydrotestosterone, that bind and activate the human androgen receptor similarly to testosterone and DHT. The significance of this discovery becomes apparent when considering androgen dependent diseases such as castration resistant prostate cancer and diseases associated with androgen excess, e.g. congenital adrenal hyperplasia and polycystic ovary syndrome. In this review we describe the production and metabolism of 11-oxygenated steroids. We subsequently discuss their androgenic activity and highlight the putative role of these androgens in disease states. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.

    PubMed

    Freed, Alexander S; Garde, Shekhar; Cramer, Steven M

    2011-11-17

    Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.

  14. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity

    PubMed Central

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous

  15. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity.

    PubMed

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous

  16. Binding free energy analysis of protein-protein docking model structures by evERdock.

    PubMed

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  17. Binding free energy analysis of protein-protein docking model structures by evERdock

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-01

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  18. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    PubMed

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-08-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.

  19. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    PubMed Central

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-01-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded. Images PMID:2823109

  20. Salivary flow and composition in diabetic and non-diabetic subjects.

    PubMed

    Lasisi, T J; Fasanmade, A A

    2012-06-07

    The study investigated the effects of type 2 diabetes mellitus on salivary flow and composition in humans compared to healthy sex and age matched controls. Forty adult human subjects divided into 20 diabetic and 20 non-diabetic healthy subjects were included. Saliva samples were collected and analysed for glucose, total protein, calcium, sodium, potassium, chloride and bicarbonate. Salivary flow rate was also determined. The results showed that salivary glucose and potassium levels were significantly higher (p = 0.01 and 0.002 respectively) in diabetic patients compared with non-diabetic participants. It was also found that the diabetic patients had significant reduction in salivary flow rate when compared with non-diabetic individuals. In contrast, there was no significant difference in levels of total protein, Na+, Ca++, Cl- and HCO3- between the two groups. These results suggest that some oral diseases associated with diabetes mellitus may be due to altered levels of salivary glucose, potassium and flow.

  1. A pollen-specific novel calmodulin-binding protein with tetratricopeptide repeats

    NASA Technical Reports Server (NTRS)

    Safadi, F.; Reddy, V. S.; Reddy, A. S.

    2000-01-01

    Calcium is essential for pollen germination and pollen tube growth. A large body of information has established a link between elevation of cytosolic Ca(2+) at the pollen tube tip and its growth. Since the action of Ca(2+) is primarily mediated by Ca(2+)-binding proteins such as calmodulin (CaM), identification of CaM-binding proteins in pollen should provide insights into the mechanisms by which Ca(2+) regulates pollen germination and tube growth. In this study, a CaM-binding protein from maize pollen (maize pollen calmodulin-binding protein, MPCBP) was isolated in a protein-protein interaction-based screening using (35)S-labeled CaM as a probe. MPCBP has a molecular mass of about 72 kDa and contains three tetratricopeptide repeats (TPR) suggesting that it is a member of the TPR family of proteins. MPCBP protein shares a high sequence identity with two hypothetical TPR-containing proteins from Arabidopsis. Using gel overlay assays and CaM-Sepharose binding, we show that the bacterially expressed MPCBP binds to bovine CaM and three CaM isoforms from Arabidopsis in a Ca(2+)-dependent manner. To map the CaM-binding domain several truncated versions of the MPCBP were expressed in bacteria and tested for their ability to bind CaM. Based on these studies, the CaM-binding domain was mapped to an 18-amino acid stretch between the first and second TPR regions. Gel and fluorescence shift assays performed with CaM and a CaM-binding synthetic peptide further confirmed MPCBP binding to CaM. Western, Northern, and reverse transcriptase-polymerase chain reaction analysis have shown that MPCBP expression is specific to pollen. MPCBP was detected in both soluble and microsomal proteins. Immunoblots showed the presence of MPCBP in mature and germinating pollen. Pollen-specific expression of MPCBP, its CaM-binding properties, and the presence of TPR motifs suggest a role for this protein in Ca(2+)-regulated events during pollen germination and growth.

  2. Conformational selection in protein binding and function

    PubMed Central

    Weikl, Thomas R; Paul, Fabian

    2014-01-01

    Protein binding and function often involves conformational changes. Advanced nuclear magnetic resonance (NMR) experiments indicate that these conformational changes can occur in the absence of ligand molecules (or with bound ligands), and that the ligands may “select” protein conformations for binding (or unbinding). In this review, we argue that this conformational selection requires transition times for ligand binding and unbinding that are small compared to the dwell times of proteins in different conformations, which is plausible for small ligand molecules. Such a separation of timescales leads to a decoupling and temporal ordering of binding/unbinding events and conformational changes. We propose that conformational-selection and induced-change processes (such as induced fit) are two sides of the same coin, because the temporal ordering is reversed in binding and unbinding direction. Conformational-selection processes can be characterized by a conformational excitation that occurs prior to a binding or unbinding event, while induced-change processes exhibit a characteristic conformational relaxation that occurs after a binding or unbinding event. We discuss how the ordering of events can be determined from relaxation rates and effective on- and off-rates determined in mixing experiments, and from the conformational exchange rates measured in advanced NMR or single-molecule fluorescence resonance energy transfer experiments. For larger ligand molecules such as peptides, conformational changes and binding events can be intricately coupled and exhibit aspects of conformational-selection and induced-change processes in both binding and unbinding direction. PMID:25155241

  3. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    ERIC Educational Resources Information Center

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  4. Mechanistic events underlying odorant binding protein chemoreception.

    PubMed

    Golebiowski, Jérôme; Antonczak, Serge; Fiorucci, Sébastien; Cabrol-Bass, Daniel

    2007-05-01

    Odorant binding proteins (OBP's) are small hydrophilic proteins, belonging to the lipocalin family dedicated to bind and transport small hydrophobic ligands. Despite many works, the mechanism of ligand binding, together with the functional role of these proteins remains a topic of debate and little is known at the atomic level. The present work reports a computational study of odorants capture and release by an OBP, using both constrained and unconstrained simulations, giving a glimpse on the molecular mechanism of chemoreception. The residues at the origin of the regulation of the protein door opening are identified and a tyrosine amino-acid together with other nearby residues appear to play a crucial role in allowing this event to occur. The simulations reveal that this tyrosine and the protein's L5 loop are implicated in the ligand contact with the protein and act as an anchoring point for the ligand. The protein structural features required for the ligand entry are highly conserved among many transport proteins, suggesting that this mechanism could somewhat be extended to some members of the larger family of lipocalin. (c) 2007 Wiley-Liss, Inc.

  5. Unconventional RNA-binding proteins: an uncharted zone in RNA biology.

    PubMed

    Albihlal, Waleed S; Gerber, André P

    2018-06-16

    RNA-binding proteins play essential roles in the post-transcriptional regulation of gene expression. While hundreds of RNA-binding proteins can be predicted computationally, the recent introduction of proteome-wide approaches has dramatically expanded the repertoire of proteins interacting with RNA. Besides canonical RNA-binding proteins that contain characteristic RNA-binding domains, many proteins that lack such domains but have other well-characterised cellular functions were identified; including metabolic enzymes, heat shock proteins, kinases, as well as transcription factors and chromatin-associated proteins. In the context of these recently published RNA-protein interactome datasets obtained from yeast, nematodes, flies, plants and mammalian cells, we discuss examples for seemingly evolutionary conserved "unconventional" RNA-binding proteins that act in central carbon metabolism, stress response or regulation of transcription. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Overexpression of androgen receptor and forkhead-box A1 protein in apocrine breast carcinoma.

    PubMed

    Sasahara, Manami; Matsui, Akira; Ichimura, Yoshiko; Hirakata, Yuuko; Murata, Yuuya; Marui, Eiji

    2014-03-01

    Apocrine breast carcinoma often lacks estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor type-2 (HER2) expression. Accordingly, development of a new treatment strategy is important for this type of cancer. The growth stimulus through the androgen receptor (AR) can be a candidate for targeted treatment. Therefore, we examined the factors related to AR transcription. We immunohistochemically evaluated 54 apocrine cancer lesions for ER, PgR, AR, HER2, Ki-67, forkhead-box protein A1 (FOXA1), and prostate-specific antigen (PSA) expression. ER, PgR, and HER2 were expressed at a low level, thus 44 out of 54 (81.4%) cases were of triple-negative breast cancer. AR, PSA and FOXA1 were expressed in 100% (54/54), 48% (26/54) and 93% (50/54) of cases, respectively. Most of apocrine breast carcinomas were immunohistochemically-positive for AR and FOXA1. Anti-androgenic therapies can potentially serve as a cancer-targeting therapy for apocrine breast carcinoma.

  7. Aphid salivary proteases are capable of degrading sieve-tube proteins.

    PubMed

    Furch, Alexandra C U; van Bel, Aart J E; Will, Torsten

    2015-02-01

    Sieve tubes serve as transport conduits for photo-assimilates and other resources in angiosperms and are profitable targets for piercing-sucking insects such as aphids. Sieve-tube sap also contains significant amounts of proteins with diverse functions, for example in signalling, metabolism, and defence. The identification of salivary proteases in Acyrthosiphon pisum led to the hypothesis that aphids might be able to digest these proteins and by doing so suppress plant defence and access additional nitrogen sources. Here, the scarce knowledge of proteases in aphid saliva is briefly reviewed. In order to provide a better platform for discussion, we conducted a few tests on in vitro protease activity and degradation of sieve-tube sap proteins of Cucurbita maxima by watery saliva. Inhibition of protein degradation by EDTA indicates the presence of different types of proteases (e.g. metalloproteses) in saliva of A. pisum. Proteases in the watery saliva from Macrosiphum euphorbiae and A. pisum were able to degrade the most abundant phloem protein, which is phloem protein 1. Our results provide support for the breakdown of sieve-element proteins by aphid saliva in order to suppress/neutralize the defence responses of the plant and to make proteins of sieve-tube sap accessible as a nitrogen source, as is discussed in detail. Finally, we discuss whether glycosylation of sieve-element proteins and the presence of protease inhibitors may confer partial protection against the proteolytic activity of aphid saliva. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Resveratrol, piceatannol and analogs inhibit activation of both wild-type and T877A mutant androgen receptor.

    PubMed

    Lundqvist, Johan; Tringali, Corrado; Oskarsson, Agneta

    2017-11-01

    Prostate cancer growth and progression are mainly dependent on androgens and many current prostate cancer treatment options target the synthesis or function of androgens. We have previously reported that resveratrol and synthetic analogs of resveratrol with a higher bioavailability inhibit the synthesis of androgens in human adrenocortical H295R cells. Now we have studied the antiandrogenic properties of resveratrol, piceatannol and analogs in two different prostate cell lines; LNCaP and RWPE. LNCaP carry a T877A mutation in the androgen receptor while RWPE has a wild-type androgen receptor. We found that resveratrol, piceatannol and all studied analogs were able to inhibit a dihydrotestosterone-induced activation of the androgen receptor, showing that they act as antiandrogens. In LNCaP cells, all studied compounds were able to statistically significantly decrease the androgenic signaling in concentrations ≥1μM and the synthetic analogs trimethylresveratrol (RSVTM) and tetramethylpiceatannol (PICTM) were the most potent compounds. RWPE cells were not as responsive to the studied compounds as the LNCaP cells. A statistically significant decrease in the androgenic signaling was observed at concentrations ≤5μM for most compounds and RSVTM was found to be the most potent compound. Further, we studied the effects of resveratrol, piceatannol and analogs on the levels of prostate-specific antigen (PSA) in LNCaP cells and found that all studied compounds decreased the level of PSA and that the synthetic analogs diacetylresveratrol (RSVDA), triacetylresveratrol (RSVTA) and RSVTM were the most potent compounds, decreasing the PSA level by approx. 50% at concentrations ≥10μM. In a cell-free receptor binding assay we were unable to show binding of resveratrol or analogs to the ligand binding domain of the androgen receptor, indicating that the observed effects are mediated via other mechanisms than direct ligand competition. We conclude that the resveratrol

  9. Behind the scenes of vitamin D binding protein: more than vitamin D binding.

    PubMed

    Delanghe, Joris R; Speeckaert, Reinhart; Speeckaert, Marijn M

    2015-10-01

    Although being discovered in 1959, the number of published papers in recent years reveals that vitamin D binding protein (DBP), a member of the albuminoid superfamily, is a hot research topic. Besides the three major phenotypes (DBP1F, DBP1S and DBP2), more than 120 unique variants have been described of this polymorphic protein. The presence of DBP has been demonstrated in different body fluids (serum, urine, breast milk, ascitic fluid, cerebrospinal fluid, saliva and seminal fluid) and organs (brain, heart, lungs, kidneys, placenta, spleen, testes and uterus). Although the major function is binding, solubilization and transport of vitamin D and its metabolites, the name of this glycoprotein hides numerous other important biological functions. In this review, we will focus on the analytical aspects of the determination of DBP and discuss in detail the multifunctional capacity [actin scavenging, binding of fatty acids, chemotaxis, binding of endotoxins, influence on T cell response and influence of vitamin D binding protein-macrophage activating factor (DBP-MAF) on bone metabolism and cancer] of this abundant plasma protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Multivalent DNA-binding properties of the HMG-1 proteins.

    PubMed Central

    Maher, J F; Nathans, D

    1996-01-01

    HMG-I proteins are DNA-binding proteins thought to affect the formation and function of transcription complexes. Each protein contains three DNA-binding motifs, known as AT-hooks, that bind in the minor groove of AT tracts in DNA. Multiple AT-hooks within a polypeptide chain should contact multiple AT tracts, but the rules governing these interactions have not been defined. In this study, we demonstrate that high-affinity binding uses two or three appropriately spaced AT tracts as a single multivalent binding site. These principles have implications for binding to regulatory elements such as the interferon beta enhancer, TATA boxes, and serum response elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692884

  11. SCOWLP classification: Structural comparison and analysis of protein binding regions

    PubMed Central

    Teyra, Joan; Paszkowski-Rogacz, Maciej; Anders, Gerd; Pisabarro, M Teresa

    2008-01-01

    Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs) might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions. The hierarchical

  12. Trans-acting translational regulatory RNA binding proteins.

    PubMed

    Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E

    2018-05-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.

  13. Continuing Development of Alternative High-Throughput Screens to Determine Endocrine Disruption, Focusing on Androgen Receptor, Steroidogenesis, and Thyroid Pathways

    EPA Science Inventory

    The focus of this meeting is the SAP's review and comment on the Agency's proposed high-throughput computational model of androgen receptor pathway activity as an alternative to the current Tier 1 androgen receptor assay (OCSPP 890.1150: Androgen Receptor Binding Rat Prostate Cyt...

  14. Calculations of the binding affinities of protein-protein complexes with the fast multipole method

    NASA Astrophysics Data System (ADS)

    Kim, Bongkeun; Song, Jiming; Song, Xueyu

    2010-09-01

    In this paper, we used a coarse-grained model at the residue level to calculate the binding free energies of three protein-protein complexes. General formulations to calculate the electrostatic binding free energy and the van der Waals free energy are presented by solving linearized Poisson-Boltzmann equations using the boundary element method in combination with the fast multipole method. The residue level model with the fast multipole method allows us to efficiently investigate how the mutations on the active site of the protein-protein interface affect the changes in binding affinities of protein complexes. Good correlations between the calculated results and the experimental ones indicate that our model can capture the dominant contributions to the protein-protein interactions. At the same time, additional effects on protein binding due to atomic details are also discussed in the context of the limitations of such a coarse-grained model.

  15. Development and Validation of a Computational Model for Androgen Receptor Activity

    PubMed Central

    2016-01-01

    Testing thousands of chemicals to identify potential androgen receptor (AR) agonists or antagonists would cost millions of dollars and take decades to complete using current validated methods. High-throughput in vitro screening (HTS) and computational toxicology approaches can more rapidly and inexpensively identify potential androgen-active chemicals. We integrated 11 HTS ToxCast/Tox21 in vitro assays into a computational network model to distinguish true AR pathway activity from technology-specific assay interference. The in vitro HTS assays probed perturbations of the AR pathway at multiple points (receptor binding, coregulator recruitment, gene transcription, and protein production) and multiple cell types. Confirmatory in vitro antagonist assay data and cytotoxicity information were used as additional flags for potential nonspecific activity. Validating such alternative testing strategies requires high-quality reference data. We compiled 158 putative androgen-active and -inactive chemicals from a combination of international test method validation efforts and semiautomated systematic literature reviews. Detailed in vitro assay information and results were compiled into a single database using a standardized ontology. Reference chemical concentrations that activated or inhibited AR pathway activity were identified to establish a range of potencies with reproducible reference chemical results. Comparison with existing Tier 1 AR binding data from the U.S. EPA Endocrine Disruptor Screening Program revealed that the model identified binders at relevant test concentrations (<100 μM) and was more sensitive to antagonist activity. The AR pathway model based on the ToxCast/Tox21 assays had balanced accuracies of 95.2% for agonist (n = 29) and 97.5% for antagonist (n = 28) reference chemicals. Out of 1855 chemicals screened in the AR pathway model, 220 chemicals demonstrated AR agonist or antagonist activity and an additional 174 chemicals were predicted to have

  16. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  17. The modular architecture of protein-protein binding interfaces.

    PubMed

    Reichmann, D; Rahat, O; Albeck, S; Meged, R; Dym, O; Schreiber, G

    2005-01-04

    Protein-protein interactions are essential for life. Yet, our understanding of the general principles governing binding is not complete. In the present study, we show that the interface between proteins is built in a modular fashion; each module is comprised of a number of closely interacting residues, with few interactions between the modules. The boundaries between modules are defined by clustering the contact map of the interface. We show that mutations in one module do not affect residues located in a neighboring module. As a result, the structural and energetic consequences of the deletion of entire modules are surprisingly small. To the contrary, within their module, mutations cause complex energetic and structural consequences. Experimentally, this phenomenon is shown on the interaction between TEM1-beta-lactamase and beta-lactamase inhibitor protein (BLIP) by using multiple-mutant analysis and x-ray crystallography. Replacing an entire module of five interface residues with Ala created a large cavity in the interface, with no effect on the detailed structure of the remaining interface. The modular architecture of binding sites, which resembles human engineering design, greatly simplifies the design of new protein interactions and provides a feasible view of how these interactions evolved.

  18. EMSA Analysis of DNA Binding By Rgg Proteins.

    PubMed

    LaSarre, Breah; Federle, Michael J

    2013-08-20

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function ( e.g. interruption of DNA-binding in some cases).

  19. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system...

  20. Identification and characterization of ART-27, a novel coactivator for the androgen receptor N terminus.

    PubMed

    Markus, Steven M; Taneja, Samir S; Logan, Susan K; Li, Wenhui; Ha, Susan; Hittelman, Adam B; Rogatsky, Inez; Garabedian, Michael J

    2002-02-01

    The androgen receptor (AR) is a ligand-regulated transcription factor that stimulates cell growth and differentiation in androgen-responsive tissues. The AR N terminus contains two activation functions (AF-1a and AF-1b) that are necessary for maximal transcriptional enhancement by the receptor; however, the mechanisms and components regulating AR transcriptional activation are not fully understood. We sought to identify novel factors that interact with the AR N terminus from an androgen-stimulated human prostate cancer cell library using a yeast two-hybrid approach designed to identify proteins that interact with transcriptional activation domains. A 157-amino acid protein termed ART-27 was cloned and shown to interact predominantly with the AR(153-336), containing AF-1a and a part of AF-1b, localize to the nucleus and increase the transcriptional activity of AR when overexpressed in cultured mammalian cells. ART-27 also enhanced the transcriptional activation by AR(153-336) fused to the LexA DNA-binding domain but not other AR N-terminal subdomains, suggesting that ART-27 exerts its effect via an interaction with a defined region of the AR N terminus. ART-27 interacts with AR in nuclear extracts from LNCaP cells in a ligand-independent manner. Interestingly, velocity gradient sedimentation of HeLa nuclear extracts suggests that native ART-27 is part of a multiprotein complex. ART-27 is expressed in a variety of human tissues, including sites of androgen action such as prostate and skeletal muscle, and is conserved throughout evolution. Thus, ART-27 is a novel cofactor that interacts with the AR N terminus and plays a role in facilitating receptor-induced transcriptional activation.

  1. Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence.

    PubMed

    Ji, Rui; Yu, Haixin; Fu, Qiang; Chen, Hongdan; Ye, Wenfeng; Li, Shaohui; Lou, Yonggen

    2013-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), a destructive rice pest in Asia, can quickly overcome rice resistance by evolving new virulent populations. Herbivore saliva plays an important role in plant-herbivore interactions, including in plant defense and herbivore virulence. However, thus far little is known about BPH saliva at the molecular level, especially its role in virulence and BPH-rice interaction. Using cDNA amplification in combination with Illumina short-read sequencing technology, we sequenced the salivary-gland transcriptomes of two BPH populations with different virulence; the populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 37,666 and 38,451 unigenes were generated from the salivary glands of these populations, respectively. When combined, a total of 43,312 unigenes were obtained, about 18 times more than the number of expressed sequence tags previously identified from these glands. Gene ontology annotations and KEGG orthology classifications indicated that genes related to metabolism, binding and transport were significantly active in the salivary glands. A total of 352 genes were predicted to encode secretory proteins, and some might play important roles in BPH feeding and BPH-rice interactions. Comparative analysis of the transcriptomes of the two populations revealed that the genes related to 'metabolism,' 'digestion and absorption,' and 'salivary secretion' might be associated with virulence. Moreover, 67 genes encoding putative secreted proteins were differentially expressed between the two populations, suggesting these genes may contribute to the change in virulence. This study was the first to compare the salivary-gland transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our data provide a rich molecular resource for future functional studies on salivary glands and will be useful for elucidating the

  2. Artificial masculinization in tilapia involves androgen receptor activation.

    PubMed

    Golan, Matan; Levavi-Sivan, Berta

    2014-10-01

    Estrogens have a pivotal role in natural female sexual differentiation of tilapia while lack of steroids results in testicular development. Despite the fact that androgens do not participate in natural sex differentiation, synthetic androgens, mainly 17-α-methyltestosterone (MT) are effective in the production of all-male fish in aquaculture. The sex inversion potency of synthetic androgens may arise from their androgenic activity or else as inhibitors of aromatase activity. The current study is an attempt to differentiate between the two alleged activities in order to evaluate their contribution to the sex inversion process and aid the search for novel sex inversion agents. In the present study, MT inhibited aromatase activity, when applied in vitro as did the non-aromatizable androgen dihydrotestosterone (DHT). In comparison, exposure to fadrozole, a specific aromatase inhibitor, was considerably more effective. Androgenic activity of MT was evaluated by exposure of Sciaenochromis fryeri fry to the substance and testing for the appearance of blue color. Flutamide, an androgen antagonist, administered concomitantly with MT, reduced the appearance of the blue color and the sex inversion potency of MT in a dose-dependent manner. In tilapia, administration of MT, fadrozole or DHT resulted in efficient sex inversion while flutamide reduced the sex inversion potency of all three compounds. In the case of MT and DHT the decrease in sex inversion efficiency caused by flutamide is most likely due to the direct blocking of the androgen binding to its cognate receptor. The negative effect of flutamide on the efficiency of the fadrozole treatment may indicate that the masculinizing activity of fadrozole may be attributed to excess, un-aromatized, androgens accumulated in the differentiating gonad. The present study shows that when androgen receptors are blocked, there is a reduction in the efficiency of sex inversion treatments. Our results suggest that in contrast to

  3. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  4. Salivary mucoceles.

    PubMed

    Waldron, D R; Smith, M M

    1991-06-01

    The overall incidence of salivary gland disease in dogs and cats is low. Salivary mucocele is the most frequently diagnosed disease of salivary glands. Mucoceles consist of collections of saliva in subcutaneous, sublingual, pharyngeal, or periorbital locations. Definitive therapy of salivary mucoceles consists of excision of the affected salivary gland and mucocele drainage.

  5. Pharmacodynamics of selective androgen receptor modulators.

    PubMed

    Yin, Donghua; Gao, Wenqing; Kearbey, Jeffrey D; Xu, Huiping; Chung, Kiwon; He, Yali; Marhefka, Craig A; Veverka, Karen A; Miller, Duane D; Dalton, James T

    2003-03-01

    The present study aimed to identify selective androgen receptor modulators (SARMs) with in vivo pharmacological activity. We examined the in vitro and in vivo pharmacological activity of four chiral, nonsteroidal SARMs synthesized in our laboratories. In the in vitro assays, these compounds demonstrated moderate to high androgen receptor (AR) binding affinity, with K(i) values ranging from 4 to 37 nM, and three of the compounds efficaciously stimulated AR-mediated reporter gene expression. The compounds were then administered subcutaneously to castrated rats to appraise their in vivo pharmacological activity. Androgenic activity was evaluated by the ability of these compounds to maintain the weights of prostate and seminal vesicle, whereas levator ani muscle weight was used as a measure of anabolic activity. The maximal response (E(max)) and dose for half-maximal effect (ED(50)) were determined for each compound and compared with that observed for testosterone propionate (TP). Compounds S-1 and S-4 demonstrated in vivo androgenic and anabolic activity, whereas compounds S-2 and S-3 did not. The activities of S-1 and S-4 were tissue-selective in that both compounds stimulated the anabolic organs more than the androgenic organs. These two compounds were less potent and efficacious than TP in androgenic activity, but their anabolic activity was similar to or greater than that of TP. Neither S-1 nor S-4 caused significant luteinizing hormone or follicle stimulating hormone suppression at doses near the ED(50) value. Thus, compounds S-1 and S-4 were identified as SARMs with potent and tissue-selective in vivo pharmacological activity, and represent the first members of a new class of SARMs with selective anabolic effects.

  6. Discovering amino acid patterns on binding sites in protein complexes

    PubMed Central

    Kuo, Huang-Cheng; Ong, Ping-Lin; Lin, Jung-Chang; Huang, Jen-Peng

    2011-01-01

    Discovering amino acid (AA) patterns on protein binding sites has recently become popular. We propose a method to discover the association relationship among AAs on binding sites. Such knowledge of binding sites is very helpful in predicting protein-protein interactions. In this paper, we focus on protein complexes which have protein-protein recognition. The association rule mining technique is used to discover geographically adjacent amino acids on a binding site of a protein complex. When mining, instead of treating all AAs of binding sites as a transaction, we geographically partition AAs of binding sites in a protein complex. AAs in a partition are treated as a transaction. For the partition process, AAs on a binding site are projected from three-dimensional to two-dimensional. And then, assisted with a circular grid, AAs on the binding site are placed into grid cells. A circular grid has ten rings: a central ring, the second ring with 6 sectors, the third ring with 12 sectors, and later rings are added to four sectors in order. As for the radius of each ring, we examined the complexes and found that 10Å is a suitable range, which can be set by the user. After placing these recognition complexes on the circular grid, we obtain mining records (i.e. transactions) from each sector. A sector is regarded as a record. Finally, we use the association rule to mine these records for frequent AA patterns. If the support of an AA pattern is larger than the predetermined minimum support (i.e. threshold), it is called a frequent pattern. With these discovered patterns, we offer the biologists a novel point of view, which will improve the prediction accuracy of protein-protein recognition. In our experiments, we produced the AA patterns by data mining. As a result, we found that arginine (arg) most frequently appears on the binding sites of two proteins in the recognition protein complexes, while cysteine (cys) appears the fewest. In addition, if we discriminate the shape

  7. Dissecting the roles of the androgen receptor in prostate cancer from molecular perspectives.

    PubMed

    Hu, Jieping; Wang, Gongxian; Sun, Ting

    2017-05-01

    Androgen receptor plays a pivotal role in prostate cancer progression, and androgen deprivation therapy to intercept androgen receptor signal pathway is an indispensable treatment for most advanced prostate cancer patients to delay cancer progression. However, the emerging of castration-resistant prostate cancer reminds us the alteration of androgen receptor, which includes androgen receptor mutation, the formation of androgen receptor variants, and androgen receptor distribution in cancer cells. In this review, we introduce the process of androgen receptor and also its variants' formation, translocation, and function alteration by protein modification or interaction with other pathways. We dissect the roles of androgen receptor in prostate cancer from molecular perspective to provide clues for battling prostate cancer, especially castration-resistant prostate cancer.

  8. Purification of Proteins Fused to Maltose-Binding Protein.

    PubMed

    Lebendiker, Mario; Danieli, Tsafi

    2017-01-01

    Maltose-Binding Protein (MBP) is one of the most popular fusion partners being used for producing recombinant proteins in bacterial cells. MBP allows the use of a simple capture affinity step on Amylose-Agarose or Dextrin-Sepharose columns, resulting in a protein that is often 70-90 % pure in a single step. In addition to protein isolation applications, MBP provides a high degree of translation, and facilitates the proper folding and solubility of the target protein. This paper describes efficient procedures for isolating highly purified MBP target proteins. Special attention is given to considerations for downstream applications such as structural determination studies, protein activity assays, and assessing the chemical characteristics of the target protein.

  9. RNA-binding proteins in plants: the tip of an iceberg?

    NASA Technical Reports Server (NTRS)

    Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)

    2002-01-01

    RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.

  10. FK506-Binding Proteins and Their Diverse Functions.

    PubMed

    Tong, Mingming; Jiang, Yu

    2015-01-01

    FK506 binding proteins (FKBPs) are a family of highly conserved proteins in eukaryotes. The prototype of this protein family, FKBP12, is the binding partner for immunosuppressive drugs FK506 and rapamycin. FKBP12 functions as a cis/trans peptidyl prolyl isomerase (PPIase) that catalyzes interconversion between prolyl cis/trans conformations. Members of the FKBP family contain one or several PPIase domains, which do not always exhibit PPIase activity yet are all essential for their function. FKBPs are involved in diverse cellular functions including protein folding, cellular signaling, apoptosis and transcription. They elicit their function through direct binding and altering conformation of their target proteins, hence acting as molecular switches. In this review, we provide a general summary for the structures and diverse functions of FKBPs found in mammalian cells.

  11. Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism

    PubMed Central

    Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue

    2015-01-01

    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding. PMID:25856773

  12. Development of an electrochemical detection system for measuring DNA methylation levels using methyl CpG-binding protein and glucose dehydrogenase-fused zinc finger protein.

    PubMed

    Lee, Jinhee; Yoshida, Wataru; Abe, Koichi; Nakabayashi, Kazuhiko; Wakeda, Hironobu; Hata, Kenichiro; Marquette, Christophe A; Blum, Loïc J; Sode, Koji; Ikebukuro, Kazunori

    2017-07-15

    DNA methylation level at a certain gene region is considered as a new type of biomarker for diagnosis and its miniaturized and rapid detection system is required for diagnosis. Here we have developed a simple electrochemical detection system for DNA methylation using methyl CpG-binding domain (MBD) and a glucose dehydrogenase (GDH)-fused zinc finger protein. This analytical system consists of three steps: (1) methylated DNA collection by MBD, (2) PCR amplification of a target genomic region among collected methylated DNA, and (3) electrochemical detection of the PCR products using a GDH-fused zinc finger protein. With this system, we have successfully measured the methylation levels at the promoter region of the androgen receptor gene in 10 6 copies of genomic DNA extracted from PC3 and TSU-PR1 cancer cell lines. Since no sequence analysis or enzymatic digestion is required for this detection system, DNA methylation levels can be measured within 3h with a simple procedure. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. RECOMBINANT ANDROGEN RECEPTOR (AR) BINDING ACROSS VERTEBRATE SPECIES: COMPARISON OF BINDING OF ENVIRONMENTAL COMPOUNDS TO HUMAN, RAINBOW TROUT AND FATHEAD MINNOW AR.

    EPA Science Inventory

    In vitro screening assays designed to identify androgen mimics or antagonists typically use mammalian (rat, human) androgen receptors (AR). Although the amino acid sequences of receptors from nonmammalian vertebrates are not identical to the mammalian receptors, it is uncertain ...

  14. Multivalent Peptidomimetic Conjugates as Inhibitors of Androgen Receptor Function in Therapy Resistant Prostate Cancer

    DTIC Science & Technology

    2016-10-01

    hormones that play a critical role in stimulating prostate cancer growth . Androgens activate a protein called the androgen receptor (AR), which...5-15 3 1. INTRODUCTION: Androgens are hormones that play a critical role in stimulating prostate cancer growth . Androgens...regulates genes involved in cell growth . Although powerful anti-androgen drugs can be administered to block AR action and have been used successfully to

  15. Canine REIC/Dkk-3 interacts with SGTA and restores androgen receptor signalling in androgen-independent prostate cancer cell lines.

    PubMed

    Kato, Yuiko; Ochiai, Kazuhiko; Kawakami, Shota; Nakao, Nobuhiro; Azakami, Daigo; Bonkobara, Makoto; Michishita, Masaki; Morimatsu, Masami; Watanabe, Masami; Omi, Toshinori

    2017-06-09

    The pathological condition of canine prostate cancer resembles that of human androgen-independent prostate cancer. Both canine and human androgen receptor (AR) signalling are inhibited by overexpression of the dimerized co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA), which is considered to cause the development of androgen-independency. Reduced expression in immortalised cells (REIC/Dkk-3) interferes with SGTA dimerization and rescues AR signalling. This study aimed to assess the effects of REIC/Dkk-3 and SGTA interactions on AR signalling in the canine androgen-independent prostate cancer cell line CHP-1. Mammalian two-hybrid and Halo-tagged pull-down assays showed that canine REIC/Dkk-3 interacted with SGTA and interfered with SGTA dimerization. Additionally, reporter assays revealed that canine REIC/Dkk-3 restored AR signalling in both human and canine androgen-independent prostate cancer cells. Therefore, we confirmed the interaction between canine SGTA and REIC/Dkk-3, as well as their role in AR signalling. Our results suggest that this interaction might contribute to the development of a novel strategy for androgen-independent prostate cancer treatment. Moreover, we established the canine androgen-independent prostate cancer model as a suitable animal model for the study of this type of treatment-refractory human cancer.

  16. EMSA Analysis of DNA Binding By Rgg Proteins

    PubMed Central

    LaSarre, Breah; Federle, Michael J.

    2016-01-01

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases). PMID:27430004

  17. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    PubMed

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  18. Phosphoinositide-binding proteins in autophagy.

    PubMed

    Lystad, Alf Håkon; Simonsen, Anne

    2016-08-01

    Phosphoinositides represent a very small fraction of membrane phospholipids, having fast turnover rates and unique subcellular distributions, which make them perfect for initiating local temporal effects. Seven different phosphoinositide species are generated through reversible phosphorylation of the inositol ring of phosphatidylinositol (PtdIns). The negative charge generated by the phosphates provides specificity for interaction with various protein domains that commonly contain a cluster of basic residues. Examples of domains that bind phosphoinositides include PH domains, WD40 repeats, PX domains, and FYVE domains. Such domains often display specificity toward a certain species or subset of phosphoinositides. Here we will review the current literature of different phosphoinositide-binding proteins involved in autophagy. © 2016 Federation of European Biochemical Societies.

  19. Development of Selective Androgen Receptor Modulators (SARMs)

    PubMed Central

    Narayanan, Ramesh; Coss, Christopher C.; Dalton, James T.

    2018-01-01

    The Androgen Receptor (AR), a member of the steroid hormone receptor family, plays important roles in the physiology and pathology of diverse tissues. AR ligands, which include circulating testosterone and locally synthesized dihydrotestosterone, bind to and activate the AR to elicit their effects. Ubiquitous expression of the AR, metabolism and cross reactivity with other receptors limit broad therapeutic utilization of steroidal androgens. However, the discovery of selective androgen receptor modulators (SARMs) and other tissue-selective nuclear hormone receptor modulators that activate their cognate receptors in a tissue-selective manner provides an opportunity to promote the beneficial effects of androgens and other hormones in target tissues with greatly reduced unwanted side-effects. In the last two decades, significant resources have been dedicated to the discovery and biological characterization of SARMs in an effort to harness the untapped potential of the AR. SARMs have been proposed as treatments of choice for various diseases, including muscle-wasting, breast cancer, and osteoporosis. This review provides insight into the evolution of SARMs from proof-of-concept agents to the cusp of therapeutic use in less than two decades, while covering contemporary views of their mechanisms of action and therapeutic benefits. PMID:28624515

  20. Ion Binding Energies Determining Functional Transport of ClC Proteins

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  1. Protein Binding Capacity of Different Forages Tannin

    NASA Astrophysics Data System (ADS)

    Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.

    2018-02-01

    Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (P<0.01). The Leucaena leucocephala has highest hydrolysable tannin (HT) level (P<0.01). The total and condensed tannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (P<0.01). The optimum binding of BSA to tannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.

  2. Kinetics of the phosphotransferase reaction of the catalytic subunit of the tick salivary gland cAMP-dependent protein kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mane, S.D.; Essenberg, R.C.; Sauer, J.R.

    1986-05-01

    The catalytic subunit of the cAMP dependent protein kinase was purified 100-fold from tick salivary glands. The enzyme mechanism of the phosphotransferase reaction catalyzed by this subunit was investigated. Highly purified enzyme did not show ATP-ase activity in the absence of protein substrates. Initial velocities were measured using histone H-1 or a synthetic heptapeptide, Kemptide, as P/sub i/ acceptors and (..gamma..-/sup 32/P) ATP as a phosphodonor. Patterns were consistent with a sequential, but not a ping pong mechanism. At high concentration (>2Km), histone showed substrate inhibition which was noncompetitive versus ATP. Product inhibition by Mg.ADP was competitive versus ATP andmore » noncompetitive with respect to H-1. Phosphohistone on the other hand was noncompetitive with respect to H-1, but gave parabolic competitive inhibition against ATP. Dead-end inhibition by AMP-PNP, an analogue of ATP, was competitive and noncompetitive against ATP and H-1, respectively. The inhibitory of cAMP dependent protein kinase was noncompetitive with ATP and competitive with histone. These studies strongly suggest that the tick salivary gland protein kinase has a sequential mechanism with primarily ordered addition of ATP followed by protein substrate and ordered release of phosphoprotein and ADP, but some random character.« less

  3. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    PubMed

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  4. Protein interactions and ligand binding: from protein subfamilies to functional specificity.

    PubMed

    Rausell, Antonio; Juan, David; Pazos, Florencio; Valencia, Alfonso

    2010-02-02

    The divergence accumulated during the evolution of protein families translates into their internal organization as subfamilies, and it is directly reflected in the characteristic patterns of differentially conserved residues. These specifically conserved positions in protein subfamilies are known as "specificity determining positions" (SDPs). Previous studies have limited their analysis to the study of the relationship between these positions and ligand-binding specificity, demonstrating significant yet limited predictive capacity. We have systematically extended this observation to include the role of differential protein interactions in the segregation of protein subfamilies and explored in detail the structural distribution of SDPs at protein interfaces. Our results show the extensive influence of protein interactions in the evolution of protein families and the widespread association of SDPs with protein interfaces. The combined analysis of SDPs in interfaces and ligand-binding sites provides a more complete picture of the organization of protein families, constituting the necessary framework for a large scale analysis of the evolution of protein function.

  5. Targeted Approaches Applied to Uncommon Diseases: A Case of Salivary Duct Carcinoma Metastatic to the Brain Treated with the Multikinase Inhibitor Neratinib

    PubMed Central

    Sorenson, Karl R.; Piovezani Ramos, Guilherme; Villasboas Bisneto, Jose Caetano; Price, Katharine

    2017-01-01

    Salivary duct carcinoma is a rare malignancy associated with hormone receptor and human epidermal growth factor receptor 2 (HER2) overexpression. Local surgical control is the cornerstone of therapy, but a subset of patients develops metastatic disease portending a poor prognosis and limited management options. Intracranial metastases are an uncommon manifestation and present a therapeutic challenge. We report the case of a 31-year-old male who presented with facial pain and swelling subsequently diagnosed with salivary duct carcinoma. Our patient underwent extensive locoregional resection and analysis of the tumor tissue demonstrated evidence of androgen receptor expression and HER2 overexpression. His course was complicated by metastatic extra- and intracranial recurrence despite combined modality treatment with radiation and chemotherapy followed by anti-HER2 monoclonal antibody therapy and androgen deprivation therapy. After exhausting standard treatment options, he received experimental therapy with a new small-molecule tyrosine kinase inhibitor, neratinib, with evidence of a transient clinical response and no significant adverse effects. This case exemplifies the potential and limitations of targeted therapy, particularly when applied to patients with rare diseases and presentations. PMID:28878657

  6. Targeted Approaches Applied to Uncommon Diseases: A Case of Salivary Duct Carcinoma Metastatic to the Brain Treated with the Multikinase Inhibitor Neratinib.

    PubMed

    Sorenson, Karl R; Piovezani Ramos, Guilherme; Villasboas Bisneto, Jose Caetano; Price, Katharine

    2017-01-01

    Salivary duct carcinoma is a rare malignancy associated with hormone receptor and human epidermal growth factor receptor 2 (HER2) overexpression. Local surgical control is the cornerstone of therapy, but a subset of patients develops metastatic disease portending a poor prognosis and limited management options. Intracranial metastases are an uncommon manifestation and present a therapeutic challenge. We report the case of a 31-year-old male who presented with facial pain and swelling subsequently diagnosed with salivary duct carcinoma. Our patient underwent extensive locoregional resection and analysis of the tumor tissue demonstrated evidence of androgen receptor expression and HER2 overexpression. His course was complicated by metastatic extra- and intracranial recurrence despite combined modality treatment with radiation and chemotherapy followed by anti-HER2 monoclonal antibody therapy and androgen deprivation therapy. After exhausting standard treatment options, he received experimental therapy with a new small-molecule tyrosine kinase inhibitor, neratinib, with evidence of a transient clinical response and no significant adverse effects. This case exemplifies the potential and limitations of targeted therapy, particularly when applied to patients with rare diseases and presentations.

  7. A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins.

    PubMed

    Rinaldi, A; Jourdes, M; Teissedre, P L; Moio, L

    2014-12-01

    The flavan-3-ol and proanthocyanidin composition of Aglianico seeds and skins were for the first time determined by HPLC-MS in comparison with the international grapes Merlot and Cabernet Sauvignon. Monomers [(+)-catechin C, (-)-epicatechin EC, (-)-epicatechin-3-O-gallate, ECG] and oligomers [B1, B2, B3, B4 dimers and trimer C1] were identified and quantified in grape extracts. In order to evaluate the reactivity towards salivary proteins of model wine solutions of seeds and skins monomeric/oligomeric and polymeric fractions, the Saliva Precipitation Index (SPI) was carried out. Fractions were also analyzed for their mean degree of polymerization (mDP), percentage of galloylation (%G) and of prodelphinidin (%P) by phloroglucinolysis. Aglianico was the most effective in precipitating proteins than Merlot and Cabernet Sauvignon, mainly for the high percentage of galloylation of grape fractions. The mDP and the percentage of ECG in terminal units resulted to significantly contribute to the precipitation of salivary proteins by grape proanthocyanidins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Structural Analysis of Semi-specific Oligosaccharide Recognition by a Cellulose-binding Protein of Thermotoga maritima Reveals Adaptations for Functional Diversification of the Oligopeptide Periplasmic Binding Protein Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.

    Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T.more » maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of {beta}(1 {yields} 4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.« less

  9. Multivalent Peptidomimetic Conjugates as Inhibitors of Androgen Receptor Function in Therapy-Resistant Prostate Cancer

    DTIC Science & Technology

    2017-10-01

    Requirements ........................ 5 9. Appendices ......................................................... none 1. INTRODUCTION: Androgens are ...hormones that play a critical role in stimulating prostate cancer growth. Androgens activate a protein called the androgen receptor ( AR ), which...regulates genes involved in cell growth. Although powerful anti-androgen drugs can be administered to block AR action and have been used successfully to

  10. Somatic mutations in salivary duct carcinoma and potential therapeutic targets

    PubMed Central

    Smith, Joel A.; Clarke, Angus J.; Luk, Peter P.; Selinger, Christina I.; Mahon, Kate L.; Kraitsek, Spiridoula; Palme, Carsten; Boyer, Michael J.; Dinger, Marcel E.; Cowley, Mark J.; O’Toole, Sandra A.

    2017-01-01

    Background Salivary duct carcinomas (SDCa) are rare highly aggressive malignancies. Most patients die from distant metastatic disease within three years of diagnosis. There are limited therapeutic options for disseminated disease. Results 11 cases showed androgen receptor expression and 6 cases showed HER2 amplification. 6 Somatic mutations with additional available targeted therapies were identified: EGFR (p.G721A: Gefitinib), PDGFRA (p.H845Y: Imatinib and Crenolanib), PIK3CA (p.H1047R: Everolimus), ERBB2 (p.V842I: Lapatinib), HRAS (p.Q61R: Selumetinib) and KIT (p.T670I: Sorafenib). Furthermore, alterations in PTEN, PIK3CA and HRAS that alter response to androgen deprivation therapy and HER2 inhibition were also seen. Materials and Methods Somatic mutation analysis was performed on DNA extracted from 15 archival cases of SDCa using the targeted Illumina TruSeq Amplicon Cancer Panel. Potential targetable genetic alterations were identified using extensive literature and international somatic mutation database (COSMIC, KEGG) search. Immunohistochemistry for androgen receptor and immunohistochemistry and fluorescent in situ hybridization for HER2 were also performed. Conclusions SDCa show multiple somatic mutations, some that are amenable to pharmacologic manipulation and others that confer resistance to treatments currently under investigation. These findings emphasize the need to develop testing and treatment strategies for SDCa. PMID:29100278

  11. Method for estimating protein binding capacity of polymeric systems.

    PubMed

    Sharma, Vaibhav; Blackwood, Keith A; Haddow, David; Hook, Lilian; Mason, Chris; Dye, Julian F; García-Gareta, Elena

    2015-01-01

    Composite biomaterials made from synthetic and protein-based polymers are extensively researched in tissue engineering. To successfully fabricate a protein-polymer composite, it is critical to understand how strongly the protein binds to the synthetic polymer, which occurs through protein adsorption. Currently, there is no cost-effective and simple method for characterizing this interfacial binding. To characterize this interfacial binding, we introduce a simple three-step method that involves: 1) synthetic polymer surface characterisation, 2) a quick, inexpensive and robust novel immuno-based assay that uses protein extraction compounds to characterize protein binding strength followed by 3) an in vitro 2D model of cell culture to confirm the results of the immuno-based assay. Fibrinogen, precursor of fibrin, was adsorbed (test protein) on three different polymeric surfaces: silicone, poly(acrylic acid)-coated silicone and poly(allylamine)-coated silicone. Polystyrene surface was used as a reference. Characterisation of the different surfaces revealed different chemistry and roughness. The novel immuno-based assay showed significantly stronger binding of fibrinogen to both poly(acrylic acid) and poly(allylamine) coated silicone. Finally, cell studies showed that the strength of the interaction between the protein and the polymer had an effect on cell growth. This novel immuno-based assay is a valuable tool in developing composite biomaterials of synthetic and protein-based polymers with the potential to be applied in other fields of research where protein adsorption onto surfaces plays an important role.

  12. A tool for calculating binding-site residues on proteins from PDB structures.

    PubMed

    Hu, Jing; Yan, Changhui

    2009-08-03

    In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB) that consists of the protein of interest and its interacting partner(s) and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. The developed tool is very useful for the research on protein binding site analysis and prediction.

  13. Change of salivary stress marker concentrations during pregnancy: maternal depressive status suppress changes of those levels.

    PubMed

    Tsubouchi, Hiroaki; Nakai, Yuichiro; Toda, Masahiro; Morimoto, Kanehisa; Chang, Yang Sil; Ushioda, Norichika; Kaku, Shoji; Nakamura, Takafumi; Kimura, Tadashi; Shimoya, Koichiro

    2011-08-01

    The aim of the present study was to show changes in salivary cortisol and chromogranin A/protein concentrations as stress markers during pregnancy and to clarify the effect of chronic stress on stress markers. Salivary samples were collected from 69 pregnant women during pregnancy. Salivary cortisol levels and chromogranin A/protein titers were determined. We surveyed the women's chronic stress using the Zung self-rating depression scale and General Health Questionnaire-28. Cortisol levels in the saliva of pregnant women showed biphasic change during pregnancy. Chromogranin A/protein levels in the saliva of pregnant women increased in the second and the early third trimesters and decreased to the puerperal period. Salivary cortisol concentrations of the chronic high stress group were significantly lower compared with those of the normal group. Salivary chromogranin A/protein concentrations of the chronic high stress group were also significantly lower than those of the normal group. The titration of salivary cortisol concentrations and chromogranin A/protein levels is a useful tool to determine maternal stress levels. The elevation of cortisol and chromogranin A/protein in the saliva was suppressed in the chronic high stress group during pregnancy. © 2011 The Authors. Journal of Obstetrics and Gynaecology Research © 2011 Japan Society of Obstetrics and Gynecology.

  14. Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants.

    PubMed

    Rohrback, Suzanne E; Wheatly, Michele G; Gillen, Christopher M

    2015-01-01

    Sarcoplasmic calcium binding protein (SCP) is a high-affinity calcium buffering protein expressed in muscle of crayfish and other invertebrates. In previous work, we identified three splice variants of Procambarus clarkii SCP (pcSCP1a, pcSCP1b, and pcSCP1c) that differ in a 37 amino acid region that lies mainly between the 2nd and 3ed EF-hand calcium binding domain. To evaluate the function of the proteins encoded by the pcSCP1 transcripts, we produced recombinant pcSCP1 and used tryptophan fluorescence to characterize calcium binding. Tryptophan fluorescence of pcSCP1a decreased in response to increased calcium, while tryptophan fluorescence of the pcSCP1b and pcSCP1c variants increased. We estimated calcium binding constants and Hill coefficients with two different equations: the standard Hill equation and a modified Hill equation that accounts for contributions from two different tryptophans. The approaches gave similar results. Steady-state calcium binding constants (Kd) ranged from 2.7±0.7×10(-8)M to 5.6±0.1×10(-7)M, consistent with previous work. Variants displayed significantly different apparent calcium affinities, which were decreased in the presence of magnesium. Calcium Kd was lowest for pcSCP1a and highest for pcSCP1c. Site-directed mutagenesis of pcSCP1c residues to the amino acids of pcSCP1b decreased the calcium Kd, identifying residues outside the EF-hand domains that contribute to calcium binding in crayfish SCP. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein-Ligand Binding: Binding Site Variability

    PubMed Central

    Raman, E. Prabhu; MacKerell, Alexander D.

    2015-01-01

    The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  16. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.

    PubMed

    Chen, Eileen; Joseph, Simpson

    2015-07-01

    Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS). Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  17. Bioprospection of immature salivary glands of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae).

    PubMed

    Caleffe, Ronaldo Roberto Tait; de Oliveira, Stefany Rodrigues; Gigliolli, Adriana Aparecida Sinópolis; Ruvolo-Takasusuki, Maria Claudia Colla; Conte, Helio

    2018-06-08

    Larval therapy (LT) comprises the application of sterile Calliphoridae larvae for wound debridement, disinfection, and healing in humans and animals. Larval digestion plays a key role in LT, where the salivary glands and gut produce and secrete proteolytic and antimicrobial substances. The objective of this work was to bioprospect the salivary glands of Chrysomya megacephala (Fabricius, 1794) larvae, using ultrastructural, morphological, and histological observations, and the total protein electrophoretic profile. The salivary glands present a deferent duct, originating from the buccal cavity, which bifurcates into efferent ducts that insert through a slight dilatation to a pair of tubular-shaped tissues, united in the region of fat cells. Histologically, the secretion had protein characteristics. Cell cytoplasm presented numerous free ribosomes, autophagic vacuoles, spherical and elongated mitochondria, atypical Golgi complexes, and dilated rough endoplasmic reticulum. In the apical cytoplasm, secretory granules and microvilli secretions demonstrated intense protein synthesis, basal cytoplasm with trachea insertions, and numerous mitochondria. The present work described the ultrastructure and morphology of C. megacephala third instar salivary glands, confirming intense protein synthesis and the molecular weight of soluble proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The salivary glands of two sand fly vectors of Leishmania: Lutzomyia migonei (França) and Lutzomyia ovallesi (Ortiz)(Diptera: Psychodidae).

    PubMed

    Nieves, Elsa; Buelvas, Neudo; Rondón, Maritza; González, Néstor

    2010-01-01

    Leishmaniasis is a vector-borne disease transmitted by the intradermal inoculation of Leishmania (Kinetoplastida: Trypanosomatidae) promastigotes together with saliva during the bite of an infected sand fly. The salivary glands were compared from two vector species, Lutzomyia ovallesi (Ortiz,1952) and Lutzomyia migonei (França,1920) (Diptera: Psychodidae). Protein profiles by SDS PAGE of salivary glands were compared among species as well as their development at several times post feeding. First, mice were immunized to salivary proteins by exposure to biting by L. ovallesi and of L. migonei. Antibodies in these mice against salivary gland-specific proteins were evaluated by immunoblotting. No apparent change was revealed in the kinetic expression of salivary proteins induced by the different physiological states post feeding. Qualitative and quantitative variations were detected in16-18 polypeptides with molecular weights ranging from 6 to 180 kDa. Species-specific proteins were demonstrated for L. migonei and L. ovallesi. In addition, antibodies against salivary gland specific proteins were found in mice immunized by the saliva of both species. Basic information was obtained concerning the nature of salivary gland proteins of L. migonei and L. ovallesi. This information helps to elucidate the role of salivary proteins and their potential as effective tools in screening risk factors in human and other vertebrate hosts.

  19. Responsiveness to 6-n-Propylthiouracil (PROP) Is Associated with Salivary Levels of Two Specific Basic Proline-Rich Proteins in Humans

    PubMed Central

    Cabras, Tiziana; Melis, Melania; Castagnola, Massimo; Padiglia, Alessandra; Tepper, Beverly J.; Messana, Irene; Tomassini Barbarossa, Iole

    2012-01-01

    Thiourea tasting can be predictive of individual differences in bitter taste responses, general food preferences and eating behavior, and could be correlated with saliva chemical composition. We investigated the possible relationship between PROP bitter taste responsiveness and the salivary proteome in subjects genotyped for TAS2R38 and gustin gene polymorphisms. Taste perception intensity evoked by PROP and NaCl solutions was measured in sixty-three volunteers (21 males, 42 females, age 25±3 y) to establish their PROP taster status, and 24 PROP super-tasters and 21 nontasters were selected to participate in the study. TAS2R38 and gustin gene molecular analysis were performed using PCR techniques. Qualitative and quantitative determination of salivary proteins was performed by HPLC-ESI-MS before and after PROP taste stimulation. PROP super-tastings was strongly associated with the ‘taster’ variant (PAV haplotype) of TAS2R38 and the A allele of rs2274333 polymorphism in the gustin gene and nontasting was associated with the minor alleles at both loci. ANOVA revealed that basal levels of II-2 and Ps-1 proteins, belonging to the basic proline-rich protein (bPRPs) family, were significantly higher in PROP super-taster than in nontaster un-stimulated saliva, and that PROP stimulation elicited a rapid increase in the levels of these same proteins only in PROP super-taster saliva. These data show for the first time that responsiveness to PROP is associated with salivary levels of II-2 peptide and Ps-1 protein, which are products of the PRB1 gene. These findings suggest that PRB1, in addition to TAS2R38 and gustin, could contribute to individual differences in thiourea sensitivity, and the expression of the PROP phenotype as a complex genetic trait. PMID:22312435

  20. Responsiveness to 6-n-propylthiouracil (PROP) is associated with salivary levels of two specific basic proline-rich proteins in humans.

    PubMed

    Cabras, Tiziana; Melis, Melania; Castagnola, Massimo; Padiglia, Alessandra; Tepper, Beverly J; Messana, Irene; Tomassini Barbarossa, Iole

    2012-01-01

    Thiourea tasting can be predictive of individual differences in bitter taste responses, general food preferences and eating behavior, and could be correlated with saliva chemical composition. We investigated the possible relationship between PROP bitter taste responsiveness and the salivary proteome in subjects genotyped for TAS2R38 and gustin gene polymorphisms. Taste perception intensity evoked by PROP and NaCl solutions was measured in sixty-three volunteers (21 males, 42 females, age 25±3 y) to establish their PROP taster status, and 24 PROP super-tasters and 21 nontasters were selected to participate in the study. TAS2R38 and gustin gene molecular analysis were performed using PCR techniques. Qualitative and quantitative determination of salivary proteins was performed by HPLC-ESI-MS before and after PROP taste stimulation. PROP super-tastings was strongly associated with the 'taster' variant (PAV haplotype) of TAS2R38 and the A allele of rs2274333 polymorphism in the gustin gene and nontasting was associated with the minor alleles at both loci. ANOVA revealed that basal levels of II-2 and Ps-1 proteins, belonging to the basic proline-rich protein (bPRPs) family, were significantly higher in PROP super-taster than in nontaster un-stimulated saliva, and that PROP stimulation elicited a rapid increase in the levels of these same proteins only in PROP super-taster saliva. These data show for the first time that responsiveness to PROP is associated with salivary levels of II-2 peptide and Ps-1 protein, which are products of the PRB1 gene. These findings suggest that PRB1, in addition to TAS2R38 and gustin, could contribute to individual differences in thiourea sensitivity, and the expression of the PROP phenotype as a complex genetic trait.

  1. Probiotic bacteria affect the composition of salivary pellicle and streptococcal adhesion in vitro.

    PubMed

    Haukioja, A; Loimaranta, V; Tenovuo, J

    2008-08-01

    The use of probiotic bacteria is increasing worldwide and at least some of them can transiently colonize the oral cavity. Several studies have shown that probiotic bacteria, which are often thought of in relation only to intestinal health, can also affect the oral ecology, but the mechanisms for this are largely unknown. The aim of this study was to investigate in vitro if the probiotic bacteria used in commercial products affect the protein composition of the salivary pellicle and the adherence of other oral bacteria. Salivary pellicle on hydroxyapatite and the adhesion of two oral streptococci, Streptococcus mutans and Streptococcus gordonii, were used as a model. Probiotic bacteria that bound to saliva-coated hydroxyapatite reduced the adhesion of S. mutans but the inhibitory effect on the adherence of S. gordonii was weaker. Salivary pellicle protein composition was modified by all the strains tested. The modifications in the pellicle affected the adherence of S. mutans but not of S. gordonii. Two of the proteins missing from the pellicles made of saliva-treated with the probiotic bacteria were identified as salivary agglutinin gp340 and salivary peroxidase. All bacterial strains bound salivary agglutinin gp340. The ability of the probiotic bacteria to degrade peroxidase was demonstrated with purified bovine lactoperoxidase and two of the probiotic strains. This in vitro study showed that probiotic strains used in commercial products may affect the oral ecology by specifically preventing the adherence of other bacteria and by modifying the protein composition of the salivary pellicle.

  2. Adrenocortical nuclear progesterone-binding protein: Identification by photoaffinity labeling and evidence for deoxyribonucleic acid binding and stimulation by adrenocorticotropin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demura, T.; Driscoll, W.J.; Lee, Y.C.

    1991-01-01

    Nuclei of the guinea pig adrenal cortex contain a protein that specifically binds progesterone and that, biochemically, is clearly distinct from the classical progesterone receptor. The adrenocortical nuclear progesterone-binding protein has now been purified more than 2000-fold by steroid-affinity chromatography with a 75% yield. The purified protein preparation demonstrated three major bands on sodium dodecyl sulfate-polyacrylamide gel of 79K, 74K, and 50K. To determine which of the three might represent the progesterone-binding protein, steroid photoaffinity labeling was performed which resulted in the specific and exclusive labeling of a 50K band. Thus, the adrenocortical nuclear progesterone-binding protein appears to be distinctmore » from the classical progesterone receptor not only biochemically, but also on the basis of molecular size. To test whether the adrenocortical nuclear progesterone-binding protein can be hormonally stimulated, guinea pigs were treated with ACTH. The chronic administration of ACTH caused a 4- to 6-fold increase in the specific progesterone binding capacity without a change in the binding affinity. There appeared to be no significant difference in nuclear progesterone binding between the zona fasciculata and zona reticularis. This finding suggests a mediating role for the progesterone-binding protein in ACTH action. In addition, the nuclear progesterone-binding protein bound to nonspecific DNA sequences, further suggesting a possible transcriptional regulatory role.« less

  3. Odorant-Binding Protein: Localization to Nasal Glands and Secretions

    NASA Astrophysics Data System (ADS)

    Pevsner, Jonathan; Sklar, Pamela B.; Snyder, Solomon H.

    1986-07-01

    An odorant-binding protein (OBP) was isolated from bovine olfactory and respiratory mucosa. We have produced polyclonal antisera to this protein and report its immunohistochemical localization to mucus-secreting glands of the olfactory and respiratory mucosa. Although OBP was originally isolated as a pyrazine binding protein, both rat and bovine OBP also bind the odorants [3H]methyldihydrojasmonate and 3,7-dimethyl-octan-1-ol as well as 2-isobutyl-3-[3H]methoxypyrazine. We detect substantial odorant-binding activity attributable to OBP in secreted rat nasal mucus and tears but not in saliva, suggesting a role for OBP in transporting or concentrating odorants.

  4. Coupled binding-bending-folding: The complex conformational dynamics of protein-DNA binding studied by atomistic molecular dynamics simulations.

    PubMed

    van der Vaart, Arjan

    2015-05-01

    Protein-DNA binding often involves dramatic conformational changes such as protein folding and DNA bending. While thermodynamic aspects of this behavior are understood, and its biological function is often known, the mechanism by which the conformational changes occur is generally unclear. By providing detailed structural and energetic data, molecular dynamics simulations have been helpful in elucidating and rationalizing protein-DNA binding. This review will summarize recent atomistic molecular dynamics simulations of the conformational dynamics of DNA and protein-DNA binding. A brief overview of recent developments in DNA force fields is given as well. Simulations have been crucial in rationalizing the intrinsic flexibility of DNA, and have been instrumental in identifying the sequence of binding events, the triggers for the conformational motion, and the mechanism of binding for a number of important DNA-binding proteins. Molecular dynamics simulations are an important tool for understanding the complex binding behavior of DNA-binding proteins. With recent advances in force fields and rapid increases in simulation time scales, simulations will become even more important for future studies. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.

  5. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    PubMed

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  6. Characterizing protein domain associations by Small-molecule ligand binding

    PubMed Central

    Li, Qingliang; Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.

    2012-01-01

    Background Protein domains are evolutionarily conserved building blocks for protein structure and function, which are conventionally identified based on protein sequence or structure similarity. Small molecule binding domains are of great importance for the recognition of small molecules in biological systems and drug development. Many small molecules, including drugs, have been increasingly identified to bind to multiple targets, leading to promiscuous interactions with protein domains. Thus, a large scale characterization of the protein domains and their associations with respect to small-molecule binding is of particular interest to system biology research, drug target identification, as well as drug repurposing. Methods We compiled a collection of 13,822 physical interactions of small molecules and protein domains derived from the Protein Data Bank (PDB) structures. Based on the chemical similarity of these small molecules, we characterized pairwise associations of the protein domains and further investigated their global associations from a network point of view. Results We found that protein domains, despite lack of similarity in sequence and structure, were comprehensively associated through binding the same or similar small-molecule ligands. Moreover, we identified modules in the domain network that consisted of closely related protein domains by sharing similar biochemical mechanisms, being involved in relevant biological pathways, or being regulated by the same cognate cofactors. Conclusions A novel protein domain relationship was identified in the context of small-molecule binding, which is complementary to those identified by traditional sequence-based or structure-based approaches. The protein domain network constructed in the present study provides a novel perspective for chemogenomic study and network pharmacology, as well as target identification for drug repurposing. PMID:23745168

  7. Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes.

    PubMed

    Hanski, E; Caparon, M

    1992-07-01

    Binding to fibronectin has been suggested to play an important role in adherence of the group A streptococcus Streptococcus pyrogenes to host epithelial cells; however, the identity of the streptococcal fibronectin receptor has been elusive. Here we demonstrate that the fibronectin-binding property of S. pyogenes is mediated by protein F, a bacterial surface protein that binds fibronectin at high affinity. The gene encoding protein F (prtF) produced a functional fibronectin-binding protein in Escherichia coli. Insertional mutagenesis of the cloned gene generated a mutation that resulted in the loss of fibronectin-binding activity. When this mutation was introduced into the S. pyrogenes chromosome by homologous recombination with the wild-type allele, the resulting strains no longer produced protein F and lost their ability to bind fibronectin. The mutation could be complemented by prtF introduced on a plasmid. Mutants lacking protein F had a much lower capacity to adhere to respiratory epithelial cells. These results demonstrate that protein F is an important adhesin of S. pyogenes.

  8. Baicalein suppresses the androgen receptor (AR)-mediated prostate cancer progression via inhibiting the AR N-C dimerization and AR-coactivators interaction.

    PubMed

    Xu, Defeng; Chen, Qiulu; Liu, Yalin; Wen, Xingqiao

    2017-12-01

    Androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and progression. Androgen deprivation therapy with antiandrogens to reduce androgen biosynthesis or prevent androgens from binding to AR are widely used to suppress AR-mediated PCa growth. However, most of ADT may eventually fail with development of the castration resistance after 12-24 months. Here we found that a natural product baicalein can effectively suppress the PCa progression via targeting the androgen-induced AR transactivation with little effect to AR protein expression. PCa cells including LNCaP, CWR22Rv1, C4-2, PC-3, and DU145, were treated with baicalein and luciferase assay was used to evaluate their effect on the AR transactivation. Cell growth and IC 50 were determined by MTT assay after 48 hrs treatment. RT-PCR was used to evaluate the mRNA levels of AR target genes including PSA, TMPRSS2, and TMEPA1. Western blot was used to determine AR and PSA protein expression. The natural product of baicalein can selectively inhibit AR transactivation with little effect on the other nuclear receptors, including ERα, and GR. At a low concentration, 2.5 μM of baicalein effectively suppresses the growth of AR-positive PCa cells, and has little effect on AR-negative PCa cells. Mechanism dissection suggest that baicalein can suppress AR target genes (PSA, TMPRSS2, and TMEPA1) expression in both androgen responsive LNCaP cells and castration resistant CWR22Rv1 cells, that may involve the inhibiting the AR N/C dimerization and AR-coactivators interaction. Baicalein may be developed as an effective anti-AR therapy via its ability to inhibit AR transactivation and AR-mediated PCa cell growth.

  9. Green Tea Consumption after Intense Taekwondo Training Enhances Salivary Defense Factors and Antibacterial Capacity

    PubMed Central

    Lin, Shiuan-Pey; Li, Chia-Yang; Suzuki, Katsuhiko; Chang, Chen-Kang; Chou, Kuei-Ming; Fang, Shih-Hua

    2014-01-01

    The aim of this study was to investigate the short-term effects of green tea consumption on selected salivary defense proteins, antibacterial capacity and anti-oxidation activity in taekwondo (TKD) athletes, following intensive training. Twenty-two TKD athletes performed a 2-hr TKD training session. After training, participants ingested green tea (T, caffeine 6 mg/kg and catechins 22 mg/kg) or an equal volume of water (W). Saliva samples were collected at three time points: before training (BT-T; BT-W), immediately after training (AT-T; AT-W), and 30 min after drinking green tea or water (Rec-T; Rec-W). Salivary total protein, immunoglobulin A (SIgA), lactoferrin, α-amylase activity, free radical scavenger activity (FRSA) and antibacterial capacity were measured. Salivary total protein, lactoferrin, SIgA concentrations and α-amylase activity increased significantly immediately after intensive TKD training. After tea drinking and 30 min rest, α-amylase activity and the ratio of α-amylase to total protein were significantly higher than before and after training. In addition, salivary antibacterial capacity was not affected by intense training, but green tea consumption after training enhanced salivary antibacterial capacity. Additionally, we observed that salivary FRSA was markedly suppressed immediately after training and quickly returned to pre-exercise values, regardless of which fluid was consumed. Our results show that green tea consumption significantly enhances the activity of α-amylase and salivary antibacterial capacity. PMID:24498143

  10. ADVANCES IN SALIVARY GLAND GENE THERAPY – ORAL AND SYSTEMIC IMPLICATIONS

    PubMed Central

    Baum, Bruce J.; Alevizos, Ilias; Chiorini, John A.; Cotrim, Ana P.; Zheng, Changyu

    2016-01-01

    Introduction Much research demonstrates the feasibility and efficacy of gene transfer to salivary glands. Recently, the first clinical trial targeting a salivary gland was completed, yielding positive safety and efficacy results. Areas covered There are two major disorders affecting salivary glands; radiation damage following treatment for head and neck cancers and Sjögren’s syndrome. Salivary gland gene transfer has also been employed in preclinical studies using transgenic secretory proteins for exocrine (upper gastrointestinal tract) and endocrine (systemic) applications. Expert opinion Salivary gland gene transfer is safe and can be beneficial in humans. Applications to treat and prevent radiation damage show considerable promise. A first-in-human clinical trial for the former was recently successfully completed. Studies on Sjögren’s syndrome suffer from an inadequate understanding of its etiology. Proof of concept in animal models has been shown for exocrine and endocrine disorders. Currently, the most promising exocrine application is for the management of obesity. Endocrine applications are limited, as it is currently impossible to predict if systemically required transgenic proteins will be efficiently secreted into the bloodstream. This results from not understanding of how secretory proteins are sorted. Future studies will likely employ ultrasound assisted and pseudotyped adenoassociated viral vector-mediated gene. PMID:26149284

  11. Phage display selection of peptides that target calcium-binding proteins.

    PubMed

    Vetter, Stefan W

    2013-01-01

    Phage display allows to rapidly identify peptide sequences with binding affinity towards target proteins, for example, calcium-binding proteins (CBPs). Phage technology allows screening of 10(9) or more independent peptide sequences and can identify CBP binding peptides within 2 weeks. Adjusting of screening conditions allows selecting CBPs binding peptides that are either calcium-dependent or independent. Obtained peptide sequences can be used to identify CBP target proteins based on sequence homology or to quickly obtain peptide-based CBP inhibitors to modulate CBP-target interactions. The protocol described here uses a commercially available phage display library, in which random 12-mer peptides are displayed on filamentous M13 phages. The library was screened against the calcium-binding protein S100B.

  12. A Novel Dietary Flavonoid Fisetin Inhibits Androgen Receptor Signaling and Tumor Growth in Athymic Nude Mice

    PubMed Central

    Khan, Naghma; Asim, Mohammad; Afaq, Farrukh; Zaid, Mohammad Abu; Mukhtar, Hasan

    2010-01-01

    Androgen receptor (AR)–mediated signaling plays an important role in the development and progression of prostate cancer (PCa). Hormonal therapies, mainly with combinations of antiandrogens and androgen deprivation, are the mainstay treatment for advanced disease. However, emergence of androgen resistance largely due to inefficient antihormone action limits their therapeutic usefulness. Here, we report that fisetin, a novel dietary flavonoid, acts as a novel AR ligand by competing with the high-affinity androgen to interact with the ligand binding domain of AR. We show that this physical interaction results in substantial decrease in AR stability and decrease in amino-terminal/carboxyl-terminal (N-C) interaction of AR. This results in blunting of AR-mediated transactivation of target genes including prostate-specific antigen (PSA). In addition, treatment of LNCaP cells with fisetin decreased AR protein levels, in part, by decreasing its promoter activity and by accelerating its degradation. Fisetin also synergized with Casodex in inducing apoptosis in LNCaP cells. Treatment with fisetin in athymic nude mice implanted with AR-positive CWR22Rυ1 human PCa cells resulted in inhibition of tumor growth and reduction in serum PSA levels. These data identify fisetin as an inhibitor of AR signaling axis and suggest that it could be a useful chemopreventive and chemotherapeutic agent to delay progression of PCa. PMID:18922931

  13. Simulation of Reversible Protein–Protein Binding and Calculation of Binding Free Energies Using Perturbed Distance Restraints

    PubMed Central

    2017-01-01

    Virtually all biological processes depend on the interaction between proteins at some point. The correct prediction of biomolecular binding free-energies has many interesting applications in both basic and applied pharmaceutical research. While recent advances in the field of molecular dynamics (MD) simulations have proven the feasibility of the calculation of protein–protein binding free energies, the large conformational freedom of proteins and complex free energy landscapes of binding processes make such calculations a difficult task. Moreover, convergence and reversibility of resulting free-energy values remain poorly described. In this work, an easy-to-use, yet robust approach for the calculation of standard-state protein–protein binding free energies using perturbed distance restraints is described. In the binding process the conformations of the proteins were restrained, as suggested earlier. Two approaches to avoid end-state problems upon release of the conformational restraints were compared. The method was evaluated by practical application to a small model complex of ubiquitin and the very flexible ubiquitin-binding domain of human DNA polymerase ι (UBM2). All computed free energy differences were closely monitored for convergence, and the calculated binding free energies had a mean unsigned deviation of only 1.4 or 2.5 kJ·mol–1 from experimental values. Statistical error estimates were in the order of thermal noise. We conclude that the presented method has promising potential for broad applicability to quantitatively describe protein–protein and various other kinds of complex formation. PMID:28898077

  14. Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications

    PubMed Central

    Lucas-Herald, Angela K.; Alves-Lopes, Rheure; Montezano, Augusto C.; Ahmed, S. Faisal

    2017-01-01

    The principle steroidal androgens are testosterone and its metabolite 5α-dihydrotestosterone (DHT), which is converted from testosterone by the enzyme 5α-reductase. Through the classic pathway with androgens crossing the plasma membrane and binding to the androgen receptor (AR) or via mechanisms independent of the ligand-dependent transactivation function of nuclear receptors, testosterone induces genomic and non-genomic effects respectively. AR is widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Androgens are essential for many developmental and physiological processes, especially in male reproductive tissues. It is now clear that androgens have multiple actions besides sex differentiation and sexual maturation and that many physiological systems are influenced by androgens, including regulation of cardiovascular function [nitric oxide (NO) release, Ca2+ mobilization, vascular apoptosis, hypertrophy, calcification, senescence and reactive oxygen species (ROS) generation]. This review focuses on evidence indicating that interplay between genomic and non-genomic actions of testosterone may influence cardiovascular function. PMID:28645930

  15. UO₂²⁺ uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity.

    PubMed

    Odoh, Samuel O; Bondarevsky, Gary D; Karpus, Jason; Cui, Qiang; He, Chuan; Spezia, Riccardo; Gagliardi, Laura

    2014-12-17

    The capture of uranyl, UO2(2+), by a recently engineered protein (Zhou et al. Nat. Chem. 2014, 6, 236) with high selectivity and femtomolar sensitivity has been examined by a combination of density functional theory, molecular dynamics, and free-energy simulations. It was found that UO2(2+) is coordinated to five carboxylate oxygen atoms from four amino acid residues of the super uranyl binding protein (SUP). A network of hydrogen bonds between the amino acid residues coordinated to UO2(2+) and residues in its second coordination sphere also affects the protein's uranyl binding affinity. Free-energy simulations show how UO2(2+) capture is governed by the nature of the amino acid residues in the binding site, the integrity and strength of the second-sphere hydrogen bond network, and the number of water molecules in the first coordination sphere. Alteration of any of these three factors through mutations generally results in a reduction of the binding free energy of UO2(2+) to the aqueous protein as well as of the difference between the binding free energies of UO2(2+) and other ions (Ca(2+), Cu(2+), Mg(2+), and Zn(2+)), a proxy for the protein's selectivity over these ions. The results of our free-energy simulations confirmed the previously reported experimental results and allowed us to discover a mutant of SUP, specifically the GLU64ASP mutant, that not only binds UO2(2+) more strongly than SUP but that is also more selective for UO2(2+) over other ions. The predictions from the computations were confirmed experimentally.

  16. Predicting protein-binding regions in RNA using nucleotide profiles and compositions.

    PubMed

    Choi, Daesik; Park, Byungkyu; Chae, Hanju; Lee, Wook; Han, Kyungsook

    2017-03-14

    Motivated by the increased amount of data on protein-RNA interactions and the availability of complete genome sequences of several organisms, many computational methods have been proposed to predict binding sites in protein-RNA interactions. However, most computational methods are limited to finding RNA-binding sites in proteins instead of protein-binding sites in RNAs. Predicting protein-binding sites in RNA is more challenging than predicting RNA-binding sites in proteins. Recent computational methods for finding protein-binding sites in RNAs have several drawbacks for practical use. We developed a new support vector machine (SVM) model for predicting protein-binding regions in mRNA sequences. The model uses sequence profiles constructed from log-odds scores of mono- and di-nucleotides and nucleotide compositions. The model was evaluated by standard 10-fold cross validation, leave-one-protein-out (LOPO) cross validation and independent testing. Since actual mRNA sequences have more non-binding regions than protein-binding regions, we tested the model on several datasets with different ratios of protein-binding regions to non-binding regions. The best performance of the model was obtained in a balanced dataset of positive and negative instances. 10-fold cross validation with a balanced dataset achieved a sensitivity of 91.6%, a specificity of 92.4%, an accuracy of 92.0%, a positive predictive value (PPV) of 91.7%, a negative predictive value (NPV) of 92.3% and a Matthews correlation coefficient (MCC) of 0.840. LOPO cross validation showed a lower performance than the 10-fold cross validation, but the performance remains high (87.6% accuracy and 0.752 MCC). In testing the model on independent datasets, it achieved an accuracy of 82.2% and an MCC of 0.656. Testing of our model and other state-of-the-art methods on a same dataset showed that our model is better than the others. Sequence profiles of log-odds scores of mono- and di-nucleotides were much more powerful

  17. Androgen Receptor (AR) Suppresses Normal Human Prostate Epithelial Cell Proliferation via AR/β-catenin/TCF-4 Complex Inhibition of c-MYC Transcription

    PubMed Central

    Antony, Lizamma; van der Schoor, Freek; Dalrymple, Susan L.; Isaacs, John T.

    2016-01-01

    INTRODUCTION Physiologic testosterone continuously stimulates prostate stromal cell secretion of paracrine growth factors (PGFs), which if unopposed would induce hyperplastic overgrowth of normal prostate epithelial cells (PrECs). METHODS Lentiviral shRNA stable knock down of c-MYC, β-catenin, or TCF-4 completely inhibits normal (i.e., non-transformed) human PrECs growth. c-MYC enhancer driven reporter expression and growth is inhibited by two chemically distinct molecules, which prevent β-catenin signaling either by blocking TCF-4 binding (i.e., toxoflavin) or by stimulating degradation (i.e., AVX939). Recombinant DKK1 protein at a dose, which inhibits activation of canonical Wnt signaling does not inhibit PrEC growth. Nuclear β-catenin translocation and PrEC growth is prevented by both lack of PGFs or Akt inhibitor-I. Growth inhibition induced by lack of PGFs, toxoflavin, or Akt inhibitor-I is overcome by constitutive c-MYC transcription. RESULTS In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen binding to AR suppressing c-MYC transcription, resulting in G0 arrest/terminal differentiation independent of Rb, p21, p27, FoxP3, or down regulation of growth factors receptors and instead involves androgen-induced formation of AR/β-catenin/TCF-4 complexes, which suppress c-MYC transcription. Such suppression does not occur when AR is mutated in its zinc-finger binding domain. DISCUSSION Proliferation of non-transformed human PrECs is dependent upon c-MYC transcription via formation/binding of β-catenin/TCF-4 complexes at both 5′ and 3′ c-MYC enhancers stimulated by Wnt-independent, PGF induced Akt signaling. In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen-induced formation of AR/β-catenin/TCF-4 complexes, which retains binding to 3′ c-MYC enhancer, but now suppresses c-MYC transcription. PMID:24913829

  18. Effect of childhood malnutrition on salivary flow and pH.

    PubMed

    Psoter, Walter J; Spielman, Andrew L; Gebrian, Bette; St Jean, Rudolph; Katz, Ralph V

    2008-03-01

    While protein-energy malnutrition may have multiple effects on oral tissues and subsequent disease development, reports of the effect of malnutrition on the human salivary glands are sparse. A retrospective cohort study of the effect of early childhood protein-energy malnutrition (EC-PEM) and adolescent nutritional status on salivary flow and pH was conducted with rural Haitian children, ages 11-19 years (n=1017). Malnutrition strata exposure cohorts were based on 1988-1996 weight-for-age records which covered the birth through 5-year-old period for all subjects. Then, data on current anthropometrical defined nutritional status categories, stimulated and unstimulated salivary flow rates, and salivary pH were collected for the same subjects of 11-19 years old during field examinations in the summer of 2005. Multivariate analysis of variance (MANOVA) was used for the analyses. Stimulated and unstimulated salivary flow rates were reduced at statistically significant levels in subjects who had experienced severe malnutrition in their early childhood or who had continuing nutrition stress which resulted in delayed growth, as measured at ages 11-19 years. Salivary pH demonstrated little clinically meaningful variability between malnourished and nonmalnourished groups. This study is the first to report of a continuing effect on diminished salivary gland function into adolescence as a result of early childhood malnutrition (EC-PEM) and suggests that exocrine glandular systems may be compromised for extended periods following EC-PEM, which may have important implications for the body's systemic antimicrobial defences.

  19. The M33 G Protein-Coupled Receptor Encoded by Murine Cytomegalovirus Is Dispensable for Hematogenous Dissemination but Is Required for Growth within the Salivary Gland

    PubMed Central

    Bittencourt, Fabiola M.; Wu, Shu-En; Bridges, James P.

    2014-01-01

    ABSTRACT Human cytomegalovirus (HCMV) is a pathogen found worldwide and is a serious threat to immunocompromised individuals and developing fetuses. Due to the species specificity of cytomegaloviruses, murine cytomegalovirus (MCMV) has been used as a model for in vivo studies of HCMV pathogenesis. The MCMV genome, like the genomes of other beta- and gammaherpesviruses, encodes G protein-coupled receptors (GPCRs) that modulate host signaling pathways presumably to facilitate viral replication and dissemination. Among these viral receptors, the M33 GPCR carried by MCMV is an activator of CREB, NF-κB, and phospholipase C-β signaling pathways and has been implicated in aspects of pathogenesis in vivo, including persistence in the salivary glands of BALB/c mice. In this study, we used immunocompetent nonobese diabetic (NOD) and immunocompromised NOD-scid-gamma (NSG) mice to further investigate the salivary gland defect exhibited by M33 deficiency. Interestingly, we demonstrate that virus with an M33 deletion (ΔM33) can replicate in the salivary gland of immunocompromised animals, albeit with a 400-fold growth defect compared with the growth of wild-type virus. Moreover, we determined that M33 does not have a role in cell-associated hematogenous dissemination but is required for viral amplification once the virus reaches the salivary gland. We conclude that the reduced replicative capacity of the ΔM33 virus is due to a specific defect occurring within the localized environment of the salivary gland. Importantly, since the salivary gland represents a site essential for persistence and horizontal transmission, an understanding of the mechanisms of viral replication within this site could lead to the generation of novel therapeutics useful for the prevention of HCMV spread. IMPORTANCE Human cytomegalovirus infects the majority of the American people and can reside silently in infected individuals for the duration of their lives. Under a number of circumstances, the

  20. EVALUATION OF THE MODEL ANTI-ANDROGEN FLUTAMIDE FOR ASSESSING THE MECHANISTIC BASIS OF RESPONSES TO AN ANDROGEN IN THE FATHEAD MINNOW (JOURNAL ARTICLE)

    EPA Science Inventory

    In this study we characterized the effects of flutamide, a model mammalian androgen receptor (AR) antagonist, on endocrine function in the fathead minnow (Pimephales promelas), a small fish species which is widely used for testing endocrine-disrupting chemicals (EDCs). Binding a...

  1. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  2. Differential splicing of human androgen receptor pre-mRNA in X-linked reifenstein syndrome, because of a deletion involving a putative branch site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ris-Stalpers, C.; Verleun-Mooijman, M.C.T.; Blaeij, T.J.P. de

    1994-04-01

    The analysis of the androgen receptor (AR) gene, mRNA, and protein in a subject with X-linked Reifenstein syndrome (partial androgen insensitivity) is reported. The presence of two mature AR transcripts in genital skin fibroblasts of the patient is established, and, by reverse transcriptase-PCR and RNase transcription analysis, the wild-type transcript and a transcript in which exon 3 sequences are absent without disruption of the translational reading frame are identified. Sequencing and hybridization analysis show a deletion of >6 kb in intron 2 of the human AR gene, starting 18 bp upstream of exon 3. The deletion includes the putative branch-pointmore » sequence (BPS) but not the acceptor splice site on the intron 2/exon 3 boundary. The deletion of the putative intron 2 BPS results in 90% inhibition of wild-type splicing. The mutant transcript encodes an AR protein lacking the second zinc finger of the DNA-binding domain. Western/immunoblotting analysis is used to show that the mutant AR protein is expressed in genital skin fibroblasts of the patient. The residual 10% wild-type transcript can be the result of the use of a cryptic BPS located 63 bp upstream of the intron 2/exon 3 boundary of the mutant AR gene. The mutated AR protein has no transcription-activating potential and does not influence the transactivating properties of the wild-type AR, as tested in cotransfection studies. It is concluded that the partial androgen-insensitivity syndrome of this patient is the consequence of the limited amount of wild-type AR protein expressed in androgen target cells, resulting from the deletion of the intron 2 putative BPS. 42 refs., 6 figs., 1 tab.« less

  3. Analysis of the Salivary Gland Transcriptome of Frankliniella occidentalis

    PubMed Central

    Stafford-Banks, Candice A.; Rotenberg, Dorith; Johnson, Brian R.; Whitfield, Anna E.; Ullman, Diane E.

    2014-01-01

    Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E−6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses

  4. Analysis of the salivary gland transcriptome of Frankliniella occidentalis.

    PubMed

    Stafford-Banks, Candice A; Rotenberg, Dorith; Johnson, Brian R; Whitfield, Anna E; Ullman, Diane E

    2014-01-01

    Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E-6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they

  5. Probing binding hot spots at protein-RNA recognition sites.

    PubMed

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Grafting odorant binding proteins on diamond bio-MEMS.

    PubMed

    Manai, R; Scorsone, E; Rousseau, L; Ghassemi, F; Possas Abreu, M; Lissorgues, G; Tremillon, N; Ginisty, H; Arnault, J-C; Tuccori, E; Bernabei, M; Cali, K; Persaud, K C; Bergonzo, P

    2014-10-15

    Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approach based on complexing a histidine-tag located on the protein with nickel allowed control of the proteins' orientation. Evidence confirming protein grafting was obtained using electrochemical impedance spectroscopy, fluorescence imaging and X-ray photoelectron spectroscopy. The chemical sensing performances of these OBP modified transducers were assessed. The second grafting method led to typically 20% more sensitive sensors, as a result of better access of ligands to the proteins active sites and also perhaps a better yield of protein immobilization. This new grafting method appears to be highly promising for further investigation of the ligand binding properties of OBPs in general and for the development of arrays of non-specific biosensors for artificial olfaction applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A Single Rainbow Trout Cobalamin-binding Protein Stands in for Three Human Binders

    PubMed Central

    Greibe, Eva; Fedosov, Sergey; Sorensen, Boe S.; Højrup, Peter; Poulsen, Steen S.; Nexo, Ebba

    2012-01-01

    Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin-binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases, it appeared to be the same protein based on analysis of partial sequences and immunological responses. The trout cobalamin-binding protein was purified from roe fluid, sequenced, and further characterized. Like haptocorrin, the trout cobalamin-binding protein was stable at low pH and had a high binding affinity for the cobalamin analog cobinamide. Like haptocorrin and transcobalamin, the trout cobalamin-binding protein was present in plasma and recognized ligands with altered nucleotide moiety. Like intrinsic factors, the trout cobalamin-binding protein was present in the stomach and resisted degradation by trypsin and chymotrypsin. It also resembled intrinsic factor in the composition of conserved residues in the primary cobalamin-binding site in the C terminus. The trout cobalamin-binding protein was glycosylated and displayed spectral properties comparable with those of haptocorrin and intrinsic factor. In conclusion, only one soluble cobalamin-binding protein was identified in the rainbow trout, a protein that structurally behaves like an intermediate between the three human cobalamin-binding proteins. PMID:22872637

  8. Identification and Characterization of ART-27, a Novel Coactivator for the Androgen Receptor N Terminus

    PubMed Central

    Markus, Steven M.; Taneja, Samir S.; Logan, Susan K.; Li, Wenhui; Ha, Susan; Hittelman, Adam B.; Rogatsky, Inez; Garabedian, Michael J.

    2002-01-01

    The androgen receptor (AR) is a ligand-regulated transcription factor that stimulates cell growth and differentiation in androgen-responsive tissues. The AR N terminus contains two activation functions (AF-1a and AF-1b) that are necessary for maximal transcriptional enhancement by the receptor; however, the mechanisms and components regulating AR transcriptional activation are not fully understood. We sought to identify novel factors that interact with the AR N terminus from an androgen-stimulated human prostate cancer cell library using a yeast two-hybrid approach designed to identify proteins that interact with transcriptional activation domains. A 157-amino acid protein termed ART-27 was cloned and shown to interact predominantly with the AR153–336, containing AF-1a and a part of AF-1b, localize to the nucleus and increase the transcriptional activity of AR when overexpressed in cultured mammalian cells. ART-27 also enhanced the transcriptional activation by AR153–336 fused to the LexA DNA-binding domain but not other AR N-terminal subdomains, suggesting that ART-27 exerts its effect via an interaction with a defined region of the AR N terminus. ART-27 interacts with AR in nuclear extracts from LNCaP cells in a ligand-independent manner. Interestingly, velocity gradient sedimentation of HeLa nuclear extracts suggests that native ART-27 is part of a multiprotein complex. ART-27 is expressed in a variety of human tissues, including sites of androgen action such as prostate and skeletal muscle, and is conserved throughout evolution. Thus, ART-27 is a novel cofactor that interacts with the AR N terminus and plays a role in facilitating receptor-induced transcriptional activation. PMID:11854421

  9. The pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is a fatty acid-binding protein

    PubMed Central

    Darwiche, Rabih; Mène-Saffrané, Laurent; Gfeller, David; Asojo, Oluwatoyin A.; Schneiter, Roger

    2017-01-01

    Members of the CAP superfamily (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), also known as SCP superfamily (sperm-coating proteins), have been implicated in many physiological processes, including immune defenses, venom toxicity, and sperm maturation. Their mode of action, however, remains poorly understood. Three proteins of the CAP superfamily, Pry1, -2, and -3 (pathogen related in yeast), are encoded in the Saccharomyces cerevisiae genome. We have shown previously that Pry1 binds cholesterol in vitro and that Pry function is required for sterol secretion in yeast cells, indicating that members of this superfamily may generally bind sterols or related small hydrophobic compounds. On the other hand, tablysin-15, a CAP protein from the horsefly Tabanus yao, has been shown to bind leukotrienes and free fatty acids in vitro. Therefore, here we assessed whether the yeast Pry1 protein binds fatty acids. Computational modeling and site-directed mutagenesis indicated that the mode of fatty acid binding is conserved between tablysin-15 and Pry1. Pry1 bound fatty acids with micromolar affinity in vitro, and its function was essential for fatty acid export in cells lacking the acyl-CoA synthetases Faa1 and Faa4. Fatty acid binding of Pry1 is independent of its capacity to bind sterols, and the two sterol- and fatty acid-binding sites are nonoverlapping. These results indicate that some CAP family members, such as Pry1, can bind different lipids, particularly sterols and fatty acids, at distinct binding sites, suggesting that the CAP domain may serve as a stable, secreted protein domain that can accommodate multiple ligand-binding sites. PMID:28365570

  10. Relationship between Hot Spot Residues and Ligand Binding Hot Spots in Protein-Protein Interfaces

    PubMed Central

    Zerbe, Brandon S.; Hall, David R.

    2013-01-01

    In the context of protein-protein interactions, the term “hot spot” refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening. PMID:22770357

  11. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    PubMed

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  12. Assessing the potential of atomistic molecular dynamics simulations to probe reversible protein-protein recognition and binding

    PubMed Central

    Abriata, Luciano A.; Dal Peraro, Matteo

    2015-01-01

    Protein-protein recognition and binding are governed by diffusion, noncovalent forces and conformational flexibility, entangled in a way that only molecular dynamics simulations can dissect at high resolution. Here we exploited ubiquitin’s noncovalent dimerization equilibrium to assess the potential of atomistic simulations to reproduce reversible protein-protein binding, by running submicrosecond simulations of systems with multiple copies of the protein at millimolar concentrations. The simulations essentially fail because they lead to aggregates, yet they reproduce some specificity in the binding interfaces as observed in known covalent and noncovalent ubiquitin dimers. Following similar observations in literature we hint at electrostatics and water descriptions as the main liable force field elements, and propose that their optimization should consider observables relevant to multi-protein systems and unfolded proteins. Within limitations, analysis of binding events suggests salient features of protein-protein recognition and binding, to be retested with improved force fields. Among them, that specific configurations of relative direction and orientation seem to trigger fast binding of two molecules, even over 50 Å distances; that conformational selection can take place within surface-to-surface distances of 10 to 40 Å i.e. well before actual intermolecular contact; and that establishment of contacts between molecules further locks their conformations and relative orientations. PMID:26023027

  13. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling.

    PubMed

    Chen, Weijun; Lam, Suvana S; Srinath, Hema; Schiffer, Celia A; Royer, William E; Lin, Kai

    2007-04-13

    The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational studies. Here, we show that Ski-(16-192) interacted directly with a homotrimer of receptor-regulated Smad protein (R-Smad), e.g. Smad2 or Smad3, to form a hexamer; Ski-(16-192) interacted with an R-Smad.Smad4 heterotrimer to form a pentamer. CBP-(1941-1992) was also found to interact directly with an R-Smad homotrimer to form a hexamer and with an R-Smad.Smad4 heterotrimer to form a pentamer. Moreover, these domains of Ski and CBP competed with each other for binding to Smad3. Our mutational studies revealed that domains of Ski and CBP interacted with Smad3 at a portion of the binding surface of the Smad anchor for receptor activation. Our results suggest that Ski negatively regulates TGF-beta signaling by replacing CBP in R-Smad complexes. Our working model suggests that Smad protein activity is delicately balanced by Ski and CBP in the TGF-beta pathway.

  15. Salivary Biomarkers in Cancer Detection

    PubMed Central

    Wang, Xiaoqian; Kaczor-Urbanowicz, Karolina Elżbieta; Wong, David T.W.

    2017-01-01

    Cancer is the second most common cause of death in the United States. Its symptoms are often not specific and absent, until the tumors have already metastasized. Therefore, there is an urgent demand for developing rapid, highly accurate and non-invasive tools for cancer screening, early detection, diagnostics, staging and prognostics. Saliva as a multi-constituent oral fluid, comprises secretions from the major and minor salivary glands, extensively supplied by blood. Molecules such as DNAs, RNAs, proteins, metabolites, and microbiota, present in blood, could be also found in saliva. Recently, salivary diagnostics has drawn significant attention for the detection of specific biomarkers, since the sample collection and processing are simple, cost-effective, precise and do not cause patient discomfort. Here, we review recent salivary candidate biomarkers for systemic cancers by dividing them according to their origin into: genomic, transcriptomic, proteomic, metabolomic and microbial types. PMID:27943101

  16. A Recurrent Germline Mutation in the 5'UTR of the Androgen Receptor Causes Complete Androgen Insensitivity by Activating Aberrant uORF Translation.

    PubMed

    Hornig, Nadine C; de Beaufort, Carine; Denzer, Friederike; Cools, Martine; Wabitsch, Martin; Ukat, Martin; Kulle, Alexandra E; Schweikert, Hans-Udo; Werner, Ralf; Hiort, Olaf; Audi, Laura; Siebert, Reiner; Ammerpohl, Ole; Holterhus, Paul-Martin

    2016-01-01

    A subset of patients with monogenic disorders lacks disease causing mutations in the protein coding region of the corresponding gene. Here we describe a recurrent germline mutation found in two unrelated patients with complete androgen insensitivity syndrome (CAIS) generating an upstream open reading frame (uORF) in the 5' untranslated region (5'-UTR) of the androgen receptor (AR) gene. We show in patient derived primary genital skin fibroblasts as well as in cell-based reporter assays that this mutation severely impacts AR function by reducing AR protein levels without affecting AR mRNA levels. Importantly, the newly generated uORF translates into a polypeptide and the expression level of this polypeptide inversely correlates with protein translation from the primary ORF of the AR thereby providing a model for AR-5'UTR mediated translational repression. Our findings not only add a hitherto unrecognized genetic cause to complete androgen insensitivity but also underline the importance of 5'UTR mutations affecting uORFs for the pathogenesis of monogenic disorders in general.

  17. Identification and characterization of a histamine-binding lipocalin-like molecule from the relapsing fever tick Ornithodoros turicata.

    PubMed

    Neelakanta, G; Sultana, H; Sonenshine, D E; Andersen, J F

    2018-04-01

    Lipocalins are low molecular weight membrane transporters that are abundantly expressed in the salivary glands and other tissues of ticks. In this study, we identified a lipocalin-like molecule, designated as otlip, from the soft ticks Ornithodoros turicata, the vector for the relapsing fever causing spirochete Borrelia turicatae. We noted that the expression of otlip was developmentally regulated, with adult ticks expressing significantly higher levels in comparison to the larvae or nymphal ticks. Expression of otlip was evident in both fed and unfed O. turicata ticks, with significantly increased expression in the salivary glands in comparison to the midgut or ovary tissues. High conservation of the biogenic amine-binding motif was evident in the deduced primary amino acid sequence of Otlip. Protein modelling of Otlip revealed conservation of most of the residues involved in binding histamine or serotonin ligand. In vitro assays demonstrated binding of recombinant Otlip with histamine. Furthermore, prediction of post-translational modifications revealed that Otlip contained phosphorylation and myristoylation sites. Taken together, our study not only provides evidence for the presence of a lipocalin-like molecule in O. turicata ticks but also suggests a role for this molecule in the salivary glands of this medically important vector. © 2017 The Royal Entomological Society.

  18. Estrogen induces androgen-repressed SOX4 expression to promote progression of prostate cancer cells.

    PubMed

    Yang, Muyi; Wang, Jing; Wang, Lin; Shen, Chengwu; Su, Bo; Qi, Mei; Hu, Jing; Gao, Wei; Tan, Weiwei; Han, Bo

    2015-09-01

    The sex determing region Y-box 4 (SOX4) gene is a critical developmental transcriptional factor that is overexpressed in prostate cancer (PCa). While we and others have investigated the role of SOX4 overexpression in PCa, the molecular mechanism underlying its aberrant expression remains unclear. Immunohistochemistry were utilized to detect SOX4 expression and the correlation between estrogen receptor β (ERβ), androgen receptor (AR) and SOX4 in a cohort of 94 clinical specimens. Real-time quantitative PCR and Western blotting were used to study the transcript and protein expression levels. Immunofluorescence staining and co-immunoprecipitation were performed to assess the interaction and subcellular location of ERβ and AR. Chromatin immunoprecipitation (ChIP) assays and Luciferase reporter assays were performed to explore the binding and transcriptional activities of ERβ and AR to the SOX4 promoter. Cellular function was evaluated by MTS, invasion and wound healing assays. SOX4 expression is up-regulated in Castration-Resistant Prostate Cancer (CRPC) tumors compared to hormone-dependent PCa (HDPC) cases. Increased expression was also observed in PCa cells after long-term androgen-deprivation treatment (ADT). In vitro data indicated that SOX4 is an AR transcriptional target and down-regulated by dihydrotestosterone (DHT) via AR. 17β-estradiol (E2) up-regulates SOX4 expression in the absence of androgen through the formation of a protein complex between ERβ and AR. Knockdown of AR or ERβ blocks the E2-induced SOX4 expression. ChIP assays confirmed that both ERβ and AR bind to the SOX4 promoter in response to E2. Functionally, silencing SOX4 significantly attenuates the proliferative effect, as well as the capacity of migration and invasion of E2 on PCa cells. Clinically, overexpression of SOX4 is significantly associated with ERβ expression in PCa. In addition, this association is still retained in CRPC patients with poor prognosis. These findings suggest

  19. Discrete persistent-chain model for protein binding on DNA.

    PubMed

    Lam, Pui-Man; Zhen, Yi

    2011-04-01

    We describe and solve a discrete persistent-chain model of protein binding on DNA, involving an extra σ(i) at a site i of the DNA. This variable takes the value 1 or 0, depending on whether or not the site is occupied by a protein. In addition, if the site is occupied by a protein, there is an extra energy cost ɛ. For a small force, we obtain analytic expressions for the force-extension curve and the fraction of bound protein on the DNA. For higher forces, the model can be solved numerically to obtain force-extension curves and the average fraction of bound proteins as a function of applied force. Our model can be used to analyze experimental force-extension curves of protein binding on DNA, and hence deduce the number of bound proteins in the case of nonspecific binding. ©2011 American Physical Society

  20. Electrostatic contribution to the binding stability of protein-protein complexes.

    PubMed

    Dong, Feng; Zhou, Huan-Xiang

    2006-10-01

    To investigate roles of electrostatic interactions in protein binding stability, electrostatic calculations were carried out on a set of 64 mutations over six protein-protein complexes. These mutations alter polar interactions across the interface and were selected for putative dominance of electrostatic contributions to the binding stability. Three protocols of implementing the Poisson-Boltzmann model were tested. In vdW4 the dielectric boundary between the protein low dielectric and the solvent high dielectric is defined as the protein van der Waals surface and the protein dielectric constant is set to 4. In SE4 and SE20, the dielectric boundary is defined as the surface of the protein interior inaccessible to a 1.4-A solvent probe, and the protein dielectric constant is set to 4 and 20, respectively. In line with earlier studies on the barnase-barstar complex, the vdW4 results on the large set of mutations showed the closest agreement with experimental data. The agreement between vdW4 and experiment supports the contention of dominant electrostatic contributions for the mutations, but their differences also suggest van der Waals and hydrophobic contributions. The results presented here will serve as a guide for future refinement in electrostatic calculation and inclusion of nonelectrostatic effects. Proteins 2006. (c) 2006 Wiley-Liss, Inc.