Sample records for salmon disrupt trophic

  1. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon

    PubMed Central

    Deacy, William W.; Armstrong, Jonathan B.; Leacock, William B.; Robbins, Charles T.; Gustine, David D.; Ward, Eric J.; Erlenbach, Joy A.; Stanford, Jack A.

    2017-01-01

    Climate change is altering the seasonal timing of life cycle events in organisms across the planet, but the magnitude of change often varies among taxa [Thackeray SJ, et al. (2016) Nature 535:241–245]. This can cause the temporal relationships among species to change, altering the strength of interaction. A large body of work has explored what happens when coevolved species shift out of sync, but virtually no studies have documented the effects of climate-induced synchronization, which could remove temporal barriers between species and create novel interactions. We explored how a predator, the Kodiak brown bear (Ursus arctos middendorffi), responded to asymmetric phenological shifts between its primary trophic resources, sockeye salmon (Oncorhynchus nerka) and red elderberry (Sambucus racemosa). In years with anomalously high spring air temperatures, elderberry fruited several weeks earlier and became available during the period when salmon spawned in tributary streams. Bears departed salmon spawning streams, where they typically kill 25–75% of the salmon [Quinn TP, Cunningham CJ, Wirsing AJ (2016) Oecologia 183:415–429], to forage on berries on adjacent hillsides. This prey switching behavior attenuated an iconic predator–prey interaction and likely altered the many ecological functions that result from bears foraging on salmon [Helfield JM, Naiman RJ (2006) Ecosystems 9:167–180]. We document how climate-induced shifts in resource phenology can alter food webs through a mechanism other than trophic mismatch. The current emphasis on singular consumer-resource interactions fails to capture how climate-altered phenologies reschedule resource availability and alter how energy flows through ecosystems. PMID:28827339

  2. Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders

    DTIC Science & Technology

    2016-12-01

    1 AWARD NUMBER: W81XWH-14-1-0433 TITLE: Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders PRINCIPAL INVESTIGATOR: Anis...SUBTITLE 5a. CONTRACT NUMBER Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders 5b. GRANT NUMBER W81XWH-14-1-0433 5c. PROGRAM...bumetanide to mice rescues synaptic and circuit dysfunction in Fragile X mice. 15. SUBJECT TERMS Autism Spectrum Disorders, Fragile X Syndrome Angelman

  3. Trophic ontogeny of fluvial Bull Trout and seasonal predation on Pacific Salmon in a riverine food web

    USGS Publications Warehouse

    Lowery, Erin D.; Beauchamp, David A.

    2015-01-01

    Bull Trout Salvelinus confluentus are typically top predators in their host ecosystems. The Skagit River in northwestern Washington State contains Bull Trout and Chinook Salmon Oncorhynchus tshawytschapopulations that are among the largest in the Puget Sound region and also contains a regionally large population of steelhead O. mykiss (anadromous Rainbow Trout). All three species are listed as threatened under the Endangered Species Act (ESA). Our objective was to determine the trophic ecology of Bull Trout, especially their role as predators and consumers in the riverine food web. We seasonally sampled distribution, diets, and growth of Bull Trout in main-stem and tributary habitats during 2007 and winter–spring 2008. Consumption rates were estimated with a bioenergetics model to (1) determine the annual and seasonal contributions of different prey types to Bull Trout energy budgets and (2) estimate the potential impacts of Bull Trout predation on juvenile Pacific salmon populations. Salmon carcasses and eggs contributed approximately 50% of the annual energy budget for large Bull Trout in main-stem habitats, whereas those prey types were largely inaccessible to smaller Bull Trout in tributary habitats. The remaining 50% of the energy budget was acquired by eating juvenile salmon, resident fishes, and immature aquatic insects. Predation on listed Chinook Salmon and steelhead/Rainbow Trout was highest during winter and spring (January–June). Predation on juvenile salmon differed between the two study years, likely due to the dominant odd-year spawning cycle for Pink Salmon O. gorbuscha. The population impact on ocean- and stream-type Chinook Salmon was negligible, whereas the impact on steelhead/Rainbow Trout was potentially very high. Due to the ESA-listed status of Bull Trout, steelhead, and Chinook Salmon, the complex trophic interactions in this drainage provide both challenges and opportunities for creative adaptive management strategies.

  4. Ecosystem regime shifts disrupt trophic structure.

    PubMed

    Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K

    2018-01-01

    Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological

  5. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon

    PubMed Central

    Daly, Elizabeth A.; Brodeur, Richard D.

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes. PMID:26675673

  6. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon.

    PubMed

    Daly, Elizabeth A; Brodeur, Richard D

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981-1985; 1998-2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes.

  7. Disruption of host-seeking behaviour by the salmon louse, Lepeophtheirus salmonis, using botanically derived repellents.

    PubMed

    O'Shea, B; Wadsworth, S; Pino Marambio, J; Birkett, M A; Pickett, J A; Mordue Luntz, A J

    2017-04-01

    The potential for developing botanically derived natural products as novel feed-through repellents for disrupting settlement of the salmon louse, Lepeophtheirus salmonis (Caligidae) upon farmed Atlantic salmon, Salmo salar, was investigated using an established laboratory vertical Y-tube behavioural bioassay for assessing copepodid behaviour. Responses to artificial sea water conditioned with the odour of salmon, or to the known salmon-derived kairomone component, α-isophorone, in admixture with selected botanical materials previously known to interfere with invertebrate arthropod host location were recorded. Materials included oils extracted from garlic, Allium sativum (Amaryllidaceae), rosemary, Rosmarinus officinalis (Lamiaceae), lavender, Lavandula angustifolia (Lamiaceae), and bog myrtle, Myrica gale (Myricaceae), and individual components (diallyl sulphide and diallyl disulphide from garlic; allyl, propyl, butyl, 4-pentenyl and 2-phenylethyl isothiocyanate from plants in the Brassica genus). Removal of attraction to salmon-conditioned water (SCW) or α-isophorone was observed when listed materials were presented at extremely low parts per trillion (ppt), that is picograms per litre or 10 -12 level. Significant masking of attraction to SCW was observed at a level of 10 ppt for diallyl disulphide and diallyl sulphide, and allyl isothiocyanate and butyl isothiocyanate. The potential of very low concentrations of masking compounds to disrupt Le. salmonis copepodid settlement on a host fish has been demonstrated in vitro. © 2016 John Wiley & Sons Ltd.

  8. Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years

    NASA Astrophysics Data System (ADS)

    Satterfield, Franklin R.; Finney, Bruce P.

    Food web interactions and the response of Pacific salmon to physical processes in the North Pacific Ocean over interannual and interdecadal timescales are explored using naturally occurring stable isotope ratios of carbon ( 13C/ 12C) and nitrogen ( 15N/ 14N). Stable isotope analyses of five species of sexually mature North Pacific salmon from Alaska ( Oncorhynchus spp.) cluster into three groups: chinook salmon ( O. tshawytscha) have the highest values, followed by coho ( O. kisutch), with chum ( O. keta), sockeye ( O. nerka), and pink ( O. gorbuscha) together having the lowest values. Although detailed isotopic data on salmon prey are lacking, there are limited data on relevant prey items from areas in which they are found in high abundance. These data suggest that the characteristics of the sockeye, pink and chum we have analyzed are compatible with their diets including open ocean squid and zooplankton, which are in general agreement with stomach content analyses. Isotope relationships between muscle and scale show consistent relationships for both δ13C ( R2=0.98) and δ 15N ( R2=0.90). Thus, scales, which have been routinely archived for many systems, can be used for retrospective analyses. Archived sockeye salmon scales spanning 1966-1999 from Red Lake, Kodiak Island, Alaska were analyzed for their stable isotope ratios of carbon and nitrogen. The δ15N record displays a decreasing trend of ~3‰ from 1969-1982 and an increasing trend of ~3‰ from 1982-1992, while the variations in δ13C are relatively minor. These trends may result from factors such as shifts in trophic level of feeding and/or feeding location, or may originate at the base of the food web via changes in processes such as nutrient cycling or primary productivity. Detailed studies on prey isotopic variability and its controls are needed to distinguish between these factors, and thus to improve the use of stable isotope analysis as a tool to learn more about present and past ecosystem change

  9. Salmon-derived nitrogen in terrestrial invertebrates from coniferous forests of the Pacific Northwest

    PubMed Central

    2002-01-01

    Background Bi-directional flow of nutrients between marine and terrestrial ecosystems can provide essential resources that structure communities in transitional habitats. On the Pacific coast of North America, anadromous salmon (Oncorhynchus spp.) constitute a dominant nutrient subsidy to aquatic habitats and riparian vegetation, although the contribution to terrestrial habitats is not well established. We use a dual isotope approach of δ15N and δ13C to test for the contribution of salmon nutrients to multiple trophic levels of litter-based terrestrial invertebrates below and above waterfalls that act as a barrier to salmon migration on two watersheds in coastal British Columbia. Results Invertebrates varied predictably in δ15N with enrichment of 3–8‰ below the falls compared with above the falls in all trophic groups on both watersheds. We observed increasing δ15N levels in our invertebrate groups with increasing consumption of dietary protein. Invertebrates varied in δ13C but did not always vary predictably with trophic level or habitat. From 19.4 to 71.5% of invertebrate total nitrogen was originally derived from salmon depending on taxa, watershed, and degree of fractionation from the source. Conclusions Enrichment of δ15N in the invertebrate community below the falls in conjunction with the absence of δ13C enrichment suggests that enrichment in δ15N occurs primarily through salmon-derived nitrogen subsidies to litter, soil and vegetation N pools rather than from direct consumption of salmon tissue or salmon tissue consumers. Salmon nutrient subsidies to terrestrial habitats may result in shifts in invertebrate community structure, with subsequent implications for higher vertebrate consumers, particularly the passerines. PMID:11914157

  10. Trophic pathways supporting juvenile Chinook and Coho salmon in the glacial Susitna River, Alaska: patterns of freshwater, marine, and terrestrial resource use across a seasonally dynamic habitat mosaic

    USGS Publications Warehouse

    Rine, Kristin M.; Wipfli, Mark S.; Schoen, Erik R.; Nightengale, Timothy L.; Stricker, Craig A.

    2016-01-01

    Contributions of terrestrial-, freshwater-, and marine-derived prey resources to stream fishes vary over time and space, altering the energy pathways that regulate production. In this study, we determined large-scale use of these resources by juvenile Chinook and coho salmon (Oncorhynchus tshawytscha and Oncorhynchus kisutch, respectively) in the glacial Susitna River, Alaska. We resolved spatial and temporal trophic patterns among multiple macrohabitat types along a 97 km segment of the river corridor via stable isotope and stomach content analyses. Juvenile salmon were supported primarily by freshwater-derived resources and secondarily by marine and terrestrial sources. The relative contribution of marine-derived prey to rearing salmon was greatest in the fall within off-channel macrohabitats, whereas the contributions of terrestrial invertebrate prey were generally greatest during midsummer, across all macrohabitats. No longitudinal (upstream–downstream) diet pattern was discernable. These results highlight large-scale spatial and seasonal patterns of energy flow and the dynamic interplay of pulsed marine and terrestrial prey subsidies to juvenile Chinook and coho salmon in a large, complex, and relatively pristine glacial river.

  11. Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations.

    PubMed

    Mills, Katherine E; Pershing, Andrew J; Sheehan, Timothy F; Mountain, David

    2013-10-01

    North American Atlantic salmon (Salmo salar) populations experienced substantial declines in the early 1990s, and many populations have persisted at low abundances in recent years. Abundance and productivity declined in a coherent manner across major regions of North America, and this coherence points toward a potential shift in marine survivorship, rather than local, river-specific factors. The major declines in Atlantic salmon populations occurred against a backdrop of physical and biological shifts in Northwest Atlantic ecosystems. Analyses of changes in climate, physical, and lower trophic level biological factors provide substantial evidence that climate conditions directly and indirectly influence the abundance and productivity of North American Atlantic salmon populations. A major decline in salmon abundance after 1990 was preceded by a series of changes across multiple levels of the ecosystem, and a subsequent population change in 1997, primarily related to salmon productivity, followed an unusually low NAO event. Pairwise correlations further demonstrate that climate and physical conditions are associated with changes in plankton communities and prey availability, which are ultimately linked to Atlantic salmon populations. Results suggest that poor trophic conditions, likely due to climate-driven environmental factors, and warmer ocean temperatures throughout their marine habitat area are constraining the productivity and recovery of North American Atlantic salmon populations. © 2013 John Wiley & Sons Ltd.

  12. Spatial overlap of shark nursery areas and the salmon farming industry influences the trophic ecology of Squalus acanthias on the southern coast of Chile.

    PubMed

    Gaitán-Espitia, Juan Diego; Gómez, Daniela; Hobday, Alistair J; Daley, Ross; Lamilla, Julio; Cárdenas, Leyla

    2017-06-01

    Potential interactions between marine predators and humans arise in the southern coast of Chile where predator feeding and reproduction sites overlap with fisheries and aquaculture. Here, we assess the potential effects of intensive salmon aquaculture on food habits, growth, and reproduction of a common predator, the spiny dogfish-identified as Squalus acanthias via genetic barcoding. A total of 102 (89 females and 13 males) individuals were collected during winter and summer of 2013-2014 from the Chiloé Sea where salmon aquaculture activities are concentrated. The low frequency of males in our study suggests spatial segregation of sex, while immature and mature females spatially overlapped in both seasons. Female spiny dogfish showed a functional specialist behavior as indicated by the small number of prey items and the relative high importance of the austral hake and salmon pellets in the diet. Immature sharks fed more on pellets and anchovies than the larger hake-preferring mature females. Our results also indicate that spiny dogfish switch prey (anchovy to hake) to take advantage of seasonal changes in prey availability. Despite differences in the trophic patterns of S. acanthias due to the spatial association with intensive salmon farming, in this region, there appears to be no difference in fecundity or size at maturity compared to other populations. Although no demographic effects were detected, we suggest that a range of additional factors should be considered before concluding that intensive aquaculture does not have any impact on these marine predators.

  13. Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; Elliott, Robert F.; Schmidt, Larry J.; DeSorcie, Timothy J.; Hesselberg, Robert J.; Quintal, Richard T.; Begnoche, Linda J.; Bouchard, Patrick M.; Holey, Mark E.

    1998-01-01

    Most of the polychlorinated biphenyl (PCB) body burden accumulated by coho salmon (Oncorhynchus kisutch) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both coho salmon and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan coho salmon retain PCBs from their food. Our estimate was the most reliable estimate to date because (a) the coho salmon and prey fish sampled during our study were sampled in spring, summer, and fall from various locations throughout the lake, (b) detailed measurements were made on the PCB concentrations of both coho salmon and prey fish over wide ranges in fish size, and (c) coho salmon diet was analyzed in detail from April through November over a wide range of salmon size from numerous locations throughout the lake. We estimated that coho salmon from Lake Michigan retain 50% of the PCBs that are contained within their food.

  14. SALMON 2100: THE FUTURE OF WILD PACIFIC SALMON

    EPA Science Inventory

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  15. Transhemispheric ecosystem disservices of pink salmon in a Pacific Ocean macrosystem.

    PubMed

    Springer, Alan M; van Vliet, Gus B; Bool, Natalie; Crowley, Mike; Fullagar, Peter; Lea, Mary-Anne; Monash, Ross; Price, Cassandra; Vertigan, Caitlin; Woehler, Eric J

    2018-05-29

    Pink salmon ( Oncorhynchus gorbuscha ) in the North Pacific Ocean have flourished since the 1970s, with growth in wild populations augmented by rising hatchery production. As their abundance has grown, so too has evidence that they are having important effects on other species and on ocean ecosystems. In alternating years of high abundance, they can initiate pelagic trophic cascades in the northern North Pacific Ocean and Bering Sea and depress the availability of common prey resources of other species of salmon, resident seabirds, and other pelagic species. We now propose that the geographic scale of ecosystem disservices of pink salmon is far greater due to a 15,000-kilometer transhemispheric teleconnection in a Pacific Ocean macrosystem maintained by short-tailed shearwaters ( Ardenna tenuirostris ), seabirds that migrate annually between their nesting grounds in the South Pacific Ocean and wintering grounds in the North Pacific Ocean. Over this century, the frequency and magnitude of mass mortalities of shearwaters as they arrive in Australia, and their abundance and productivity, have been related to the abundance of pink salmon. This has influenced human social, economic, and cultural traditions there, and has the potential to alter the role shearwaters play in insular terrestrial ecology. We can view the unique biennial pulses of pink salmon as a large, replicated, natural experiment that offers basin-scale opportunities to better learn how these ecosystems function. By exploring trophic interaction chains driven by pink salmon, we may achieve a deeper conservation conscientiousness for these northern open oceans.

  16. Distributions of PCB congeners and homologues in white sucker and coho salmon from Lake Michigan

    USGS Publications Warehouse

    Stapanian, Martin A.; Madenjian, Charles P.; Batterman, Stuart A.; Chernyak, Sergei M.; Edwards, William H.; McIntyre, Peter B.

    2018-01-01

    We tested the hypothesis of the proportion of higher chlorinated biphenyl (PCB) congeners increasing with increasing trophic level by comparing the respective PCB homologue distributions in an omnivore, white sucker (Catostomus commersoni), and a top predator, coho salmon (Oncorhynchus kisutch), from Lake Michigan. Adult females had the same congener and homologue proportions of total PCB concentration (ΣPCB) as adult males in both species. Hexachlorinated congeners comprised the largest proportion (32%) found in white sucker, followed by heptachlorinated (21%) and octochlorinated (18%) congeners. In contrast, pentachlorinated congeners comprised the largest proportion (33%) of ΣPCB found in coho salmon, followed by hexachlorinated (26%) and tetrachlorinated (24%) congeners. Coho salmon contained significantly higher proportions of tri-, tetra-, and pentachlorinated congeners, whereas white sucker contained significantly higher proportions of hexa- through decachlorinated congeners. Our results were opposite of the hypothesis of greater degree of PCB chlorination with increasing trophic level, and supported the contention that the PCB congener proportions in fish depends mainly on diet, and does not necessarily reflect the trophic level of the fish. Our results also supported the contention that diets do not vary between the sexes in most fish populations.

  17. CAN WE SUSTAIN WILD SALMON THROUGH 2100? THE SALMON 2100 PROJECT

    EPA Science Inventory

    abstract for presentation Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appe...

  18. RESPONSE OF NUTRIENTS, BIOFILM, AND BENTHIC INSECTS TO SALMON CARCASS ADDITION

    EPA Science Inventory

    Salmon carcass addition to streams is expected to increase stream productivity at multiple trophic levels. This study examined stream nutrient (nitrogen, phosphorus, and carbon), epilithic biofilm (ash-free dry mass and chlorophyll a), leaf-litter decomposition, and macroinverte...

  19. [Strengths, weaknesses, and opportunities of French research in trophic ecology].

    PubMed

    Perga, Marie-Élodie; Danger, Michael; Dubois, Stanislas; Fritch, Clémentine; Gaucherel, Cédric; Hubas, Cedric; Jabot, Franck; Lacroix, Gérard; Lefebvre, Sébastien; Marmonier, Pierre; Bec, Alexandre

    2018-05-30

    The French National Institute of Ecology and Environment (INEE) aims at fostering pluridisciplinarity in Environmental Science and, for that purpose, funds ex muros research groups (GDR) on thematic topics. Trophic ecology has been identified as a scientific field in ecology that would greatly benefit from such networking activity, as being profoundly scattered. This has motivated the seeding of a GDR, entitled "GRET". The contours of the GRET's action, and its ability to fill these gaps within trophic ecology at the French national scale, will depend on the causes of this relative scattering. This study relied on a nationally broadcasted poll aiming at characterizing the field of trophic ecology in France. Amongst all the unique individuals that fulfilled the poll, over 300 belonged at least partly to the field of trophic ecology. The sample included all French public research institutes and career stages. Three main disruptions within the community of scientist in trophic ecology were identified. The first highlighted the lack of interfaces between microbial and trophic ecology. The second evidenced that research questions were strongly linked to single study fields or ecosystem type. Last, research activities are still quite restricted to the ecosystem boundaries. All three rupture points limit the conceptual and applied progression in the field of trophic ecology. Here we show that most of the disruptions within French Trophic Ecology are culturally inherited, rather than motivated by scientific reasons or justified by socio-economic stakes. Comparison with the current literature confirms that these disruptions are not necessarily typical of the French research landscape, but instead echo the general weaknesses of the international research in ecology. Thereby, communication and networking actions within and toward the community of trophic ecologists, as planned within the GRET's objectives, should contribute to fill these gaps, by reintegrating microbes within

  20. Trophic disruption: a meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems.

    PubMed

    Martinson, Holly M; Fagan, William F

    2014-09-01

    Habitat fragmentation is a complex process that affects ecological systems in diverse ways, altering everything from population persistence to ecosystem function. Despite widespread recognition that habitat fragmentation can influence food web interactions, consensus on the factors underlying variation in the impacts of fragmentation across systems remains elusive. In this study, we conduct a systematic review and meta-analysis to quantify the effects of habitat fragmentation and spatial habitat structure on resource consumption in terrestrial arthropod food webs. Across 419 studies, we found a negative overall effect of fragmentation on resource consumption. Variation in effect size was extensive but predictable. Specifically, resource consumption was reduced on small, isolated habitat fragments, higher at patch edges, and neutral with respect to landscape-scale spatial variables. In general, resource consumption increased in fragmented settings for habitat generalist consumers but decreased for specialist consumers. Our study demonstrates widespread disruption of trophic interactions in fragmented habitats and describes variation among studies that is largely predictable based on the ecological traits of the interacting species. We highlight future prospects for understanding how changes in spatial habitat structure may influence trophic modules and food webs. © 2014 John Wiley & Sons Ltd/CNRS.

  1. WILD SALMON IN WESTERN NORTH AMERICA; THE HISTORICAL AND POLICY CONTEXT

    EPA Science Inventory

    Nearly all of the participants in the Salmon 2100 Project concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, ...

  2. Response of nutrients, biofilm, and benthic insects to salmon carcass addition.

    Treesearch

    Shannon M. Claeson; Judith L. Li; Jana E. Compton; Peter A. Bisson

    2006-01-01

    Salmon carcass addition to streams is expected to increase stream productivity at multiple trophic levels. This study examined stream nutrient (nitrogen, phosphorus, and carbon), epilithic biofilm (ash-free dry mass and chlorophyll a), leaf-litter decomposition, and macroinvertebrate (density and biomass) responses to carcass addition in three headwater streams of...

  3. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes

    USGS Publications Warehouse

    Writer, J.H.; Barber, L.B.; Brown, G.K.; Taylor, Howard E.; Kiesling, R.L.; Ferrey, M.L.; Jahns, N.D.; Bartell, S.E.; Schoenfuss, H.L.

    2010-01-01

    Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17??-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use. ?? 2010.

  4. Field estimate of net trophic transfer efficiency of PCBs to Lake Michigan chinook salmon from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Stewart, Donald J.; Miller, Michael A.; Masnado, Robert G.

    2002-01-01

    Chinook salmon (Oncorhynchus tshawytscha) has been the predominant piscivore in Lakes Michigan, Huron, and Ontario since the 1970s, and therefore accurate quantification of its energy budget is needed for effective management of Great Lakes fisheries. A new approach of evaluating a fish bioenergetics model in the field involves field estimation of the efficiency with which the fish retains PCBs from its food. We used diet information, PCB determinations in both chinook salmon and their prey, and bioenergetics modeling to generate a field estimate of the efficiency with which Lake Michigan chinook salmon retain PCBs from their food. Our field estimate is the most reliable field estimate to date because (a) the estimate was based on a relatively high number (N = 142) of PCB determinations for chinook salmon from Wisconsin waters of Lake Michigan in 1985, (b) a relatively long time series (1978−1988) of detailed observations on chinook salmon diet in Lake Michigan was available, and (c) the estimate incorporated new information from analyses of chinook salmon age and growth during the 1980s and 1990s in Lake Michigan. We estimated that chinook salmon from Lake Michigan retain 53% of the PCBs that are contained within their food.

  5. The disruption of the epithelial mesenchymal trophic unit in COPD.

    PubMed

    Behzad, Ali R; McDonough, John E; Seyednejad, Nazgol; Hogg, James C; Walker, David C

    2009-12-01

    Progression of COPD is associated with a measurable increase in small airway wall thickness resulting from a repair and remodeling process that involves fibroblasts of the epithelial mesenchymal trophic unit (EMTU). The present study was designed to examine the organization of fibroblasts within the lamina propria of small airways with respect to their contacts with the epithelium and with each other in persons with COPD. Transmission electron microcopy (TEM) and three-dimensional (3D) reconstructions of serial TEM sections were used to estimate the frequency and determine the nature of the contacts between the epithelium and fibroblasts within the EMTU in small airways from 5 controls (smokers with normal lung function), from 6 persons with mild (GOLD-1) and 5 with moderate (GOLD-2) COPD. In airways from control lungs fibroblasts make frequent contact with cytoplasmic extensions of epithelial cells through apertures in the epithelial basal lamina, but the frequency of these fibroblast-epithelial contacts is reduced in both mild and moderate COPD compared to controls (p < 0.01). The 3D reconstructions showed that the cytoplasmic extensions of lamina propria fibroblasts form a reticulum with fibroblast-fibroblast contacts in an airway from a control subject but this reticulum may be reorganized in airways of COPD patients. Development of COPD is associated with significant disruption of the EMTU due to a reduction of contacts between fibroblasts and the epithelium.

  6. Trophic interactions and consumption rates of subyearling Chinook Salmon and nonnative juvenile American Shad in Columbia River reservoirs

    USGS Publications Warehouse

    Haskell, Craig A.; Beauchamp, David A.; Bollins, Stephen M

    2017-01-01

    We used a large lampara seine coupled with nonlethal gastric lavage to examine the diets and estimate consumption rates of subyearling Chinook Salmon Oncorhynchus tshawytscha during July and August 2013. During August we also examined the diet and consumption rates of juvenile American Shad Alosa sapidissima, a potential competitor of subyearling Chinook Salmon. Subyearling Chinook Salmon consumed Daphnia in July but switched to feeding on smaller juvenile American Shad in August. We captured no juvenile American Shad in July, but in August juvenile American Shad consumed cyclopoid and calanoid copepods. Stomach evacuation rates for subyearling Chinook Salmon were high during both sample periods (0.58 h−1 in July, 0.51 h−1 in August), and daily ration estimates were slightly higher than values reported in the literature for other subyearlings. By switching from planktivory to piscivory, subyearling Chinook Salmon gained greater growth opportunity. While past studies have shown that juvenile American Shad reduce zooplankton availability for Chinook Salmon subyearlings, our work indicates that they also become important prey after Daphnia abundance declines. The diet and consumption data here can be used in future bioenergetics modeling to estimate the growth of subyearling Chinook Salmon in lower Columbia River reservoirs.

  7. THE CHALLENGE OF RESTORING WILD SALMON

    EPA Science Inventory

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  8. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    USGS Publications Warehouse

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-01-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastesspp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  9. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    NASA Astrophysics Data System (ADS)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-10-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  10. Stream food web response to a salmon carcass analogue addition in two central Idaho, U.S.A. streams

    PubMed Central

    KOHLER, ANDRE E; RUGENSKI, AMANDA; TAKI, DOUG

    2008-01-01

    Pacific salmon and steelhead once contributed large amounts of marine-derived carbon, nitrogen and phosphorus to freshwater ecosystems in the Pacific Northwest of the United States of America (California, Oregon, Washington and Idaho). Declines in historically abundant anadromous salmonid populations represent a significant loss of returning nutrients across a large spatial scale. Recently, a manufactured salmon carcass analogue was developed and tested as a safe and effective method of delivering nutrients to freshwater and linked riparian ecosystems where marine-derived nutrients have been reduced or eliminated. We compared four streams: two reference and two treatment streams using salmon carcass analogue(s) (SCA) as a treatment. Response variables measured included: surface streamwater chemistry; nutrient limitation status; carbon and nitrogen stable isotopes; periphyton chlorophyll a and ash-free dry mass (AFDM); macroinvertebrate density and biomass; and leaf litter decomposition rates. Within each stream, upstream reference and downstream treatment reaches were sampled 1 year before, during, and 1 year after the addition of SCA. Periphyton chlorophyll a and AFDM and macroinvertebrate biomass were significantly higher in stream reaches treated with SCA. Enriched stable isotope (δ15N) signatures were observed in periphyton and macroinvertebrate samples collected from treatment reaches in both treatment streams, indicating trophic transfer from SCA to consumers. Densities of Ephemerellidae, Elmidae and Brachycentridae were significantly higher in treatment reaches. Macroinvertebrate community composition and structure, as measured by taxonomic richness and diversity, did not appear to respond significantly to SCA treatment. Leaf breakdown rates were variable among treatment streams: significantly higher in one stream treatment reach but not the other. Salmon carcass analogue treatments had no detectable effect on measured water chemistry variables. Our results

  11. Aqueous exposure to 4-nonylphenol and 17β-estradiol increases stress sensitivity and disrupts ion regulatory ability of juvenile atlantic salmon

    USGS Publications Warehouse

    Lerner, Darrren T.; Bjornsson, Bjorn Thrandur; McCormick, Stephen D.

    2007-01-01

    Population declines of wild Atlantic salmon have been attributed to an array of anthropogenic disturbances, including dams, commercial and recreational fishing, habitat loss, and pollution. Environmental contaminants in particular, can act as environmental stressors on fish, typically causing disruption of ion homeostasis due to their close association with the aquatic environment. To examine the effects of the xenoestrogen 4-nonylphenol (NP) or 17β-estradiol (E2) on stress sensitivity and ion regulation, we exposed juvenile Atlantic salmon continuously for 21 d to either 10 or 100 μg/L NP (NP-L or NP-H), 2 μg/L E2 (positive control), or vehicle control during the parr-smolt transformation in April. After treatment, fish were sampled in freshwater (FW), transferred to 30‰ seawater (SW) for 24 h, or subjected to a handling stress. Estradiol and NP-H increased plasma vitellogenin in males and females, and E2 increased gonadosomatic index only in males. In FW, E2 reduced sodium potassium–activated adenosine triphosphatase activity as well as plasma levels of growth hormone, insulin-like growth factor I, and triiodothyronine. Both E2 and NP-H reduced plasma sodium in FW and increased plasma chloride in SW. Plasma Cortisol levels pre- and poststressor were significantly elevated by all treatments relative to controls, but only E2 increased plasma glucose before and after the stressor. These results indicate that exposure of anadromous salmonids to environmental estrogens heightens sensitivity to external stressors, impairs ion regulation in both FW and SW, and disrupts endocrine pathways critical for smolt development.

  12. Linking oceanic food webs to coastal production and growth rates of Pacific salmon ( Oncorhynchus spp.), using models on three scales

    NASA Astrophysics Data System (ADS)

    Aydin, Kerim Y.; McFarlane, Gordon A.; King, Jacquelynne R.; Megrey, Bernard A.; Myers, Katherine W.

    2005-03-01

    Three independent modeling methods—a nutrient-phytoplankton-zooplankton (NPZ) model (NEMURO), a food web model (Ecopath/Ecosim), and a bioenergetics model for pink salmon ( Oncorhynchus gorbuscha)—were linked to examine the relationship between seasonal zooplankton dynamics and annual food web productive potential for Pacific salmon feeding and growing in the Alaskan subarctic gyre ecosystem. The linked approach shows the importance of seasonal and ontogenetic prey switching for zooplanktivorous pink salmon, and illustrates the critical role played by lipid-rich forage species, especially the gonatid squid Berryteuthis anonychus, in connecting zooplankton to upper trophic level production in the subarctic North Pacific. The results highlight the need to uncover natural mechanisms responsible for accelerated late winter and early spring growth of salmon, especially with respect to climate change and zooplankton bloom timing. Our results indicate that the best match between modeled and observed high-seas pink salmon growth requires the inclusion of two factors into bioenergetics models: (1) decreasing energetic foraging costs for salmon as zooplankton are concentrated by the spring shallowing of pelagic mixed-layer depth and (2) the ontogenetic switch of salmon diets from zooplankton to squid. Finally, we varied the timing and input levels of coastal salmon production to examine effects of density-dependent coastal processes on ocean feeding; coastal processes that place relatively minor limitations on salmon growth may delay the seasonal timing of ontogenetic diet shifts and thus have a magnified effect on overall salmon growth rates.

  13. Experimental hexamitiasis in juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdner)

    USGS Publications Warehouse

    1965-01-01

    An exogenous strain of cultured Hexamita salmonis (Moore) was employed to induce trophic hexamitiasis in otherwise disease-free juveniles of coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri). Mortality and growth were the parameters used to detect the effects of hexamitiasis on the two species. Two levels of each of the three experimental factors under study, Hexamita infection, species of fish, and density of fish, were arranged in a three-way factorial design. Replicate lots involved a total of 1,440 fish held under controlled laboratory conditions.Comparisons of growth and mortality indicate that infection with H. salmonis over a period of 8 weeks is innocuous to coho salmon. Steelhead trout suffered a low, but statistically significant mortality which subsided after the sixth week; growth rate was not affected.

  14. Physiological consequences of the salmon louse (Lepeophtheirus salmonis) on juvenile pink salmon (Oncorhynchus gorbuscha): implications for wild salmon ecology and management, and for salmon aquaculture.

    PubMed

    Brauner, C J; Sackville, M; Gallagher, Z; Tang, S; Nendick, L; Farrell, A P

    2012-06-19

    Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.

  15. Salmon carcasses increase stream productivity more than inorganic fertilizer pellets: A test on multiple trophic levels in streamside experimental channels

    USGS Publications Warehouse

    Wipfli, Mark S.; Hudson, John P.; Caouette, John P.; Mitchell, N.L.; Lessard, Joanna L.; Heintz, Ron A.; Chaloner, D.T.

    2010-01-01

    Inorganic nutrient amendments to streams are viewed as possible restoration strategies for re-establishing nutrients and stream productivity throughout the western coast of North America, where salmon runs and associated marine-derived nutrient subsidies have declined. In a mesocosm experiment, we examined the short-term (6 weeks) comparative effects of artificial nutrient pellets and salmon carcasses, alone (low and high amounts) and in combination, on stream food webs. Response variables included dissolved nutrient concentrations, biofilm ash-free dry mass (AFDM) and chlorophyll-alevels, macroinvertebrate density, growth and body condition of juvenile coho salmon Oncorhynchus kisutch, and whole-body lipid content of invertebrates and juvenile coho salmon. Most of the response variables were significantly influenced by carcass treatment; the only response variable significantly influenced by fertilizer pellet treatment was soluble reactive phosphorus (SRP) concentration. Ammonium-nitrogen concentration was the only response variable affected by both (low and high) levels of carcass treatment; all others showed no significant response to the two carcass treatment levels. Significant treatment × time interactions were observed for all responses except nitrate; for most responses, significant treatment effects were detected at certain time periods and not others. For example, significantly higher SRP concentrations were recorded earlier in the experiment, whereas significant fish responses were observed later. These results provide evidence that inorganic nutrient additions do not have the same ecological effects in streams as do salmon carcasses, potentially because inorganic nutrient additions lack carbon-based biochemicals and macromolecules that are sequestered directly or indirectly by consumers. Salmon carcasses, preferably deposited naturally during spawning migrations, appear to be far superior to inorganic nutrient amendments for sustaining and restoring

  16. Evidence for competitive dominance of Pink salmon (Oncorhynchus gorbuscha) over other Salmonids in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.

    2004-01-01

    consumption rates and rapid growth, degree of diet overlap or consumption of lower trophic level prey, and early migration timing into the ocean. The consistent pattern of findings from multiple regions of the ocean provides evidence that interspecific competition can significantly influence salmon population dynamics and that pink salmon may be the dominant competitor among salmon in marine waters. ?? Springer 2005.

  17. Influence of species, size and relative abundance on the outcomes of competitive interactions between brook trout and juvenile coho salmon

    USGS Publications Warehouse

    Thornton, Emily J; Duda, Jeff; Quinn, Thomas P.

    2016-01-01

    Resource competition between animals is influenced by a number of factors including the species, size and relative abundance of competing individuals. Stream-dwelling animals often experience variably available food resources, and some employ territorial behaviors to increase their access to food. We investigated the factors that affect dominance between resident, non-native brook trout and recolonizing juvenile coho salmon in the Elwha River, WA, USA, to see if brook trout are likely to disrupt coho salmon recolonization via interference competition. During dyadic laboratory feeding trials, we hypothesized that fish size, not species, would determine which individuals consumed the most food items, and that species would have no effect. We found that species, not size, played a significant role in dominance; coho salmon won 95% of trials, even when only 52% the length of their brook trout competitors. As the pairs of competing fish spent more time together during a trial sequence, coho salmon began to consume more food, and brook trout began to lose more, suggesting that the results of early trials influenced fish performance later. In group trials, we hypothesized that group composition and species would not influence fish foraging success. In single species groups, coho salmon consumed more than brook trout, but the ranges overlapped. Brook trout consumption remained constant through all treatments, but coho salmon consumed more food in treatments with fewer coho salmon, suggesting that coho salmon experienced more intra- than inter-specific competition and that brook trout do not pose a substantial challenge. Based on our results, we think it is unlikely that competition from brook trout will disrupt Elwha River recolonization by coho salmon.

  18. WILD SALMON IN WESTERN NORTH AMERICA: FORECASTING THE MOST LIKELY STATUS IN 2100

    EPA Science Inventory

    The future of wild salmon in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as current recovery efforts are, does not appear likely to realize sustain biologically significan...

  19. Declining wild salmon populations in relation to parasites from farm salmon.

    PubMed

    Krkosek, Martin; Ford, Jennifer S; Morton, Alexandra; Lele, Subhash; Myers, Ransom A; Lewis, Mark A

    2007-12-14

    Rather than benefiting wild fish, industrial aquaculture may contribute to declines in ocean fisheries and ecosystems. Farm salmon are commonly infected with salmon lice (Lepeophtheirus salmonis), which are native ectoparasitic copepods. We show that recurrent louse infestations of wild juvenile pink salmon (Oncorhynchus gorbuscha), all associated with salmon farms, have depressed wild pink salmon populations and placed them on a trajectory toward rapid local extinction. The louse-induced mortality of pink salmon is commonly over 80% and exceeds previous fishing mortality. If outbreaks continue, then local extinction is certain, and a 99% collapse in pink salmon population abundance is expected in four salmon generations. These results suggest that salmon farms can cause parasite outbreaks that erode the capacity of a coastal ecosystem to support wild salmon populations.

  20. Pink salmon ( Oncorhynchus gorbuscha) marine survival rates reflect early marine carbon source dependency

    NASA Astrophysics Data System (ADS)

    Kline, Thomas C., Jr.; Boldt, Jennifer L.; Farley, Edward V., Jr.; Haldorson, Lewis J.; Helle, John H.

    2008-05-01

    Marine survival rate (the number of adult salmon returning divided by the number of salmon fry released) of pink salmon runs propagated by Prince William Sound, Alaska (PWS) salmon hatcheries is highly variable resulting in large year-to-year run size variation, which ranged from ∼20 to ∼50 million during 1998-2004. Marine survival rate was hypothesized to be determined during their early marine life stage, a time period corresponding to the first growing season after entering the marine environment while they are still in coastal waters. Based on the predictable relationships of 13C/ 12C ratios in food webs and the existence of regional 13C/ 12C gradients in organic carbon, 13C/ 12C ratios of early marine pink salmon were measured to test whether marine survival rate was related to food web processes. Year-to-year variation in marine survival rate was inversely correlated to 13C/ 12C ratios of early marine pink salmon, but with differences among hatcheries. The weakest relationship was for pink salmon from the hatchery without historic co-variation of marine survival rate with other PWS hatcheries or wild stocks. Year-to-year variation in 13C/ 12C ratio of early marine stage pink salmon in combination with regional spatial gradients of 13C/ 12C ratio measured in zooplankton suggested that marine survival was driven by carbon subsidies of oceanic origin (i.e., oceanic zooplankton). The 2001 pink salmon cohort had 13C/ 12C ratios that were very similar to those found for PWS carbon, i.e., when oceanic subsidies were inferred to be nil, and had the lowest marine survival rate (2.6%). Conversely, the 2002 cohort had the highest marine survival (9.7%) and the lowest mean 13C/ 12C ratio. These isotope patterns are consistent with hypotheses that oceanic zooplankton subsidies benefit salmon as food subsidies, or as alternate prey for salmon predators. Oceanic subsidies are manifestations of significant exchange of material between PWS and the Gulf of Alaska. Given

  1. Suppression of soybean aphid by generalist predators results in a trophic cascade in soybeans.

    PubMed

    Costamagna, Alejandro C; Landis, Douglas A; Difonzo, Christina D

    2007-03-01

    Top-down regulation of herbivores in terrestrial ecosystems is pervasive and can lead to trophic cascades that release plants from herbivory. Due to their relatively simplified food webs, agroecosystems may be particularly prone to trophic cascades, a rationale that underlies biological control. However, theoretical and empirical studies show that, within multiple enemy assemblages, intraguild predation (IGP) may lead to a disruption of top-down control by predators. We conducted a factorial field study to test the separate and combined effects of predators and parasitoids in a system with asymmetric IGP. Specifically we combined ambient levels of generalist predators (mainly Coccinellidae) of the soybean aphid, Aphis glycines Matsumura, with controlled releases of the native parasitoid Lysiphlebus testaceipes (Cresson) and measured their impact on aphid population growth and soybean biomass and yield. We found that generalist predators provided strong, season-long aphid suppression, which resulted in a trophic cascade that doubled soybean biomass and yield. However, contrary to our expectations, L. testaceipes provided minor aphid suppression and only when predators were excluded, which resulted in nonadditive effects when both groups were combined. We found direct and indirect evidence of IGP, but because percentage parasitism did not differ between predator exclusion and ambient predator treatments, we concluded that IGP did not disrupt parasitism during this study. Our results support theoretical predictions that intraguild predators which also provide strong herbivore suppression do not disrupt top-down control of herbivores.

  2. Salmon lice – impact on wild salmonids and salmon aquaculture

    PubMed Central

    Torrissen, O; Jones, S; Asche, F; Guttormsen, A; Skilbrei, O T; Nilsen, F; Horsberg, T E; Jackson, D

    2013-01-01

    Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion. PMID:23311858

  3. Prey partitioning and use of insects by juvenile sockeye salmon and a potential competitor, threespine stickleback, in Afognak Lake, Alaska

    USGS Publications Warehouse

    Richardson, Natura; Beaudreau, Anne H.; Wipfli, Mark S.; Finkle, Heather

    2017-01-01

    Freshwater growth of juvenile sockeye salmon (Oncorhynchus nerka) depends upon the quality and quantity of prey and interactions with potential competitors in the foraging environment. To a large extent, knowledge about the ecology of lake-rearing juvenile sockeye salmon has emerged from studies of commercially important runs returning to deep nursery lakes, yet information from shallow nursery lakes (mean depth ≤ 10 m) is limited. We examined seasonal and ontogenetic variation in diets of juvenile sockeye salmon (N = 219, 30–85 mm) and an abundant potential competitor, threespine stickleback (Gasterosteus aculeatus; N = 198, 42–67 mm), to understand their foraging ecology and potential trophic interactions in a shallow Alaska lake. This study revealed that adult insects made up 74% of all sockeye salmon diets by weight and were present in 98% of all stomachs in Afognak Lake during the summer of 2013. Diets varied temporally for all fishes, but small sockeye salmon (<60 mm) showed a distinct shift in consumption from zooplankton in early summer to adult insects in late summer. We found significant differences in diet composition between sockeye salmon and threespine stickleback and the origin of their prey indicated that they also separated their use of habitat on a fine scale; however, the two species showed overlap in size selectivity of zooplankton prey. Considering that aquatic insects can be a primary resource for juvenile sockeye salmon in Afognak Lake, we encourage the development of nursery lake carrying capacity models that include aquatic insects as a prey source for sockeye salmon.

  4. Impacts of Intensive Logging on the Trophic Organisation of Ant Communities in a Biodiversity Hotspot

    PubMed Central

    Woodcock, Paul; Edwards, David P.; Newton, Rob J.; Vun Khen, Chey; Bottrell, Simon H.; Hamer, Keith C.

    2013-01-01

    Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging

  5. Impacts of intensive logging on the trophic organisation of ant communities in a biodiversity hotspot.

    PubMed

    Woodcock, Paul; Edwards, David P; Newton, Rob J; Vun Khen, Chey; Bottrell, Simon H; Hamer, Keith C

    2013-01-01

    Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging

  6. PACIFIC SALMON: LESSONS LEARNED FOR RECOVERING ATLANTIC SALMON

    EPA Science Inventory

    n evaluation of the history of efforts to reverse the long-term decline of Pacific Salmon provides instructive policy lessons for recovering Atlantic Salmon. From California to southern British Columbia, wild runs of Pacific salmon have universally declined and many have disappe...

  7. Poached Salmon

    MedlinePlus

    ... page: https://medlineplus.gov/recipe/poachedsalmon.html Poached Salmon To use the sharing features on this page, ... olive oil Ground black pepper, to taste For salmon: 4 salmon steaks, 5 oz each 3 cups ...

  8. CAN WE GET THERE FROM HERE: SALMON IN THE 21ST CENTURY (SYNTHESIS CHAPTER)

    EPA Science Inventory

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  9. Effects of trophic ecology and habitat use on maternal transfer of contaminants in four species of young of the year lamniform sharks.

    PubMed

    Lyons, Kady; Carlisle, Aaron; Preti, Antonella; Mull, Christopher; Blasius, Mary; O'Sullivan, John; Winkler, Chuck; Lowe, Christopher G

    2013-09-01

    Organic contaminant and total mercury concentrations were compared in four species of lamniform sharks over several age classes to examine bioaccumulation patterns and gain insights into trophic ecology. Contaminants found in young of the year (YOY) sharks were assumed to be derived from maternal sources and used as a proxy to investigate factors that influence maternal offloading processes. YOY white (Carcharodon carcharias) and mako (Isurus oxyrinchus) sharks had comparable and significantly higher concentrations of PCBs, DDTs, pesticides, and mercury than YOY thresher (Alopias vulpinus) or salmon (Lamna ditropis) sharks. A significant positive relationship was found between YOY contaminant loads and maternal trophic position, suggesting that trophic ecology is one factor that plays an important role in maternal offloading. Differences in organic contaminant signatures and contaminant concentration magnitudes among species corroborated what is known about species habitat use and may be used to provide insights into the feeding ecology of these animals. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Reciprocal subsidies and food web pathways leading to chum salmon fry in a temperate marine-terrestrial ecotone.

    PubMed

    Romanuk, Tamara N; Levings, Colin D

    2010-04-08

    Stable isotope analysis was used to determine the relative proportions of terrestrial and marine subsidies of carbon to invertebrates along a tidal gradient (low-intertidal, mid-intertidal, high-intertidal, supralittoral) and to determine the relative importance of terrestrial carbon in food web pathways leading to chum salmon fry Oncorhynchus keta (Walbaum) in Howe Sound, British Columbia. We found a clear gradient in the proportion of terrestrially derived carbon along the tidal gradient ranging from 68% across all invertebrate taxa in the supralittoral to 25% in the high-intertidal, 20% in the mid-intertidal, and 12% in the low-intertidal. Stable isotope values of chum salmon fry indicated carbon contributions from both terrestrial and marine sources, with terrestrially derived carbon ranging from 12.8 to 61.5% in the muscle tissue of chum salmon fry (mean 30%). Our results provide evidence for reciprocal subsidies of marine and terrestrially derived carbon on beaches in the estuary and suggest that the vegetated supralittoral is an important trophic link in supplying terrestrial carbon to nearshore food webs.

  11. Relationship of farm salmon, sea lice, and wild salmon populations.

    PubMed

    Marty, Gary D; Saksida, Sonja M; Quinn, Terrance J

    2010-12-28

    Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10-20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon--proposed through coordinated fallowing or closed containment--will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability.

  12. Diel spawning behavior of chum salmon in the Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Skalicky, J.J.

    2005-01-01

    We conducted a study during 2003 in a side channel of the Columbia River downstream of Bonneville Dam to describe the diel spawning behavior of wild chum salmon Oncorhynchus keta. We collected observational data on 14 pairs of chum salmon using a dual-frequency identification sonar. Spawners of both genders were observed chasing intruders during nighttime and daytime as nests were constructed. Regardless of diel period, females were engaged in digging to both construct nests and cover eggs, and courting males exhibited the prespawning behavior of tail-crossing. We observed a total of 13 spawning events, of which 9 occurred at night and 4 occurred during the day. Once chum salmon begin nest construction, visual cues are apparently not required for courtship, nest defense, and spawning. To enhance successful spawning, flows from Bonneville Dam during the spawning season were reduced during the day but were sometimes increased at night to pass water and meet power demand (i.e., reverse loading), the assumption being that chum salmon are inactive at night. Our findings show that this assumption was violated. Therefore, reverse loading may disrupt the complex prespawning behavior that occurs both during the day and at night, as well as attract spawners to areas that were dewatered during the day.

  13. Comparative responses to endocrine disrupting compounds in early life stages of Atlantic salmon, Salmo salar

    USGS Publications Warehouse

    Duffy, Tara A.; Iwanowicz, Luke R.; McCormick, Stephen D.

    2014-01-01

    Atlantic salmon (Salmo salar) are endangered anadromous fish that may be exposed to feminizing endocrine disrupting compounds (EDCs) during early development, potentially altering physiological capacities, survival and fitness. To assess differential life stage sensitivity to common EDCs, we carried out short-term (four day) exposures using three doses each of 17α-ethinylestradiol (EE2), 17β-estradiol (E2), and nonylphenol (NP) on four early life stages; embryos, yolk-sac larvae, feeding fry and one year old smolts. Differential response was compared using vitellogenin (Vtg, a precursor egg protein) gene transcription. Smolts were also examined for impacts on plasma Vtg, cortisol, thyroid hormones (T4/T3) and hepatosomatic index (HSI). Compound-related mortality was not observed in any life stage, but Vtg mRNA was elevated in a dose-dependent manner in yolk-sac larvae, fry and smolts but not in embyos. The estrogens EE2 and E2 were consistently stronger inducers of Vtg than NP. Embryos responded significantly to the highest concentration of EE2 only, while older life stages responded to the highest doses of all three compounds, as well as intermediate doses of EE2 and E2. Maximal transcription was greater for fry among the three earliest life stages, suggesting fry may be the most responsive life stage in early development. Smolt plasma Vtg was also significantly increased, and this response was observed at lower doses of each compound than was detected by gene transcription suggesting this is a more sensitive indicator at this life stage. HSI was increased at the highest doses of EE2 and E2 and plasma T3 decreased at the highest dose of EE2. Our results indicate that all life stages after hatching are potentially sensitive to endocrine disruption by estrogenic compounds and that physiological responses were altered over a short window of exposure, indicating the potential for these compounds to impact fish in the wild.

  14. Comparative responses to endocrine disrupting compounds in early life stages of Atlantic salmon, Salmo salar.

    PubMed

    Duffy, T A; Iwanowicz, L R; McCormick, S D

    2014-07-01

    Atlantic salmon (Salmo salar) are endangered anadromous fish that may be exposed to feminizing endocrine disrupting compounds (EDCs) during early development, potentially altering physiological capacities, survival and fitness. To assess differential life stage sensitivity to common EDCs, we carried out short-term (4 day) exposures using three doses each of 17 α-ethinylestradiol (EE2), 17 β-estradiol (E2), and nonylphenol (NP) on four early life stages; embryos, yolk-sac larvae, feeding fry and 1 year old smolts. Differential response was compared using vitellogenin (Vtg, a precursor egg protein) gene transcription. Smolts were also examined for impacts on plasma Vtg, cortisol, thyroid hormones (T4/T3) and hepatosomatic index (HSI). Compound-related mortality was not observed in any life stage, but Vtg mRNA was elevated in a dose-dependent manner in yolk-sac larvae, fry and smolts but not in embryos. The estrogens EE2 and E2 were consistently stronger inducers of Vtg than NP. Embryos responded significantly to the highest concentration of EE2 only, while older life stages responded to the highest doses of all three compounds, as well as intermediate doses of EE2 and E2. Maximal transcription was greater for fry among the three earliest life stages, suggesting fry may be the most responsive life stage in early development. Smolt plasma Vtg was also significantly increased, and this response was observed at lower doses of each compound than was detected by gene transcription suggesting plasma Vtg is a more sensitive indicator at this life stage. HSI was increased at the highest doses of EE2 and E2, and plasma T3 was decreased at the highest dose of EE2. Our results indicate that all life stages are potentially sensitive to endocrine disruption by estrogenic compounds and that physiological responses were altered over a short window of exposure, indicating the potential for these compounds to impact fish in the wild. Copyright © 2014 Elsevier B.V. All rights

  15. Effects of parasites from salmon farms on productivity of wild salmon

    PubMed Central

    Krkošek, Martin; Connors, Brendan M.; Morton, Alexandra; Lewis, Mark A.; Dill, Lawrence M.; Hilborn, Ray

    2011-01-01

    The ecological risks of salmon aquaculture have motivated changes to management and policy designed to protect wild salmon populations and habitats in several countries. In Canada, much attention has focused on outbreaks of parasitic copepods, sea lice (Lepeophtheirus salmonis), on farmed and wild salmon in the Broughton Archipelago, British Columbia. Several recent studies have reached contradictory conclusions on whether the spread of lice from salmon farms affects the productivity of sympatric wild salmon populations. We analyzed recently available sea lice data on farms and spawner–recruit data for pink (Oncorhynchus gorbuscha) and coho (Oncorhynchus kisutch) salmon populations in the Broughton Archipelago and nearby regions where farms are not present. Our results show that sea lice abundance on farms is negatively associated with productivity of both pink and coho salmon in the Broughton Archipelago. These results reconcile the contradictory findings of previous studies and suggest that management and policy measures designed to protect wild salmon from sea lice should yield conservation and fishery benefits. PMID:21873246

  16. Relationship of farm salmon, sea lice, and wild salmon populations

    PubMed Central

    Marty, Gary D.; Saksida, Sonja M.; Quinn, Terrance J.

    2010-01-01

    Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10–20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon—proposed through coordinated fallowing or closed containment—will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability. PMID:21149706

  17. Modeling (137)Cs bioaccumulation in the salmon-resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident.

    PubMed

    Alava, Juan José; Gobas, Frank A P C

    2016-02-15

    To track the long term bioaccumulation of (137)Cs in marine organisms off the Pacific Northwest coast of Canada, we developed a time dependent bioaccumulation model for (137)Cs in a marine mammalian food web that included fish-eating resident killer whales. The model outcomes show that (137)Cs can be expected to gradually bioaccumulate in the food web over time as demonstrated by the increase of the apparent trophic magnification factor of (137)Cs, ranging from 0.76 after 1 month of exposure to 2.0 following 30 years of exposure. (137)Cs bioaccumulation is driven by relatively rapid dietary uptake rates, moderate depuration rates in lower trophic level organisms and slow elimination rates in high trophic level organisms. Model estimates of the (137)Cs activity in species of the food web, based on current measurements and forecasts of (137)Cs activities in oceanic waters and sediments off the Canadian Pacific Northwest, indicate that the long term (137)Cs activities in fish species including Pacific herring, wild Pacific salmon, sablefish and halibut will remain well below the current (137)Cs-Canada Action Level for consumption (1000 Bq/kg) following a nuclear emergency. Killer whales and Pacific salmon are expected to exhibit the largest long term (137)Cs activities and may be good sentinels for monitoring (137)Cs in the region. Assessment of the long term consequences of (137)Cs releases from the Fukushima aftermath should consider the extent of ecological magnification in addition to ocean dilution. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Direct and indirect trophic effects of predator depletion on basal trophic levels.

    PubMed

    Chen, Huili; Hagerty, Steven; Crotty, Sinead M; Bertness, Mark D

    2016-02-01

    Human population growth and development have heavily degraded coastal ecosystems with cascading impacts across multiple trophic levels. Understanding both the direct and indirect trophic effects of human activities is important for coastal conservation. In New England, recreational overfishing has triggered a regional trophic cascade. Predator depletion releases the herbivorous purple marsh crab from consumer control and leads to overgrazing of marsh cordgrass and salt marsh die-off. The direct and indirect trophic effects of predator depletion on basal trophic levels, however, are not understood. Using observational and experimental data, we examined the hypotheses that (1) direct trophic effects of predator depletion decrease meiofaunal abundance by releasing deposit feeding fiddler crabs from consumer control, and/or (2) indirect trophic effects of predator depletion increase meiofaunal abundance by releasing blue carbon via the erosion of centuries of accreted marsh peat. Experimental deposit feeder removal led to 23% higher meiofaunal density at die-off than at healthy sites, while reciprocally transplanting sediment from die-off and healthy sites revealed that carbon-rich die-off sediment increased meiofauna density by over 164%: six times stronger than direct trophic effects. Recovering sites had both carbon-rich sediment and reduced deposit feeding leading to higher meiofauna densities than both die-off and healthy sites. This suggests that consequences of the trophic downgrading of coastal habitats can be driven by both direct and indirect trophic mechanisms that may vary in direction and magnitude, making their elucidation dependent on experimental manipulations.

  19. Relative resistance of Pacific salmon to infectious salmon anaemia virus

    USGS Publications Warehouse

    Rolland, J.B.; Winton, J.R.

    2003-01-01

    Infectious salmon anaemia (ISA) is a major disease of Atlantic salmon, Salmo salar, caused by an orthomyxovirus (ISAV). Increases in global aqua culture and the international movement of fish made it important to determine if Pacific salmon are at risk. Steelhead trout, Oncorhynchus mykiss, and chum, O. keta, Chinook, O. tshawytscha, coho, O. kisutch, and Atlantic salmon were injected intraperitoneally with a high, medium, or low dose of a Norwegian strain of ISAV. In a second challenge, the same species, except chum salmon, were injected with a high dose of either a Canadian or the Norwegian strain. Average cumulative mortality of Atlantic salmon in trial 1 was 12% in the high dose group, 20% in the medium dose group and 16% in the low dose group. The average cumulative mortality of Atlantic salmon in trial 2 was 98%. No signs typical of ISA and no ISAV-related mortality occurred among any of the groups of Oncorhynchus spp. in either experiment, although ISAV was reisolated from some fish sampled at intervals post-challenge. The results indicate that while Oncorhynchus spp. are quite resistant to ISAV relative to Atlantic salmon, the potential for ISAV to adapt to Oncorhynchus spp. should not be ignored.

  20. A time-lapse photography method for monitoring salmon (Oncorhynchus spp.) passage and abundance in streams

    PubMed Central

    Leacock, William B.; Eby, Lisa A.; Stanford, Jack A.

    2016-01-01

    Accurately estimating population sizes is often a critical component of fisheries research and management. Although there is a growing appreciation of the importance of small-scale salmon population dynamics to the stability of salmon stock-complexes, our understanding of these populations is constrained by a lack of efficient and cost-effective monitoring tools for streams. Weirs are expensive, labor intensive, and can disrupt natural fish movements. While conventional video systems avoid some of these shortcomings, they are expensive and require excessive amounts of labor to review footage for data collection. Here, we present a novel method for quantifying salmon in small streams (<15 m wide, <1 m deep) that uses both time-lapse photography and video in a model-based double sampling scheme. This method produces an escapement estimate nearly as accurate as a video-only approach, but with substantially less labor, money, and effort. It requires servicing only every 14 days, detects salmon 24 h/day, is inexpensive, and produces escapement estimates with confidence intervals. In addition to escapement estimation, we present a method for estimating in-stream salmon abundance across time, data needed by researchers interested in predator--prey interactions or nutrient subsidies. We combined daily salmon passage estimates with stream specific estimates of daily mortality developed using previously published data. To demonstrate proof of concept for these methods, we present results from two streams in southwest Kodiak Island, Alaska in which high densities of sockeye salmon spawn. PMID:27326378

  1. The effect of nonylphenol on gene expression in Atlantic salmon smolts.

    PubMed

    Robertson, Laura S; McCormick, Stephen D

    2012-10-15

    The parr-smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na(+)/K(+)-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers. Published by Elsevier B.V.

  2. The effect of nonylphenol on gene expression in Atlantic salmon smolts

    USGS Publications Warehouse

    Robertson, Laura S.; McCormick, Stephen D.

    2012-01-01

    The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na+/K+-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers.

  3. 'Trophic' and 'source' amino acids in trophic estimation: a likely metabolic explanation.

    PubMed

    O'Connell, T C

    2017-06-01

    Amino acid nitrogen isotopic analysis is a relatively new method for estimating trophic position. It uses the isotopic difference between an individual's 'trophic' and 'source' amino acids to determine its trophic position. So far, there is no accepted explanation for the mechanism by which the isotopic signals in 'trophic' and 'source' amino acids arise. Yet without a metabolic understanding, the utility of nitrogen isotopic analyses as a method for probing trophic relations, at either bulk tissue or amino acid level, is limited. I draw on isotopic tracer studies of protein metabolism, together with a consideration of amino acid metabolic pathways, to suggest that the 'trophic'/'source' groupings have a fundamental metabolic origin, to do with the cycling of amino-nitrogen between amino acids. 'Trophic' amino acids are those whose amino-nitrogens are interchangeable, part of a metabolic amino-nitrogen pool, and 'source' amino acids are those whose amino-nitrogens are not interchangeable with the metabolic pool. Nitrogen isotopic values of 'trophic' amino acids will reflect an averaged isotopic signal of all such dietary amino acids, offset by the integrated effect of isotopic fractionation from nitrogen cycling, and modulated by metabolic and physiological effects. Isotopic values of 'source' amino acids will be more closely linked to those of equivalent dietary amino acids, but also modulated by metabolism and physiology. The complexity of nitrogen cycling suggests that a single identifiable value for 'trophic discrimination factors' is unlikely to exist. Greater consideration of physiology and metabolism should help in better understanding observed patterns in nitrogen isotopic values.

  4. Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon

    PubMed Central

    Rogers, Luke A.; Peacock, Stephanie J.; McKenzie, Peter; DeDominicis, Sharon; Jones, Simon R. M.; Chandler, Peter; Foreman, Michael G. G.; Revie, Crawford W.; Krkošek, Martin

    2013-01-01

    Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions. PMID:23577082

  5. Comment on "Declining wild salmon populations in relation to parasites from farm salmon".

    PubMed

    Riddell, Brian E; Beamish, Richard J; Richards, Laura J; Candy, John R

    2008-12-19

    Krkosek et al. (Reports, 14 December 2007, p. 1772) claimed that sea lice spread from salmon farms placed wild pink salmon populations "on a trajectory toward rapid local extinction." Their prediction is inconsistent with observed pink salmon returns and overstates the risks from sea lice and salmon farming.

  6. SALMON 2100 PROJECT: LIKELY SCENARIOS FOR WILD SALMON

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...

  7. WITHOUT A CHANGE OF DIRECTION, WE'LL GET WHERE WE'RE GOING: WRITING A FUTURE FOR WILD SALMON

    EPA Science Inventory

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  8. Salmon habitat assessment for conservation planning in the lower White Salmon River, Washington

    USGS Publications Warehouse

    Hardiman, Jill M.; Allen, M. Brady

    2015-01-01

    In 2011, Condit Dam was removed from the White Salmon River, Washington. Since dam removal, there has been interest among scientists (State and Federal), Tribes, non-profit organizations, and the general public in assessing Pacific salmon habitat and use in the White Salmon River for conservation planning and potential fishery management actions. The study area extended from the lower 6 miles of the White Salmon River to the confluence with the Columbia River, including the former reservoir area. The Mid-Columbia Fisheries Enhancement Group received a grant to initiate efforts to plan for salmon habitat protection in the lower 6 river miles of the White Salmon River. As part of efforts by the Mid-Columbia Fisheries Enhancement Group to conduct conservation planning, the U.S. Geological Survey (USGS) used current and historical habitat information to assist in the planning process. The USGS compiled existing georeferenced habitat data into a Geographic Information System to identify areas of high quality habitat for salmon, potential areas for restoration/improvement, and areas that could be threatened. The primary sources of georeferenced data for this project include a lidar flight contracted by PacifiCorp, bathymetry from USGS, and fall Chinook salmon redd surveys from the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife. Redd observations provided support that the study area is a migratory corridor for salmon and steelhead and that the lowest 2–3 miles had the highest concentration of documented fall Chinook salmon redds. The study area has potential for restoration/conservation areas to improve/conserve salmon habitat.

  9. Discovering Alaska's Salmon: A Children's Activity Book.

    ERIC Educational Resources Information Center

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  10. Trophic classification of selected Colorado lakes

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.; Boland, D. H. P.

    1979-01-01

    Multispectral scanner data, acquired over several Colorado lakes using LANDSAT-1 and aircraft, were used in conjunction with contact-sensed water quality data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators. Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state.

  11. Evidence for competition at sea between Norton Sound chum salmon and Asian hatchery chum salmon

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Agler, B.A.; Nielsen, Jennifer L.

    2012-01-01

    Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.

  12. Utilization of smoked salmon trim in extruded smoked salmon jerky.

    PubMed

    Kong, J; Dougherty, M P; Perkins, L B; Camire, M E

    2012-06-01

    During smoked salmon processing, the dark meat along the lateral line is removed before packaging; this by-product currently has little economic value. In this study, the dark meat trim was incorporated into an extruded jerky. Three formulations were processed: 100% smoked trim, 75% : 25% smoked trim : fresh salmon fillet, and 50% : 50% smoked trim : fresh salmon blends (w/w basis). The base formulation contained salmon (approximately 83.5%), tapioca starch (8%), pregelatinized potato starch (3%), sucrose (4%), salt (1.5%), sodium nitrate (0.02%), and ascorbyl palmitate (0.02% of the lipid content). Blends were extruded in a laboratory-scale twin-screw extruder and then hot-smoked for 5 h. There were no significant differences among formulations in moisture, water activity, and pH. Protein was highest in the 50 : 50 blend jerky. Ash content was highest in the jerky made with 100% trim. Total lipids and salt were higher in the 100% trim jerky than in the 50 : 50 blend. Hot smoking did not adversely affect docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) content in lipids from 100% smoked trim jerky. Servings of salmon jerky made with 75% and 100% smoked trim provided at least 500 mg of EPA and DHA. The 50 : 50 formulation had the highest Intl. Commission on Illumination (CIE) L*, a*, and b* color values. Seventy consumers rated all sensory attributes as between "like slightly" and "like moderately." With some formulation and processing refinements, lateral line trim from smoked salmon processors has potential to be incorporated into acceptable, healthful snack products. Dark meat along the lateral line is typically discarded by smoked salmon processors. This omega-3 fatty acid rich by-product can be used to make a smoked salmon jerky that provides a convenient source of these healthful lipids for consumers. © 2012 Institute of Food Technologists®

  13. Alteration of thyroid hormone concentrations in juvenile Chinook salmon (Oncorhynchus tshawytscha) exposed to polybrominated diphenyl ethers, BDE-47 and BDE-99.

    PubMed

    Arkoosh, Mary R; Van Gaest, Ahna L; Strickland, Stacy A; Hutchinson, Greg P; Krupkin, Alex B; Dietrich, Joseph P

    2017-03-01

    Polybrominated diphenyl ethers (PBDEs) have been used as flame-retardants in consumer products and are currently detected in salmon globally. The two most predominant PBDE congeners found in salmon are BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) and BDE-99 (2,2',4,4',5-pentabromodiphenyl ether). In the present study, groups of juvenile Pacific Chinook salmon were fed five environmentally relevant concentrations of either BDE-47 (0.3-552 ng total PBDEs/g food), BDE-99 (0.3-580 ng total PBDEs/g food), or nearly equal mixtures of both congeners (0.7-690 ng total PBDEs/g food) for 39-40 days. The concentrations of circulating total thyroid hormones, thyroxine (T 4 ) and 3,5,3'-triiodothyronine (T 3 ), were measured using a hormone-specific time-resolved fluoroimmunoassay to determine if PBDE exposure disrupts the hypothalamic-pituitary-thyroid endocrine axis. The concentrations of both circulating T 4 and T 3 were altered in juvenile salmon by dietary uptake of BDE-99. Exposure to BDE-47 did not alter either T 3 or T 4 circulating hormone concentrations. However, exposure to a mixture of BDE-47 and BDE-99 reduced T 3 in fish with lower concentrations of total whole body PBDEs than with either congener alone at equivalent PBDE whole body concentrations. Accordingly, the disruption of PBDEs on circulating thyroid hormone concentrations has the potential to impact a number of critical functions in juvenile salmon including growth, parr-smolt transformation, and immunological processes. Published by Elsevier Ltd.

  14. Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.

    2016-01-01

    Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the Salmon River during May and June prior to out-migration. Over the 4 years examined (2009–2012), annual consumption of Chinook Salmon parr by hatchery-released yearling steelhead O. mykiss and Coho Salmon O. kisutch ranged from 1.5 to 3.3 million and from 0.4 to 2.1 million, respectively. In 2009, Fallfish Semotilus corporalis were estimated to consume 2.9 million Chinook Salmon parr. Predation was higher in May, when the average TL of Chinook Salmon parr was 44.5 mm, than in June. Fallfish were also important predators of naturally reproduced steelhead subyearlings, consuming an estimated 800,000 steelhead in 2009. Hatchery-released yearling salmonids consumed 13.8–15.3% of the Chinook Salmon parr that were estimated to be present in the Salmon River during 2010–2012. Earlier releases of hatchery salmonid yearlings could reduce the riverine consumption of Chinook Salmon parr by facilitating the out-migration of yearlings prior to Chinook Salmon emergence.

  15. Invasive European bird cherry disrupts stream-riparian linkages: effects on terrestrial invertebrate prey subsidies for juvenile coho salmon

    USGS Publications Warehouse

    Roon, David A.; Wipfli, Mark S.; Wurtz, Tricia L.; Blanchard, Arny L.

    2016-01-01

    The spread of invasive species in riparian forests has the potential to affect both terrestrial and aquatic organisms linked through cross-ecosystem resource subsidies. However, this potential had not been explored in regards to terrestrial prey subsidies for stream fishes. To address this, we examined the effects of an invasive riparian tree, European bird cherry (EBC, Prunus padus), spreading along urban Alaskan salmon streams, by collecting terrestrial invertebrates present on the foliage of riparian trees, their subsidies to streams, and their consumption by juvenile coho salmon (Oncorhynchus kisutch). Riparian EBC supported four to six times less terrestrial invertebrate biomass on its foliage and contributed two to three times lower subsidies relative to native deciduous trees. This reduction in terrestrial invertebrate biomass was consistent between two watersheds over 2 years. In spite of this reduction in terrestrial prey resource input, juvenile coho salmon consumed similar levels of terrestrial invertebrates in stream reaches bordered by EBC. Although we did not see ecological effects extending to stream salmonids, reduced terrestrial prey subsidies to streams are likely to have negative consequences as EBC continues to spread.

  16. Trophic and Non-Trophic Interactions in a Biodiversity Experiment Assessed by Next-Generation Sequencing

    PubMed Central

    Tiede, Julia; Wemheuer, Bernd; Traugott, Michael; Daniel, Rolf; Tscharntke, Teja; Ebeling, Anne; Scherber, Christoph

    2016-01-01

    Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research. PMID:26859146

  17. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    USGS Publications Warehouse

    Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.

    2015-01-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.

  18. THE SALMON 2100 PROJECT -- AN ALTERNATIVES FUTURES PERSPECTIVE ON PACIFIC NORTHWEST SALMON RECOVERY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in the Pacific Northwest and California. Wild salmon recovery efforts in western North Americ...

  19. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    PubMed

    Garver, K A; Marty, G D; Cockburn, S N; Richard, J; Hawley, L M; Müller, A; Thompson, R L; Purcell, M K; Saksida, S

    2016-02-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon. © 2015 John Wiley & Sons Ltd.

  20. Plasmacytoid leukemia of chinook salmon.

    PubMed

    Kent, M L; Eaton, W D; Casey, J W

    1997-04-01

    Plasmacytoid leukemia is a common disease of seawater pen-reared chinook salmon (Oncorhynchus tshawytscha) in British Columbia, Canada, but has also been detected in wild salmon, in freshwater-reared salmon in United States, and in salmon from netpens in Chile. The disease can be transmitted under laboratory conditions, and is associated with a retrovirus, the salmon leukemia virus. However, the proliferating plasmablasts are often infected with the microsporean Enterocytozoon salmonis, which may be an important co-factor in the disease.

  1. Assessing and mitigating dock shading impacts on the behavior of juvenile pacific salmon (Oncorhynchus spp.) : can artificial light mitigate the effects?

    DOT National Transportation Integrated Search

    2010-06-01

    The shadows from large over-water structures built on nearshore habitats in the Puget Sound can reduce prey abundance and disrupt juvenile Pacific salmon (Oncorhynchus spp.) migratory behavior with potential consequences on survival rates. As part of...

  2. Quantifying the behavioral response of spawning chum salmon to elevated discharges from Bonneville Dam, Columbia River, USA

    USGS Publications Warehouse

    Tiffan, K.F.; Haskell, C.A.; Kock, T.J.

    2010-01-01

    Chum salmon Oncorhynchus keta that spawn in main-stem habitats below Bonneville Dam on the Columbia River, USA, are periodically subjected to elevated discharges that may alter spawning behaviour. We investigated behavioural responses of spawning chum salmon to increased water velocities associated with experimental increases in tailwater elevation using acoustic telemetry and a dual-frequency identification sonar. Chum salmon primarily remained near their redds at base tailwater elevations (3.5 m above mean sea level), but displayed different movement and behavioural responses as elevations were increased to either 4.1 or 4.7m for 8-h periods. When velocities remained suitable (<0.8m s-1) during elevated-tailwater tests, female chum salmon remained near their redds but exhibited reduced digging activity as water velocities increased. However, when velocities exceeded 0.8m s-1, the females that remained on their redds exhibited increased swimming activity and digging virtually ceased. Female and male chum salmon that left their redds when velocities became unsuitable moved mean distances ranging from 32 to 58 m to occupy suitable velocities, but returned to their redds after tailwaters returned to base levels. Spawning events (i.e. egg deposition) were observed for five of nine pairs of chum salmon following tests indicating any disruptions to normal behaviour caused by elevated tailwaters were likely temporary. We believe a chum salmon's decision to either remain on, or leave, its redd during periods of unsuitably high water velocities reflects time invested in the redd and the associated energetic costs it is willing to incur. ?? 2009 John Wiley & Sons, Ltd.

  3. Calcitonin Salmon Injection

    MedlinePlus

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to ...

  4. It's a Salmon's Life!

    ERIC Educational Resources Information Center

    French, M. Jenice; Skochdopole, Laura Downey

    1998-01-01

    Describes an integrated science unit to help preservice teachers gain confidence in their abilities to learn and teach science. The teachers role played being salmon as they learned about the salmon's life cycle and the difficulties salmon encounter. The unit introduced the use of investigative activities that begin with questions and end with…

  5. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  6. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  7. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  8. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  9. One Northwest community - People, salmon, rivers, and the sea: Towards sustainable salmon fisheries

    USGS Publications Warehouse

    MacDonald, Donald D.; Steward, Cleveland R.; Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    Pacific salmon management is in crisis. Throughout their range, salmon and steelhead populations are being adversely affected by human activities. Without coordinated, effective, and timely action, the future of the Pacific salmon resource is most certainly in doubt. To address the challenges that are currently facing salmon management, concerned citizens representing a diverse array of government agencies and non-governmental organizations have agreed to cooperate in the development of a Sustainable Fisheries Strategy for west coast salmon and steelhead populations. The Strategy builds on the contents of this book, resulting from the Sustainable Fisheries Conference and subsequent community- and watershed-based citizen forums. This chapter presents the key elements of the Strategy including a common vision for the future, a series of guiding principles, and specific strategies for supporting sustainable fisheries. As such, the Strategy embraces an ecosystem-based approach to managing human activities, rather than the traditional egocentric approach to managing salmonid populations and associated habitats. A system of community-based, watershed-oriented councils, including all stakeholders and agency representatives, is proposed for effective transition to ecosystem-based salmon and steelhead management. It is our hope that everyone involved in Pacific salmon management will embrace both the spirit and the specific elements of the Sustainable Fisheries Strategy as we face the difficult challenges ahead.

  10. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    USGS Publications Warehouse

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  11. Seasonal persistence of marine-derived nutrients in south-central Alaskan salmon streams

    USGS Publications Warehouse

    Rinella, Daniel J.; Wipfi, Mark S.; Walker, Coowe M.; Stricker, Craig A.; Heintz, Ron A.

    2013-01-01

    Spawning salmon deliver annual pulses of marine-derived nutrients (MDN) to riverine ecosystems around the Pacific Rim, leading to increased growth and condition in aquatic and riparian biota. The influence of pulsed resources may last for extended periods of time when recipient food webs have effective storage mechanisms, yet few studies have tracked the seasonal persistence of MDN. With this as our goal, we sampled stream water chemistry and selected stream and riparian biota spring through fall at 18 stations (in six watersheds) that vary widely in spawner abundance and at nine stations (in three watersheds) where salmon runs were blocked by waterfalls. We then developed regression models that related dissolved nutrient concentrations and biochemical measures of MDN assimilation to localized spawner density across these 27 stations. Stream water ammonium-N and orthophosphate-P concentrations increased with spawner density during the summer salmon runs, but responses did not persist into the following fall. The effect of spawner density on δ15N in generalist macroinvertebrates and three independent MDN metrics (δ15N, δ34S, and ω3:ω6 fatty acids) in juvenile Dolly Varden (Salvelinus malma) was positive and similar during each season, indicating that MDN levels in biota increased with spawner abundance and were maintained for at least nine months after inputs. Delta 15N in a riparian plant, horsetail (Equisetum fluviatile), and scraper macroinvertebrates did not vary with spawner density in any season, suggesting a lack of MDN assimilation by these lower trophic levels. Our results demonstrate the ready assimilation of MDN by generalist consumers and the persistence of this pulsed subsidy in these organisms through the winter and into the next growing season.

  12. Competition between Asian pink salmon (Oncorhynchus gorbuscha) and Alaskan sockeye salmon (O. nerka) in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Zimmermann, M.; Myers, K.W.; Nielsen, J.L.; Rogers, D.E.

    2003-01-01

    The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd-numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd-year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977-97 indicated that smolts entering the ocean during even-numbered years and interacting with abundant odd-year pink salmon during the following year experienced 26% (age-2 smolt) to 45% (age-1 smolt) lower survival compared with smolts migrating during odd-numbered years. Adult sockeye salmon returning to Bristol Bay from even-year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd-year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.

  13. SALMON 2100 PROJECT

    EPA Science Inventory

    Twenty eight salmon scientists and policy experts have joined forces in an innovative project to identify ways that, if adopted, likely would restore and sustain wild salmon runs in California, Oregon, Washington, Idaho, and southern British Columbia.

  14. Trophic level responses differ as climate warms in Ireland

    NASA Astrophysics Data System (ADS)

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant ( P<0.01 and P<0.001) advance in spring phenology that was driven by rising spring temperature ( P<0.05; 0.45 °C /decade). However, the rate of advance was greater for moths (1.8 days/year), followed by birds (0.37 days/year) and trees (0.29 days/year). In addition, the length of time between (1) moth emergence and leaf unfolding and (2) moth emergence and bird arrival decreased significantly ( P<0.05 and P<0.001, respectively), indicating a decrease in the timing between food supply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms.

  15. Trophic level responses differ as climate warms in Ireland.

    PubMed

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant (P<0.01 and P<0.001) advance in spring phenology that was driven by rising spring temperature (P<0.05; 0.45 °C /decade). However, the rate of advance was greater for moths (1.8 days/year), followed by birds (0.37 days/year) and trees (0.29 days/year). In addition, the length of time between (1) moth emergence and leaf unfolding and (2) moth emergence and bird arrival decreased significantly (P<0.05 and P<0.001, respectively), indicating a decrease in the timing between food supply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms.

  16. Comparative diets of subyearling Atlantic salmon and subyearling coho salmon in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.; Ringler, Neil H.

    2016-01-01

    Restoration of Atlantic salmon (Salmo salar) in Lake Ontario could potentially be negatively affected by the presence of non-native salmonids that are naturalized in the basin. Coho salmon (Oncorhynchus kisutch) have been spawning successfully in Lake Ontario tributaries for over 40 years and their juveniles will reside in streams with juvenile Atlantic salmon for one year. This study sought to examine interspecific diet associations between these species, and to compare diets to the composition of the benthos and drift in three Lake Ontario tributaries. Aquatic insects, mainly ephemeropterans and chironomids were the major prey consumed by subyearling Atlantic salmon whereas terrestrial invertebrates made up only 3.7% of the diet. Ephemeropterans and chironomids were the primary aquatic taxa consumed by subyearling coho salmon but, as a group, terrestrial invertebrates (41.8%) were the major prey. In sympatry, Atlantic salmon fed more actively from the benthos whereas the diet of coho salmon was more similar to the drift. The different feeding pattern of each species resulted in low interspecific diet similarity. There is likely little competition between these species for food in Lake Ontario tributaries as juveniles.

  17. Sockeye salmon evolution, ecology, and management

    USGS Publications Warehouse

    Woody, Carol Ann

    2007-01-01

    This collection of articles and photographs gives managers a good idea of recent research into what the sockeye salmon is and does, covering such topics as the vulnerability and value of sockeye salmon ecotypes, their homing ability, using new technologies to monitor reproduction, DNA and a founder event in the Lake Clark sockeye salmon, marine-derived nutrients, the exploitation of large prey, dynamic lake spawning migrations by females, variability of sockeye salmon residence, expression profiling using cDNA microarray technology, learning from stable isotropic records of native otolith hatcheries, the amount of data needed to manage sockeye salmon and estimating salmon "escapement." 

  18. Fish Reproduction Is Disrupted upon Lifelong Exposure to Environmental PAHs Fractions Revealing Different Modes of Action

    PubMed Central

    Vignet, Caroline; Larcher, Thibaut; Davail, Blandine; Joassard, Lucette; Le Menach, Karyn; Guionnet, Tiphaine; Lyphout, Laura; Ledevin, Mireille; Goubeau, Manon; Budzinski, Hélène; Bégout, Marie-Laure; Cousin, Xavier

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) constitute a large family of organic pollutants emitted in the environment as complex mixtures, the compositions of which depend on origin. Among a wide range of physiological defects, PAHs are suspected to be involved in disruption of reproduction. In an aquatic environment, the trophic route is an important source of chronic exposure to PAHs. Here, we performed trophic exposure of zebrafish to three fractions of different origin, one pyrolytic and two petrogenic. Produced diets contained PAHs at environmental concentrations. Reproductive traits were analyzed at individual, tissue and molecular levels. Reproductive success and cumulative eggs number were disrupted after exposure to all three fractions, albeit to various extents depending on the fraction and concentrations. Histological analyses revealed ovary maturation defects after exposure to all three fractions as well as degeneration after exposure to a pyrolytic fraction. In testis, hypoplasia was observed after exposure to petrogenic fractions. Genes expression analysis in gonads has allowed us to establish common pathways such as endocrine disruption or differentiation/maturation defects. Taken altogether, these results indicate that PAHs can indeed disrupt fish reproduction and that different fractions trigger different pathways resulting in different effects. PMID:29051429

  19. Predation by fallfish (Semotilus corporalis) on Pacific salmon eggs in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, J. H.; Nack, C.C.; Chalupnicki, M.A.

    2009-01-01

    Fallfish (Semotilus corporalis) are the largest native cyprinid in the northeastern United States and are the most abundant native species in the Salmon River, New York. The Salmon River is a high-quality spawning and nursery river for Pacific salmon (Oncorhynchus spp.) migrating from Lake Ontario. Because of the large number of Pacific salmon spawning in the river in the fall extensive redd superimposition occurs resulting in salmonid eggs being available on the substrate. We examined the fall diet of 647 fallfish in 2007 and 2008 to determine the extent of predation on Pacific salmon eggs. The contribution of eggs in the diet significantly increased once fallfish attained a size of 100 mm total length. The largest size category of fallfish examined (≥150 mm) had the highest proportion (86.1%) of salmon eggs in their diet. The contribution of Zooplankton and chironomids in the diet of fallfish decreased with fish size. Except for the two largest groups of fallfish examined (i.e., 100–149 mm and ≥150 mm) diet overlap among size groups was low. The high contribution in the diet during the fall and high caloric value of Pacific salmon eggs could increase growth and survival of this species in the Salmon River.

  20. The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada

    PubMed Central

    2017-01-01

    The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37–45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012–2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction. PMID:29236731

  1. The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada.

    PubMed

    Morton, Alexandra; Routledge, Richard; Hrushowy, Stacey; Kibenge, Molly; Kibenge, Frederick

    2017-01-01

    The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37-45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012-2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction.

  2. Salmon-Eating Grizzly Bears Exposed to Elevated Levels of Marine Derived Persistent Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Christensen, J. R.; Ross, P. S.; Whiticar, M. J.

    2004-12-01

    The coastal grizzly bears of British Columbia (BC, Canada) rely heavily on salmon returning from the Pacific Ocean, whereas interior bears do not have access to or readily utilize this marine-derived food source. Since salmon have been shown to accumulate persistent organic pollutants (POPs) from the North Pacific Ocean, we hypothesized that salmon consumption by grizzly bears would be reflected by an increase in the POP burden. To test this hypothesis we collected hair and fat tissue from grizzlies at various locations around BC to compare salmon-eating (coastal) grizzlies to non-salmon-eating (interior) grizzlies. We characterized the feeding habits for each bear sampled by measuring the stable carbon and nitrogen isotope signature of their hair. The positive relationship between 13C/12C and 15N/14N isotopic ratios suggests that the majority of the meat portion of the diet of coastal grizzlies is coming from salmon, rather than from terrestrial or freshwater sources. By contrast, stable isotope ratios revealed that interior bears have an almost exclusive vegetarian diet with no marine influence. As hypothesized, the coastal grizzly bears have significantly greater OC pesticide and lower-brominated PBDE congener body burden than the interior grizzlies. We also found a positive relationship between C and N isotope ratios and these same POP contaminants in bear tissue. Overall, these results demonstrate that Pacific salmon represents a significant vector delivering both OC pesticides and PBDEs to BC coastal grizzly bears.

  3. Retrospective analysis of AYK Chinook salmon growth

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Nielsen, Jennifer L.; Agler, B.A.

    2007-01-01

    Harvests of Yukon and Kuskokwim Chinook salmon declined significantly during 1998- 2002 in response to fewer returning salmon. Factors affecting the decline in Chinook salmon abundance are largely unknown. Growth of salmon in freshwater and the ocean is generally thought to influence salmon survival, therefore we examined historical Chinook salmon catch trends and developed growth indices of age-1.3 and age-1.4 Yukon and Kuskokwim Chinook salmon during each year and life stage in freshwater and the ocean, 1964-2004, using measurements of salmon scale growth. Availability of Yukon scales was greater than that of Kuskokwim scales during 1964-2004.Harvests of Yukon and Kuskokwim Chinook salmon rapidly increased in the mid-1970s, then rapidly declined in the late 1990s, apparently in response to the 1976/77 ocean regime shift and the 1997/98 El Nino event. Runs of Nushagak District Chinook salmon (Bristol Bay) also appeared to have been affected by these events in addition to the 1989 regime shift. The rapid responses of Chinook salmon abundance to climate change suggest late life stages were primarily affected, at least initially. Therefore, we searched for Chinook salmon growth patterns that might be related to changes in climate.

  4. Growth hormone transgenesis in coho salmon disrupts muscle immune function impacting cross-talk with growth systems.

    PubMed

    Alzaid, Abdullah; Kim, Jin-Hyoung; Devlin, Robert H; Martin, Samuel A M; Macqueen, Daniel J

    2018-04-26

    Suppression of growth during infection may aid resource allocation towards effective immune function. Past work supporting this hypothesis in salmonid fish revealed an immune-responsive regulation of the insulin-like growth factor (IGF) system, an endocrine pathway downstream of growth hormone (GH). Skeletal muscle is the main target for growth and energetic storage in fish, yet little is known about how its growth is regulated during an immune response. We addressed this knowledge gap by characterizing muscle immune responses in size-matched coho salmon ( Oncorhynchus kisutch ) achieving different growth rates. We compared a wild-type strain with two GH transgenic groups from the same genetic background achieving either maximal or suppressed growth, a design separating GH's direct effects from its influence on growth rate and nutritional state. Fish were sampled 30h post-injection with PBS (control) or mimics of bacterial or viral infection. We quantified mRNA expression levels for genes from the GH, GH receptor, IGF hormone, IGF1 receptor and IGF-binding protein families, along with immune genes involved in inflammatory or antiviral responses and muscle growth status marker genes. We demonstrate dampened immune function in GH transgenics compared to wild-type. The muscle of GH transgenics achieving rapid growth showed no detectable antiviral response, coupled with evidence of a constitutive inflammatory state. GH and IGF system gene expression was strongly altered by GH transgenesis and fast growth, both for baseline expression and responses to immune stimulation. Thus, GH transgenesis strongly disrupts muscle immune status and normal GH and IGF system expression responses to immune stimulation. © 2018. Published by The Company of Biologists Ltd.

  5. Long-term Records of Pacific Salmon Abundance From Sediment Core Analysis: Relationships to Past Climatic Change, and Implications for the Future

    NASA Astrophysics Data System (ADS)

    Finney, B.

    2002-12-01

    above and below average strength of the Aleutian Low pressure system. During periods of stronger low pressure, sea surface temperature anomalies are warm in the northeast Pacific and cool in the central and northwest Pacific, a condition referred to as the positive phase of the Pacific Interdecadal Oscillation (PDO). Historically, during positive phases of the PDO Alaska salmon abundance is generally high. Consistent with this pattern, records of reconstructed sockeye salmon generally show higher abundance during warm periods over the past 300 years. However, the long-term trend suggests generally higher abundance during the cooler Little Ice Age, which southern Alaska glacial records suggest occurred between about 1200 - 1900 AD. The apparent complexity of salmon-climate relationships may be due to several factors. Long-term paleoclimate records from this region suggest additional modes of North Pacific climate variability, relative to the PDO. In addition, data on primary and secondary production in the Northeast Pacific Ocean indicates that climatic forcing has a direct impact on lower trophic levels, which subsequently affects salmon production. Thus records of ocean productivity, which are currently unavailable, may provide a mechanistic linkage between climate change and salmon abundance. The long-term perspective provided by the paleodata suggest that historical observations provide a limited understanding of how Pacific salmon respond to climatic change, and point to important areas of research necessary to better predict future responses.

  6. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  7. Isolation and identification of infectious salmon anaemia virus (ISAV) from Coho salmon in Chile.

    PubMed

    Kibenge, F S; Gárate, O N; Johnson, G; Arriagada, R; Kibenge, M J; Wadowska, D

    2001-05-04

    The isolation of infectious salmon anaemia virus (ISAV) from asymptomatic wild fish species including wild salmon, sea trout and eel established that wild fish can be a reservoir of ISAV for farmed Atlantic salmon. This report characterizes the biological properties of ISAV isolated from a disease outbreak in farmed Coho salmon in Chile and compares it with ISAV isolated from farmed Atlantic salmon in Canada and Europe. The virus that was isolated from Coho salmon tissues was initially detected with ISAV-specific RT-PCR (reverse transcription-polymerase chain reaction). The ability of the virus to grow in cell culture was poor, as cytopathology was not always conspicuous and isolation required passage in the presence of trypsin. Virus replication in cell culture was detected by RT-PCR and IFAT (indirect fluorescent antibody test), and the virus morphology was confirmed by positive staining electron microscopy. Further analysis of the Chilean virus revealed similarities to Canadian ISAV isolates in their ability to grow in the CHSE-214 cell line and in viral protein profile. Sequence analysis of genome segment 2, which encodes the viral RNA polymerase PB1, and segment 8, which encodes the nonstructural proteins NS1 and NS2, showed the Chilean virus to be very similar to Canadian strains of ISAV. This high sequence similarity of ISAV strains of geographically distinct origins illustrates the highly conserved nature of ISAV proteins PB1, NS1 and NS2 of ISAV. It is noteworthy that ISAV was associated with disease outbreaks in farmed Coho salmon in Chile without corresponding clinical disease in farmed Atlantic salmon. This outbreak, which produced high mortality in Coho salmon due to ISAV, is unique and may represent the introduction of the virus to a native wild fish population or a new strain of ISAV.

  8. Effects of diluted bitumen exposure on juvenile sockeye salmon: From cells to performance.

    PubMed

    Alderman, Sarah L; Lin, Feng; Farrell, Anthony P; Kennedy, Christopher J; Gillis, Todd E

    2017-02-01

    Diluted bitumen (dilbit; the product of oil sands extraction) is transported through freshwater ecosystems critical to Pacific salmon. This is concerning, because crude oil disrupts cardiac development, morphology, and function in embryonic fish, and cardiac impairment in salmon can have major consequences on migratory success and fitness. The sensitivity of early life-stage salmon to dilbit and its specific cardiotoxic effects are unknown. Sockeye salmon parr were exposed to environmentally relevant concentrations of the water-soluble fraction (WSF) of dilbit for 1 wk and 4 wk, followed by an examination of molecular, morphological, and organismal endpoints related to cardiotoxicity. We show that parr are sensitive to WSF of dilbit, with total polycyclic aromatic hydrocarbon (PAH) concentrations of 3.5 µg/L sufficient to induce a liver biomarker of PAH exposure, and total PAH of 16.4 µg/L and 66.7 µg/L inducing PAH biomarkers in the heart. Furthermore, WSF of dilbit induces concentration-dependent cardiac remodeling coincident with performance effects: fish exposed to 66.7 µg/L total PAH have relatively fewer myocytes and more collagen in the compact myocardium and impaired swimming performance at 4 wk, whereas the opposite changes occur in fish exposed to 3.5 µg/L total PAH. The results demonstrate cardiac sensitivity to dilbit exposure that could directly impact sockeye migratory success. Environ Toxicol Chem 2017;36:354-360. © 2016 SETAC. © 2016 SETAC.

  9. Sea Louse Infection of Juvenile Sockeye Salmon in Relation to Marine Salmon Farms on Canada's West Coast

    PubMed Central

    Price, Michael H. H.; Proboszcz, Stan L.; Routledge, Rick D.; Gottesfeld, Allen S.; Orr, Craig; Reynolds, John D.

    2011-01-01

    Background Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). Methodology/Principal Findings We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. Conclusions/Significance This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of

  10. Sea louse infection of juvenile sockeye salmon in relation to marine salmon farms on Canada's west coast.

    PubMed

    Price, Michael H H; Proboszcz, Stan L; Routledge, Rick D; Gottesfeld, Allen S; Orr, Craig; Reynolds, John D

    2011-02-09

    Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.

  11. Increased susceptibility to infectious salmon anemia virus (ISAv) in Lepeophtheirus salmonis – infected Atlantic salmon

    USDA-ARS?s Scientific Manuscript database

    The salmon louse and infectious salmon anemia virus (ISAv) are the two most significant pathogens of concern to the Atlantic salmon (Salmo salar) aquaculture industry. However, the interactions between sea lice and ISAv, as well as the impact of a prior sea lice infection on the susceptibility of th...

  12. A Lota lota consumption: Trophic dynamics of nonnative Burbot in a valuable sport fishery

    USGS Publications Warehouse

    Klobucar, Stephen L.; Saunders, W. Carl; Budy, Phaedra

    2016-01-01

    Unintentional and illegal introductions of species disrupt food webs and threaten the success of managed sport fisheries. Although many populations of Burbot Lota lota are declining in the species’ native range, a nonnative population recently expanded into Flaming Gorge Reservoir (FGR), Wyoming–Utah, and threatens to disrupt predator–prey interactions within this popular sport fishery. To determine potential impacts on sport fishes, especially trophy Lake Trout Salvelinus namaycush, we assessed the relative abundance of Burbot and quantified the potential trophic or food web impacts of this population by using diet, stable isotope, and bioenergetic analyses. We did not detect a significant potential for food resource competition between Burbot and Lake Trout (Schoener’s overlap index = 0.13), but overall consumption by Burbot likely affects other sport fishes, as indicated by our analyses of trophic niche space. Diet analyses suggested that crayfish were important diet items across time (89.3% of prey by weight in autumn; 49.4% in winter) and across Burbot size-classes (small: 77.5% of prey by weight; medium: 76.6%; large: 39.7%). However, overall consumption by Burbot increases as water temperatures cool, and fish consumption by Burbot in FGR was observed to increase during winter. Specifically, large Burbot consumed more salmonids, and we estimated (bioenergetically) that up to 70% of growth occurred in late autumn and winter. Further, our population-wide consumption estimates indicated that Burbot could consume up to double the biomass of Rainbow Trout Oncorhynchus mykiss stocked annually (>1.3 × 105 kg; >1 million individuals) into FGR. Overall, we provide some of the first information regarding Burbot trophic interactions outside of the species’ native range; these findings can help to inform the management of sport fisheries if Burbot range expansion occurs elsewhere.

  13. Evaluation of emamectin benzoate and substance EX against salmon lice in sea-ranched Atlantic salmon smolts.

    PubMed

    Skilbrei, Ove Tommy; Espedal, Per Gunnar; Nilsen, Frank; Garcia, Enrique Perez; Glover, Kevin A

    2015-04-08

    Experimental releases of Atlantic salmon smolts treated with emamectin benzoate (EB) against salmon lice have previously been used to estimate the significance of salmon lice on the survival of migrating smolts. In recent years, the salmon louse has developed reduced sensitivity to EB, which may influence the results of such release experiments. We therefore tested the use of 2 anti-lice drugs: EB was administered to salmon smolts in high doses by intra-peritoneal injection and the prophylactic substance EX (SubEX) was administered by bathing. A third, untreated control group was also established. Salmon were challenged with copepodids of 2 strains of salmon lice (1 EB-sensitive strain and 1 with reduced EB-sensitivity) in mixed-group experimental tanks. At 31 d post-challenge, the numbers of pre-adult lice on treated fish were around 20% compared with the control fish, with minor or no differences between the 2 treatments and lice strains. Both treatments therefore appeared to give the smolts a high degree of protection against infestation of copepodids of salmon lice. However, significantly lower growth of the EB-treatment group indicates that bathing the fish in SubEX is less stressful for smolts than intra-peritoneal injection of EB.

  14. Basis of acoustic discrimination of Chinook salmon from other salmons by echolocating Orcinus orca.

    PubMed

    Au, Whitlow W L; Horne, John K; Jones, Christopher

    2010-10-01

    The "resident" ecotype of killer whales (Orcinus orca) in the waters of British Columbia and Washington State have a strong preference for Chinook salmon even in months when Chinook comprise less than about 10% of the salmon population. The foraging behavior of killer whales suggests that they depend on echolocation to detect and recognize their prey. In order to determine possible cues in echoes from salmon species, a series of backscatter measurements were made at the Applied Physics Laboratory (Univ. of Wash.) Facility on Lake Union, on three different salmon species using simulated killer whale echolocation signals. The fish were attached to a monofilament net panel and rotated while echoes were collected, digitized and stored on a laptop computer. Three transducer depths were used; same depth, 22° and 45° above the horizontal plane of the fish. Echoes were collected from five Chinook, three coho and one sockeye salmon. Radiograph images of all specimens were obtained to examine the swimbladder shape and orientation. The results show that echo structure from similar length but different species of salmon were different and probably recognizable by foraging killer whales.

  15. Effects of disturbance on contribution of energy sources to growth of juvenile chinook salmon (Oncorhynchus tshawytscha) in boreal streams

    USGS Publications Warehouse

    Perry, R.W.; Bradford, M.J.; Grout, J.A.

    2003-01-01

    We used stable isotopes of carbon in a growth-dependent tissue-turnover model to quantify the relative contribution of autochthonous and terrestrial energy sources to juvenile chinook salmon (Oncorhynchus tshawytscha) in five small boreal streams tributary to the upper Yukon River. We used a tissue-turnover model because fish did not grow enough to come into isotopic equilibrium with their diet. In two streams, autochthonous energy sources contributed 23 and 41% to the growth of juvenile salmon. In the other three, fish growth was largely due to terrestrial (i.e., allochthonous) energy sources. This low contribution of autochthonous energy appeared to be related to stream-specific disturbances: a recent forest fire impacted two of the streams and the third was affected by a large midsummer spate during the study. These disturbances reduced the relative abundance of herbivorous macroinvertebrates, the contribution of autochthonous material to other invertebrates, and ultimately, the energy flow between stream algae and fish. Our findings suggest that disturbances to streams can be an important mechanism affecting transfer of primary energy sources to higher trophic levels.

  16. Interspecies variation in the susceptibility of adult Pacific salmon to toxic urban stormwater runoff.

    PubMed

    McIntyre, Jenifer K; Lundin, Jessica I; Cameron, James R; Chow, Michelle I; Davis, Jay W; Incardona, John P; Scholz, Nathaniel L

    2018-07-01

    Adult coho salmon (Oncorhynchus kisutch) prematurely die when they return from the ocean to spawn in urban watersheds throughout northwestern North America. The available evidence suggests the annual mortality events are caused by toxic stormwater runoff. The underlying pathophysiology of the urban spawner mortality syndrome is not known, and it is unclear whether closely related species of Pacific salmon are similarly at risk. The present study co-exposed adult coho and chum (O. keta) salmon to runoff from a high traffic volume urban arterial roadway. The spawners were monitored for the familiar symptoms of the mortality syndrome, including surface swimming, loss of orientation, and loss of equilibrium. Moreover, the hematology of both species was profiled by measuring arterial pH, blood gases, lactate, plasma electrolytes, hematocrit, and glucose. Adult coho developed behavioral symptoms within a few hours of exposure to stormwater. Various measured hematological parameters were significantly altered compared to coho controls, indicating a blood acidosis and ionoregulatory disturbance. By contrast, runoff-exposed chum spawners showed essentially no indications of the mortality syndrome, and measured blood hematological parameters were similar to unexposed chum controls. We conclude that contaminant(s) in urban runoff are the likely cause of the disruption of ion balance and pH in coho but not chum salmon. Among the thousands of chemicals in stormwater, future forensic analyses should focus on the gill or cardiovascular system of coho salmon. Because of their distinctive sensitivity to urban runoff, adult coho remain an important vertebrate indicator species for degraded water quality in freshwater habitats under pressure from human population growth and urbanization. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. PNW WILD SALMON IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not...

  18. WILD SALMON RESTORATION: IS IT WORTH IT?

    EPA Science Inventory

    Salmon are categorized biologically into two groups: Pacific salmon and Atlantic salmon. Atlantic salmon are found on both sides of the North Atlantic Ocean, but have declined precipitously compared to the size of runs prior to the 1700s. The largest (though small by historic ...

  19. Saving the Salmon

    ERIC Educational Resources Information Center

    Sprangers, Donald

    2004-01-01

    In November 2000, wild Atlantic salmon were placed under the protection of the Endangered Species Act of 1973. Washington Academy (WA) in Maine has played an integral role in the education and restoration of this species. Efforts to restore the salmon's dwindling population, enhance critical habitat areas, and educate and inform the public require…

  20. Calcitonin Salmon Nasal Spray

    MedlinePlus

    Calcitonin salmon is used to treat osteoporosis in women who are at least 5 years past menopause and cannot ... a human hormone that is also found in salmon. It works by preventing bone breakdown and increasing ...

  1. The trophic vacuum and the evolution of complex life cycles in trophically transmitted helminths

    PubMed Central

    Benesh, Daniel P.; Chubb, James C.; Parker, Geoff A.

    2014-01-01

    Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web. PMID:25209937

  2. Sustainable fisheries management: Pacific salmon

    USGS Publications Warehouse

    Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    What has happened to the salmon resource in the Pacific Northwest? Who is responsible and what can be done to reverse the decline in salmon populations? The responsibly falls on everyone involved - fishermen, resource managers and concerned citizens alike - to take the steps necessary to ensure that salmon populations make a full recovery.This collection of papers examines the state of the salmon fisheries in the Pacific Northwest. They cover existing methods and supply model approaches for alternative solutions. The editors stress the importance of input from and cooperation with all parties involved to create a viable solution. Grass roots education and participation is the key to public support - and ultimately the success - of whatever management solutions are developed.A unique and valuable scientific publication, Sustainable Fisheries Management: Pacific Salmon clearly articulates the current state of the Pacific salmon resource, describes the key features of its management, and provides important guidance on how we can make the transition towards sustainable fisheries. The solutions presented in this book provide the basis of a strategy for sustainable fisheries, requiring society and governmental agencies to establish a shared vision, common policies, and a process for collaborative management.

  3. Infectious Agents Trigger Trophic Cascades.

    PubMed

    Buck, Julia C; Ripple, William J

    2017-09-01

    Most demonstrated trophic cascades originate with predators, but infectious agents can also cause top-down indirect effects in ecosystems. Here we synthesize the literature on trophic cascades initiated by infectious agents including parasitoids, pathogens, parasitic castrators, macroparasites, and trophically transmitted parasites. Like predators, infectious agents can cause density-mediated and trait-mediated indirect effects through their direct consumptive and nonconsumptive effects respectively. Unlike most predators, however, infectious agents are not fully and immediately lethal to their victims, so their consumptive effects can also trigger trait-mediated indirect effects. We find that the frequency of trophic cascades reported for different consumer types scales with consumer lethality. Furthermore, we emphasize the value of uniting predator-prey and parasite-host theory under a general consumer-resource framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. What is a Trophic Cascade?

    PubMed

    Ripple, William J; Estes, James A; Schmitz, Oswald J; Constant, Vanessa; Kaylor, Matthew J; Lenz, Adam; Motley, Jennifer L; Self, Katharine E; Taylor, David S; Wolf, Christopher

    2016-11-01

    Few concepts in ecology have been so influential as that of the trophic cascade. Since the 1980s, the term has been a central or major theme of more than 2000 scientific articles. Despite this importance and widespread usage, basic questions remain about what constitutes a trophic cascade. Inconsistent usage of language impedes scientific progress and the utility of scientific concepts in management and conservation. Herein, we offer a definition of trophic cascade that is designed to be both widely applicable yet explicit enough to exclude extraneous interactions. We discuss our proposed definition and its implications, and define important related terms, thereby providing a common language for scientists, policy makers, conservationists, and other stakeholders with an interest in trophic cascades. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Supplementing long-chain n-3 polyunsaturated fatty acids in canned wild Pacific pink salmon with Alaska salmon oil

    PubMed Central

    Lapis, Trina J; Oliveira, Alexandra C M; Crapo, Charles A; Himelbloom, Brian; Bechtel, Peter J; Long, Kristy A

    2013-01-01

    Establishing n-3 polyunsaturated fatty acid contents in canned wild Alaska pink salmon products is challenging due to ample natural variation found in lipid content of pink salmon muscle. This study investigated the effect of adding salmon oil (SO) to canned pink salmon produced from fish exhibiting two opposite degrees of skin watermarking, bright (B) and dark (D). Specific goals of the study were to evaluate the benefits of adding SO to canned pink salmon with regard to nutritional value of the product, sensory characteristics, and the oxidative and hydrolytic stability of the lipids over thermal processing. Six groups of canned pink salmon were produced with variable levels of SO, either using bright (with 0, 1, or 2% SO) or dark (with 0, 2, or 4% SO) pink salmon. Compositional analysis revealed highest (P < 0.05) lipid content in sample B2 (8.7%) and lowest (P < 0.05) lipid content in sample D0 (3.5%). Lipid content of samples B0, B1, D2, and D4 was not significantly different (P > 0.05) ranging from 5.7% to 6.8%. Consequently, addition of SO to canned pink salmon allowed for consistent lipid content between bright and dark fish. Addition of 1% or 2% SO to canned bright pink salmon was not detrimental to the sensory properties of the product. It is recommended that canned bright pink salmon be supplemented with at least 1% SO, while supplementation with 2% SO would guarantee a minimum quantity of 1.9 g of n-3 fatty acids per 100 g of product. Addition of 4% SO to canned dark pink salmon was detrimental to product texture and taste, while supplementation with 2% SO did not negatively affect sensorial properties of the product. Accordingly, canned dark pink salmon should be supplemented with 2% SO so that a minimum n-3 fatty acids content of 1.5 g per 100 g of product. PMID:24804010

  6. Establishing spatial trends in water chemistry and stable isotopes (δ15N and δ13C) in the Elwha River prior to dam removal and salmon recolonization

    USGS Publications Warehouse

    Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.

    2011-01-01

    Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.

  7. WILD SALMON IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY - MAY 2006

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not...

  8. The trophic vacuum and the evolution of complex life cycles in trophically transmitted helminths.

    PubMed

    Benesh, Daniel P; Chubb, James C; Parker, Geoff A

    2014-10-22

    Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis.

    PubMed

    Sutherland, Ben J G; Koczka, Kim W; Yasuike, Motoshige; Jantzen, Stuart G; Yazawa, Ryosuke; Koop, Ben F; Jones, Simon R M

    2014-03-15

    Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection. In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon. Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance

  10. Dietary calcein marking of brook trout, Atlantic salmon, yellow perch, and coho salmon scales

    USGS Publications Warehouse

    Honeyfield, D.C.; Ostrowski, C.S.; Fletcher, J.W.; Mohler, J.W.

    2006-01-01

    Brook trout Salvelinus fontinalis, Atlantic salmon Salmo salar, coho salmon Oncorhynchus kisutch, and yellow perch Perca flavescens fed calcein for 5 d showed characteristic calcein scale marks 7-10 d postmarking. In fish fed 0.75 or 1.25 g of calcein per kilogram of feed, the percentage of fish that exhibited a calcein mark was 100% in brook trout, 93-98% in Atlantic salmon, 60% in yellow perch, and 0% in coho salmon. However, when coho salmon were fed 5.25 g calcein/kg feed, 100% marking was observed 7-10 d postmarking. Brook trout were successfully marked twice with distinct bands when fed calcein 5 months apart. Brook trout scale pixel luminosity increased as dietary calcein increased in experiment 2. For the second calcein mark, scale pixel luminosity from brook trout fed 1.25 g calcein/kg feed was numerically higher (P < 0.08) than scales from fish fed 0.75 g calcein/kg feed. Mean pixel luminosity of calcein-marked Atlantic salmon scales was 57.7 for fish fed 0.75 g calcein/kg feed and 55.2 for fish fed 1.25 g calcein/kg feed. Although feed acceptance presented a problem in yellow perch, these experiments provide evidence that dietary calcein is a viable tool for marking fish for stock identification. ?? Copyright by the American Fisheries Society 2006.

  11. Trophic factors in neurologic disease.

    PubMed

    Stewart, S S; Appel, S H

    1988-01-01

    Recent studies suggest that diffusible factors released by neural targets enhance the survival, growth, and differentiation of neurons both peripherally and in the central nervous system. Evidence for such trophic factors exists for many of the neural systems involved in the degenerative neurologic diseases Alzheimer's disease, parkinsonism, and amyotrophic lateral sclerosis. It is our hypothesis that for each of these disorders there is both a primary insult and a secondary effect. The primary insult may have multiple etiologies, but the secondary effect is the result of retrograde degeneration. Such retrograde degeneration occurs because of an impairment of trophic factor function or an inadequacy of trophic effects to keep pace with the primary destructive process. Accordingly, it may be possible to exploit such trophic mechanisms to define further the pathobiology of neural degeneration and to develop specific treatments for currently incurable illnesses.

  12. Molecular characterization and histochemical demonstration of salmon olfactory marker protein in the olfactory epithelium of lacustrine sockeye salmon (Oncorhynchus nerka).

    PubMed

    Kudo, H; Doi, Y; Ueda, H; Kaeriyama, M

    2009-09-01

    Despite the importance of olfactory receptor neurons (ORNs) for homing migration, the expression of olfactory marker protein (OMP) is not well understood in ORNs of Pacific salmon (genus Oncorhynchus). In this study, salmon OMP was characterized in the olfactory epithelia of lacustrine sockeye salmon (O. nerka) by molecular biological and histochemical techniques. Two cDNAs encoding salmon OMP were isolated and sequenced. These cDNAs both contained a coding region encoding 173 amino acid residues, and the molecular mass of the two proteins was calculated to be 19,581.17 and 19,387.11Da, respectively. Both amino acid sequences showed marked homology (90%). The protein and nucleotide sequencing demonstrates the existence of high-level homology between salmon OMPs and those of other teleosts. By in situ hybridization using a digoxigenin-labeled salmon OMP cRNA probe, signals for salmon OMP mRNA were observed preferentially in the perinuclear regions of the ORNs. By immunohistochemistry using a specific antibody to salmon OMP, OMP-immunoreactivities were noted in the cytosol of those neurons. The present study is the first to describe cDNA cloning of OMP in salmon olfactory epithelium, and indicate that OMP is a useful molecular marker for the detection of the ORNs in Pacific salmon.

  13. Comparative genomics identifies candidate genes for infectious salmon anemia (ISA) resistance in Atlantic salmon (Salmo salar).

    PubMed

    Li, Jieying; Boroevich, Keith A; Koop, Ben F; Davidson, William S

    2011-04-01

    Infectious salmon anemia (ISA) has been described as the hoof and mouth disease of salmon farming. ISA is caused by a lethal and highly communicable virus, which can have a major impact on salmon aquaculture, as demonstrated by an outbreak in Chile in 2007. A quantitative trait locus (QTL) for ISA resistance has been mapped to three microsatellite markers on linkage group (LG) 8 (Chr 15) on the Atlantic salmon genetic map. We identified bacterial artificial chromosome (BAC) clones and three fingerprint contigs from the Atlantic salmon physical map that contains these markers. We made use of the extensive BAC end sequence database to extend these contigs by chromosome walking and identified additional two markers in this region. The BAC end sequences were used to search for conserved synteny between this segment of LG8 and the fish genomes that have been sequenced. An examination of the genes in the syntenic segments of the tetraodon and medaka genomes identified candidates for association with ISA resistance in Atlantic salmon based on differential expression profiles from ISA challenges or on the putative biological functions of the proteins they encode. One gene in particular, HIV-EP2/MBP-2, caught our attention as it may influence the expression of several genes that have been implicated in the response to infection by infectious salmon anemia virus (ISAV). Therefore, we suggest that HIV-EP2/MBP-2 is a very strong candidate for the gene associated with the ISAV resistance QTL in Atlantic salmon and is worthy of further study.

  14. Ectoparasite Caligus rogercresseyi modifies the lactate response in Atlantic salmon (Salmo salar) and Coho salmon (Oncorhynchus kisutch).

    PubMed

    Vargas-Chacoff, L; Muñoz, J L P; Hawes, C; Oyarzún, R; Pontigo, J P; Saravia, J; González, M P; Mardones, O; Labbé, B S; Morera, F J; Bertrán, C; Pino, J; Wadsworth, S; Yáñez, A

    2017-08-30

    Although Caligus rogercresseyi negatively impacts Chilean salmon farming, the metabolic effects of infection by this sea louse have never been completely characterized. Therefore, this study analyzed lactate responses in the plasma, as well as the liver/muscle lactate dehydrogenase (LDH) activity and gene expression, in Salmo salar and Oncorhynchus kisutch infested by C. rogercresseyi. The lactate responses of Atlantic and Coho salmon were modified by the ectoparasite. Both salmon species showed increasing in plasma levels, whereas enzymatic activity increased in the muscle but decreased in the liver. Gene expression was overexpressed in both Coho salmon tissues but only in the liver for Atlantic salmon. These results suggest that salmonids need more energy to adapt to infection, resulting in increased gene expression, plasma levels, and enzyme activity in the muscles. The responses differed between both salmon species and over the course of infection, suggesting potential species-specific responses to sea-lice infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Changes in patterns of persistent halogenated compounds through a pelagic food web in the Baltic Sea.

    PubMed

    Stephansen, Diana A; Svendsen, Tore C; Vorkamp, Katrin; Frier, Jens-Ole

    2012-02-01

    The concentrations and patterns of persistent halogenated compounds (PHCs), including polychlorinated biphenyls (PCBs), DDT, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB) and polybrominated diphenyl ethers (PBDEs) were examined in a pelagic food web from the southern Baltic Sea consisting of sediment, zooplankton, sprat, Atlantic salmon and anadromous brown trout. Lipid-normalized concentrations generally increased from low trophic levels to high trophic levels, with the exception of HCHs. Due to high concentrations of PBDEs in some zooplankton samples, biomagnification of BDE-47 was only observed for salmon/sprat and trout/sprat. Sprat collected individually and from salmon stomach had significantly different lipid-normalized concentrations and varied in their PHC pattern as well, possibly indicating a large natural variation within the Baltic Sea. The highest lipid-normalized concentrations were found in brown trout. Salmon and brown trout were similar in their PHC pattern suggesting similar food sources. Variation in PHC patterns among trophic levels was not smaller than that among geographically distinct locations, confirming the importance of comparable trophic levels for the assessment of PHC patterns, e.g. for tracing migratory fish. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles.

    PubMed

    Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F

    2008-12-09

    Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure.

  17. Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles

    PubMed Central

    Lohmann, Kenneth J.; Putman, Nathan F.; Lohmann, Catherine M. F.

    2008-01-01

    Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure. PMID:19060188

  18. Lessons from sea louse and salmon epidemiology.

    PubMed

    Groner, Maya L; Rogers, Luke A; Bateman, Andrew W; Connors, Brendan M; Frazer, L Neil; Godwin, Sean C; Krkošek, Martin; Lewis, Mark A; Peacock, Stephanie J; Rees, Erin E; Revie, Crawford W; Schlägel, Ulrike E

    2016-03-05

    Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host-parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources. © 2016 The Author(s).

  19. Lessons from sea louse and salmon epidemiology

    PubMed Central

    Rogers, Luke A.; Bateman, Andrew W.; Connors, Brendan M.; Frazer, L. Neil; Godwin, Sean C.; Krkošek, Martin; Lewis, Mark A.; Peacock, Stephanie J.; Rees, Erin E.; Revie, Crawford W.; Schlägel, Ulrike E.

    2016-01-01

    Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host–parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources. PMID:26880836

  20. Migration delays caused by anthropogenic barriers: modeling dams, temperature, and success on migrating salmon smolts

    USGS Publications Warehouse

    Marschall, Elizabeth A.; Mather, Martha E.; Parrish, Donna; Allison, Gary W.; McMenemy, James R.

    2011-01-01

    Disruption to migration is a growing problem for conservation and restoration of animal populations. Anthropogenic barriers along migration paths can delay or prolong migrations, which may result in a mismatch with migration-timing adaptations. To understand the interaction of dams (as barriers along a migration path), seasonally changing environmental conditions, timing of Atlantic salmon (Salmo salar) downstream migration, and ultimate migration success, we used 10 years of river temperature and discharge data as a template upon which we simulated downstream movement of salmon. Atlantic salmon is a cool-water species whose downstream migrating smolts must complete migration before river temperatures become too warm. We found that dams had a local effect on survival as well as a survival effect that was spatially and temporally removed from the encounter with the dam. While smolts are delayed by dams, temperatures downstream can reach lethal or near-lethal temperatures; as a result, the match between completion of migration and the window of appropriate migration conditions can be disrupted. The strength of this spatially and temporally removed effect is at least comparable to the local effects of dams in determining smolt migration success in the presence of dams. We also considered smolts from different tributaries, varying in distance from the river mouth, to assess the potential importance of locally adapted migration timing on the effect of barriers. Migration-initiation temperature affected modeled smolt survival differentially across tributaries, with the success of smolts from upstream tributaries being much more variable across years than that of smolts with a shorter distance to travel. As a whole, these results point to the importance of broadening our spatial and temporal view when managing migrating populations. We must consider not only how many individuals never make it across migration barriers, but also the spatially and temporally removed

  1. Association between sea lice (Lepeophtheirus salmonis) infestation on Atlantic salmon farms and wild Pacific salmon in Muchalat Inlet, Canada.

    PubMed

    Nekouei, Omid; Vanderstichel, Raphael; Thakur, Krishna; Arriagada, Gabriel; Patanasatienkul, Thitiwan; Whittaker, Patrick; Milligan, Barry; Stewardson, Lance; Revie, Crawford W

    2018-03-05

    Growth in salmon aquaculture over the past two decades has raised concerns regarding the potential impacts of the industry on neighboring ecosystems and wild fish productivity. Despite limited evidence, sea lice have been identified as a major cause for the decline in some wild Pacific salmon populations on the west coast of Canada. We used sea lice count and management data from farmed and wild salmon, collected over 10 years (2007-2016) in the Muchalat Inlet region of Canada, to evaluate the association between sea lice recorded on salmon farms with the infestation levels on wild out-migrating Chum salmon. Our analyses indicated a significant positive association between the sea lice abundance on farms and the likelihood that wild fish would be infested. However, increased abundance of lice on farms was not significantly associated with the levels of infestation observed on the wild salmon. Our results suggest that Atlantic salmon farms may be an important source for the introduction of sea lice to wild Pacific salmon populations, but that the absence of a dose response relationship indicates that any estimate of farm impact requires more careful evaluation of causal inference than is typically seen in the extant scientific literature.

  2. Juvenile salmon usage of the Skeena River estuary.

    PubMed

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  3. Trophic Strategies of Unicellular Plankton.

    PubMed

    Chakraborty, Subhendu; Nielsen, Lasse Tor; Andersen, Ken H

    2017-04-01

    Unicellular plankton employ trophic strategies ranging from pure photoautotrophs over mixotrophy to obligate heterotrophs (phagotrophs), with cell sizes from 10 -8 to 1 μg C. A full understanding of how trophic strategy and cell size depend on resource environment and predation is lacking. To this end, we develop and calibrate a trait-based model for unicellular planktonic organisms characterized by four traits: cell size and investments in phototrophy, nutrient uptake, and phagotrophy. We use the model to predict how optimal trophic strategies depend on cell size under various environmental conditions, including seasonal succession. We identify two mixotrophic strategies: generalist mixotrophs investing in all three investment traits and obligate mixotrophs investing only in phototrophy and phagotrophy. We formulate two conjectures: (1) most cells are limited by organic carbon; however, small unicellulars are colimited by organic carbon and nutrients, and only large photoautotrophs and smaller mixotrophs are nutrient limited; (2) trophic strategy is bottom-up selected by the environment, while optimal size is top-down selected by predation. The focus on cell size and trophic strategies facilitates general insights into the strategies of a broad class of organisms in the size range from micrometers to millimeters that dominate the primary and secondary production of the world's oceans.

  4. 76 FR 65673 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    .... 101206604-1620-01] RIN 0648-BA55 Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery Management Plan AGENCY: National Marine Fisheries Service (NMFS), National... implement Amendment 16 to the Pacific Coast Salmon Fishery Management Plan for Commercial and Recreational...

  5. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  6. History of salmon in the Great Lakes, 1850-1970

    USGS Publications Warehouse

    Parsons, John W.

    1973-01-01

    This history of the salmon in the Great Lakes describes the decline and extinction of the Atlantic salmon (Salmo salar) in Lake Ontario in the 1800's; the failure to establish, by salmon culture, permanent or sizable populations of Atlantic or Pacific salmon in any of the Great Lakes in 1867-1965; and the success of the plantings of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytsha) in the Great Lakes, in 1966-70 -- particularly in Lake Michigan. Despite plantings of 5 million fry and fingerlings from Lake Ontario stocks in 1866-84, the native Atlantic salmon in Lake Ontario became extinct in the late 1800's primarily because tributaries in which they spawned were blocked by mill dams. Plantings of 13 million chinook salmon and landlocked and anadromous forms of Atlantic salmon in Lake Ontario and the other Great Lakes in 1873-1947 failed completely. The first species to develop a self-sustaining population was the pink salmon (O. gorbuscha), which was planted in Lake Superior in 1956; however, it has not become abundant. A salmon fishery finally was established when 15 million coho salmon and 6 million chinook salmon were planted as smolt in the Great Lakes in 1966-70. In 1970, for example, 576,000 coho salmon (12% of those planted in 1969) were caught by anglers in Lake Michigan. Most weighed 5 to 10 pounds (2.3-4.5 kg). Sport fishing for salmon was fair in Lakes Superior and Huron, and poor in Lakes Erie and Ontario. By 1970, natural reproduction of coho, chinook, pink, and kokanee (O. nerka) salmon had occurred in some tributaries of one or more of the upper three Great Lakes. It is expected, however, that the sport fishery will continue to be supported almost entirely by planted fish.

  7. Lack of evidence of infectious salmon anemia virus in pollock Pollachius virens cohabitating with infected farmed Atlantic salmon Salmo salar.

    PubMed

    McClure, Carol A; Hammell, K Larry; Dohoo, Ian R; Gagné, Nellie

    2004-10-21

    The infectious salmon anemia (ISA) virus causes lethargy, anemia, hemorrhage of the internal organs, and death in farmed Atlantic salmon Salmo salar. It has been a cause of disease in Norwegian farmed Atlantic salmon since 1984 and has since been identified in Canada, Scotland, the United States, and the Faroe Islands. Wild fish have been proposed as a viral reservoir because they are capable of close contact with farmed salmon. Laboratory studies have shown that brown trout and sea trout Salmo trutta, rainbow trout Oncorhynchus mykiss, and herring Clupea harengus tested positive for the virus weeks after intra-peritoneal injection of the ISA virus. Pollock Pollachius virens are commonly found in and around salmon cages, and their close association with the salmon makes them an important potential viral reservoir to consider. The objective of this study was to determine the presence or prevalence of ISA virus in pollock cohabitating with ISA-infected farmed Atlantic salmon. Kidney tissue from 93 pollock that were living with ISA-infected salmon in sea cages were tested with reverse transcription-polymerase chain reaction (RT-PCR) test. Results yielded the expected 193 bp product for positive controls, while no product was observed in any of the pollock samples, resulting in an ISA viral prevalence of 0%. This study strengthens the evidence that pollock are unlikely to be an ISA virus reservoir for farmed Atlantic salmon.

  8. Juvenile Salmon Usage of the Skeena River Estuary

    PubMed Central

    Carr-Harris, Charmaine; Gottesfeld, Allen S.; Moore, Jonathan W.

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations

  9. Cessation of a salmon decline with control of parasites.

    PubMed

    Peacock, Stephanie J; Krkosek, Martin; Proboszcz, Stan; Orr, Craig; Lewis, Mark A

    2013-04-01

    The resilience of coastal social-ecological systems may depend on adaptive responses to aquaculture disease outbreaks that can threaten wild and farm fish. A nine-year study of parasitic sea lice (Lepeophtheirus salmonis) and pink salmon (Oncorhynchus gorbuscha) from Pacific Canada indicates that adaptive changes in parasite management on salmon farms have yielded positive conservation outcomes. After four years of sea lice epizootics and wild salmon population decline, parasiticide application on salmon farms was adapted to the timing of wild salmon migrations. Winter treatment of farm fish with parasiticides, prior to the out-migration of wild juvenile salmon, has reduced epizootics of wild salmon without significantly increasing the annual number of treatments. Levels of parasites on wild juvenile salmon significantly influence the growth rate of affected salmon populations, suggesting that these changes in management have had positive outcomes for wild salmon populations. These adaptive changes have not occurred through formal adaptive management, but rather, through multi-stakeholder processes arising from a contentious scientific and public debate. Despite the apparent success of parasite control on salmon farms in the study region, there remain concerns about the long-term sustainability of this approach because of the unknown ecological effects of parasticides and the potential for parasite resistance to chemical treatments.

  10. Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Chernyak, Sergei M.; Rediske, Richard R.; O'Keefe, James P.

    2004-01-01

    We evaluated the Wisconsin bioenergetics model for chinook salmon (Oncorhynchus tshawytscha) in both the laboratory and the field. Chinook salmon in laboratory tanks were fed alewife (Alosa pseudoharengus), the predominant food of chinook salmon in Lake Michigan. Food consumption and growth by chinook salmon during the experiment were measured. To estimate the efficiency with which chinook salmon retain polychlorinated biphenyls (PCBs) from their food in the laboratory, PCB concentrations of the alewife and of the chinook salmon at both the beginning and end of the experiment were determined. Based on our laboratory evaluation, the bioenergetics model was furnishing unbiased estimates of food consumption by chinook salmon. Additionally, from the laboratory experiment, we calculated that chinook salmon retained 75% of the PCBs contained within their food. In an earlier study, assimilation rate of PCBs to chinook salmon from their food in Lake Michigan was estimated at 53%, thereby suggesting that the model was substantially overestimating food consumption by chinook salmon in Lake Michigan. However, we concluded that field performance of the model could not be accurately assessed because PCB assimilation efficiency is dependent on feeding rate, and feeding rate of chinook salmon was likely much lower in our laboratory tanks than in Lake Michigan.

  11. Salmon on the Edge: Growth and Condition of Juvenile Chum and Pink Salmon in the Northeastern Bering Sea

    NASA Astrophysics Data System (ADS)

    McPhee, M. V.

    2016-02-01

    As the Arctic and Subarctic regions warm, Pacific salmon (Oncorhynchus spp.) are expected to expand their range northward during ice-free periods in the Bering and Chukchi seas. The oscillating control hypothesis, which describes energetic differences of primary consumers between ice-associated and pelagic production phases, provides a framework for understanding how juvenile salmon might respond to changing conditions at the northern edge of their marine range. Additionally, relationships between growth/condition and temperature, salinity and bottom depth will help identify marine habitats supporting growth at the Arctic-Subarctic interface. In this study, we used survey data from NOAA and Arctic Ecosystem Integrated Survey project to 1) compare growth and condition of juvenile pink (O. gorbuscha) and chum (O. keta) salmon in the NE Bering Sea between warm and cool spring phases, and 2) describe relationships between summer environmental conditions and juvenile salmon growth and condition from 2006 - 2010. Chum and pink salmon were shorter, and chum salmon exhibited greater energy density, in years with cool springs; however, no other aspects of size and condition differed significantly between phases. Over all years, longer and more energy dense individuals of both species were caught at stations with greater bottom depths and in cooler sea-surface temperatures. We found little evidence that chlorophyll-a explained much of the variation in size or condition. We used insulin-like growth factor-1 (IGF-1) concentration as an indicator of relative growth rate for fishes sampled in 2009-2012 and that found juvenile salmon exhibited higher IGF-1 concentrations in 2010-2012 than in 2009. IGF-1 concentrations tended to increase with SST in chum salmon and with bottom depth (a proxy for distance from shore) in pink salmon, but more years of data are needed to adequately describe the relationship of IGF with environmental conditions. This study, although descriptive in

  12. Shifts in the trophic base of intermittent stream food webs

    USGS Publications Warehouse

    Dekar, Matthew P.; Magoulick, Daniel D.; Huxel, G.R.

    2009-01-01

    Understanding spatial and temporal variation in the trophic base of stream food webs is critical for predicting population and community stability, and ecosystem function. We used stable isotope ratios (13C/12C, and 15N/14N) to characterize the trophic base of two streams in the Ozark Mountains of northwest Arkansas, U.S.A. We predicted that autochthonous resources would be more important during the spring and summer and allochthonous resources would be more important in the winter due to increased detritus inputs from the riparian zone during autumn leaf drop. We predicted that stream communities would demonstrate increased reliance on autochthonous resources at sites with larger watersheds and greater canopy openness. The study was conducted at three low-order sites in the Mulberry River Drainage (watershed area range: 81-232 km2) seasonally in 2006 and 2007. We used circular statistics to examine community-wide shifts in isotope space among fish and invertebrate consumers in relation to basal resources, including detritus and periphyton. Mixing models were used to quantify the relative contribution of autochthonous and allochthonous energy sources to individual invertebrate consumers. Significant isotopic shifts occurred but results varied by season and site indicating substantial variation in the trophic base of stream food webs. In terms of temporal variation, consumers shifted toward periphyton in the summer during periods of low discharge, but results varied during the interval between summer and winter. Our results did not demonstrate increased reliance on periphyton with increasing watershed area or canopy openness, and detritus was important at all the sites. In our study, riffle-pool geomorphology likely disrupted the expected spatial pattern and stream drying likely impacted the availability and distribution of basal resources.

  13. Future of Pacific salmon in the face of environmental change: Lessons from one of the world's remaining productive salmon regions

    USGS Publications Warehouse

    Schoen, Erik R.; Wipfli, Mark S.; Trammell, Jamie; Rinella, Daniel J.; Floyd, Angelica L.; Grunblatt, Jess; McCarthy, Molly D.; Meyer, Benjamin E.; Morton, John M.; Powell, James E.; Prakash, Anupma; Reimer, Matthew N.; Stuefer, Svetlana L.; Toniolo, Horacio; Wells, Brett M.; Witmer, Frank D. W.

    2017-01-01

    Pacific salmon Oncorhynchus spp. face serious challenges from climate and landscape change, particularly in the southern portion of their native range. Conversely, climate warming appears to be allowing salmon to expand northwards into the Arctic. Between these geographic extremes, in the Gulf of Alaska region, salmon are at historically high abundances but face an uncertain future due to rapid environmental change. We examined changes in climate, hydrology, land cover, salmon populations, and fisheries over the past 30–70 years in this region. We focused on the Kenai River, which supports world-famous fisheries but where Chinook Salmon O. tshawytscha populations have declined, raising concerns about their future resilience. The region is warming and experiencing drier summers and wetter autumns. The landscape is also changing, with melting glaciers, wetland loss, wildfires, and human development. This environmental transformation will likely harm some salmon populations while benefiting others. Lowland salmon streams are especially vulnerable, but retreating glaciers may allow production gains in other streams. Some fishing communities harvest a diverse portfolio of fluctuating resources, whereas others have specialized over time, potentially limiting their resilience. Maintaining diverse habitats and salmon runs may allow ecosystems and fisheries to continue to thrive amidst these changes.

  14. Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream

    PubMed Central

    Du, Bowen; Haddad, Samuel P.; Luek, Andreas; Scott, W. Casan; Saari, Gavin N.; Kristofco, Lauren A.; Connors, Kristin A.; Rash, Christopher; Rasmussen, Joseph B.; Chambliss, C. Kevin; Brooks, Bryan W.

    2014-01-01

    Though pharmaceuticals are increasingly observed in a variety of organisms from coastal and inland aquatic systems, trophic transfer of pharmaceuticals in aquatic food webs have not been reported. In this study, bioaccumulation of select pharmaceuticals was investigated in a lower order effluent-dependent stream in central Texas, USA, using isotope dilution liquid chromatography–tandem mass spectrometry (MS). A fish plasma model, initially developed from laboratory studies, was tested to examine observed versus predicted internal dose of select pharmaceuticals. Pharmaceuticals accumulated to higher concentrations in invertebrates relative to fish; elevated concentrations of the antidepressant sertraline and its primary metabolite desmethylsertraline were observed in the Asian clam, Corbicula fluminea, and two unionid mussel species. Trophic positions were determined from stable isotopes (δ15N and δ13C) collected by isotope ratio-MS; a Bayesian mixing model was then used to estimate diet contributions towards top fish predators. Because diphenhydramine and carbamazepine were the only target compounds detected in all species examined, trophic magnification factors (TMFs) were derived to evaluate potential trophic transfer of both compounds. TMFs for diphenhydramine (0.38) and carbamazepine (1.17) indicated neither compound experienced trophic magnification, which suggests that inhalational and not dietary exposure represented the primary route of uptake by fish in this effluent-dependent stream. PMID:25313153

  15. Modeling lake trophic state: a random forest approach

    EPA Science Inventory

    Productivity of lentic ecosystems has been well studied and it is widely accepted that as nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to higher trophic states (e.g. eutrophic). These broad trophic state classi...

  16. Richness-Productivity Relationships Between Trophic Levels in a Detritus-Based System: Significance of Abundance and Trophic Linkage.

    EPA Science Inventory

    Most theoretical and empirical studies of productivity–species richness relationships fail to consider linkages among trophic levels. We quantified productivity–richness relationships in detritus-based, water-filled tree-hole communities for two trophic levels: invertebrate consu...

  17. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, Daniel J.; Wipfli, Mark S.; Stricker, Craig A.; Heintz, Ron A.; Rinella, Matthew J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  18. Restitution and genetic differentiation of salmon populations in the southern Baltic genotyped with the Atlantic salmon 7K SNP array.

    PubMed

    Poćwierz-Kotus, Anita; Bernaś, Rafał; Kent, Matthew P; Lien, Sigbjørn; Leliűna, Egidijus; Dębowski, Piotr; Wenne, Roman

    2015-05-06

    Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland. One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses. Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28). Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of

  19. Infectious diseases of Pacific salmon

    USGS Publications Warehouse

    1954-01-01

    A variety of bacteria has been found responsible for outbreaks of disease in salmon in sea water. The most important of these is a species of Vibrio. Tuberculosis has been found in adult chinook salmon and the evidence indicates that the disease was contracted at sea.

  20. Comparative anatomy of the dorsal hump in mature Pacific salmon.

    PubMed

    Susuki, Kenta; Ban, Masatoshi; Ichimura, Masaki; Kudo, Hideaki

    2017-07-01

    Mature male Pacific salmon (Genus Oncorhynchus) demonstrate prominent morphological changes, such as the development of a dorsal hump. The degree of dorsal hump formation depends on the species in Pacific salmon. It is generally accepted that mature males of sockeye (O. nerka) and pink (O. gorbuscha) salmon develop most pronounced dorsal humps. The internal structure of the dorsal hump in pink salmon has been confirmed in detail. In this study, the dorsal hump morphologies were analyzed in four Pacific salmon species inhabiting Japan, masu (O. masou), sockeye, chum (O. keta), and pink salmon. The internal structure of the dorsal humps also depended on the species; sockeye and pink salmon showed conspicuous development of connective tissue and growth of bone tissues in the dorsal tissues. Masu and chum salmon exhibited less-pronounced increases in connective tissues and bone growth. Hyaluronic acid was clearly detected in dorsal hump connective tissue by histochemistry, except for in masu salmon. The lipid content in dorsal hump connective tissue was richer in masu and chum salmon than in sockeye and pink salmon. These results revealed that the patterns of dorsal hump formation differed among species, and especially sockeye and pink salmon develop pronounced dorsal humps through both increases in the amount of connective tissue and the growth of bone tissues. In contrast, masu and chum salmon develop their dorsal humps by the growth of bone tissues, rather than the development of connective tissue. © 2017 Wiley Periodicals, Inc.

  1. Estuarine Ecology of Juvenile Salmon in Western Alaska: a Review

    USGS Publications Warehouse

    Zimmerman, Christian E.; Hillgruber, Nicola

    2009-01-01

    In the late 1990s and early 2000s, large declines in numbers of chum salmon Oncorhynchus keta and Chinook salmon O. tshawytscha returning to the Arctic-YukonKuskokwim (AYK) region (Alaska, USA) illuminated the need for an improved understanding of the variables controlling salmon abundance at all life stages. In addressing questions about salmon abundance, large gaps in our knowledge of basic salmon life history and the critical early marine life stage were revealed. In this paper, results from studies conducted on the estuarine ecology of juvenile salmon in western Alaska are summarized and compared, emphasizing timing and distribution during outmigration, environmental conditions, age and growth, feeding, and energy content of salmon smolts. In western Alaska, water temperature dramatically changes with season, ranging from 0°C after ice melt in late spring/early summer to 19°C in July. Juvenile salmon were found in AYK estuaries from early May until August or September, but to date no information is available on their residence duration or survival probability. Chum salmon were the most abundant juvenile salmon reported, ranging in percent catch from <0.1% to 4.7% and most research effort has focused on this species. Abundances of Chinook salmon, sockeye salmon O. nerka, and pink salmon O. gorbuscha varied among estuaries, while coho salmon O. kisutch juveniles were consistently rare, never amounting to more than 0.8% of the catch. Dietary composition of juvenile salmon was highly variable and a shift was commonly reported from epibenthic and neustonic prey in lower salinity water to pelagic prey in higher salinity water. Gaps in the knowledge of AYK salmon estuarine ecology are still evident. For example, data on outmigration patterns and residence timing and duration, rearing conditions and their effect on diet, growth, and survival are often completely lacking or available only for few selected years and sites. Filling gaps in knowledge concerning salmon

  2. Enhanced transcriptomic responses in the Pacific salmon louse Lepeophtheirus salmonis oncorhynchi to the non-native Atlantic Salmon Salmo salar suggests increased parasite fitness.

    PubMed

    Braden, Laura M; Sutherland, Ben J G; Koop, Ben F; Jones, Simon R M

    2017-01-30

    Outcomes of infections with the salmon louse Lepeophtheirus salmonis vary considerably among its natural hosts (Salmo, Oncorhynchus spp.). Host-parasite interactions range from weak to strong host responses accompanied by high to low parasite abundances, respectively. Parasite behavioral studies indicate that the louse prefers the host Atlantic Salmon (Salmo salar), which is characterized by a weak immune response, and that this results in enhanced parasite reproduction and growth rates. Furthermore, parasite-derived immunosuppressive molecules (e.g., proteases) have been detected at higher amounts in response to the mucus of Atlantic Salmon relative to Coho Salmon (Oncorhynchus kisutch). However, the host-specific responses of the salmon louse have not been well characterized in either of the genetically distinct sub-species that occur in the Atlantic and Pacific Oceans. We assessed and compared the transcriptomic feeding response of the Pacific salmon louse (L. salmonis oncorhynchi,) while parasitizing the highly susceptible Atlantic Salmon and Sockeye Salmon (Oncorhynchus nerka) or the more resistant Coho Salmon (Oncorhynchus kisutch) using a 38 K oligonucleotide microarray. The response of the louse was enhanced both in the number of overexpressed genes and in the magnitude of expression while feeding on the non-native Atlantic Salmon, compared to either Coho or Sockeye Salmon. For example, putative virulence factors (e.g., cathepsin L, trypsin, carboxypeptidase B), metabolic enzymes (e.g., cytochrome B, cytochrome C), protein synthesis enzymes (e.g., ribosomal protein P2, 60S ribosomal protein L7), and reproduction-related genes (e.g., estrogen sulfotransferase) were overexpressed in Atlantic-fed lice, indicating heightened parasite fitness with this host species. In contrast, responses in Coho- or Sockeye-fed lice were more similar to those of parasites deprived of a host. To test for host acclimation by the parasite, we performed a reciprocal host transfer

  3. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review ofmore » the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood

  4. The atlantic salmon: Genetics, conservation and management

    USGS Publications Warehouse

    Verspoor, Eric; Stradmeyer, Lee; Nielsen, Jennifer L.

    2007-01-01

    Atlantic Salmon is a cultural icon throughout its North Atlantic range; it is the focus of probably the World’s highest profile recreational fishery and is the basis for one of the World’s largest aquaculture industries. Despite this, many wild stocks of salmon are in decline and underpinning this is a dearth of information on the nature and extent of population structuring and adaptive population differentiation, and its implications for species conservation.This important new book will go a long way to rectify this situation by providing a thorough review of the genetics of Atlantic salmon. Sponsored by the European Union and the Atlantic Salmon Trust, this book comprises the work of an international team of scientists, carefully integrated and edited to provide a landmark book of vital interest to all those working with Atlantic salmon.

  5. Diel variation in summer habitat use, feeding periodicity, and diet of subyearling Atlantic salmon in the Salmon River Basin, New York

    USGS Publications Warehouse

    Johnson, James H.

    2013-01-01

    The habitat use, diet composition, and feeding periodicity of subyearling Atlantic salmon (Salmo salar) was examined during both day and night periods during summer in tributaries of Lake Ontario. The amount of cover used was the major habitat variable that differed between day and night periods in both streams. At night subyearling Atlantic salmon were associated with significantly less cover than during the day. Principal Component Analysis showed that habitat selection of subyearling Atlantic salmon was more pronounced during the day in both streams and that salmon in Orwell Brook exhibited more diel variability in habitat use than salmon in Trout Brook. Subyearling salmon fed primarily from the benthic substrate on baetids, chironomids, and leptocerids. There was a substantial amount of diel variation in diet composition with peak feeding occurring from 0400 h to 0800 h on July 21–22, 2008.

  6. Updraft gasification of salmon processing waste.

    PubMed

    Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles

    2009-10-01

    The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable.

  7. The trophic fingerprint of marine fisheries.

    PubMed

    Branch, Trevor A; Watson, Reg; Fulton, Elizabeth A; Jennings, Simon; McGilliard, Carey R; Pablico, Grace T; Ricard, Daniel; Tracey, Sean R

    2010-11-18

    Biodiversity indicators provide a vital window on the state of the planet, guiding policy development and management. The most widely adopted marine indicator is mean trophic level (MTL) from catches, intended to detect shifts from high-trophic-level predators to low-trophic-level invertebrates and plankton-feeders. This indicator underpins reported trends in human impacts, declining when predators collapse ("fishing down marine food webs") and when low-trophic-level fisheries expand ("fishing through marine food webs"). The assumption is that catch MTL measures changes in ecosystem MTL and biodiversity. Here we combine model predictions with global assessments of MTL from catches, trawl surveys and fisheries stock assessments and find that catch MTL does not reliably predict changes in marine ecosystems. Instead, catch MTL trends often diverge from ecosystem MTL trends obtained from surveys and assessments. In contrast to previous findings of rapid declines in catch MTL, we observe recent increases in catch, survey and assessment MTL. However, catches from most trophic levels are rising, which can intensify fishery collapses even when MTL trends are stable or increasing. To detect fishing impacts on marine biodiversity, we recommend greater efforts to measure true abundance trends for marine species, especially those most vulnerable to fishing.

  8. Concentrations of trace elements in Pacific and Atlantic salmon

    NASA Astrophysics Data System (ADS)

    Khristoforova, N. K.; Tsygankov, V. Yu.; Boyarova, M. D.; Lukyanova, O. N.

    2015-09-01

    Concentrations of Hg, As, Cd, Pb, Zn, and Cu were analyzed in the two most abundant species of Pacific salmon, chum and pink salmon, caught in the Kuril Islands at the end of July, 2013. The concentrations of toxic elements (Hg, As, Pb, Cd) in males and females of these species are below the maximum permissible concentrations for seafood. It was found that farmed filleted Atlantic salmon are dominated by Zn and Cu, while muscles of wild salmon are dominated by Pb. Observed differences are obviously related to peculiar environmental geochemical conditions: anthropogenic impact for Atlantic salmon grown in coastal waters and the influence of the natural factors volcanism and upwelling for wild salmon from the Kuril waters.

  9. Eco-Evolutionary Trophic Dynamics: Loss of Top Predators Drives Trophic Evolution and Ecology of Prey

    PubMed Central

    Palkovacs, Eric P.; Wasserman, Ben A.; Kinnison, Michael T.

    2011-01-01

    Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a “sharpening” of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems. PMID:21526156

  10. Diel horizontal migration in streams: juvenile fish exploit spatial heterogeneity in thermal and trophic resources

    USGS Publications Warehouse

    Armstrong, Jonathan B.; Schindler, Daniel E.; Ruff, Casey P.; Brooks, Gabriel T.; Bentley, Kale E.; Torgersen, Christian E.

    2013-01-01

    Vertical heterogeneity in the physical characteristics of lakes and oceans is ecologically salient and exploited by a wide range of taxa through diel vertical migration to enhance their growth and survival. Whether analogous behaviors exploit horizontal habitat heterogeneity in streams is largely unknown. We investigated fish movement behavior at daily timescales to explore how individuals integrated across spatial variation in food abundance and water temperature. Juvenile coho salmon made feeding forays into cold habitats with abundant food, and then moved long distances (350–1300 m) to warmer habitats that accelerated their metabolism and increased their assimilative capacity. This behavioral thermoregulation enabled fish to mitigate trade-offs between trophic and thermal resources by exploiting thermal heterogeneity. Fish that exploited thermal heterogeneity grew at substantially faster rates than did individuals that assumed other behaviors. Our results provide empirical support for the importance of thermal diversity in lotic systems, and emphasize the importance of considering interactions between animal behavior and habitat heterogeneity when managing and restoring ecosystems.

  11. Geomorphology and the Restoration Ecology of Salmon

    NASA Astrophysics Data System (ADS)

    Montgomery, D. R.

    2005-05-01

    Natural and anthropogenic influences on watershed processes affect the distribution and abundance of salmon across a wide range of spatial and temporal scales, from differences in species use and density between individual pools and riffles to regional patterns of threatened, endangered, and extinct runs. The specific impacts of human activities (e.g., mining, logging, and urbanization) vary among regions and watersheds, as well as between different channel reaches in the same watershed. Understanding of both disturbance history and key biophysical processes are important for diagnosing the nature and causes of differences between historical and contemporary fluvial and watershed conditions based on evaluation of both historical and spatial contexts. In order to be most effective, the contribution of geomorphologic insight to salmon recovery efforts requires both assessment protocols commensurate with providing adequate knowledge of historical and spatial context, and experienced practitioners well versed in adapting general theory to local settings. The historical record of salmon management in Europe, New England and the Pacific Northwest indicates that there is substantial need to incorporate geomorphic insights on the effects of changes in watershed processes on salmon habitat and salmon abundance into salmon recovery efforts.

  12. Biomagnification of PBDEs and PCBs in food webs from the Baltic Sea and the northern Atlantic Ocean.

    PubMed

    Burreau, Sven; Zebühr, Yngve; Broman, Dag; Ishaq, Rasha

    2006-08-01

    Biomagnification of polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) in food webs from the Baltic Sea and the northern Atlantic Sea was investigated. For this, we used PCB and PBDE concentration data, together with data on fish body weight and delta15N of fish and zooplankton as a measure of trophic position. In the Baltic Sea material, consisting of zooplankton, sprat, herring and salmon, we report biomagnification of all PCB congeners but PCB #209 and of PBDEs with 3-6 or 7 bromine atoms. Higher brominated PBDEs and PCB 209 did not biomagnify likely due to their high molecular weights or sizes and subsequent inefficient dietary uptake in fish. If salmon was excluded from the statistical analysis, strong biomagnification of PCB #209 was evident, indicating species differences in biomagnification. In the Baltic Sea material delta15N and body weight covaried. In the Atlantic Sea material, consisting of fish samples (herring and salmon) of larger body sizes, we show positive correlation between concentrations of most PCBs and PBDEs and body weight without increasing delta15N. This shows that biomagnification in some cases depends on body size and not trophic position. We conclude that there probably is trophic position dependence in biomagnification, which was manifested in a food chain from zooplankton to piscivores, but no further trophic position influence on biomagnification in fish at the highest trophic levels. In these fish, there was a body size effect leading to biomagnification, probably due to slower clearance in larger fish. PCB concentrations were generally between 2 and 6 times higher in Baltic Sea salmon than in Atlantic Sea salmon. Higher PBDE concentrations in the Baltic compared to the Atlantic Sea salmon were also found, but with a larger variation between congeners. Nona- to deca-BDEs were found in most investigated samples, which illustrates the bioavailability of these compounds. Unidentified penta-, hexa-, hepta-, and

  13. Plasticity in growth of farmed and wild Atlantic salmon: is the increased growth rate of farmed salmon caused by evolutionary adaptations to the commercial diet?

    PubMed

    Harvey, Alison Catherine; Solberg, Monica Favnebøe; Troianou, Eva; Carvalho, Gary Robert; Taylor, Martin Ian; Creer, Simon; Dyrhovden, Lise; Matre, Ivar Helge; Glover, Kevin Alan

    2016-12-01

    Domestication of Atlantic salmon for commercial aquaculture has resulted in farmed salmon displaying substantially higher growth rates than wild salmon under farming conditions. In contrast, growth differences between farmed and wild salmon are much smaller when compared in the wild. The mechanisms underlying this contrast between environments remain largely unknown. It is possible that farmed salmon have adapted to the high-energy pellets developed specifically for aquaculture, contributing to inflated growth differences when fed on this diet. We studied growth and survival of 15 families of farmed, wild and F1 hybrid salmon fed three contrasting diets under hatchery conditions; a commercial salmon pellet diet, a commercial carp pellet diet, and a mixed natural diet consisting of preserved invertebrates commonly found in Norwegian rivers. For all groups, despite equal numbers of calories presented by all diets, overall growth reductions as high 68 and 83%, relative to the salmon diet was observed in the carp and natural diet treatments, respectively. Farmed salmon outgrew hybrid (intermediate) and wild salmon in all treatments. The relative growth difference between wild and farmed fish was highest in the carp diet (1: 2.1), intermediate in the salmon diet (1:1.9) and lowest in the natural diet (1:1.6). However, this trend was non-significant, and all groups displayed similar growth reaction norms and plasticity towards differing diets across the treatments. No indication of genetic-based adaptation to the form or nutritional content of commercial salmon diets was detected in the farmed salmon. Therefore, we conclude that diet alone, at least in the absence of other environmental stressors, is not the primary cause for the large contrast in growth differences between farmed and wild salmon in the hatchery and wild. Additionally, we conclude that genetically-increased appetite is likely to be the primary reason why farmed salmon display higher growth rates than

  14. Migration delays caused by anthropogenic barriers: Modeling dams, temperature, and success of migrating salmon smolts

    USGS Publications Warehouse

    Marschall, E.A.; Mather, M. E.; Parrish, D.L.; Allison, G.W.; McMenemy, J.R.

    2011-01-01

    Disruption to migration is a growing problem for conservation and restoration of animal populations. Anthropogenic barriers along migration paths can delay or prolong migrations, which may result in a mismatch with migration-timing adaptations. To understand the interaction of dams (as barriers along a migration path), seasonally changing environmental conditions, timing of Atlantic salmon (Salmo salar) downstream migration, and ultimate migration success, we used 10 years of river temperature and discharge data as a template upon which we simulated downstream movement of salmon. Atlantic salmon is a cool-water species whose downstream migrating smolts must complete migration before river temperatures become too warm. We found that dams had a local effect on survival as well as a survival effect that was spatially and temporally removed from the encounter with the dam. While smolts are delayed by dams, temperatures downstream can reach lethal or near-lethal temperatures;as a result, the match between completion of migration and the window of appropriate migration conditions can be disrupted. The strength of this spatially and temporally removed effect is at least comparable to the local effects of dams in determining smolt migration success in the presence of dams. We also considered smolts from different tributaries, varying in distance from the river mouth, to assess the potential importance of locally adapted migration timing on the effect of barriers. Migration-initiation temperature affected modeled smolt survival differentially across tributaries, with the success of smolts from upstream tributaries being much more variable across years than that of smolts with a shorter distance to travel. As a whole, these results point to the importance of broadening our spatial and temporal view when managing migrating populations. We must consider not only how many individuals never make it across migration barriers, but also the spatially and temporally removed

  15. Determinants of public attitudes to genetically modified salmon.

    PubMed

    Amin, Latifah; Azad, Md Abul Kalam; Gausmian, Mohd Hanafy; Zulkifli, Faizah

    2014-01-01

    The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country.

  16. Determinants of Public Attitudes to Genetically Modified Salmon

    PubMed Central

    Amin, Latifah; Azad, Md. Abul Kalam; Gausmian, Mohd Hanafy; Zulkifli, Faizah

    2014-01-01

    The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country. PMID:24489695

  17. Antibody against infectious salmon anaemia virus among feral Atlantic salmon (Salmo salar)

    USGS Publications Warehouse

    Cipriano, R.C.

    2009-01-01

    Archived sera from Atlantic salmon (Salmo salar) that returned to the Penobscot River (Maine), Merrimack River (Massachusetts), and Connecticut River (in Massachusetts) from 1995 to 2002 were analysed for antibodies against infectious salmon anaemia virus (ISAV) using an enzyme-linked immunosorbent assay (ELISA). Up to 60 samples were archived per river system per year. In a given year, the number of fish sampled by ELISA for ISAV antibodies in the Penobscot River ranged from 2.9 to 11.2, and the range of salmon sampled in the Merrimack River and the Connecticut River was 31.3-100 and 20.0-67.5, respectively. Archived sera were not available for the 1995 and 2002 year classes from the Connecticut River. In all, 1141 samples were processed; 14 serum samples tested positive for antibodies to ISAV. In the Penobscot River, serum from one fish tested positive in each of the 1995 and 1999 year-class returns, and sera from two fish tested positive in the 1998 returns. In the Merrimack River, sera from four fish tested positive in each of the 1996 and 1997 returns, and sera from two fish were positive in the 2002 return. None of the archived sera from Atlantic salmon that returned to the Connecticut River tested positive. ?? 2009 United States Government, Department of the Interior.

  18. Influence of climate change and trophic coupling across four trophic levels in the Celtic Sea.

    PubMed

    Lauria, Valentina; Attrill, Martin J; Pinnegar, John K; Brown, Andrew; Edwards, Martin; Votier, Stephen C

    2012-01-01

    Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect 'bottom-up' climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986-2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66 ± 0.02 °C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST (0-group: p = 0.02, slope = -0.305 ± 0.125; 1-group: p = 0.04, slope = -0.410 ± 0.193). Seabird demographics showed complex species-specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314 ± 0.014) as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = -0.144 ± 0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales.

  19. Diet, feeding patterns, and prey selection of subyearling Atlantic salmon (Salmo salar) and subyearling chinook salmon (Oncorhynchus tshawytscha) in a tributary of Lake Ontario

    USGS Publications Warehouse

    Johnson, J. H.; Nash, K. J.; Chiavelli, R. A.; DiRado, J. A.; Mackey, G. E.; Knight, J. R.; Diaz, A. R.

    2017-01-01

    Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi-national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.

  20. Differential use of salmon by vertebrate consumers: implications for conservation

    PubMed Central

    Wheat, Rachel E.; Allen, Jennifer M.; Wilmers, Christopher C.

    2015-01-01

    Salmon and other anadromous fish are consumed by vertebrates with distinct life history strategies to capitalize on this ephemeral pulse of resource availability. Depending on the timing of salmon arrival, this resource may be in surplus to the needs of vertebrate consumers if, for instance, their populations are limited by food availability during other times of year. However, the life history of some consumers enables more efficient exploitation of these ephemeral resources. Bears can deposit fat and then hibernate to avoid winter food scarcity, and highly mobile consumers such as eagles, gulls, and other birds can migrate to access asynchronous pulses of salmon availability. We used camera traps on pink, chum, and sockeye salmon spawning grounds with various run times and stream morphologies, and on individual salmon carcasses, to discern potentially different use patterns among consumers. Wildlife use of salmon was highly heterogeneous. Ravens were the only avian consumer that fed heavily on pink salmon in small streams. Eagles and gulls did not feed on early pink salmon runs in streams, and only moderately at early sockeye runs, but were the dominant consumers at late chum salmon runs, particularly on expansive river flats. Brown bears used all salmon resources far more than other terrestrial vertebrates. Notably, black bears were not observed on salmon spawning grounds despite being the most frequently observed vertebrate on roads and trails. From a conservation and management perspective, all salmon species and stream morphologies are used extensively by bears, but salmon spawning late in the year are disproportionately important to eagles and other highly mobile species that are seasonally limited by winter food availability. PMID:26339539

  1. Multivariate Models of Adult Pacific Salmon Returns

    PubMed Central

    Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  2. THE FUTURE OF PACIFIC NORTHWEST SALMON: ANATOMY OF A CRISIS

    EPA Science Inventory

    Salmon are categorized biologically into two groups: Pacific salmon or Atlantic salmon. All seven species of Pacific salmon on both sides of the North Pacific Ocean have declined substantially from historic levels, but large runs still occur in northern British Columbia, Yukon,...

  3. Chinook salmon foraging patterns in a changing Lake Michigan

    USGS Publications Warehouse

    Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Claramunt, Randall M.

    2013-01-01

    Since Pacific salmon stocking began in Lake Michigan, managers have attempted to maintain salmon abundance at high levels within what can be sustained by available prey fishes, primarily Alewife Alosa pseudoharengus. Chinook Salmon Oncorhynchus tshawytscha are the primary apex predators in pelagic Lake Michigan and patterns in their prey selection (by species and size) may strongly influence pelagic prey fish communities in any given year. In 1994–1996, there were larger Alewives, relatively more abundant alternative prey species, fewer Chinook Salmon, and fewer invasive species in Lake Michigan than in 2009–2010. The years 2009–2010 were instead characterized by smaller, leaner Alewives, fewer alternative prey species, higher abundance of Chinook Salmon, a firmly established nonnative benthic community, and reduced abundance of Diporeia, an important food of Lake Michigan prey fish. We characterized Chinook Salmon diets, prey species selectivity, and prey size selectivity between 1994–1996 and 2009–2010 time periods. In 1994–1996, Alewife as prey represented a smaller percentage of Chinook Salmon diets than in 2009–2010, when alewife comprised over 90% of Chinook Salmon diets, possibly due to declines in alternative prey fish populations. The size of Alewives eaten by Chinook Salmon also decreased between these two time periods. For the largest Chinook Salmon in 2009–2010, the average size of Alewife prey was nearly 50 mm total length shorter than in 1994–1996. We suggest that changes in the Lake Michigan food web, such as the decline in Diporeia, may have contributed to the relatively low abundance of large Alewives during the late 2000s by heightening the effect of predation from top predators like Chinook Salmon, which have retained a preference for Alewife and now forage with greater frequency on smaller Alewives.

  4. Temporal variability (1997-2015) of trophic fish guilds and its relationships with El Niño events in a subtropical estuary

    NASA Astrophysics Data System (ADS)

    Possamai, Bianca; Vieira, João P.; Grimm, Alice M.; Garcia, Alexandre M.

    2018-03-01

    Global climatic phenomena like El Niño events are known to alter hydrological cycles and local abiotic conditions leading to changes in structure and dynamics of terrestrial and aquatic biological communities worldwide. Based on a long-term (19 years) standardized sampling of shallow water estuarine fishes, this study investigated the temporal variability in composition and dominance patterns of trophic guilds in a subtropical estuary (Patos Lagoon estuary, Southern Brazil) and their relationship with local and regional driving forces associated with moderate (2002-2003 and 2009-2010) and very strong (1997-1998 and 2015-2016) El Niño events. Fish species were classified into eight trophic guilds (DTV detritivore, HVP herbivore-phytoplankton, HVM macroalgae herbivore, ISV insectivore, OMN omnivore, PSV piscivore, ZBV zoobenthivore and ZPL zooplanktivore) and their abundances were correlated with environmental factors. Canonical correspondence analysis revealed that less dominant (those comprising < 10% of total abundance) trophic guilds, such as HVP, HVM, ISV, PSV, increased their relative abundance in the estuary during higher rainfall and lower salinity conditions associated with moderate and very strong El Niño events. An opposite pattern was observed for the dominant trophic fish guilds like OMN and, at lesser extent, DTV and ZPL, which had greater association with higher values of salinity and water transparency occurring mostly during non-El Niño conditions. In contrast, ZBV's abundance was not correlated with contrasting environmental conditions, but rather, had higher association with samples characterized by intermediate environmental values. Overall, these findings show that moderate and very strong El Niño events did not substantially disrupt the dominance patterns among trophic fish guilds in the estuary. Rather, they increased trophic estuarine diversity by flushing freshwater fishes with distinct feeding habits into the estuary.

  5. Chronic oral DDT toxicity in juvenile coho and chinook salmon

    USGS Publications Warehouse

    Buhler, Donald R.; Rasmusson, Mary E.; Shanks, W.E.

    1969-01-01

    Technical and p,p′-DDT was incorporated into test diets and fed to juvenile chinook and coho salmon for periods as long as 95 days. Pure p,p′-DDT was slightly more toxic to young salmon than was the technical DDT mixture. Chinook salmon appeared to be 2–3 times more sensitive to a given concentration of DDT in the diet than were coho salmon. The size of the fish greatly influenced toxicity, smaller younger fish being more susceptible to a given diet than larger older fish. The dose of DDT accumulated within the median survival time ranged from 27–73 mg/kg for chinook salmon and from 56–72 mg/kg for coho salmon. The extrapolated 90-dose LD50 (Hayes, 1967) for young chinook and coho salmon were 0.0275 and 0.064 mg/kg/day, respectively. Liver size decreased on prolonged feeding with DDT, and carcass lipid content was increased. A severe surface ulceration of the nose region appeared in coho salmon fed DDT over long periods. In addition, an interesting localized degeneration of the distal convoluted tubule was observed in the kidney of coho salmon receiving DDT.

  6. Salmon Mapper

    EPA Pesticide Factsheets

    Information about the web application to assist pesticide users' with an understanding of the spatial extent of certain pesticide use limitations to protect endangered or threatened salmon and steelhead in California, Oregon and Washington.

  7. California salmon and steelhead: Beyond the crossroads

    USGS Publications Warehouse

    Mills, Terry J.; McEwan, Dennis R.; Jennings, Mark R.; Stouder, Deanna J.; Bisson, Peter A.; Naiman, Robert J.

    1997-01-01

    Virtually all California salmon (Oncorhynchus spp.) and steelhead (O. mykiss) stocks have declined to record or near-record low levels during 1980-95. Escapement of naturally spawning Klamath and Sacramento basin fall-run chinook salmon (O. tshawytscha) stocks has fallen consistently below the goals of 35,000 adults (Klamath) and 120,000 adults (Sacramento) established by the Pacific Fishery Management Council. These two stocks constitute the primary management units for ocean harvest regulations in California and southern Oregon. This decline triggered a mandatory review of ocean harvest and inland production conditions in each basin. The Sacramento winter-run chinook salmon, once numbering >100,000 adult spawners, was listed as threatened in 1990 and endangered in 1994 under the Endangered Species Act. The listing occurred as a result of a precipitous decline in abundance (to <200 adult spawners) and significant threats to this stock’s continued existence.Spring-run chinook salmon, historically an abundant component of California’s inland fish fauna with >500,000 adult spawners, has been extirpated from the San Joaquin River basin. However, remnant populations of this naturally spawning stock remain within the Klamath, Smith, and Sacramento river basins. Unfortunately, annual counts of 3,000-25,000 spawners in the Sacramento River basin during the past 25 years are largely of hatchery origin. Recent steelhead data from the same region indicate that many stocks are close to extinction, and nearly all steel-head in the Sacramento River are also of hatchery origin. Both spring-run chinook salmon and summer steelhead are considered to be species of special concern by the California Department of Fish and Game because of their limited distributions and sensitivities to degraded habitat conditions. The southern race of winter steelhead south of Point Conception is nearly extinct and remnant populations have been recently recorded in only 9 streams.Coastal cutthroat

  8. History and effects of hatchery salmon in the Pacific

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Gallaugher, Patricia; Wood, Laurie

    2004-01-01

    There has been a long history of production of hatchery salmon along the Pacific coast - from California’s first efforts in the 1870s using eggs from chinook and rainbow trout to the recent large-scale production hatcheries for pink salmon in Japan and the Russian Far East. The rationale for this production has also varied from replacement of fish lost in commercial ocean harvests to mitigation and restoration of salmon in areas where extensive habitat alteration has reduced salmonid viability and abundance. Over the years, we have become very successful in producing a certain type of product from salmon hatcheries, but until recently we seldom questioned the impacts the production and release of hatchery fish may have on freshwater and marine aquatic ecosystems and on the sustainability of sympatric wild salmon populations. This paper addresses the history of hatcheries around the Pacific Rim and considers potential negative implications of hatchery-produced salmon through discussions of biological impacts and biodiversity, ecological impacts and competitive displacement, fish and ecosystem health, and genetic impacts of hatchery fish as threats to wild populations of Pacific salmon.

  9. Aquatic Trophic Productivity model: A decision support model for river restoration planning in the Methow River, Washington

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan

    2016-05-19

    In this report, we outline the structure of a stream food-web model constructed to explore how alternative river restoration strategies may affect stream fish populations. We have termed this model the “Aquatic Trophic Productivity model” (ATP). We present the model structure, followed by three case study applications of the model to segments of the Methow River watershed in northern Washington. For two case studies (middle Methow River and lower Twisp River floodplain), we ran a series of simulations to explore how food-web dynamics respond to four distinctly different, but applied, strategies in the Methow River watershed: (1) reconnection of floodplain aquatic habitats, (2) riparian vegetation planting, (3) nutrient augmentation (that is, salmon carcass addition), and (4) enhancement of habitat suitability for fish. For the third case study, we conducted simulations to explore the potential fish and food-web response to habitat improvements conducted in 2012 at the Whitefish Island Side Channel, located in the middle Methow River.

  10. Habitat Utilization by Juvenile Pink and Chum Salmon in Upper Resurrection Bay, Alaska

    DTIC Science & Technology

    1989-11-01

    salmon Oncorhynchus kotez Chum salmon Untcorhynchua kisutch Coho salmon Orncorhynchus nerka Sockeye salmon Oncorhynchus tohawytacha Kink salmon...coho salmon, 40 Dolly Varden, 31 sculpin, 8 tomcod (Microgadus proxins), 17 starry flounder, and 10 sockeye salmon (0. nerka ) stomachs from Cliff and...AK. Godin, J. G. J. 1981. "Daily Patterns of Feeding Behavior, Daily Rations, and Diets of Juvenile Pink Salmon ( Oncorhynchus go’buscha) in Two

  11. Habitat Suitability Index Models: Coho salmon

    USGS Publications Warehouse

    McMahon, Thomas E.

    1983-01-01

    The coho salmon (Oncorhynchus kisutch) is native to the northern Pacific Ocean, spawning and rearing in streams from Monterey Bay, California, to Point Hope, Alaska, and southward along the Asiatic coast to Japan. Its center of abundance in North America is from Oregon to Alaska (Briggs 1953; Godfrey 1965; Hart 1973; Scott and Crossman 1973). Coho salmon have been successfully introduced into the Great Lakes and reservoirs and lakes throughout the United States to provide put-and-grow sport fishing (Scott and Crossman 1973; Wigglesworth and Rawson 1974). No subspecies of coho salmon have been described (Godfrey 1965).

  12. Fish farms, parasites, and predators: implications for salmon population dynamics.

    PubMed

    Krkosek, Martin; Connors, Brendan M; Ford, Helen; Peacock, Stephanie; Mages, Paul; Ford, Jennifer S; Morton, Alexandra; Volpe, John P; Hilborn, Ray; Dill, Lawrence M; Lewis, Mark A

    2011-04-01

    For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an

  13. SALMON: A WORLD AND HISTORICAL PERSPECTIVE

    EPA Science Inventory

    The four nations of Salmon World have existed for 10,000 years. Since the end of the last Ice Age, salmon established naturally substantial populations and prospered in four large regions of the earth: (1) the European side of the North Atlantic; (2) the North American side of...

  14. THE FOUR NATIONS OF SALMON WORLD

    EPA Science Inventory

    The four nations of Salmon World have existed for 10,000 years. Since the end of the last Ice Age, salmon established naturally substantial populations and prospered in four large regions of the earth: (1) the European side of the North Atlantic; (2) the North American side of...

  15. Salmon Supplementation Studies in Idaho Rivers, 1999-2000 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andy; Taki, Doug; Teton, Angelo

    2001-11-01

    As part of the Idaho Supplementation Studies, fisheries crews from the Shoshone-Bannock Tribes have been snorkeling tributaries of the Salmon River to estimate chinook salmon (Oncorhynchus tshawytscha) parr abundance; conducting surveys of spawning adult chinook salmon to determine the number of redds constructed and collect carcass information; operating a rotary screw trap on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag emigrating juvenile chinook salmon; and collecting and PIT-tagging juvenile chinook salmon on tributaries of the Salmon River. The Tribes work in the following six tributaries of the Salmon River: Bear Valleymore » Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork Salmon River. Snorkeling was used to obtain parr population estimates for ISS streams from 1992 to 1997. However, using the relatively vigorous methods described in the ISS experimental design to estimate summer chinook parr populations, results on a project-wide basis showed extraordinarily large confidence intervals and coefficients of variation. ISS cooperators modified their sampling design over a few years to reduce the variation around parr population estimates without success. Consequently, in 1998 snorkeling to obtain parr population estimates was discontinued and only General Parr Monitoring (GPM) sites are snorkeled. The number of redds observed in SBT-ISS streams has continued to decline as determined by five year cycles. Relatively weak strongholds continue to occur in the South Fork Salmon River and Bear Valley Creek. A rotary screw trap was operated on the West Fork Yankee Fork during the spring and fall of 1999 and the spring of 2000 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997 and 1999 (fall only) to 2000. Significant supplementation treatments have occurred in

  16. THE SALMON 2100 PROJECT: OPTIONS TO PROTECT, RESTORE, ANE ENHANCE SALMON ALONG THE WEST COAST OF NORTH AMERICA

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...

  17. 50 CFR 660.412 - EFH identifications and descriptions for Pacific salmon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Pacific salmon. 660.412 Section 660.412 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... COAST STATES West Coast Salmon Fisheries § 660.412 EFH identifications and descriptions for Pacific salmon. Pacific salmon essential fish habitat (EFH) includes all those water bodies occupied or...

  18. Trophic signatures of seabirds suggest shifts in oceanic ecosystems

    PubMed Central

    Gagne, Tyler O.; Hyrenbach, K. David; Hagemann, Molly E.; Van Houtan, Kyle S.

    2018-01-01

    Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level–based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight species sampled, indicating a long-term shift from higher–trophic level to lower–trophic level prey. No species increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning models further reveal that trophic position trends have a complex set of drivers including climate, commercial fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the complex changes occurring in marine ecosystems. PMID:29457134

  19. Trophic signatures of seabirds suggest shifts in oceanic ecosystems.

    PubMed

    Gagne, Tyler O; Hyrenbach, K David; Hagemann, Molly E; Van Houtan, Kyle S

    2018-02-01

    Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level-based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight species sampled, indicating a long-term shift from higher-trophic level to lower-trophic level prey. No species increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning models further reveal that trophic position trends have a complex set of drivers including climate, commercial fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the complex changes occurring in marine ecosystems.

  20. Trophic state, eutrophication and nutrient criteria in streams.

    PubMed

    Dodds, Walter K

    2007-12-01

    Trophic state is the property of energy availability to the food web and defines the foundation of community integrity and ecosystem function. Describing trophic state in streams requires a stoichiometric (nutrient ratio) approach because carbon input rates are linked to nitrogen and phosphorus supply rates. Light determines the source of carbon. Cross system analyses, small experiments and ecosystem level manipulations have recently advanced knowledge about these linkages, but not to the point of building complex predictive models that predict all effects of nutrient pollution. Species diversity could indicate the natural distribution of stream trophic status over evolutionary time scales. Delineation of factors that control trophic state and relationships with biological community properties allows determination of goals for management of stream biotic integrity.

  1. An Experimental Approach for Restoration of Salmon River Ecosystems

    NASA Astrophysics Data System (ADS)

    Stanford, J. A.

    2005-05-01

    River ecosystem theory predicts that dynamic, nonlinear physical and biological processes linking water, heat and materials (biota, sediment, plant-growth nutrients) flux and retention to fluvial landscape change in a habitat mosaic context drive salmon life histories and productivity in freshwater. Multidisciplinary studies and cross-site comparisons within a network of pristine salmon river observatories around the north Pacific Rim support these predictions. Billions of dollars have been spent on salmon-river restoration worldwide to little avail, mainly because salmon biology, rather than ecosystem process boundaries and bottlenecks, is driving restoration goals. I argue that entire river catchment restoration, in relation to these dynamic processes and bottlenecks and also coherent with the estuarine and marine implications of salmon life history parameters, is the only possibility for sustaining or restoring natural productivity and life history (genetic) diversity in salmon rivers. This can be done only in a few places owing to the continual press of human demands on river ecosystems, the morass of legal challenges to proactive salmon river restoration strategies and insufficient understanding of freshwater and marine linkages. The Elwha and Yakima Rivers in Washington, among a few others that I will name, offer real opportunities to restore entire watersheds for wild salmon. These restorations should be viewed as experimental manipulations in which outcomes may be evaluated against norms measured in the salmon river observatory network. Bias from hatcheries and harvest, among other anthropogenic interferences, must be eliminated for such experiments to be evaluated in light of contemporary river ecosystem theory. And, a much more synthetic understanding of freshwater and marine linkages must be forthcoming in concert with a much more robust general theory of river restoration.

  2. 50 CFR 679.65 - Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR program). 679.65 Section 679.65 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE...

  3. Response of ecosystem metabolism to low densities of spawning Chinook salmon

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan; Watson, Grace A.

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to <10% of their historical abundance, with subsequent declines of marine derived nutrients once provided by large salmon runs. We explored whether low densities (<0.001 spawners/m2) of naturally spawning Chinook Salmon (Oncorhynchus tshawytscha) can affect ecosystem metabolism. We measured gross primary production (GPP) and ecosystem respiration (ER) continuously before, during, and after salmon spawning. We compared downstream reaches with low densities of spawning salmon to upstream reaches with fewer or no spawners in 3 mid-sized (4th-order) rivers in northern Washington. In addition, we measured chemical, physical, and biological factors that may be important in controlling rates of GPP and ER. We observed that low densities of spawning salmon can increase GPP by 46% during spawning, but values quickly return to those observed before spawning. No difference in ER was observed between up- and downstream reaches. Based on our results, salmon density, temperature, and the proximity to salmon redds were the most important factors controlling rates of GPP, whereas temperature was most important for ER. These results suggest that even at low spawning densities, salmon can stimulate basal resources that may propagate up the food web. Understanding how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.

  4. Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory

    USDA-ARS?s Scientific Manuscript database

    Detritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (= ‘brown’) food-webs has remained impenetrable. Measurement of detritivore trophic position is complicated by the fact that detritu...

  5. Salmon as drivers of physical and biological disturbance in river channels

    NASA Astrophysics Data System (ADS)

    Albers, S. J.; Petticrew, E. L.

    2012-04-01

    Large migrations across landscapes and ecosystem boundaries combined with disturbances of riverine spawning habitats through nest construction indicate the huge potential that Pacific salmon (Onchorhynchus sp.) have to disturb and alter regional energy flow. Nutrients derived from ocean-reared dead and decaying salmon are released into surrounding aquatic ecosystems fertilizing the water column, recently disturbed by increased suspended sediments due to nest construction. These opposing forces of disturbance and fertilization on spawning habitat have been demonstrated to impact local geomorphic and ecological cycles within salmon streams. An often cited, yet not fully tested, hypothesis is that this pulse of nutrients provided by decaying salmon can shift freshwater habitats to higher production levels. This hypothesis, however, remains contested and uncertain. Fine sediments are increasingly being recognized as important delivery and storage vectors for marine-derived nutrients (MDNs) in spawning streams. The temporal and spatial significance of these sediment vectors on gravelbed storage of MDN have not been quantified thereby restricting our ability to estimate the impact of gravelbed storage of MDNs on the riverine habitats. The objectives of this study were to i) quantify the magnitude of sediment deposition and retention in an active spawning area and ii) determine the contribution of MDN associated with the fine sediment storage. The Horsefly River spawning channel (HFC), an artificial salmon stock enhancement stream, was used to examine the biogeomorphic impacts of salmon spawning. We organized the HFC in an upstream-downstream paired treatment approach where the upstream enclosure was kept free of salmon and the downstream enclosure was loaded with actively spawning salmon. We used the difference in suspended sediment concentration between the salmon enclosure and the control enclosure to determine the contribution of salmon nest construction to suspended

  6. Effect of tidal environment on the trophic balance of mixotrophic hexacorals using biochemical profile and photochemical performance as indicators.

    PubMed

    Rosa, Inês C; Rocha, Rui J M; Cruz, Igor; Lopes, Ana; Menezes, Natália; Bandarra, Narcisa; Kikuchi, Ruy; Serôdio, João; Soares, Amadeu M V M; Rosa, Rui

    2018-04-01

    Fluctuations of environmental factors in intertidal habitats can disrupt the trophic balance of mixotrophic cnidarians. We investigated the effect of tidal environments (subtidal, tidal pools and emerged areas) on fatty acid (FA) content of Zoanthus sociatus and Siderastrea stellata. Effect on photophysiology was also accessed as an autotrophy proxy. There was a general tendency of a lower percentage of zooplankton-associated FAs in colonies from emerged areas or tidal pools when compared with colonies from the subtidal environment. Moreover, tidal environment significantly affected the photophysiology of both species. Colonies from the subtidal generally showed lower values of α, ETR max and E k when compared with their conspecifics from tidal pools or emerged areas. However, the absence of consistent patterns in F v /F m and in dinoflagellate-associated FAs, suggest that these corals are well adapted to intertidal conditions. This suggests that intertidal pressures may disturb the trophic balance, mainly by affecting heterotrophy of these species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Inclusion of Palmaria palmata (red seaweed) in Atlantic salmon diets: effects on the quality, shelf-life parameters and sensory properties of fresh and cooked salmon fillets.

    PubMed

    Moroney, Natasha C; Wan, Alex H L; Soler-Vila, Anna; FitzGerald, Richard D; Johnson, Mark P; Kerry, Joe P

    2015-03-30

    The use of Palmaria palmata (PP) as a natural ingredient in farmed Atlantic salmon diets was investigated. The effect of salmon diet supplementation with P. palmata (0, 5, 10 and 15%) or synthetic astaxanthin (positive control, PC) for 16 weeks pre-slaughter on quality indices of fresh salmon fillets was examined. The susceptibility of salmon fillets/homogenates to oxidative stress conditions was also measured. In salmon fillets stored in modified atmosphere packs (60% N2 /40% CO2 ) for up to 15 days at 4 °C, P. palmata increased surface -a* (greenness) and b* (yellowness) values in a dose-dependent manner, resulting in a final yellow/orange flesh colour. In general, the dietary addition of P. palmata had no effect on pH, lipid oxidation (fresh, cooked and fillet homogenates) and microbiological status. 'Eating quality' sensory descriptors (texture, odour and oxidation flavour) in cooked salmon fillets were not influenced by dietary P. palmata. Salmon fed 5% PP showed increased overall acceptability compared with those fed PC and 0% PP. Dietary P. palmata was ineffective at providing red coloration in salmon fillets, but pigment deposition enhanced fillets with a yellow/orange colour. Carotenoids from P. palmata may prove to be a natural pigment alternative to canthaxanthin in salmon feeds. © 2014 Society of Chemical Industry.

  8. Salmon returns and consumer fitness: growth and energy storage in stream-dwelling salmonids increases with spawning salmon abundance

    USDA-ARS?s Scientific Manuscript database

    We examined how biomass of marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and nitrogen stable isotope ratios (d15N) of stream-dwelling fishes. We sampled coho salmon (Oncorhynchus kisutch) parr and juvenile Dolly Varden (Salvelinus malma) d...

  9. Salmon carcass movements in forest streams

    Treesearch

    Burke Strobel; Daniel R. Shivley; Brett B. Roper

    2009-01-01

    The movements of salmon carcasses over time were studied in two forest streams in the context of a large-scale salmon carcass supplementation program. The objectives were to assess both the level of treatment after stream flows had displaced carcasses and to evaluate whether the magnitude of carcass movements outside of a given reach could be predicted. The movements...

  10. Atlantic salmon reovirus infection causes a CD8 T cell myocarditis in Atlantic salmon (Salmo salar L.).

    PubMed

    Mikalsen, Aase B; Haugland, Oyvind; Rode, Marit; Solbakk, Inge Tom; Evensen, Oystein

    2012-01-01

    Heart and skeletal inflammation (HSMI) of farmed Atlantic salmon (Salmo salar L.) is a disease characterized by a chronic myocarditis involving the epicardium and the compact and spongious part of the heart ventricle. Chronic myositis of the red skeletal muscle is also a typical finding of HSMI. Piscine reovirus (PRV) has been detected by real-time PCR from farmed and wild salmon with and without typical changes of HSMI and thus the causal relationship between presence of virus and the disease has not been fully determined. In this study we show that the Atlantic salmon reovirus (ASRV), identical to PRV, can be passaged in GF-1 cells and experimental challenge of naïve Atlantic salmon with cell culture passaged reovirus results in cardiac and skeletal muscle pathology typical of HSMI with onset of pathology from 6 weeks, peaking by 9 weeks post challenge. ASRV replicates in heart tissue and the peak level of virus replication coincides with peak of heart lesions. We further demonstrate mRNA transcript assessment and in situ characterization that challenged fish develop a CD8+ T cell myocarditis.

  11. How coarse is too coarse for salmon spawning substrates?

    NASA Astrophysics Data System (ADS)

    Wooster, J. K.; Riebe, C. S.; Ligon, F. K.; Overstreet, B. T.

    2009-12-01

    Populations of Pacific salmon species have declined sharply in many rivers of the western US. Reversing these declines is a top priority and expense of many river restoration projects. To help restore salmon populations, managers often inject gravel into rivers, to supplement spawning habitat that has been depleted by gravel mining and the effects of dams—which block sediment and thus impair habitat downstream by coarsening the bed where salmon historically spawned. However, there is little quantitative understanding nor a methodology for determining when a river bed has become too coarse for salmon spawning. Hence there is little scientific basis for selecting sites that would optimize the restoration benefits of gravel injection (e.g., sites where flow velocities are suitable but bed materials are too coarse for spawning). To develop a quantitative understanding of what makes river beds too coarse for salmon spawning, we studied redds and spawning use in a series of California and Washington rivers where salmon spawning ability appears to be affected by coarse bed material. Our working hypothesis is that for a given flow condition, there is a maximum “threshold” particle size that a salmon of a given size is able to excavate and/or move as she builds her redd. A second, related hypothesis is that spawning use should decrease and eventually become impossible with increasing percent coverage by immovable particles. To test these hypotheses, we quantified the sizes and spatial distributions of immovably coarse particles in a series of salmon redds in each river during the peak of spawning. We also quantified spawning use and how it relates to percent coverage by immovable particles. Results from our studies of fall-run chinook salmon (Oncorhynchus tshawytsha) in the Feather River suggest that immovable particle size varies as a function of flow velocity over the redd, implying that faster water helps fish move bigger particles. Our Feather River study also

  12. Response of ecosystem metabolism to low densities of spawning Chinook Salmon

    Treesearch

    Joseph R. Benjamin; J. Ryan Bellmore; Grace A. Watson

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to <10% of their historical abundance, with subsequent declines of marine derived nutrients once provided by large salmon runs. We explored whether low densities...

  13. Trophic network models explain instability of Early Triassic terrestrial communities

    PubMed Central

    Roopnarine, Peter D; Angielczyk, Kenneth D; Wang, Steve C; Hertog, Rachel

    2007-01-01

    Studies of the end-Permian mass extinction have emphasized potential abiotic causes and their direct biotic effects. Less attention has been devoted to secondary extinctions resulting from ecological crises and the effect of community structure on such extinctions. Here we use a trophic network model that combines topological and dynamic approaches to simulate disruptions of primary productivity in palaeocommunities. We apply the model to Permian and Triassic communities of the Karoo Basin, South Africa, and show that while Permian communities bear no evidence of being especially susceptible to extinction, Early Triassic communities appear to have been inherently less stable. Much of the instability results from the faster post-extinction diversification of amphibian guilds relative to amniotes. The resulting communities differed fundamentally in structure from their Permian predecessors. Additionally, our results imply that changing community structures over time may explain long-term trends like declining rates of Phanerozoic background extinction PMID:17609191

  14. POLICY OPTIONS TO REVERSE THE DECLINE OF WILD PACIFIC SALMON

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project was to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in the Pacific Northwest and California. Wild salmon recovery efforts in western North Americ...

  15. Patterns of change in climate and Pacific salmon production

    Treesearch

    Nathan J. Mantua

    2009-01-01

    For much of the 20th century a clear north-south inverse production pattern for Pacific salmon had a time dynamic that closely followed that of the Pacific Decadal Oscillation (PDO), which is the dominant pattern of North Pacific sea surface temperature variability. Total Alaska salmon production was high during warm regimes of the PDO, and total Alaska salmon...

  16. Trophic flexibility and the persistence of understory birds in intensively logged rainforest.

    PubMed

    Edwards, David P; Woodcock, Paul; Newton, Rob J; Edwards, Felicity A; Andrews, David J R; Docherty, Teegan D S; Mitchell, Simon L; Ota, Takahiro; Benedick, Suzan; Bottrell, Simon H; Hamer, Keith C

    2013-10-01

    Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable-isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic-niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic-niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic-niche widths in degraded forest. Species with narrow trophic-niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species' trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. © 2013 Society for Conservation Biology.

  17. Transmission dynamics of parasitic sea lice from farm to wild salmon.

    PubMed

    Krkosek, Martin; Lewis, Mark A; Volpe, John P

    2005-04-07

    Marine salmon farming has been correlated with parasitic sea lice infestations and concurrent declines of wild salmonids. Here, we report a quantitative analysis of how a single salmon farm altered the natural transmission dynamics of sea lice to juvenile Pacific salmon. We studied infections of sea lice (Lepeophtheirus salmonis and Caligus clemensi) on juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) as they passed an isolated salmon farm during their seaward migration down two long and narrow corridors. Our calculations suggest the infection pressure imposed by the farm was four orders of magnitude greater than ambient levels, resulting in a maximum infection pressure near the farm that was 73 times greater than ambient levels and exceeded ambient levels for 30 km along the two wild salmon migration corridors. The farm-produced cohort of lice parasitizing the wild juvenile hosts reached reproductive maturity and produced a second generation of lice that re-infected the juvenile salmon. This raises the infection pressure from the farm by an additional order of magnitude, with a composite infection pressure that exceeds ambient levels for 75 km of the two migration routes. Amplified sea lice infestations due to salmon farms are a potential limiting factor to wild salmonid conservation.

  18. Transmission dynamics of parasitic sea lice from farm to wild salmon

    PubMed Central

    Krkošek, Martin; Lewis, Mark A; Volpe, John P

    2005-01-01

    Marine salmon farming has been correlated with parasitic sea lice infestations and concurrent declines of wild salmonids. Here, we report a quantitative analysis of how a single salmon farm altered the natural transmission dynamics of sea lice to juvenile Pacific salmon. We studied infections of sea lice (Lepeophtheirus salmonis and Caligus clemensi ) on juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) as they passed an isolated salmon farm during their seaward migration down two long and narrow corridors. Our calculations suggest the infection pressure imposed by the farm was four orders of magnitude greater than ambient levels, resulting in a maximum infection pressure near the farm that was 73 times greater than ambient levels and exceeded ambient levels for 30 km along the two wild salmon migration corridors. The farm-produced cohort of lice parasitizing the wild juvenile hosts reached reproductive maturity and produced a second generation of lice that re-infected the juvenile salmon. This raises the infection pressure from the farm by an additional order of magnitude, with a composite infection pressure that exceeds ambient levels for 75 km of the two migration routes. Amplified sea lice infestations due to salmon farms are a potential limiting factor to wild salmonid conservation. PMID:15870031

  19. Effect of stock size, climate, predation, and trophic status on recruitment of alewives in Lake Ontario, 1978-2000

    USGS Publications Warehouse

    O'Gorman, Robert; Lantry, Brian F.; Schneider, Clifford P.

    2004-01-01

    The population of alewives Alosa pseudoharengus in Lake Ontario is of great concern to fishery managers because alewives are the principal prey of introduced salmonines and because alewives negatively influence many endemic fishes. We used spring bottom trawl catches of alewives to investigate the roles of stock size, climate, predation, and lake trophic status on recruitment of alewives to age 2 in Lake Ontario during 1978–2000. Climate was indexed from the temperature of water entering a south-shore municipal treatment plant, lake trophic status was indexed by the mean concentration of total phosphorus (TP) in surface water in spring, and predation was indexed by the product of the number of salmonines stocked and relative, first-year survival of Chinook salmonOncorhynchus tshawytscha. A Ricker-type parent–progeny model suggested that peak production of age-1 alewives could occur over a broad range of spawning stock sizes, and the fit of the model was improved most by the addition of terms for spring water temperature and winter duration. With the addition of the two climate terms, the Ricker model indicated that when water was relatively warm in spring and the winter was relatively short, peak potential production of young was nine times higher than when water temperature and winters were average, and 73 times higher than when water was cold in spring and winters were long. Relative survival from age 1 to recruitment at age 2 was best described by a multiple linear regression with terms for adult abundance, TP, and predation. Mean recruitment of age-2 fish in the 1978–1998 year-classes predicted by using the two models in sequence was only about 20% greater than the observed mean recruitment. Model estimates fit the measured data exceptionally well for all but the largest four year-classes, which suggests that the models will facilitate improvement in estimates of trophic transfer due to alewives.

  20. Testing archival tag technology in coho salmon

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Richards, Philip; Tingey, Thor; Wilson, Derek; Zimmerman, Chris

    2004-01-01

    Archive tags with temperature and light-geolocation sensors will be monitored for post-smolt coho salmon in Cook Inlet. Light/location relationships specific to the Gulf of Alaska developed under Project 00478 will be applied in this study of movement and migration paths for coho salmon during maturation in ocean environments in Cook Inlet. Salmon for this study will be reared in captivity (at the Alaska Department of Fish and Game hatchery at Fort Richardson) to 1+ year of age (200-250mm) and released in Cook Inlet as part of the department's Ship Creek sport-fishing hatchery release. FY 01 includes pilot studies of tag retention, behavior, and growth for coho in captivity. Ship Creek coho will be tagged mid-May. A spring release experiment in the first year will be contingent on the successful implementation and retention of these tags. Surveys for early jack recoveries will be done at the Ship Creek weir and among sport fishers. Monitoring for adult tag recoveries will be done in the coho commercial fishery in Cook Inlet and the derby sport fishery on Ship Creek. Archive tagged fish will be used to document coho salmon use of marine habitats, migration routes, contribution to the sport fishery, and hatchery/wild interactions for salmon in Cook Inlet.

  1. 77 FR 75101 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 17 to the Salmon Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... impacts to two coho stocks. Amendment 17 Issue 7. The description of impacts to pink salmon from the ocean fishery is updated to reflect recent analyses of exploitation rate for pink salmon, conducted since the... income in local and state economies through expenditures on harvesting, processing, and marketing of the...

  2. First detection, isolation and molecular characterization of infectious salmon anaemia virus associated with clinical disease in farmed Atlantic salmon (Salmo salar) in Chile

    PubMed Central

    Godoy, Marcos G; Aedo, Alejandra; Kibenge, Molly JT; Groman, David B; Yason, Carmencita V; Grothusen, Horts; Lisperguer, Angelica; Calbucura, Marlene; Avendaño, Fernando; Imilán, Marcelo; Jarpa, Miguel; Kibenge, Frederick SB

    2008-01-01

    Background Infectious salmon anaemia (ISA) is a viral disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), which belongs to the genus Isavirus, family Orthomyxoviridae. The virus is considered to be carried by marine wild fish and for over 25 years has caused major disease outbreaks in marine-farmed Atlantic salmon in the Northern hemisphere. In the Southern hemisphere, ISAV was first detected in Chile in 1999 in marine-farmed Coho salmon (Oncorhynchus kisutch). In contrast to the classical presentation of ISA in Atlantic salmon, the presence of ISAV in Chile until now has only been associated with a clinical condition called Icterus Syndrome in Coho salmon and virus isolation has not always been possible. During the winter of 2007, unexplained mortalities were registered in market-size Atlantic salmon in a grow-out site located in Chiloé in Region X of Chile. We report here the diagnostic findings of the first significant clinical outbreak of ISA in marine-farmed Atlantic salmon in Chile and the first characterization of the ISAV isolated from the affected fish. Results In mid-June 2007, an Atlantic salmon marine farm site located in central Chiloé Island in Region X of Chile registered a sudden increase in mortality following recovery from an outbreak of Pisciricketsiosis, which rose to a cumulative mortality of 13.6% by harvest time. Based on the clinical signs and lesions in the affected fish, and laboratory tests performed on the fish tissues, a confirmatory diagnosis of ISA was made; the first time ISA in its classical presentation and for the first time affecting farmed Atlantic salmon in Chile. Rapid sequencing of the virus-specific RT-PCR products amplified from the fish tissues identified the virus to belong to the European genotype (Genotype I) of the highly polymorphic region (HPR) group HPR 7b, but with an 11-amino acid insert in the fusion glycoprotein, and ability to cause cytopathic effects (CPE) in CHSE-214 cell line

  3. First detection, isolation and molecular characterization of infectious salmon anaemia virus associated with clinical disease in farmed Atlantic salmon (Salmo salar) in Chile.

    PubMed

    Godoy, Marcos G; Aedo, Alejandra; Kibenge, Molly J T; Groman, David B; Yason, Carmencita V; Grothusen, Horts; Lisperguer, Angelica; Calbucura, Marlene; Avendaño, Fernando; Imilán, Marcelo; Jarpa, Miguel; Kibenge, Frederick S B

    2008-08-04

    Infectious salmon anaemia (ISA) is a viral disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), which belongs to the genus Isavirus, family Orthomyxoviridae. The virus is considered to be carried by marine wild fish and for over 25 years has caused major disease outbreaks in marine-farmed Atlantic salmon in the Northern hemisphere. In the Southern hemisphere, ISAV was first detected in Chile in 1999 in marine-farmed Coho salmon (Oncorhynchus kisutch). In contrast to the classical presentation of ISA in Atlantic salmon, the presence of ISAV in Chile until now has only been associated with a clinical condition called Icterus Syndrome in Coho salmon and virus isolation has not always been possible. During the winter of 2007, unexplained mortalities were registered in market-size Atlantic salmon in a grow-out site located in Chiloé in Region X of Chile. We report here the diagnostic findings of the first significant clinical outbreak of ISA in marine-farmed Atlantic salmon in Chile and the first characterization of the ISAV isolated from the affected fish. In mid-June 2007, an Atlantic salmon marine farm site located in central Chiloé Island in Region X of Chile registered a sudden increase in mortality following recovery from an outbreak of Pisciricketsiosis, which rose to a cumulative mortality of 13.6% by harvest time. Based on the clinical signs and lesions in the affected fish, and laboratory tests performed on the fish tissues, a confirmatory diagnosis of ISA was made; the first time ISA in its classical presentation and for the first time affecting farmed Atlantic salmon in Chile. Rapid sequencing of the virus-specific RT-PCR products amplified from the fish tissues identified the virus to belong to the European genotype (Genotype I) of the highly polymorphic region (HPR) group HPR 7b, but with an 11-amino acid insert in the fusion glycoprotein, and ability to cause cytopathic effects (CPE) in CHSE-214 cell line, characteristics

  4. Farmed Atlantic salmon: potential invader in the Pacific Northwest?

    Treesearch

    Jonathan Thompson; Pete Bisson

    2008-01-01

    Commercial farming of Atlantic salmon in marine net-pens has become a booming industry. At present, approximately 130 salmon farms exist along the Pacific coast of North America. Most of these farms are in cold marine bays within British Columbia, where farmed salmon have become the province’s most valuable agricultural export. Each year, thousands of farmed Atlantic...

  5. Predation of Karluk River sockeye salmon by coho salmon and char

    USGS Publications Warehouse

    McIntyre, J.D.; Reisenbichler, R.R.; Emlen, J.M.; Wilmot, R.L.; Finn, J.E.

    1988-01-01

    The number of sockeye salmon, Oncorhynchus nerka, in Alaska's Karluk River (Fig. 1) declined from millions to thousands during the early part of the present century. Rounsefell (1958) discussed alternative explanations for the decline including a general loss offertility ofthe system as the number of salmon carcasses declined, competition, overfishing, subtle changes in climate, and predation; he concluded that the combined effect of predation and fishing was the most probable explanation. Later, Van Cleave and Bevan (1973) suggested that the weir constructed in the river each year to facilitate counting the fish as they entered the system was the most probable cause ofthe decline. Itprevented free movement of both adults and juveniles in the river. All of these hypotheses remain as potential explanations for the decline

  6. Variation in net trophic transfer efficiencies among 21 PCB congeners

    USGS Publications Warehouse

    Madenjian, C.P.; Schmidt, L.J.; Chernyak, S.M.; Elliott, R.F.; Desorcie, T.J.; Quintal, R.T.; Begnoche, L.J.; Hesselberg, R.J.

    1999-01-01

    We tested the hypothesis that the efficiency with which fish retain polychlorinated biphenyl (PCB) congeners from their food strongly depends on Kow and degree of chlorination of the congener. We used diet information, determinations of concentrations of individual PCB congeners in both coho salmon (Oncorhynchus kisutch) and their prey, and bioenergetics modeling to estimate the efficiencies with which Lake Michigan coho salmon retain various PCB congeners from their food. The retention efficiency for the tetrachloro congeners averaged 38%, whereas retention efficiencies for higher chlorinated congeners ranged from 43 to 56%. Not including tetrachloro congeners, we found neither decreasing nor increasing trends in the efficiencies with which the coho salmon retained the PCB congeners from their food with either increasing Kow or increasing degree of chlorination of the PCB congeners. We concluded that (a) for PCB congeners with 5−8 chlorine atoms/molecule, Kow and degree of chlorination had little influence on the efficiency with which coho salmon retained the various PCB congeners in their food, and (b) the efficiency with which coho salmon retained tetrachloro PCB congeners in their food appeared to be slightly lower than that for higher chlorinated PCB congeners.

  7. 150 YEARS OF SALMON RESTORATION: ASSORTED TRUTHS

    EPA Science Inventory

    Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild Pacific salmon. Of the Earth's four regions (i.e., Asian Far East, Atlantic Europe, eastern North America, and western North America) where salmon runs originally occurred, it...

  8. SALMON RECOVERY: LEARNING FROM SUCCESSES AND MISTAKES

    EPA Science Inventory

    Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild Pacific salmon. Of the Earth's four regions (i.e., Asian Far East, Atlantic Europe, eastern North America, and western North America) where salmon runs occurred originally, it...

  9. SALMON RECOVERY: LEARNING FROM SUCCESSES AND FAILURES

    EPA Science Inventory

    Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild Pacific salmon. Of the Earth's four regions (i.e., Asian Far East, Atlantic Europe, eastern North America, and western North America) where salmon runs occurred originally, it...

  10. Endocrine disruption of parr-smolt transformation and seawater tolerance of Atlantic salmon by 4-nonylphenol and 17β-estradiol

    USGS Publications Warehouse

    McCormick, Stephen D.; O'Dea, Michael F.; Moeckel, Amy M.; Lerner, Darrren T.; Bjornsson, Bjorn Thrandur

    2005-01-01

    Sex steroids are known to interfere with the parr-smolt transformation of anadromous salmonids, and environmental estrogens such as nonylphenol have recently been implicated in reduced returns of Atlantic salmon in the wild. To determine the endocrine pathways by which estrogenic compounds affect smolt development and seawater tolerance, groups of juvenile Atlantic salmon were injected with one of five doses (0.5, 2, 10, 40 or 150 μg g−1) of branched 4-nonylphenol (NP), 2 μg g−1 of 17β-estradiol (E2), or vehicle, during the parr-smolt transformation in April, and the treatment was repeated 4, 8, and 11 days after the first injection. Plasma was obtained for biochemical analysis 7 and 14 days after initiation of treatment. After 14 days of treatment, additional fish from each treatment group were exposed to seawater for 24 h to assess salinity tolerance. The E2 treatment and the highest NP dose resulted in lower salinity tolerance and decreased plasma insulin-like growth factor I (IGF-I) levels, along with elevated levels of plasma vitellogenin and total calcium. Plasma growth hormone levels were elevated at intermediate NP doses only, and not affected by E2. After 7 days, plasma thyroxine (T4) levels decreased in a strong, dose-dependent manner in response to nonylphenol, but after 14 days, this suppressive effect of T4 occurred at the highest NP dose only. Similarly, E2 decreased plasma T4 levels at 7, but not 14 days. Plasma 3,3′,5-triodo-l-thyronine was reduced by E2 and the highest NP dose after 7 and 14 days of treatment. Plasmacortisol levels were not affected by any of the treatments. The results indicate that the parr-smolt transformation and salinity tolerance can be compromised by exposure to estrogenic compounds. Suppression of plasma IGF-I levels is a likely endocrine pathway for the effects of estrogenic compounds on hypo-osmoregulatory capacity, and the detrimental effects of E2 and NP on thyroid hormone levels are

  11. Salmon redd identification using environmental DNA (eDNA)

    USGS Publications Warehouse

    Pilliod, David S.; Laramie, Matthew B.

    2016-06-10

    IntroductionThe purpose of this project was to develop a technique to use environmental DNA (eDNA) to distinguish between redds made by Chinook salmon (Oncorhynchus tshawytscha) and redds made by Coho salmon (O. kisutch) and to distinguish utilized redds from test/abandoned redds or scours that have the appearance of redds. The project had two phases:Phase 1. Develop, test, and optimize a molecular assay for detecting and identifying Coho salmon DNA and differentiating it from Chinook salmon DNA.Phase 2. Demonstrate the efficacy of the technique.Collect and preserve water samples from the interstitial spaces of 10 known redds (as identified by expert observers) of each species and 10 gravel patches that do not include a redd of either species.Collect control samples from the water column adjacent to each redd to establish background eDNA levels.Analyze the samples using the developed molecular assays for Coho salmon (phase I) and Chinook salmon (Laramie and others, 2015).Evaluate whether samples collected from Chinook and Coho redds have significantly higher levels of eDNA of the respective species than background levels (that is, from gravel, water column).Evaluate whether samples collected from the interstitial spaces of gravel patches that are not redds are similar to background eDNA levels.The Sandy River is a large tributary of the Columbia River. The Sandy River meets the Columbia River approximately 23 km upstream of Portland, Oregon. The Sandy River Basin provides overlapping spawning habitat for both Chinook and Coho salmon.Samples provided by Portland Water Bureau for analysis were collected from the Bull Run River, Sixes Creek, Still Creek, Arrah Wanna Side Channel, and Side Channel 18.

  12. 78 FR 65555 - Establishment of Class E Airspace; Salmon, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ...-0531; Airspace Docket No. 13-ANM-20] Establishment of Class E Airspace; Salmon, ID AGENCY: Federal... at the Salmon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Salmon, ID, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Salt Lake...

  13. 77 FR 60631 - Fraser River Sockeye Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ...-XC222 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  14. 75 FR 78929 - Fraser River Sockeye Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...-XZ20 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders; request for comments. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate salmon fisheries in U.S. waters. The orders were issued by the Fraser River Panel (Panel) of the...

  15. Neurotoxic behavioral effects of Lake Ontario salmon diets in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzler, D.R.

    1990-03-01

    Six experiments were conducted to examine possible neurotoxic effects of the exposure to contaminants in Lake Ontario salmon administered through the diets of rats. Rats were fed different concentrations of fish (8%, 15% or 30%) in one of three diet conditions: Lake Ontario salmon, Pacific Ocean salmon, or laboratory rat chow only. Following 20 days on the diets, rats were tested for five minutes per day in a modified open field for one or three days. Lake Ontario salmon diets consistently produced significantly lower activity, rearing, and nosepoke behaviors in comparison with ocean salmon or rat chow diet conditions. Amore » dose-response effect for concentration of lake salmon was obtained, and the attenuation effect occurred in males, females, adult or young animals, and postweaning females, with fish sampled over a five-year period. While only two of several potential contaminants were tested, both fish and brain analyses of mirex and PCBs relate to the behavioral effects.« less

  16. Why aren't there more Atlantic salmon (Salmo salar)?

    USGS Publications Warehouse

    Parrish, D.L.; Behnke, R.J.; Gephard, S.R.; McCormick, S.D.; Reeves, G.H.

    1998-01-01

    Numbers of wild anadromous Atlantic salmon (Salmo salar) have declined demonstrably throughout their native range. The current status of runs on rivers historically supporting salmon indicate widespread declines and extirpations in Europe and North America primarily in southern portions of the range. Many of these declines or extirpations can be attributed to the construction of mainstem dams, pollution (including acid rain), and total dewatering of streams. Purported effects on declines during the 1960s through the 1990s include overfishing, and more recently, changing ocean conditions, and intensive aquaculture. Most factors affecting salmon numbers do not act singly, but rather in concert, which masks the relative contribution of each factor. Salmon researchers and managers should not look for a single culprit in declining numbers of salmon, but rather, seek solutions through rigorous data gathering and testing of multiple effects integrated across space and time.

  17. Salmon's Laws.

    ERIC Educational Resources Information Center

    Shannon, Thomas A.

    1994-01-01

    Presents Paul Salmon's old-fashioned, common-sense guidelines for success in practical school administration. The maxims advise on problem ownership; the value of selective neglect; the importance of empowerment, enthusiasm, and effective communication; and the need for positive reinforcement, cultivation of support, and good relations with media,…

  18. Development of the salmon louse Lepeophtheirus salmonis and its effects on juvenile sockeye salmon Oncorhynchus nerka.

    PubMed

    Jakob, E; Sweeten, T; Bennett, W; Jones, S R M

    2013-11-06

    Responses of sockeye salmon Oncorhynchus nerka during infection with Lepeophtheirus salmonis were assessed in controlled laboratory trials. Juvenile salmon were exposed to 100 copepodids fish-1 (Trials 1 and 2) or 300 copepodids fish-1 (Trial 3) at mean weights of approximately 40, 80 and 135 g, respectively. Infections occurred on all salmon in all trials, and mean abundances (infection densities) ranged between 3.3 and 19.4 lice fish-1 (0.08 and 0.44 lice g-1 fish) in Trial 1, between 7.2 and 18.3 (0.09 and 0.22) in Trial 2 and between 19.5 and 60.7 (0.15 and 0.46) in Trial 3. A cumulative mortality of 24.4% occurred in Trial 3. At attachment sites on gills, we observed hyperplasia of basal epithelial cells and fusion of secondary lamellae occasionally associated with a cellular infiltrate. At attachment sites on fins, partial to complete skin erosion occurred, with limited evidence of hyperplasia or inflammation. Scale loss and abrasions coincided with pre-adult lice around 20 d post infection (dpi). Plasma osmolality was significantly elevated in exposed fish in Trials 1 (21 dpi), 2 (15 and 36 dpi) and 3 (20 dpi), whereas haematocrit was significantly depressed in exposed fish in Trials 1 (21 and 28 dpi) and 3 (20 dpi). Plasma cortisol was significantly elevated in exposed fish at 20 dpi (Trial 3). Physiological changes and mortality were related to the intensity of infection and became most prominent with pre-adult stages, suggesting patterns of infection and response in sockeye salmon similar to those reported for Atlantic and Chinook salmon.

  19. Using Grizzly Bears to Assess Harvest-Ecosystem Tradeoffs in Salmon Fisheries

    PubMed Central

    MacDuffee, Misty; Mangel, Marc; Paquet, Paul; Wilmers, Christopher C.

    2012-01-01

    Implementation of ecosystem-based fisheries management (EBFM) requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for “salmon ecosystem” function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC), Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem) equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a generalizable

  20. Using grizzly bears to assess harvest-ecosystem tradeoffs in salmon fisheries.

    PubMed

    Levi, Taal; Darimont, Chris T; Macduffee, Misty; Mangel, Marc; Paquet, Paul; Wilmers, Christopher C

    2012-01-01

    Implementation of ecosystem-based fisheries management (EBFM) requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for "salmon ecosystem" function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC), Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem) equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a generalizable method

  1. Are inland wolf-ungulate systems influenced by marine subsidies of Pacific salmon?

    USGS Publications Warehouse

    Adams, Layne G.; Farley, Sean D.; Stricker, Craig A.; Demma, Dominic J.; Roffler, Gretchen H.; Miller, Dennis C.; Rye, Robert O.

    2010-01-01

    Wolves (Canis lupus) in North America are considered obligate predators of ungulates with other food resources playing little role in wolf population dynamics or wolf–prey relations. However, spawning Pacific salmon (Oncorhyncus spp.) are common throughout wolf range in northwestern North America and may provide a marine subsidy affecting inland wolf–ungulate food webs far from the coast. We conducted stable‐isotope analyses for nitrogen and carbon to evaluate the contribution of salmon to diets of wolves in Denali National Park and Preserve, 1200 river‐km from tidewater in interior Alaska, USA. We analyzed bone collagen from 73 wolves equipped with radio collars during 1986–2002 and evaluated estimates of salmon in their diets relative to the availability of salmon and ungulates within their home ranges. We compared wolf densities and ungulate : wolf ratios among regions with differing salmon and ungulate availability to assess subsidizing effects of salmon on these wolf–ungulate systems. Wolves in the northwestern flats of the study area had access to spawning salmon but low ungulate availability and consumed more salmon (17% ± 7% [mean ± SD]) than in upland regions, where ungulates were sixfold more abundant and wolves did or did not have salmon spawning areas within their home ranges (8% ± 6% and 3% ± 3%, respectively). Wolves were only 17% less abundant on the northwestern flats compared to the remainder of the study area, even though ungulate densities were 78% lower. We estimated that biomass from fall runs of chum (O. keta) and coho (O. kisutch) salmon on the northwestern flats was comparable to the ungulate biomass there, and the contribution of salmon to wolf diets was similar to estimates reported for coastal wolves in southeast Alaska. Given the ubiquitous consumption of salmon by wolves on the northwestern flats and the abundance of salmon there, we conclude that wolf numbers in this region were enhanced by the allochthonous subsidy

  2. Searching for a life history approach to salmon escapement management

    USGS Publications Warehouse

    Knudsen, E.E.; Symmes, E.W.; Margraf, F.J.

    2003-01-01

    A number of Pacific salmon populations have already been lost and many others throughout the range are in various states of decline. Recent research has documented that Pacific salmon carcasses serve as a key delivery vector of marine-derived nutrients into the freshwater portions of their ecosystems. This nutrient supply plays a critical biological feedback role in salmon sustainability by supporting juvenile salmon production. We first demonstrate how nutrient feedback potential to juvenile production may be unaccounted for in spawner-recruit models of populations under long-term exploitation. We then present a heuristic, life history-based, spreadsheet survival model that incorporates salmon carcass-driven nutrient feedback to the freshwater components of the salmon ecosystem. The productivity of a hypothetical coho salmon population was simulated using rates from the literature for survival from spawner to egg, egg to fry, fry to smolt, and smolt to adult. The effects of climate variation and nutrient feedback on survival were incorporated, as were density-dependent effects of the numbers of spawners and fry on freshwater survival of eggs and juveniles. The unexploited equilibrium population was subjected to 100 years of 20, 40, 60, and 80% harvest. Each harvest scenario greater than 20% brought the population to a reduced steady state, regardless of generous compensatory survival at low population sizes. Increasing harvest reduced the positive effects of nutrient contributions to population growth. Salmon researchers should further explore this modeling approach for establishing escapement goals. Given the importance of nutrient feedback, managers should strive for generous escapements that support nutrient rebuilding, as well as egg deposition, to ensure strong future salmon production.

  3. Can reduced predation offset negative effects of sea louse parasites on chum salmon?

    PubMed Central

    Peacock, Stephanie J.; Connors, Brendan M.; Krkošek, Martin; Irvine, James R.; Lewis, Mark A.

    2014-01-01

    The impact of parasites on hosts is invariably negative when considered in isolation, but may be complex and unexpected in nature. For example, if parasites make hosts less desirable to predators then gains from reduced predation may offset direct costs of being parasitized. We explore these ideas in the context of sea louse infestations on salmon. In Pacific Canada, sea lice can spread from farmed salmon to migrating juvenile wild salmon. Low numbers of sea lice can cause mortality of juvenile pink and chum salmon. For pink salmon, this has resulted in reduced productivity of river populations exposed to salmon farming. However, for chum salmon, we did not find an effect of sea louse infestations on productivity, despite high statistical power. Motivated by this unexpected result, we used a mathematical model to show how a parasite-induced shift in predation pressure from chum salmon to pink salmon could offset negative direct impacts of sea lice on chum salmon. This shift in predation is proposed to occur because predators show an innate preference for pink salmon prey. This preference may be more easily expressed when sea lice compromise juvenile salmon hosts, making them easier to catch. Our results indicate how the ecological context of host–parasite interactions may dampen, or even reverse, the expected impact of parasites on host populations. PMID:24352951

  4. Can reduced predation offset negative effects of sea louse parasites on chum salmon?

    PubMed

    Peacock, Stephanie J; Connors, Brendan M; Krkosek, Martin; Irvine, James R; Lewis, Mark A

    2014-02-07

    The impact of parasites on hosts is invariably negative when considered in isolation, but may be complex and unexpected in nature. For example, if parasites make hosts less desirable to predators then gains from reduced predation may offset direct costs of being parasitized. We explore these ideas in the context of sea louse infestations on salmon. In Pacific Canada, sea lice can spread from farmed salmon to migrating juvenile wild salmon. Low numbers of sea lice can cause mortality of juvenile pink and chum salmon. For pink salmon, this has resulted in reduced productivity of river populations exposed to salmon farming. However, for chum salmon, we did not find an effect of sea louse infestations on productivity, despite high statistical power. Motivated by this unexpected result, we used a mathematical model to show how a parasite-induced shift in predation pressure from chum salmon to pink salmon could offset negative direct impacts of sea lice on chum salmon. This shift in predation is proposed to occur because predators show an innate preference for pink salmon prey. This preference may be more easily expressed when sea lice compromise juvenile salmon hosts, making them easier to catch. Our results indicate how the ecological context of host-parasite interactions may dampen, or even reverse, the expected impact of parasites on host populations.

  5. Trophic interaction modifications: an empirical and theoretical framework.

    PubMed

    Terry, J Christopher D; Morris, Rebecca J; Bonsall, Michael B

    2017-10-01

    Consumer-resource interactions are often influenced by other species in the community. At present these 'trophic interaction modifications' are rarely included in ecological models despite demonstrations that they can drive system dynamics. Here, we advocate and extend an approach that has the potential to unite and represent this key group of non-trophic interactions by emphasising the change to trophic interactions induced by modifying species. We highlight the opportunities this approach brings in comparison to frameworks that coerce trophic interaction modifications into pairwise relationships. To establish common frames of reference and explore the value of the approach, we set out a range of metrics for the 'strength' of an interaction modification which incorporate increasing levels of contextual information about the system. Through demonstrations in three-species model systems, we establish that these metrics capture complimentary aspects of interaction modifications. We show how the approach can be used in a range of empirical contexts; we identify as specific gaps in current understanding experiments with multiple levels of modifier species and the distributions of modifications in networks. The trophic interaction modification approach we propose can motivate and unite empirical and theoretical studies of system dynamics, providing a route to confront ecological complexity. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  6. Yolo Bypass Juvenile Salmon Utilization Study 2016—Summary of acoustically tagged juvenile salmon and study fish release, Sacramento River, California

    USGS Publications Warehouse

    Liedtke, Theresa L.; Hurst, William R.

    2017-09-12

    The Yolo Bypass is a flood control bypass in Sacramento Valley, California. Flood plain habitats may be used for juvenile salmon rearing, however, the potential value of such habitats can be difficult to evaluate because of the intermittent nature of inundation events. The Yolo Bypass Juvenile Salmon Utilization Study (YBUS) used acoustic telemetry to evaluate the movements and survival of juvenile salmon adjacent to and within the Yolo Bypass during the winter of 2016. This report presents numbers, size data, and release data (times, dates, and locations) for the 1,197 acoustically tagged juvenile salmon released for the YBUS from February 21 to March 18, 2016. Detailed descriptions of the surgical implantation of transmitters are also presented. These data are presented to support the collaborative, interagency analysis and reporting of the study findings.

  7. Integrating microbes into food-chains: Insect trophic identity reflects rampant microbivory

    USDA-ARS?s Scientific Manuscript database

    Detritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (= ‘brown’) food-webs has remained relatively impenetrable. Measurement of detritivore trophic position is complicated by the fact t...

  8. The Lummi Indians and the Canadian/American Pacific Salmon Treaty.

    ERIC Educational Resources Information Center

    Boxberger, Daniel L.

    1988-01-01

    Explores the probable impact of the 1985 international Pacific Salmon Treaty on the Lummi tribe's catch of Fraser River salmon and economic well-being. Discusses the 1974 Boldt Decision, which allocated half of Washington State's salmon catch to treaty tribes, and contradictions in the federal government's conception of international treaties. (SV)

  9. 77 FR 10772 - Fresh and Chilled Atlantic Salmon From Norway

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... and Chilled Atlantic Salmon From Norway Determination On the basis of the record \\1\\ developed in the... countervailing duty order and antidumping duty order on fresh and chilled Atlantic salmon from Norway would not... and Chilled Atlantic Salmon from Norway: Investigation Nos. 701-TA-302 and 731-TA-454 (Third Review...

  10. Aluminum exposure impacts brain plasticity and behavior in Atlantic salmon (Salmo salar).

    PubMed

    Grassie, C; Braithwaite, V A; Nilsson, J; Nilsen, T O; Teien, H-C; Handeland, S O; Stefansson, S O; Tronci, V; Gorissen, M; Flik, G; Ebbesson, L O E

    2013-08-15

    Aluminum (Al) toxicity occurs frequently in natural aquatic ecosystems as a result of acid deposition and natural weathering processes. Detrimental effects of Al toxicity on aquatic organisms are well known and can have consequences for survival. Fish exposed to Al in low pH waters will experience physiological and neuroendocrine changes that disrupt homeostasis and alter behavior. To investigate the effects of Al exposure on both the brain and behavior, Atlantic salmon (Salmo salar) kept in water treated with Al (pH 5.7, 0.37±0.04 μmol 1(-1) Al) for 2 weeks were compared with fish kept in under control conditions (pH 6.7, <0.04 μmol 1(-1) Al). Fish exposed to Al and acidic conditions had increased Al accumulation in the gills and decreased gill Na(+), K(+)-ATPase activity, which impaired osmoregulatory capacity and caused physiological stress, indicated by elevated plasma cortisol and glucose levels. Here we show for the first time that exposure to Al in acidic conditions also impaired learning performance in a maze task. Al toxicity also reduced the expression of NeuroD1 transcript levels in the forebrain of exposed fish. As in mammals, these data show that exposure to chronic stress, such as acidified Al, can reduce neural plasticity during behavioral challenges in salmon, and may impair the ability to cope with new environments.

  11. Performance of salmon fishery portfolios across western North America.

    PubMed

    Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C

    2014-12-01

    Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications . Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally

  12. Performance of salmon fishery portfolios across western North America

    PubMed Central

    Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C

    2014-01-01

    Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally

  13. Arctic-Yukon-Kuskokwim Salmon Research and Restoration Plan

    USGS Publications Warehouse

    2006-01-01

    The Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative (AYK SSI) is an innovative partnership between public and private institutions which provides a forum for non-governmental organizations and state and federal agencies to cooperatively identify and address salmon research and restoration needs. The affected region encompasses over 40% of the State of Alaska; the AYK region includes the watersheds of the Norton Sound region up to and including the village of Shishmaref, the Yukon River Watershed within Alaska, and the Kuskokwim River Watershed (including the coastal watersheds north of Cape Newenham), plus the Bering Sea marine ecosystem. The AYK SSI is a response to disastrously low salmon returns to western Alaska in the late 1990s and early 2000s, which created numerous hardships for the people and communities that depend heavily on the salmon fishery. Some stocks in the region have been in a decline for more than a decade and a half, leading to severe restrictions on commercial and subsistence fisheries. The first step for the AYK SSI has been to collaboratively develop and implement a comprehensive research plan to understand the causes of the declines and recoveries of AYK salmon.

  14. On-site Direct Detection of Astaxanthin from Salmon Fillet Using Raman Spectroscopy.

    PubMed

    Hikima, Jun-Ichi; Ando, Masahiro; Hamaguchi, Hiro-O; Sakai, Masahiro; Maita, Masashi; Yazawa, Kazunaga; Takeyama, Haruko; Aoki, Takashi

    2017-04-01

    A new technology employing Raman spectroscopy is attracting attention as a powerful biochemical technique for the detection of beneficial and functional food nutrients, such as carotenoids and unsaturated fatty acids. This technique allows for the dynamic characterization of food nutrient substances for the rapid determination of food quality. In this study, we attempt to detect and measure astaxanthin from salmon fillets using this technology. The Raman spectra showed specific bands corresponding to the astaxanthin present in salmon and the value of astaxanthin (Raman band, 1518 cm -1 ) relative to those of protein/lipid (Raman band, 1446 cm -1 ) in the spectra increased in a dose-dependent manner. A standard curve was constructed by the standard addition method using astaxanthin as the reference standard for its quantification by Raman spectroscopy. The calculation formula was established using the Raman bands typically observed for astaxanthin (i.e., 1518 cm -1 ). In addition, we examined salmon fillets of different species (Atlantic salmon, coho salmon, and sockeye salmon) and five fillets obtained from the locations (from the head to tail) of an entire Atlantic salmon. Moreover, the sockeye salmon fillet exhibited the highest astaxanthin concentration (14.2 mg/kg), while coho salmon exhibited an intermediate concentration of 7.0 mg/kg. The Raman-based astaxanthin concentration in the five locations of Atlantic salmon was more strongly detected from the fillet closer to the tail. From the results, a rapid, convenient Raman spectroscopic method was developed for the detection of astaxanthin in salmon fillets.

  15. 21 CFR 161.170 - Canned Pacific salmon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., the common or usual name or names of each species of fish enumerated in paragraph (a)(2)(i) of this... accordance with good manufacturing practice; and then washing. Canned Pacific salmon is prepared in one of... good manufacturing practices. (iii) “Minced salmon” consists of salmon which has been minced or ground...

  16. Etiology of sockeye salmon 'virus' disease

    USGS Publications Warehouse

    Guenther, Raymond W.; Watson, S.W.; Rucker, R.R.; Ross, A.J.

    1959-01-01

    Violent epizootics among hatchery reared sockeye salmon fingerlings (Oncorhynchus nerka) caused by a filterable agent have occurred. In 1954, one source of this infectious, filterable agent was found to be adult sockeye viscera used in the diet for the fingerlings. The results of observations on an epizootic in 1958 indicate that the infection may be transmitted to fingerlings from a water supply to which adult sockeye salmon have access.

  17. Salmon Supplementation Studies in Idaho Rivers, 1996-1998 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reighn, Christopher A.; Lewis, Bert; Taki, Doug

    1999-06-01

    Information contained in this report summarizes the work that has been done by the Shoshone-Bannock Tribes Fisheries Department under BPA Project No. 89-098-3, Contract Number 92-BI-49450. Relevant data generated by the Shoshone-Bannock Tribe will be collated with other ISS cooperator data collected from the Salmon and Clearwater rivers and tributary streams. A summary of data presented in this report and an initial project-wide level supplementation evaluation will be available in the ISS 5 year report that is currently in progress. The Shoshone-Bannock Tribal Fisheries Department is responsible for monitoring a variety of chinook salmon (Oncorhynchus tshawytscha) production parameters as partmore » of the Idaho Supplementation Studies (BPA Project No. 89-098-3, Contract Number 92-BI-49450). Parameters include parr abundance in tributaries to the upper Salmon River; adult chinook salmon spawner abundance, redd counts, and carcass collection. A rotary screw trap is operated on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag chinook smolts. These traps are also used to monitor parr movement, and collect individuals for the State and Tribal chinook salmon captive rearing program. The SBT monitors fisheries parameters in the following six tributaries of the Salmon River: Bear Valley Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork. Chinook populations in all SBT-ISS monitored streams continue to decline. The South Fork Salmon River and Bear Valley Creek have the strongest remaining populations. Snorkel survey methodology was used to obtain parr population estimates for ISS streams from 1992 to 1997. Confidence intervals for the parr population estimates were large, especially when the populations were low. In 1998, based on ISS cooperator agreement, snorkeling to obtain parr population estimates was ceased due to the large confidence intervals. A rotary screw trap

  18. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent.

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2015-02-01

    Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary

  19. Critical assessment and ramifications of a purported marine trophic cascade

    NASA Astrophysics Data System (ADS)

    Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.

    2016-02-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  20. Critical assessment and ramifications of a purported marine trophic cascade

    USGS Publications Warehouse

    Grubbs, R. Dean; Carlson, John K; Romine, Jason G.; Curtis, Tobey H; McElroy, W. David; McCandless, Camilla T; Cotton, Charles F; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  1. Echo characteristics of two salmon species

    NASA Astrophysics Data System (ADS)

    Nealson, Patrick A.; Horne, John K.; Burwen, Debby L.

    2005-04-01

    The Alaska Department of Fish and Game relies on split-beam hydroacoustic techniques to estimate Chinook salmon (Oncorhynchus tshawytscha) returns to the Kenai River. Chinook counts are periodically confounded by large numbers of smaller sockeye salmon (O. nerka). Echo target-strength has been used to distinguish fish length classes, but was too variable to separate Kenai River chinook and sockeye distributions. To evaluate the efficacy of alternate echo metrics, controlled acoustic measurements of tethered chinook and sockeye salmon were collected at 200 kHz. Echo returns were digitally sampled at 48 kHz. A suite of descriptive metrics were collected from a series of 1,000 echoes per fish. Measurements of echo width were least variable at the -3 dB power point. Initial results show echo elongation and ping-to-ping variability in echo envelope width were significantly greater for chinook than for sockeye salmon. Chinook were also observed to return multiple discrete peaks from a single broadcast echo. These characteristics were attributed to the physical width of chinook exceeding half of the broadcast echo pulse width at certain orientations. Echo phase variability, correlation coefficient and fractal dimension distributions did not demonstrate significant discriminatory power between the two species. [Work supported by ADF&G, ONR.

  2. Characteristics of formed Atlantic salmon jerky.

    PubMed

    Oberholtzer, Ashlan S; Dougherty, Michael P; Camire, Mary Ellen

    2011-08-01

    Smoked salmon (Salmo salar L.) processing may generate large amounts of small pieces of trimmed flesh that has little economic value. Opportunities exist to develop new added-value foods from this by-product. Brining was compared with dry salting for the production of formed salmon jerky-style strips that were then smoked. The formulations also contained brown sugar and potato starch. Salted samples had higher salt concentrations and required less force to break using a TA-XT2 Texture Analyzer. Brined samples contained more fat and were darker, redder and more yellow than the salted samples. Processing concentrated omega-3 fatty acids compared with raw salmon, and the brined jerky had the highest omega-3 fatty acid content. A panel of 57 consumers liked the appearance and aroma of both samples equally (approximately 6.7 for appearance and 6.3 for aroma on the 9-point hedonic scale. Higher acceptability scores for taste, texture, and overall quality were given to the brined product (6.7 to 6.9 against 6.2 to 6.3). Salmon trim from smoking facilities can be utilized to produce a jerky that is a good source of omega-3 fatty acids, simultaneously adding value and reducing the waste stream. © 2011 Institute of Food Technologists®

  3. Characterization of a Value-Added Salmon Product: Infant/Toddler Food

    ERIC Educational Resources Information Center

    De Santos, Felicia Ann

    2009-01-01

    Salmon are rich sources of omega-3 fatty acids. These are important in the human diet and especially for young children in the first two years of life. Wild Alaskan salmon was utilized in a novel way by development and investigation of basic baby food product formulations from sockeye and pink salmon. Thus, physical and sensory properties of baby…

  4. Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes.

    PubMed

    Pechal, Jennifer L; Benbow, M Eric

    2016-05-01

    Carrion decomposition is driven by complex relationships that affect necrobiome community (i.e. all organisms and their genes associated with a dead animal) interactions, such as insect species arrival time to carrion and microbial succession. Little is understood about how microbial communities interact with invertebrates at the aquatic-terrestrial habitat interface. The first objective of the study was to characterize internal microbial communities using high-throughput sequencing of 16S rRNA gene amplicons for aquatic insects (three mayfly species) in streams with salmon carcasses compared with those in streams without salmon carcasses. The second objective was to assess the epinecrotic microbial communities of decomposing salmon carcasses (Oncorhynchus keta) compared with those of terrestrial necrophagous insects (Calliphora terraenovae larvae and adults) associated with the carcasses. There was a significant difference in the internal microbiomes of mayflies collected in salmon carcass-bearing streams and in non-carcass streams, while the developmental stage of blow flies was the governing factor in structuring necrophagous insect internal microbiota. Furthermore, the necrophagous internal microbiome was influenced by the resource on which the larvae developed, and changes in the adult microbiome varied temporally. Overall, these carrion subsidy-driven networks respond to resource pulses with bottom-up effects on consumer microbial structure, as revealed by shifting communities over space and time. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    PubMed

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP < ER) in response to bioturbation of benthic habitats by salmon. Following the seasonal arrival of salmon, GPP declined to <12% of pre-salmon rates, while ER increased by over threefold. Metabolism by live salmon could not account for the observed increase in ER early in the salmon run, suggesting salmon nutrients and disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest

  6. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    Estimates of juvenile salmon survival are important data for fishery managers in the Yakima River Basin. Radiotelemetry studies during 2012–14 showed that tagged juvenile Chinook salmon (Oncorhynchus tshawytscha) that passed through the fish bypass at Roza Dam had lower survival than fish that passed through other routes at the dam. That study also identified flow-survival relationships in the reaches between the Roza Dam tailrace and Sunnyside Dam. During 2012–14, survival also was estimated through reaches downstream of Sunnyside Dam, but generally, sample sizes were low and the estimates were imprecise. In 2016, we conducted an evaluation using acoustic cameras and acoustic telemetry to build on information collected during the previous study. The goal of the 2016 research was to identify areas where mortality occurs in the fish bypass at Roza Dam, and to estimate reach-specific survival in reaches downstream of the dam. The 2016 study included juvenile Chinook salmon and coho salmon (O. kisutch).Three acoustic cameras were used to observe fish behavior (1) near the entrances to the fish bypass, (2) at a midway point in the fish bypass (convergence vault), and (3) at the bypass outfall. In total, 504 hours of acoustic camera footage was collected at these locations. We determined that smolt-sized fish (95–170 millimeters [mm]) were present in the highest proportions at each location, but predator-sized fish (greater than 250 mm) also were present at each site. Fish presence generally peaked during nighttime hours and crepuscular periods, and was low during daytime hours. In the convergence vault, smolt-sized fish exhibited holding behavior patterns, which may explain why some fish delayed while passing through the bypass.Some of the acoustic-tagged fish were delayed in the fish bypass following release, but there was no evidence to suggest that they experienced higher mortality than fish that were released at the bypass outfall or downstream of the dam

  7. IBSEM: An Individual-Based Atlantic Salmon Population Model

    PubMed Central

    Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A.

    2015-01-01

    Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a ‘wild’ genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors. PMID:26383256

  8. IBSEM: An Individual-Based Atlantic Salmon Population Model.

    PubMed

    Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A

    2015-01-01

    Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a 'wild' genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors.

  9. Passage survival of juvenile steelhead, coho salmon, and Chinook salmon in Lake Scanewa and at Cowlitz Falls Dam, Cowlitz River, Washington, 2010–16

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Hurst, William

    2018-04-03

    A multi-year evaluation was conducted during 2010–16 to evaluate passage survival of juvenile steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) in Lake Scanewa, and at Cowlitz Falls Dam in the upper Cowlitz River Basin, Washington. Reservoir passage survival was evaluated in 2010, 2011, and 2016, and included the tagging and release of 1,127 juvenile salmonids. Tagged fish were released directly into the Cowlitz and Cispus Rivers, 22.3 and 8.9 km, respectively, upstream of the reservoir, and were monitored as they moved downstream into, and through the reservoir. A single release-recapture survival model was used to analyze detection records and estimate reservoir passage survival, which was defined as successful passage from reservoir entry to arrival at Cowlitz Falls Dam. Tagged fish generally moved quickly downstream of the release sites and, on average, arrived in the dam forebay within 2 d of release. Median travel time from release to first detection at the dam ranged from 0.23 to 0.96 d for juvenile steelhead, from 0.15 to 1.11 d for juvenile coho salmon, and from 0.18 to 1.89 d for juvenile Chinook salmon. Minimum reservoir passage survival probabilities were 0.960 for steelhead, 0.855 for coho salmon and 0.900 for Chinook salmon.Dam passage survival was evaluated at the pilot-study level during 2013–16 and included the tagging and release of 2,512 juvenile salmonids. Juvenile Chinook salmon were evaluated during 2013–14, and juvenile steelhead and coho salmon were evaluated during 2015–16. A paired-release study design was used that included release sites located upstream and downstream of Cowlitz Falls Dam. The downstream release site was positioned at the downstream margin of the dam’s tailrace, which allowed dam passage survival to be measured in a manner that included mortality that occurred in the passage route and in the dam tailrace. More than one-half of the tagged Chinook salmon (52 percent

  10. Consumer-mediated recycling and cascading trophic interactions.

    PubMed

    Leroux, Shawn J; Loreau, Michel

    2010-07-01

    Cascading trophic interactions mediated by consumers are complex phenomena, which encompass many direct and indirect effects. Nonetheless, most experiments and theory on the topic focus uniquely on the indirect, positive effects of predators on producers via regulation of herbivores. Empirical research in aquatic ecosystems, however, demonstrate that the indirect, positive effects of consumer-mediated recycling on primary producer stocks may be larger than the effects of herbivore regulation, particularly when predators have access to alternative prey. We derive an ecosystem model with both recipient- and donor-controlled trophic relationships to test the conditions of four hypotheses generated from recent empirical work on the role of consumer-mediated recycling in cascading trophic interactions. Our model predicts that predator regulation of herbivores will have larger, positive effects on producers than consumer-mediated recycling in most cases but that consumer-mediated recycling does generally have a positive effect on producer stocks. We demonstrate that herbivore recycling will have larger effects on producer biomass than predator recycling when turnover rates and recycling efficiencies are high and predators prefer local prey. In addition, predictions suggest that consumer-mediated recycling has the largest effects on primary producers when predators prefer allochthonous prey and predator attack rates are high. Finally, our model predicts that consumer-mediated recycling effects may not be largest when external nutrient loading is low. Our model predictions highlight predator and prey feeding relationships, turnover rates, and external nutrient loading rates as key determinants of the strength of cascading trophic interactions. We show that existing hypotheses from specific empirical systems do not occur under all conditions, which further exacerbates the need to consider a broad suite of mechanisms when investigating trophic cascades.

  11. SALMON AND THE ENDANGERED SPECIES ACT: TROUBLESOME QUESTIONS

    EPA Science Inventory

    Throughout the Pacific Northwest and California, all wild salmon runs have declined since 1850 and some have disappeared. A sustainable future for wild salmon remains elusive. In response to requirements of the U.S. Endangered Species Act, the Canadian Species at Risk Act, and ...

  12. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  13. 78 FR 45478 - Proposed Establishment of Class E Airspace; Salmon, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...-0531; Airspace Docket No. 13-ANM-20] Proposed Establishment of Class E Airspace; Salmon, ID AGENCY... action proposes to establish Class E airspace at the Salmon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Salmon, ID, to facilitate vectoring of Instrument Flight Rules...

  14. Contamination of salmon fillets and processing plants with spoilage bacteria.

    PubMed

    Møretrø, Trond; Moen, Birgitte; Heir, Even; Hansen, Anlaug Å; Langsrud, Solveig

    2016-11-21

    The processing environment of salmon processing plants represents a potential major source of bacteria causing spoilage of fresh salmon. In this study, we have identified major contamination routes of important spoilage associated species within the genera Pseudomonas, Shewanella and Photobacterium in pre-rigor processing of salmon. Bacterial counts and culture-independent 16S rRNA gene analysis on salmon fillet from seven processing plants showed higher levels of Pseudomonas spp. and Shewanella spp. in industrially processed fillets compared to salmon processed under strict hygienic conditions. Higher levels of Pseudomonas spp. and Shewanella spp. were found on fillets produced early on the production day compared to later processed fillets. The levels of Photobacterium spp. were not dependent on the processing method or time of processing. In follow-up studies of two plants, bacterial isolates (n=2101) from the in-plant processing environments (sanitized equipment/machines and seawater) and from salmon collected at different sites in the production were identified by partial 16S rRNA gene sequencing. Pseudomonas spp. dominated in equipment/machines after sanitation with 72 and 91% of samples from the two plants being Pseudomonas-positive. The phylogenetic analyses, based on partial 16S rRNA gene sequencing, showed 48 unique sequence profiles of Pseudomonas of which two were dominant. Only six profiles were found on both machines and in fillets in both plants. Shewanella spp. were found on machines after sanitation in the slaughter department while Photobacterium spp. were not detected after sanitation in any parts of the plants. Shewanella spp. and Photobacterium spp. were found on salmon in the slaughter departments. Shewanella was frequently present in seawater tanks used for bleeding/short term storage. In conclusion, this study provides new knowledge on the processing environment as a source of contamination of salmon fillets with Pseudomonas spp. and

  15. Seasonal marine growth of Bristol Bay sockeye salmon (Oncorhynchus nerka) in relation to competition with Asian pink salmon (O. gorbuscho) and the 1977 ocean regime shift

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Farley, Ed; Nielsen, Jennifer L.; Hagen, Peter

    2005-01-01

    Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each growth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2. smolts was significantly higher than age-1 smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10-18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean regime shift. During 1977-2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955-1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977-2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.

  16. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2015-12-01

    Salmon are a valuable cultural and economic resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  17. Critical assessment and ramifications of a purported marine trophic cascade

    PubMed Central

    Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions. PMID:26876514

  18. Interspecific competition in tributaries: Prospectus for restoring Atlantic salmon in Lake Ontario

    USGS Publications Warehouse

    Johnson, James H.; Wedge, Leslie R.

    1999-01-01

    Historically, Lake Ontario may have supported the world's largest freshwater population of Atlantic salmon (Salmo salar). However, by the late 1800's, salmon were virtually extinct in the lake due to the damming of tributaries, overharvest, deforestation, and pollution. Of these factors, the building of dams on tributaries, which precluded access by the salmon to natal spawning streams, was probably the most detrimental. Since the extirpation of Atlantic salmon in the Lake Ontario watershed over a century ago, considerable change has occurred throughout the lake and tributary ecosystem. The changes within the ecosystem that may have the most profound effect on Atlantic salmon restoration include the presence of exotic species, including other salmonines, and reduced habitat quality, especially in tributaries. These changes must be taken into account when considering Atlantic salmon restoration.

  19. Energy economy of salmon aquaculture in the Baltic sea

    NASA Astrophysics Data System (ADS)

    Folke, Carl

    1988-07-01

    Resource utilization in Atlantic salmon aquaculture in the Baltic Sea was investigated by means of an energy analysis. A comparison was made between cage farming and sea ranching enterprises each with yearly yields of 40 t of Atlantic salmon. A variety of sea ranching options were evaluated, including (a) conventional ranching, (b) ranching employing a delayed release to the sea of young smolts, (c) harvesting salmon both by offshore fishing fleets and as they return to coastal areas, and (d) when offshore fishing is banned, harvesting salmon only as they return to coastal areas where released. Inputs both from natural ecosystems (i.e., fish consumed by ranched salmon while in the sea and raw materials used for producing dry food pellets) and from the economy (i.e., fossil fuels and energy embodied in economic goods and services) were quantified in tonnes for food energy and as direct plus indirect energy cost (embodied energy). The fixed solar energy (estimated as primary production) and the direct and indirect auxiliary energy requirements per unit of fish output were expressed in similar units. Similar quantities of living resources in tonnes per unit of salmon biomass output are required whether the salmon are feeding in the sea or are caged farmed. Cage farming is about 10 times more dependent on auxiliary energies than sea ranching. Sea ranching applying delayed release of smolts is 35 45% more efficient in the use of auxiliary energies than conventional sea ranching and cage farming. Restriction of offshore fishing would make sea ranching 3 to 6.5 times more efficient than cage farming. The fixed solar energy input to Atlantic salmon aquaculture is 4 to 63 times larger than the inputs of auxiliary energy. Thus, cage farming and sea ranching are both heavily dependent on the productivity of natural ecosystems. It is concluded that sustainable development of the aquaculture industry must be founded on ecologically integrated technologies which utilize the free

  20. Spider foraging strategy affects trophic cascades under natural and drought conditions.

    PubMed

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-07-23

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.

  1. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research.

    PubMed

    Svenning, Jens-Christian; Pedersen, Pil B M; Donlan, C Josh; Ejrnæs, Rasmus; Faurby, Søren; Galetti, Mauro; Hansen, Dennis M; Sandel, Brody; Sandom, Christopher J; Terborgh, John W; Vera, Frans W M

    2016-01-26

    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human-wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology.

  2. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research

    PubMed Central

    Svenning, Jens-Christian; Pedersen, Pil B. M.; Donlan, C. Josh; Ejrnæs, Rasmus; Faurby, Søren; Galetti, Mauro; Hansen, Dennis M.; Sandel, Brody; Sandom, Christopher J.; Terborgh, John W.; Vera, Frans W. M.

    2016-01-01

    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human–wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology. PMID:26504218

  3. Diet composition and feeding periodicity of wild and hatchery subyearling Chinook salmon in Lake Ontario

    USGS Publications Warehouse

    Johnson, J. H.

    2008-01-01

    Diel feeding periodicity, daily ration, and diet composition of wild and hatchery subyearling Chinook salmon Oncorhynchus tshawytscha were examined in Lake Ontario and the Salmon River, New York. The diet of wild riverine salmon was composed mainly of aquatic invertebrates (63.4%), mostly ephemeropterans (25.8%), chiromomids (15.8%), and trichopterans (8.3%). The diet of riverine Chinook was more closely associated with the composition of drift samples rather than bottom samples, suggesting mid-water feeding. In Lake Ontario terrestrial invertebrates were more important in the diet of hatchery Chinook (49.0%) than wild salmon (30.5%) and diet overlap between hatchery and wild salmon was low (0.46%). The diet of both hatchery and wild Chinook salmon was more closely associated with the composition of mid-water invertebrate samples rather than benthic core samples, indicating mid-water and surface feeding. Hatchery Chinook salmon consumed significantly less food (P < 0.05) than wild Chinook salmon in the lake and in the river, and wild salmon from Lake Ontario consumed more food than wild salmon in the Salmon River. Peak feeding of wild Chinook salmon occurred between 1200-1600 hours in Lake Ontario and between 1600-2000 hours in the Salmon River; there was no discernable feeding peak for the hatchery Chinook in Lake Ontario. Hatchery Chinook salmon also had the least diverse diet over the 24-hour sample period. These results suggest that at 7 days post-stocking hatchery Chinook salmon had not yet fully adapted to their new environment.

  4. Effects of dam removal on Tule Fall Chinook salmon spawning habitat in the White Salmon River, Washington

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Skalicky, Joseph J.; Engle, Rod; Barton, Gary J.; Fosness, Ryan L.; Warren, Joe

    2016-01-01

    Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds-of-thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3-year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty-two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two-dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post-breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2016-02-01

    Salmon are a valuable resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the long term implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat after 12 years of re-colonization, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the long term, landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  6. Climate Change and Baleen Whale Trophic Cascades in Greenland

    DTIC Science & Technology

    2009-09-30

    DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Climate Change and Baleen Whale Trophic Cascades in Greenland...SUBTITLE Climate Change And Baleen Whale Trophic Cascades In Greenland 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  7. Dietary and spatial overlap between sympatric ursids relative to salmon use

    USGS Publications Warehouse

    Fortin, Jennifer K.; Farley, Sean D.; Rode, Karyn D.; Robbins, Charles T.

    2007-01-01

    We hypothesized that there would be minimal dietary overlap between sympatric brown bears (Ursus arctos) and American black bears (U. americanus) relative tosalmon (Oncorhynchus spp.) utilization when alternative foods (e.g., fruits) are abundant. To maximize the chance that we would reject this hypothesis, we examined the diets of brown and black bears known to have visited salmon streams. Species, sex, and individual identification of bears visiting salmon streams were determined by DNA analysis of hair and feces collected in 2002-2004 along those streams. Diets were estimated from fecal residues and stable isotope analyses of hair. Assimilated diets of brown bears were 66.0% (SD = 16.7%) salmon, 13.9% (SD = 7.5%) terrestrial animal matter, and 20.1% (SD = 17.2%) plant matter. Assimilated diets of black bears were 8.0% (SD = 5.4%)salmon, 8.4% (SD = 9.7%) terrestrial animal matter, and 83.6% (SD = 7.7%) plant matter. Male and female brown bears did not differ in either the proportion of dietary salmon, terrestrial animal matter, or plant matter. The relative amounts of fruit residues in the feces of brown bears (87.0%, SD = 15.2%) and black bears (91.8%, SD = 7.2%) did not differ. Both sexes of brown bears visited salmon streams and consumed significant amounts of salmon, but only male American black bears visited streams and then consumed minimal amounts of salmon. Thus, brown bears were largely carnivorous and black bears were largely herbivorous and frugivorous. This reduced dietary overlap relative to salmon and fruit use is understandable in light of the concentrated, defendable nature of salmon in small streams, the widely dispersed, non-defendable nature of abundant fruits, the dominance of brown over black bears, the higher energy requirement of the larger brown bear, and, therefore, the differing ability of the species to efficiently exploit different food resources.

  8. Diel behavior of rearing fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Skalicky, Joseph J.

    2010-01-01

    In fisheries science, habitat use is often inferred when fish are sampled or observed in a particular location. Physical habitat is typically measured where fish are found, and thus deemed important to habitat use. Although less common, a more informative approach is to measure or observe fish behavior within given habitats to more thoroughly assess their use of those locations. While this approach better reflects how fish use habitat, fish behavior can be difficult to quantify, particularly at night. For example, Tiffan and others (2002, 2006) were able to quantify habitat availability and characteristics that were important for rearing juvenile fall Chinook Salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The authors, however, could only speculate as to how juvenile salmon use habitat and respond to changes in water level fluctuations. Conversely, in this study we provide data on the diel activities of rearing juvenile wild fall Chinook Salmon which provides a better understanding of how fish “use” these rearing habitats. Diel behavior patterns are important because fish in the Hanford Reach are often stranded on shorelines when the water level rapidly recedes because of hydroelectric power generation at upriver dams (Nugent and others 2002; Anglin and others 2006). We hypothesize that juvenile salmon are at greater risk of stranding at night because they are less active and occupy habitat differently than during the day. We used underwater videography to collect behavioral information during the day and night to determine if juvenile fall Chinook Salmon are more susceptible to stranding when water level fluctuations occur at night.

  9. Trophic state determination for shallow coastal lakes from Landsat imagery

    NASA Technical Reports Server (NTRS)

    Welby, C. W.; Witherspoon, A. M.; Holman, R. E., III

    1981-01-01

    A study has been carried out to develop a photo-optical technique by which Landsat imagery can be used to monitor trophic states of lakes. The proposed technique uses a single number to characterize the trophic state, and a feature within the satellite scene is used as an internal standard for comparison of the lakes in time. By use of the technique it is possible to assess in retrospect the trophic state of each individual lake.

  10. Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas

    PubMed Central

    Soler, German A.; Edgar, Graham J.; Thomson, Russell J.; Kininmonth, Stuart; Campbell, Stuart J.; Dawson, Terence P.; Barrett, Neville S.; Bernard, Anthony T. F.; Galván, David E.; Willis, Trevor J.; Alexander, Timothy J.; Stuart-Smith, Rick D.

    2015-01-01

    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing. PMID:26461104

  11. Salmon River Habitat Enhancement. 1990 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  12. Trophic downgrading of planet Earth.

    PubMed

    Estes, James A; Terborgh, John; Brashares, Justin S; Power, Mary E; Berger, Joel; Bond, William J; Carpenter, Stephen R; Essington, Timothy E; Holt, Robert D; Jackson, Jeremy B C; Marquis, Robert J; Oksanen, Lauri; Oksanen, Tarja; Paine, Robert T; Pikitch, Ellen K; Ripple, William J; Sandin, Stuart A; Scheffer, Marten; Schoener, Thomas W; Shurin, Jonathan B; Sinclair, Anthony R E; Soulé, Michael E; Virtanen, Risto; Wardle, David A

    2011-07-15

    Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years. The loss of these animals may be humankind's most pervasive influence on nature. Although such losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading effects of their disappearance in marine, terrestrial, and freshwater ecosystems worldwide. This empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles. These findings emphasize the urgent need for interdisciplinary research to forecast the effects of trophic downgrading on process, function, and resilience in global ecosystems.

  13. Sea lice and salmon population dynamics: effects of exposure time for migratory fish.

    PubMed

    Krkosek, Martin; Morton, Alexandra; Volpe, John P; Lewis, Mark A

    2009-08-07

    The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2-3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon-louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon-louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.

  14. Trophic structure of pelagic species in the northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Albo-Puigserver, Marta; Navarro, Joan; Coll, Marta; Layman, Craig A.; Palomera, Isabel

    2016-11-01

    Ecological knowledge of food web interactions within pelagic marine communities is often limited, impairing our capabilities to manage these ecologically and economically important marine fish species. Here we used stable isotope analyses to investigate trophic interactions in the pelagic ecosystem of the northwestern Mediterranean Sea during 2012 and 2013. Our results suggest that European sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, are consumers located at relatively low levels of the pelagic food web. Unexpectedly, the round sardinella, Sardinella aurita, appeared to be located at a higher trophic level than the other small pelagic fish species, although previous studies found similarity in their diets. Isotope data suggested that trophic niches of species within the genera Trachurus spp. and Scomber spp., were distinct. Atlantic bonito Sarda sarda, European hake Merluccius merluccius and European squid Loligo vulgaris, appeared to feed at higher trophic levels than other species. Despite some intraspecific seasonal variability for some species, community trophic structure appeared relatively stable through the year. These data provide an important step for developing models of food web dynamics in the northwestern Mediterranean Sea.

  15. Salmon as a food-poisoning vehicle--two successive Salmonella outbreaks.

    PubMed Central

    Cartwright, K. A.; Evans, B. G.

    1988-01-01

    Gastroenteritis due to Salmonella montevideo occurred amongst guests attending two social functions held within 24 h, food for both having been provided by the same catering firm. Salmon was the most likely vehicle of infection in each case, although cross-contamination of other foods occurred. There were no deaths; four patients were admitted to hospital, one of whom underwent appendicectomy. A review of salmon-associated food-poisoning outbreaks suggests that fresh salmon is an infrequent cause of food poisoning in the United Kingdom. The two outbreaks described here resulted from a failure of simple kitchen hygiene measures at a time of high ambient temperatures. Some current cooking instructions for salmon are inadequate. PMID:3181309

  16. Early human use of anadromous salmon in North America at 11,500 y ago.

    PubMed

    Halffman, Carrin M; Potter, Ben A; McKinney, Holly J; Finney, Bruce P; Rodrigues, Antonia T; Yang, Dongya Y; Kemp, Brian M

    2015-10-06

    Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America.

  17. Early human use of anadromous salmon in North America at 11,500 y ago

    PubMed Central

    Halffman, Carrin M.; Potter, Ben A.; McKinney, Holly J.; Finney, Bruce P.; Rodrigues, Antonia T.; Yang, Dongya Y.; Kemp, Brian M.

    2015-01-01

    Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America. PMID:26392548

  18. POLICY CONUNDRUM: RESTORING WILD SALMON TO THE PACIFIC NORTHWEST

    EPA Science Inventory

    Restoring wild salmon runs to the Pacific Northwest is technically challenging, politically nasty, and socially divisive. Past restoration efforts have been largely unsuccessful. Society's failure to reverse the continuing decline of wild salmon has the characteristics of a pol...

  19. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska.

    Treesearch

    Dirk W. Lang; Gordon H. Reeves; James D. Hall; Mark S. Wipfli

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchrcs kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from...

  20. Trophic interactions, ecosystem structure and function in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Lin, Qun; Jin, Xianshi; Zhang, Bo

    2013-01-01

    The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.

  1. Environmental variability and chum salmon production at the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kim, Suam; Kang, Sukyung; Kim, Ju Kyoung; Bang, Minkyoung

    2017-12-01

    Chum salmon, Oncorhynchus keta, are distributed widely in the North Pacific Ocean, and about 76% of chum salmon were caught from Russian, Japanese, and Korean waters of the northwestern Pacific Ocean during the last 20 years. Although it has been speculated that the recent increase in salmon production was aided by not only the enhancement program that targeted chum salmon but also by favorable ocean conditions since the early 1990s, the ecological processes for determining the yield of salmon have not been clearly delineated. To investigate the relationship between yield and the controlling factors for ocean survival of chum salmon, a time-series of climate indices, seawater temperature, and prey availability in the northwestern Pacific including Korean waters were analyzed using some statistical tools. The results of cross-correlation function (CCF) analysis and cumulative sum (CuSum) of anomalies indicated that there were significant environmental changes in the North Pacific during the last century, and each regional stock of chum salmon responded to the Pacific Decadal Oscillation (PDO) differently: for Russian stock, the correlations between PDO index and catch were significantly negative with a time-lag of 0 and 1 years; for Japanese stock, significantly positive with a timelag of 0-2 years; and for Korean stock, positive but no significant correlation. The results of statistical analyses with Korean chum salmon also revealed that a coastal seawater temperature over 14°C and the return rate of spawning adults to the natal river produced a significant negative correlation.

  2. Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs.

    PubMed

    Au, Sarah Y; Lee, Cindy M; Weinstein, John E; van den Hurk, Peter; Klaine, Stephen J

    2017-05-01

    To evaluate the process of trophic transfer of microplastics, it is important to consider various abiotic and biotic factors involved in their ingestion, egestion, bioaccumulation, and biomagnification. Toward this end, a review of the literature on microplastics has been conducted to identify factors influencing their uptake and absorption; their residence times in organisms and bioaccumulation; the physical effects of their aggregation in gastrointestinal tracts; and their potential to act as vectors for the transfer of other contaminants. Limited field evidence from higher trophic level organisms in a variety of habitats suggests that trophic transfer of microplastics may be a common phenomenon and occurs concurrently with direct ingestion. Critical research needs include standardizing methods of field characterization of microplastics, quantifying uptake and depuration rates in organisms at different trophic levels, quantifying the influence that microplastics have on the uptake and/or depuration of environmental contaminants among different trophic levels, and investigating the potential for biomagnification of microplastic-associated chemicals. More integrated approaches involving computational modeling are required to fully assess trophic transfer of microplastics. Integr Environ Assess Manag 2017;13:505-509. © 2017 SETAC. © 2017 SETAC.

  3. Spider foraging strategy affects trophic cascades under natural and drought conditions

    PubMed Central

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-01-01

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests. PMID:26202370

  4. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake Rivermore » sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish

  5. Overview of environmental and hydrogeologic conditions at King Salmon, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    1994-01-01

    The Federal Aviation Administration is conducting preliminary environmental assessments at most of its present or former facilities in Alaska. Information about environmental conditions at King Salmon, Alaska are presented in this report. This report gives an overview of the geology, hydro- logy, and climate of the King Salmon area and describes general geohydrologic conditions. A thick alluvial aquifer underlies King Salmon and both ground water and surface water are plentiful in the area.

  6. Characterisation of a monoclonal antibody detecting Atlantic salmon endothelial and red blood cells, and its association with the infectious salmon anaemia virus cell receptor.

    PubMed

    Aamelfot, Maria; Weli, Simon C; Dale, Ole B; Koppang, Erling O; Falk, Knut

    2013-05-01

    Endothelial cells (ECs) line the luminal surfaces of the cardiovascular system and play an important role in cardiovascular functions such as regulation of haemostasis and vasomotor tone. A number of fish and mammalian viruses target these cells in the course of their infection. Infectious salmon anaemia virus (ISAV) attacks ECs and red blood cells (RBCs) of farmed Atlantic salmon (Salmo salar L.), producing the severe disease of infectious salmon anaemia (ISA). The investigation of ISA has up to now been hampered by the lack of a functional marker for ECs in Atlantic salmon in situ. In this study, we report the characterisation and use of a novel monoclonal antibody (MAb) detecting Atlantic salmon ECs (e.g. vessel endothelium, endocardial cells and scavenger ECs) and RBCs. The antibody can be used with immunohistochemistry, IFAT and on Western blots. It appears that the epitope recognised by the antibody is associated with the ISAV cellular receptor. Besides being a tool to identify ECs in situ, it could be useful in further studies of the pathogenicity of ISA. Finally, the detection of an epitope shared by ECs and RBCs agrees with recent findings that these cells share a common origin, thus the MAb can potentially be used to study the ontogeny of these cells in Atlantic salmon. © 2013 Anatomical Society.

  7. Salmon 2100: Some recovery strategies that just might work

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not ...

  8. POLICY CONUNDRUM: RESTORING WILD SALMON TO THE PACIFIC NORTHWEST

    EPA Science Inventory

    Across the Pacific Northwest region of North America, many runs of wild (in contrast to hatchery-bred) salmon have declined and some have been extirpated. Restoring wild salmon runs to the Pacific Northwest is technically challenging, politically nasty, socially divisive, and ...

  9. Coronary arteriosclerosis in Atlantic salmon. No regression of lesions after spawning.

    PubMed

    Saunders, R L; Farrell, A P

    1988-01-01

    The incidence and severity of coronary arteriosclerosis were studied in 209 wild and cultured Atlantic salmon (Salmo salar L.) during various stages of recovery of bodily condition after spawning. All recently spawned fish had lesions of moderate to extreme severity. The incidence of lesions for each fish was high (73% to 94% of all arterial cross-sections examined). The incidence and severity of lesions did not decrease during 5 months in a group of wild salmon reconditioned in the laboratory. Wild salmon that were examined in the spring angling fishery in the Miramichi River, New Brunswick, about 5 months after spawning had a high incidence (89%) of severe lesions, not significantly different from recently spawned salmon from the same and another river. A population of cultured salmon sampled at intervals from a sea cage during 9 months after spawning showed no evidence of lesion regression, but rather a continued increase in both incidence and severity during recovery of bodily condition and growth. Thus, in contrast with previous studies with steelhead trout and Atlantic salmon where the possibility of lesion regression has been suggested, our observations on a large number of Atlantic salmon from various sources gave no evidence of lesion regression. Coronary arteriosclerosis in Salmo salar appears to be a progressive condition, which continues during recovery of bodily condition and growth after spawning.

  10. 'Snorkel' lice barrier technology reduced two co- occurring parasites, the salmon louse (Lepeophtheirus salmonis) and the amoebic gill disease causing agent (Neoparamoeba perurans), in commercial salmon sea-cages.

    PubMed

    Wright, D W; Stien, L H; Dempster, T; Vågseth, T; Nola, V; Fosseidengen, J-E; Oppedal, F

    2017-05-01

    Diverse chemical-free parasite controls are gaining status in Atlantic salmon sea-cage farming. Yet, the intricacies of their use at commercial scale, including effects on co-occurring parasites, are seldom reported. A new salmon lice prevention method involves installing a deep net roof and 'snorkel' lice barrier in cages to shelter salmon from free-living infective larvae which concentrate at shallow depths, and allows salmon to jump and re- inflate their buoyancy-regulating swim bladder by swallowing air. We document use of snorkel cages (10m deep barrier) in commercial farms, where their effects on salmon lice levels, amoebic gill disease (AGD)-related gill scores, the cage environment, fish welfare and farm management practices were compared to standard cages. During an autumn-winter study involving only snorkel cages, high AGD-related gill scores were observed to decline when freshwater was pumped into snorkels, creating a freshwater surface layer for salmon to enter for self-treatment. In a spring-summer study incorporating snorkel and standard cages, snorkel cages were found to reduce new lice infestations by 84%. The deployment of snorkels and intermittent oxygen depletion detected within them in the spring-summer study did not alter fish welfare parameters. Overall, the results suggest snorkel technology has a place in the toolkit of commercial salmon sea-cage farmers co-managing salmon lice and amoebic gill disease outbreaks - two principal parasite issues facing the industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington

    NASA Astrophysics Data System (ADS)

    Smith, Gerald R.; Montgomery, David R.; Peterson, N. Phil; Crowley, Bruce

    2007-09-01

    An assemblage of fossil sockeye salmon was discovered in Pleistocene lake sediments along the South Fork Skokomish River, Olympic Peninsula, Washington. The fossils were abundant near the head of a former glacial lake at 115 m elevation. Large adult salmon are concentrated in a sequence of death assemblages that include individuals with enlarged breeding teeth and worn caudal fins indicating migration, nest digging, and spawning prior to death. The specimens were 4 yr old and 45-70 cm in total length, similar in size to modern sockeye salmon, not landlocked kokanee. The fossils possess most of the characteristics of sockeye salmon, Oncorhynchus nerka, but with several minor traits suggestive of pink salmon, O. gorbuscha. This suggests the degree of divergence of these species at about 1 million yr ago, when geological evidence indicates the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advance of the Puget lobe ice sheet. Surficial geology and topography record a complicated history of glacial damming and river diversion that implies incision of the modern gorge of the South Fork Skokomish River after deposition of the fossil-bearing sediments.

  12. Behavior patterns and fates of adult steelhead, Chinook salmon, and coho salmon released into the upper Cowlitz River Basin, 2005–09 and 2012, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Ekstrom, Brian K.; Liedtke, Theresa L.; Serl, John D.; Kohn, Mike

    2016-08-26

    A multiyear radiotelemetry evaluation was conducted to monitor adult steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) behavior and movement patterns in the upper Cowlitz River Basin. Volitional passage to this area was eliminated by dam construction in the mid-1960s, and a reintroduction program began in the mid-1990s. Fish are transported around the dams using a trap-and-haul program, and adult release sites are located in Lake Scanewa, the uppermost reservoir in the system, and in the Cowlitz and Cispus Rivers. Our goal was to estimate the proportion of tagged fish that fell back downstream of Cowlitz Falls Dam before the spawning period and to determine the proportion that were present in the Cowlitz and Cispus Rivers during the spawning period. Fallback is important because Cowlitz Falls Dam does not have upstream fish passage, so fish that pass the dam are unable to move back upstream and spawn. A total of 2,051 steelhead and salmon were tagged for the study, which was conducted during 2005–09 and 2012, and 173 (8.4 percent) of these regurgitated their transmitter prior to, or shortly after release. Once these fish were removed from the dataset, the final number of fish that was monitored totaled 1,878 fish, including 647 steelhead, 770 Chinook salmon, and 461 coho salmon.Hatchery-origin (HOR) and natural-origin (NOR) steelhead, Chinook salmon, and coho salmon behaved differently following release into Lake Scanewa. Detection records showed that the percentage of HOR fish that moved upstream and entered the Cowlitz River or Cispus River after release was relatively low (steelhead = 38 percent; Chinook salmon = 67 percent; coho salmon = 41 percent) compared to NOR fish (steelhead = 84 percent; Chinook salmon = 82 percent; coho salmon = 76 percent). The elapsed time from release to river entry was significantly lower for NOR fish than for HOR fish for all three species. Tagged fish entered the Cowlitz River in

  13. Olfactory gene expression in migrating adult sockeye salmon Oncorhynchus nerka.

    PubMed

    Bett, N N; Hinch, S G; Kaukinen, K H; Li, S; Miller, K M

    2018-04-16

    Expression of 12 olfactory genes was analysed in adult sockeye salmon Oncorhynchus nerka nearing spawning grounds and O. nerka that had strayed from their natal migration route. Variation was found in six of these genes, all of which were olfc olfactory receptors and had lower expression levels in salmon nearing spawning grounds. The results may reflect decreased sensitivity to natal water olfactory cues as these fish are no longer seeking the correct migratory route. The expression of olfactory genes during the olfactory-mediated spawning migration of Pacific salmon Oncorhynchus spp. is largely unexplored and these findings demonstrate a link between migratory behaviours and olfactory plasticity that provides a basis for future molecular research on salmon homing. © 2018 The Fisheries Society of the British Isles.

  14. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  15. Trophic niche of squids: Insights from isotopic data in marine systems worldwide

    NASA Astrophysics Data System (ADS)

    Navarro, Joan; Coll, Marta; Somes, Christoper J.; Olson, Robert J.

    2013-10-01

    Cephalopods are an important prey resource for fishes, seabirds, and marine mammals, and are also voracious predators on crustaceans, fishes, squid and zooplankton. Because of their high feeding rates and abundance, squids have the potential to exert control on the recruitment of commercially important fishes. In this review, we synthesize the available information for two intrinsic markers (δ15N and δ13C isotopic values) in squids for all oceans and several types of ecosystems to obtain a global view of the trophic niches of squids in marine ecosystems. In particular, we aimed to examine whether the trophic positions and trophic widths of squid species vary among oceans and ecosystem types. To correctly compare across systems, we adjusted squid δ15N values for the isotopic variability of phytoplankton at the base of the food web provided by an ocean circulation-biogeochemistry-isotope model. Studies that focused on the trophic ecology of squids using isotopic techniques were few, and most of the information on squids was from studies on their predators. Our results showed that squids occupy a large range of trophic positions and exploit a large range of trophic resources, reflecting the versatility of their feeding behavior and confirming conclusions from food-web models. Clear differences in both trophic position and trophic width were found among oceans and ecosystem types. The study also reinforces the importance of considering the natural variation in isotopic values when comparing the isotopic values of consumers inhabiting different ecosystems.

  16. 76 FR 70062 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ...-XA803 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  17. 78 FR 69002 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ...-XC965 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  18. Biomass changes and trophic amplification of plankton in a warmer ocean.

    PubMed

    Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-07-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  19. ESTIMATING THE SIZE OF HISTORICAL COASTAL OREGON SALMON RUNS

    EPA Science Inventory

    Increasing the abundance of salmon in Oregon's rivers and streams is a high priority public policy objective. Salmon runs have been reduced from pre-development conditions (typically defined as prior to the 1850s), but it is unclear by how much. Considerable public and private ...

  20. PACIFIC NORTHWEST SALMON: IN SEARCH OF A SUSTAINABLE FUTURE

    EPA Science Inventory

    Throughout the Pacific Northwest, all wild salmon runs have declined since 1850 and some have disappeared. A sustainable future for wild salmon remains elusive. Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline. Each year, hundreds...

  1. An Assessment of Potential Mining Impacts on Salmon ...

    EPA Pesticide Factsheets

    The Bristol Bay watershed in southwestern Alaska supports the largest sockeye salmon fishery in the world, is home to 25 federally recognized tribal governments, and contains large mineral resources. The potential for large-scale mining activities in the watershed has raised concerns about the impact of mining on the sustainability of Bristol Bay’s world-class commercial, recreational and subsistence fisheries and the future of Alaska Native tribes in the watershed who have maintained a salmon-based culture and subsistence-based way of life for at least 4,000 years. The purpose of this assessment is to provide a characterization of the biological and mineral resources of the Bristol Bay watershed, increase understanding of the potential impacts of large-scale mining on the region’s fish resources, and inform future government decisions related to protecting and maintaining the chemical, physical, and biological integrity of the watershed. It will also serve as a technical resource for the public, tribes, and governments who must consider how best to address the challenges of mining and ecological protection in the Bristol Bay watershed. The purpose of this assessment is to understand how future large-scale mining may affect water quality and the Bristol Bay salmon fisheries, which includes the largest wild sockeye salmon fishery in the world. Bristol Bay, Alaska, is home to a salmon fishery that is of significant economic and subsistence value to the peopl

  2. Development of a Conceptual Chum Salmon Emergence Model for Ives Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Christopher J.; Geist, David R.; Arntzen, Evan V.

    2011-02-09

    The objective of the study described herein was to develop a conceptual model of chum salmon emergence that was based on empirical water temperature of the riverbed and river in specific locations where chum salmon spawn in the Ives Island area. The conceptual model was developed using water temperature data that have been collected in the past and are currently being collected in the Ives Island area. The model will be useful to system operators who need to estimate the complete distribution of chum salmon emergence (first emergence through final emergence) in order to balance chum salmon redd protection andmore » power system operation.« less

  3. Salmon Gill Poxvirus, the Deepest Representative of the Chordopoxvirinae

    PubMed Central

    Yutin, Natalya; Tengs, Torstein; Senkevich, Tania; Koonin, Eugene; Rønning, Hans Petter; Alarcon, Marta; Ylving, Sonja; Lie, Kai-Inge; Saure, Britt; Tran, Linh; Dale, Ole Bendik

    2015-01-01

    ABSTRACT Poxviruses are large DNA viruses of vertebrates and insects causing disease in many animal species, including reptiles, birds, and mammals. Although poxvirus-like particles were detected in diseased farmed koi carp, ayu, and Atlantic salmon, their genetic relationships to poxviruses were not established. Here, we provide the first genome sequence of a fish poxvirus, which was isolated from farmed Atlantic salmon. In the present study, we used quantitative PCR and immunohistochemistry to determine aspects of salmon gill poxvirus disease, which are described here. The gill was the main target organ where immature and mature poxvirus particles were detected. The particles were detected in detaching, apoptotic respiratory epithelial cells preceding clinical disease in the form of lethargy, respiratory distress, and mortality. In moribund salmon, blocking of gas exchange would likely be caused by the adherence of respiratory lamellae and epithelial proliferation obstructing respiratory surfaces. The virus was not found in healthy salmon or in control fish with gill disease without apoptotic cells, although transmission remains to be demonstrated. PCR of archival tissue confirmed virus infection in 14 cases with gill apoptosis in Norway starting from 1995. Phylogenomic analyses showed that the fish poxvirus is the deepest available branch of chordopoxviruses. The virus genome encompasses most key chordopoxvirus genes that are required for genome replication and expression, although the gene order is substantially different from that in other chordopoxviruses. Nevertheless, many highly conserved chordopoxvirus genes involved in viral membrane biogenesis or virus-host interactions are missing. Instead, the salmon poxvirus carries numerous genes encoding unknown proteins, many of which have low sequence complexity and contain simple repeats suggestive of intrinsic disorder or distinct protein structures. IMPORTANCE Aquaculture is an increasingly important global

  4. Salmon and steelhead in the White Salmon River after the removal of Condit Dam–Planning efforts and recolonization results

    USGS Publications Warehouse

    Allen, Brady; Engle, Rod O; Zendt, Joseph S; Shrier, Frank C; Wilson, Jeremy T; Connolly, Patrick J.

    2016-01-01

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and completely removed in 2012. This action opened habitat to migratory fish for the first time in 100 years. The White Salmon Working Group was formed to create plans for fish salvage in preparation for fish recolonization and to prescribe the actions necessary to restore anadromous salmonid populations in the White Salmon River after Condit Dam removal. Studies conducted by work group members and others served to inform management decisions. Management options for individual species were considered, including natural recolonization, introduction of a neighboring stock, hatchery supplementation, and monitoring natural recolonization for some time period to assess the need for hatchery supplementation. Monitoring to date indicates that multiple species and stocks of anadromous salmonids are finding and spawning in the now accessible and recovering habitat.

  5. Development and characterization of two cell lines from gills of Atlantic salmon

    USGS Publications Warehouse

    Gjessing, Mona C.; Aamelfot, Maria; Batts, William N.; Benestad, Sylvie L.; Dale, Ole B.; Thoen, Even; Weli, Simon C.; Winton, James R.

    2018-01-01

    Gill disease in Atlantic salmon, Salmo salar L., causes big losses in the salmon farming industry. Until now, tools to cultivate microorganisms causing gill disease and models to study the gill responses have been lacking. Here we describe the establishment and characterization of two cell lines from the gills of Atlantic salmon. Atlantic salmon gill cell ASG-10 consisted of cells staining for cytokeratin and e-cadherin and with desmosomes as seen by transmission electron microscopy suggesting the cells to be of epithelial origin. These structures were not seen in ASG-13. The cell lines have been maintained for almost 30 passages and both cell lines are fully susceptible to infection by infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus (VHSV), infectious pancreatic necrosis virus (IPNV), Atlantic salmon reovirus TS (TSRV) and Pacific salmon paramyxovirus (PSPV). While infectious salmon anemia virus (ISAV) did not cause visible CPE, immunofluorescent staining revealed a sub-fraction of cells in both the ASG-10 and ASG-13 lines may be permissive to infection. ASG-10 is able to proliferate and migrate to close scratches in the monolayer within seven days in vitro contrary to ASG-13, which does not appear to do have the same proliferative and migratory ability. These cell lines will be useful in studies of gill diseases in Atlantic salmon and may represent an important contribution for alternatives to experimental animals and studies of epithelial–mesenchymal cell biology.

  6. Evaluation of Salmon Spawning Below Bonneville Dam, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan; Mueller, Robert; Murray, Christopher

    2007-03-01

    Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum salmon (Oncorhynchus keta) and fall Chinook salmon (O. tshawytscha) in the lower mainstem Columbia River. Their work supports a larger project funded by the Bonneville Power Administration (BPA) aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Surveymore » (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and tule fall Chinook salmon populations--both listed as threatened under the Endangered Species Act (ESA). Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by WDFW biologists in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and near Ives Island. Limited surveys of spawning ground were conducted in the area around Ives and Pierce islands from 1994 through 1997. Based on those surveys, it is believed that fall Chinook salmon are spawning successfully in this area. The size of this population from 1994 to 1996 was estimated at 1800 to 5200 fish. Chum salmon also have been documented spawning downstream of Bonneville Dam. Chum salmon were listed as threatened under the ESA in March 1999. At present there is a need to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their

  7. Assessing Lake Trophic Status: A Proportional Odds Logistic Regression Model

    EPA Science Inventory

    Lake trophic state classifications are good predictors of ecosystem condition and are indicative of both ecosystem services (e.g., recreation and aesthetics), and disservices (e.g., harmful algal blooms). Methods for classifying trophic state are based off the foundational work o...

  8. Post-release behavior and movement patterns of Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) after capture using alternative commercial fish gear, lower Columbia River, Washington and Oregon, 2013

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Evans, Scott D.; Hansen, Gabriel S.; Rondorf, Dennis W.

    2014-01-01

    In 2011 and 2012, WDFW conducted post-release mortality studies of steelhead (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) that were captured using beach or purse seines. These studies were comprised of two groups of fish tagged with passive integrated transponder tags (PIT tags): (1) treatment fish that were captured by one of the gear types 9–25 river kilometers (rkm) downstream of Bonneville Dam (rkm 234); and (2) control fish that were captured at the Adult Fish Facility near the Washington shore fish ladder at Bonneville Dam, and then transported and released 8 rkm downstream of the Bonneville Dam. Fish were confirmed to have survived if they moved upstream and were detected on PIT-tag antennas at or upstream of Bonneville Dam, were recovered at hatcheries or at the dam, or were captured by commercial or sport fishers. Post-release survival estimates were higher for steelhead (89–98 percent) than for Chinook salmon and coho salmon (50–90 percent; Washington Department of Fish and Wildlife, unpub. data, 2014). However, some Chinook salmon and coho salmon return to hatcheries, or spawn in the mainstem Columbia River and in tributaries downstream of Bonneville Dam. The proportion of Chinook salmon and coho salmon in the treatment group that were destined for areas downstream of Bonneville Dam likely was higher than in the control group because the control fish were collected as they were attempting to pass the dam. If this assertion was true, mortality would have been overestimated in these studies, so WDFW developed a study plan to determine the post-release movements and intended location of Chinook salmon and coho salmon collected with beach and purse seines in the lower Columbia River.

  9. Reduced trace element concentrations in fast-growing juvenile Atlantic salmon in natural streams.

    PubMed

    Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L

    2010-05-01

    To assess the effect of rapid individual growth on trace element concentrations in fish, we measured concentrations of seven trace elements (As, Cd, Cs, Hg, Pb, Se, Zn) in stream-dwelling Atlantic salmon (Salmo salar) from 15 sites encompassing a 10-fold range in salmon growth. All salmon were hatched under uniform conditions, released into streams, and sampled approximately 120 days later for trace element analysis. For most elements, element concentrations in salmon tracked those in their prey. Fast-growing salmon had lower concentrations of all elements than slow growers, after accounting for prey concentrations. This pattern held for essential and nonessential elements, as well as elements that accumulate from food and those that can accumulate from water. At the sites with the fastest salmon growth, trace element concentrations in salmon were 37% (Cs) to 86% (Pb) lower than at sites where growth was suppressed. Given that concentrations were generally below levels harmful to salmon and that the pattern was consistent across all elements, we suggest that dilution of elements in larger biomass led to lower concentrations in fast-growing fish. Streams that foster rapid, efficient fish growth may produce fish with lower concentrations of elements potentially toxic for human and wildlife consumers.

  10. Preserving Salmon Byproducts through Smoke-Processing Prior to Ensilage

    USDA-ARS?s Scientific Manuscript database

    Salmon is an important fishery in Alaska and accounts for about 9% of the annual catch. Processing these fish results in valuable byproducts that contain oils with high concentrations of long-chain n-3 polyunsaturated fatty acids (PUFA). Previous research demonstrated that when discarded salmon head...

  11. Evidence for a carrier state of infectious hematopoietic necrosis virus in chinook salmon Oncorhynchus tshawytscha.

    PubMed

    St Hilaire, S; Ribble, C; Traxler, G; Davies, T; Kent, M L

    2001-10-08

    In British Columbia, Canada, infectious hematopoietic necrosis virus (IHNV) is prevalent in wild sockeye salmon Oncorhynchus nerka and has caused disease in seawater net-pen reared Atlantic salmon Salmo salar. In this study, chinook salmon Oncorhynchus tshawytscha experimentally exposed to an isolate of IHNV found in British Columbia became carriers of the virus. When Atlantic salmon were cohabited with these virus-exposed chinook salmon, IHNV was isolated from the Atlantic salmon. Identification of chinook salmon populations that have been exposed to IHNV may be difficult, as virus isolation was successful only in fish that were concurrently infected with either Renibacterium salmoninarum or Piscirickettisia salmonis. Also, IHNV-specific antibodies were detected in only 2 of the 70 fish experimentally exposed to the virus. Two samples collected from chinook salmon exposed to IHNV while at a salt water net-pen site had a seroprevalence of 19 and 22%; however, the inconsistencies between our laboratory and field data suggest that further research is required before we can rely on serological analysis for identifying potential carrier populations. Because of the difficulty in determining the exposure status of populations of chinook salmon, especially if there is no concurrent disease, it may be prudent not to cohabit Atlantic salmon with chinook salmon on a farm if there is any possibility that the latter have been exposed to the virus.

  12. Tissue astaxanthin and canthaxanthin distribution in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar).

    PubMed

    Page, G I; Davies, S J

    2006-01-01

    A comparative investigation of tissue carotenoid distribution between rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, was undertaken to identify the relative efficiency of utilization of astaxanthin and canthaxanthin. Higher apparent digestibility coefficients (ADCs) (96% in trout vs. 28-31% in salmon; P<0.05), and pigment retention efficiencies (11.5-12.5% in trout vs. 5.5% in salmon; P<0.05), for both astaxanthin and canthaxanthin, were observed for rainbow trout. Astaxanthin deposition was higher than canthaxanthin in rainbow trout, while the reverse was true for Atlantic salmon, suggesting species-specificity in carotenoid utilization. The white muscle (95% in trout vs. 93% in salmon) and kidneys (0.5% in trout vs. 0.2% in salmon) represented higher proportions of the total body carotenoid pool in rainbow trout than in Atlantic salmon (P<0.05), whereas the liver was a more important storage organ in Atlantic salmon (2-6% in salmon vs. 0.2% in trout; P<0.05). The liver and kidney appeared to be important sites of carotenoid catabolism based on the relative proportion of the peak chromatogram of the fed carotenoid in both species, with the pyloric caecae and hind gut being more important in Atlantic salmon than in the rainbow trout. Liver catabolism is suspected to be a critical determinant in carotenoid clearance, with higher catabolism expected in Atlantic salmon than in rainbow trout.

  13. Piscine myocarditis virus (PMCV) in wild Atlantic salmon Salmo salar.

    PubMed

    Garseth, Ase Helen; Biering, Eirik; Tengs, Torstein

    2012-12-27

    Cardiomyopathy syndrome (CMS) is a severe cardiac disease of sea-farmed Atlantic salmon Salmo salar L., but CMS-like lesions have also been found in wild Atlantic salmon. In 2010 a double-stranded RNA virus of the Totiviridae family, provisionally named piscine myocarditis virus (PMCV), was described as the causative agent of CMS. In the present paper we report the first detection of PMCV in wild Atlantic salmon. The study is based on screening of 797 wild Atlantic salmon by real-time RT-PCR. The samples were collected from 35 different rivers along the coast of Norway, and all individuals included in the study were classified as wild, based on visual appearance and scale reading. Two samples tested positive during PCR analysis, and the results were confirmed by sequencing.

  14. On signals of phase transitions in salmon population dynamics

    PubMed Central

    Krkošek, Martin; Drake, John M.

    2014-01-01

    Critical slowing down (CSD) reflects the decline in resilience of equilibria near a bifurcation and may reveal early warning signals (EWS) of ecological phase transitions. We studied CSD in the recruitment dynamics of 120 stocks of three Pacific salmon (Oncorhynchus spp.) species in relation to critical transitions in fishery models. Pink salmon (Oncorhynchus gorbuscha) exhibited increased variability and autocorrelation in populations that had a growth parameter, r, close to zero, consistent with EWS of extinction. However, models and data for sockeye salmon (Oncorhynchus nerka) indicate that portfolio effects from heterogeneity in age-at-maturity may obscure EWS. Chum salmon (Oncorhynchus keta) show intermediate results. The data do not reveal EWS of Ricker-type bifurcations that cause oscillations and chaos at high r. These results not only provide empirical support for CSD in some ecological systems, but also indicate that portfolio effects of age structure may conceal EWS of some critical transitions. PMID:24759855

  15. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and onemore » private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.« less

  16. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest). Coho Salmon.

    DTIC Science & Technology

    1986-04-01

    method in fingerlinqs prey on sockeye salmon Puqet Sound to predict coho salmon fry ( Oncorhynchus nerka ); 30% of catches from stream discharqe data, coho...numbers of males distinguish it from chinook salmon and females in a soawninq run are sim- ( Oncorhynchus tshawytscha), which have ilar males may...behind sockeye salmon (qnco- qoal is te umber of spawners rhynchus nerka ), pink salmon (. necesar) to majinta1n the run of a -orhuscha), and chum salmon

  17. SALMON-TRINITY ALPS WILDERNESS, CALIFORNIA.

    USGS Publications Warehouse

    Hotz, Preston E.; Thurber, Horace K.

    1984-01-01

    The Salmon-Trinity Alps Wilderness in the Klamath Mountains province occupies an area of about 648 sq mi in parts of Trinity, Siskiyou, and Humboldt Counties, northwestern California. As a result of field studies it was determined that the Salmon-Trinity Alps Wilderness has an area with substantiated potential for gold resources in known lode deposits. Small amounts of quicksilver have been produced from one mine but there is little promise for the discovery of additional mercury resources. Geochemical sampling showed that anomalously high amounts of several other metals occur in a few places, but there is little promise for the discovery of energy or mineral resources other than mercury and gold.

  18. Histopathology of fish. II. The salmon-poisoning fluk

    USGS Publications Warehouse

    1956-01-01

    THE SALMON-POISONING FLUKE is misnamed as far as the fish culturist is concerned, for the disease affects dogs, not fish. There is considerable evidence, however, that fish may also suffer from the complex chain of events leading from snail to dying dog. Histological studies indicate that young salmon and trout may be severely damaged by the encysted stage of the fluke.

  19. Interactions between brown bears and chum salmon at McNeil River, Alaska

    USGS Publications Warehouse

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2013-01-01

    Predation on returning runs of adult salmon (Oncorhynchus spp.) can have a large influence on their spawning success. At McNeil River State Game Sanctuary (MRSGS), Alaska, brown bears (Ursus arctos) congregate in high numbers annually along the lower McNeil River to prey upon returning adult chum salmon (O. keta). Low chum salmon escapements into McNeil River since the late 1990s have been proposed as a potential factor contributing to concurrent declines in bear numbers. The objective of this study was to determine the extent of bear predation on chum salmon in McNeil River, especially on pre-spawning fish, and use those data to adjust the escapement goal for the river. In 2005 and 2006, 105 chum salmon were radiotagged at the river mouth and tracked to determine cause and location of death. Below the falls, predators consumed 99% of tagged fish, killing 59% of them before they spawned. Subsequently, the escapement goal was nearly doubled to account for this pre-spawning mortality and to ensure enough salmon to sustain both predators and prey. This approach to integrated fish and wildlife management at MRSGS can serve as a model for other systems where current salmon escapement goals may not account for pre-spawning mortality.

  20. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring andmore » adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.« less

  1. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon (Oncorhynchus kisutch). 226.210... Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon...

  2. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon (Oncorhynchus kisutch). 226.210... Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon...

  3. Aniakchak sockeye salmon investigations

    USGS Publications Warehouse

    Hamon, Troy R.; Pavey, Scott A.; Miller, Joe L.; Nielsen, Jennifer L.

    2005-01-01

    Aniakchak National Monument and Preserve provides unusual and dramatic landscapes shaped by numerous volcanic eruptions, a massive flood, enormous landslides, and ongoing geological change. The focal point of the monument is Aniakchak Caldera, a restless volcano that embodies the instability of the Alaska Peninsula. This geological instability creates a dynamic and challenging environment for the biological occupants of Aniakchak and unparalleled opportunities for scientists to measure the adaptability of organisms and ecosystems to change. The sockeye salmon (Oncorhynchus nerka) is one member of the Aniakchak ecosystem that has managed to adapt to geologic upheaval and is now thriving in the park. Aside from just surviving in the harsh environment, these salmon are also noteworthy for providing essential marinederived nutrients to plants and animals and as a source of food for historic and present day people in the region.

  4. 40 CFR 408.170 - Applicability; description of the Alaskan mechanized salmon processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Alaskan mechanized salmon processing subcategory. 408.170 Section 408.170 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.170 Applicability; description of the Alaskan mechanized salmon processing subcategory. The provisions of this subpart are...

  5. 40 CFR 408.170 - Applicability; description of the Alaskan mechanized salmon processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Alaskan mechanized salmon processing subcategory. 408.170 Section 408.170 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.170 Applicability; description of the Alaskan mechanized salmon processing subcategory. The provisions of this subpart are...

  6. Involvement of hormones in olfactory imprinting and homing in chum salmon.

    PubMed

    Ueda, Hiroshi; Nakamura, Shingo; Nakamura, Taro; Inada, Kaoru; Okubo, Takashi; Furukawa, Naohiro; Murakami, Reiichi; Tsuchida, Shigeo; Zohar, Yonathan; Konno, Kotaro; Watanabe, Masahiko

    2016-02-16

    The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker.

  7. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur

    USGS Publications Warehouse

    McCutchan, J.H.; Lewis, W.M.; Kendall, C.; McGrath, C.C.

    2003-01-01

    Use of stable isotope ratios to trace pathways of organic matter among consumers requires knowledge of the isotopic shift between diet and consumer. Variation in trophic shift among consumers can be substantial. For data from the published literature and supplementary original data (excluding fluid-feeding consumers), the mean isotopic shift for C was +0.5 ?? 0.13??? rather than 0.0???, as commonly assumed. The shift for C was higher for consumers analyzed as muscle (+1.3 ?? 0.30???) than for consumers analyzed whole (+0.3 ?? 0.14???). Among consumers analyzed whole, the trophic shift for C was lower for consumers acidified prior to analysis (-0.2 ?? 0.21???) than for unacidified samples (+0.5 ?? 0.17???). For N, trophic shift was lower for consumers raised on invertebrate diets (+1.4 ?? 0.21???) than for consumers raised on other high-protein diets (+3.3 ?? 0.26???) and was intermediate for consumers raised on plant and algal diets (+2.2 ?? 0.30???). The trophic shift for S differed between high-protein (+2.0 ?? 0.65???) and low-protein diets (-0.5 ?? 0.56???). Thus, methods of analysis and dietary differences can affect trophic shift for consumers; the utility of stable isotope methods can be improved if this information is incorporated into studies of trophic relationships. Although few studies of stable isotope ratios have considered variation in the trophic shift, such variation is important because small errors in estimates of trophic shift can result in large errors in estimates of the contribution of sources to consumers or in estimates of trophic position.

  8. Norwegian Salmon Goes to Market: The Case of the Austevoll Seafood Cluster

    ERIC Educational Resources Information Center

    Phyne, John; Hovgaard, Gestur; Hansen, Gard

    2006-01-01

    This paper examines the impact of the globalisation of the farmed salmon commodity chain upon farmed salmon production in the western Norwegian municipality of Austevoll. On the basis of field research conducted in 2002 and 2003, we conclude that salmon farming in Austevoll has responded to the challenges of "buyer-driven" food chains by…

  9. Intestinal morphology of the wild Atlantic salmon (Salmo salar).

    PubMed

    Løkka, Guro; Austbø, Lars; Falk, Knut; Bjerkås, Inge; Koppang, Erling Olaf

    2013-08-01

    The worldwide-industrialized production of Atlantic salmon (Salmo salar) has increased dramatically during the last decades, followed by diseases related to the on-going domestication process as a growing concern. Even though the gastrointestinal tract seems to be a target for different disorders in farmed fish, a description of the normal intestinal status in healthy, wild salmon is warranted. Here, we provide such information in addition to suggesting a referable anatomical standardization for the intestine. In this study, two groups of wild Atlantic salmon were investigated, consisting of post smolts on feed caught in the sea and of sexually mature, starved individuals sampled from a river. The two groups represent different stages in the anadromous salmon life cycle, which also are part of the production cycle of farmed salmon. Selected regions of gastrointestinal tract were subjected to morphological investigations including immunohistochemical, scanning electron microscopic, and morphometric analyses. A morphology-based nomenclature was established, defining the cardiac part of the stomach and five different regions of the Atlantic salmon intestine, including pyloric caeca, first segment of the mid-intestine with pyloric caeca, first segment of the mid-intestine posterior to pyloric caeca, second segment of the mid-intestine and posterior intestinal segment. In each of the above described regions, for both groups of fish, morphometrical measurements and regional histological investigations were performed with regards to magnitude and direction of mucosal folding as well as the composition of the intestinal wall. Additionally, immunohistochemistry showing cells positive for cytokeratins, α-actin and proliferating cell nuclear antigen, in addition to alkaline phosphatase reactivity in the segments is presented. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  10. Spring Chinook Salmon Production for Confederated Tribes of the Umatilla Indian Reservation, Little White Salmon National Fish Hatchery, Annual Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doulas, Speros

    2007-01-01

    This annual report covers the period from January 1, 2006 through December 31, 2006. Work completed supports the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) effort to restore a locally-adapted stock of spring Chinook to the Umatilla River Basin. During the year, staff at the Little White Salmon/Willard National Fish Hatchery Complex have completed the rearing of 218,764 Brood Year 2004 spring Chinook salmon for release into the Umatilla River during spring 2006 and initiated production of approximately 220,000 Brood Year 2005 spring Chinook for transfer and release into the Umatilla River during spring 2007. All work under thismore » contract is performed at the Little White Salmon and Willard National Fish Hatcheries (NFH), Cook, WA.« less

  11. Predation on stocked Atlantic salmon (Salmo salar) fry

    USGS Publications Warehouse

    Henderson, J.N.; Letcher, B.H.

    2003-01-01

    We studied predator-prey interactions between juvenile Atlantic salmon (Salmo salar) and trout in three Massachusetts, U.S.A., streams and in artificial streams. We sampled stomach contents of age-1+ and older salmon and trout (Salvelinus fontinalis, Salmo trutta) following salmon fry stocking in the spring of 1997 and 1998. Between 4.3 and 48.6% of the stocked fry were consumed within the first 2 days after stocking, and total fry mortality from predation varied from 4.3 to 60.7%. No significant differences were found between stomach weights of predators (without fry weight) that consumed fry and those that did not. Artificial stream experiments testing effects of habitat complexity and predator species on predator consumption rates revealed that consumption rates were not different between brook (S. fontinalis) and brown (S. trutta) trout (p = 0.59). Predation rate tended to decrease as the percentage of riffle habitat increased but the decrease was not significant (p = 0.22). Our results indicate that predation on stocked Atlantic salmon fry can be substantial (up to 60%), appears to be short lived (2 days), and is not related in a simple way to abiotic and biotic factors.

  12. Linkages between Alaskan sockeye salmon abundance, growth at sea, and climate, 1955-2002

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.; Bumgarner, J.

    2007-01-01

    We tested the hypothesis that increased growth of salmon during early marine life contributed to greater survival and abundance of salmon following the 1976/1977 climate regime shift and that this, in turn, led to density-dependent reductions in growth during late marine stages. Annual measurements of Bristol Bay (Bering Sea) and Chignik (Gulf of Alaska) sockeye salmon scale growth from 1955 to 2002 were used as indices of body growth. During the first and second years at sea, growth of both stocks tended to be higher after the 1976-1977 climate shift, whereas growth during the third year and homeward migration was often below average. Multiple regression models indicated that return per spawner of Bristol Bay sockeye salmon and adult abundance of western and central Alaska sockeye salmon were positively correlated with growth during the first 2 years at sea and negatively correlated with growth during later life stages. After accounting for competition between Bristol Bay sockeye and Asian pink salmon, age-specific adult length of Bristol Bay salmon increased after the 1976-1977 regime shift, then decreased after the 1989 climate shift. Late marine growth and age-specific adult length of Bristol Bay salmon was exceptionally low after 1989, possibly reducing their reproductive potential. These findings support the hypothesis that greater marine growth during the first 2 years at sea contributed to greater salmon survival and abundance, which in turn led to density-dependent growth during later life stages when size-related mortality was likely lower. Our findings provide new evidence supporting the importance of bottom-up control in marine ecosystems and highlight the complex dynamics of species interactions that continually change as salmon grow and mature in the ocean. ?? 2007 Elsevier Ltd. All rights reserved.

  13. Trophic shift, not collapse

    USGS Publications Warehouse

    Madenjian, Charles P.; Rutherford, Edward S.; Stow, Craig A.; Roseman, Edward F.; He, Ji X.

    2013-01-01

    scientists who are closely monitoring Lake Huron’s food web, we believe that the ongoing changes are more accurately characterized as a trophic shift in which benthic pathways have become more prominent. While decreases in abundance have occurred for some species, others are experiencing improved reproduction resulting in the restoration of several important native species.

  14. Lake trophic applications: Wisconsin

    NASA Technical Reports Server (NTRS)

    Scarpace, F.

    1981-01-01

    Efforts to classify the water quality characteristics of lakes using LANDSAT imagery are reported. Image processing and registration techniques are described. A lake classification scheme which involves the assignment of a trophic class number was used in the data analysis. The resulting values were compared to the corresponding rank assignment derived from field measurements.

  15. Temporal patterns in adult salmon migration timing across southeast Alaska

    USGS Publications Warehouse

    Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David

    2015-01-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon

  16. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  17. Light-mediated predation by northern squawfish on juvenile Chinook salmon

    USGS Publications Warehouse

    Petersen, James H.; Gadomski, Dena M.

    1994-01-01

    Northern squawfish Ptychocheilus oregonensis cause significant mortality of juvenile salmon in the lower Columbia River Basin (U.S.A.). The effects of light intensity on this predator-prey interaction were examined with laboratory experiments and modelling studies. In laboratory experiments, the rate of capture of subyearling chinook salmon Oncorhynchus tshawytscha by northern squawfish was inversely related to light intensity. In a large raceway, about five times more salmon were captured during 4 h periods of relative darkness (0–03 Ix) than during periods with high light intensity (160 Ix). The rate of predation could be manipulated by increasing or decreasing light intensity.A simulation model was developed for visual predators that encounter, attack, and capture juvenile salmon, whose schooling behaviour was light-sensitive. The model was fitted to laboratory results using a Monte Carlo filtering procedure. Model-predicted predation rate was especially sensitive to the visual range of predators at low light intensity and to predator search speed at high light. Modelling results also suggested that predation by northern squawfish on juvenile salmon may be highest across a narrow window of fight intensity.

  18. Optimum cooking conditions for shrimp and Atlantic salmon.

    PubMed

    Brookmire, Lauren; Mallikarjunan, P; Jahncke, M; Grisso, R

    2013-02-01

    The quality and safety of a cooked food product depends on many variables, including the cooking method and time-temperature combinations employed. The overall heating profile of the food can be useful in predicting the quality changes and microbial inactivation occurring during cooking. Mathematical modeling can be used to attain the complex heating profile of a food product during cooking. Studies were performed to monitor the product heating profile during the baking and boiling of shrimp and the baking and pan-frying of salmon. Product color, texture, moisture content, mass loss, and pressed juice were evaluated during the cooking processes as the products reached the internal temperature recommended by the FDA. Studies were also performed on the inactivation of Salmonella cocktails in shrimp and salmon. To effectively predict inactivation during cooking, the Bigelow, Fermi distribution, and Weibull distribution models were applied to the Salmonella thermal inactivation data. Minimum cooking temperatures necessary to destroy Salmonella in shrimp and salmon were determined. The heating profiles of the 2 products were modeled using the finite difference method. Temperature data directly from the modeled heating profiles were then used in the kinetic modeling of quality change and Salmonella inactivation during cooking. The optimum cooking times for a 3-log reduction of Salmonella and maintaining 95% of quality attributes are 100, 233, 159, 378, 1132, and 399 s for boiling extra jumbo shrimp, baking extra jumbo shrimp, boiling colossal shrimp, baking colossal shrimp, baking Atlantic salmon, and pan frying Atlantic Salmon, respectively. © 2013 Institute of Food Technologists®

  19. Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha)

    PubMed Central

    Bett, Nolan N.; Hinch, Scott G.; Dittman, Andrew H.; Yun, Sang-Seon

    2016-01-01

    Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST. PMID:27827382

  20. Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha).

    PubMed

    Bett, Nolan N; Hinch, Scott G; Dittman, Andrew H; Yun, Sang-Seon

    2016-11-09

    Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST.

  1. Mucous lysozyme levels in hatchery coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) early in the parr-smolt transformation

    USGS Publications Warehouse

    Schrock, R.M.; Smith, S.D.; Maule, A.G.; Doulos, S.K.; Rockowski, J.J.

    2001-01-01

    Mucous lysozyme concentrations were determined in juvenile coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) to establish reference levels during the time associated with the parr-smolt transformation. The first reported naris and vent mucous lysozyme levels are provided for spring chinook salmon and coho salmon. Naris mucous lysozyme levels ranged between 300 and 700 ??g ml-1, vent mucous lysozyme from 100 to 300 ??g ml-1, and skin mucous lysozyme levels were below 130 ??g ml-1. Lysozyme levels in the two species showed the same relationship with the highest levels in naris mucous, and the lowest in skin mucous. A seasonal decrease occurred in both species with a significant decrease in naris mucous lysozyme between February and March. Gill ATPase levels used to monitor smolt development during the same period did not reach ranges reported for smolts for either species during emigration. Identification of seasonal levels of lysozyme activity in mucous provides an alternative determination of developmental status prior to release of fish from the hatchery when salmonids are still undergoing the parr-smolt transformation. ?? 2001 Elsevier Science B.V.

  2. Growth of enterotoxigenic Bacillus cereus on salmon (Oncorhynchus nerka).

    PubMed

    Labbé, Ronald; Rahmati, Talat

    2012-06-01

    We previously demonstrated the widespread presence of enterotoxigenic Bacillus cereus in marine foods. In view of the widespread consumption of raw fish, we sought to determine the ability of this organism to grow on the surface of wild Alaskan salmon at abusive temperatures (12, 16, and 20°C), using an isolate able to produce elevated levels of hemolysin BL enterotoxin and nonhemolytic enterotoxin. An incubation temperature of 37°C for colony formation was found to be selective for B. cereus grown on salmon held for up to 24 h at each temperature. A fivefold increase in log CFU per gram was observed after 26 and 22 h at 16 and 20°C, respectively, while a >4-log CFU/g increase occurred on salmon held at 12°C for 48 h. Generation times of 169.7, 53.5, and 45.6 min were observed at 12, 16, and 20°C. Nonhemolytic enterotoxin was detected when levels of B. cereus were in excess of 10(8) CFU/g. Nisin, at concentrations of 1 and 15 m g/g of salmon, reduced levels of B. cereus 2.5- and 25-fold, respectively. Our results indicate that fresh salmon can serve as an excellent substrate for enterotoxigenic B. cereus and that this organism can reach levels associated with foodborne illness following moderate temperature abuse.

  3. Quantifying Temperature Effects on Fall Chinook Salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jager, Yetta

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  4. Molecular mechanisms of continuous light inhibition of Atlantic salmon parr-smolt transformation

    USGS Publications Warehouse

    Stefansson, S.O.; Nilsen, Tom O.; Ebbesson, Lars O.E.; Wargelius, A.; Madsen, Steffen S.; Bjornsson, B. Th; McCormick, S.D.

    2007-01-01

    Atlantic salmon (Salmo salar) rely on changes in photoperiod for the synchronization of the developmental events constituting the parr-smolt transformation. In the absence of photoperiod cues, parr-smolt transformation is incomplete, and such 'pseudo-smolts' normally fail to adapt to seawater. The present study addresses the endocrine and molecular mechanisms controlling the development of hypo-osmoregulatory ability and how artificial photoperiod can disrupt these changes. Juvenile Atlantic salmon reared under constant light (LL) from first feeding, were separated into two groups, and exposed to either LL or simulated natural photoperiod (LDN) from October, eight months prior to the expected completion of smoltification. Juveniles reared on LL grew well, but failed to show the smolt-related reduction in condition factor in spring. Gill mRNA levels of Na+, K+-ATPase (NKA) isoform ??1a decreased in LDN fish through completion of parr-smolt transformation, while levels remained unchanged in the LL group. In contrast, ??1b expression increased 6-fold in the LDN group between February and May, again with no change in the LL group. Further, Na+, K+, 2Cl- co-transporter (NKCC) showed a transient increase in expression in smolts on LDN between February and May, while no changes in mRNA levels were seen in juveniles under LL. Consequently, gill NKA activity and NKA ?? and NKCC protein abundance were significantly lower in juveniles on LL than in smolts on LDN. LL fish in spring had lower circulating levels of thyroid hormones (THs), growth hormone (GH) and cortisol. Gill GH-receptor mRNA levels, determined by quantitative PCR, were less than 50% of controls. In contrast, circulating levels of IGF-1 and gill IGF-1 receptor expression, were comparable to controls. Our findings show that continuous light prevents the completion of parr-smolt transformation at a very basic level, disrupting the natural up-regulation of key elements of the endocrine system involved in the

  5. Trophic redundancy reduces vulnerability to extinction cascades

    PubMed Central

    Sanders, Dirk; Thébault, Elisa; Kehoe, Rachel; Frank van Veen, F. J.

    2018-01-01

    Current species extinction rates are at unprecedentedly high levels. While human activities can be the direct cause of some extinctions, it is becoming increasingly clear that species extinctions themselves can be the cause of further extinctions, since species affect each other through the network of ecological interactions among them. There is concern that the simplification of ecosystems, due to the loss of species and ecological interactions, increases their vulnerability to such secondary extinctions. It is predicted that more complex food webs will be less vulnerable to secondary extinctions due to greater trophic redundancy that can buffer against the effects of species loss. Here, we demonstrate in a field experiment with replicated plant-insect communities, that the probability of secondary extinctions is indeed smaller in food webs that include trophic redundancy. Harvesting one species of parasitoid wasp led to secondary extinctions of other, indirectly linked, species at the same trophic level. This effect was markedly stronger in simple communities than for the same species within a more complex food web. We show that this is due to functional redundancy in the more complex food webs and confirm this mechanism with a food web simulation model by highlighting the importance of the presence and strength of trophic links providing redundancy to those links that were lost. Our results demonstrate that biodiversity loss, leading to a reduction in redundant interactions, can increase the vulnerability of ecosystems to secondary extinctions, which, when they occur, can then lead to further simplification and run-away extinction cascades. PMID:29467292

  6. Differential incorporation of natural spawners vs. artificially planted salmon carcasses in a stream food web: Evidence from delta 15N of juvenile coho salmon

    EPA Science Inventory

    Placement of salmon carcasses is a common restoration technique in Oregon and Washington streams, with the goal of improving food resources and productivity of juvenile salmon. To explore the effectiveness of this restoration technique, we measured the δ15N of juvenile coho salmo...

  7. Doubling sockeye salmon production in the Fraser River—Is this sustainable development?

    NASA Astrophysics Data System (ADS)

    Henderson, Michael A.; Healey, Michael C.

    1993-11-01

    We evaluate a proposal to double sockeye salmon production from the Fraser River and conclude that significant changes will be required to current management processes, particularly the way available catch is allocated, if the plan is to be consistent with five major principles embodied in the concept of sustainable development. Doubling sockeye salmon production will not, in itself, increase economic equity either regionally or globally. Developing nations may actually be hindered in their attempts to institute other, nonsalmon fisheries in the North Pacific Ocean as a result of the possible interception of salmon. Further, other users of the Fraser River basin will have to forgo opportunities so that salmon habitat can be conserved. If doubling sockeye salmon production is to meet the goal of doing more with less, it will be necessary to develop more efficient technologies to harvest the fish. If increasing salmon production is to reflect the integration of environmental and economic decision making at the highest level, then a serious attempt must be made to incorporate environmental assets into national economic accounting. Finally, to promote biodiversity and cultural self-sufficiency within the Fraser River basin, it will be important to safeguard the small, less-productive salmon stocks as well as the large ones and to allocate a substantial portion of the increased production to the Native Indian community.

  8. Novel air-based system transfers large salmon during harvest

    USDA-ARS?s Scientific Manuscript database

    In April of 2015, near the end of our last harvest of 4-6 kg Atlantic salmon, we evaluated an exciting new fish transport technology from Whooshh Innovations (Bellevue, WA) that uses air to move live Atlantic salmon from our growout tank to a finishing/purging tank. The Whooshh system uses a combina...

  9. A Modeled Comparison of Direct and Food Web-Mediated Impacts of Common Pesticides on Pacific Salmon

    PubMed Central

    Macneale, Kate H.; Spromberg, Julann A.; Baldwin, David H.; Scholz, Nathaniel L.

    2014-01-01

    In the western United States, pesticides used in agricultural and urban areas are often detected in streams and rivers that support threatened and endangered Pacific salmon. Although concentrations are rarely high enough to cause direct salmon mortality, they can reach levels sufficient to impair juvenile feeding behavior and limit macroinvertebrate prey abundance. This raises the possibility of direct adverse effects on juvenile salmon health in tandem with indirect effects on salmon growth as a consequence of reduced prey abundance. We modeled the growth of ocean-type Chinook salmon (Oncorhynchus tshawytscha) at the individual and population scales, investigating insecticides that differ in how long they impair salmon feeding behavior and in how toxic they are to salmon compared to macroinvertebrates. The relative importance of these direct vs. indirect effects depends both on how quickly salmon can recover and on the relative toxicity of an insecticide to salmon and their prey. Model simulations indicate that when exposed to a long-acting organophosphate insecticide that is highly toxic to salmon and invertebrates (e.g., chlorpyrifos), the long-lasting effect on salmon feeding behavior drives the reduction in salmon population growth with reductions in prey abundance having little additional impact. When exposed to short-acting carbamate insecticides at concentrations that salmon recover from quickly but are lethal to invertebrates (e.g., carbaryl), the impacts on salmon populations are due primarily to reductions in their prey. For pesticides like carbaryl, prey sensitivity and how quickly the prey community can recover are particularly important in determining the magnitude of impact on their predators. In considering both indirect and direct effects, we develop a better understanding of potential impacts of a chemical stressor on an endangered species and identify data gaps (e.g., prey recovery rates) that contribute uncertainty to these assessments. PMID

  10. An injectable acoustic transmitter for juvenile salmon

    DOE PAGES

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong; ...

    2015-01-29

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation,more » and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.« less

  11. An injectable acoustic transmitter for juvenile salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation,more » and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.« less

  12. An injectable acoustic transmitter for juvenile salmon

    PubMed Central

    Deng, Z. D.; Carlson, T. J.; Li, H.; Xiao, J.; Myjak, M. J.; Lu, J.; Martinez, J. J.; Woodley, C. M.; Weiland, M. A.; Eppard, M. B.

    2015-01-01

    Salmon recovery and the potential detrimental effects of dams on fish have been attracting national attention due to the environmental and economic implications. In recent years acoustic telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing a bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter lasts four times longer and weighs 30% less than other transmitters. Because the new transmitter costs significantly less to use and may substantially reduce adverse effects of implantation and tag burden, it will allow for study of migration behavior and survival of species and sizes of fish that have never been studied before. The new technology will lead to critical information needed for salmon recovery and the development of fish-friendly hydroelectric systems. PMID:25630763

  13. An injectable acoustic transmitter for juvenile salmon

    NASA Astrophysics Data System (ADS)

    Deng, Z. D.; Carlson, T. J.; Li, H.; Xiao, J.; Myjak, M. J.; Lu, J.; Martinez, J. J.; Woodley, C. M.; Weiland, M. A.; Eppard, M. B.

    2015-01-01

    Salmon recovery and the potential detrimental effects of dams on fish have been attracting national attention due to the environmental and economic implications. In recent years acoustic telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing a bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter lasts four times longer and weighs 30% less than other transmitters. Because the new transmitter costs significantly less to use and may substantially reduce adverse effects of implantation and tag burden, it will allow for study of migration behavior and survival of species and sizes of fish that have never been studied before. The new technology will lead to critical information needed for salmon recovery and the development of fish-friendly hydroelectric systems.

  14. Mesoscale Eddies Are Oases for Higher Trophic Marine Life

    PubMed Central

    Godø, Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. PMID:22272294

  15. Diphyllobothrium nihonkaiense Tapeworm Larvae in Salmon from North America

    PubMed Central

    Oros, Mikuláš; Ferguson, Jayde; Scholz, Tomáš

    2017-01-01

    Diphyllobothriosis is reemerging because of global importation and increased popularity of eating raw fish. We detected Diphyllobothrium nihonkaiense plerocercoids in the musculature of wild pink salmon (Oncorhynchus gorbuscha) from Alaska, USA. Therefore, salmon from the American and Asian Pacific coasts and elsewhere pose potential dangers for persons who eat these fish raw. PMID:28098540

  16. Controlling Listeria monocytogenes in Cold Smoked Salmon with the Antimicrobial Peptide Salmine.

    PubMed

    Cheng, Christopher; Arritt, Fletcher; Stevenson, Clinton

    2015-06-01

    Listeria monocytogenes (LM) is a major safety concern for smoked salmon producers, as it can survive both the brining and smoking process in cold smoked salmon production. Salmine is a cationic antimicrobial peptide derived from the milt of salmon that has been shown to inhibit the growth of LM in vitro. Commercialization of this peptide would add value to a waste product produced when raising salmon. The purpose of this study was to determine the anti-listeria activity of salmine in smoked salmon by measuring the viable counts of LM over time. Cold smoked salmon was treated with a salmine solution or coated with agar or k-carrageenan films incorporating salmine to maintain a high surface concentration of the antimicrobial. Samples were then inoculated with approximately 1.0 × 10(3) cells of LM. The viable counts were then enumerated throughout 4 wk at 4 °C storage. It was found that 5 mg/g salmine delayed the growth of LM on smoked salmon. These samples had significantly (P < 0.05) lower LM counts than on the untreated samples on days 13 and 22. Edible films did not significantly (P > 0.05) improve the antimicrobial efficacy of salmine. The peptide combined with biopolymers also had lower antimicrobial activity in vitro when compared to salmine alone. These results suggest there is potential for salmine to be used as a natural hurdle to inhibit growth of LM due to post process contamination; however, future investigations for extending this effect throughout the shelf life of smoked salmon products are warranted. © 2015 Institute of Food Technologists®

  17. Effects of host migration, diversity and aquaculture on sea lice threats to Pacific salmon populations.

    PubMed

    Krkosek, Martin; Gottesfeld, Allen; Proctor, Bart; Rolston, Dave; Carr-Harris, Charmaine; Lewis, Mark A

    2007-12-22

    Animal migrations can affect disease dynamics. One consequence of migration common to marine fish and invertebrates is migratory allopatry-a period of spatial separation between adult and juvenile hosts, which is caused by host migration and which prevents parasite transmission from adult to juvenile hosts. We studied this characteristic for sea lice (Lepeophtheirus salmonis and Caligus clemensi) and pink salmon (Oncorhynchus gorbuscha) from one of the Canada's largest salmon stocks. Migratory allopatry protects juvenile salmon from L. salmonis for two to three months of early marine life (2-3% prevalence). In contrast, host diversity facilitates access for C. clemensi to juvenile salmon (8-20% prevalence) but infections appear ephemeral. Aquaculture can augment host abundance and diversity and increase parasite exposure of wild juvenile fish. An empirically parametrized model shows high sensitivity of salmon populations to increased L. salmonis exposure, predicting population collapse at one to five motile L. salmonis per juvenile pink salmon. These results characterize parasite threats of salmon aquaculture to wild salmon populations and show how host migration and diversity are important factors affecting parasite transmission in the oceans.

  18. Migratory salmonid redd habitat characteristics in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; McKenna, James E.

    2010-01-01

    Non-native migratory salmonids ascend tributaries to spawn in all the Great Lakes. In Lake Ontario, these species include Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), steelhead (O. mykiss), and brown trout (Salmo trutta). Although successful natural reproduction has been documented for many of these species, little research has been conducted on their spawning habitat. We examined the spawning habitat of these four species in the Salmon River, New York. Differences in fish size among the species were significantly correlated with spawning site selection. In the Salmon River, the larger species spawned in deeper areas with larger size substrate and made the largest redds. Discriminant function analysis correctly classified redds by species 64–100% of the time. The size of substrate materials below Lighthouse Hill Dam is within the preferred ranges for spawning for these four species indicating that river armoring has not negatively impacted salmonid production. Intra-specific and inter-specific competition for spawning sites may influence redd site selection for smaller salmonids and could be an impediment for Atlantic salmon (S. salar) restoration.

  19. Efficacy and toxicity of iodine disinfection of Atlantic salmon eggs

    USGS Publications Warehouse

    Chalupnicki, M.A.; Ketola, H.G.; Starliper, C.E.; Gallagher, D.

    2011-01-01

    Recent interest in the restoration of Atlantic salmon Salmo salar in the Great Lakes has given rise to new culture techniques and management programs designed to reduce pathogen transmission while stabilizing and enhancing wild populations. We examined the toxicity of iodine to Atlantic salmon eggs and its effectiveness as a disinfectant against bacteria on egg surfaces. We spawned and fertilized eight gravid Atlantic salmon from Cayuga Lake, New York, and exposed their eggs to 10 concentrations of iodine (5, 10, 50, 75, 100, 500, 750, 1,000, 5,000, and 7,500 mg/L) for 30 min during water hardening. An additional subsample of unfertilized eggs was also exposed to some of the same concentrations of iodine (5, 10, 50, 75, and 100 mg/L) to determine the efficiency of disinfection. Viable eggs were only obtained from four females. Survival of eggs to the eyed stage and hatch tended to be reduced at iodine concentrations of 50 and 75 mg/L and was significantly reduced at concentrations of 100 mg/L iodine or more. We calculated the concentrations of iodine that killed 50% of the Atlantic salmon eggs at eye-up and hatch to be 175 and 85 mg/L, respectively. Aeromonas veronii, A. schubertii, A. hydrophila, A. caviae, Plesiomonas shiggeloides, and Citrobacter spp. were the predominant bacteria present on the surface of green eggs and were significantly reduced by an iodine immersion. The use of iodine as a disinfectant on Atlantic salmon eggs was effective at low concentrations (50–75 mg/L), for which toxicity to Atlantic salmon was minimal.

  20. Comparing life history characteristics of Lake Michigan’s naturalized and stocked Chinook Salmon

    USGS Publications Warehouse

    Kerns, Janice A; Rogers, Mark W.; Bunnell, David B.; Claramunt, Randall M.; Collingsworth, Paris D.

    2016-01-01

    Lake Michigan supports popular fisheries for Chinook Salmon Oncorhynchus tshawytscha that have been sustained by stocking since the late 1960s. Natural recruitment of Chinook Salmon in Lake Michigan has increased in the past few decades and currently contributes more than 50% of Chinook Salmon recruits. We hypothesized that selective forces differ for naturalized populations born in the wild and hatchery populations, resulting in divergent life history characteristics with implications for Chinook Salmon population production and the Lake Michigan fishery. First, we conducted a historical analysis to determine if life history characteristics changed through time as the Chinook Salmon population became increasingly naturalized. Next, we conducted a 2-year field study of naturalized and hatchery stocked Chinook Salmon spawning populations to quantify differences in fecundity, egg size, timing of spawning, and size at maturity. In general, our results did not indicate significant life history divergence between naturalized and hatchery-stocked Chinook Salmon populations in Lake Michigan. Although historical changes in adult sex ratio were correlated with the proportion of naturalized individuals, changes in weight at maturity were better explained by density-dependent factors. The field study revealed no divergence in fecundity, timing of spawning, or size at maturity, and only small differences in egg size (hatchery > naturalized). For the near future, our results suggest that the limited life history differences observed between Chinook Salmon of naturalized and hatchery origin will not lead to large differences in characteristics important to the dynamics of the population or fishery.

  1. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering

    PubMed Central

    Arulmoli, Janahan; Wright, Heather J.; Phan, Duc T.T.; Sheth, Urmi; Que, Richard A.; Botten, Giovanni A.; Keating, Mark; Botvinick, Elliot L.; Pathak, Medha M.; Zarembinski, Thomas I.; Yanni, Daniel S.; Razorenova, Olga V.; Hughes, Christopher C.W.; Flanagan, Lisa A.

    2017-01-01

    Human neural stem/progenitor cells (hNSPCs) are good candidates for treating central nervous system (CNS) trauma since they secrete beneficial trophic factors and differentiate into mature CNS cells; however, many cells die after transplantation. This cell death can be ameliorated by inclusion of a biomaterial scaffold, making identification of optimal scaffolds for hNSPCs a critical research focus. We investigated the properties of fibrin-based scaffolds and their effects on hNSPCs and found that fibrin generated from salmon fibrinogen and thrombin stimulates greater hNSPC proliferation than mammalian fibrin. Fibrin scaffolds degrade over the course of a few days in vivo, so we sought to develop a novel scaffold that would retain the beneficial properties of fibrin but degrade more slowly to provide longer support for hNSPCs. We found combination scaffolds of salmon fibrin with interpenetrating networks (IPNs) of hyaluronic acid (HA) with and without laminin polymerize more effectively than fibrin alone and generate compliant hydrogels matching the physical properties of brain tissue. Furthermore, combination scaffolds support hNSPC proliferation and differentiation while significantly attenuating the cell-mediated degradation seen with fibrin alone. HNSPCs express two fibrinogen-binding integrins, αVβ1 and α5β1, and several laminin binding integrins (α7β1, α6β1, α3β1) that can mediate interaction with the scaffold. Lastly, to test the ability of scaffolds to support vascularization, we analyzed human cord blood-derived endothelial cells alone and in co-culture with hNSPCs and found enhanced vessel formation and complexity in co-cultures within combination scaffolds. Overall, combination scaffolds of fibrin, HA, and laminin are excellent biomaterials for hNSPCs. PMID:27475528

  2. Complex trophic interactions of calanoid copepods in the Benguela upwelling system

    NASA Astrophysics Data System (ADS)

    Schukat, Anna; Auel, Holger; Teuber, Lena; Lahajnar, Niko; Hagen, Wilhelm

    2014-01-01

    Life-cycle adaptations, dietary preferences and trophic levels of calanoid copepods from the northern Benguela Current off Namibia were determined via lipid classes, marker fatty acids and stable isotope analyses, respectively. Trophic levels of copepod species were compared to other zooplankton and top consumers. Lipid class analyses revealed that three of the dominant calanoid copepod species stored wax esters, four accumulated triacylglycerols and another three species were characterised by high phospholipid levels. The two biomarker approaches (via fatty acids and stable isotopes) revealed a complex pattern of trophic positions for the various copepod species, but also highlighted the dietary importance of diatoms and dinoflagellates. Calanoides carinatus and Nannocalanus minor occupied the lowest trophic level (predominantly herbivorous) corresponding to high amounts of fatty acid markers for diatoms (e.g. 16:1(n - 7)) and dinoflagellates (e.g. 18:4(n - 3)). These two copepod species represent the classical link between primary production and higher trophic levels. All other copepods belonged to secondary or even tertiary (some deep-sea copepods) consumers. The calanoid copepod species cover the entire range of δ15N ratios, as compared to δ15N ratios of all non-calanoid taxa investigated, from salps to adult fish. These data emphasise that the trophic roles of calanoid copepods are far more complex than just interlinking primary producers with pelagic fish, which should also be considered in the process of developing realistic food-web models of coastal upwelling systems.

  3. Scour of chinook salmon redds on suction dredge tailings

    Treesearch

    Bret C. Harvey; Thomas E. Lisle

    1999-01-01

    Abstract - We measured scour of the redds of chinook salmon Oncorhynchus tshawytscha on dredge tailings and natural substrates in three tributaries of the Klamath River, California. We measured maximum scour with scour chains and net scour by surveying before and after high winter flows. Scour of chinook salmon redds located on dredge tailings exceeded scour of redds...

  4. Predator personality structures prey communities and trophic cascades.

    PubMed

    Start, Denon; Gilbert, Benjamin

    2017-03-01

    Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality - consistent individual differences in suites of behaviours - may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator-resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades. © 2017 John Wiley & Sons Ltd/CNRS.

  5. From neurons to epidemics: How trophic coherence affects spreading processes.

    PubMed

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models-one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network-and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

  6. From neurons to epidemics: How trophic coherence affects spreading processes

    NASA Astrophysics Data System (ADS)

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

  7. Temporal signal processing of dolphin biosonar echoes from salmon prey.

    PubMed

    Au, Whitlow W L; Ou, Hui Helen

    2014-08-01

    Killer whales project short broadband biosonar clicks. The broadband nature of the clicks provides good temporal resolution of echo highlights and allows for the discriminations of salmon prey. The echoes contain many highlights as the signals reflect off different surfaces and parts of the fish body and swim bladder. The temporal characteristics of echoes from salmon are highly aspect dependent and six temporal parameters were used in a support vector machine to discriminate between species. Results suggest that killer whales can classify salmon based on their echoes and provide some insight as to which features might enable the classification.

  8. Humpback whales feed on hatchery-released juvenile salmon

    PubMed Central

    Straley, Janice M.; McPhee, Megan V.; Atkinson, Shannon; Reifenstuhl, Steve

    2017-01-01

    Humpback whales are remarkable for the behavioural plasticity of their feeding tactics and the diversity of their diets. Within the last decade at hatchery release sites in Southeast Alaska, humpback whales have begun exploiting juvenile salmon, a previously undocumented prey. The anthropogenic source of these salmon and their important contribution to local fisheries makes the emergence of humpback whale predation a concern for the Southeast Alaska economy. Here, we describe the frequency of observing humpback whales, examine the role of temporal and spatial variables affecting the probability of sighting humpback whales and describe prey capture behaviours at five hatchery release sites. We coordinated twice-daily 15 min observations during the spring release seasons 2010–2015. Using logistic regression, we determined that the probability of occurrence of humpback whales increased after releases began and decreased after releases concluded. The probability of whale occurrence varied among release sites but did not increase significantly over the 6 year study period. Whales were reported to be feeding on juvenile chum, Chinook and coho salmon, with photographic and video records of whales feeding on coho salmon. The ability to adapt to new prey sources may be key to sustaining their population in a changing ocean. PMID:28791145

  9. Humpback whales feed on hatchery-released juvenile salmon.

    PubMed

    Chenoweth, Ellen M; Straley, Janice M; McPhee, Megan V; Atkinson, Shannon; Reifenstuhl, Steve

    2017-07-01

    Humpback whales are remarkable for the behavioural plasticity of their feeding tactics and the diversity of their diets. Within the last decade at hatchery release sites in Southeast Alaska, humpback whales have begun exploiting juvenile salmon, a previously undocumented prey. The anthropogenic source of these salmon and their important contribution to local fisheries makes the emergence of humpback whale predation a concern for the Southeast Alaska economy. Here, we describe the frequency of observing humpback whales, examine the role of temporal and spatial variables affecting the probability of sighting humpback whales and describe prey capture behaviours at five hatchery release sites. We coordinated twice-daily 15 min observations during the spring release seasons 2010-2015. Using logistic regression, we determined that the probability of occurrence of humpback whales increased after releases began and decreased after releases concluded. The probability of whale occurrence varied among release sites but did not increase significantly over the 6 year study period. Whales were reported to be feeding on juvenile chum, Chinook and coho salmon, with photographic and video records of whales feeding on coho salmon. The ability to adapt to new prey sources may be key to sustaining their population in a changing ocean.

  10. Evolutionary history of Pacific salmon in dynamic environments

    PubMed Central

    Waples, Robin S; Pess, George R; Beechie, Tim

    2008-01-01

    Contemporary evolution of Pacific salmon (Oncorhynchus spp.) is best viewed in the context of the evolutionary history of the species and the dynamic ecosystems they inhabit. Speciation was complete by the late Miocene, leaving c. six million years for intraspecific diversification. Following the most recent glacial maximum, large areas became available for recolonization. Current intraspecific diversity is thus the product of recent evolution overlaid onto divergent historical lineages forged during recurrent episodes of Pleistocene glaciation. In northwestern North America, dominant habitat features have been relatively stable for the past 5000 years, but salmon ecosystems remain dynamic because of disturbance regimes (volcanic eruptions, landslides, wildfires, floods, variations in marine and freshwater productivity) that occur on a variety of temporal and spatial scales. These disturbances both create selective pressures for adaptive responses by salmon and inhibit long-term divergence by periodically extirpating local populations and creating episodic dispersal events that erode emerging differences. Recent anthropogenic changes are replicated pervasively across the landscape and interrupt processes that allow natural habitat recovery. If anthropogenic changes can be shaped to produce disturbance regimes that more closely mimic (in both space and time) those under which the species evolved, Pacific salmon should be well-equipped to deal with future challenges, just as they have throughout their evolutionary history. PMID:25567626

  11. Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems

    PubMed Central

    Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise

    2015-01-01

    In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.

  12. Sexual difference in PCB concentrations of coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Madenjian, Charles P.; Schrank, Candy S.; Begnoche, Linda J.; Elliott, Robert F.; Quintal, Richard T.

    2010-01-01

    We determined polychlorinated biphenyl (PCB) concentrations in 35 female coho salmon (Oncorhynchus kisutch) and 60 male coho salmon caught in Lake Michigan (Michigan and Wisconsin, United States) during the fall of 1994 and 1995. In addition, we determined PCB concentrations in the skin-on fillets of 26 female and 19 male Lake Michigan coho salmon caught during the fall of 2004 and 2006. All coho salmon were age-2 fish. These fish were caught prior to spawning, and therefore release of eggs could not account for sexual differences in PCB concentrations because female coho salmon spawn only once during their lifetime. To investigate whether gross growth efficiency (GGE) differed between the sexes, we applied bioenergetics modeling. Results showed that, on average, males were 19% higher in PCB concentration than females, based on the 1994–1995 dataset. Similarly, males averaged a 20% higher PCB concentration in their skin-on fillets compared with females. According to the bioenergetics modeling results, GGE of adult females was less than 1% higher than adult male GGE. Thus, bioenergetics modeling could not explain the 20% higher PCB concentration exhibited by the males. Nonetheless, a sexual difference in GGE remained a plausible explanation for the sexual difference in PCB concentrations.

  13. Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2006 - September 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Mueller, Robert P.; Murray, Katherine J.

    2008-08-08

    From 1999 through 2007, the Fish and Wildlife Program of the Bonneville Power Administration funded a project to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Data were collected to ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. The projects objectives are consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats tomore » the production of salmon in the Columbia River Basin. Because of the influence of mainstem habitat on salmon production, there is a continued need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. During FY 2007, Pacific Northwest National Laboratory focused on (1) locating and mapping deep-water fall Chinook salmon and chum salmon spawning areas, (2) investigating the interaction between groundwater and surface water near fall Chinook and chum salmon spawning areas, and (3) providing in-season hyporheic temperature and water surface elevation data to assist state agencies with emergence timing and redd dewatering estimates. This report documents the studies and tasks performed by PNNL during FY 2007. Chapter 1 provides a description of the searches conducted for deepwater redds-adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning

  14. Multiscale thermal refugia and stream habitat associations of chinook salmon in northwestern Oregon

    USGS Publications Warehouse

    Torgersen, Christian E.; Price, David M.; Li, Hiram W.; McIntosh, B.A.

    1999-01-01

    We quantified distribution and behavior of adult spring chinook salmon (Oncorhynchus tshawytscha) related to patterns of stream temperature and physical habitat at channel-unit, reach-, and section-level spatial scales in a wilderness stream and a disturbed stream in the John Day River basin in northeastern Oregon. We investigated the effectiveness of thermal remote sensing for analyzing spatial patterns of stream temperature and assessed habitat selection by spring chinook salmon, evaluating whether thermal refugia might be responsible for the persistence of these stocks in rivers where water temperatures frequently exceed their upper tolerance levels (25A?C) during spawning migration. By presenting stream temperature and the ecology of chinook salmon in a historical context, we could evaluate how changes in riverine habitat and thermal spatial structure, which can be caused by land-use practices, may influence distributional patterns of chinook salmon. Thermal remote sensing provided spatially continuous maps of stream temperature for reaches used by chinook salmon in the upper subbasins of the Middle Fork and North Fork John Day River. Electivity analysis and logistic regression were used to test for associations between the longitudinal distribution of salmon and cool-water areas and stream habitat characteristics. Chinook salmon were distributed nonuniformly in reaches throughout each stream. Salmon distribution and cool water temperature patterns were most strongly related at reach-level spatial scales in the warm stream, the Middle Fork (maximum likelihood ratio: P 0.30). Pools were preferred by adult chinook salmon in both subbasins (Bonferroni confidence interval: P a?? 0.05); however, riffles were used proportionately more frequently in the North Fork than in the Middle Fork. Our observations of thermal refugia and their use by chinook salmon at multiple spatial scales reveal that, although heterogeneity in the longitudinal stream temperature profile may

  15. Within-farm spread of infectious salmon anemia virus (ISAV) in Atlantic salmon Salmo salar farms in Chile.

    PubMed

    Mardones, F O; Jansen, P A; Valdes-Donoso, P; Jarpa, M; Lyngstad, T M; Jimenez, D; Carpenter, T E; Perez, A M

    2013-09-24

    Spread of infectious salmon anemia virus (ISAV) at the cage level was quantified using a subset of data from 23 Atlantic salmon Salmo salar farms located in southern Chile. Data collected from official surveillance activities were systematically organized to obtain detailed information on infectious salmon anemia (ISA) outbreaks. Descriptive statistics for outbreak duration, proportion of infected fish, and time to secondary infection were calculated to quantify the magnitude of ISAV incursions. Linear and multiple failure time (MFT) regression models were used to determine factors associated with the cage-level reproduction number (Rc) and hazard rate (HR) for recurrent events, respectively. In addition, the Knox test was used to assess if cage-to-cage transmissions were clustered in space and time. Findings suggest that within farms, ISA outbreaks, on average, lasted 30 wk (median = 26 wk, 95% CI = 24 to 37 wk) and affected 57.3% (95% CI = 47.7 to 67.0%) of susceptible cages. The median time to secondarily diagnosed cages was 23 d. Occurrence of clinical ISAV outbreaks was significantly associated with increased Rc, whereas increased HR was significantly associated with clinical outbreaks and with a large number of fish. Spatio-temporal analysis failed to identify clustering of cage cases, suggesting that within-farm ISAV spread is independent of the spatial location of the cages. Results presented here will help to better understand ISAV transmission, to improve the design of surveillance programs in Chile and other regions in which salmon are intensively farmed, and to examine the economic impact of ISAV and related management strategies on various cost and demand shifting factors.

  16. Metabolic effects of p,p'-DDE on Atlantic salmon hepatocytes.

    PubMed

    Olsvik, Pål A; Søfteland, Liv

    2018-04-01

    Decades after being banned in many countries, DDT and its metabolites are still considered major environmental hazards. The p,p'-DDE isomer, the DDT metabolite found in highest concentration in aquaculture feeds, is an endocrine disruptor with demonstrated ability to induce epigenetic effects. This study aimed at examining the impact of p,p'-DDE on Atlantic salmon. Primary hepatocytes were exposed to four concentrations of p,p'-DDE (0.1, 1, 10, 100 μm) for 48 hours, and endpoints included cytotoxicity, global DNA methylation, targeted transcription and metabolomics profiling (100 μm). p,p'-DDE was moderately cytotoxic at 100 μm. No impact was seen on global DNA methylation. Vtg1 and esr1 transcription, markers of endocrine disruption, was most strongly induced at 10 μm p,p'-DDE, while ar showed strongest response at 100 μm. Metabolomics profiling showed that p,p'-DDE at 100 μm most strongly affected carbohydrate metabolism, primary bile acid metabolism, leucine, isoleucine and valine metabolism, diacylglycerol and sphingolipid metabolism. Observed changes in lipid levels suggest that p,p'-DDE interferes with phospholipid membrane biosynthesis. Elevation of bile acid levels in p,p'-DDE-exposed hepatocytes indicates upregulation of synthesis of bile acids after cytochrome P450 activation. Pathway analysis showed that the superpathway of methionine degradation was the most significantly affected pathway by p,p'-DDE exposure, while endocrine system disorder topped the diseases and disorder ranking. In conclusion, this work predicts an endocrine response to p,p'-DDE exposure, and demonstrates how this legacy pesticide might interfere with mechanisms linked to DNA methylation in Atlantic salmon hepatocytes. Copyright © 2017 John Wiley & Sons, Ltd.

  17. 77 FR 12800 - Fresh and Chilled Atlantic Salmon From Norway: Revocation of Antidumping and Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Atlantic Salmon From Norway: Revocation of Antidumping and Countervailing Duty Orders AGENCY: Import...'') and countervailing duty (``CVD'') orders on fresh and chilled Atlantic salmon (``salmon'') from Norway... orders on salmon from Norway, pursuant to sections 751(c) and 752 of the Tariff Act of 1930, as amended...

  18. Improving the Quality and Scientific Understanding of Trophic Magnification Factors (TMFs)

    EPA Science Inventory

    This short 1000 word report presents a series of research needs for improving the measurement and understanding of trophic magnification factors (TMFs). TMFs are useful measures of trophic magnification and represent the diet-weighted average biomagnification factor (BMF) of che...

  19. PACIFIC NORTHWEST SALMON: THE MOST LIKELY FUTURE AND SOME ALTERNATIVES

    EPA Science Inventory

    Throughout the Pacific Northwest, all wild salmon runs have declined since 1850 and some have disappeared. A sustainable future for wild salmon remains elusive. Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline. Each year, hundreds of...

  20. Stabilizing Smoked Salmon (Oncorhynchus gorbuscha) Tissue after Extraction of Oil

    USDA-ARS?s Scientific Manuscript database

    Alaska salmon oils are rich in n-3 polyunsaturated fatty acids and are prized by the food and pharmaceutical industries. However, the tissue that remains after oil extraction does not have an established market. Discarded salmon tissues were preserved using a combination of smoke-processing and acid...

  1. PACIFIC SALMON FISHERIES OF THE WORLD: STATUS, PROSPECTS, AND CHALLENGES

    EPA Science Inventory

    All seven species of Pacific salmon on both sides of the North Pacific have declined significantly from historic levels, but not as dramatically as have Atlantic salmon. Hatchery production has been used to maintain some runs in the southern region of the range (e.g., Japan, Kor...

  2. Lucy Maynard Salmon (1853-1927): Pioneering Views on Teaching History.

    ERIC Educational Resources Information Center

    Nelson, Murry R.

    1996-01-01

    Profiles the career and contributions of educator and historian Lucy Maynard Salmon. Salmon's work on uniform standards for college admission became the basis of the College Entrance Examination. She developed a curriculum for elementary school history instruction that incorporated classical literature, folk tales, and biographies. (MJP)

  3. Application of Diversity Indices to Quantify Early Life-History Diversity for Chinook Salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.

    2014-03-01

    We developed an index of early life history diversity (ELHD) for Pacific salmon (Oncorhynchus spp.) Early life history diversity is the variation in morphological and behavioral traits expressed within and among populations by individual juvenile salmon during their downstream migration. A standard quantitative method does not exist for this prominent concept in salmon biology.

  4. 40 CFR 408.190 - Applicability; description of the West Coast mechanized salmon processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Coast mechanized salmon processing subcategory. 408.190 Section 408.190 Protection of Environment... PROCESSING POINT SOURCE CATEGORY West Coast Mechanized Salmon Processing Subcategory § 408.190 Applicability; description of the West Coast mechanized salmon processing subcategory. The provisions of this subpart are...

  5. 76 FR 36896 - Salmon-Challis National Forest, ID; Forestwide Invasive Plant Treatment Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Salmon-Challis National Forest, ID; Forestwide Invasive... to the biological diversity and ecological integrity within and outside the Salmon-Challis National... loss of recreational opportunities. Within the 3,108,904 acres of the of the Salmon-Challis National...

  6. 40 CFR 408.160 - Applicability; description of the Alaskan hand-butchered salmon processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Alaskan hand-butchered salmon processing subcategory. 408.160 Section 408.160 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Hand-Butchered Salmon Processing Subcategory § 408.160 Applicability; description of the Alaskan hand-butchered salmon processing subcategory. The provisions of this subpart are...

  7. 40 CFR 408.190 - Applicability; description of the West Coast mechanized salmon processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Coast mechanized salmon processing subcategory. 408.190 Section 408.190 Protection of Environment... PROCESSING POINT SOURCE CATEGORY West Coast Mechanized Salmon Processing Subcategory § 408.190 Applicability; description of the West Coast mechanized salmon processing subcategory. The provisions of this subpart are...

  8. 40 CFR 408.160 - Applicability; description of the Alaskan hand-butchered salmon processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Alaskan hand-butchered salmon processing subcategory. 408.160 Section 408.160 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Hand-Butchered Salmon Processing Subcategory § 408.160 Applicability; description of the Alaskan hand-butchered salmon processing subcategory. The provisions of this subpart are...

  9. Using image analysis to predict the weight of Alaskan salmon of different species.

    PubMed

    Balaban, Murat O; Unal Sengör, Gülgün F; Gil Soriano, Mario; Guillén Ruiz, Elena

    2010-04-01

    After harvesting, salmon is sorted by species, size, and quality. This is generally manually done by operators. Automation would bring repeatability, objectivity, and record-keeping capabilities to these tasks. Machine vision (MV) and image analysis have been used in sorting many agricultural products. Four salmon species were tested: pink (Oncorhynchus gorbuscha), red (Oncorhynchus nerka), silver (Oncorhynchus kisutch), and chum (Oncorhynchus keta). A total of 60 whole fish from each species were first weighed, then placed in a light box to take their picture. Weight compared with view area as well as length and width correlations were developed. In addition the effect of "hump" development (see text) of pink salmon on this correlation was investigated. It was possible to predict the weight of a salmon by view area, regardless of species, and regardless of the development of a hump for pinks. Within pink salmon there was a small but insignificant difference between predictive equations for the weight of "regular" fish and "humpy" fish. Machine vision can accurately predict the weight of whole salmon for sorting.

  10. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry; Tezak, E.; Endicott, Rick

    The efficacy of captive broodstock programs depends on high in-culture survival and the fitness of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. The following summarizes some of the work performed and results from the FY 2001 performance period: (1) The incidence of male maturation of age-1 chinook salmon was significantly reduced by reducing growth in the first year of rearing. (2) Experimentally manipulated growth rates of captively-reared coho salmon had significant effects on female maturation rate, eggmore » size, and fecundity, and the effects were stage-specific (i.e., pre-smolt vs. post-smolt). (3) A combination of Renogen and MT239 vaccination of yearling chinook salmon given an acute R. salmoninarum challenge had a significantly longer survival time than the mock-vaccinated group. The survival time was marginally higher than was seen in acutely challenged fish vaccinated with either Renogen or MT239 alone and suggests that a combination vaccine of Renogen and MT239 may be useful as both a prophylactic and therapeutic agent against BKD. (4) Full-sib (inbred) groups of chinook salmon have thus far exhibited lower ocean survival than half-sib and non-related groups. Effects of inbreeding on fluctuating asymmetry did not follow expected patterns. (5) Sockeye salmon were exposed to specific odorants at either the alevin/emergent fry stage or the smolt stage to determine the relative importance of odorant exposure during key developmental periods and the importance of exposure duration. (6) Experimental studies to determine the effects of exercise conditioning on steelhead reproductive behavior and the effects of male body size on chinook salmon fertilization success during natural spawning were completed.« less

  11. Genetic variation in chinook, Oncorhynchus tshawytscha, and coho, O. Kisutchsalmon from the north coast of Washington

    USGS Publications Warehouse

    Reisenbichler, R.R.; Phelps, S.R.

    1987-01-01

    We used starch-gel electrophoresis to genetically characterize the populations of chinook salmon, Oncorhynchus tshawytscha, and coho salmon, O. kisutch, in the major drainages of the north coast of Washington (the Quillayute, Uoh, Queets, and Quinault Rivers). Of 55 loci examined for electrophoretically detectable variation. 6 were polymorphic (frequency of the common allele was less than 0.95) in chinook salmon and 3 in coho salmon. Statistical tests of interdrainage and intradrainage variation for coho salmon were tenuous because most of the fish examined were from a single year class so that we could not account for variation among year classes. Nevertheless, these tests suggested that distinct stocks ofcoho salmon exist within drainages. and that variation was not significantly greater among drainages than within drainages. Interdrainage variation for wild chinook salmon was not significant. The data suggested that summer chinook salmon were electrophoretically different from fall chinook salmon, and the hatchery populations of chinook salmon were distinct from wild fish. A hatchery population developed primarily from north coast fish was electrophoretically more similar to wild chinook salmon than were the others.

  12. Classroom-Community Salmon Enhancement Project.

    ERIC Educational Resources Information Center

    Hubbard-Gray, Sarah

    1988-01-01

    Describes a program in the Bellevue (Washington) public schools in which elementary and middle school teachers and students raise coho and Chinook salmon in the classroom and later release them into a nearby stream. (TW)

  13. The effects of urbanization on trophic interactions in a desert landscape

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods: Trophic systems can be affected through top-down (predators) and bottom-up (resources) impacts. Human activity can alter trophic systems by causing predators to avoid areas (top-down) or by providing increased resources through irrigation and decorative plants that attra...

  14. Individuals in food webs: the relationships between trophic position, omnivory and among-individual diet variation.

    PubMed

    Svanbäck, Richard; Quevedo, Mario; Olsson, Jens; Eklöv, Peter

    2015-05-01

    Among-individual diet variation is common in natural populations and may occur at any trophic level within a food web. Yet, little is known about its variation among trophic levels and how such variation could affect phenotypic divergence within populations. In this study we investigate the relationships between trophic position (the population's range and average) and among-individual diet variation. We test for diet variation among individuals and across size classes of Eurasian perch (Perca fluviatilis), a widespread predatory freshwater fish that undergoes ontogenetic niche shifts. Second, we investigate among-individual diet variation within fish and invertebrate populations in two different lake communities using stable isotopes. Third, we test potential evolutionary implications of population trophic position by assessing the relationship between the proportion of piscivorous perch (populations of higher trophic position) and the degree of phenotypic divergence between littoral and pelagic perch sub-populations. We show that among-individual diet variation is highest at intermediate trophic positions, and that this high degree of among-individual variation likely causes an increase in the range of trophic positions among individuals. We also found that phenotypic divergence was negatively related to trophic position in a population. This study thus shows that trophic position is related to and may be important for among-individual diet variation as well as to phenotypic divergence within populations.

  15. Comparison of allergenic properties of salmon (Oncorhynchus nerka) between landlocked and anadromous species.

    PubMed

    Kondo, Yasuto; Ahn, Jeakun; Komatsubara, Ryo; Terada, Akihiko; Yasuda, Toshitaka; Tsuge, Ikuya; Urisu, Atsuo

    2009-06-01

    Salmon is one of the most widely consumed seafoods in Japan and many other countries around the world. Due to the confirmed cases of salmon-induced allergy, the food sanitation law in Japan stipulates salmon as one of the specific food items for which labeling is recommended when used as an ingredient of processed foods. However, trout, the landlocked form of anadromous salmon, is not subject to the allergen-labeling requirements, even though both populations belong to a single species. Since no supporting data have been demonstrated to make a clear distinction between these two populations in terms of allergenicity, we comparatively examined their allergenic properties using sera from patients allergic to fish. Extracts of Oncorhynchus nerka from different habitats were obtained: kokanee (landlocked) and red salmon (anadromous). Control extracts were derived from four other species. This study focused on the (1) IgE-binding capacity of the fish extracts in patients' sera (n = 50), (2) ELISA inhibition test (n = 6), and (3) inhibition immunoblot test (n = 8) between the kokanee and red salmon. The extracts from kokanee and red salmon showed the highest correlation with each other in terms of the IgE-binding capacity, and showed complete (100%) reciprocal cross-inhibition in the ELISA inhibition test. On immunoblotting, there was no marked difference in the staining pattern between the two extracts, and each IgE-binding band gradually disappeared when the patients' sera were preincubated with the counterpart antigen in a dose-dependent manner. These results suggest that kokanee has similar allergenic properties to red salmon.

  16. Juvenile Chinook Salmon mortality in a Snake River Reservoir: Smallmouth Bass predation revisited

    USGS Publications Warehouse

    Erhardt, John M.; Tiffan, Kenneth F.; Connor, William P.

    2018-01-01

    Predation by nonnative fishes has been identified as a contributing factor in the decline of juvenile salmonids in the Columbia River basin. We examined the diet composition of Smallmouth Bass Micropterus dolomieu and estimated the consumption and predation loss of juvenile Chinook Salmon Oncorhynchus tshawytscha in Lower Granite Reservoir on the Snake River. We examined 4,852 Smallmouth Bass stomachs collected from shoreline habitats during April–September 2013–2015. Chinook Salmon were the second most commonly consumed fish by all size‐classes of Smallmouth Bass (≥150 mm TL) throughout the study. Over the 3 years studied, we estimated that a total of 300,373 Chinook Salmon were consumed by Smallmouth Bass in our 22‐km study area, of which 97% (291,884) were subyearlings (age 0) based on length frequency data. A majority of the loss (61%) occurred during June, which coincided with the timing of hatchery releases of subyearling fall Chinook Salmon. Compared to an earlier study, mean annual predation loss increased more than 15‐fold from 2,670 Chinook Salmon during 1996–1997 to 41,145 Chinook Salmon during 2013–2015 (in reaches that could be compared), despite lower contemporary Smallmouth Bass abundances. This increase can be explained in part by increases in Smallmouth Bass consumption rates, which paralleled increases in subyearling Chinook Salmon densities—an expected functional response by an opportunistic consumer. Smallmouth Bass are currently significant predators of subyearling Chinook Salmon in Lower Granite Reservoir and could potentially be a large source of unexplained mortality.

  17. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  18. RESTORING SALMON TO THE PACIFIC NORTHWEST: LEGACIES, CHOICES, AND TRAJECTORIES

    EPA Science Inventory

    The general policy goal of protecting and restoring runs of wild Pacific salmon enjoys wide public support. Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild salmon in the western contiguous United States. Of the Earth's fou...

  19. Effects of oil extraction methods on physical and chemical properties of red salmon oils (Oncorhynchus nerka)

    USDA-ARS?s Scientific Manuscript database

    Four different red salmon oil extraction processes were used to extract oil from red salmon heads: RS1 involved a mixture of ground red salmon heads and water, no heat treatment, and centrifugation; RS2 involved ground red salmon heads (no water added), heat treatment, and centrifugation; RS3 involv...

  20. Effect of Inclusion of Salmon Roe on Characteristics of Salmon Baby Food Products

    USDA-ARS?s Scientific Manuscript database

    Baby food was formulated from sockeye salmon (puree alone, puree +chunks, puree +pink row, puree +pink row +chunks, puree +red row, puree +red roe +chunks). In the 1st study, physical (pH, instrumental color, water activity) and descriptive sensory (odor, flavor, texture, visual color) characteristi...

  1. Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America

    PubMed Central

    Malick, Michael J.; Cox, Sean P.

    2016-01-01

    Sockeye salmon (Oncorhynchus nerka) stocks throughout the southern part of their North American range have experienced declines in productivity over the past two decades. In this study, we tested the hypothesis that pink (O. gorbuscha) and chum (O. keta) salmon stocks have also experienced recent declines in productivity by investigating temporal and spatial trends in productivity of 99 wild North American pink and chum salmon stocks. We used a combination of population dynamics and time series models to quantify individual stock trends as well as common temporal trends in pink and chum salmon productivity across local, regional, and continental spatial scales. Our results indicated widespread declines in productivity of wild chum salmon stocks throughout Washington (WA) and British Columbia (BC) with 81% of stocks showing recent declines in productivity, although the exact form of the trends varied among regions. For pink salmon, the majority of stocks in WA and BC (65%) did not have strong temporal trends in productivity; however, all stocks that did have trends in productivity showed declining productivity since at least brood year 1996. We found weaker evidence of widespread declines in productivity for Alaska pink and chum salmon, with some regions and stocks showing declines in productivity (e.g., Kodiak chum salmon stocks) and others showing increases (e.g., Alaska Peninsula pink salmon stocks). We also found strong positive covariation between stock productivity series at the regional spatial scale for both pink and chum salmon, along with evidence that this regional-scale positive covariation has become stronger since the early 1990s in WA and BC. In general, our results suggest that common processes operating at the regional or multi-regional spatial scales drive productivity of pink and chum salmon stocks in western North America and that the effects of these process on productivity may change over time. PMID:26760510

  2. Effects of introduced fishes on wild juvenile coho salmon in three shallow pacific northwest lakes

    USGS Publications Warehouse

    Bonar, Scott A.; Bolding, B.D.; Divens, M.; Meyer, W.

    2005-01-01

    Declines in Pacific salmon Oncorhynchus spp. have been blamed on hydropower, overfishing, ocean conditions, and land use practices; however, less is known about the impacts of introduced fish. Most of the hundreds of lakes and ponds in the Pacific Northwest contain introduced fishes, and many of these water bodies are also important for salmon production, especially of coho salmon O. kisutch. Over 2 years, we examined the predation impacts of 10 common introduced fishes (brown bullhead Ameiurus nebulosus, black crappie Pomoxis nigro-maculatus, bluegill Lepomis macrochirus, golden shiner Notemigonus crysoleucas, green sunfish L. cyanellus, largemouth bass Micropterus salmoides, pumpkinseed L. gibbosus, rainbow trout O. mykiss, warmouth L. gulosus, and yellow perch Perca flavescens) and two native fishes (cutthroat trout O. clarkii and prickly sculpin Cottus asper) on wild juvenile coho salmon in three shallow Pacific Northwest lakes, all located in different watersheds. Of these species, largemouth bass were responsible for an average of 98% of the predation on coho salmon in all lakes, but the total impact to each run varied among lakes and years. Very few coho salmon were eaten by black crappies, brown bullheads, cutthroat trout, prickly sculpin, or yellow perch, whereas other species were not observed to eat coho salmon. Juvenile coho salmon growth in all lakes was higher than in nearby streams. Therefore, food competition between coho salmon and introduced fishes in lakes was probably not limiting coho salmon populations. Largemouth bass are widespread and are present in 85% of lowland warmwater public-access lakes in Washington (n = 421), 84% of those in Oregon (n = 179), and 74% of those in the eight northwesternmost counties in California (n = 19). Future research would help to identify the impact of largemouth bass predation across the region and prioritize lakes where impacts are most severe. Nevertheless, attempts to transplant or increase largemouth bass

  3. 76 FR 20312 - Fresh and Chilled Atlantic Salmon From Norway: Extension of Time Limits for Preliminary and Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... Atlantic Salmon From Norway: Extension of Time Limits for Preliminary and Final Results of Full Third... countervailing duty (CVD) orders on fresh and chilled Atlantic salmon from Norway, pursuant to section 751(c) of... Salmon U.S., Inc. (Phoenix Salmon), a domestic interested party. Phoenix Salmon claimed interested party...

  4. Titre distribution patterns of infectious haematopoietic necrosis virus in ovarian fluids of hatchery and feral salmon populations

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.; Jenes, C.K.

    1983-01-01

    Infectious haematopoietic mecrosis virus (IHNV) is enzootic in virtually all populations of sockeye salmon, Oncorhynchus nerka (Walbaum), and in populations of chinook salmon, O. tshawytscha (Walbaum), of the Sacramento River drainage in California. This disease is an obstacle in hatcheries using brood stocks from these populations. However, naturally spawning sockeye salmon are highly successful and are the most important commercially fished salmon species in the United States. Most of the commercial landings of sockeye salmon are of feral fish originating in Alaska. The success of natural populations of salmon in which IHNV is enzootic, and the recurrent outbreaks of the disease in hatchery fish, led us to compare IHNW prevalence rates in hatchery and feral salmon populations.

  5. Modulation of Atlantic salmon miRNome response to sea louse infestation.

    PubMed

    Valenzuela-Muñoz, Valentina; Novoa, Beatriz; Figueras, Antonio; Gallardo-Escárate, Cristian

    2017-11-01

    MicroRNAs are non-coding RNA that plays a crucial role in post-transcriptional regulation and immune system regulation. On other hand, sea lice are prevalent parasites that affect salmon farming, generating different degrees of immune suppression depending on the salmon and sea louse species. Caligus rogercresseyi for example, which affects the salmon industry in Chile, decreases Th1 response, macrophage activation, TLR-mediated response and iron regulation in infected fish. In this study, we explore Atlantic salmon miRNome during infestation by C. rogercresseyi. Using small RNA sequencing, we annotated 1718 miRNAs for skin and head kidney from infected Atlantic salmon. The most abundant families identified were mir-10, mir-21, mir-30, mir-181 and let7. Significant differences were found between tissue, with 1404 annotated miRNA in head kidney and 529 in skin. Differential analysis of transcript expression indicated that at an early stage of infestation miRNA expression was higher in head kidney than in skin tissue, revealing tissue-specific expression patterns. In parallel, miRNA target prediction using 3'UTRs from highly regulated immune-related genes and iron metabolism showed that mir-140-4 and mir-181a-2-5 modulate the expression of TLR22 and Aminolevulinic acid synthase, respectively. This study contributes knowledge about the immune response of Atlantic salmon during infestation with sea lice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxinmore » and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via ..beta..-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents.« less

  7. Trace elements in organisms of different trophic groups in the White Sea

    NASA Astrophysics Data System (ADS)

    Budko, D. F.; Demina, L. L.; Martynova, D. M.; Gorshkova, O. M.

    2015-09-01

    Concentrations of trace elements (Fe, Mn, Cu, Pb, Ni, Cr, Cd, As, Co, and Se) have been studied in different trophic groups of organisms: primary producers (seston, presented mostly by phytoplankton), primary consumers (mesozooplankton, macrozooplankton, and bivalves), secondary consumers (predatory macrozooplankton and starfish), and consumers of higher trophic levels (fish species), inhabiting the coastal zone of Kandalaksha Bay and the White Sea (Cape Kartesh). The concentrations of elements differ significantly for the size groups of Sagitta elegans (zooplankton) and blue mussel Mytilus edulis, as well as for the bone and muscle tissues of studied fish species, Atlantic cod Gadus morhua marisalbi and Atlantic wolffish Anarhichas lupus. The concentrations of all the studied elements were lower among the primary consumers and producers, but increased again at higher trophic levels, from secondary consumers to tertiary consumers ("mesozooplankton → macrozooplankton Sagitta elegans" and "mussels → starfish"). Ni and Pb tended to decline through the food chains seston→…→cod and mesozooplankton→…→stickleback. Only the concentrations of Fe increased in all the trophic chains along with the increase of the trophic level.

  8. 9000 years of salmon fishing on the Columbia River, North America

    USGS Publications Warehouse

    Butler, V.L.; O'Connor, J. E.

    2004-01-01

    A large assemblage of salmon bones excavated 50 yr ago from an ???10,000-yr-old archaeological site near The Dalles, Oregon, USA, has been the primary evidence that early native people along the Columbia River subsisted on salmon. Recent debate about the human role in creating the deposit prompted excavation of additional deposits and analysis of archaeologic, geologic, and hydrologic conditions at the site. Results indicate an anthropogenic source for most of the salmonid remains, which have associated radiocarbon dates indicating that the site was occupied as long ago as 9300 cal yr B.P. The abundance of salmon bone indicates that salmon was a major food item and suggests that migratory salmonids had well-established spawning populations in some parts of the Columbia Basin by 9300-8200 yr ago. ?? 2004 University of Washington. All rights reserved.

  9. Survey for infectious hematopoietic necrosis (IHN) virus in Washington salmon

    USGS Publications Warehouse

    Amend, Donald F.; Wood, James W.

    1972-01-01

    A virus disease of juvenile sockeye salmon (Oncorhynchus nerka) has been a problem in Washington hatcheries since first reported by Rucker [9] in 1953. Presumably, the same disease has occurred in Oregon, and it is now referred to as the Oregon, and it is now referred to as the Oregon sockeye disease (OSD) or the sockeye salmon virus (SSV) [8,12]. The primary source of the disease was thought to be from the feeding of raw sockeye salmon viscera, and the incidence decreased when pasteurized diets were used [5]. However, sporadic attacks continue to occur even though pelleted diets containing pasteurized fish products are fed.  

  10. Salmon Farming and Salmon People: Identity and Environment in the Leggatt Inquiry

    ERIC Educational Resources Information Center

    Schreiber, Dorothee

    2003-01-01

    In October of 2001, the Leggatt Inquiry into salmon farming traveled to four small communities (Port Hardy, Tofino, Alert Bay, and Campbell River) close to the centers of operation for the finfish aquaculture industry in British Columbia. In doing so, it gave local people, particularly First Nations people, an opportunity to speak about salmon…

  11. Migration trends of Sockeye Salmon at the northern edge of their distribution

    USGS Publications Warehouse

    Carey, Michael P.; Zimmerman, Christian E.; Keith, Kevin D.; Schelske, Merlyn; Lean, Charles; Douglas, David C.

    2017-01-01

    Climate change is affecting arctic and subarctic ecosystems, and anadromous fish such as Pacific salmon Oncorhynchus spp. are particularly susceptible due to the physiological challenge of spawning migrations. Predicting how migratory timing will change under Arctic warming scenarios requires an understanding of how environmental factors drive salmon migrations. Multiple mechanisms exist by which environmental conditions may influence migrating salmon, including altered migration cues from the ocean and natal river. We explored relationships between interannual variability and annual migration timing (2003–2014) of Sockeye Salmon O. nerka in a subarctic watershed with environmental conditions at broad, intermediate, and local spatial scales. Low numbers of Sockeye Salmon have returned to this high-latitude watershed in recent years, and run size has been a dominant influence on the migration duration and the midpoint date of the run. The duration of the migration upriver varied by as much as 25 d across years, and shorter run durations were associated with smaller run sizes. The duration of the migration was also extended with warmer sea surface temperatures in the staging area and lower values of the North Pacific Index. The midpoint date of the total run was earlier when the run size was larger, whereas the midpoint date was delayed during years in which river temperatures warmed earlier in the season. Documenting factors related to the migration of Sockeye Salmon near the northern limit of their range provides insights into the determinants of salmon migrations and suggests processes that could be important for determining future changes in arctic and subarctic ecosystems.

  12. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors.

    PubMed

    Campos, Carlos; Rocha, Nuno Barbosa F; Lattari, Eduardo; Paes, Flávia; Nardi, António E; Machado, Sérgio

    2016-06-01

    Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials.

  13. Assessing sufficiency of thermal riverscapes for resilient salmon and steelhead populations

    EPA Science Inventory

    Resilient salmon populations require river networks that provide water temperature regimes sufficient to support a diversity of salmonid life histories across space and time. Efforts to protect, enhance and restore watershed thermal regimes for salmon may target specific location...

  14. Impact of early salmon louse, Lepeophtheirus salmonis, infestation and differences in survival and marine growth of sea-ranched Atlantic salmon, Salmo salar L., smolts 1997–2009

    PubMed Central

    Skilbrei, O T; Finstad, B; Urdal, K; Bakke, G; Kroglund, F; Strand, R

    2013-01-01

    The impact of salmon lice on the survival of migrating Atlantic salmon smolts was studied by comparing the adult returns of sea-ranched smolts treated for sea lice using emamectin benzoate or substance EX with untreated control groups in the River Dale in western Norway. A total of 143 500 smolts were released in 35 release groups in freshwater from 1997 to 2009 and in the fjord system from 2007 to 2009. The adult recaptures declined gradually with release year and reached minimum levels in 2007. This development corresponded with poor marine growth and increased age at maturity of ranched salmon and in three monitored salmon populations and indicated unfavourable conditions in the Norwegian Sea. The recapture rate of treated smolts was significantly higher than the controls in three of the releases performed: the only release in 1997, one of three in 2002 and the only group released in sea water in 2007. The effect of treating the smolts against salmon lice was smaller than the variability in return rates between release groups, and much smaller that variability between release years, but its overall contribution was still significant (P < 0.05) and equivalent to an odds ratio of the probability of being recaptured of 1.17 in favour of the treated smolts. Control fish also tended to be smaller as grilse (P = 0.057), possibly due to a sublethal effect of salmon lice. PMID:23311746

  15. An evaluation of antibodies and clinical resistance to salmon calcitonin

    PubMed Central

    Singer, Frederick R.; Aldred, J. Phillip; Neer, Robert M.; Krane, Stephen M.; Potts, John T.; Bloch, Kurt J.

    1972-01-01

    21 patients with Paget's disease of bone and one with osteoporosis were studied to detect development of antibodies to salmon calcitonin during chronic therapy. Antibody titers ranged from 1:40 to 1:30,000 in plasma obtained after treatment of 11 patients. Radio-immunoelectrophoresis revealed that the antibodies were restricted to the γG class. One patient, W. O., with Paget's disease initially responded to treatment with a decrease in bone turnover, but later became resistant to the hormone in association with the appearance of a very high titer (1:30,000) of antibody against salmon calcitonin. A 1:10 dilution of his plasma was shown to completely inactivate 20 mMRC units/ml of salmon calcitonin as detected by bioassay in rats; slight inactivation was detected at a 1:200 dilution. All other patients continued to respond to salmon calcitonin despite the development of antibody to the hormone in ten cases. No evidence of systemic allergic reactions or other toxicity was found in any patient. The data suggest that although antibody formation may occur in as many as 50% of patients treated with salmon calcitonin, this antibody response is unlikely to be of clinical significance in most patients. However, in an occasional patient, a marked antibody response may occur which interferes with the therapeutic use of the hormone. Images PMID:4674133

  16. Development of a Reverse Genetic System for Infectious Salmon Anemia Virus: Rescue of Recombinant Fluorescent Virus by Using Salmon Internal Transcribed Spacer Region 1 as a Novel Promoter

    PubMed Central

    Toro-Ascuy, Daniela; Tambley, Carolina; Beltran, Carolina; Mascayano, Carolina; Sandoval, Nicolas; Olivares, Eduardo; Medina, Rafael A.; Spencer, Eugenio

    2014-01-01

    Infectious salmon anemia (ISA) is a serious disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), belonging to the genus Isavirus, family Orthomyxoviridae. There is an urgent need to understand the virulence factors and pathogenic mechanisms of ISAV and to develop new vaccine approaches. Using a recombinant molecular biology approach, we report the development of a plasmid-based reverse genetic system for ISAV, which includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). Salmon cells cotransfected with pSS-URG-based vectors expressing the eight viral RNA segments and four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex allowed the generation of infectious recombinant ISAV (rISAV). We generated three recombinant viruses, wild-type rISAV901_09 and rISAVrS6-NotI-HPR containing a NotI restriction site and rISAVS6/EGFP-HPR harboring the open reading frame of enhanced green fluorescent protein (EGFP), both within the highly polymorphic region (HPR) of segment 6. All rescued viruses showed replication activity and cytopathic effect in Atlantic salmon kidney-infected cells. The fluorescent recombinant viruses also showed a characteristic cytopathic effect in salmon cells, and the viruses replicated to a titer of 6.5 × 105 PFU/ml, similar to that of the wild-type virus. This novel reverse genetics system offers a powerful tool to study the molecular biology of ISAV and to develop a new generation of ISAV vaccines to prevent and mitigate ISAV infection, which has had a profound effect on the salmon industry. PMID:25480750

  17. Deepening Thermocline Displaces Salmon Catch On The Oregon Coast

    NASA Astrophysics Data System (ADS)

    Harrison, C. S.; Lawson, P.

    2015-12-01

    Establishing a linkage between fish stock distributions and physical oceanography at a fine scale provides insights into the dynamic nature of near-shore ocean habitats. Characterization of habitat preferences adds to our understanding of the ecosystem, and may improve forecasts of distribution for harvest management. The Project CROOS (Collaborative Research on Oregon Ocean Salmon) Chinook salmon catch data set represents an unprecedented high-resolution record of catch location and depth, with associated in-situ temperature measurements and stock identification derived from genetic data. Here we connect this data set with physical ocean observations to gain understanding of how circulation affects salmon catch distributions. The CROOS observations were combined with remote and in situ observations of temperature, as well as a data assimilative regional ocean model that incorporates satellite and HF radar data. Across the CROOS data set, catch is primarily located within the upwelling front over the seamounts and reef structures associated with Heceta and Stonewall Banks along the shelf break. In late September of 2014 the anomalously warm "blob" began to arrive on the Oregon coast coincident with a strong downwelling event. At this time the thermocline deepened from 20 to 40 m, associated with a deepening of salmon catch depth. A cold "bulb" of water over Heceta Bank may have provided a thermal refuge for salmon during the initial onshore movement of the anomalously warm water. These observations suggest that a warming ocean, and regional warming events in particular, will have large effects on fish distributions at local and regional scales, in turn impacting fisheries.

  18. 76 FR 329 - Proposed Information Collection; Comment Request; Reporting Requirements for the Ocean Salmon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Collection; Comment Request; Reporting Requirements for the Ocean Salmon Fishery Off the Coasts of Washington..., designated regulatory areas in the commercial ocean salmon fishery off the coasts of Washington, Oregon, and... requirements to land salmon within specific time frames and in specific areas may be implemented in the...

  19. From the viral perspective: infectious salmon anemia virus (ISAV) transcriptome during the infective process in Atlantic salmon (Salmo salar).

    PubMed

    Valenzuela-Miranda, Diego; Cabrejos, María Eugenia; Yañez, José Manuel; Gallardo-Escárate, Cristian

    2015-04-01

    The infectious salmon anemia virus (ISAV) is a severe disease that mainly affects the Atlantic salmon (Salmo salar) aquaculture industry. Although several transcriptional studies have aimed to understand Salmon-ISAV interaction through the evaluation of host-gene transcription, none of them has focused their attention upon the viral transcriptional dynamics. For this purpose, RNA-Seq and RT-qPCR analyses were conducted in gills, liver and head-kidney of S. salar challenged by cohabitation with ISAV. Results evidence the time and tissue transcript patterns involved in the viral expression and how the transcription levels of ISAV segments are directly linked with the protein abundance found in other virus of the Orthomyxoviridae family. In addition, RT-qPCR result evidenced that quantification of ISAV through amplification of segment 3 would result in a more sensitive approach for detection and quantification of ISAV. This study offers a more comprehensive approach regarding the ISAV infective process and gives novel knowledge for its molecular detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Consequences of omnivory for trophic interactions on a salt marsh shrub.

    PubMed

    Ho, Chuan-Kai; Pennings, Steven C

    2008-06-01

    Although omnivory is common in nature, its impact on trophic interactions is variable. Predicting the food web consequences of omnivory is complicated because omnivores can simultaneously produce conflicting direct and indirect effects on the same species or trophic level. We conducted field and laboratory experiments testing the top-down impacts of an omnivorous salt marsh crab, Armases cinereum, on the shrub Iva frutescens and its herbivorous and predatory arthropod fauna. Armases is a "true omnivore," consuming both Iva and arthropods living on Iva. We hypothesized that Armases would benefit Iva through a top-down trophic cascade, and that this benefit would be stronger than the direct negative effect of Armases on Iva. A field experiment on Sapelo Island, Georgia (USA), supported this hypothesis. Although Armases suppressed predators (spiders), it also suppressed herbivores (aphids), and benefited Iva, increasing leaf number, and reducing the proportion of dead shoots. A one-month laboratory experiment, focusing on the most common species in the food web, also supported this hypothesis. Armases strongly suppressed aphids and consumed fewer Iva leaves if aphids were available as an alternate diet. Armases gained more body mass if they could feed on aphids as well as on Iva. Although Armases had a negative effect on Iva when aphids were not present, Armases benefited Iva if aphids were present, because Armases controlled aphid populations, releasing Iva from herbivory. Although Armases is an omnivore, it produced strong top-down forces and a trophic cascade because it fed preferentially on herbivores rather than plants when both were available. At the same time, the ability of Armases to subsist on a plant diet allows it to persist in the food web when animal food is not available. Because omnivores feed on multiple trophic levels, their effects on food webs may differ from those predicted by standard trophic models that assume that each species feeds only on a

  1. Herbivory drives large-scale spatial variation in reef fish trophic interactions

    PubMed Central

    Longo, Guilherme O; Ferreira, Carlos Eduardo L; Floeter, Sergio R

    2014-01-01

    Trophic interactions play a critical role in the structure and function of ecosystems. Given the widespread loss of biodiversity due to anthropogenic activities, understanding how trophic interactions respond to natural gradients (e.g., abiotic conditions, species richness) through large-scale comparisons can provide a broader understanding of their importance in changing ecosystems and support informed conservation actions. We explored large-scale variation in reef fish trophic interactions, encompassing tropical and subtropical reefs with different abiotic conditions and trophic structure of reef fish community. Reef fish feeding pressure on the benthos was determined combining bite rates on the substrate and the individual biomass per unit of time and area, using video recordings in three sites between latitudes 17°S and 27°S on the Brazilian Coast. Total feeding pressure decreased 10-fold and the composition of functional groups and species shifted from the northern to the southernmost sites. Both patterns were driven by the decline in the feeding pressure of roving herbivores, particularly scrapers, while the feeding pressure of invertebrate feeders and omnivores remained similar. The differential contribution to the feeding pressure across trophic categories, with roving herbivores being more important in the northernmost and southeastern reefs, determined changes in the intensity and composition of fish feeding pressure on the benthos among sites. It also determined the distribution of trophic interactions across different trophic categories, altering the evenness of interactions. Feeding pressure was more evenly distributed at the southernmost than in the southeastern and northernmost sites, where it was dominated by few herbivores. Species and functional groups that performed higher feeding pressure than predicted by their biomass were identified as critical for their potential to remove benthic biomass. Fishing pressure unlikely drove the large

  2. Tracing salmon-derived nutrients and contaminants in freshwater food webs across a pronounced spawner density gradient.

    PubMed

    Gregory-Eaves, Irene; Demers, J Marc J; Kimpe, Lynda; Krümmel, Eva M; Macdonald, Robie W; Finney, Bruce P; Blais, Jules M

    2007-06-01

    Many have demonstrated that anadromous Pacific salmon are significant vectors of nutrients from the ocean to freshwaters. Recently. however, it has been recognized that salmon spawners also input significant quantities of contaminants. The objectives of this paper are to delineate the extent to which salmon-derived nutrients are integrated into the freshwater food web using delta(15)N and delta(13)C and to assess the influence of the salmon pathway in the accumulation of contaminants in rainbow trout (Oncorhynchus mykiss). We found that the delta(15)N and delta(13)C of food web components were related positively and significantly to sockeye salmon (Oncorhynchus nerka) spawner density. Contaminant concentrations in rainbow trout also positively and significantly were related to sockeye salmon spawner density. These data suggest that the anadromous salmon nutrient and contaminant pathways are related and significantly impact the contaminant burden of resident fish.

  3. Comparative survival and growth of Atlantic salmon from egg stocking and fry releases

    USGS Publications Warehouse

    Johnson, James H.

    2004-01-01

    First summer survival and subsequent growth of Atlantic salmon Salmo salar planted as eggs and fry in a tributary of Cayuga Lake, New York, were examined for 3 years. Atlantic salmon were planted in December 1999-2001 in 20 Whitlock-Vibert (W-V) egg incubators, each containing 300 eyed eggs. The following May, 500 fin-clipped Atlantic salmon fry were released in the same stream section. In autumn, a backpack electroshocker was used to capture fry to assess survival and growth. Mean survival was significantly greater for fry (27.9%) than eggs (0.8%). In autumn, mean length was significantly greater for Atlantic salmon released as fry (90.1 mm) than those planted as eggs (76.2 mm), probably owing to accelerated growth in the hatchery caused by warmer water temperatures (i.e., hatchery, 9.4A?C; stream, 5.1A?C). Releasing Atlantic salmon fry in May was nearly 11 times more costly in terms of hatchery effort than was releasing eggs in December. Although the survival of Atlantic salmon eggs in W-V incubators was low, when considering production costs, the use of egg plantings may warrant consideration under certain restoration or enhancement situations.

  4. Stress and reproductive hormones in grizzly bears reflect nutritional benefits and social consequences of a salmon foraging niche.

    PubMed

    Bryan, Heather M; Darimont, Chris T; Paquet, Paul C; Wynne-Edwards, Katherine E; Smits, Judit E G

    2013-01-01

    Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology.

  5. Stress and Reproductive Hormones in Grizzly Bears Reflect Nutritional Benefits and Social Consequences of a Salmon Foraging Niche

    PubMed Central

    Bryan, Heather M.; Darimont, Chris T.; Paquet, Paul C.; Wynne-Edwards, Katherine E.; Smits, Judit E. G.

    2013-01-01

    Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology. PMID:24312230

  6. Sneaker Males Affect Fighter Male Body Size and Sexual Size Dimorphism in Salmon.

    PubMed

    Weir, Laura K; Kindsvater, Holly K; Young, Kyle A; Reynolds, John D

    2016-08-01

    Large male body size is typically favored by directional sexual selection through competition for mates. However, alternative male life-history phenotypes, such as "sneakers," should decrease the strength of sexual selection acting on body size of large "fighter" males. We tested this prediction with salmon species; in southern populations, where sneakers are common, fighter males should be smaller than in northern populations, where sneakers are rare, leading to geographical clines in sexual size dimorphism (SSD). Consistent with our prediction, fighter male body size and SSD (fighter male∶female size) increase with latitude in species with sneaker males (Atlantic salmon Salmo salar and masu salmon Oncorhynchus masou) but not in species without sneakers (chum salmon Oncorhynchus keta and pink salmon Oncorhynchus gorbuscha). This is the first evidence that sneaker males affect SSD across populations and species, and it suggests that alternative male mating strategies may shape the evolution of body size.

  7. Modeling the Transmission of Piscirickettsia salmonis in Farmed Salmon

    NASA Astrophysics Data System (ADS)

    Cisternas, Jaime; Moreno, Adolfo

    2007-05-01

    Farming Atlantic salmon is an economic activity of growing relevance in the southern regions of Chile. The need to increase efficiency and reach production goals, as well as restrictions on the use of water resources, had led in recent years to certain practices that proved prone to bacterial infections among the fish. Our study focuses on the impact of rickettsial bacteria in farmed salmon, and the possibility of controlling its incidence once it is established along the salmon life cicle. We used compartmental models to separate fish in their maturation stages and health status. The mathematical analysis will involve differential equations with and without delays, and linear stability principles. Our goal was to build a simple model that explains the basic mechanisms at work and provides predictions on the outcome of different control strategies.

  8. Microbes are trophic analogs of animals

    PubMed Central

    Steffan, Shawn A.; Chikaraishi, Yoshito; Currie, Cameron R.; Horn, Heidi; Gaines-Day, Hannah R.; Pauli, Jonathan N.; Zalapa, Juan E.; Ohkouchi, Naohiko

    2015-01-01

    In most ecosystems, microbes are the dominant consumers, commandeering much of the heterotrophic biomass circulating through food webs. Characterizing functional diversity within the microbiome, therefore, is critical to understanding ecosystem functioning, particularly in an era of global biodiversity loss. Using isotopic fingerprinting, we investigated the trophic positions of a broad diversity of heterotrophic organisms. Specifically, we examined the naturally occurring stable isotopes of nitrogen (15N:14N) within amino acids extracted from proteobacteria, actinomycetes, ascomycetes, and basidiomycetes, as well as from vertebrate and invertebrate macrofauna (crustaceans, fish, insects, and mammals). Here, we report that patterns of intertrophic 15N-discrimination were remarkably similar among bacteria, fungi, and animals, which permitted unambiguous measurement of consumer trophic position, independent of phylogeny or ecosystem type. The observed similarities among bacterial, fungal, and animal consumers suggest that within a trophic hierarchy, microbiota are equivalent to, and can be interdigitated with, macrobiota. To further test the universality of this finding, we examined Neotropical fungus gardens, communities in which bacteria, fungi, and animals are entwined in an ancient, quadripartite symbiosis. We reveal that this symbiosis is a discrete four-level food chain, wherein bacteria function as the apex carnivores, animals and fungi are meso-consumers, and the sole herbivores are fungi. Together, our findings demonstrate that bacteria, fungi, and animals can be integrated within a food chain, effectively uniting the macro- and microbiome in food web ecology and facilitating greater inclusion of the microbiome in studies of functional diversity. PMID:26598691

  9. 76 FR 54216 - Pacific Fishery Management Council (Council); Work Session To Review Proposed Salmon Methodology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... Fishery Management Council (Council); Work Session To Review Proposed Salmon Methodology Changes AGENCY.... ACTION: Notice of a public meeting. SUMMARY: The Pacific Fishery Management Council's Salmon Technical Team (STT), Scientific and Statistical Committee (SSC) Salmon Subcommittee, and Model Evaluation...

  10. 77 FR 13072 - Salmon-Challis National Forest, Butte, Custer and Lemhi Counties, ID, Supplemental Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... DEPARTMENT OF AGRICULTURE Forest Service Salmon-Challis National Forest, Butte, Custer and Lemhi Counties, ID, Supplemental Environmental Impact Statement to the 2009 Salmon- Challis National Forest... of intent to prepare a supplemental environmental impact statement. SUMMARY: The Salmon-Challis...

  11. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, Catherine; Hebdon, J. Lance; Castillo, Jason

    2004-06-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacksmore » and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2002. Age-0, age-1, and age-2 O. nerka were captured in Redfish Lake, and population abundance was estimated at 50,204 fish. Age-0, age-1, age-2, and age-3 kokanee were captured in Alturas Lake, and population abundance was estimated at 24,374 fish. Age-2 and age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 18,328 fish. The ultimate goal of the Idaho Department of Fish and Game (IDFG) captive broodstock development and evaluation efforts is to recover sockeye salmon runs in Idaho waters. Recovery is defined as reestablishing sockeye salmon runs and providing for utilization of sockeye salmon and kokanee resources by

  12. Cle Elum Lake Sockeye Salmon Restoration Feasibility Study, 1987-1989 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagg, Thomas A.

    1990-02-01

    This report summarizes research activities conducted by the National Marine Fisheries Service (NMFS) from July 1988 through March 1989 relating to the Cle Elum Lake sockeye salmon restoration feasibility study. During this period, efforts focused on collection and spawning of adult sockeye salmon from the Wenatchee River, incubation of eggs from the 1988-brood, and the rearing of juveniles from the 1987-brood. In late July and early August 1988, 520 adult sockeye salmon were captured at fishways on the Wenatchee River and transferred to net-pens in Lake Wenatchee. Fish were held to maturity in late September and early October, spawned, andmore » eggs incubated at a quarantine hatchery in Seattle, WA. The 336 sockeye salmon successfully spawned from the net-pens at Lake Wenatchee were surveyed for the presence of infectious hematopoietic necrosis (IHN) and other replicating viruses. In addition, 13 and 5 sockeye salmon spawners were surveyed from spawning grounds on the White and Little Wenatchee Rivers, respectively, from within the Lake Wenatchee system. 12 refs., 4 figs., 6 tabs.« less

  13. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  14. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  15. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  16. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries ofmore » these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.« less

  17. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed Central

    Kuzishchin, Kirill V.; Stanford, Jack A.

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3–12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99–1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  18. ADDING NUTRIENTS TO ENHANCE SALMON RUNS: DEVELOPING A COHERENT PUBLIC POLICY

    EPA Science Inventory

    One scheme to help restore salmon to the Pacific Northwest is the addition of nutrients (i.e., raw or processed salmon carcasses, and commercially produced organic or inorganic fertilizers) to headwaters (i.e., watersheds, lakes, or streams) that are now nutrient deficient becau...

  19. Wild salmon in California, Oregon, Washington, and Idaho: Some recovery strategies that just might work

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify salmon recovery options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project doe...

  20. 77 FR 58526 - Pacific Fishery Management Council; Public Meeting; Work Session To Review Proposed Salmon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... Fishery Management Council; Public Meeting; Work Session To Review Proposed Salmon Methodology Changes...), Commerce. ACTION: Notice of a public meeting. SUMMARY: The Pacific Fishery Management Council's Salmon Technical Team (STT), Scientific and Statistical Committee (SSC) Salmon Subcommittee, and Model Evaluation...

  1. Listen to Our Salmon: Forests, Rivers and Oceans are Connected.

    ERIC Educational Resources Information Center

    Mueller, Andrea; Brown, Rod

    1998-01-01

    A university-based researcher and a grade seven teacher collaborated to plan a science curriculum that would help elementary school students discover the world of salmon and understand its life cycle. Describes key components of the salmon-enhancement program and river-health project. A student's record of hatching chum fry in the classroom is…

  2. Evaluation of Salmon Spawning Below Bonneville Dam, Annual Report October 2005 - September 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Mueller, Robert P.; Murray, Christopher J.

    2007-09-21

    Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum salmon (Oncorhynchus keta) and fall Chinook salmon (O. tshawytscha) in the lower mainstem Columbia River. Their work supports a larger project funded by the Bonneville Power Administration (BPA) aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Surveymore » (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and tule fall Chinook salmon populations--both listed as threatened under the Endangered Species Act (ESA). Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by WDFW biologists in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and near Ives Island. Limited surveys of spawning ground were conducted in the area around Ives and Pierce islands from 1994 through 1997. Based on those surveys, it is believed that fall Chinook salmon are spawning successfully in this area. The size of this population from 1994 to 1996 was estimated at 1800 to 5200 fish. Chum salmon also have been documented spawning downstream of Bonneville Dam. Chum salmon were listed as threatened under the ESA in March 1999. At present there is a need to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their

  3. A critical assessment of the ecological assumptions underpinning compensatory mitigation of salmon-derived nutrients

    USGS Publications Warehouse

    Collins, Scott F.; Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.

    2015-01-01

    We critically evaluate some of the key ecological assumptions underpinning the use of nutrient replacement as a means of recovering salmon populations and a range of other organisms thought to be linked to productive salmon runs. These assumptions include: (1) nutrient mitigation mimics the ecological roles of salmon, (2) mitigation is needed to replace salmon-derived nutrients and stimulate primary and invertebrate production in streams, and (3) food resources in rearing habitats limit populations of salmon and resident fishes. First, we call into question assumption one because an array of evidence points to the multi-faceted role played by spawning salmon, including disturbance via redd-building, nutrient recycling by live fish, and consumption by terrestrial consumers. Second, we show that assumption two may require qualification based upon a more complete understanding of nutrient cycling and productivity in streams. Third, we evaluate the empirical evidence supporting food limitation of fish populations and conclude it has been only weakly tested. On the basis of this assessment, we urge caution in the application of nutrient mitigation as a management tool. Although applications of nutrients and other materials intended to mitigate for lost or diminished runs of Pacific salmon may trigger ecological responses within treated ecosystems, contributions of these activities toward actual mitigation may be limited.

  4. Quantitative PCR analysis of CYP1A induction in Atlantic salmon (Salmo salar)

    USGS Publications Warehouse

    Rees, C.B.; McCormick, S.D.; Vanden, Heuvel J.P.; Li, W.

    2003-01-01

    Environmental pollutants are hypothesized to be one of the causes of recent declines in wild populations of Atlantic salmon (Salmo salar) across Eastern Canada and the United States. Some of these pollutants, such as polychlorinated biphenyls and dioxins, are known to induce expression of the CYP1A subfamily of genes. We applied a highly sensitive technique, quantitative reverse transcription-polymerase chain reaction (RT-PCR), for measuring the levels of CYP1A induction in Atlantic salmon. This assay was used to detect patterns of CYP1A mRNA levels, a direct measure of CYP1A expression, in Atlantic salmon exposed to pollutants under both laboratory and field conditions. Two groups of salmon were acclimated to 11 and 17??C, respectively. Each subject then received an intraperitoneal injection (50 mg kg-1) of either ??-naphthoflavone (BNF) in corn oil (10 mg BNF ml-1 corn oil) or corn oil alone. After 48 h, salmon gill, kidney, liver, and brain were collected for RNA isolation and analysis. All tissues showed induction of CYP1A by BNF. The highest base level of CYP1A expression (2.56??1010 molecules/??g RNA) was found in gill tissue. Kidney had the highest mean induction at five orders of magnitude while gill tissue showed the lowest mean induction at two orders of magnitude. The quantitative RT-PCR was also applied to salmon sampled from two streams in Massachusetts, USA. Salmon liver and gill tissue sampled from Millers River (South Royalston, Worcester County), known to contain polychlorinated biphenyls (PCBs), showed on average a two orders of magnitude induction over those collected from a stream with no known contamination (Fourmile Brook, Northfield, Franklin County). Overall, the data show CYP1A exists and is inducible in Atlantic salmon gill, brain, kidney, and liver tissue. In addition, the results obtained demonstrate that quantitative PCR analysis of CYP1A expression is useful in studying ecotoxicity in populations of Atlantic salmon in the wild. ?? 2003

  5. Investigating microplastic trophic transfer in marine top predators.

    PubMed

    Nelms, Sarah E; Galloway, Tamara S; Godley, Brendan J; Jarvis, Dan S; Lindeque, Penelope K

    2018-07-01

    Microplastics are highly bioavailable to marine organisms, either through direct ingestion, or indirectly by trophic transfer from contaminated prey. The latter has been observed for low-trophic level organisms in laboratory conditions, yet empirical evidence in high trophic-level taxa is lacking. In natura studies face difficulties when dealing with contamination and differentiating between directly and indirectly ingested microplastics. The ethical constraints of subjecting large organisms, such as marine mammals, to laboratory investigations hinder the resolution of these limitations. Here, these issues were resolved by analysing sub-samples of scat from captive grey seals (Halichoerus grypus) and whole digestive tracts of the wild-caught Atlantic mackerel (Scomber scombrus) they are fed upon. An enzymatic digestion protocol was employed to remove excess organic material and facilitate visual detection of synthetic particles without damaging them. Polymer type was confirmed using Fourier-Transform Infrared (FTIR) spectroscopy. Extensive contamination control measures were implemented throughout. Approximately half of scat subsamples (48%; n = 15) and a third of fish (32%; n = 10) contained 1-4 microplastics. Particles were mainly black, clear, red and blue in colour. Mean lengths were 1.5 mm and 2 mm in scats and fish respectively. Ethylene propylene was the most frequently detected polymer type in both. Our findings suggest trophic transfer represents an indirect, yet potentially major, pathway of microplastic ingestion for any species whose feeding ecology involves the consumption of whole prey, including humans. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Using cure models for analyzing the influence of pathogens on salmon survival

    USGS Publications Warehouse

    Ray, Adam R; Perry, Russell W.; Som, Nicholas A.; Bartholomew, Jerri L

    2014-01-01

    Parasites and pathogens influence the size and stability of wildlife populations, yet many population models ignore the population-level effects of pathogens. Standard survival analysis methods (e.g., accelerated failure time models) are used to assess how survival rates are influenced by disease. However, they assume that each individual is equally susceptible and will eventually experience the event of interest; this assumption is not typically satisfied with regard to pathogens of wildlife populations. In contrast, mixture cure models, which comprise logistic regression and survival analysis components, allow for different covariates to be entered into each part of the model and provide better predictions of survival when a fraction of the population is expected to survive a disease outbreak. We fitted mixture cure models to the host–pathogen dynamics of Chinook Salmon Oncorhynchus tshawytscha and Coho Salmon O. kisutch and the myxozoan parasite Ceratomyxa shasta. Total parasite concentration, water temperature, and discharge were used as covariates to predict the observed parasite-induced mortality in juvenile salmonids collected as part of a long-term monitoring program in the Klamath River, California. The mixture cure models predicted the observed total mortality well, but some of the variability in observed mortality rates was not captured by the models. Parasite concentration and water temperature were positively associated with total mortality and the mortality rate of both Chinook Salmon and Coho Salmon. Discharge was positively associated with total mortality for both species but only affected the mortality rate for Coho Salmon. The mixture cure models provide insights into how daily survival rates change over time in Chinook Salmon and Coho Salmon after they become infected with C. shasta.

  7. Understanding the Complexities of Communicating Management Decisions on the Subsistence Use of Yukon River Salmon

    NASA Astrophysics Data System (ADS)

    Brooks, J. F.; Trainor, S.

    2017-12-01

    Over 20,000 residents in Alaska and Yukon Territory rely upon the Yukon River to provide them harvests of Pacific salmon each year. Salmon are a highly valued food resource and the practice of salmon fishing along the Yukon is deep rooted in local cultures and traditions. Potential future impacts of climate change on the health of Yukon River salmon stocks could be significant. Collaborative managerial processes which incorporate the viewpoints of subsistence stakeholders will be crucial in enabling communities and managerial institutions to adapt and manage these impacts. However, the massive extent of the Yukon River makes it difficult for communities rich with highly localized knowledge to situate themselves within a drainage-wide context of resource availability, and to fully understand the implications that management decisions may have for their harvest. Differences in salmon availability and abundance between the upper and lower Yukon, commercial vs. subsistence fishery interests, and enforcement of the international Pacific Salmon Treaty further complicate understanding and makes the topic of salmon as a subsistence resource a highly contentious issue. A map which synthesizes the presence and absence of Pacific salmon throughout the entire Yukon River drainage was requested by both subsistence fishers and natural resource managers in Alaska in order to help facilitate productive conversations about salmon management decisions. Interviews with Alaskan stakeholders with managerial, biological, and subsistence harvest backgrounds were carried out and a literature review was conducted in order to understand what such a map should and could accomplish. During the research process, numerous data gaps concerning the distribution of salmon along the Yukon River were discovered, and insights about the complexities involved in translating science when it is situated within a charged political, economic, and cultural context were revealed. Preliminary maps depicting

  8. Measuring variability in trophic status in the Lake Waco/Bosque River Watershed

    PubMed Central

    Rodriguez, Angela D; Matlock, Marty D

    2008-01-01

    Background Nutrient management in rivers and streams is difficult due to the spatial and temporal variability of algal growth responses. The objectives of this project were to determine the spatial and seasonal in situ variability of trophic status in the Lake Waco/Bosque River watershed, determine the variability in the lotic ecosystem trophic status index (LETSI) at each site as indicators of the system's nutrient sensitivity, and determine if passive diffusion periphytometers could provide threshold algal responses to nutrient enrichment. Methods We used the passive diffusion periphytometer to measure in-situ nutrient limitation and trophic status at eight sites in five streams in the Lake Waco/Bosque River Watershed in north-central Texas from July 1997 through October 1998. The chlorophyll a production in the periphytometers was used as an indicator of baseline chlorophyll a productivity and of maximum primary productivity (MPP) in response to nutrient enrichment (nitrogen and phosphorus). We evaluated the lotic ecosystem trophic status index (LETSI) using the ratio of baseline primary productivity to MPP, and evaluated the trophic class of each site. Results The rivers and streams in the Lake Waco/Bosque River Watershed exhibited varying degrees of nutrient enrichment over the 18-month sampling period. The North Bosque River at the headwaters (NB-02) located below the Stephenville, Texas wastewater treatment outfall consistently exhibited the highest degree of water quality impact due to nutrient enrichment. Sites at the outlet of the watershed (NB-04 and NB-05) were the next most enriched sites. Trophic class varied for enriched sites over seasons. Conclusion Seasonality played a significant role in the trophic class and sensitivity of each site to nutrients. Managing rivers and streams for nutrients will require methods for measuring in situ responses and sensitivities to nutrient enrichment. Nutrient enrichment periphytometers show significant potential

  9. Measuring variability in trophic status in the Lake Waco/Bosque River Watershed.

    PubMed

    Rodriguez, Angela D; Matlock, Marty D

    2008-01-11

    Nutrient management in rivers and streams is difficult due to the spatial and temporal variability of algal growth responses. The objectives of this project were to determine the spatial and seasonal in situ variability of trophic status in the Lake Waco/Bosque River watershed, determine the variability in the lotic ecosystem trophic status index (LETSI) at each site as indicators of the system's nutrient sensitivity, and determine if passive diffusion periphytometers could provide threshold algal responses to nutrient enrichment. We used the passive diffusion periphytometer to measure in-situ nutrient limitation and trophic status at eight sites in five streams in the Lake Waco/Bosque River Watershed in north-central Texas from July 1997 through October 1998. The chlorophyll a production in the periphytometers was used as an indicator of baseline chlorophyll a productivity and of maximum primary productivity (MPP) in response to nutrient enrichment (nitrogen and phosphorus). We evaluated the lotic ecosystem trophic status index (LETSI) using the ratio of baseline primary productivity to MPP, and evaluated the trophic class of each site. The rivers and streams in the Lake Waco/Bosque River Watershed exhibited varying degrees of nutrient enrichment over the 18-month sampling period. The North Bosque River at the headwaters (NB-02) located below the Stephenville, Texas wastewater treatment outfall consistently exhibited the highest degree of water quality impact due to nutrient enrichment. Sites at the outlet of the watershed (NB-04 and NB-05) were the next most enriched sites. Trophic class varied for enriched sites over seasons. Seasonality played a significant role in the trophic class and sensitivity of each site to nutrients. Managing rivers and streams for nutrients will require methods for measuring in situ responses and sensitivities to nutrient enrichment. Nutrient enrichment periphytometers show significant potential for use in nutrient gradient studies.

  10. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; ,; Gillikin, Daniel; ,

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  11. 40 CFR 408.180 - Applicability; description of the West Coast hand-butchered salmon processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Coast hand-butchered salmon processing subcategory. 408.180 Section 408.180 Protection of Environment... PROCESSING POINT SOURCE CATEGORY West Coast Hand-Butchered Salmon Processing Subcategory § 408.180 Applicability; description of the West Coast hand-butchered salmon processing subcategory. The provisions of...

  12. 40 CFR 408.180 - Applicability; description of the West Coast hand-butchered salmon processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Coast hand-butchered salmon processing subcategory. 408.180 Section 408.180 Protection of Environment... PROCESSING POINT SOURCE CATEGORY West Coast Hand-Butchered Salmon Processing Subcategory § 408.180 Applicability; description of the West Coast hand-butchered salmon processing subcategory. The provisions of...

  13. RESTORING WILD SALMON TO THE PACIFIC NORTHWEST: FRAMING THE RISK QUESTION

    EPA Science Inventory

    In the Pacific Northwest of the United States, it is urgent to assess accurately the various options proposed to restore wild salmon. For the past 125 years, a variety of analytic approaches have been employed to assess the ecological consequences of salmon management options. ...

  14. RESTORING WILD SALMON TO THE PACIFIC NORTHWEST: FRAMING THE RISK QUESTION

    EPA Science Inventory

    In western North America, it is urgent to assess accurately the various options proposed to protect or restore wild salmon. For the past 125 years, a variety of analytic approaches have been employed to assess the ecological consequences of salmon management options. Each appro...

  15. Community trait overdispersion due to trophic interactions: concerns for assembly process inference

    PubMed Central

    Petchey, Owen L.

    2016-01-01

    The expected link between competitive exclusion and community trait overdispersion has been used to infer competition in local communities, and trait clustering has been interpreted as habitat filtering. Such community assembly process inference has received criticism for ignoring trophic interactions, as competition and trophic interactions might create similar trait patterns. While other theoretical studies have generally demonstrated the importance of predation for coexistence, ours provides the first quantitative demonstration of such effects on assembly process inference, using a trait-based ecological model to simulate the assembly of a competitive primary consumer community with and without the influence of trophic interactions. We quantified and contrasted trait dispersion/clustering of the competitive communities with the absence and presence of secondary consumers. Trophic interactions most often decreased trait clustering (i.e. increased dispersion) in the competitive communities due to evenly distributed invasions of secondary consumers and subsequent competitor extinctions over trait space. Furthermore, effects of trophic interactions were somewhat dependent on model parameters and clustering metric. These effects create considerable problems for process inference from trait distributions; one potential solution is to use more process-based and inclusive models in inference. PMID:27733548

  16. Measuring nighttime spawning behavior of chum salmon using a dual-frequency identification sonar (DIDSON)

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.

    2005-01-01

    The striking body coloration and morphology that Pacific salmon display during spawning coupled with elaborate courtship behaviors suggest that visual cues are important during their reproductive period. To date, virtually all existing information on chum salmon (Oncorhynchus keta) spawning behavior has been derived from studies conducted during the daytime, and has contributed to the assumption that salmon do not spawn at night. We tested this assumption using a new technology - a dual-frequency identification sonar (DIDSON) - to describe and measure nighttime spawning behavior of wild chum salmon in the Columbia River. The DIDSON produces detailed, video-like images using sound, which enabled us to collect behavioral information at night in complete darkness. The display of DIDSON images enabled fish movements and behaviors to be spatially quantified. We collected continuous observational data on 14 pairs of chum salmon in a natural spawning channel during the daytime and nighttime. Spawners of both genders were observed chasing intruders during nighttime and daytime as nests were constructed. Regardless of diel period, females were engaged in digging to both construct nests and cover eggs, and courting males exhibited the pre-spawning behavior of tail crossing. We observed a total of 13 spawning events, of which nine occurred at night and four occurred during the day. The behaviors we observed at night suggest the assumption that chum salmon do not spawn at night is false. Once chum salmon begin nest construction, visual cues are apparently not required for courtship, nest defense, and spawning. We speculate that non-visual cues (e.g. tactile and auditory) enable chum salmon to carry out most spawning behaviors at night. Our findings have implications for how nighttime flows from hydroelectric dams on the Columbia River are managed for power production and protection of imperiled salmon stocks.

  17. Sea-louse parasites on juvenile wild salmon in the Broughton Archipelago, British Columbia, Canada.

    PubMed

    Peacock, Stephanie J; Bateman, Andrew W; Krkošek, Martin; Connors, Brendan; Rogers, Scott; Portner, Lauren; Polk, Zephyr; Webb, Coady; Morton, Alexandra

    2016-07-01

    The global expansion of aquaculture has changed the structure of fish populations in coastal environments, with implications for disease dynamics. In Pacific Canada, farmed salmon act as reservoir hosts for parasites and pathogens, including sea lice (Lepeophtheirus salmonis and Caligus clemensi) that can transmit to migrating wild salmon. Assessing the impact of salmon farms on wild salmon requires regular monitoring of sea-louse infections on both farmed and wild fish. Since 2001, we have collected juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon annually at three sites in the Broughton Archipelago in British Columbia, Canada, during the annual juvenile salmon migration from fresh water to the open ocean. From sampled fish, we recorded counts of parasitic copepodid-, chalimus-, and motile-stage sea lice. We report louse abundances as well as supplementary observations of fish size, development, and health. © 2016 by the Ecological Society of America.

  18. Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon.

    PubMed

    Putman, Nathan F; Lohmann, Kenneth J; Putman, Emily M; Quinn, Thomas P; Klimley, A Peter; Noakes, David L G

    2013-02-18

    In the final phase of their spawning migration, Pacific salmon use chemical cues to identify their home river, but how they navigate from the open ocean to the correct coastal area has remained enigmatic. To test the hypothesis that salmon imprint on the magnetic field that exists where they first enter the sea and later seek the same field upon return, we analyzed a 56-year fisheries data set on Fraser River sockeye salmon, which must detour around Vancouver Island to approach the river through either a northern or southern passageway. We found that the proportion of salmon using each route was predicted by geomagnetic field drift: the more the field at a passage entrance diverged from the field at the river mouth, the fewer fish used the passage. We also found that more fish used the northern passage in years with warmer sea surface temperature (presumably because fish were constrained to more northern latitudes). Field drift accounted for 16% of the variation in migratory route used, temperature 22%, and the interaction between these variables 28%. These results provide the first empirical evidence of geomagnetic imprinting in any species and imply that forecasting salmon movements is possible using geomagnetic models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Gravel pit ponds as habitat enhancement for juvenile coho salmon.

    Treesearch

    M.D. Bryant

    1988-01-01

    Gravel pits built during road construction in the early 1970's near Yakutat, Alaska, filled with water and were connected to nearby rivers to allow juvenile salmonids to enter. Seasonal changes in population size, length and weight, and length frequencies of the coho salmon population were evaluated over a 2-year period. Numbers of coho salmon fluctuated, but two...

  20. Transcription expression of immune-related genes from Caligus rogercresseyi evidences host-dependent patterns on Atlantic and coho salmon.

    PubMed

    Vera-Bizama, Fredy; Valenzuela-Muñoz, Valentina; Gonçalves, Ana Teresa; Marambio, Jorge Pino; Hawes, Christopher; Wadsworth, Simon; Gallardo-Escárate, Cristian

    2015-12-01

    The transcriptomic response of the sea louse Caligus rogercresseyi during the infestation on Atlantic salmon (Salmo salar) and coho salmon (Oncorhynchus kisutch) was evaluated using 27 genes related to immune response, antioxidant system and secretome. Results showed early responses of TLR/IMD signaling pathway in sea lice infesting Atlantic salmon. Overall, genes associated with oxidative stress responses were upregulated in both host species. This pattern suggests that reactive oxygen species emitted by the host as a response to the infestation, could modulate the sea louse antioxidant system. Secretome-related transcripts evidenced upregulation of trypsins and serpins, mainly associated to Atlantic salmon than coho salmon. Interestingly, cathepsins and trypsin2 were downregulated at 7 days post-infection (dpi) in coho salmon. The principal component analysis revealed an inverse time-dependent pattern based on the different responses of C. rogercresseyi infecting both salmon species. Here, Atlantic salmon strongly modulates the transcriptome responses at earlier infection stages; meanwhile coho salmon reveals a less marked modulation, increasing the transcription activity during the infection process. This study evidences transcriptome differences between two salmon host species and provides pivotal knowledge towards elaborating future control strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    USGS Publications Warehouse

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  2. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha

    PubMed Central

    Kemp, Brian M.; Thorgaard, Gary H.

    2018-01-01

    The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha). Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed “the four H’s”: habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins may have

  3. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest) Pink Salmon

    DTIC Science & Technology

    1989-01-01

    methodology weight in the sockeye salmon for determining instream flow re- ( Oncorhynchus nerka ) and the pink quirements for fish. Pages 72-86 in salmon (0...Scientific name ........... Oncorhynchus jor pink salmon runs. Migration gorbuscha (Walbaum) (Figure a patterns of fish entering British Preferred...A dominant male guards the considered the most specialized of the female during the digging process, salmon in the genus Oncorhynchus be- attacking

  4. 77 FR 41754 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... program in the Southeast Alaska purse seine salmon fishery. NMFS conducted a referendum to approve the..., Chief, Financial Services Division, NMFS, Attn: SE Alaska Purse Seine Salmon Buyback, 1315 East-West...

  5. 78 FR 25434 - Henwood Associates, Inc.; Salmon Creek Hydroelectric Company; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... Associates, Inc.; Salmon Creek Hydroelectric Company; Notice of Transfer of Exemption 1. By letter filed April 18, 2013, Henwood Associates, Inc. and Salmon Creek Hydroelectric Company informed the Commission that the exemption from licensing for the Salmon Creek Hydroelectric Project, FERC No. 3730, originally...

  6. 77 FR 26744 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... of reduction payment tender of Southeast Alaska purse seine salmon permits. SUMMARY: The National... Southeast Alaska purse seine salmon fishery. The program authorizes NMFS to make payments to permit holders...

  7. 75 FR 13555 - Compliance Policy Guide Sec. 540.375 Canned Salmon - Adulteration Involving Decomposition (CPG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...] (Formerly Docket No. 1998N-0046) Compliance Policy Guide Sec. 540.375 Canned Salmon -- Adulteration... of Compliance Policy Guide Sec. 540.375 Canned Salmon -- Adulteration Involving Decomposition (CPG... relating to decomposition in fish and fishery products, including canned salmon, is provided in CPG Sec...

  8. Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration

    PubMed Central

    Sato, Ayako; Kajiya, Hiroshi; Mori, Nana; Sato, Hironobu; Fukushima, Tadao; Kido, Hirofumi

    2017-01-01

    The initial step of bone regeneration requires the migration of osteogenic cells to defective sites. Our previous studies suggest that a salmon DNA-based scaffold can promote the bone regeneration of calvarial defects in rats. We speculate that the salmon DNA may possess osteoinductive properties, including the homing of migrating osteogenic cells. In the present study, we investigated the influence of the salmon DNA on osteoblastic differentiation and induction of osteoblast migration using MG63 cells (human preosteoblasts) in vitro. Moreover, we analyzed the bone regeneration of a critical-sized in vivo calvarial bone defect (CSD) model in rats. The salmon DNA enhanced both mRNA and protein expression of the osteogenesis-related factors, runt-related transcription factor 2 (Runx2), alkaline phosphatase, and osterix (OSX) in the MG63 cells, compared with the cultivation using osteogenic induction medium alone. From the histochemical and immunohistochemical assays using frozen sections of the bone defects from animals that were implanted with DNA disks, many cells were found to express aldehyde dehydrogenase 1, one of the markers for mesenchymal stem cells. In addition, OSX was observed in the replaced connective tissue of the bone defects. These findings indicate that the DNA induced the migration and accumulation of osteogenic cells to the regenerative tissue. Furthermore, an in vitro transwell migration assay showed that the addition of DNA enhanced an induction of osteoblast migration, compared with the medium alone. The implantation of the DNA disks promoted bone regeneration in the CSD of rats, compared with that of collagen disks. These results indicate that the salmon DNA enhanced osteoblastic differentiation and induction of migration, resulting in the facilitation of bone regeneration. PMID:28060874

  9. Wild Steelhead and introduced spring Chinook Salmon in the Wind River, Washington: Overlapping populations and interactions

    USGS Publications Warehouse

    Jezorek, I.G.; Connolly, P.J.

    2010-01-01

    We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or

  10. Quality grading of Atlantic salmon (Salmo salar) by computer vision.

    PubMed

    Misimi, E; Erikson, U; Skavhaug, A

    2008-06-01

    In this study, we present a promising method of computer vision-based quality grading of whole Atlantic salmon (Salmo salar). Using computer vision, it was possible to differentiate among different quality grades of Atlantic salmon based on the external geometrical information contained in the fish images. Initially, before the image acquisition, the fish were subjectively graded and labeled into grading classes by a qualified human inspector in the processing plant. Prior to classification, the salmon images were segmented into binary images, and then feature extraction was performed on the geometrical parameters of the fish from the grading classes. The classification algorithm was a threshold-based classifier, which was designed using linear discriminant analysis. The performance of the classifier was tested by using the leave-one-out cross-validation method, and the classification results showed a good agreement between the classification done by human inspectors and by the computer vision. The computer vision-based method classified correctly 90% of the salmon from the data set as compared with the classification by human inspector. Overall, it was shown that computer vision can be used as a powerful tool to grade Atlantic salmon into quality grades in a fast and nondestructive manner by a relatively simple classifier algorithm. The low cost of implementation of today's advanced computer vision solutions makes this method feasible for industrial purposes in fish plants as it can replace manual labor, on which grading tasks still rely.

  11. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon.

    PubMed

    Sparks, Morgan M; Westley, Peter A H; Falke, Jeffrey A; Quinn, Thomas P

    2017-12-01

    An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and among treatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could facilitate

  12. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon

    USGS Publications Warehouse

    Sparks, Morgan M.; Westley, Peter A. H.; Falke, Jeffrey A.; Quinn, Thomas P.

    2017-01-01

    An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and amongtreatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could

  13. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales.

    PubMed

    Zaneveld, Jesse R; Burkepile, Deron E; Shantz, Andrew A; Pritchard, Catharine E; McMinds, Ryan; Payet, Jérôme P; Welsh, Rory; Correa, Adrienne M S; Lemoine, Nathan P; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A; Thurber, Rebecca Vega

    2016-06-07

    Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral-algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism.

  14. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales

    PubMed Central

    Zaneveld, Jesse R.; Burkepile, Deron E.; Shantz, Andrew A.; Pritchard, Catharine E.; McMinds, Ryan; Payet, Jérôme P.; Welsh, Rory; Correa, Adrienne M. S.; Lemoine, Nathan P.; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A.; Thurber, Rebecca Vega

    2016-01-01

    Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral–algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism. PMID:27270557

  15. Pediatric autopsy case of asphyxia due to salmon egg (ikura) aspiration.

    PubMed

    Takamiya, Masataka; Niitsu, Hisae; Saigusa, Kiyoshi; Dewa, Koji

    2016-09-01

    Here we report an autopsy case of asphyxia due to aspiration of a salmon egg (ikura) into the airway. The patient was a 19-month-old girl. During breakfast, she put salmon eggs into her mouth, and began to walk. She slipped, fell down, and collapsed. She was pronounced dead following 2 h of resuscitation. The body was autopsied 28 h after death. The gastric contents consisted of rice, orange sections, and white salmon eggs. The lungs were deeply congested and over-inflated. In the right lung, areas of atelectasis in the upper and middle lobes were seen. A yellow salmon egg (8 mm in diameter) was found in the trachea. Although fish eggs are consumed throughout the world, reports of this sort are limited. The aspiration of fish eggs is under-acknowledged and underreported. The importance of preventive measures needs to be emphasized to parents and caregivers. © 2016 Japan Pediatric Society.

  16. [Intracellular Protein Degradation in Growth of Atlantic Salmon, Salmo salar L].

    PubMed

    Lysenko, L A; Kantserova, N P; Krupnova, M Yu; Veselov, A E; Nemova, N N

    2015-01-01

    A brief review on the common characteristics and specific features of proteolytic machinery in fish skeletal muscles (based on Atlantic salmon, Salmo salar L., Salmonidae) has been given. Among a variety of proteases in the muscle tissue, those determining protein degradation level in developing and intensively growing muscles in salmon young and by this way regulating protein retention intensity and growth at all namely lysosomal cathepsins B and D and calcium-dependent proteases (calpains) were comprehensively studied. Revealed age-related differences in intracellular protease activity in salmon skeletal muscles indicate the role of proteolysis regulation in growth in general and a specific role of the individual proteolytic enzymes in particular. The data on negative correlation of cathepsin D and calpain activity levels in muscles and the rate of weight increase in juvenile salmon were obtained. A revealed positive correlation of cathepsin B activity and morphometric parameters in fish young presumably indicates its primary contribution to non-myofibrillar protein turnover.

  17. Phenological sensitivity to climate across taxa and trophic levels.

    PubMed

    Thackeray, Stephen J; Henrys, Peter A; Hemming, Deborah; Bell, James R; Botham, Marc S; Burthe, Sarah; Helaouet, Pierre; Johns, David G; Jones, Ian D; Leech, David I; Mackay, Eleanor B; Massimino, Dario; Atkinson, Sian; Bacon, Philip J; Brereton, Tom M; Carvalho, Laurence; Clutton-Brock, Tim H; Duck, Callan; Edwards, Martin; Elliott, J Malcolm; Hall, Stephen J G; Harrington, Richard; Pearce-Higgins, James W; Høye, Toke T; Kruuk, Loeske E B; Pemberton, Josephine M; Sparks, Tim H; Thompson, Paul M; White, Ian; Winfield, Ian J; Wanless, Sarah

    2016-07-14

    Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).

  18. Endocrine Disrupting Chemical Induced "Pollution of Metabolic Pathways": A Case of Shifting Paradigms With Implications for Vascular Diseases.

    PubMed

    Janardhanan, Rajiv

    2018-05-14

    The latter half of the twentieth century has witnessed a humongous spurt in the use of synthetic chemicals in a wide variety of industrial and agricultural applications are leading to niche specific perturbations affecting every trophic level of the ecosystems due to unmitigated environmental contamination. Despite the incremental usefulness of endocrine disrupting chemicals (EDCs) such as pesticides and plasticizers, their statutory impact on environmental health is assuming worrisome proportions. The EDCs can disrupt physiological homeostasis resulting in developmental and reproductive abnormalities. Both preclinical animal experiments, as well as epidemiological studies, have correlated EDC exposure with metabolic disorders such as metabolic syndrome, type 2 diabetes as well as cardiovascular health. Here we briefly review the statutory impact of EDCs on metabolic disruption as well as their impact on environmental health. Finally, difficulties pertaining to the categorization of EDC induced metabolic diseases as risk factors for global disease burden have been addressed taking into account the complexity of such interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. 75 FR 24482 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2010 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    .... 100218107-0199-01] RIN 0648-AY60 Fisheries Off West Coast States; West Coast Salmon Fisheries; 2010... rule, NMFS establishes fishery management measures for the 2010 ocean salmon fisheries off Washington, Oregon, and California and the 2011 salmon seasons opening earlier than May 1, 2011. Specific fishery...

  20. 76 FR 25246 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2011 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    .... 110223162-1268-01] RIN 0648-XA184 Fisheries Off West Coast States; West Coast Salmon Fisheries; 2011... environmental assessment. SUMMARY: NMFS establishes fishery management measures for the 2011 ocean salmon fisheries off Washington, Oregon, and California and the 2012 salmon seasons opening earlier than May 1...