Sample records for salmon national fish

  1. Spring Chinook Salmon Production for Confederated Tribes of the Umatilla Indian Reservation, Little White Salmon National Fish Hatchery, Annual Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doulas, Speros

    2007-01-01

    This annual report covers the period from January 1, 2006 through December 31, 2006. Work completed supports the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) effort to restore a locally-adapted stock of spring Chinook to the Umatilla River Basin. During the year, staff at the Little White Salmon/Willard National Fish Hatchery Complex have completed the rearing of 218,764 Brood Year 2004 spring Chinook salmon for release into the Umatilla River during spring 2006 and initiated production of approximately 220,000 Brood Year 2005 spring Chinook for transfer and release into the Umatilla River during spring 2007. All work under thismore » contract is performed at the Little White Salmon and Willard National Fish Hatcheries (NFH), Cook, WA.« less

  2. 78 FR 33810 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... reduction loan for the fishing capacity reduction program in the Southeast Alaska purse seine salmon fishery... July 22, 2012. Since then, all harvesters of Southeast Alaska purse seine salmon must pay the fee and...

  3. Histopathology of fish. II. The salmon-poisoning fluk

    USGS Publications Warehouse

    1956-01-01

    THE SALMON-POISONING FLUKE is misnamed as far as the fish culturist is concerned, for the disease affects dogs, not fish. There is considerable evidence, however, that fish may also suffer from the complex chain of events leading from snail to dying dog. Histological studies indicate that young salmon and trout may be severely damaged by the encysted stage of the fluke.

  4. Evaluation of partial water reuse systems used for Atlantic salmon smolt production at the White River National Fish Hatchery

    USDA-ARS?s Scientific Manuscript database

    Eight of the existing 9.1 m (30 ft) diameter circular culture tanks at the White River National Fish Hatchery in Bethel, Vermont, were retrofitted and plumbed into two 8,000 L/min partial water reuse systems to help meet the region's need for Atlantic salmon (Salmo salar) smolt production. The part...

  5. Modeling the Potential Impacts of Climate Change on Pacific Salmon Culture Programs: An Example at Winthrop National Fish Hatchery

    NASA Astrophysics Data System (ADS)

    Hanson, Kyle C.; Peterson, Douglas P.

    2014-09-01

    Hatcheries have long been used in an attempt to mitigate for declines in wild stocks of Pacific salmon ( Oncorhynchus spp.), though the conservation benefit of hatcheries is a topic of ongoing debate. Irrespective of conservation benefits, a fundamental question is whether hatcheries will be able to function as they have in the past given anticipated future climate conditions. To begin to answer this question, we developed a deterministic modeling framework to evaluate how climate change may affect hatcheries that rear Pacific salmon. The framework considers the physiological tolerances for each species, incorporates a temperature-driven growth model, and uses two metrics commonly monitored by hatchery managers to determine the impacts of changes in water temperature and availability on hatchery rearing conditions. As a case study, we applied the model to the US Fish and Wildlife Service's Winthrop National Fish Hatchery. We projected that hatchery environmental conditions remained within the general physiological tolerances for Chinook salmon in the 2040s (assuming A1B greenhouse gas emissions scenario), but that warmer water temperatures in summer accelerated juvenile salmon growth. Increased growth during summer coincided with periods when water availability should also be lower, thus increasing the likelihood of physiological stress in juvenile salmon. The identification of these climate sensitivities led to a consideration of potential mitigation strategies such as chilling water, altering rations, or modifying rearing cycles. The framework can be refined with new information, but in its present form, it provides a consistent, repeatable method to assess the vulnerability of hatcheries to predicted climate change.

  6. Assessment of the risk of invasion of national forest streams in the Pacific Northwest by farmed Atlantic salmon.

    Treesearch

    Peter A. Bisson

    2006-01-01

    This report describes the evidence for invasion of Pacific Northwest streams by Atlantic salmon (Salmo salar) that have escaped from marine salmon farms, and assesses the potential impact of farmed salmon invasion on native fishes inhabiting streams on National Forest System lands. The current risk to streams on National Forest lands in the Pacific Northwest from...

  7. Chemical properties and colors of fermenting materials in salmon fish sauce production.

    PubMed

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2018-02-01

    This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content) and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce ( moromi ), and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format.

  8. Sea lice and salmon population dynamics: effects of exposure time for migratory fish.

    PubMed

    Krkosek, Martin; Morton, Alexandra; Volpe, John P; Lewis, Mark A

    2009-08-07

    The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2-3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon-louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon-louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.

  9. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    Estimates of juvenile salmon survival are important data for fishery managers in the Yakima River Basin. Radiotelemetry studies during 2012–14 showed that tagged juvenile Chinook salmon (Oncorhynchus tshawytscha) that passed through the fish bypass at Roza Dam had lower survival than fish that passed through other routes at the dam. That study also identified flow-survival relationships in the reaches between the Roza Dam tailrace and Sunnyside Dam. During 2012–14, survival also was estimated through reaches downstream of Sunnyside Dam, but generally, sample sizes were low and the estimates were imprecise. In 2016, we conducted an evaluation using acoustic cameras and acoustic telemetry to build on information collected during the previous study. The goal of the 2016 research was to identify areas where mortality occurs in the fish bypass at Roza Dam, and to estimate reach-specific survival in reaches downstream of the dam. The 2016 study included juvenile Chinook salmon and coho salmon (O. kisutch).Three acoustic cameras were used to observe fish behavior (1) near the entrances to the fish bypass, (2) at a midway point in the fish bypass (convergence vault), and (3) at the bypass outfall. In total, 504 hours of acoustic camera footage was collected at these locations. We determined that smolt-sized fish (95–170 millimeters [mm]) were present in the highest proportions at each location, but predator-sized fish (greater than 250 mm) also were present at each site. Fish presence generally peaked during nighttime hours and crepuscular periods, and was low during daytime hours. In the convergence vault, smolt-sized fish exhibited holding behavior patterns, which may explain why some fish delayed while passing through the bypass.Some of the acoustic-tagged fish were delayed in the fish bypass following release, but there was no evidence to suggest that they experienced higher mortality than fish that were released at the bypass outfall or downstream of the dam

  10. Benzocaine as a fish anesthetic: efficacy and safety for spawning-phase salmon

    USGS Publications Warehouse

    Gilderhus, P.A.

    1990-01-01

    The anesthetic benzocaine was tested for efficacy and safety for spawning-phase chinook salmon (Oncorhynchus tshawytscha) and Atlantic salmon (Salmo salar) at federal fish hatcheries. Tests were conducted in the existing hatchery water supplies (soft water; temperatures, 10–13 °C. Crystalline benzocaine was dissolved in ethanol (1 g/30 mL), and aliquots of that stock solution were added to the water in test tanks. Benzocaine concentrations of 25–30 mg/L anesthetized most fish in less than 3.5 min, and most fish recovered in less than 10 min after 15 min of exposure. Safety margins were narrow; both species tolerated 30 mg/L for about 20 min, but 25 min of exposure caused deaths. For 15 min exposures, concentrations of 35 mg/L for chinook salmon and 40 mg/L for Atlantic salmon were lethal.

  11. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest) Pink Salmon

    DTIC Science & Technology

    1989-01-01

    methodology weight in the sockeye salmon for determining instream flow re- ( Oncorhynchus nerka ) and the pink quirements for fish. Pages 72-86 in salmon (0...Scientific name ........... Oncorhynchus jor pink salmon runs. Migration gorbuscha (Walbaum) (Figure a patterns of fish entering British Preferred...A dominant male guards the considered the most specialized of the female during the digging process, salmon in the genus Oncorhynchus be- attacking

  12. Effects of introduced fishes on wild juvenile coho salmon in three shallow pacific northwest lakes

    USGS Publications Warehouse

    Bonar, Scott A.; Bolding, B.D.; Divens, M.; Meyer, W.

    2005-01-01

    Declines in Pacific salmon Oncorhynchus spp. have been blamed on hydropower, overfishing, ocean conditions, and land use practices; however, less is known about the impacts of introduced fish. Most of the hundreds of lakes and ponds in the Pacific Northwest contain introduced fishes, and many of these water bodies are also important for salmon production, especially of coho salmon O. kisutch. Over 2 years, we examined the predation impacts of 10 common introduced fishes (brown bullhead Ameiurus nebulosus, black crappie Pomoxis nigro-maculatus, bluegill Lepomis macrochirus, golden shiner Notemigonus crysoleucas, green sunfish L. cyanellus, largemouth bass Micropterus salmoides, pumpkinseed L. gibbosus, rainbow trout O. mykiss, warmouth L. gulosus, and yellow perch Perca flavescens) and two native fishes (cutthroat trout O. clarkii and prickly sculpin Cottus asper) on wild juvenile coho salmon in three shallow Pacific Northwest lakes, all located in different watersheds. Of these species, largemouth bass were responsible for an average of 98% of the predation on coho salmon in all lakes, but the total impact to each run varied among lakes and years. Very few coho salmon were eaten by black crappies, brown bullheads, cutthroat trout, prickly sculpin, or yellow perch, whereas other species were not observed to eat coho salmon. Juvenile coho salmon growth in all lakes was higher than in nearby streams. Therefore, food competition between coho salmon and introduced fishes in lakes was probably not limiting coho salmon populations. Largemouth bass are widespread and are present in 85% of lowland warmwater public-access lakes in Washington (n = 421), 84% of those in Oregon (n = 179), and 74% of those in the eight northwesternmost counties in California (n = 19). Future research would help to identify the impact of largemouth bass predation across the region and prioritize lakes where impacts are most severe. Nevertheless, attempts to transplant or increase largemouth bass

  13. Post-release behavior and movement patterns of Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) after capture using alternative commercial fish gear, lower Columbia River, Washington and Oregon, 2013

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Evans, Scott D.; Hansen, Gabriel S.; Rondorf, Dennis W.

    2014-01-01

    In 2011 and 2012, WDFW conducted post-release mortality studies of steelhead (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) that were captured using beach or purse seines. These studies were comprised of two groups of fish tagged with passive integrated transponder tags (PIT tags): (1) treatment fish that were captured by one of the gear types 9–25 river kilometers (rkm) downstream of Bonneville Dam (rkm 234); and (2) control fish that were captured at the Adult Fish Facility near the Washington shore fish ladder at Bonneville Dam, and then transported and released 8 rkm downstream of the Bonneville Dam. Fish were confirmed to have survived if they moved upstream and were detected on PIT-tag antennas at or upstream of Bonneville Dam, were recovered at hatcheries or at the dam, or were captured by commercial or sport fishers. Post-release survival estimates were higher for steelhead (89–98 percent) than for Chinook salmon and coho salmon (50–90 percent; Washington Department of Fish and Wildlife, unpub. data, 2014). However, some Chinook salmon and coho salmon return to hatcheries, or spawn in the mainstem Columbia River and in tributaries downstream of Bonneville Dam. The proportion of Chinook salmon and coho salmon in the treatment group that were destined for areas downstream of Bonneville Dam likely was higher than in the control group because the control fish were collected as they were attempting to pass the dam. If this assertion was true, mortality would have been overestimated in these studies, so WDFW developed a study plan to determine the post-release movements and intended location of Chinook salmon and coho salmon collected with beach and purse seines in the lower Columbia River.

  14. Oxbow Fish Hatchery Snake River Sockeye Salmon Smolt Program, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, Duane D.

    2009-11-14

    This contract proposal is in response to the Federal Columbia River Power System Biological Opinion Implementation Plan/Update Proposed Action (UPA) associated with increasing the number of Snake River sockeye smolts by 150,000. To accomplish this proposal the cooperation and efforts of three government entities has been planned (e.g., Idaho Department of Fish and Game (IDFG), Oregon Department of Fish and Wildlife (ODFW), and the National Marine Fisheries Service (NMFS)). Improvements at the IDFG Eagle Fish Hatchery and NMFS Burley Creek Hatchery will focus on increasing sockeye salmon captive broodstock and egg production. Improvements at the ODFW Oxbow Fish Hatchery willmore » be made to accommodate the incubation, hatching and rearing of 150,000 sockeye salmon smolts for release into Idaho's Sawtooth Valley, Upper Salmon River near IDFG's Sawtooth Fish Hatchery and/or Redfish Lake Creek 1.4 km downstream of Redfish Lake. Modifications to Oxbow Fish Hatchery (ODFW) will include retro-fit existing pond drains so pond cleaning effluent water can be routed to the pollution abatement pond, and modifications to the abatement pond. Also included in this project as an added phase, was the rerouting of the hatchery building effluent water to meet state DEQ guidelines for the use of formalin to treat salmonid eggs. Some additional funding for the described Oxbow Hatchery modifications will come from Mitchell Act Funding. All personnel costs associated with this project will come from Mitchell Act funding. Due to heavy work load issues, being under staffed, and two emergency projects in the spring and summer of 2006, ODFW engineers were not able to complete all plans and get them out for bid in 2006. As a result of these circumstances retro-fitting pond drains and modifications to the abatement pond was carried over into fiscal year 2007-2008. A no cost time extension to the contract was approved by BPA. The format for this report will follow the standard format for

  15. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy

    2006-05-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound inmore » Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred

  16. Relationship of farm salmon, sea lice, and wild salmon populations.

    PubMed

    Marty, Gary D; Saksida, Sonja M; Quinn, Terrance J

    2010-12-28

    Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10-20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon--proposed through coordinated fallowing or closed containment--will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability.

  17. Mineral resource appraisal of the Salmon National Forest, Idaho

    USGS Publications Warehouse

    Johnson, Rick; Close, Terry; McHugh, Ed

    1998-01-01

    The Salmon National Forest administers 1,776,994 net acres of mountainous terrain located in east-central Idaho. Most of the Forest is in Lemhi County; only a small portion falls within Idaho and Valley Counties. Approximately 426,114 acres of the Frank Church-River of No Return Wilderness extends into the western part of the Forest and mineral entry is severely restricted. Because of its location within the Salmon River drainage, the Forest also is subject to numerous issues surrounding restoration of anadromous fish runs. Mineral production from the Salmon National Forest began during 1866 when placer gold was discovered in Leesburg Basin. Hardrock mining quickly spread throughout the Forest and many deposits containing a wide range of commodities were discovered and developed. Although early records are sketchy, production is estimated to include 940,000 ounces gold, 654,000 ounces silver, 61.9 million pounds copper, 8.9 million pounds lead, 13.9 million pounds cobalt, 208,000 pounds zinc, and 37,000 tons fluorite mill feed. Mineral resources are large, diverse, and occur in many deposit types including exhalative, stockwork, disseminated, vein, replacement, sedimentary, skarn, breccia pipe, porphyry, and placer. The largest cobalt resource in the United States occurs in the Blackbird Mining District. Other resources include gold, silver, copper, lead, molybdenum, phosphate, manganese, iron, fluorite, uranium, thorium, rare earth oxides, and barite.

  18. Relationship of farm salmon, sea lice, and wild salmon populations

    PubMed Central

    Marty, Gary D.; Saksida, Sonja M.; Quinn, Terrance J.

    2010-01-01

    Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10–20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon—proposed through coordinated fallowing or closed containment—will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability. PMID:21149706

  19. Composition and relative abundance of fish species in the lower White Salmon River, Washington, prior to the removal of Condit Dam

    USGS Publications Warehouse

    Allen, M. Brady; Connolly, Patrick J.

    2011-01-01

    Information about the composition and relative abundance of fish species was collected by a rotary screw trap and backpack electrofishing in the lower White Salmon River, Washington. The information was collected downstream of Condit Dam, which is at river kilometer (rkm) 5.2, and is proposed for removal in October 2011. A rotary screw trap was installed in the White Salmon River at rkm 1.5 and operated from March through June during 2006–09. All captured fish were identified to species and enumerated. Daily subsets of fish were weighed, measured, and fin clipped for a genetic analysis by the U.S. Fish and Wildlife Service.Fall Chinook salmon (Oncorhynchus tshawytscha) were captured in the highest numbers (n=18, 640), and were composed of two stocks: tule and upriver bright. Almost all captured fall Chinook salmon were age-0, with only 16 (0.09 percent) being age-1 or older.Tule fall Chinook salmon, the native stock, generally out-migrated from mid-March through early April. The tule stock was the more abundant fall Chinook salmon subspecies, comprising 85 percent of those captured in the trap.Upriver bright fall Chinook salmon comprised 15 percent of the Chinook salmon catch and generally out-migrated from late May to early June.Coho salmon ( kisutch) and steelhead trout (O. mykiss) were captured by the rotary screw trap in all years. Coho salmon were caught in low numbers (n=661) and 69 percent were age-0 fish. Steelhead were slightly more abundant (n=679) than coho salmon and 84 percent were age-1 or older fish.Trap efficiency estimates varied widely (range, 0-10 percent) by species, fish size, and time of year. However, if we use only the estimates from efficiency tests where more than 300 wild age-0 Chinook salmon were released, there was a mean trapping efficiency of 1.4 percent (n=4, median, 1.3 percent, range, 0.3–2.4 percent) during the tule out-migration period, and a mean trapping efficiency of 0.8 percent (n=2, range, 0.3–1.2 percent) during the

  20. Optimal reproduction in salmon spawning substrates linked to grain size and fish length

    NASA Astrophysics Data System (ADS)

    Riebe, Clifford S.; Sklar, Leonard S.; Overstreet, Brandon T.; Wooster, John K.

    2014-02-01

    Millions of dollars are spent annually on revitalizing salmon spawning in riverbeds where redd building by female salmon is inhibited by sediment that is too big for fish to move. Yet the conditions necessary for productive spawning remain unclear. There is no gauge for quantifying how grain size influences the reproductive potential of coarse-bedded rivers. Hence, managers lack a quantitative basis for optimizing spawning habitat restoration for reproductive value. To overcome this limitation, we studied spawning by Chinook, sockeye, and pink salmon (Oncorhynchus tshawytscha, O. nerka, and O. gorbuscha) in creeks and rivers of California and the Pacific Northwest. Our analysis shows that coarse substrates have been substantially undervalued as spawning habitat in previous work. We present a field-calibrated approach for estimating the number of redds and eggs a substrate can accommodate from measurements of grain size and fish length. Bigger fish can move larger sediment and thus use more riverbed area for spawning. They also tend to have higher fecundity, and so can deposit more eggs per redd. However, because redd area increases with fish length, the number of eggs a substrate can accommodate is maximized for moderate-sized fish. This previously unrecognized tradeoff raises the possibility that differences in grain size help regulate river-to-river differences in salmon size. Thus, population diversity and species resilience may be linked to lithologic, geomorphic, and climatic factors that determine grain size in rivers. Our approach provides a tool for managing grain-size distributions in support of optimal reproductive potential and species resilience.

  1. An injectable acoustic transmitter for juvenile salmon

    DOE PAGES

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong; ...

    2015-01-29

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation,more » and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.« less

  2. An injectable acoustic transmitter for juvenile salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation,more » and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.« less

  3. An injectable acoustic transmitter for juvenile salmon

    PubMed Central

    Deng, Z. D.; Carlson, T. J.; Li, H.; Xiao, J.; Myjak, M. J.; Lu, J.; Martinez, J. J.; Woodley, C. M.; Weiland, M. A.; Eppard, M. B.

    2015-01-01

    Salmon recovery and the potential detrimental effects of dams on fish have been attracting national attention due to the environmental and economic implications. In recent years acoustic telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing a bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter lasts four times longer and weighs 30% less than other transmitters. Because the new transmitter costs significantly less to use and may substantially reduce adverse effects of implantation and tag burden, it will allow for study of migration behavior and survival of species and sizes of fish that have never been studied before. The new technology will lead to critical information needed for salmon recovery and the development of fish-friendly hydroelectric systems. PMID:25630763

  4. An injectable acoustic transmitter for juvenile salmon

    NASA Astrophysics Data System (ADS)

    Deng, Z. D.; Carlson, T. J.; Li, H.; Xiao, J.; Myjak, M. J.; Lu, J.; Martinez, J. J.; Woodley, C. M.; Weiland, M. A.; Eppard, M. B.

    2015-01-01

    Salmon recovery and the potential detrimental effects of dams on fish have been attracting national attention due to the environmental and economic implications. In recent years acoustic telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing a bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter lasts four times longer and weighs 30% less than other transmitters. Because the new transmitter costs significantly less to use and may substantially reduce adverse effects of implantation and tag burden, it will allow for study of migration behavior and survival of species and sizes of fish that have never been studied before. The new technology will lead to critical information needed for salmon recovery and the development of fish-friendly hydroelectric systems.

  5. THE FOUR NATIONS OF SALMON WORLD

    EPA Science Inventory

    The four nations of Salmon World have existed for 10,000 years. Since the end of the last Ice Age, salmon established naturally substantial populations and prospered in four large regions of the earth: (1) the European side of the North Atlantic; (2) the North American side of...

  6. Declining wild salmon populations in relation to parasites from farm salmon.

    PubMed

    Krkosek, Martin; Ford, Jennifer S; Morton, Alexandra; Lele, Subhash; Myers, Ransom A; Lewis, Mark A

    2007-12-14

    Rather than benefiting wild fish, industrial aquaculture may contribute to declines in ocean fisheries and ecosystems. Farm salmon are commonly infected with salmon lice (Lepeophtheirus salmonis), which are native ectoparasitic copepods. We show that recurrent louse infestations of wild juvenile pink salmon (Oncorhynchus gorbuscha), all associated with salmon farms, have depressed wild pink salmon populations and placed them on a trajectory toward rapid local extinction. The louse-induced mortality of pink salmon is commonly over 80% and exceeds previous fishing mortality. If outbreaks continue, then local extinction is certain, and a 99% collapse in pink salmon population abundance is expected in four salmon generations. These results suggest that salmon farms can cause parasite outbreaks that erode the capacity of a coastal ecosystem to support wild salmon populations.

  7. Fish farms, parasites, and predators: implications for salmon population dynamics.

    PubMed

    Krkosek, Martin; Connors, Brendan M; Ford, Helen; Peacock, Stephanie; Mages, Paul; Ford, Jennifer S; Morton, Alexandra; Volpe, John P; Hilborn, Ray; Dill, Lawrence M; Lewis, Mark A

    2011-04-01

    For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an

  8. Salmon lice – impact on wild salmonids and salmon aquaculture

    PubMed Central

    Torrissen, O; Jones, S; Asche, F; Guttormsen, A; Skilbrei, O T; Nilsen, F; Horsberg, T E; Jackson, D

    2013-01-01

    Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion. PMID:23311858

  9. Salmon fishing by bears and the dawn of cooperative predation.

    PubMed

    Stringham, Stephen F

    2012-11-01

    Although bears are an epitome of solitary predation, black (Ursus americanus) and brown bears (U. arctos) occasionally act in pairs to capture salmon (Onchorynchous spp.). I sought to identify conditions that promote pairing and how this relates to optimal foraging. This study on Alaskan black bears assessed whether each mode of fishing (solo vs. paired) occurs mainly where it is most efficient at harvesting salmon--that is, whether modal group size (1 vs. 2) is also optimal size. Not in this case. Pairing increased captures per attempt (benefit/cost ratio = profitability) by up to 47% and captures per minute by up to 5.2-fold. Yet, the ratio of paired versus solo fishing was significantly lower than either profitability or chance explains. Modal group size was 1, optimal size was 2. This discrepancy did not result from intervention by other current benefits and costs, but from unnecessary defensiveness toward any rapidly approaching conspecific, even though it was chasing salmon, not threatening. For bears to regularly hunt cooperatively, they would have to more readily habituate to agonistic-like predatory actions, communicate intentions from > 10 m apart, and assess situational variations in benefit/cost ratios for solo versus paired hunting. It would be revealing to discover how social carnivores overcame these challenges.

  10. Data on volatile compounds in fermented materials used for salmon fish sauce production.

    PubMed

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2018-02-01

    This article describes the analysis of volatile compounds in fermented materials used for salmon fish sauce production via gas chromatography/mass spectrometry (GC/MS). Ten types of fish sauces were produced from raw salmon materials, including various proportions of flesh, viscera, inedible portion (heads, fins, and backbones), and soft roe, by mixing them with salt and allowing them to ferment for up to three months. The volatile compounds were captured by a solid-phase microextraction method and then applied to GC/MS for separation and identification of the compounds in the fish sauce products. The number of volatile compounds identified in the starting materials varied from 15 to 29 depending on the ingredients. The number of compounds in the final fish sauce products was reduced by 3.4-94.7% of that in the original material. The retention times and names of the identified compounds, as well as their relative peak areas, are provided in a Microsoft Excel Worksheet.

  11. Reproductive Potential of Salmon Spawning Substrates Inferred from Grain Size and Fish Length

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Sklar, L. S.; Overstreet, B. T.; Wooster, J. K.; Bellugi, D. G.

    2014-12-01

    The river restoration industry spends millions of dollars every year on improving salmon spawning in riverbeds where sediment is too big for fish to move and thus use during redd building. However, few studies have addressed the question of how big is too big in salmon spawning substrates. Hence managers have had little quantitative basis for gauging the amount of spawning habitat in coarse-bedded rivers. Moreover, the scientific framework has remained weak for restoration projects that seek to improve spawning conditions. To overcome these limitations, we developed a physically based, field-calibrated model for the fraction of the bed that is fine-grained enough to support spawning by fish of a given size. Model inputs are fish length and easy-to-measure indices of bed-surface grain size. Model outputs include the number of redds and eggs the substrate can accommodate when flow depth, temperature, and other environmental factors are not limiting. The mechanistic framework of the model captures the biophysical limits on sediment movement and the space limitations on redd building and egg deposition in riverbeds. We explored the parameter space of the model and found a previously unrecognized tradeoff in salmon size: bigger fish can move larger sediment and thus use more riverbed area for spawning; they also tend to have higher fecundity, and so can deposit more eggs per redd; however, because redd area increases with fish length, the number of eggs a substrate can accommodate is highest for moderate-sized fish. One implication of this tradeoff is that differences in grain size may help regulate river-to-river differences in salmon size. Thus, our model suggests that population diversity and, by extension, species resilience are linked to lithologic, geomorphic, and climatic factors that determine grain size in rivers. We cast the model into easy-to-use look-up tables, charts, and computer applications, including a JavaScript app that works on tablets and mobile

  12. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Pacific Northwest): Pink salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonar, S.A.; Pauley, G.B.; Thomas, G.L.

    1989-01-01

    Species profiles are literature summaries of the taxonomy, morphology, range, life history, and environmental requirements of coastal aquatic species. They are designed to assist in environmental impact assessment. The pink salmon, often called humpback salmon or humpy, is easily identified by its extremely small scales (150 to 205) on the lateral line. They are the most abundant of the Pacific salmon species and spawn in North American and Asian streams bordering the Pacific and Arctic Oceans. They have a very simple two-year life cycle, which is so invariable that fish running in odd-numbered years are isolated from fish running inmore » even-numbered years so that no gene flow occurs between them. Adults spawn in the fall and the young fry emerge in the spring. The pink salmon is less desirable in commercial and sport catches than most other salmon because of its small size and its soft pale flesh. The Puget Sound region of Washington State is the southern geographic limit of streams supporting major pink salmon runs in the eastern North Pacific. Pink salmon runs are presently only in odd-numbered years in this region. Optimum water temperatures for spawning range from 7.2 to 12.8/degree/C. Productive pink salmon streams have less than 5.0% by volume of fine sediments (less than or equal to0.8 mm). 87 refs., 5 figs., 1 tab.« less

  13. A protocol using coho salmon to monitor Tongass National Forest Land and Resource Management Plan standards and guidelines for fish habitat.

    Treesearch

    M.D. Bryant; Trent McDonald; R. Aho; B.E. Wright; Michelle Bourassa Stahl

    2008-01-01

    We describe a protocol to monitor the effectiveness of the Tongass Land Management Plan (TLMP) management standards for maintaining fish habitat. The protocol uses juvenile coho salmon (Oncorhynchus kisutch) in small tributary streams in forested watersheds. We used a 3-year pilot study to develop detailed methods to estimate juvenile salmonid...

  14. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries ofmore » these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.« less

  15. Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon

    PubMed Central

    Rogers, Luke A.; Peacock, Stephanie J.; McKenzie, Peter; DeDominicis, Sharon; Jones, Simon R. M.; Chandler, Peter; Foreman, Michael G. G.; Revie, Crawford W.; Krkošek, Martin

    2013-01-01

    Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions. PMID:23577082

  16. Resource and activity substitutes for recreational salmon fishing in New Zealand

    Treesearch

    Bo Shelby

    1985-01-01

    Substitutes become an issue when people are constrained from participating in desired activities. This study investigates and compares activity and resource substitutes for recreational salmon fishing in New Zealand. Results suggest that resource substitution and inventories need more attention, user perceptions of substitutes are important, substitutes can be...

  17. 77 FR 26744 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... of reduction payment tender of Southeast Alaska purse seine salmon permits. SUMMARY: The National... Southeast Alaska purse seine salmon fishery. The program authorizes NMFS to make payments to permit holders...

  18. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest). Coho Salmon.

    DTIC Science & Technology

    1987-08-01

    through the Scientific name ....... Oncorhynchus Aleutians, and from the Anadyr kisutch (Walbaum) River, U.S.S.R., south to Hokkdido, Preferred common name...Coho salmon (0. nerka ); the low pyloric silmon do not enter the San Joaquin caeca count (k 83) sepdrdtes the coho River. from any Sal-mon except the...Part 9: Coho Blahm. 1986. Food of juvenile salmon in offshore waters. Int. chinook ( Oncorhynchus tshawytscha) North Pac. Fish. Comm. Bull. 16:1- and coho

  19. Is fishing selective for physiological and energetic characteristics in migratory adult sockeye salmon?

    PubMed Central

    Cooke, Steven J; Donaldson, Michael R; Hinch, Scott G; Crossin, Glenn T; Patterson, David A; Hanson, Kyle C; English, Karl K; Shrimpton, J Mark; Farrell, Anthony P

    2009-01-01

    There is extensive evidence that fishing is often selective for specific phenotypic characteristics, and that selective harvest can thus result in genotypic change. To date, however, there are no studies that evaluate whether fishing is selective for certain physiological or energetic characteristics that may influence fish behaviour and thus vulnerability to capture. Here, adult sockeye salmon (Oncorhynchus nerka) were used as a model to test the null hypothesis that fishing is not selective for specific physiological or energetic traits. Fish were intercepted during their spawning migrations, implanted with a gastric radio transmitter, and biopsied (i.e., non-lethally sampled for blood, gill tissue and quantification of energetic status). In both 2003 and 2006, we tagged and biopsied 301 and 770 sockeye salmon, respectively, in the marine environment en route to their natal river system to spawn. In 2006 an additional 378 individuals were tagged and biopsied in freshwater. We found that 23 (7.6%) of the marine fish tagged in 2003, 78 (10.1%) of the marine fish tagged in 2006 and 57 (15.1%) of the freshwater fish tagged in 2006 were harvested by one of three fisheries sectors that operate in the coastal marine environment and the Fraser River (i.e. commercial, recreational or First Nations fisheries between the site of release and Hell's Gate in the Fraser River, approximately 250 km upriver and 465 km from the ocean tagging site). However, fisheries were not open continually or consistently in different locations and for different fisheries sectors necessitating a paired analytical approach. As such, for statistical analyses we paired individual fish that were harvested with another fish of the same genetic stock that was released on the same date and exhibited similar migration behaviour, except that they successfully evaded capture and reached natal spawning grounds. Using two-tailed Wilcoxon matched pairs signed-rank tests, we revealed that the physiological

  20. Dietary calcein marking of brook trout, Atlantic salmon, yellow perch, and coho salmon scales

    USGS Publications Warehouse

    Honeyfield, D.C.; Ostrowski, C.S.; Fletcher, J.W.; Mohler, J.W.

    2006-01-01

    Brook trout Salvelinus fontinalis, Atlantic salmon Salmo salar, coho salmon Oncorhynchus kisutch, and yellow perch Perca flavescens fed calcein for 5 d showed characteristic calcein scale marks 7-10 d postmarking. In fish fed 0.75 or 1.25 g of calcein per kilogram of feed, the percentage of fish that exhibited a calcein mark was 100% in brook trout, 93-98% in Atlantic salmon, 60% in yellow perch, and 0% in coho salmon. However, when coho salmon were fed 5.25 g calcein/kg feed, 100% marking was observed 7-10 d postmarking. Brook trout were successfully marked twice with distinct bands when fed calcein 5 months apart. Brook trout scale pixel luminosity increased as dietary calcein increased in experiment 2. For the second calcein mark, scale pixel luminosity from brook trout fed 1.25 g calcein/kg feed was numerically higher (P < 0.08) than scales from fish fed 0.75 g calcein/kg feed. Mean pixel luminosity of calcein-marked Atlantic salmon scales was 57.7 for fish fed 0.75 g calcein/kg feed and 55.2 for fish fed 1.25 g calcein/kg feed. Although feed acceptance presented a problem in yellow perch, these experiments provide evidence that dietary calcein is a viable tool for marking fish for stock identification. ?? Copyright by the American Fisheries Society 2006.

  1. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon.

    PubMed

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed.

  2. Algae in Fish Feed: Performances and Fatty Acid Metabolism in Juvenile Atlantic Salmon

    PubMed Central

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A.; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M.

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed. PMID:25875839

  3. A comparison of Oregon pellet and fish-meat diets for administration of sulfamethazine to Chinook salmon

    USGS Publications Warehouse

    Amend, D.F.; Fryer, J.L.; Pilcher, K.S.

    1967-01-01

    The absorption of sulfamethazine by yearling spring chinook salmon (Oncorhynchus tshawytscha) was compared when administered in the Oregon Pellet and a fish-meat diet. The pelleted diet delivered the drug to the fish approximately twice as efficiently as the fish-meat diet. Dosage levels are recommended for both diets, and the efficacy of administering drugs in fish feed is discussed.

  4. Alaskan Salmon and Gen R: hunting, fishing to cultivate ecological mindfulness

    NASA Astrophysics Data System (ADS)

    Mueller, Michael P.

    2015-03-01

    Can mining and fisheries co-exist in Bristol Bay, Alaska? To delve into this interesting tension, I expand on Clay Pierce's (this special issue) thoughtful analysis of genetically modified salmon and AquaBounty Technologies, where he explores actor-network theory in relation to scientific literacy and schooling. Further, my essay explores the idea of embodied knowledge as paramount to the next generation of youth engaged with scientific literacy. I demonstrate the problems associated with using hegemonic science to normalize biocapitalism and the subjugated knowledges in relation. Ultimately, I provide justifications for strengthening an ecologically mindful scientific literacy, working towards what might be called "Neptunian democracy" in science education, including salmon and other nonhuman actors as integral for youth wrestling with ecojustice issues. To do this, I highlight the significance of renewing fishing, hunting, and salmon eating. These things ought to become an intimate characteristic of the imagined literacy of the next generation of youth (what I've been calling Generation R for responsibility).

  5. 76 FR 36896 - Salmon-Challis National Forest, ID; Forestwide Invasive Plant Treatment Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Salmon-Challis National Forest, ID; Forestwide Invasive... to the biological diversity and ecological integrity within and outside the Salmon-Challis National... loss of recreational opportunities. Within the 3,108,904 acres of the of the Salmon-Challis National...

  6. Limnology and fish ecology of sockeye salmon nursery lakes of the world

    USGS Publications Warehouse

    Hartman, Wilbur L.; Burgner, R.L.

    1972-01-01

    Many important, recently glaciated oligotrophic lakes that lie in coastal regions around the northern rim of the Pacific Ocean produce anadromous populations of sockeye salmon, Oncorhynchus nerka. This paper describes the limnology and fish ecology of two such lakes in British Columbia, five in Alaska, and one in Kamchatka. Then we discuss the following general topics: the biogenic eutrophication of nursery lakes from the nutrients released from salmon carcasses wherein during years of highest numbers of spawners, lake phosphate balances in Lakes Babine, Iliamna, and Dalnee are significantly affected; the use of nursery lakes by young sockeye that reveals five patterns related to size and configuration of lake basins and the distribution of spawning areas; the interactions between various life history stages of sockeye salmon and such resident predators, competitors, and prey as Arctic char, lake trout, Dolly Varden, cutthroat trout, lake whitefish, pygmy whitefish, pond smelt, sticklebacks, and sculpins; the self-regulation of sockeye salmon abundance in these nursery lakes as controlled by density-dependent processes; the interrelations between young sockeye salmon biomass and growth rates, and zooplankton abundance in Babine Lake; and finally, the diel, vertical, pelagial migratory behavior of young sockeye in Babine Lake and the new hypothesis dealing with bioenergetic conservation.

  7. Upstream movements of Atlantic Salmon in the Lower Penobscot River, Maine following two dam removals and fish passage modifications

    USGS Publications Warehouse

    Izzo, Lisa K.; Maynard, George A.; Zydlewski, Joseph D.

    2016-01-01

    The Penobscot River Restoration Project (PRRP), to be completed in 2016, involved an extensive plan of dam removal, increases in hydroelectric capacity, and fish passage modifications to increase habitat access for diadromous species. As part of the PRRP, Great Works and Veazie dams were removed, making Milford Dam the first impediment to federally endangered Atlantic Salmon Salmo salar. Upstream habitat access for Atlantic Salmon is dependent upon successful and timely passage at Milford Dam because nearly all suitable spawning habitat is located upstream. In 2014 and 2015, a total of 73 adult salmon were radio-tagged to track their upstream movements through the Penobscot River to assess potential delays at (1) the dam remnants, (2) the confluence of the Stillwater Branch and the main stem of the Penobscot River below the impassable Orono Dam, and (3) the Milford Dam fish lift (installed in 2014). Movement rates through the dam remnants and the Stillwater confluence were comparable to open river reaches. Passage efficiency of the fish lift was high in both years (95% and 100%). However, fish experienced long delays at Milford Dam, with approximately one-third of fish taking more than a week to pass in each year, well below the Federal Energy Regulatory Commission passage standard of 95% within 48 h. Telemetry indicates most fish locate the fishway entrance within 5 h of arrival and were observed at the entrance at all hours of the day. These data indicate that overall transit times through the lower river were comparable to reported movement rates prior to changes to the Penobscot River due to the substantial delays seen at Milford Dam. The results of this study show that while adult Atlantic Salmon locate the new fish lift entrance quickly, passage of these fish was significantly delayed under 2014–2015 operations.

  8. [Residues of tetracycline and quinolones in wild fish living around a salmon aquaculture center in Chile].

    PubMed

    Fortt Z, Antonia; Cabello C, Felipe; Buschmann R, Alejandro

    2007-02-01

    The presence of residues of tetracycline, quinolones and antiparasitic drugs was investigated in wild fish captured around salmon aquaculture pens in Cochamó, Region X, Chile. Residues of both antibiotics were found in the meta [corrected] of two species of wild fish that are consumed by humans, robalo (Elginops maclovinus) and cabrilla (Sebastes capensis) [corrected] These findings suggest that the antibiotic usage in salmon aquaculture in Chile has nvironmental implications that may affect human and animal health. More studies are needed in Chile to determine the relevance of these findings for human and animal health and the environment to regulate this use of antibiotics.

  9. Relative resistance of Pacific salmon to infectious salmon anaemia virus

    USGS Publications Warehouse

    Rolland, J.B.; Winton, J.R.

    2003-01-01

    Infectious salmon anaemia (ISA) is a major disease of Atlantic salmon, Salmo salar, caused by an orthomyxovirus (ISAV). Increases in global aqua culture and the international movement of fish made it important to determine if Pacific salmon are at risk. Steelhead trout, Oncorhynchus mykiss, and chum, O. keta, Chinook, O. tshawytscha, coho, O. kisutch, and Atlantic salmon were injected intraperitoneally with a high, medium, or low dose of a Norwegian strain of ISAV. In a second challenge, the same species, except chum salmon, were injected with a high dose of either a Canadian or the Norwegian strain. Average cumulative mortality of Atlantic salmon in trial 1 was 12% in the high dose group, 20% in the medium dose group and 16% in the low dose group. The average cumulative mortality of Atlantic salmon in trial 2 was 98%. No signs typical of ISA and no ISAV-related mortality occurred among any of the groups of Oncorhynchus spp. in either experiment, although ISAV was reisolated from some fish sampled at intervals post-challenge. The results indicate that while Oncorhynchus spp. are quite resistant to ISAV relative to Atlantic salmon, the potential for ISAV to adapt to Oncorhynchus spp. should not be ignored.

  10. PCR survey for Paramoeba perurans in fauna, environmental samples and fish associated with marine farming sites for Atlantic salmon (Salmo salar L.).

    PubMed

    Hellebø, A; Stene, A; Aspehaug, V

    2017-05-01

    Amoebic gill disease (AGD) caused by the amoeba Paramoeba perurans is an increasing problem in Atlantic salmon aquaculture. In the present PCR survey, the focus was to identify reservoir species or environmental samples where P. perurans could be present throughout the year, regardless of the infection status in farmed Atlantic salmon. A total of 1200 samples were collected at or in the proximity to farming sites with AGD, or with history of AGD, and analysed for the presence of P. perurans. No results supported biofouling organisms, salmon lice, biofilm or sediment to maintain P. perurans. However, during clinical AGD in Atlantic salmon, the amoeba were detected in several samples, including water, biofilm, plankton, several filter feeders and wild fish. It is likely that some of these samples were positive as a result of the continuous exposure through water. Positive wild fish may contribute to the spread of P. perurans. Cleaner fish tested positive for P. perurans when salmon tested negative, indicating that they may withhold the amoeba longer than salmon. The results demonstrate the high infection pressure produced from an AGD-afflicted Atlantic salmon population and thus the importance of early intervention to reduce infection pressure and horizontal spread of P. perurans within farms. © 2016 John Wiley & Sons Ltd.

  11. 77 FR 41754 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... program in the Southeast Alaska purse seine salmon fishery. NMFS conducted a referendum to approve the..., Chief, Financial Services Division, NMFS, Attn: SE Alaska Purse Seine Salmon Buyback, 1315 East-West...

  12. Evaluation of emamectin benzoate and substance EX against salmon lice in sea-ranched Atlantic salmon smolts.

    PubMed

    Skilbrei, Ove Tommy; Espedal, Per Gunnar; Nilsen, Frank; Garcia, Enrique Perez; Glover, Kevin A

    2015-04-08

    Experimental releases of Atlantic salmon smolts treated with emamectin benzoate (EB) against salmon lice have previously been used to estimate the significance of salmon lice on the survival of migrating smolts. In recent years, the salmon louse has developed reduced sensitivity to EB, which may influence the results of such release experiments. We therefore tested the use of 2 anti-lice drugs: EB was administered to salmon smolts in high doses by intra-peritoneal injection and the prophylactic substance EX (SubEX) was administered by bathing. A third, untreated control group was also established. Salmon were challenged with copepodids of 2 strains of salmon lice (1 EB-sensitive strain and 1 with reduced EB-sensitivity) in mixed-group experimental tanks. At 31 d post-challenge, the numbers of pre-adult lice on treated fish were around 20% compared with the control fish, with minor or no differences between the 2 treatments and lice strains. Both treatments therefore appeared to give the smolts a high degree of protection against infestation of copepodids of salmon lice. However, significantly lower growth of the EB-treatment group indicates that bathing the fish in SubEX is less stressful for smolts than intra-peritoneal injection of EB.

  13. 77 FR 13072 - Salmon-Challis National Forest, Butte, Custer and Lemhi Counties, ID, Supplemental Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... DEPARTMENT OF AGRICULTURE Forest Service Salmon-Challis National Forest, Butte, Custer and Lemhi Counties, ID, Supplemental Environmental Impact Statement to the 2009 Salmon- Challis National Forest... of intent to prepare a supplemental environmental impact statement. SUMMARY: The Salmon-Challis...

  14. 77 FR 19004 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... Salmon Fishery. DATES: Comments must be submitted on or before 5 p.m. EST April 13, 2012. ADDRESSES: Send... Seine Salmon Buyback, 1315 East-West Highway, Silver Spring, MD 20910 (see FOR FURTHER INFORMATION...

  15. Uncoupling EPA and DHA in Fish Nutrition: Dietary Demand is Limited in Atlantic Salmon and Effectively Met by DHA Alone.

    PubMed

    Emery, James A; Norambuena, Fernando; Trushenski, Jesse; Turchini, Giovanni M

    2016-04-01

    Due to the scarcity of marine fish oil resources, the aquaculture industry is developing more efficient strategies for the utilization of dietary omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). A better understanding of how fish utilize EPA and DHA, typically provided by fish oil, is needed. However, EPA and DHA have different physiological functions, may be metabolized and incorporated into tissues differently, and may vary in terms of their importance in meeting the fatty acid requirements of fish. To address these questions, Atlantic salmon were fed experimental diets containing, as the sole added dietary lipid source, fish oil (positive control), tallow (negative control), or tallow supplemented with EPA, DHA, or both fatty acids to ~50 or 100% of their respective levels in the positive control diet. Following 14 weeks of feeding, the negative control diet yielded optimum growth performance. Though surprising, these results support the notion that Atlantic salmon requirements for n-3 LC-PUFA are quite low. EPA was largely β-oxidized and inefficiently deposited in tissues, and increasing dietary levels were associated with potential negative effects on growth. Conversely, DHA was completely spared from catabolism and very efficiently deposited into flesh. EPA bioconversion to DHA was largely influenced by substrate availability, with the presence of preformed DHA having little inhibitory effect. These results clearly indicate EPA and DHA are metabolized differently by Atlantic salmon, and suggest that the n-3 LC-PUFA dietary requirements of Atlantic salmon may be lower than reported and different, if originating primarily from EPA or DHA.

  16. Potential Effects of Dams on Migratory Fish in the Mekong River: Lessons from Salmon in the Fraser and Columbia Rivers

    NASA Astrophysics Data System (ADS)

    Ferguson, John W.; Healey, Michael; Dugan, Patrick; Barlow, Chris

    2011-01-01

    We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region.

  17. Antibody against infectious salmon anaemia virus among feral Atlantic salmon (Salmo salar)

    USGS Publications Warehouse

    Cipriano, R.C.

    2009-01-01

    Archived sera from Atlantic salmon (Salmo salar) that returned to the Penobscot River (Maine), Merrimack River (Massachusetts), and Connecticut River (in Massachusetts) from 1995 to 2002 were analysed for antibodies against infectious salmon anaemia virus (ISAV) using an enzyme-linked immunosorbent assay (ELISA). Up to 60 samples were archived per river system per year. In a given year, the number of fish sampled by ELISA for ISAV antibodies in the Penobscot River ranged from 2.9 to 11.2, and the range of salmon sampled in the Merrimack River and the Connecticut River was 31.3-100 and 20.0-67.5, respectively. Archived sera were not available for the 1995 and 2002 year classes from the Connecticut River. In all, 1141 samples were processed; 14 serum samples tested positive for antibodies to ISAV. In the Penobscot River, serum from one fish tested positive in each of the 1995 and 1999 year-class returns, and sera from two fish tested positive in the 1998 returns. In the Merrimack River, sera from four fish tested positive in each of the 1996 and 1997 returns, and sera from two fish were positive in the 2002 return. None of the archived sera from Atlantic salmon that returned to the Connecticut River tested positive. ?? 2009 United States Government, Department of the Interior.

  18. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    USGS Publications Warehouse

    Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.

    2015-01-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.

  19. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake Rivermore » sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish

  20. Reducing persistent organic pollutants while maintaining long chain omega-3 fatty acid in farmed Atlantic salmon using decontaminated fish oils for an entire production cycle.

    PubMed

    Berntssen, M H G; Olsvik, P A; Torstensen, B E; Julshamn, K; Midtun, T; Goksøyr, A; Johansen, J; Sigholt, T; Joerum, N; Jakobsen, J-V; Lundebye, A-K; Lock, E-J

    2010-09-01

    Oily fish are an important source of health promoting nutrients such as the very long chain marine omega-3 (VLC-n3) fatty acids and simultaneously a source of potentially hazardous contaminants. Fish oils that are used in fish feed are the main source for both contaminants and VLC-n3. Decontamination techniques have recently been developed to effectively remove persistent organic contaminants from fish oils. The aim of the present study was to assess the level of potentially hazardous contaminants and the health beneficial fatty acids in Atlantic salmon reared on novel decontaminated feeds. Atlantic salmon were fed for 18 months (an entire seawater production cycle) on diets based on decontaminated or non-treated (control) fish oils until market size (approximately 5 kg). The level of known notorious persistent organic pollutants (POPs, i.e. dioxins, dioxin-like polychlorinated biphenyls (DL-PCBs), non dioxin-like PCBs, poly brominated diphenyl ethers (PBDE), and organochlorine pesticides), as well as fatty acid composition were analysed in fish oils, the two diets, and Atlantic salmon fillet. The oil decontamination process was a two-step procedure using active carbon and short path distillation. The fillet levels of POPs in market size fish were reduced by 68-85% while the concentration of very long chain omega-3 fatty acids was reduced by 4-7%. No differences in biomarkers of dioxin-like component exposures, such as hepatic gene expression of CYP1A or AhR2B, CYP1A protein expression and 7-ethoxyresorufin O-deethylase (EROD) activity, were observed between salmon raised on normal or decontaminated feeds, thus indicating that the difference in POPs levels were of no biological significance to the fish. Atlantic salmon reared on decontaminated feeds had sum polychlorinated dibenzodioxins/furans (PCDD/Fs) and DL-PCB concentrations that were comparable with terrestrial food products such as beef, while the level of marine omega-3 fatty acids remained as high as for

  1. Behavior patterns and fates of adult steelhead, Chinook salmon, and coho salmon released into the upper Cowlitz River Basin, 2005–09 and 2012, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Ekstrom, Brian K.; Liedtke, Theresa L.; Serl, John D.; Kohn, Mike

    2016-08-26

    A multiyear radiotelemetry evaluation was conducted to monitor adult steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) behavior and movement patterns in the upper Cowlitz River Basin. Volitional passage to this area was eliminated by dam construction in the mid-1960s, and a reintroduction program began in the mid-1990s. Fish are transported around the dams using a trap-and-haul program, and adult release sites are located in Lake Scanewa, the uppermost reservoir in the system, and in the Cowlitz and Cispus Rivers. Our goal was to estimate the proportion of tagged fish that fell back downstream of Cowlitz Falls Dam before the spawning period and to determine the proportion that were present in the Cowlitz and Cispus Rivers during the spawning period. Fallback is important because Cowlitz Falls Dam does not have upstream fish passage, so fish that pass the dam are unable to move back upstream and spawn. A total of 2,051 steelhead and salmon were tagged for the study, which was conducted during 2005–09 and 2012, and 173 (8.4 percent) of these regurgitated their transmitter prior to, or shortly after release. Once these fish were removed from the dataset, the final number of fish that was monitored totaled 1,878 fish, including 647 steelhead, 770 Chinook salmon, and 461 coho salmon.Hatchery-origin (HOR) and natural-origin (NOR) steelhead, Chinook salmon, and coho salmon behaved differently following release into Lake Scanewa. Detection records showed that the percentage of HOR fish that moved upstream and entered the Cowlitz River or Cispus River after release was relatively low (steelhead = 38 percent; Chinook salmon = 67 percent; coho salmon = 41 percent) compared to NOR fish (steelhead = 84 percent; Chinook salmon = 82 percent; coho salmon = 76 percent). The elapsed time from release to river entry was significantly lower for NOR fish than for HOR fish for all three species. Tagged fish entered the Cowlitz River in

  2. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, Daniel J.; Wipfli, Mark S.; Stricker, Craig A.; Heintz, Ron A.; Rinella, Matthew J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  3. History and effects of hatchery salmon in the Pacific

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Gallaugher, Patricia; Wood, Laurie

    2004-01-01

    There has been a long history of production of hatchery salmon along the Pacific coast - from California’s first efforts in the 1870s using eggs from chinook and rainbow trout to the recent large-scale production hatcheries for pink salmon in Japan and the Russian Far East. The rationale for this production has also varied from replacement of fish lost in commercial ocean harvests to mitigation and restoration of salmon in areas where extensive habitat alteration has reduced salmonid viability and abundance. Over the years, we have become very successful in producing a certain type of product from salmon hatcheries, but until recently we seldom questioned the impacts the production and release of hatchery fish may have on freshwater and marine aquatic ecosystems and on the sustainability of sympatric wild salmon populations. This paper addresses the history of hatcheries around the Pacific Rim and considers potential negative implications of hatchery-produced salmon through discussions of biological impacts and biodiversity, ecological impacts and competitive displacement, fish and ecosystem health, and genetic impacts of hatchery fish as threats to wild populations of Pacific salmon.

  4. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    PubMed

    Garver, K A; Marty, G D; Cockburn, S N; Richard, J; Hawley, L M; Müller, A; Thompson, R L; Purcell, M K; Saksida, S

    2016-02-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon. © 2015 John Wiley & Sons Ltd.

  5. Identification of enolases and aldolases as important fish allergens in cod, salmon and tuna: component resolved diagnosis using parvalbumin and the new allergens.

    PubMed

    Kuehn, A; Hilger, C; Lehners-Weber, C; Codreanu-Morel, F; Morisset, M; Metz-Favre, C; Pauli, G; de Blay, F; Revets, D; Muller, C P; Vogel, L; Vieths, S; Hentges, F

    2013-07-01

    The majority of fish-allergic patients are sensitized to parvalbumin, known to be the cause of important IgE cross-reactivity among fish species. Little is known about the importance of fish allergens other than parvalbumin. The aim of this study was to characterize hitherto undefined fish allergens in three commonly consumed fish species, cod, salmon and tuna, and to evaluate their importance for in vitro IgE-diagnosis in addition to parvalbumin and fish gelatin. Sixty-two patients were diagnosed by clinical history, skin prick tests and specific IgE to fish extracts. Two new fish allergens from cod, salmon and tuna were identified by microsequencing. These proteins were characterized by immunoblot, ELISA and mediator release assay. Purified parvalbumin, enolase, aldolase and fish gelatin were used for quantification of specific IgE in ELISA. Parvalbumin and two other allergens of 50 and 40 kDa were detected in IgE-immunoblots of cod, salmon and tuna extracts by most patient sera. The 50 and 40 kDa proteins were identified as beta-enolase and fructose-bisphosphate aldolase A respectively. Both purified enzymes showed allergenic activity in the mediator release assay. Indeed, 72.6% of the patients were sensitized to parvalbumin, 20% of these had specific IgE to salmon parvalbumin only. IgE to enolases were found in 62.9% (0.5-95.0 kUA /L), to aldolases in 50.0% (0.4-26.0 kUA /L) and to fish gelatin in 19.3% (0.4-20.0 kUA /L) of the patients. Inter-species cross-reactivity, even though limited, was found for enolases and aldolases by IgE-inhibition ELISA. Fish enolase and aldolase have been identified as important new fish allergens. In fish allergy diagnosis, IgE to enolase and aldolase are especially relevant when IgE to parvalbumin are absent. © 2013 John Wiley & Sons Ltd.

  6. Biotic and abiotic influences on abundance and distribution of nonnative Chinook salmon and native ESA-listed steelhead in the Wind River, Washington

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2015-01-01

    Biotic and abiotic factors influence fish populations and distributions. Concerns have been raised about the influence of hatchery fish on wild populations. Carson National Fish Hatchery produces spring Chinook salmon Oncorhynchus tshawytscha in the Wind River, Washington, and some spawn in the river. Managers were concerned that Chinook salmon could negatively affect wild steelhead O. mykiss and that a self-sustaining population of Chinook salmon may develop. Our objectives were to assess: 1) the distribution and populations of juvenile spring Chinook salmon and juvenile steelhead in the upper Wind River; 2) the influence of stream flow and of each population on the other; and 3) if Chinook salmon populations were self-sustaining. We snorkeled to determine distribution and abundance. Flow in the fall influenced upstream distribution and abundance of juvenile Chinook salmon. Juvenile Chinook salmon densities were consistently low (range 0.0 to 5.7 fish 100 m-2) and not influenced by number of spawners, winter flow magnitude, or steelhead abundance. Juvenile steelhead were distributed through the study section each year. Age-0 and age-1 steelhead densities (age-0 range: 0.04 to 37.0 fish 100 m-2; age-1 range: 0.02 to 6.21 fish 100 m-2) were consistently higher than for juvenile Chinook salmon. Steelhead spawner abundance positively influenced juvenile steelhead abundance. During this study, Chinook salmon in the Wind River appear to have had little effect on steelhead. Low juvenile Chinook salmon abundance and a lack of a spawner-to-juvenile relationship suggest Chinook salmon are not self-sustaining and potential for such a population is low under current conditions.

  7. Salmon habitat assessment for conservation planning in the lower White Salmon River, Washington

    USGS Publications Warehouse

    Hardiman, Jill M.; Allen, M. Brady

    2015-01-01

    In 2011, Condit Dam was removed from the White Salmon River, Washington. Since dam removal, there has been interest among scientists (State and Federal), Tribes, non-profit organizations, and the general public in assessing Pacific salmon habitat and use in the White Salmon River for conservation planning and potential fishery management actions. The study area extended from the lower 6 miles of the White Salmon River to the confluence with the Columbia River, including the former reservoir area. The Mid-Columbia Fisheries Enhancement Group received a grant to initiate efforts to plan for salmon habitat protection in the lower 6 river miles of the White Salmon River. As part of efforts by the Mid-Columbia Fisheries Enhancement Group to conduct conservation planning, the U.S. Geological Survey (USGS) used current and historical habitat information to assist in the planning process. The USGS compiled existing georeferenced habitat data into a Geographic Information System to identify areas of high quality habitat for salmon, potential areas for restoration/improvement, and areas that could be threatened. The primary sources of georeferenced data for this project include a lidar flight contracted by PacifiCorp, bathymetry from USGS, and fall Chinook salmon redd surveys from the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife. Redd observations provided support that the study area is a migratory corridor for salmon and steelhead and that the lowest 2–3 miles had the highest concentration of documented fall Chinook salmon redds. The study area has potential for restoration/conservation areas to improve/conserve salmon habitat.

  8. Development of the salmon louse Lepeophtheirus salmonis and its effects on juvenile sockeye salmon Oncorhynchus nerka.

    PubMed

    Jakob, E; Sweeten, T; Bennett, W; Jones, S R M

    2013-11-06

    Responses of sockeye salmon Oncorhynchus nerka during infection with Lepeophtheirus salmonis were assessed in controlled laboratory trials. Juvenile salmon were exposed to 100 copepodids fish-1 (Trials 1 and 2) or 300 copepodids fish-1 (Trial 3) at mean weights of approximately 40, 80 and 135 g, respectively. Infections occurred on all salmon in all trials, and mean abundances (infection densities) ranged between 3.3 and 19.4 lice fish-1 (0.08 and 0.44 lice g-1 fish) in Trial 1, between 7.2 and 18.3 (0.09 and 0.22) in Trial 2 and between 19.5 and 60.7 (0.15 and 0.46) in Trial 3. A cumulative mortality of 24.4% occurred in Trial 3. At attachment sites on gills, we observed hyperplasia of basal epithelial cells and fusion of secondary lamellae occasionally associated with a cellular infiltrate. At attachment sites on fins, partial to complete skin erosion occurred, with limited evidence of hyperplasia or inflammation. Scale loss and abrasions coincided with pre-adult lice around 20 d post infection (dpi). Plasma osmolality was significantly elevated in exposed fish in Trials 1 (21 dpi), 2 (15 and 36 dpi) and 3 (20 dpi), whereas haematocrit was significantly depressed in exposed fish in Trials 1 (21 and 28 dpi) and 3 (20 dpi). Plasma cortisol was significantly elevated in exposed fish at 20 dpi (Trial 3). Physiological changes and mortality were related to the intensity of infection and became most prominent with pre-adult stages, suggesting patterns of infection and response in sockeye salmon similar to those reported for Atlantic and Chinook salmon.

  9. Isolation and identification of infectious salmon anaemia virus (ISAV) from Coho salmon in Chile.

    PubMed

    Kibenge, F S; Gárate, O N; Johnson, G; Arriagada, R; Kibenge, M J; Wadowska, D

    2001-05-04

    The isolation of infectious salmon anaemia virus (ISAV) from asymptomatic wild fish species including wild salmon, sea trout and eel established that wild fish can be a reservoir of ISAV for farmed Atlantic salmon. This report characterizes the biological properties of ISAV isolated from a disease outbreak in farmed Coho salmon in Chile and compares it with ISAV isolated from farmed Atlantic salmon in Canada and Europe. The virus that was isolated from Coho salmon tissues was initially detected with ISAV-specific RT-PCR (reverse transcription-polymerase chain reaction). The ability of the virus to grow in cell culture was poor, as cytopathology was not always conspicuous and isolation required passage in the presence of trypsin. Virus replication in cell culture was detected by RT-PCR and IFAT (indirect fluorescent antibody test), and the virus morphology was confirmed by positive staining electron microscopy. Further analysis of the Chilean virus revealed similarities to Canadian ISAV isolates in their ability to grow in the CHSE-214 cell line and in viral protein profile. Sequence analysis of genome segment 2, which encodes the viral RNA polymerase PB1, and segment 8, which encodes the nonstructural proteins NS1 and NS2, showed the Chilean virus to be very similar to Canadian strains of ISAV. This high sequence similarity of ISAV strains of geographically distinct origins illustrates the highly conserved nature of ISAV proteins PB1, NS1 and NS2 of ISAV. It is noteworthy that ISAV was associated with disease outbreaks in farmed Coho salmon in Chile without corresponding clinical disease in farmed Atlantic salmon. This outbreak, which produced high mortality in Coho salmon due to ISAV, is unique and may represent the introduction of the virus to a native wild fish population or a new strain of ISAV.

  10. Sediment mobility in fish bearing streams: the influence of floods and spawning salmon

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Gottesfeld, A. S.; Tunnicliffe, J. F.

    2002-12-01

    Magnetically tagged particles were used to investigate the effects of sockeye salmon (Oncorhynchus nerka) on the mobility of substrate in gravel bed streams in the Stuart-Takla region of north-central British Columbia. The study reaches in Forfar and O'Ne-ell Creeks have gradients of from 0.005 to 0.019 and have a forced pool-riffle morphology. The dominant annual sediment-transporting event in the channels is the snow-melt flood events in late May or June, with lesser work usually accomplished during summer and fall storm floods. In August every year, the channel beds material is reworked by the Early Stuart salmon spawning event, as the fish excavated the streambed to deposit and bury their eggs. At each of the 5 reaches within the 2 study creeks, 250 tracers (8.5mm - 180mm) were placed in a line on the bed before and after transport events. Results were highly variable, subject to the magnitude of floods, and the returning population of salmon. Overall, the depositional pattern from nival flood events usually demonstrated a high degree of clast mobilization, long travel distances (up to 150m) and mean depths of burial up to 18cm. Storm flood events showed somewhat lower rates of mobilization, distances of travel and depths of burial. Although the fish did not move the tracers very far, their effect on the bed was generally quite pervasive: up to 100% of the clasts were mobilized, and the depth of burial was considerable (mean burial depths up to 14cm). Repeat topographic surveys of the streambed before and after transport events revealed considerable disruption of the bed surface. The geomorphic effect of fish was enhanced in the lower reaches where the hydraulic transporting capacity is somewhat less (lower stream power), the sediment calibre is finer, and fish spawning density is higher. The amount of sediment mobilized by salmonids is often on the same order of magnitude as flood events. The significant vertical mixing of sediments by the fish has important

  11. British Columbia's fish health regulatory framework's contribution to sustainability goals related to salmon aquaculture.

    PubMed

    Stephen, Craig; Dicicco, Emiliano; Munk, Brandon

    2008-12-01

    Salmon farming is a significant contribution to the global seafood market to which the goal of sustainability is often applied. Diseases related to farms are perhaps the most contentious issues associated with sustainable salmon farming. We reviewed literature and policies in British Columbia, Canada, as well as interviewed key informants to examine how fish health regulations do or could support sustainability goals. We found four main obstacles to the development and application of a sustainability-based health management system. First, salmon farming faced the same challenges as other industries when trying to establish an operational definition of sustainability that captures all stakeholders' interests. Second, there was no program responsible for integrating the various regulations, responsible departments, and monitoring efforts to develop a comprehensive view of sustainability. Third, there was inadequate research base and social consensus on the criteria that should be used to track health outcomes for sustainability purposes. Fourth, the regulatory and management paradigm for salmon farming has been focused on diseases and pathogens as opposed to embracing a more inclusive health promotion model that includes biotic, abiotic, and social determinants of health. A transparent and inclusive participatory process that effectively links expert views with community and industry concerns should serve as the foundation for the next generation of health management regulations for salmon farming.

  12. 77 FR 34349 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Department of Fish and Wildlife (ODFW) pursuant to the protective regulations promulgated for Pacific salmon... hatchery fish to support fishing opportunities while minimizing potential risks to natural-origin spring...

  13. Growth and development of skeletal anomalies in diploid and triploid Atlantic salmon (Salmo salar) fed phosphorus-rich diets with fish meal and hydrolyzed fish protein

    PubMed Central

    Puvanendran, Velmurugu; Riesen, Guido; Seim, Rudi Ripman; Hagen, Ørjan; Martínez-Llorens, Silvia; Falk-Petersen, Inger-Britt; Fernandes, Jorge M. O.; Jobling, Malcolm

    2018-01-01

    Diploid and triploid Atlantic salmon, Salmo salar were fed high-protein, phosphorus-rich diets (56–60% protein; ca 18g phosphorus kg-1 diet) whilst being reared at low temperature from start-feeding until parr-smolt transformation. Performances of salmon fed diets based on fish meal (STD) or a mix of fishmeal and hydrolysed fish proteins (HFM) as the major protein sources were compared in terms of mortality, diet digestibility, growth and skeletal deformities. Separate groups of diploids and triploids were reared in triplicate tanks (initially 3000 fish per tank; tank biomass ca. 620 g) from 0–2745 degree-days post-start feeding (ddPSF). Growth metrics (weight, length, condition factor) were recorded at ca. 4 week intervals, external signs of deformities to the operculum, jaws and spinal column were examined in parr sampled at 1390 ddPSF, and external signs of deformity and vertebral anomalies (by radiography) were examined in fish sampled at the end of the trial (2745 ddPSF). The triploid salmon generally had a lower mass per unit length, i.e. lower condition factor, throughout the trial, but this did not seem to reflect any consistent dietary or ploidy effects on either dietary digestibility or the growth of the fish. By the end of the trial fish in all treatment groups had achieved a weight of 50+ g, and had completed the parr-smolt transformation. The triploids had slightly, but significantly, fewer vertebrae (Triploids STD 58.74 ± 0.10; HFM 58.68 ± 0.05) than the diploids (Diploids STD 58.97 ± 0.14; HFM 58.89 ± 0.01), and the incidence of skeletal (vertebral) abnormalities was higher in triploids (Triploids STD 31 ± 0.90%; HFM 15 ± 1.44%) than in diploids (Diploids STD 4 ± 0.80%; HFM 4 ± 0.83%). The HFM diet gave a significant reduction in the numbers of triploid salmon with vertebral anomalies in comparison with the triploids fed the STD diet possibly as a result of differences in phosphorus bioavailability between the two diets. Overall, the

  14. Diel behavior of rearing fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Skalicky, Joseph J.

    2010-01-01

    In fisheries science, habitat use is often inferred when fish are sampled or observed in a particular location. Physical habitat is typically measured where fish are found, and thus deemed important to habitat use. Although less common, a more informative approach is to measure or observe fish behavior within given habitats to more thoroughly assess their use of those locations. While this approach better reflects how fish use habitat, fish behavior can be difficult to quantify, particularly at night. For example, Tiffan and others (2002, 2006) were able to quantify habitat availability and characteristics that were important for rearing juvenile fall Chinook Salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The authors, however, could only speculate as to how juvenile salmon use habitat and respond to changes in water level fluctuations. Conversely, in this study we provide data on the diel activities of rearing juvenile wild fall Chinook Salmon which provides a better understanding of how fish “use” these rearing habitats. Diel behavior patterns are important because fish in the Hanford Reach are often stranded on shorelines when the water level rapidly recedes because of hydroelectric power generation at upriver dams (Nugent and others 2002; Anglin and others 2006). We hypothesize that juvenile salmon are at greater risk of stranding at night because they are less active and occupy habitat differently than during the day. We used underwater videography to collect behavioral information during the day and night to determine if juvenile fall Chinook Salmon are more susceptible to stranding when water level fluctuations occur at night.

  15. Yakima River Radio-Telemetry Study: Spring Chinook Salmon, 1991-1992 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric

    1994-09-01

    As part of the presupplementation planning, baseline data on the productivity of spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River have been collected. However, for adult salmonids, data on habitat use, delays in passage at irrigation diversions, migration rates, and substock separation had not been previously collected. In 1991, the National Marine Fisheries Service began a 2-year radio-telemetry study of adult spring chinook salmon in the Yakima River Basin. Specific objectives addressed in this study were: to determine spawning populations` run timing, passage patterns at irrigation diversion dams, and morphometric characteristics to determine where and when substocks become separated;more » to evaluate fish passage at Yakima River Basin diversion dams including Prosser, Sunnyside, Wapato, Roza, Town Diversion, Easton, Cowiche, and Wapatox Dams; to determine spring chinook salmon migration rates between Yakima River Basin dams, prespawning behavior, temporal distribution, and habitat utilization; to identify spawning distribution and timing of spring chinook salmon; to determine the amount and cause of prespawning mortality of spring chinook salmon; and to evaluate adult fish-handling procedures for the right-bank, adult-trapping facility at Prosser Dam.« less

  16. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, Catherine; Hebdon, J. Lance; Castillo, Jason

    2004-06-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacksmore » and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2002. Age-0, age-1, and age-2 O. nerka were captured in Redfish Lake, and population abundance was estimated at 50,204 fish. Age-0, age-1, age-2, and age-3 kokanee were captured in Alturas Lake, and population abundance was estimated at 24,374 fish. Age-2 and age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 18,328 fish. The ultimate goal of the Idaho Department of Fish and Game (IDFG) captive broodstock development and evaluation efforts is to recover sockeye salmon runs in Idaho waters. Recovery is defined as reestablishing sockeye salmon runs and providing for utilization of sockeye salmon and kokanee resources by

  17. Basis of acoustic discrimination of Chinook salmon from other salmons by echolocating Orcinus orca.

    PubMed

    Au, Whitlow W L; Horne, John K; Jones, Christopher

    2010-10-01

    The "resident" ecotype of killer whales (Orcinus orca) in the waters of British Columbia and Washington State have a strong preference for Chinook salmon even in months when Chinook comprise less than about 10% of the salmon population. The foraging behavior of killer whales suggests that they depend on echolocation to detect and recognize their prey. In order to determine possible cues in echoes from salmon species, a series of backscatter measurements were made at the Applied Physics Laboratory (Univ. of Wash.) Facility on Lake Union, on three different salmon species using simulated killer whale echolocation signals. The fish were attached to a monofilament net panel and rotated while echoes were collected, digitized and stored on a laptop computer. Three transducer depths were used; same depth, 22° and 45° above the horizontal plane of the fish. Echoes were collected from five Chinook, three coho and one sockeye salmon. Radiograph images of all specimens were obtained to examine the swimbladder shape and orientation. The results show that echo structure from similar length but different species of salmon were different and probably recognizable by foraging killer whales.

  18. Effects of a Novel Fish Transport System on the Health of Adult Fall Chinook Salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Colotelo, Alison H.; Linley, Timothy J.

    Movement past hydroelectric dams and related in-river structures has important implications for habitat connectivity and population persistence in migratory fish. A major problem is that many of these structures lack effective fish passage facilities, which can fragment spawning and rearing areas and negatively impact recruitment. While traditional fish passage facilities (e.g., ladders, trap and haul) can effectively enable fish to pass over barriers, their capital or operational costs can be significant. We evaluated the utility of a novel transport device that utilizes a flexible tube with differential internal air pressure to pass fish around in-river barriers. Three treatments and amore » control group were tested. In two of the treatments, adult fall Chinook Salmon nearing maturation were transported through the device via two lengths of tube (12 or 77 m) and their injury, stress, and immune system responses and reproductive function were compared to a third treatment where fish were moved by a standard trap and haul method and also to a control group. We observed no significant differences among the treatment or control groups in post-treatment adult survival, injury or stress. Indicators of immune system response and reproductive readiness were also not significantly different among the four groups. Egg survival was significantly different among the groups, but the differences were highly variable within groups and not consistent with the duration of treatment or degree of handling. Taken together, the results suggest the device did not injure or alter normal physiological functioning of adult fall Chinook Salmon nearing maturation and may provide an effective method for transporting such fish around in-river barriers during their spawning migration. Keywords: Whooshh, transport, in-stream barriers, hydropower« less

  19. The Salmon in Pregnancy Study: study design, subject characteristics, maternal fish and marine n-3 fatty acid intake, and marine n-3 fatty acid status in maternal and umbilical cord blood.

    PubMed

    Miles, Elizabeth A; Noakes, Paul S; Kremmyda, Lefkothea-Stella; Vlachava, Maria; Diaper, Norma D; Rosenlund, Grethe; Urwin, Heidi; Yaqoob, Parveen; Rossary, Adrien; Farges, Marie-Chantal; Vasson, Marie-Paule; Liaset, Bjørn; Frøyland, Livar; Helmersson, Johanna; Basu, Samar; Garcia, Erika; Olza, Josune; Mesa, Maria D; Aguilera, Concepcion M; Gil, Angel; Robinson, Sian M; Inskip, Hazel M; Godfrey, Keith M; Calder, Philip C

    2011-12-01

    Oily fish provides marine n-3 (omega-3) fatty acids that are considered to be important in the growth, development, and health of the fetus and newborn infant. The objectives were to increase salmon consumption among pregnant women and to determine the effect on maternal and umbilical cord plasma marine n-3 fatty acid content. Women (n = 123) with low habitual consumption of oily fish were randomly assigned to continue their habitual diet or were provided with 2 portions of farmed salmon/wk to include in their diet from week 20 of pregnancy until delivery. Median weekly consumption frequency of study salmon in the salmon group was 1.94 portions, and total fish consumption frequency was 2.11 portions/wk in the salmon group and 0.47 portions/wk in the control group (P < 0.001). Intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from the diet, from seafood, and from oily fish were higher in the salmon group (all P < 0.001). Percentages of EPA and DHA in plasma phosphatidylcholine decreased during pregnancy in the control group (P for trend = 0.029 and 0.008, respectively), whereas they increased in the salmon group (P for trend for both < 0.001). EPA and DHA percentages were higher in maternal plasma phosphatidylcholine at weeks 34 and 38 of pregnancy and in umbilical cord plasma phosphatidylcholine in the salmon group (P < 0.001 for all). If pregnant women, who do not regularly eat oily fish, eat 2 portions of salmon/wk, they will increase their intake of EPA and DHA, achieving the recommended minimum intake; and they will increase their and their fetus' status of EPA and DHA. This trial was registered at clinicaltrials.gov as NCT00801502.

  20. Mechanisms influencing the timing and success of reproductive migration in a capital breeding semelparous fish species, the sockeye salmon.

    PubMed

    Crossin, Glenn T; Hinch, Scott G; Cooke, Steven J; Cooperman, Michael S; Patterson, David A; Welch, David W; Hanson, Kyle C; Olsson, Ivan; English, Karl K; Farrell, Anthony P

    2009-01-01

    Two populations of homing sockeye salmon (Oncorhynchus nerka; Adams and Chilko) were intercepted in the marine approaches around the northern and southern ends of Vancouver Island (British Columbia, Canada) en route to a natal river. More than 500 salmon were nonlethally biopsied for blood plasma, gill filament tips, and gross somatic energy (GSE) and were released with either acoustic or radio transmitters. At the time of capture, GSE, body length, and circulating testosterone ([T]) differed between populations, differences that reflected known life-history variations. Within-population analyses showed that in Adams sockeye salmon, plasma glucose ([glu]), lactate ([lactate]), and ion concentrations were higher in the northern approach than in the southern approach, suggesting that the former was more stressful. GSE, [T], and gill Na(+),K(+)-ATPase activities also differed between the two locales, and each varied significantly with Julian date, suggesting seasonality. Despite these relative geographic differences, the timing of river entry and the ability to reach spawning areas were strongly correlated with energetic, reproductive, and osmoregulatory state. Salmon that delayed river entry and reached spawning areas had relatively high GSE and low [T] and gill ATPase. In contrast, salmon that entered the river directly but that ultimately failed to reach spawning areas had lower GSE and higher [T] and gill ATPase, and they also swam at significantly faster rates (failed fish approximately 20.0 km d(-1) vs. successful fish approximately 15.5 km d(-1)). Physiologically, salmon that did not enter the river at all but that presumably died in the marine environment exhibited high stress (plasma [glu] and [lactate]) and ionoregulatory measures (plasma [Na(+)], [Cl(-)], osmolality).

  1. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1991 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Lynette A.; Martinson, Rick D.; Smith, W. William

    1992-04-01

    The 1991 smolt monitoring project of the National Marine Fisheries Service provided data on the seaward migration of juvenile salmon and steelhead at John Day, The Dalles and Bonneville Dams. All pertinent fish capture and condition data as well as dam operations and river flow data were provided to Fish Passage Center for use in developing fish passage indices and migration timing, and for water budget and spill management.

  2. The relationships between fish health, metabolic rate, swimming performance and recovery in return-run sockeye salmon, Oncorhynchus nerka (Walbaum).

    PubMed

    Tierney, K B; Farrell, A P

    2004-11-01

    The repeat swimming ability and oxygen uptake (Mo2) of adult sockeye salmon, Oncorhynchus nerka (Walbaum), were assessed at ambient water temperatures at three field locations along their migration route. Following these measurements, internal and external fish condition was evaluated according to United States Environmental Protection Agency guidelines. Here we report on the physiological characteristics of fish having either moderate or severe levels of disease and injury. Routine oxygen uptake (Mo2) did not differ between healthy fish and those with indices of ill health. In contrast, fish classified as sick, which included conditions of damaged internal organs, an Ichthyophonus spp. heart infection, a Saprolegnia spp. gill infection, and skin wounds, had a lower post-exercise Mo2 and were unable to repeat their critical swim speed (U(crit)) on the second swim test. Moderate levels of disease or injury did not significantly affect either U(crit) or post-exercise Mo2. We conclude that the ability of adult salmon to recover quickly from exercise may be a useful indicator of sublethal pathologies.

  3. Salmon Life Cycle Models Illuminate Population Consequences of Disparate Survival and Behavior Between Hatchery- and Wild-Origin Fish

    NASA Astrophysics Data System (ADS)

    Beakes, M.; Satterthwaite, W.; Petrik, C.; Hendrix, N.; Danner, E.; Lindley, S. T.

    2016-02-01

    In past decades there has been a heavy reliance on the production of hatchery-reared fish to supplement declining population numbers of Pacific salmon. In some cases, the benefits of hatchery supplementation have been negligible despite concerted long-term stocking efforts. The management and conservation of depressed salmon populations, via hatchery practices or otherwise, can be improved by expanding our understanding of the dissimilarities between hatchery and wild salmon and how each interacts with the environment. In this study we use a stage-structured salmon life-cycle model to explore the population consequences of disparate survival and behavior between hatchery and wild-origin fall-run Chinook Salmon (Oncorhynchus tshawytscha) in the California Central Valley. We couple empirically-based statistical functions with deterministic theoretical models to identify how environmental conditions (e.g., water temperature, flow) and habitat drive the survival and abundance of both hatchery and wild salmon as they integrate across riverscapes and cross marine and freshwater ecosystem boundaries during their life cycle. Results from this study suggest that hatchery practices can lead to dissimilar interactions between hatchery and wild salmon and the environmental conditions they experience. As such, the population dynamics of fall-run Chinook Salmon in the California Central Valley are partly dependent on the composition of individuals that make up their populations. In total, this study improves out ability to conserve imperiled salmonids by identifying mechanistic linkages between the natal origin of salmon, survival and behavior, and the environment at spatiotemporal scales relevant to salmon populations and fisheries management.

  4. Chronic oral DDT toxicity in juvenile coho and chinook salmon

    USGS Publications Warehouse

    Buhler, Donald R.; Rasmusson, Mary E.; Shanks, W.E.

    1969-01-01

    Technical and p,p′-DDT was incorporated into test diets and fed to juvenile chinook and coho salmon for periods as long as 95 days. Pure p,p′-DDT was slightly more toxic to young salmon than was the technical DDT mixture. Chinook salmon appeared to be 2–3 times more sensitive to a given concentration of DDT in the diet than were coho salmon. The size of the fish greatly influenced toxicity, smaller younger fish being more susceptible to a given diet than larger older fish. The dose of DDT accumulated within the median survival time ranged from 27–73 mg/kg for chinook salmon and from 56–72 mg/kg for coho salmon. The extrapolated 90-dose LD50 (Hayes, 1967) for young chinook and coho salmon were 0.0275 and 0.064 mg/kg/day, respectively. Liver size decreased on prolonged feeding with DDT, and carcass lipid content was increased. A severe surface ulceration of the nose region appeared in coho salmon fed DDT over long periods. In addition, an interesting localized degeneration of the distal convoluted tubule was observed in the kidney of coho salmon receiving DDT.

  5. Chinook salmon foraging patterns in a changing Lake Michigan

    USGS Publications Warehouse

    Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Claramunt, Randall M.

    2013-01-01

    Since Pacific salmon stocking began in Lake Michigan, managers have attempted to maintain salmon abundance at high levels within what can be sustained by available prey fishes, primarily Alewife Alosa pseudoharengus. Chinook Salmon Oncorhynchus tshawytscha are the primary apex predators in pelagic Lake Michigan and patterns in their prey selection (by species and size) may strongly influence pelagic prey fish communities in any given year. In 1994–1996, there were larger Alewives, relatively more abundant alternative prey species, fewer Chinook Salmon, and fewer invasive species in Lake Michigan than in 2009–2010. The years 2009–2010 were instead characterized by smaller, leaner Alewives, fewer alternative prey species, higher abundance of Chinook Salmon, a firmly established nonnative benthic community, and reduced abundance of Diporeia, an important food of Lake Michigan prey fish. We characterized Chinook Salmon diets, prey species selectivity, and prey size selectivity between 1994–1996 and 2009–2010 time periods. In 1994–1996, Alewife as prey represented a smaller percentage of Chinook Salmon diets than in 2009–2010, when alewife comprised over 90% of Chinook Salmon diets, possibly due to declines in alternative prey fish populations. The size of Alewives eaten by Chinook Salmon also decreased between these two time periods. For the largest Chinook Salmon in 2009–2010, the average size of Alewife prey was nearly 50 mm total length shorter than in 1994–1996. We suggest that changes in the Lake Michigan food web, such as the decline in Diporeia, may have contributed to the relatively low abundance of large Alewives during the late 2000s by heightening the effect of predation from top predators like Chinook Salmon, which have retained a preference for Alewife and now forage with greater frequency on smaller Alewives.

  6. Biodiveristy and Stability of Aboriginal Salmon Fisheries in the Fraser River Watershed

    NASA Astrophysics Data System (ADS)

    Nesbitt, H. K.; Moore, J.

    2015-12-01

    Natural watersheds are hierarchical networks that may confer stability to ecosystem functions through integration of upstream biodiversity, whereby upstream asset diversification stabilizes the aggregate downstream through the portfolio effect. Here we show that riverine structure and its associated diversity confer stability of salmon catch and lengthened fishing seasons for Aboriginal fisheries on the Fraser River (1370km) in BC, Canada, the second longest dam-free salmon migration route in North America. In Canada, Aboriginal people have rights to fish for food, social, and ceremonial (FSC) purposes. FSC fisheries are located throughout the Fraser watershed and have access to varying levels of salmon diversity based on their location. For instance, fisheries at the mouth of the river have access to all of the salmon that spawn throughout the entire watershed, thus integrating across the complete diversity profile of the entire river. In contrast, fisheries in the headwaters have access to fewer salmon species and populations and thus fish from a much less diverse portfolio. These spatial gradients of diversity within watersheds provide a natural contrast for quantifying the effects of different types of diversity on interannual resource stability and seasonal availability. We acquired weekly and yearly catch totals from 1983 to 2012 (30 years) for Chinook, chum, coho, pink, and sockeye salmon for 21 FSC fishing sites throughout the Fraser River watershed from Fisheries and Oceans Canada. We examined how both population- and species-level diversity affects catch stability and season length at each site by quantifying year-to-year variability and within-year season length respectively. Salmon species diversity made fisheries up to 28% more stable in their catch than predicted with 3.7 more weeks to fish on average. Fisheries with access to high population diversity had up to 3.8 times more stable catch and 3 times longer seasons than less diverse fisheries. We

  7. Positional Distribution of Fatty Acids in Triacylglycerols and Phospholipids from Fillets of Atlantic Salmon (Salmo Salar) Fed Vegetable and Fish Oil Blends.

    PubMed

    Ruiz-Lopez, Noemi; Stubhaug, Ingunn; Ipharraguerre, Ignacio; Rimbach, Gerald; Menoyo, David

    2015-07-10

    The nutritional and functional characteristics of dietary fat are related to the fatty acid (FA) composition and its positional distribution in the triacylglycerol (TAG) fraction. Atlantic salmon is an important source of healthy long chain omega 3 FA (particularly, eicosapentaenoic (EPA) and docoxahexaenoic (DHA) acids). However, the impact of lipid sources in salmon feeds on the regiospecificity of FA in the fish TAG remains to be explored. The present study determines the effect of feeding salmon with blends of palm, rapeseed, and fish oil, providing two different EPA + DHA concentrations (high: H-ED 10.3% and low: L-ED 4.6%) on the fillet lipid class composition and the positional distribution of FA in TAG and phospholipids. The regiospecific analysis of fillet TAG showed that around 50% of the EPA and around 80% of DHA was located in the sn-2 position. The positional distribution of FA in phosphatidylcholine (PC), showed that around 80% of the EPA and around 90% of DHA were located in the sn-2. Fish fed the vegetable-rich diets showed higher EPA in the sn-2 position in PC (77% vs. 83% in the H-ED and L-ED diets, respectively) but similar DHA concentrations. It is concluded that feeding salmon with different EPA + DHA concentrations does not affect their positional distribution in the fillet TAG.

  8. Positional Distribution of Fatty Acids in Triacylglycerols and Phospholipids from Fillets of Atlantic Salmon (Salmo Salar) Fed Vegetable and Fish Oil Blends

    PubMed Central

    Ruiz-Lopez, Noemi; Stubhaug, Ingunn; Ipharraguerre, Ignacio; Rimbach, Gerald; Menoyo, David

    2015-01-01

    The nutritional and functional characteristics of dietary fat are related to the fatty acid (FA) composition and its positional distribution in the triacylglycerol (TAG) fraction. Atlantic salmon is an important source of healthy long chain omega 3 FA (particularly, eicosapentaenoic (EPA) and docoxahexaenoic (DHA) acids). However, the impact of lipid sources in salmon feeds on the regiospecificity of FA in the fish TAG remains to be explored. The present study determines the effect of feeding salmon with blends of palm, rapeseed, and fish oil, providing two different EPA + DHA concentrations (high: H-ED 10.3% and low: L-ED 4.6%) on the fillet lipid class composition and the positional distribution of FA in TAG and phospholipids. The regiospecific analysis of fillet TAG showed that around 50% of the EPA and around 80% of DHA was located in the sn-2 position. The positional distribution of FA in phosphatidylcholine (PC), showed that around 80% of the EPA and around 90% of DHA were located in the sn-2. Fish fed the vegetable-rich diets showed higher EPA in the sn-2 position in PC (77% vs. 83% in the H-ED and L-ED diets, respectively) but similar DHA concentrations. It is concluded that feeding salmon with different EPA + DHA concentrations does not affect their positional distribution in the fillet TAG. PMID:26184234

  9. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Batten, G.; Cushing, Aaron W.

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2011. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon usingmore » a virtual release, paired reference release survival model. This study supports the U.S. Army Corps of Engineers’ continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  10. Production of resident fish benefits from experimental salmon subsidies via direct and indirect pathways across stream-riparian boundaries

    USGS Publications Warehouse

    Collins, Scott F.; Baxter, Colden V.; Marcarelli, Amy M.; Wipfli, Mark S.

    2016-01-01

    Artificial additions of nutrients of differing forms such as salmon carcasses and analog pellets (i.e. pasteurized fishmeal) have been proposed as a means of stimulating aquatic productivity and enhancing populations of anadromous and resident fishes. Nutrient mitigation to enhance fish production in stream ecosystems assumes that the central pathway by which effects occur is bottom-up, through aquatic primary and secondary production, with little consideration of reciprocal aquatic-terrestrial pathways. The net outcome (i.e. bottom-up vs. top-down) of adding salmon-derived materials to streams depend on whether or not these subsidies indirectly intensify predation on in situ prey via increases in a shared predator or alleviate such predation pressure. We conducted a 3-year experiment across nine tributaries of the N. Fork Boise River, Idaho, USA, consisting of 500-m stream reaches treated with salmon carcasses (n = 3), salmon carcass analog (n = 3), and untreated control reaches (n = 3). We observed 2–8 fold increases in streambed biofilms in the 2–6 weeks following additions of both salmon subsidy treatments in years 1 and 2 and a 1.5-fold increase in standing crop biomass of aquatic invertebrates to carcass additions in the second year of our experiment. The consumption of benthic invertebrates by stream fishes increased 110–140% and 44–66% in carcass and analog streams in the same time frame, which may have masked invertebrate standing crop responses in years 3 and 4. Resident trout directly consumed 10.0–24.0 g·m−2·yr−1 of salmon carcass and <1–11.0 g·m−2·yr−1 of analog material, which resulted in 1.2–2.9 g·m−2·yr−1 and 0.03–1.4 g·m−2·yr−1 of tissue produced. In addition, a feedback flux of terrestrial maggots to streams contributed 0.0–2.0 g·m−2·yr−1 to trout production. Overall, treatments increased annual trout production by 2–3 fold, though density and biomass were unaffected. Our results

  11. Neurotoxic behavioral effects of Lake Ontario salmon diets in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzler, D.R.

    1990-03-01

    Six experiments were conducted to examine possible neurotoxic effects of the exposure to contaminants in Lake Ontario salmon administered through the diets of rats. Rats were fed different concentrations of fish (8%, 15% or 30%) in one of three diet conditions: Lake Ontario salmon, Pacific Ocean salmon, or laboratory rat chow only. Following 20 days on the diets, rats were tested for five minutes per day in a modified open field for one or three days. Lake Ontario salmon diets consistently produced significantly lower activity, rearing, and nosepoke behaviors in comparison with ocean salmon or rat chow diet conditions. Amore » dose-response effect for concentration of lake salmon was obtained, and the attenuation effect occurred in males, females, adult or young animals, and postweaning females, with fish sampled over a five-year period. While only two of several potential contaminants were tested, both fish and brain analyses of mirex and PCBs relate to the behavioral effects.« less

  12. Association between sea lice (Lepeophtheirus salmonis) infestation on Atlantic salmon farms and wild Pacific salmon in Muchalat Inlet, Canada.

    PubMed

    Nekouei, Omid; Vanderstichel, Raphael; Thakur, Krishna; Arriagada, Gabriel; Patanasatienkul, Thitiwan; Whittaker, Patrick; Milligan, Barry; Stewardson, Lance; Revie, Crawford W

    2018-03-05

    Growth in salmon aquaculture over the past two decades has raised concerns regarding the potential impacts of the industry on neighboring ecosystems and wild fish productivity. Despite limited evidence, sea lice have been identified as a major cause for the decline in some wild Pacific salmon populations on the west coast of Canada. We used sea lice count and management data from farmed and wild salmon, collected over 10 years (2007-2016) in the Muchalat Inlet region of Canada, to evaluate the association between sea lice recorded on salmon farms with the infestation levels on wild out-migrating Chum salmon. Our analyses indicated a significant positive association between the sea lice abundance on farms and the likelihood that wild fish would be infested. However, increased abundance of lice on farms was not significantly associated with the levels of infestation observed on the wild salmon. Our results suggest that Atlantic salmon farms may be an important source for the introduction of sea lice to wild Pacific salmon populations, but that the absence of a dose response relationship indicates that any estimate of farm impact requires more careful evaluation of causal inference than is typically seen in the extant scientific literature.

  13. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska.

    Treesearch

    Dirk W. Lang; Gordon H. Reeves; James D. Hall; Mark S. Wipfli

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchrcs kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from...

  14. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project ismore » two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka

  15. User's guide to fish habitat: Descriptions that represent natural conditions in the Salmon River Basin, Idaho

    Treesearch

    C. Kerry Overton; John D. McIntyre; Robyn Armstrong; Shari L. Whitwell; Kelly A. Duncan

    1995-01-01

    This user's guide and reference document describes the physical features of the Salmon River Basin, Idaho, stream channels that represent "natural conditions" for fish habitat-that is, streams that have not been influenced by major human disturbances. The data base was created to assist biologists and resource managers. It describes resource conditions...

  16. 77 FR 23463 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... is for issuance of an Endangered Species Act section 10(a)(1)(A) permit to US Fish and Wildlife Service to collect Central Valley spring-run Chinook salmon eggs and juveniles from the Feather River Fish...

  17. Evaluation of Salmon Spawning Below Bonneville Dam, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan; Mueller, Robert; Murray, Christopher

    2007-03-01

    Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum salmon (Oncorhynchus keta) and fall Chinook salmon (O. tshawytscha) in the lower mainstem Columbia River. Their work supports a larger project funded by the Bonneville Power Administration (BPA) aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Surveymore » (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and tule fall Chinook salmon populations--both listed as threatened under the Endangered Species Act (ESA). Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by WDFW biologists in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and near Ives Island. Limited surveys of spawning ground were conducted in the area around Ives and Pierce islands from 1994 through 1997. Based on those surveys, it is believed that fall Chinook salmon are spawning successfully in this area. The size of this population from 1994 to 1996 was estimated at 1800 to 5200 fish. Chum salmon also have been documented spawning downstream of Bonneville Dam. Chum salmon were listed as threatened under the ESA in March 1999. At present there is a need to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their

  18. Diet, feeding patterns, and prey selection of subyearling Atlantic salmon (Salmo salar) and subyearling chinook salmon (Oncorhynchus tshawytscha) in a tributary of Lake Ontario

    USGS Publications Warehouse

    Johnson, J. H.; Nash, K. J.; Chiavelli, R. A.; DiRado, J. A.; Mackey, G. E.; Knight, J. R.; Diaz, A. R.

    2017-01-01

    Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi-national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.

  19. Doubling sockeye salmon production in the Fraser River—Is this sustainable development?

    NASA Astrophysics Data System (ADS)

    Henderson, Michael A.; Healey, Michael C.

    1993-11-01

    We evaluate a proposal to double sockeye salmon production from the Fraser River and conclude that significant changes will be required to current management processes, particularly the way available catch is allocated, if the plan is to be consistent with five major principles embodied in the concept of sustainable development. Doubling sockeye salmon production will not, in itself, increase economic equity either regionally or globally. Developing nations may actually be hindered in their attempts to institute other, nonsalmon fisheries in the North Pacific Ocean as a result of the possible interception of salmon. Further, other users of the Fraser River basin will have to forgo opportunities so that salmon habitat can be conserved. If doubling sockeye salmon production is to meet the goal of doing more with less, it will be necessary to develop more efficient technologies to harvest the fish. If increasing salmon production is to reflect the integration of environmental and economic decision making at the highest level, then a serious attempt must be made to incorporate environmental assets into national economic accounting. Finally, to promote biodiversity and cultural self-sufficiency within the Fraser River basin, it will be important to safeguard the small, less-productive salmon stocks as well as the large ones and to allocate a substantial portion of the increased production to the Native Indian community.

  20. Juvenile salmon usage of the Skeena River estuary.

    PubMed

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  1. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, John G.; Bjomn

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearlingmore » chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).« less

  2. Passage survival of juvenile steelhead, coho salmon, and Chinook salmon in Lake Scanewa and at Cowlitz Falls Dam, Cowlitz River, Washington, 2010–16

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Hurst, William

    2018-04-03

    A multi-year evaluation was conducted during 2010–16 to evaluate passage survival of juvenile steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) in Lake Scanewa, and at Cowlitz Falls Dam in the upper Cowlitz River Basin, Washington. Reservoir passage survival was evaluated in 2010, 2011, and 2016, and included the tagging and release of 1,127 juvenile salmonids. Tagged fish were released directly into the Cowlitz and Cispus Rivers, 22.3 and 8.9 km, respectively, upstream of the reservoir, and were monitored as they moved downstream into, and through the reservoir. A single release-recapture survival model was used to analyze detection records and estimate reservoir passage survival, which was defined as successful passage from reservoir entry to arrival at Cowlitz Falls Dam. Tagged fish generally moved quickly downstream of the release sites and, on average, arrived in the dam forebay within 2 d of release. Median travel time from release to first detection at the dam ranged from 0.23 to 0.96 d for juvenile steelhead, from 0.15 to 1.11 d for juvenile coho salmon, and from 0.18 to 1.89 d for juvenile Chinook salmon. Minimum reservoir passage survival probabilities were 0.960 for steelhead, 0.855 for coho salmon and 0.900 for Chinook salmon.Dam passage survival was evaluated at the pilot-study level during 2013–16 and included the tagging and release of 2,512 juvenile salmonids. Juvenile Chinook salmon were evaluated during 2013–14, and juvenile steelhead and coho salmon were evaluated during 2015–16. A paired-release study design was used that included release sites located upstream and downstream of Cowlitz Falls Dam. The downstream release site was positioned at the downstream margin of the dam’s tailrace, which allowed dam passage survival to be measured in a manner that included mortality that occurred in the passage route and in the dam tailrace. More than one-half of the tagged Chinook salmon (52 percent

  3. Post-mortem sporulation of Ceratomyxa shasta (Myxozoa) after death in adult Chinook salmon

    USGS Publications Warehouse

    Kent, Michael L.; Soderlund, K.; Thomann, E.; Schreck, Carl B.; Sharpton, T.J.

    2014-01-01

    Ceratomyxa shasta (Myxozoa) is a common gastrointestinal pathogen of salmonid fishes in the Pacific Northwest of the United States. We have been investigating this parasite in adult Chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. In prior work, we observed differences in the pattern of development of C. shasta in adult salmon compared to juvenile salmon. Adult salmon consistently had large numbers of prespore stages in many of the fish that survived to spawn in the fall. However, myxospores were rarely observed, even though they were exposed and presumably infected for months before spawning. We evaluated the ability of C. shasta to sporulate following fish death because it is reported that myxosores are common in carcasses of Chinook salmon. We collected the intestine from 30 adult salmon immediately after artificial spawning and death (T0). A total of 23 fish were infected with C. shasta based on histology, but only a few myxospores were observed in 1 fish by histology. Intestines of these fish were examined at T0 and T7 (latter held at 17 C for 7 days) using quantified wet mount preparations. An increase in myxospore concentrations was seen in 39% of these fish, ranging between a 1.5- to a 14.5-fold increase. The most heavily infected fish exhibited a 4.6-fold increase from 27,841 to 129,352 myxospores/cm. This indicates, supported by various statistical analyses, that under certain conditions presporogonic forms are viable and continue to sporulate after death in adult salmon. Considering the life cycle of C. shasta and anadromous salmon, the parasite may have evolved 2, non-mutually exclusive developmental strategies. In young fish (parr and smolts), the parasite sporulates shortly after infection and is released into freshwater from either live or dead fish before their migration to seawater, where the alternate host is absent. The second strategy occurs in adult salmon, particularly spring Chinook salmon, which become infected upon

  4. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  5. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated. 2006 Annual Report

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.

    2007-01-01

    During the winter of 2005-06, we radio and PIT tagged and released 48 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. Fish were released at the upstream end of the Lower Granite Dam forebay in November and December 2005. Fixed radio telemetry detection sites located in forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental and Ice Harbor dams were used to monitor fish movements and dam passage through early-May 2006. Of the 48 fish released during our study, 39 (81 %) passed Lower Granite Dam and were detected at downstream detection sites, 29 (60%) passed Little Goose Dam, 25 (52%) passed Lower Monumental Dam, and 15 (31%) passed Ice Harbor Dam. Thirty-seven (95%), 23 (79%), 16 (64%), and 9 (60%) of the fish that passed Lower Granite, Little Goose, Lower Monumental, and Ice Harbor dams respectively, did so when the fish bypass system was not operated. Passage of tagged fish past lower Snake River dams generally declined during the winter, but increased again after bypass began in April. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 118 d), and varied by reservoir and time of year. We observed no diel passage trends. Only 15 of the 48 fish were subsequently detected at a PIT-tag interrogation site the following spring. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more to chance than directed downstream movement. Since the primary route of passage during the winter is through powerhouse turbines, the potential exists for increased mortality for over-wintering juvenile fall Chinook salmon in the Snake River. Our findings also have implications for transportation studies of subyearling fall Chinook salmon in the Snake River. Specifically, the finding that some fish can pass undetected during the winter may bias smolt-to-adult return rate calculations that are typically used to measure the

  6. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangeredmore » under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997

  7. Testing archival tag technology in coho salmon

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Richards, Philip; Tingey, Thor; Wilson, Derek; Zimmerman, Chris

    2004-01-01

    Archive tags with temperature and light-geolocation sensors will be monitored for post-smolt coho salmon in Cook Inlet. Light/location relationships specific to the Gulf of Alaska developed under Project 00478 will be applied in this study of movement and migration paths for coho salmon during maturation in ocean environments in Cook Inlet. Salmon for this study will be reared in captivity (at the Alaska Department of Fish and Game hatchery at Fort Richardson) to 1+ year of age (200-250mm) and released in Cook Inlet as part of the department's Ship Creek sport-fishing hatchery release. FY 01 includes pilot studies of tag retention, behavior, and growth for coho in captivity. Ship Creek coho will be tagged mid-May. A spring release experiment in the first year will be contingent on the successful implementation and retention of these tags. Surveys for early jack recoveries will be done at the Ship Creek weir and among sport fishers. Monitoring for adult tag recoveries will be done in the coho commercial fishery in Cook Inlet and the derby sport fishery on Ship Creek. Archive tagged fish will be used to document coho salmon use of marine habitats, migration routes, contribution to the sport fishery, and hatchery/wild interactions for salmon in Cook Inlet.

  8. Cessation of a salmon decline with control of parasites.

    PubMed

    Peacock, Stephanie J; Krkosek, Martin; Proboszcz, Stan; Orr, Craig; Lewis, Mark A

    2013-04-01

    The resilience of coastal social-ecological systems may depend on adaptive responses to aquaculture disease outbreaks that can threaten wild and farm fish. A nine-year study of parasitic sea lice (Lepeophtheirus salmonis) and pink salmon (Oncorhynchus gorbuscha) from Pacific Canada indicates that adaptive changes in parasite management on salmon farms have yielded positive conservation outcomes. After four years of sea lice epizootics and wild salmon population decline, parasiticide application on salmon farms was adapted to the timing of wild salmon migrations. Winter treatment of farm fish with parasiticides, prior to the out-migration of wild juvenile salmon, has reduced epizootics of wild salmon without significantly increasing the annual number of treatments. Levels of parasites on wild juvenile salmon significantly influence the growth rate of affected salmon populations, suggesting that these changes in management have had positive outcomes for wild salmon populations. These adaptive changes have not occurred through formal adaptive management, but rather, through multi-stakeholder processes arising from a contentious scientific and public debate. Despite the apparent success of parasite control on salmon farms in the study region, there remain concerns about the long-term sustainability of this approach because of the unknown ecological effects of parasticides and the potential for parasite resistance to chemical treatments.

  9. Diphyllobothrium nihonkaiense Tapeworm Larvae in Salmon from North America

    PubMed Central

    Oros, Mikuláš; Ferguson, Jayde; Scholz, Tomáš

    2017-01-01

    Diphyllobothriosis is reemerging because of global importation and increased popularity of eating raw fish. We detected Diphyllobothrium nihonkaiense plerocercoids in the musculature of wild pink salmon (Oncorhynchus gorbuscha) from Alaska, USA. Therefore, salmon from the American and Asian Pacific coasts and elsewhere pose potential dangers for persons who eat these fish raw. PMID:28098540

  10. Energy economy of salmon aquaculture in the Baltic sea

    NASA Astrophysics Data System (ADS)

    Folke, Carl

    1988-07-01

    Resource utilization in Atlantic salmon aquaculture in the Baltic Sea was investigated by means of an energy analysis. A comparison was made between cage farming and sea ranching enterprises each with yearly yields of 40 t of Atlantic salmon. A variety of sea ranching options were evaluated, including (a) conventional ranching, (b) ranching employing a delayed release to the sea of young smolts, (c) harvesting salmon both by offshore fishing fleets and as they return to coastal areas, and (d) when offshore fishing is banned, harvesting salmon only as they return to coastal areas where released. Inputs both from natural ecosystems (i.e., fish consumed by ranched salmon while in the sea and raw materials used for producing dry food pellets) and from the economy (i.e., fossil fuels and energy embodied in economic goods and services) were quantified in tonnes for food energy and as direct plus indirect energy cost (embodied energy). The fixed solar energy (estimated as primary production) and the direct and indirect auxiliary energy requirements per unit of fish output were expressed in similar units. Similar quantities of living resources in tonnes per unit of salmon biomass output are required whether the salmon are feeding in the sea or are caged farmed. Cage farming is about 10 times more dependent on auxiliary energies than sea ranching. Sea ranching applying delayed release of smolts is 35 45% more efficient in the use of auxiliary energies than conventional sea ranching and cage farming. Restriction of offshore fishing would make sea ranching 3 to 6.5 times more efficient than cage farming. The fixed solar energy input to Atlantic salmon aquaculture is 4 to 63 times larger than the inputs of auxiliary energy. Thus, cage farming and sea ranching are both heavily dependent on the productivity of natural ecosystems. It is concluded that sustainable development of the aquaculture industry must be founded on ecologically integrated technologies which utilize the free

  11. Restitution and genetic differentiation of salmon populations in the southern Baltic genotyped with the Atlantic salmon 7K SNP array.

    PubMed

    Poćwierz-Kotus, Anita; Bernaś, Rafał; Kent, Matthew P; Lien, Sigbjørn; Leliűna, Egidijus; Dębowski, Piotr; Wenne, Roman

    2015-05-06

    Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland. One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses. Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28). Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of

  12. California salmon and steelhead: Beyond the crossroads

    USGS Publications Warehouse

    Mills, Terry J.; McEwan, Dennis R.; Jennings, Mark R.; Stouder, Deanna J.; Bisson, Peter A.; Naiman, Robert J.

    1997-01-01

    Virtually all California salmon (Oncorhynchus spp.) and steelhead (O. mykiss) stocks have declined to record or near-record low levels during 1980-95. Escapement of naturally spawning Klamath and Sacramento basin fall-run chinook salmon (O. tshawytscha) stocks has fallen consistently below the goals of 35,000 adults (Klamath) and 120,000 adults (Sacramento) established by the Pacific Fishery Management Council. These two stocks constitute the primary management units for ocean harvest regulations in California and southern Oregon. This decline triggered a mandatory review of ocean harvest and inland production conditions in each basin. The Sacramento winter-run chinook salmon, once numbering >100,000 adult spawners, was listed as threatened in 1990 and endangered in 1994 under the Endangered Species Act. The listing occurred as a result of a precipitous decline in abundance (to <200 adult spawners) and significant threats to this stock’s continued existence.Spring-run chinook salmon, historically an abundant component of California’s inland fish fauna with >500,000 adult spawners, has been extirpated from the San Joaquin River basin. However, remnant populations of this naturally spawning stock remain within the Klamath, Smith, and Sacramento river basins. Unfortunately, annual counts of 3,000-25,000 spawners in the Sacramento River basin during the past 25 years are largely of hatchery origin. Recent steelhead data from the same region indicate that many stocks are close to extinction, and nearly all steel-head in the Sacramento River are also of hatchery origin. Both spring-run chinook salmon and summer steelhead are considered to be species of special concern by the California Department of Fish and Game because of their limited distributions and sensitivities to degraded habitat conditions. The southern race of winter steelhead south of Point Conception is nearly extinct and remnant populations have been recently recorded in only 9 streams.Coastal cutthroat

  13. 25 CFR 241.3 - Commercial fishing, Annette Islands Reserve.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... salmon fishing at any four of the following sites in the Annette Islands Reserve, Alaska: (1) Annette... seconds west longitude. (c) Trap fishing season. Fishing for salmon with traps operated by the Metlakatla Indian Community is permitted only at such times as commercial salmon fishing with purse seines is...

  14. 25 CFR 241.3 - Commercial fishing, Annette Islands Reserve.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... salmon fishing at any four of the following sites in the Annette Islands Reserve, Alaska: (1) Annette... seconds west longitude. (c) Trap fishing season. Fishing for salmon with traps operated by the Metlakatla Indian Community is permitted only at such times as commercial salmon fishing with purse seines is...

  15. Salmon and steelhead in the White Salmon River after the removal of Condit Dam–Planning efforts and recolonization results

    USGS Publications Warehouse

    Allen, Brady; Engle, Rod O; Zendt, Joseph S; Shrier, Frank C; Wilson, Jeremy T; Connolly, Patrick J.

    2016-01-01

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and completely removed in 2012. This action opened habitat to migratory fish for the first time in 100 years. The White Salmon Working Group was formed to create plans for fish salvage in preparation for fish recolonization and to prescribe the actions necessary to restore anadromous salmonid populations in the White Salmon River after Condit Dam removal. Studies conducted by work group members and others served to inform management decisions. Management options for individual species were considered, including natural recolonization, introduction of a neighboring stock, hatchery supplementation, and monitoring natural recolonization for some time period to assess the need for hatchery supplementation. Monitoring to date indicates that multiple species and stocks of anadromous salmonids are finding and spawning in the now accessible and recovering habitat.

  16. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System taggedmore » smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  17. Reduced trace element concentrations in fast-growing juvenile Atlantic salmon in natural streams.

    PubMed

    Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L

    2010-05-01

    To assess the effect of rapid individual growth on trace element concentrations in fish, we measured concentrations of seven trace elements (As, Cd, Cs, Hg, Pb, Se, Zn) in stream-dwelling Atlantic salmon (Salmo salar) from 15 sites encompassing a 10-fold range in salmon growth. All salmon were hatched under uniform conditions, released into streams, and sampled approximately 120 days later for trace element analysis. For most elements, element concentrations in salmon tracked those in their prey. Fast-growing salmon had lower concentrations of all elements than slow growers, after accounting for prey concentrations. This pattern held for essential and nonessential elements, as well as elements that accumulate from food and those that can accumulate from water. At the sites with the fastest salmon growth, trace element concentrations in salmon were 37% (Cs) to 86% (Pb) lower than at sites where growth was suppressed. Given that concentrations were generally below levels harmful to salmon and that the pattern was consistent across all elements, we suggest that dilution of elements in larger biomass led to lower concentrations in fast-growing fish. Streams that foster rapid, efficient fish growth may produce fish with lower concentrations of elements potentially toxic for human and wildlife consumers.

  18. 50 CFR 660.412 - EFH identifications and descriptions for Pacific salmon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Pacific salmon. 660.412 Section 660.412 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... COAST STATES West Coast Salmon Fisheries § 660.412 EFH identifications and descriptions for Pacific salmon. Pacific salmon essential fish habitat (EFH) includes all those water bodies occupied or...

  19. Predation of Karluk River sockeye salmon by coho salmon and char

    USGS Publications Warehouse

    McIntyre, J.D.; Reisenbichler, R.R.; Emlen, J.M.; Wilmot, R.L.; Finn, J.E.

    1988-01-01

    The number of sockeye salmon, Oncorhynchus nerka, in Alaska's Karluk River (Fig. 1) declined from millions to thousands during the early part of the present century. Rounsefell (1958) discussed alternative explanations for the decline including a general loss offertility ofthe system as the number of salmon carcasses declined, competition, overfishing, subtle changes in climate, and predation; he concluded that the combined effect of predation and fishing was the most probable explanation. Later, Van Cleave and Bevan (1973) suggested that the weir constructed in the river each year to facilitate counting the fish as they entered the system was the most probable cause ofthe decline. Itprevented free movement of both adults and juveniles in the river. All of these hypotheses remain as potential explanations for the decline

  20. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring andmore » adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.« less

  1. Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; Elliott, Robert F.; Schmidt, Larry J.; DeSorcie, Timothy J.; Hesselberg, Robert J.; Quintal, Richard T.; Begnoche, Linda J.; Bouchard, Patrick M.; Holey, Mark E.

    1998-01-01

    Most of the polychlorinated biphenyl (PCB) body burden accumulated by coho salmon (Oncorhynchus kisutch) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both coho salmon and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan coho salmon retain PCBs from their food. Our estimate was the most reliable estimate to date because (a) the coho salmon and prey fish sampled during our study were sampled in spring, summer, and fall from various locations throughout the lake, (b) detailed measurements were made on the PCB concentrations of both coho salmon and prey fish over wide ranges in fish size, and (c) coho salmon diet was analyzed in detail from April through November over a wide range of salmon size from numerous locations throughout the lake. We estimated that coho salmon from Lake Michigan retain 50% of the PCBs that are contained within their food.

  2. Epizootics of wild fish induced by farm fish.

    PubMed

    Krkosek, Martin; Lewis, Mark A; Morton, Alexandra; Frazer, L Neil; Volpe, John P

    2006-10-17

    The continuing decline of ocean fisheries and rise of global fish consumption has driven aquaculture growth by 10% annually over the last decade. The association of fish farms with disease emergence in sympatric wild fish stocks remains one of the most controversial and unresolved threats aquaculture poses to coastal ecosystems and fisheries. We report a comprehensive analysis of the spread and impact of farm-origin parasites on the survival of wild fish populations. We mathematically coupled extensive data sets of native parasitic sea lice (Lepeophtheirus salmonis) transmission and pathogenicity on migratory wild juvenile pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon. Farm-origin lice induced 9-95% mortality in several sympatric wild juvenile pink and chum salmon populations. The epizootics arise through a mechanism that is new to our understanding of emerging infectious diseases: fish farms undermine a functional role of host migration in protecting juvenile hosts from parasites associated with adult hosts. Although the migratory life cycles of Pacific salmon naturally separate adults from juveniles, fish farms provide L. salmonis novel access to juvenile hosts, in this case raising infection rates for at least the first approximately 2.5 months of the salmon's marine life (approximately 80 km of the migration route). Spatial segregation between juveniles and adults is common among temperate marine fishes, and as aquaculture continues its rapid growth, this disease mechanism may challenge the sustainability of coastal ecosystems and economies.

  3. The nutrition of salmonid fishes. I. Chemical and histological studies of wild and domestic fish.

    USGS Publications Warehouse

    Wood, E.M.; Yasutake, W.T.; Woodall, A.N.; Halver, J.E.

    1957-01-01

    The salmon fishing industry of the Pacific Coast is dependent on the survival and propagation of 5 species of salmon which spawn in rivers of that portion of the North American continent extending from California to Alaska. The development of these rivers for power, irrigation, flood control and other projects has drastically reduced the natural spawning areas available to salmon. To prevent the extinction of these fish and the concurrent losses to the fishing industry, various State and Federal agencies have initiated a major program of artificial propagation. This area of animal husbandry has received little attention from nutritional workers and there is a paucity of information on the nutritional requirements of salmon. To supply this essential information the U. S. Fish and Wildlife Service established the Salmon Nutrition Laboratory at Cook, Washington in 1952. This report represents the first of a series which will be presented from the laboratory.

  4. Effects of Renibacterium salmoninarum on olfactory organs of Chinook salmon (Oncorhynchus tshawytscha) marked with coded wire tags

    USGS Publications Warehouse

    Elliott, Diane G.; Conway, Carla M.; Bruno, D.W.; Elliott, D.G.; Nowak, B.

    2014-01-01

    Bacterial kidney disease (BKD) caused by Renibacterium salmoninarum can cause significant morbidity and mortality in Chinook salmon (Oncorhynchus tshawytscha), particularly in Chinook salmon of the stream (spring) life history type, which migrate to sea as yearlings rather than subyearlings. R. salmoninarum can be transmitted vertically from the female parent to the progeny in association with the egg, as well as horizontally from fish to fish. This study was conducted as part of a research project to investigate whether the prevalence and intensity of R. salmoninarum infections in adult spring Chinook salmon could affect the survival and pathogen prevalence and intensity in their progeny (Pascho et al., 1991, 1993; Elliott et al., 1995). Fish from two brood years (1988 and 1989) were reared at Dworshak National Fish Hatchery (Idaho, USA) for about 1-1/2 years, released as yearling smolts, and allowed to migrate to the Pacific Ocean for maturation. The majority of progeny fish were marked with coded wire tags (CWTs) about 4 months before they were released from the hatchery so that adult returns could be monitored. The CWTs were implanted in the snouts of the fish by an experienced team of fish markers using automated wire-tagging machines. The intended placement site was the cartilage, skeletal muscle or loose connective tissue of the snout.

  5. First detection, isolation and molecular characterization of infectious salmon anaemia virus associated with clinical disease in farmed Atlantic salmon (Salmo salar) in Chile

    PubMed Central

    Godoy, Marcos G; Aedo, Alejandra; Kibenge, Molly JT; Groman, David B; Yason, Carmencita V; Grothusen, Horts; Lisperguer, Angelica; Calbucura, Marlene; Avendaño, Fernando; Imilán, Marcelo; Jarpa, Miguel; Kibenge, Frederick SB

    2008-01-01

    Background Infectious salmon anaemia (ISA) is a viral disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), which belongs to the genus Isavirus, family Orthomyxoviridae. The virus is considered to be carried by marine wild fish and for over 25 years has caused major disease outbreaks in marine-farmed Atlantic salmon in the Northern hemisphere. In the Southern hemisphere, ISAV was first detected in Chile in 1999 in marine-farmed Coho salmon (Oncorhynchus kisutch). In contrast to the classical presentation of ISA in Atlantic salmon, the presence of ISAV in Chile until now has only been associated with a clinical condition called Icterus Syndrome in Coho salmon and virus isolation has not always been possible. During the winter of 2007, unexplained mortalities were registered in market-size Atlantic salmon in a grow-out site located in Chiloé in Region X of Chile. We report here the diagnostic findings of the first significant clinical outbreak of ISA in marine-farmed Atlantic salmon in Chile and the first characterization of the ISAV isolated from the affected fish. Results In mid-June 2007, an Atlantic salmon marine farm site located in central Chiloé Island in Region X of Chile registered a sudden increase in mortality following recovery from an outbreak of Pisciricketsiosis, which rose to a cumulative mortality of 13.6% by harvest time. Based on the clinical signs and lesions in the affected fish, and laboratory tests performed on the fish tissues, a confirmatory diagnosis of ISA was made; the first time ISA in its classical presentation and for the first time affecting farmed Atlantic salmon in Chile. Rapid sequencing of the virus-specific RT-PCR products amplified from the fish tissues identified the virus to belong to the European genotype (Genotype I) of the highly polymorphic region (HPR) group HPR 7b, but with an 11-amino acid insert in the fusion glycoprotein, and ability to cause cytopathic effects (CPE) in CHSE-214 cell line

  6. First detection, isolation and molecular characterization of infectious salmon anaemia virus associated with clinical disease in farmed Atlantic salmon (Salmo salar) in Chile.

    PubMed

    Godoy, Marcos G; Aedo, Alejandra; Kibenge, Molly J T; Groman, David B; Yason, Carmencita V; Grothusen, Horts; Lisperguer, Angelica; Calbucura, Marlene; Avendaño, Fernando; Imilán, Marcelo; Jarpa, Miguel; Kibenge, Frederick S B

    2008-08-04

    Infectious salmon anaemia (ISA) is a viral disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), which belongs to the genus Isavirus, family Orthomyxoviridae. The virus is considered to be carried by marine wild fish and for over 25 years has caused major disease outbreaks in marine-farmed Atlantic salmon in the Northern hemisphere. In the Southern hemisphere, ISAV was first detected in Chile in 1999 in marine-farmed Coho salmon (Oncorhynchus kisutch). In contrast to the classical presentation of ISA in Atlantic salmon, the presence of ISAV in Chile until now has only been associated with a clinical condition called Icterus Syndrome in Coho salmon and virus isolation has not always been possible. During the winter of 2007, unexplained mortalities were registered in market-size Atlantic salmon in a grow-out site located in Chiloé in Region X of Chile. We report here the diagnostic findings of the first significant clinical outbreak of ISA in marine-farmed Atlantic salmon in Chile and the first characterization of the ISAV isolated from the affected fish. In mid-June 2007, an Atlantic salmon marine farm site located in central Chiloé Island in Region X of Chile registered a sudden increase in mortality following recovery from an outbreak of Pisciricketsiosis, which rose to a cumulative mortality of 13.6% by harvest time. Based on the clinical signs and lesions in the affected fish, and laboratory tests performed on the fish tissues, a confirmatory diagnosis of ISA was made; the first time ISA in its classical presentation and for the first time affecting farmed Atlantic salmon in Chile. Rapid sequencing of the virus-specific RT-PCR products amplified from the fish tissues identified the virus to belong to the European genotype (Genotype I) of the highly polymorphic region (HPR) group HPR 7b, but with an 11-amino acid insert in the fusion glycoprotein, and ability to cause cytopathic effects (CPE) in CHSE-214 cell line, characteristics

  7. Sea-louse parasites on juvenile wild salmon in the Broughton Archipelago, British Columbia, Canada.

    PubMed

    Peacock, Stephanie J; Bateman, Andrew W; Krkošek, Martin; Connors, Brendan; Rogers, Scott; Portner, Lauren; Polk, Zephyr; Webb, Coady; Morton, Alexandra

    2016-07-01

    The global expansion of aquaculture has changed the structure of fish populations in coastal environments, with implications for disease dynamics. In Pacific Canada, farmed salmon act as reservoir hosts for parasites and pathogens, including sea lice (Lepeophtheirus salmonis and Caligus clemensi) that can transmit to migrating wild salmon. Assessing the impact of salmon farms on wild salmon requires regular monitoring of sea-louse infections on both farmed and wild fish. Since 2001, we have collected juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon annually at three sites in the Broughton Archipelago in British Columbia, Canada, during the annual juvenile salmon migration from fresh water to the open ocean. From sampled fish, we recorded counts of parasitic copepodid-, chalimus-, and motile-stage sea lice. We report louse abundances as well as supplementary observations of fish size, development, and health. © 2016 by the Ecological Society of America.

  8. Retention of mercury by salmon

    USGS Publications Warehouse

    Amend, Donald F.

    1970-01-01

    Consuming fish that have been exposed repeatedly to mercury derivatives is a potential public health hazard because fish can accumulate and retain mercury in their tissues (Rucker, 1968). Concern has been expressed in the United States because mercurials have been used extensively in industry and as prophylactic and therapeutic agents in fish hatcheries. Rucker and Amend (1969) showed that yearling rainbow trout (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) exposed to mercurials accumulated excessive amounts of mercury in many tissues. Further, Rucker and Amend (1969) concluded that wild fish that ate mercury-contaminated fish also could contain high mercury levels. Although mercury was eliminated from most tissues within several months, substantial levels remained in the kidney for more than 33 weeks after the last exposure. Since high levels of mercury can be retained in the kidney for an undetermined time, it is possible that returning adult salmon exposed to mercurials as juveniles could constitute a potential hazard to public health. The purpose of this study was to determine whether such fish contained high residual levels of mercury.

  9. Echo characteristics of two salmon species

    NASA Astrophysics Data System (ADS)

    Nealson, Patrick A.; Horne, John K.; Burwen, Debby L.

    2005-04-01

    The Alaska Department of Fish and Game relies on split-beam hydroacoustic techniques to estimate Chinook salmon (Oncorhynchus tshawytscha) returns to the Kenai River. Chinook counts are periodically confounded by large numbers of smaller sockeye salmon (O. nerka). Echo target-strength has been used to distinguish fish length classes, but was too variable to separate Kenai River chinook and sockeye distributions. To evaluate the efficacy of alternate echo metrics, controlled acoustic measurements of tethered chinook and sockeye salmon were collected at 200 kHz. Echo returns were digitally sampled at 48 kHz. A suite of descriptive metrics were collected from a series of 1,000 echoes per fish. Measurements of echo width were least variable at the -3 dB power point. Initial results show echo elongation and ping-to-ping variability in echo envelope width were significantly greater for chinook than for sockeye salmon. Chinook were also observed to return multiple discrete peaks from a single broadcast echo. These characteristics were attributed to the physical width of chinook exceeding half of the broadcast echo pulse width at certain orientations. Echo phase variability, correlation coefficient and fractal dimension distributions did not demonstrate significant discriminatory power between the two species. [Work supported by ADF&G, ONR.

  10. Sea Louse Infection of Juvenile Sockeye Salmon in Relation to Marine Salmon Farms on Canada's West Coast

    PubMed Central

    Price, Michael H. H.; Proboszcz, Stan L.; Routledge, Rick D.; Gottesfeld, Allen S.; Orr, Craig; Reynolds, John D.

    2011-01-01

    Background Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). Methodology/Principal Findings We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. Conclusions/Significance This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of

  11. Sea louse infection of juvenile sockeye salmon in relation to marine salmon farms on Canada's west coast.

    PubMed

    Price, Michael H H; Proboszcz, Stan L; Routledge, Rick D; Gottesfeld, Allen S; Orr, Craig; Reynolds, John D

    2011-02-09

    Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.

  12. Titre distribution patterns of infectious haematopoietic necrosis virus in ovarian fluids of hatchery and feral salmon populations

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.; Jenes, C.K.

    1983-01-01

    Infectious haematopoietic mecrosis virus (IHNV) is enzootic in virtually all populations of sockeye salmon, Oncorhynchus nerka (Walbaum), and in populations of chinook salmon, O. tshawytscha (Walbaum), of the Sacramento River drainage in California. This disease is an obstacle in hatcheries using brood stocks from these populations. However, naturally spawning sockeye salmon are highly successful and are the most important commercially fished salmon species in the United States. Most of the commercial landings of sockeye salmon are of feral fish originating in Alaska. The success of natural populations of salmon in which IHNV is enzootic, and the recurrent outbreaks of the disease in hatchery fish, led us to compare IHNW prevalence rates in hatchery and feral salmon populations.

  13. How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere

    PubMed Central

    Costello, Mark J.

    2009-01-01

    Fishes farmed in sea pens may become infested by parasites from wild fishes and in turn become point sources for parasites. Sea lice, copepods of the family Caligidae, are the best-studied example of this risk. Sea lice are the most significant parasitic pathogen in salmon farming in Europe and the Americas, are estimated to cost the world industry €300 million a year and may also be pathogenic to wild fishes under natural conditions. Epizootics, characteristically dominated by juvenile (copepodite and chalimus) stages, have repeatedly occurred on juvenile wild salmonids in areas where farms have sea lice infestations, but have not been recorded elsewhere. This paper synthesizes the literature, including modelling studies, to provide an understanding of how one species, the salmon louse, Lepeophtheirus salmonis, can infest wild salmonids from farm sources. Three-dimensional hydrographic models predicted the distribution of the planktonic salmon lice larvae best when they accounted for wind-driven surface currents and larval behaviour. Caligus species can also cause problems on farms and transfer from farms to wild fishes, and this genus is cosmopolitan. Sea lice thus threaten finfish farming worldwide, but with the possible exception of L. salmonis, their host relationships and transmission adaptations are unknown. The increasing evidence that lice from farms can be a significant cause of mortality on nearby wild fish populations provides an additional challenge to controlling lice on the farms and also raises conservation, economic and political issues about how to balance aquaculture and fisheries resource management. PMID:19586950

  14. Evaluation of Salmon Spawning Below Bonneville Dam, Annual Report October 2005 - September 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Mueller, Robert P.; Murray, Christopher J.

    2007-09-21

    Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum salmon (Oncorhynchus keta) and fall Chinook salmon (O. tshawytscha) in the lower mainstem Columbia River. Their work supports a larger project funded by the Bonneville Power Administration (BPA) aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Surveymore » (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and tule fall Chinook salmon populations--both listed as threatened under the Endangered Species Act (ESA). Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by WDFW biologists in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and near Ives Island. Limited surveys of spawning ground were conducted in the area around Ives and Pierce islands from 1994 through 1997. Based on those surveys, it is believed that fall Chinook salmon are spawning successfully in this area. The size of this population from 1994 to 1996 was estimated at 1800 to 5200 fish. Chum salmon also have been documented spawning downstream of Bonneville Dam. Chum salmon were listed as threatened under the ESA in March 1999. At present there is a need to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their

  15. Salmon returns and consumer fitness: growth and energy storage in stream-dwelling salmonids increases with spawning salmon abundance

    USDA-ARS?s Scientific Manuscript database

    We examined how biomass of marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and nitrogen stable isotope ratios (d15N) of stream-dwelling fishes. We sampled coho salmon (Oncorhynchus kisutch) parr and juvenile Dolly Varden (Salvelinus malma) d...

  16. Juvenile Salmon Usage of the Skeena River Estuary

    PubMed Central

    Carr-Harris, Charmaine; Gottesfeld, Allen S.; Moore, Jonathan W.

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations

  17. Heterosigma bloom and associated fish kill

    USGS Publications Warehouse

    Hershberger, P.K.; Rensel, J.E.; Postel, J.R.; Taub, F.B.

    1997-01-01

    A bloom of the harmful marine phytoplankton, Heterosigma carterae occurred in upper Case Inlet, south Puget Sound, Washington in late September, 1994, correlating with the presence of at least 35 dead salmon. This marks the first time that this alga has been closely correlated with a wild fish kill; in the past it was thought to be associated with kills of penned fish at fish farms only. We were informed of the presence of a possible harmful algal bloom and dead salinois Ilear the town of Allyn on 27 September and a team was formed to investigate. We arrived at the Allyn waterfront at 17:30 hours the same day. Prior to our arrival, state agency personnel walked approximatcly two miles of shoreline from the powerlines north of the dock, to the mouth of Sherwood Creek and conducted the only official count of dead fish present along the shore consisting of 12 coho salmon (Oncorhynchus kisutch), 11 chum salmon (Oncorhynchus keta), 12 chinook salmon (Oncorhynchus tschawytscha), one flat fish, and one sculpin on the morning of 9/27. Since previous harmful blooms of Heterosigma have resultedin the majority of net penreared salmon sinking to the bottom of pens, and only approximately two miles of shoreline were sampled, it is suspected that many more exposed fish may have succumbed than were counted. Witnesses who explored the east side of the bay reported seeing many dead salmon there as well, but no counts were made. State agency personnel who observed the fish kill reported seeing “dying fish coming to the beach, gulping at the surface, trying to get out of the water” Scavengers were seen consuming the salmon carcasses; these included two harbor seals, a house cat, and Hymenopteran insects. None suffered any noticeable acute ill effects. Although precise cause of death has not been ascertained, visual inspection of the reproductive organs from a deceased male chum salmon found on the shore at Allyn confirmed that the fish was not yet reproductively mature and

  18. Salmon Gill Poxvirus, the Deepest Representative of the Chordopoxvirinae

    PubMed Central

    Yutin, Natalya; Tengs, Torstein; Senkevich, Tania; Koonin, Eugene; Rønning, Hans Petter; Alarcon, Marta; Ylving, Sonja; Lie, Kai-Inge; Saure, Britt; Tran, Linh; Dale, Ole Bendik

    2015-01-01

    ABSTRACT Poxviruses are large DNA viruses of vertebrates and insects causing disease in many animal species, including reptiles, birds, and mammals. Although poxvirus-like particles were detected in diseased farmed koi carp, ayu, and Atlantic salmon, their genetic relationships to poxviruses were not established. Here, we provide the first genome sequence of a fish poxvirus, which was isolated from farmed Atlantic salmon. In the present study, we used quantitative PCR and immunohistochemistry to determine aspects of salmon gill poxvirus disease, which are described here. The gill was the main target organ where immature and mature poxvirus particles were detected. The particles were detected in detaching, apoptotic respiratory epithelial cells preceding clinical disease in the form of lethargy, respiratory distress, and mortality. In moribund salmon, blocking of gas exchange would likely be caused by the adherence of respiratory lamellae and epithelial proliferation obstructing respiratory surfaces. The virus was not found in healthy salmon or in control fish with gill disease without apoptotic cells, although transmission remains to be demonstrated. PCR of archival tissue confirmed virus infection in 14 cases with gill apoptosis in Norway starting from 1995. Phylogenomic analyses showed that the fish poxvirus is the deepest available branch of chordopoxviruses. The virus genome encompasses most key chordopoxvirus genes that are required for genome replication and expression, although the gene order is substantially different from that in other chordopoxviruses. Nevertheless, many highly conserved chordopoxvirus genes involved in viral membrane biogenesis or virus-host interactions are missing. Instead, the salmon poxvirus carries numerous genes encoding unknown proteins, many of which have low sequence complexity and contain simple repeats suggestive of intrinsic disorder or distinct protein structures. IMPORTANCE Aquaculture is an increasingly important global

  19. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  20. The importance of genetic verification for determination of Atlantic salmon in north Pacific waters

    USGS Publications Warehouse

    Nielsen, J.L.; Williams, I.; Sage, G.K.; Zimmerman, C.E.

    2003-01-01

    Genetic analyses of two unknown but putative Atlantic salmon Salmo salar captured in the Copper River drainage, Alaska, demonstrated the need for validation of morphologically unusual fishes. Mitochondrial DNA sequences (control region and cytochrome b) and data from two nuclear genes [first internal transcribed spacer (ITS-1) sequence and growth hormone (GH1) amplification product] indicated that the fish caught in fresh water on the Martin River was a coho salmon Oncorhynchus kisutch, while the other fish caught in the intertidal zone of the Copper River delta near Grass Island was an Atlantic salmon. Determination of unusual or cryptic fish based on limited physical characteristics and expected seasonal spawning run timing will add to the controversy over farmed Atlantic salmon and their potential effects on native Pacific species. It is clear that determination of all putative collections of Atlantic salmon found in Pacific waters requires validation. Due to uncertainty of fish identification in the field using plastic morphometric characters, it is recommended that genetic analyses be part of the validation process. ?? 2003 The Fisheries Society of the British Isles.

  1. 50 CFR 660.406 - Exempted fishing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Exempted fishing. 660.406 Section 660.406 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West Coast Salmon Fisheries § 660.406...

  2. 50 CFR 660.406 - Exempted fishing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Exempted fishing. 660.406 Section 660.406 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West Coast Salmon Fisheries § 660.406...

  3. 50 CFR 660.406 - Exempted fishing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Exempted fishing. 660.406 Section 660.406 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West Coast Salmon Fisheries § 660.406...

  4. Ca. Branchiomonas cysticola, Ca. Piscichlamydia salmonis and Salmon Gill Pox Virus transmit horizontally in Atlantic salmon held in fresh water.

    PubMed

    Wiik-Nielsen, J; Gjessing, M; Solheim, H T; Litlabø, A; Gjevre, A-G; Kristoffersen, A B; Powell, M D; Colquhoun, D J

    2017-10-01

    Elucidation of the role of infectious agents putatively involved in gill disease is commonly hampered by the lack of culture systems for these organisms. In this study, a farmed population of Atlantic salmon pre-smolts, displaying proliferative gill disease with associated Candidatus Branchiomonas cysticola, Ca. Piscichlamydia salmonis and Atlantic salmon gill pox virus (SGPV) infections, was identified. A subpopulation of the diseased fish was used as a source of waterborne infection towards a population of naïve Atlantic salmon pre-smolts. Ca. B. cysticola infection became established in exposed naïve fish at high prevalence within the first month of exposure and the bacterial load increased over the study period. Ca. P. salmonis and SGPV infections were identified only at low prevalence in exposed fish during the trial. Although clinically healthy, at termination of the trial the exposed, naïve fish displayed histologically visible pathological changes typified by epithelial hyperplasia and subepithelial inflammation with associated bacterial inclusions, confirmed by fluorescent in situ hybridization to contain Ca. B. cysticola. The results strongly suggest that Ca. B. cysticola infections transmit directly from fish to fish and that the bacterium is directly associated with the pathological changes observed in the exposed, previously naïve fish. © 2017 John Wiley & Sons Ltd.

  5. Effects of various feed supplements containing fish protein hydrolysate or fish processing by-products on the innate immune functions of juvenile coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Murray, A.L.; Pascho, R.J.; Alcorn, S.W.; Fairgrieve, W.T.; Shearer, K.D.; Roley, D.

    2003-01-01

    Immunomodulators administered to fish in the diet have been shown in some cases to enhance innate immune defense mechanisms. Recent studies have suggested that polypeptide fractions found in fish protein hydrolysates may stimulate factors in fish important for disease resistance. For the current study, groups of coho salmon were reared on practical feeds that contained either fish meal (Control diet), fish meal supplemented with cooked fish by-products, or fish meal supplemented with hydrolyzed fish protein alone, or with hydrolyzed fish protein and processed fish bones. For each diet group, three replicate tanks of fish were fed the experimental diets for 6 weeks. Morphometric measurements, and serologic and cellular assays were used to evaluate the general health and immunocompetence of fish in the various feed groups. Whereas the experimental diets had no effect on the morphometric and cellular measurements, fish fed cooked by-products had increased leucocrit levels and lower hematocrit levels than fish from the other feed groups. Innate cellular responses were increased in all feed groups after feeding the four experimental diets compared with pre-feed results. Subgroups of fish from each diet group were also challenged with Vibrio anguillarum (ca. 7.71 ?? 105 bacteria ml-1) at 15??C by immersion. No differences were found in survival among the various feed groups.

  6. Cle Elum Lake Sockeye Salmon Restoration Feasibility Study, 1987-1989 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagg, Thomas A.

    1990-02-01

    This report summarizes research activities conducted by the National Marine Fisheries Service (NMFS) from July 1988 through March 1989 relating to the Cle Elum Lake sockeye salmon restoration feasibility study. During this period, efforts focused on collection and spawning of adult sockeye salmon from the Wenatchee River, incubation of eggs from the 1988-brood, and the rearing of juveniles from the 1987-brood. In late July and early August 1988, 520 adult sockeye salmon were captured at fishways on the Wenatchee River and transferred to net-pens in Lake Wenatchee. Fish were held to maturity in late September and early October, spawned, andmore » eggs incubated at a quarantine hatchery in Seattle, WA. The 336 sockeye salmon successfully spawned from the net-pens at Lake Wenatchee were surveyed for the presence of infectious hematopoietic necrosis (IHN) and other replicating viruses. In addition, 13 and 5 sockeye salmon spawners were surveyed from spawning grounds on the White and Little Wenatchee Rivers, respectively, from within the Lake Wenatchee system. 12 refs., 4 figs., 6 tabs.« less

  7. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated

    USGS Publications Warehouse

    Kock, Tobias J.; Tiffan, Kenneth F.; Connor, William P.

    2007-01-01

    During the winter of 2006-07, we radio and passive integrated transponder (PIT) tagged, and released 99 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. All fish were released 10 km upstream of Lower Granite Dam at Granite Point in early November, 2006. Fixed radio telemetry detection sites located in the forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental, Ice Harbor, Bonneville dams, and at Lyle, Washington were used to monitor fish movements and dam passage through early-May 2007. Of the 99 fish released during our study, 80 passed Lower Granite Dam and were detected at downstream detection sites, 37 passed Little Goose Dam, 41 passed Lower Monumental Dam, 31 passed Ice Harbor Dam, 18 passed Lyle, WA, and 13 passed Bonneville Dam. Of the fish that passed Lower Granite Dam in the fall, 63 fish did so during the extended bypass period from November 1 through December 16. Of these fish, 53 were also detected by the PIT-tag interrogation system. Fifteen of the fish that passed Lower Granite Dam in the fall continued to pass lower Snake River dams and exit the system by the end of January. The remaining fish either died, their tags failed, or they resided in Little Goose Reservoir until spring when relatively few continued their seaward migration. Passage of tagged fish past lower Snake River dams generally declined during the winter as temperatures decreased, but increased again in the spring as temperatures and flows increased. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 160 d), and varied by reservoir and time of year. We observed no diel trends in fish passage. Very few fish were detected at PIT-tag interrogation sites in the spring compared to detection by radio telemetry detection sites indicating that fish may have passed via spill. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more

  8. Supplementing long-chain n-3 polyunsaturated fatty acids in canned wild Pacific pink salmon with Alaska salmon oil

    PubMed Central

    Lapis, Trina J; Oliveira, Alexandra C M; Crapo, Charles A; Himelbloom, Brian; Bechtel, Peter J; Long, Kristy A

    2013-01-01

    Establishing n-3 polyunsaturated fatty acid contents in canned wild Alaska pink salmon products is challenging due to ample natural variation found in lipid content of pink salmon muscle. This study investigated the effect of adding salmon oil (SO) to canned pink salmon produced from fish exhibiting two opposite degrees of skin watermarking, bright (B) and dark (D). Specific goals of the study were to evaluate the benefits of adding SO to canned pink salmon with regard to nutritional value of the product, sensory characteristics, and the oxidative and hydrolytic stability of the lipids over thermal processing. Six groups of canned pink salmon were produced with variable levels of SO, either using bright (with 0, 1, or 2% SO) or dark (with 0, 2, or 4% SO) pink salmon. Compositional analysis revealed highest (P < 0.05) lipid content in sample B2 (8.7%) and lowest (P < 0.05) lipid content in sample D0 (3.5%). Lipid content of samples B0, B1, D2, and D4 was not significantly different (P > 0.05) ranging from 5.7% to 6.8%. Consequently, addition of SO to canned pink salmon allowed for consistent lipid content between bright and dark fish. Addition of 1% or 2% SO to canned bright pink salmon was not detrimental to the sensory properties of the product. It is recommended that canned bright pink salmon be supplemented with at least 1% SO, while supplementation with 2% SO would guarantee a minimum quantity of 1.9 g of n-3 fatty acids per 100 g of product. Addition of 4% SO to canned dark pink salmon was detrimental to product texture and taste, while supplementation with 2% SO did not negatively affect sensorial properties of the product. Accordingly, canned dark pink salmon should be supplemented with 2% SO so that a minimum n-3 fatty acids content of 1.5 g per 100 g of product. PMID:24804010

  9. 50 CFR 660.407 - Treaty Indian fishing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Treaty Indian fishing. 660.407 Section 660.407 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West Coast Salmon Fisheries...

  10. 50 CFR 660.407 - Treaty Indian fishing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Treaty Indian fishing. 660.407 Section 660.407 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West Coast Salmon Fisheries...

  11. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, John G.; Bjornn

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on themore » Clearwater River to collect data on survival detection probabilities, and travel time.« less

  12. History of salmon in the Great Lakes, 1850-1970

    USGS Publications Warehouse

    Parsons, John W.

    1973-01-01

    This history of the salmon in the Great Lakes describes the decline and extinction of the Atlantic salmon (Salmo salar) in Lake Ontario in the 1800's; the failure to establish, by salmon culture, permanent or sizable populations of Atlantic or Pacific salmon in any of the Great Lakes in 1867-1965; and the success of the plantings of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytsha) in the Great Lakes, in 1966-70 -- particularly in Lake Michigan. Despite plantings of 5 million fry and fingerlings from Lake Ontario stocks in 1866-84, the native Atlantic salmon in Lake Ontario became extinct in the late 1800's primarily because tributaries in which they spawned were blocked by mill dams. Plantings of 13 million chinook salmon and landlocked and anadromous forms of Atlantic salmon in Lake Ontario and the other Great Lakes in 1873-1947 failed completely. The first species to develop a self-sustaining population was the pink salmon (O. gorbuscha), which was planted in Lake Superior in 1956; however, it has not become abundant. A salmon fishery finally was established when 15 million coho salmon and 6 million chinook salmon were planted as smolt in the Great Lakes in 1966-70. In 1970, for example, 576,000 coho salmon (12% of those planted in 1969) were caught by anglers in Lake Michigan. Most weighed 5 to 10 pounds (2.3-4.5 kg). Sport fishing for salmon was fair in Lakes Superior and Huron, and poor in Lakes Erie and Ontario. By 1970, natural reproduction of coho, chinook, pink, and kokanee (O. nerka) salmon had occurred in some tributaries of one or more of the upper three Great Lakes. It is expected, however, that the sport fishery will continue to be supported almost entirely by planted fish.

  13. Multivariate Models of Adult Pacific Salmon Returns

    PubMed Central

    Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  14. Evidence for competition at sea between Norton Sound chum salmon and Asian hatchery chum salmon

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Agler, B.A.; Nielsen, Jennifer L.

    2012-01-01

    Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.

  15. Size selection from fishways and potential evolutionary responses in a threatened Atlantic salmon population

    USGS Publications Warehouse

    Maynard, George A.; Kinnison, M.T.; Zydlewski, Joseph D.

    2017-01-01

    The evolutionary effects of harvest on wild fish populations have been documented around the world; however, sublethal selective pressures can also cause evolutionary changes in phenotypes. For migratory fishes, passage facilities may represent instances of nonlethal selective pressure. Our analysis of 6 years of passage data suggests that certain fish passage facilities on the Penobscot River have been exerting selective pressure against large-bodied, anadromous Atlantic salmon (Salmo salar). At the second and third dams in the river, a 91-cm salmon was 21%–27% and 12%–16% less likely to pass than a 45-cm salmon, respectively. Fish size positively influences egg survival and number and is a heritable trait. Therefore, in a wild-reproducing population, exclusion of large fish from spawning areas may have population-level impacts. In the Penobscot River, most returning adults derive from a hatchery program that collects its broodstock after passing the first dam in the river. Analysis of fork lengths of salmon returning to the Penobscot River from 1978 to 2012 provided mixed support for evolution of size at maturity in different age classes in a pattern that may be expected from interactions with conservation hatchery operations. Additionally, slow-maturing and iteroparous individuals that represent the largest salmon size classes were essentially lost from the population during that time, and Penobscot River fish have shorter fork lengths at maturity than Atlantic salmon in undammed systems.

  16. Interactions between brown bears and chum salmon at McNeil River, Alaska

    USGS Publications Warehouse

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2013-01-01

    Predation on returning runs of adult salmon (Oncorhynchus spp.) can have a large influence on their spawning success. At McNeil River State Game Sanctuary (MRSGS), Alaska, brown bears (Ursus arctos) congregate in high numbers annually along the lower McNeil River to prey upon returning adult chum salmon (O. keta). Low chum salmon escapements into McNeil River since the late 1990s have been proposed as a potential factor contributing to concurrent declines in bear numbers. The objective of this study was to determine the extent of bear predation on chum salmon in McNeil River, especially on pre-spawning fish, and use those data to adjust the escapement goal for the river. In 2005 and 2006, 105 chum salmon were radiotagged at the river mouth and tracked to determine cause and location of death. Below the falls, predators consumed 99% of tagged fish, killing 59% of them before they spawned. Subsequently, the escapement goal was nearly doubled to account for this pre-spawning mortality and to ensure enough salmon to sustain both predators and prey. This approach to integrated fish and wildlife management at MRSGS can serve as a model for other systems where current salmon escapement goals may not account for pre-spawning mortality.

  17. An overview of cleaner fish use in Ireland.

    PubMed

    Bolton-Warberg, M

    2017-11-21

    Sea lice infestations represent one of the most significant challenges facing the salmon farming industry, giving rise to lost production, additional costs of treatment and potential negative interactions with wild stocks. At present, cleaner fish, which actively remove lice from salmon, are an effective, biological, long-term option which has been adopted by many countries. In Ireland, several key studies were conducted in the 1990s on the use of wild-caught wrasse (corkwing, goldsinny and rock cook) as cleaner fish in experimental and commercial scale trials. More recently, the National University of Ireland Galway (NUIG), at their marine research facility in Carna (CRS), has undertaken applied research on ballan wrasse and lumpsucker. Currently, CRS is providing lumpsucker juveniles and research and development for the Irish salmon industry with support from BIM (Ireland's Seafood Development Agency) and Marine Harvest Ireland. There is a large amount of research currently being carried out in this area in all countries that are utilizing cleaner fish technology. The current focus in Ireland is the development of a native lumpsucker broodstock to facilitate its sustainable production. The aim of this article was to provide an overview of the research, challenges and use of cleaner fish in Ireland. © 2017 The Authors Journal of Fish Diseases Published by John Wiley & Sons Ltd.

  18. Using image analysis to predict the weight of Alaskan salmon of different species.

    PubMed

    Balaban, Murat O; Unal Sengör, Gülgün F; Gil Soriano, Mario; Guillén Ruiz, Elena

    2010-04-01

    After harvesting, salmon is sorted by species, size, and quality. This is generally manually done by operators. Automation would bring repeatability, objectivity, and record-keeping capabilities to these tasks. Machine vision (MV) and image analysis have been used in sorting many agricultural products. Four salmon species were tested: pink (Oncorhynchus gorbuscha), red (Oncorhynchus nerka), silver (Oncorhynchus kisutch), and chum (Oncorhynchus keta). A total of 60 whole fish from each species were first weighed, then placed in a light box to take their picture. Weight compared with view area as well as length and width correlations were developed. In addition the effect of "hump" development (see text) of pink salmon on this correlation was investigated. It was possible to predict the weight of a salmon by view area, regardless of species, and regardless of the development of a hump for pinks. Within pink salmon there was a small but insignificant difference between predictive equations for the weight of "regular" fish and "humpy" fish. Machine vision can accurately predict the weight of whole salmon for sorting.

  19. Genetic variation in chinook, Oncorhynchus tshawytscha, and coho, O. Kisutchsalmon from the north coast of Washington

    USGS Publications Warehouse

    Reisenbichler, R.R.; Phelps, S.R.

    1987-01-01

    We used starch-gel electrophoresis to genetically characterize the populations of chinook salmon, Oncorhynchus tshawytscha, and coho salmon, O. kisutch, in the major drainages of the north coast of Washington (the Quillayute, Uoh, Queets, and Quinault Rivers). Of 55 loci examined for electrophoretically detectable variation. 6 were polymorphic (frequency of the common allele was less than 0.95) in chinook salmon and 3 in coho salmon. Statistical tests of interdrainage and intradrainage variation for coho salmon were tenuous because most of the fish examined were from a single year class so that we could not account for variation among year classes. Nevertheless, these tests suggested that distinct stocks ofcoho salmon exist within drainages. and that variation was not significantly greater among drainages than within drainages. Interdrainage variation for wild chinook salmon was not significant. The data suggested that summer chinook salmon were electrophoretically different from fall chinook salmon, and the hatchery populations of chinook salmon were distinct from wild fish. A hatchery population developed primarily from north coast fish was electrophoretically more similar to wild chinook salmon than were the others.

  20. Pathogenesis and immune response in Atlantic salmon (Salmo salar L.) parr experimentally infected with salmon pancreas disease virus (SPDV).

    PubMed

    Desvignes, L; Quentel, C; Lamour, F; le, Ven A

    2002-01-01

    Atlantic salmon parr were injected intraperitoneally with salmon pancreas disease virus (SPDV) grown on CHSE-214 cells. The viraemia, the histopathological changes in target organs and some immune parameters were taken at intervals up to 30 days post-infection (dpi). The earliest kind of lesion was necrosis of exocrine pancreas, appearing as soon as 2 dpi. It progressed towards complete tissue breakdown at 9 dpi before resolving gradually. Concurrent to this necrosis, a strong inflammatory response was in evidence from 9 dpi in the pancreatic area for a majority of fish. A necrosis of the myocardial cells of the ventricle occurred in infected fish mainly at 16 dpi and it faded thereafter. The monitoring of the plasma viral load showed a rapid haematogenous spreading of SPDV, peaking at 4 dpi, but also the absence of a secondary viraemia. No interferon (IFN) was detected following the infection of parr with SPDV, probably owing to an IFN activity in Atlantic salmon below the detection level of the technique. Neutralising antibodies against SPDV were in evidence from 16 dpi and they showed a time-related increasing titre and prevalence. The phagocytic activity in head-kidney leucocytes was always significantly higher in the infected fish than in the control fish, being particularly high by 9 dpi. Lysozyme and complement levels were both increased and they peaked significantly in the infected fish at 9 and 16 dpi respectively. These results demonstrated that an experimental infection of Atlantic salmon parr with SPDV provoked a stimulation of both specific and non-specific immunity with regards to the viraemia and the histopathology.

  1. 21 CFR 161.170 - Canned Pacific salmon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., the common or usual name or names of each species of fish enumerated in paragraph (a)(2)(i) of this... accordance with good manufacturing practice; and then washing. Canned Pacific salmon is prepared in one of... good manufacturing practices. (iii) “Minced salmon” consists of salmon which has been minced or ground...

  2. 50 CFR 71.11 - Opening of national fish hatchery areas to fishing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Opening of national fish hatchery areas to fishing. 71.11 Section 71.11 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF... FISH HATCHERY AREAS Fishing § 71.11 Opening of national fish hatchery areas to fishing. National fish...

  3. Fishmeal-free Atlantic salmon feed formulation shows promise - Joint research between TCFFI, USDA and EWOS uses new diet for post-smolt to food-size fish

    USDA-ARS?s Scientific Manuscript database

    The 2 MT/week of Atlantic salmon that The Conservation Fund Freshwater Institute provided to market in March and April of 2016 were fed a custom diet during nearly 90% of their growth that met the following sustainability criteria: - Fishmeal free - GMO free - Zero wild fish in: fish out according t...

  4. Snake River Sockeye Salmon Habitat and Limnological Research; 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Robert G.; Taki, Doug; Lewis, Bert

    2001-01-15

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  5. Snake River Sockeye Salmon Habitat and Limnological Research; 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2002-12-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2000 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  6. The role of fish movements and the spread of infectious salmon anemia virus (ISAV) in Chile, 2007-2009.

    PubMed

    Mardones, F O; Martinez-Lopez, B; Valdes-Donoso, P; Carpenter, T E; Perez, A M

    2014-04-01

    Infectious salmon anemia virus (ISAV) infection is a constant major threat to farmed and wild Atlantic salmon worldwide. Many epidemics have recently been reported in the most important salmon farming regions of the world, including Chile (2007-2009), where ISAV generated the most important disease and economic crisis in history of the salmon industry of the country. The spread of ISAV within a region is most likely by local or neighborhood spread from an infected farm; however, there is evidence that anthropogenic activities, such as movement of live or harvested fish or their byproduct, may have played a more important role than environmental or passive transmission in the 2007-2009 outbreak. Atlantic salmon farms (n=421) were retrospectively followed from stocking to harvesting in southern Chile at the time of the ISAV epidemic (2007-2009). The effect of husbandry and spatial risk factors, in addition to contact-network risk factors, which were obtained from the social network analyses, on time to first ISAV infection was estimated using a multivariable Cox proportional hazards model. Five variables were retained in the final fitted model: co-existing multiple generations on a farm (hazard ratio [HR]=2.585), mean smolt weight at stocking greater than 120g (HR=1.165), farm area (perkm(2)) (HR=1.005), and increased number of shipments entering a farm, i.e. the farm input degree (HR=1.876) were associated with reduced time to infection; whereas time-to-infection was longer for farms located farther from an ongoing ISAV outbreak (HR=0.943). It was demonstrated that movements of latently infected fish resulted in approximately 7 outbreaks, and potentially explain about 6% of the total number of cases during the epidemic. Results from this study provide new information about the mechanisms of spread of ISAV in one the largest documented ISAV epidemics in the world. Findings may be used to support the design and implementation of risk-based surveillance and control

  7. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearingmore » and seaward migration through Columbia River basin reservoirs.« less

  8. Fish farming in land-based closed-containment systems

    USDA-ARS?s Scientific Manuscript database

    'An International Summit on Fish Farming in Land-Based Closed-Containment Systems' was hosted by the Conservation Fund's Freshwater Institute, the Gordon and Betty Moore Foundation (GBMF), the Atlantic Salmon Federation (ASF), and Tides Canada (TC) at the National Conservation Training Center in She...

  9. TaqMan real-time RT-PCR detection of infectious salmon anaemia virus (ISAV) from formalin-fixed paraffin-embedded Atlantic salmon Salmo salar tissues.

    PubMed

    Godoy, M G; Kibenge, F S; Kibenge, M J; Olmos, P; Ovalle, L; Yañez, A J; Avendaño-Herrera, R

    2010-05-18

    The objective of this study was to evaluate the application of a TaqMan real-time reverse transcriptase PCR (RT-PCR) assay for the detection of infectious salmon anaemia virus (ISAV) in formalin-fixed paraffin-embedded (FFPE) fish tissues from Atlantic salmon Salmo salar with and without clinical signs of infection, and to compare it with histological and immunohistochemical (IHC) techniques. Sixteen fish samples obtained in 2007 and 2008 from 4 different farms in Chile were examined. The real-time RT-PCR allowed the detection of ISAV in FFPE samples from 9 of 16 fish, regardless of the organs analyzed, whereas 4 of the real-time RT-PCR negative fish were positive as indicated by histological examination and 3 of the real-time RT-PCR positive fish were negative as indicated by immunohistochemistry evaluation. The presence of ISAV in RT-PCR positive samples was confirmed by amplicon sequencing. This work constitutes the first report on the use of real-time RT-PCR for the detection of ISAV in FFPE sections. The assay is very useful for the examination of archival wax-embedded tissues, and allows for both prospective and retrospective evaluation of tissue samples for the presence of ISAV. However, the method only confirms the presence of the pathogen and should be used in combination with histopathology, which is a more precise tool. The combination of both techniques would be invaluable for confirmatory diagnosis of infectious salmon anaemia (ISA), which is essential for solving salmon farm problems.

  10. Quality grading of Atlantic salmon (Salmo salar) by computer vision.

    PubMed

    Misimi, E; Erikson, U; Skavhaug, A

    2008-06-01

    In this study, we present a promising method of computer vision-based quality grading of whole Atlantic salmon (Salmo salar). Using computer vision, it was possible to differentiate among different quality grades of Atlantic salmon based on the external geometrical information contained in the fish images. Initially, before the image acquisition, the fish were subjectively graded and labeled into grading classes by a qualified human inspector in the processing plant. Prior to classification, the salmon images were segmented into binary images, and then feature extraction was performed on the geometrical parameters of the fish from the grading classes. The classification algorithm was a threshold-based classifier, which was designed using linear discriminant analysis. The performance of the classifier was tested by using the leave-one-out cross-validation method, and the classification results showed a good agreement between the classification done by human inspectors and by the computer vision. The computer vision-based method classified correctly 90% of the salmon from the data set as compared with the classification by human inspector. Overall, it was shown that computer vision can be used as a powerful tool to grade Atlantic salmon into quality grades in a fast and nondestructive manner by a relatively simple classifier algorithm. The low cost of implementation of today's advanced computer vision solutions makes this method feasible for industrial purposes in fish plants as it can replace manual labor, on which grading tasks still rely.

  11. Predation by fallfish (Semotilus corporalis) on Pacific salmon eggs in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, J. H.; Nack, C.C.; Chalupnicki, M.A.

    2009-01-01

    Fallfish (Semotilus corporalis) are the largest native cyprinid in the northeastern United States and are the most abundant native species in the Salmon River, New York. The Salmon River is a high-quality spawning and nursery river for Pacific salmon (Oncorhynchus spp.) migrating from Lake Ontario. Because of the large number of Pacific salmon spawning in the river in the fall extensive redd superimposition occurs resulting in salmonid eggs being available on the substrate. We examined the fall diet of 647 fallfish in 2007 and 2008 to determine the extent of predation on Pacific salmon eggs. The contribution of eggs in the diet significantly increased once fallfish attained a size of 100 mm total length. The largest size category of fallfish examined (≥150 mm) had the highest proportion (86.1%) of salmon eggs in their diet. The contribution of Zooplankton and chironomids in the diet of fallfish decreased with fish size. Except for the two largest groups of fallfish examined (i.e., 100–149 mm and ≥150 mm) diet overlap among size groups was low. The high contribution in the diet during the fall and high caloric value of Pacific salmon eggs could increase growth and survival of this species in the Salmon River.

  12. Low levels of very-long-chain n-3 PUFA in Atlantic salmon (Salmo salar) diet reduce fish robustness under challenging conditions in sea cages.

    PubMed

    Bou, Marta; Berge, Gerd M; Baeverfjord, Grete; Sigholt, Trygve; Østbye, Tone-Kari; Ruyter, Bente

    2017-01-01

    The present study aimed to determine the minimum requirements of the essential n -3 fatty acids EPA and DHA in Atlantic salmon ( Salmo salar ) that can secure their health under challenging conditions in sea cages. Individually tagged Atlantic salmon were fed 2, 10 and 17 g/kg of EPA + DHA from 400 g until slaughter size (about 3·5 kg). The experimental fish reared in sea cages were subjected to the challenging conditions typically experienced under commercial production. Salmon receiving the lowest EPA + DHA levels showed lower growth rates in the earlier life stages, but no significant difference in final weights at slaughter. The fatty acid composition of various tissues and organs had remarkably changed. The decreased EPA + DHA in the different tissue membrane phospholipids were typically replaced by pro-inflammatory n -6 fatty acids, most markedly in the skin. The EPA + DHA levels were maintained at a higher level in the liver and erythrocytes than in the muscle, intestine and skin. After delousing at high water temperatures, the mortality rates were 63, 52 and 16 % in the salmon fed 2, 10 and 17 g/kg EPA + DHA. Low EPA + DHA levels also increased the liver, intestinal and visceral fat amount, reduced intervertebral space and caused mid-intestinal hyper-vacuolisation. Thus, 10 g/kg EPA + DHA in the Atlantic salmon diet, a level previously regarded as sufficient, was found to be too low to maintain fish health under demanding environmental conditions in sea cages.

  13. Atmospherically Deposited PBDEs, Pesticides, PCBs, and PAHs in Western US National Park Fish: Concentrations and Consumption Guidelines

    PubMed Central

    Ackerman, Luke K.; Schwindt, Adam R.; Simonich, Staci L.; Koch, Dan C.; Blett, Tamara F.; Schreck, Carl B.; Kent, Michael L.; Landers, Dixon H.

    2014-01-01

    Concentrations of polybrominated diphenyl ethers (PBDEs), pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons were measured in 136 fish from 14 remote lakes in 8 western US National Parks/Preserves between 2003 and 2005 and compared to human and wildlife contaminant health thresholds. A sensitive (median detection limit −18 pg/g wet weight), efficient (61% recovery at 8 ng/g), reproducible (4.1 %RSD), and accurate (7 % deviation from SRM) analytical method was developed and validated for these analyses. Concentrations of PCBs, hexachlorobenzene, hexachlorocyclohexanes, DDTs and chlordanes in western US fish were comparable to or lower than mountain fish recently collected from Europe, Canada, and Asia. Dieldrin and PBDE concentrations were higher than recent measurements in mountain fish and Pacific Ocean salmon. Concentrations of most contaminants in western US fish were 1–6 orders of magnitude below calculated recreational fishing contaminant health thresholds. However, contaminant concentrations exceeded subsistence fishing cancer screening values in 8 of 14 lakes. Average contaminant concentrations in fish exceeded wildlife contaminant health thresholds for piscivorous mammals in 5 lakes, and piscivorous birds in all 14 lakes. These results indicate that atmospherically deposited organic contaminants can accumulate in high elevation fish, reaching concentrations relevant to human and wildlife health. PMID:18504962

  14. 76 FR 65673 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    .... 101206604-1620-01] RIN 0648-BA55 Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery Management Plan AGENCY: National Marine Fisheries Service (NMFS), National... implement Amendment 16 to the Pacific Coast Salmon Fishery Management Plan for Commercial and Recreational...

  15. Habitat Suitability Index Models: Coho salmon

    USGS Publications Warehouse

    McMahon, Thomas E.

    1983-01-01

    The coho salmon (Oncorhynchus kisutch) is native to the northern Pacific Ocean, spawning and rearing in streams from Monterey Bay, California, to Point Hope, Alaska, and southward along the Asiatic coast to Japan. Its center of abundance in North America is from Oregon to Alaska (Briggs 1953; Godfrey 1965; Hart 1973; Scott and Crossman 1973). Coho salmon have been successfully introduced into the Great Lakes and reservoirs and lakes throughout the United States to provide put-and-grow sport fishing (Scott and Crossman 1973; Wigglesworth and Rawson 1974). No subspecies of coho salmon have been described (Godfrey 1965).

  16. Quantitative detection of astaxanthin and cantaxanthin in Atlantic salmon by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2006-02-01

    Two major carotenoids species found in salmonids muscle tissues are astaxanthin and cantaxanthin. They are taken up from fish food and are responsible for the attractive red-orange color of salmon filet. Since carotenoids are powerful antioxidants and biomarkers of nutrient consumption, they are thought to indicate fish health and resistance to diseases in fish farm environments. Therefore, a rapid, accurate, quantitative optical technique for measuring carotenoid content in salmon tissues is of economic interest. We demonstrate the possibility of using fast, selective, quantitative detection of astaxanthin and cantaxanthin in salmon muscle tissues, employing resonance Raman spectroscopy. Analyzing strong Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue laser excitation, we are able to characterize quantitatively the concentrations of carotenoids in salmon muscle tissue. To validate the technique, we compared Raman data with absorption measurements of carotenoid extracts in acetone. A close correspondence was observed in absorption spectra for tissue extract in acetone and a pure astaxanthin solution. Raman results show a linear dependence between Raman and absorption data. The proposed technique holds promise as a method of rapid screening of carotenoid levels in fish muscle tissues and may be attractive for the fish farm industry to assess the dietary status of salmon, risk for infective diseases, and product quality control.

  17. Use of glacier river-fed estuary channels by juvenile coho salmon: transitional or rearing habitats?

    USGS Publications Warehouse

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2014-01-01

    Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmonOncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.

  18. Fish allergy in atopic children.

    PubMed

    Peng, Y H; Shyur, S D; Chang, C L; Lai, C L; Chu, S H; Wu, W C; Wu, C Y

    2001-12-01

    The prevalence of fish allergy among 11 atopic children with elevated levels of specific immunoglobulin (Ig) E for cod was determined. None of the children had a history of fish allergy. All of the children had asthma and allergic rhinitis and 5 of them had also atopic dermatitis. The children underwent allergy skin tests (codfish, tuna, catfish, salmon, flounder, and bass), specific IgE tests (salmon, trout, tuna, eel, and mackerel), and food challenge tests. Skin tests in cod-specific IgE-positive children were positive for codfish in 4 children, tuna in 2, catfish in 2, salmon in 6, flounder in one, and bass in 2. Three children had elevated specific IgE for salmon, 5 for trout, 8 for tuna, 4 for eel, and 4 for mackerel. Oral fish challenge with 10 g of fish did not result in positive reaction in any of the children. In conclusion, a positive food challenge test provided the only definitive confirmation of fish allergy, whereas positive allergy skin tests or positive specific IgE tests were less reliable. Skin tests and in vitro specific IgE assays were not correlated with clinical symptoms of fish allergy, and the results of these 2 tests did not correlate with each other in this study.

  19. Behavior and movement of formerly landlocked juvenile coho salmon after release into the free-flowing Cowlitz River, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Henning, Julie A.; Liedtke, Theresa L.; Royer, Ida M.; Ekstrom, Brian K.; Rondorf, Dennis W.

    2011-01-01

    Formerly landlocked Coho Salmon (Oncorhynchus kisutch) juveniles (age 2) were monitored following release into the free-flowing Cowlitz River to determine if they remained in the river or resumed seaward migration. Juvenile Coho Salmon were tagged with a radio transmitter (30 fish) or Floy tag (1050 fish) and their behavior was monitored in the lower Cowlitz River. We found that 97% of the radio-tagged fish remained in the Cowlitz River beyond the juvenile outmigration period, and the number of fish dispersing downstream decreased with increasing distance from the release site. None of the tagged fish returned as spawning adults in the 2 y following release. We suspect that fish in our study failed to migrate because they exceeded a threshold in size, age, or physiological status. Tagged fish in our study primarily remained in the Cowlitz River, thus it is possible that these fish presented challenges to juvenile salmon migrating through the system either directly by predation or indirectly by competition for food or habitat. Given these findings, returning formerly landlocked Coho Salmon juveniles to the free-flowing river apparently provided no benefit to the anadromous population. These findings have management implications in locations where landlocked salmon have the potential to interact with anadromous species of concern.

  20. Survival of Juvenile Chinook Salmon during Barge Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Skalski, J. R.; Deters, Katherine A.

    2011-12-01

    To mitigate for fish losses related to passage through the Federal Columbia River Power System, an extensive fish transportation program using barges and trucks to move fish around and downstream of dams and reservoirs was implemented in 1981. Population modeling and other analyses to support Pacific salmon recovery efforts have assumed that the survival of juvenile salmonids during the transportation experience was 98%. To estimate survival during barge transport from Lower Granite Dam on the Snake River to a release area downstream of Bonneville Dam, a distance of 470 km, we used a novel adaptation of a release-recapture model withmore » acoustic-tagged yearling Chinook salmon (Oncorhynchus tshawytscha) smolts. A total of 1,494 yearling Chinook salmon were surgically implanted with Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic transmitters and passive integrated transponders (PIT) and divided into three groups. The three tagged groups consisted of; (1) a group which was released into the raceway with the population of fish which were later loaded into transportation barges (R{sub B}), (2) a group which was held in a net-pen suspended within the general barge population until 5-6 h prior to barge evacuation, at which time they were confirmed to be alive and then released into the general barge population (R{sub A}), and (3) to validate a model assumption, a group which was euthanized and released into the barge population 2-8 h prior to barge evacuation (R{sub D}). Six replicates of these groups were loaded onto fish transport barges that departed Lower Granite Dam on the Snake River between 29 April and 13 May, 2010. Acoustic receiver arrays between 70 and 220 km downstream of the barge evacuation site were used to detect tagged fish and served as the basis for estimation of survival within the barge. Tag-life-corrected estimates of reach survival were calculated for barged and control fish in each of the six replicate trials. The ratio of survival

  1. Pen rearing and imprinting of fall Chinook salmon

    USGS Publications Warehouse

    Beeman, J.W.; Novotny, J.F.

    1994-01-01

    Results of rearing upriver bright fall chinook salmon juveniles in net pens and a barrier net enclosure in two backwater areas and a pond along the Columbia River were compared with traditional hatchery methods. Growth, smoltification, and general condition of pen-reared fish receiving supplemental feeding were better than those of fish reared using traditional methods. Juvenile fish receiving no supplemental feeding were generally in poor condition resulting in a net loss of production. Rearing costs using pens were generally lower than in the hatchery. However, low adult returns resulted in greater cost per adult recovery than fish reared and released using traditional methods. Much of the differences in recovery rates may have been due to differences in rearing locations, as study sites were as much as 128 mi upstream from the hatcheries and study fish may have incurred higher mortality associated with downstream migration than control fish. Fish reared using these methods could be a cost-effective method of enhancing salmon production in the Columbia River Basin.

  2. Preserving Salmon Byproducts through Smoke-Processing Prior to Ensilage

    USDA-ARS?s Scientific Manuscript database

    Salmon is an important fishery in Alaska and accounts for about 9% of the annual catch. Processing these fish results in valuable byproducts that contain oils with high concentrations of long-chain n-3 polyunsaturated fatty acids (PUFA). Previous research demonstrated that when discarded salmon head...

  3. The interaction between water currents and salmon swimming behaviour in sea cages.

    PubMed

    Johansson, David; Laursen, Frida; Fernö, Anders; Fosseidengen, Jan Erik; Klebert, Pascal; Stien, Lars Helge; Vågseth, Tone; Oppedal, Frode

    2014-01-01

    Positioning of sea cages at sites with high water current velocities expose the fish to a largely unknown environmental challenge. In this study we observed the swimming behaviour of Atlantic salmon (Salmo salar L.) at a commercial farm with tidal currents altering between low, moderate and high velocities. At high current velocities the salmon switched from the traditional circular polarized group structure, seen at low and moderate current velocities, to a group structure where all fish kept stations at fixed positions swimming against the current. This type of group behaviour has not been described in sea cages previously. The structural changes could be explained by a preferred swimming speed of salmon spatially restricted in a cage in combination with a behavioural plasticity of the fish.

  4. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffnagle, Timothy L.; Hair, Don; Carmichael, Richard W.

    2004-07-01

    BPA Fish and Wildlife Program Project Number 1998-01-001 provides funding for the Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program. This report satisfies the requirement that an annual report be submitted for FY 2003. The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, these fish are spawned (within stocks) and their progeny reared to smoltification before being released into themore » natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation. This report covers activities conducted and provides data analyses for the Grande Ronde Spring Chinook Salmon Captive broodstock Program from 1 January--31 December 2003. Since the fiscal year ends in the middle of the spawning period, an annual report based on calendar year is more logical. This document is the FY 2003 annual report. Detailed information on historic and present population status, project background, goals and objectives, significance to regional programs and relationships to other programs, methods and previous results are available in the 1995-2002 Project Status Report (Hoffnagle et al 2003).« less

  5. Formation of polybrominated dibenzofurans (PBDFs) after heating of a salmon sample spiked with decabromodiphenyl ether (BDE-209).

    PubMed

    Vetter, Walter; Bendig, Paul; Blumenstein, Marina; Hägele, Florian; Behnisch, Peter A; Brouwer, Abraham

    2015-10-01

    Fish is a major source for the intake of polybrominated diphenyl ethers (PBDEs). However, fish is scarcely consumed without being cooked, and previous studies showed that the heating of salmon fillet contaminated with BDE-209 for longer periods of time was accompanied with the partial transformation of this brominated flame retardant. In this study, we heated salmon fillet spiked with BDE-209 and verified that this process was linked with the formation of polybrominated dibenzofurans (PBDFs) in the fish. Each minute of heating 1 g salmon fillet spiked with 200 ng BDE-209 generated about 0.5 ‰ PBDFs relative to the initial amount of the pre-dioxin BDE-209. This result of the chemical analysis by gas chromatography with mass spectrometry (GC/MS) was verified by means of an effect-directed bio-assay (DR CALUX). While unheated salmon with BDE-209 and heated salmon without BDE-209 were tested nontoxic, the bioanalytical response of fish linearly increased upon heating. We also found that PBDF formation did neither occur with BDE-47 nor when BDE-209 was heated in edible oil instead of salmon fillet. Due to the formation of PBDFs in this process, the consumption of heated, BDE-209 contaminated fish may add to the uptake of dioxin-like compounds with our diet.

  6. Dynamic in-lake spawning migrations by female sockeye salmon

    USGS Publications Warehouse

    Young, Daniel B.; Woody, C.A.

    2007-01-01

    Precise homing by salmon to natal habitats is considered the primary mechanism in the evolution of population-specific traits, yet few studies have focused on this final phase of their spawning migration. We radio tagged 157 female sockeye salmon (Oncorhynchus nerka) as they entered Lake Clark, Alaska, and tracked them every 1-10 days to their spawning locations. Contrary to past research, no specific shoreline migration pattern was observed (e.g., clockwise) nor did fish enter a tributary unless they spawned in that tributary. Tributary spawning fish migrated faster (mean = 4.7 km??day-1, SD = 2.7, vs. 1.6 km??day-1, SD = 2.1) and more directly (mean linearity = 0.8, SD = 0.2, vs. 0.4, SD = 0.2) than Lake Clark beach spawning fish. Although radio-tagged salmon migrated to within 5 km of their final spawning location in an average of 21.2 days (SD = 13.2), some fish migrated five times the distance necessary and over 50 days to reach their spawning destination. These results demonstrate the dynamic nature of this final phase of migration and support studies indicating a higher degree of homing precision by tributary spawning fish. ?? Journal compilation 2007 Blackwell Munksgaard No claim to original US government works.

  7. Genetic assessment of a summer chum salmon metapopulation in recovery

    PubMed Central

    Small, Maureen P; Johnson, Thom H; Bowman, Cherril; Martinez, Edith

    2014-01-01

    Programs to rebuild imperiled wild fish populations often include hatchery-born fish derived from wild populations to supplement natural spawner abundance. These programs require monitoring to determine their demographic, biological, and genetic effects. In 1990s in Washington State, the Summer Chum Salmon Conservation Initiative developed a recovery program for the threatened Hood Canal summer chum salmon Evolutionarily Significant Unit (ESU) (the metapopulation) that used in-river spawners (wild fish) for each respective supplementation broodstock in six tributaries. Returning spawners (wild-born and hatchery-born) composed subsequent broodstocks, and tributary-specific supplementation was limited to three generations. We assessed impacts of the programs on neutral genetic diversity in this metapopulation using 16 microsatellite loci and a thirty-year dataset spanning before and after supplementation, roughly eight generations. Following supplementation, differentiation among subpopulations decreased (but not significantly) and isolation by distance patterns remained unchanged. There was no decline in genetic diversity in wild-born fish, but hatchery-born fish sampled in the same spawning areas had significantly lower genetic diversity and unequal family representation. Despite potential for negative effects from supplementation programs, few were detected in wild-born fish. We hypothesize that chum salmon natural history makes them less vulnerable to negative impacts from hatchery supplementation. PMID:24567747

  8. A critical assessment of the ecological assumptions underpinning compensatory mitigation of salmon-derived nutrients

    USGS Publications Warehouse

    Collins, Scott F.; Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.

    2015-01-01

    We critically evaluate some of the key ecological assumptions underpinning the use of nutrient replacement as a means of recovering salmon populations and a range of other organisms thought to be linked to productive salmon runs. These assumptions include: (1) nutrient mitigation mimics the ecological roles of salmon, (2) mitigation is needed to replace salmon-derived nutrients and stimulate primary and invertebrate production in streams, and (3) food resources in rearing habitats limit populations of salmon and resident fishes. First, we call into question assumption one because an array of evidence points to the multi-faceted role played by spawning salmon, including disturbance via redd-building, nutrient recycling by live fish, and consumption by terrestrial consumers. Second, we show that assumption two may require qualification based upon a more complete understanding of nutrient cycling and productivity in streams. Third, we evaluate the empirical evidence supporting food limitation of fish populations and conclude it has been only weakly tested. On the basis of this assessment, we urge caution in the application of nutrient mitigation as a management tool. Although applications of nutrients and other materials intended to mitigate for lost or diminished runs of Pacific salmon may trigger ecological responses within treated ecosystems, contributions of these activities toward actual mitigation may be limited.

  9. Effects of genotype and dietary fish oil replacement with vegetable oil on the intestinal transcriptome and proteome of Atlantic salmon (Salmo salar)

    PubMed Central

    2012-01-01

    Background Expansion of aquaculture requires alternative feeds and breeding strategies to reduce dependency on fish oil (FO) and better utilization of dietary vegetable oil (VO). Despite the central role of intestine in maintaining body homeostasis and health, its molecular response to replacement of dietary FO by VO has been little investigated. This study employed transcriptomic and proteomic analyses to study effects of dietary VO in two family groups of Atlantic salmon selected for flesh lipid content, 'Lean' or 'Fat'. Results Metabolism, particularly of lipid and energy, was the functional category most affected by diet. Important effects were also measured in ribosomal proteins and signalling. The long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis pathway, assessed by fatty acid composition and gene expression, was influenced by genotype. Intestinal tissue contents of docosahexaenoic acid were equivalent in Lean salmon fed either a FO or VO diet and expression of LC-PUFA biosynthesis genes was up-regulated in VO-fed fish in Fat salmon. Dietary VO increased lipogenesis in Lean fish, assessed by expression of FAS, while no effect was observed on β-oxidation although transcripts of the mitochondrial respiratory chain were down-regulated, suggesting less active energetic metabolism in fish fed VO. In contrast, dietary VO up-regulated genes and proteins involved in detoxification, antioxidant defence and apoptosis, which could be associated with higher levels of polycyclic aromatic hydrocarbons in this diet. Regarding genotype, the following pathways were identified as being differentially affected: proteasomal proteolysis, response to oxidative and cellular stress (xenobiotic and oxidant metabolism and heat shock proteins), apoptosis and structural proteins particularly associated with tissue contractile properties. Genotype effects were accentuated by dietary VO. Conclusions Intestinal metabolism was affected by diet and genotype. Lean fish may have

  10. Atmospherically deposited PBDEs, pesticides, PCBs, and PAHs in western U.S. National Park fish: Concentrations and consumption guidelines

    USGS Publications Warehouse

    Ackerman, L.K.; Schwindt, A.R.; Simonich, S.L.M.; Koch, D.C.; Blett, T.F.; Schreck, C.B.; Kent, M.L.; Landers, D.H.

    2008-01-01

    Concentrations of polybrominated diphenyl ethers (PBDEs), pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons were measured in 136 fish from 14 remote lakes in 8 western U.S. National Parks/Preserves between 2003 and 2005 and compared to human and wildlife contaminant health thresholds. A sensitive (median detection limit, -18 pg/g wet weight), efficient (61% recovery at 8 ng/g), reproducible (4.1% relative standard deviation (RSD)), and accurate (7% deviation from standard reference material (SRM)) analytical method was developed and validated for these analyses. Concentrations of PCBs, hexachlorobenzene, hexachlorocyclohexanes, DDTs, and chlordanes in western U.S. fish were comparable to or lower than mountain fish recently collected from Europe, Canada, and Asia. Dieldrin and PBDE concentrations were higher than recent measurements in mountain fish and Pacific Ocean salmon. Concentrations of most contaminants in western U.S. fish were 1-6 orders of magnitude below calculated recreational fishing contaminant health thresholds. However, lake average contaminant concentrations in fish exceeded subsistence fishing cancer thresholds in 8 of 14 lakes and wildlife contaminant health thresholds for piscivorous birds in 1of 14 lakes. These results indicate that atmospherically deposited organic contaminants can accumulate in high elevation fish, reaching concentrations relevant to human and wildlife health. ?? 2008 American Chemical Society.

  11. Investigations into the Early History of Naturally Produced Spring Chinook Salmon in the Grand Ronde Basin : Fish Research Project Oregon : Annual Progress Report Project Period September 1, 1996 to August 31, 1997.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johasson, Brian C.; Tranquilli, J. Vincent; Keefe, MaryLouise

    1998-10-28

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving uppermore » rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in

  12. Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon.

    PubMed

    Putman, Nathan F; Lohmann, Kenneth J; Putman, Emily M; Quinn, Thomas P; Klimley, A Peter; Noakes, David L G

    2013-02-18

    In the final phase of their spawning migration, Pacific salmon use chemical cues to identify their home river, but how they navigate from the open ocean to the correct coastal area has remained enigmatic. To test the hypothesis that salmon imprint on the magnetic field that exists where they first enter the sea and later seek the same field upon return, we analyzed a 56-year fisheries data set on Fraser River sockeye salmon, which must detour around Vancouver Island to approach the river through either a northern or southern passageway. We found that the proportion of salmon using each route was predicted by geomagnetic field drift: the more the field at a passage entrance diverged from the field at the river mouth, the fewer fish used the passage. We also found that more fish used the northern passage in years with warmer sea surface temperature (presumably because fish were constrained to more northern latitudes). Field drift accounted for 16% of the variation in migratory route used, temperature 22%, and the interaction between these variables 28%. These results provide the first empirical evidence of geomagnetic imprinting in any species and imply that forecasting salmon movements is possible using geomagnetic models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada

    PubMed Central

    2017-01-01

    The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37–45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012–2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction. PMID:29236731

  14. The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada.

    PubMed

    Morton, Alexandra; Routledge, Richard; Hrushowy, Stacey; Kibenge, Molly; Kibenge, Frederick

    2017-01-01

    The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37-45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012-2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction.

  15. Lower Columbia River Salmon Business Plan for Terminal Fisheries : Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon For All

    1996-07-01

    Salmon fishing in the Northwest requires a public-private partnership. The public through its decision-makers, agencies, and laws states it will do all that is necessary to protect and preserve the valuable salmon resource. Yet, the public side of the partnership is broken. The Columbia River salmon fishing industry, with over 140 years of documented history, is at a crossroads. This report explores a variety of issues, concerns, and ideas related to terminal fishery development. In some cases recommendations are made. In addition, options are explored with an understanding that those designated as decision-makers must make decisions following considerable discussion andmore » reflection.« less

  16. Congener Patterns of Persistent Organic Pollutants Establish the Extent of Contaminant Biotransport by Pacific Salmon in the Great Lakes.

    PubMed

    Gerig, Brandon S; Chaloner, Dominic T; Janetski, David J; Rediske, Richard R; O'Keefe, James P; Moerke, Ashley H; Lamberti, Gary A

    2016-01-19

    In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.

  17. Bypass system modification at Bonneville Dam on the Columbia River improved the survival of juvenile salmon

    USGS Publications Warehouse

    Ferguson, J.W.; Sandford, B.P.; Reagan, R.E.; Gilbreath, L.G.; Meyer, E.B.; Ledgerwood, R.D.; Adams, N.S.

    2007-01-01

    From 1987 to 1992, we evaluated a fish bypass system at Bonneville Dam Powerhouse 2 on the Columbia River. The survival of subyearling Chinook salmon Oncorhynchus tshawytscha released into the system ranged from 0.774 to 0.911 and was significantly lower than the survival of test fish released into turbines and the area immediately below the powerhouse where bypass system flow reentered the river. Yearling and subyearling Chinook salmon and yearling coho salmon O. kisutch released into the bypass system were injured or descaled. Also, levels of blood plasma cortisol and lactate were significantly higher in yearling and subyearling Chinook salmon that passed through the bypass system than in fish released directly into a net located over the bypass exit. This original system was then extensively modified using updated design criteria, and the site where juvenile fish reentered the river was relocated 2.8 km further downstream to reduce predation on bypassed fish by northern pikeminnow Ptychocheilus oregonensis. Based on studies conducted from 1999 to 2001, the new bypass system resulted in high fish survival, virtually no injuries to fish, fish passage times that were generally similar to water travel times, and mild stress responses from which fish recovered quickly. The mean estimated survival of subyearling Chinook salmon passing through the new bypass system was 0.946 in 2001, which was an usually low-flow year. Survival, physical condition, passage timing, and blood physiological indicators of stress were all useful metrics for assessing the performance of both bypass systems and are discussed. The engineering and hydraulic criteria used to design the new bypass system that resulted in improved fish passage conditions are described.

  18. Modeling the Transmission of Piscirickettsia salmonis in Farmed Salmon

    NASA Astrophysics Data System (ADS)

    Cisternas, Jaime; Moreno, Adolfo

    2007-05-01

    Farming Atlantic salmon is an economic activity of growing relevance in the southern regions of Chile. The need to increase efficiency and reach production goals, as well as restrictions on the use of water resources, had led in recent years to certain practices that proved prone to bacterial infections among the fish. Our study focuses on the impact of rickettsial bacteria in farmed salmon, and the possibility of controlling its incidence once it is established along the salmon life cicle. We used compartmental models to separate fish in their maturation stages and health status. The mathematical analysis will involve differential equations with and without delays, and linear stability principles. Our goal was to build a simple model that explains the basic mechanisms at work and provides predictions on the outcome of different control strategies.

  19. Fish availability in supermarkets and fish markets in New Jersey.

    PubMed

    Burger, Joanna; Stern, Alan H; Dixon, Carline; Jeitner, Christopher; Shukla, Sheila; Burke, Sean; Gochfeld, Michael

    2004-10-15

    There is considerable interest in fish consumption, contaminant loads in edible fish, and the risk from consuming fish. Both the benefits and the risks from eating fish are publicized. Most of this attention has focused on recreational anglers and self-caught fish, although the vast majority of fish that people eat are purchased from commercial sources: fish markets and supermarkets. We examined the availability of fish in supermarkets and specialty fish markets in New Jersey, including three regions of the state in communities with high and low per capita incomes (upscale vs. downscale neighborhoods). We were particularly interested in examining whether consumers could determine what type of fish they were buying and whether it was farm-raised or wild. Flounder and salmon were the most commonly available fish, followed by bluefish and tilapia. There were few significant differences in the availability of fish as a function of region. Fish were equally available in fish markets and supermarkets, although snappers were more available in fish markets. The most common fish (found in over 60% of stores) were equally available in upscale and downscale neighborhood stores. However, there were some significant differences in less common fish; butterfish, croaker, monkfish, porgy, and whiting were more available in downscale markets, and halibut, sole, and swordfish were more available in upscale markets. Information available to consumers on labels varied markedly: (1) most labels were generic but some indicated species (e.g., Spanish vs. Boston mackerel, Chilean vs. Black sea bass, mako vs. black-tip shark, rainbow vs. steelhead trout); (2) in many cases, labels indicated whether catfish or salmon were farmed or wild, but usually that information was lacking; (3) sometimes, the labels indicated the location where fish were caught (salmon); and (4) sometimes, there was information on both species and type (e.g., farm/wild for salmon). In most cases, labels gave only a

  20. Competition between Asian pink salmon (Oncorhynchus gorbuscha) and Alaskan sockeye salmon (O. nerka) in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Zimmermann, M.; Myers, K.W.; Nielsen, J.L.; Rogers, D.E.

    2003-01-01

    The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd-numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd-year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977-97 indicated that smolts entering the ocean during even-numbered years and interacting with abundant odd-year pink salmon during the following year experienced 26% (age-2 smolt) to 45% (age-1 smolt) lower survival compared with smolts migrating during odd-numbered years. Adult sockeye salmon returning to Bristol Bay from even-year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd-year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.

  1. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  2. Injury and mortality of juvenile salmon entrained in a submerged jet entering still water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

    Juvenile salmon can be injured and killed when they pass through hydroelectric turbines and other downstream passage alternatives. The hydraulic conditions in these complex environments that pose a risk to the health of fish include turbulent shear flows, collisions with hydraulic structures, cavitation, and rapid change of pressure. Improvements in the understating of the biological responses of juvenile salmon in turbulent shear flows can reduce salmon injury and mortality. In a series of studies, juvenile fall Chinook salmon (Oncorhynchus tshawythscha) were exposed to turbulent shear flows in two mechanisms: 1) the slow-fish-to-fast-water mechanism, where test fish were introduced into amore » turbulent jet from slow-moving water through an introduction tube placed just outside the edge of the jet; 2) the fast-fish-to-slow-water mechanism, where test fish were carried by the fast-moving water of a submerged turbulent jet into the slow-moving water of a flume. All fish exposures to the water jet were recorded by two high-speed, high-resolution cameras. Motion-tracking analysis was then performed on the digital videos to quantify associated kinematic and dynamic parameters. The main results for the slow-fish-to-fast-water mechanism were described in Deng et al (2005). This chapter will discuss the test results of the fast-fish-to-slow-water mechanism and compare the results of the two mechanisms.« less

  3. Novel air-based system transfers large salmon during harvest

    USDA-ARS?s Scientific Manuscript database

    In April of 2015, near the end of our last harvest of 4-6 kg Atlantic salmon, we evaluated an exciting new fish transport technology from Whooshh Innovations (Bellevue, WA) that uses air to move live Atlantic salmon from our growout tank to a finishing/purging tank. The Whooshh system uses a combina...

  4. Prevalence of piscine orthoreovirus and salmonid alphavirus in sea-caught returning adult Atlantic salmon (Salmo salar L.) in northern Norway.

    PubMed

    Madhun, A S; Isachsen, C H; Omdal, L M; Einen, A C B; Maehle, S; Wennevik, V; Niemelä, E; Svåsand, T; Karlsbakk, E

    2018-05-01

    Heart and skeletal muscle inflammation (HSMI) caused by piscine orthoreovirus (PRV) and pancreas disease (PD) caused by salmonid alphavirus (SAV) are among the most prevalent viral diseases of Atlantic salmon farmed in Norway. There are limited data about the impact of disease in farmed salmon on wild salmon populations. Therefore, the prevalence of PRV and SAV in returning salmon caught in six sea sites was determined using real-time RT-PCR analyses. Of 419 salmon tested, 15.8% tested positive for PRV, while none were positive for SAV. However, scale reading revealed that 10% of the salmon had escaped from farms. The prevalence of PRV in wild salmon (8%) was significantly lower than in farm escapees (86%), and increased with fish length (proxy for age). Sequencing of the S1 gene of PRV from 39 infected fish revealed a mix of genotypes. The observed increase in PRV prevalence with fish age and the lack of phylogeographic structure of the virus could be explained by virus transmission in the feeding areas. Our results highlight the need for studies about the prevalence of PRV and other pathogens in Atlantic salmon in its oceanic phase. © 2018 The Authors. Journal of Fish Diseases Published by John Wiley & Sons Ltd.

  5. 26 CFR 31.3306(c)(17)-1 - Fishing services.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 15 2013-04-01 2013-04-01 false Fishing services. 31.3306(c)(17)-1 Section 31... Fishing services. (a) In general. Subject to the limitations prescribed in paragraphs (b) and (c) of this...) Salmon and halibut fishing. Services performed in connection with the catching or taking of salmon or...

  6. 26 CFR 31.3306(c)(17)-1 - Fishing services.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 15 2012-04-01 2012-04-01 false Fishing services. 31.3306(c)(17)-1 Section 31... Fishing services. (a) In general. Subject to the limitations prescribed in paragraphs (b) and (c) of this...) Salmon and halibut fishing. Services performed in connection with the catching or taking of salmon or...

  7. 26 CFR 31.3306(c)(17)-1 - Fishing services.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 15 2014-04-01 2014-04-01 false Fishing services. 31.3306(c)(17)-1 Section 31... Fishing services. (a) In general. Subject to the limitations prescribed in paragraphs (b) and (c) of this...) Salmon and halibut fishing. Services performed in connection with the catching or taking of salmon or...

  8. An oil containing EPA and DHA from transgenic Camelina sativa to replace marine fish oil in feeds for Atlantic salmon (Salmo salar L.): Effects on intestinal transcriptome, histology, tissue fatty acid profiles and plasma biochemistry

    PubMed Central

    Betancor, Mónica B.; Li, Keshuai; Sprague, Matthew; Bardal, Tora; Sayanova, Olga; Usher, Sarah; Han, Lihua; Måsøval, Kjell; Torrissen, Ole; Napier, Johnathan A.; Tocher, Douglas R.; Olsen, Rolf Erik

    2017-01-01

    New de novo sources of omega 3 (n-3) long chain polyunsaturated fatty acids (LC-PUFA) are required as alternatives to fish oil in aquafeeds in order to maintain adequate levels of the beneficial fatty acids, eicosapentaenoic and docosahexaenoic (EPA and DHA, respectively). The present study investigated the use of an EPA+DHA oil derived from transgenic Camelina sativa in Atlantic salmon (Salmo salar) feeds containing low levels of fishmeal (35%) and fish oil (10%), reflecting current commercial formulations, to determine the impacts on tissue fatty acid profile, intestinal transcriptome, and health of farmed salmon. Post-smolt Atlantic salmon were fed for 12-weeks with one of three experimental diets containing either a blend of fish oil/rapeseed oil (FO), wild-type camelina oil (WCO) or transgenic camelina oil (DCO) as added lipid source. The DCO diet did not affect any of the fish performance or health parameters studied. Analyses of the mid and hindgut transcriptomes showed only mild effects on metabolism. Flesh of fish fed the DCO diet accumulated almost double the amount of n-3 LC-PUFA than fish fed the FO or WCO diets, indicating that these oils from transgenic oilseeds offer the opportunity to increase the n-3 LC-PUFA in farmed fish to levels comparable to those found a decade ago. PMID:28403232

  9. An oil containing EPA and DHA from transgenic Camelina sativa to replace marine fish oil in feeds for Atlantic salmon (Salmo salar L.): Effects on intestinal transcriptome, histology, tissue fatty acid profiles and plasma biochemistry.

    PubMed

    Betancor, Mónica B; Li, Keshuai; Sprague, Matthew; Bardal, Tora; Sayanova, Olga; Usher, Sarah; Han, Lihua; Måsøval, Kjell; Torrissen, Ole; Napier, Johnathan A; Tocher, Douglas R; Olsen, Rolf Erik

    2017-01-01

    New de novo sources of omega 3 (n-3) long chain polyunsaturated fatty acids (LC-PUFA) are required as alternatives to fish oil in aquafeeds in order to maintain adequate levels of the beneficial fatty acids, eicosapentaenoic and docosahexaenoic (EPA and DHA, respectively). The present study investigated the use of an EPA+DHA oil derived from transgenic Camelina sativa in Atlantic salmon (Salmo salar) feeds containing low levels of fishmeal (35%) and fish oil (10%), reflecting current commercial formulations, to determine the impacts on tissue fatty acid profile, intestinal transcriptome, and health of farmed salmon. Post-smolt Atlantic salmon were fed for 12-weeks with one of three experimental diets containing either a blend of fish oil/rapeseed oil (FO), wild-type camelina oil (WCO) or transgenic camelina oil (DCO) as added lipid source. The DCO diet did not affect any of the fish performance or health parameters studied. Analyses of the mid and hindgut transcriptomes showed only mild effects on metabolism. Flesh of fish fed the DCO diet accumulated almost double the amount of n-3 LC-PUFA than fish fed the FO or WCO diets, indicating that these oils from transgenic oilseeds offer the opportunity to increase the n-3 LC-PUFA in farmed fish to levels comparable to those found a decade ago.

  10. Effects of host migration, diversity and aquaculture on sea lice threats to Pacific salmon populations.

    PubMed

    Krkosek, Martin; Gottesfeld, Allen; Proctor, Bart; Rolston, Dave; Carr-Harris, Charmaine; Lewis, Mark A

    2007-12-22

    Animal migrations can affect disease dynamics. One consequence of migration common to marine fish and invertebrates is migratory allopatry-a period of spatial separation between adult and juvenile hosts, which is caused by host migration and which prevents parasite transmission from adult to juvenile hosts. We studied this characteristic for sea lice (Lepeophtheirus salmonis and Caligus clemensi) and pink salmon (Oncorhynchus gorbuscha) from one of the Canada's largest salmon stocks. Migratory allopatry protects juvenile salmon from L. salmonis for two to three months of early marine life (2-3% prevalence). In contrast, host diversity facilitates access for C. clemensi to juvenile salmon (8-20% prevalence) but infections appear ephemeral. Aquaculture can augment host abundance and diversity and increase parasite exposure of wild juvenile fish. An empirically parametrized model shows high sensitivity of salmon populations to increased L. salmonis exposure, predicting population collapse at one to five motile L. salmonis per juvenile pink salmon. These results characterize parasite threats of salmon aquaculture to wild salmon populations and show how host migration and diversity are important factors affecting parasite transmission in the oceans.

  11. Atlantic salmon breeding program at the National Cold Water Marine Aquaculture Center

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, ME has been supporting the U.S. coldwater marine aquaculture industry for the past thirteen years by developing a genetically improved North American Atlantic salmon. The St. John's River stock was chosen as the focal ...

  12. An immune-complex glomerulonephritis of Chinook salmon, Oncorhynchus tshawytscha (Walbaum).

    PubMed

    Lumsden, J S; Russell, S; Huber, P; Wybourne, B A; Ostland, V E; Minamikawa, M; Ferguson, H W

    2008-12-01

    Chinook salmon from New Zealand were shown to have a generalized membranous glomerulonephritis that was most severe in large fish. Marked thickening of the glomerular basement membrane was the most consistent lesion, with the presence of an electron-dense deposit beneath the capillary endothelium.Severely affected glomeruli also had expansion of the mesangium and loss of capillaries,synechiae of the visceral and parietal epithelium and mild fibrosis of Bowmans capsule. Chinook salmon from British Columbia, Canada with bacterial kidney disease caused by Renibacterium salmoninarum had similar histological lesions. They also had thickened glomerular basement membranes that were recognized by rabbit antiserum to rainbow trout immunoglobulin. This was true only when frozen sections of kidney were used and not formalin-fixed tissue. An attempt to experimentally produce a glomerulopathy in rainbow trout by repeated immunization with killed R. salmoninarum was not successful. Case records from the Fish Pathology Laboratory at the University of Guelph over a 10-year period revealed that a range of species were diagnosed with glomerulopathies similar to those seen in Chinook salmon. The majority of these cases were determined to have chronic inflammatory disease. This report has identified the presence of immunoglobulin within thickened basement membranes of Chinook salmon with glomerulonephritis and supports the existence of type III hypersensitivity in fish.

  13. Redfish Lake Sockeye Salmon Captive Broodstock Rearing and Research, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, Deborah; McAuley, W.; Maynard, Desmond

    2003-04-01

    The National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center, in cooperation with the Idaho Department of Fish and Game and the Bonneville Power Administration, has established captive broodstock programs to aid recovery of Snake River sockeye salmon (Oncorhynchus nerka) listed as endangered under the U.S. Endangered Species Act (ESA). Captive broodstock and captive rearing programs are a form of artificial propagation that are emerging as an important component of restoration efforts for ESA-listed salmon populations that are at critically low numbers. Captive broodstocks, reared in captivity for the entire life cycle, couple the salmon's high fecundity with potentially highmore » survival in protective culture to produce large numbers of juveniles in a single generation for supplementation of natural populations. The captive broodstocks discussed in this report were intended to protect the last known remnants of sockeye salmon that return to Redfish Lake in the Sawtooth Basin of Idaho at the headwaters of the Salmon River. This report addresses NMFS activities from 1 September 2001 to 31 August 2002 on the Redfish Lake sockeye salmon captive broodstock and captive rearing program. NMFS currently has broodstocks in culture from year classes 1997, 1998, 1999, 2000, and 2001 in both the captive breeding and captive rearing programs. Offspring from these programs are being returned to Idaho to aid recovery efforts for the species.« less

  14. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review ofmore » the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood

  15. Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha)

    PubMed Central

    Bett, Nolan N.; Hinch, Scott G.; Dittman, Andrew H.; Yun, Sang-Seon

    2016-01-01

    Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST. PMID:27827382

  16. Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha).

    PubMed

    Bett, Nolan N; Hinch, Scott G; Dittman, Andrew H; Yun, Sang-Seon

    2016-11-09

    Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST.

  17. Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Carlson, Thomas J.; Gingerich, Andrew J.

    A proportion of juvenile Chinook salmon and other salmonids travel through one or more turbines during seaward migration in the Columbia and Snake River every year. Despite this understanding, limited information exists on how these fish respond to hydraulic pressures found during turbine passage events. In this study we exposed juvenile Chinook salmon to varied acclimation pressures and subsequent exposure pressures (nadir) to mimic the hydraulic pressures of large Kaplan turbines (ratio of pressure change). Additionally, we varied abiotic (total dissolved gas, rate of pressure change) and biotic (condition factor, fish length, fish weight) factors that may contribute to themore » incidence of mortal injury associated with fish passing through hydro-turbines. We determined that the main factor associated with mortal injury of juvenile Chinook salmon during simulated turbine passage was the ratio between acclimation and nadir pressures. Condition factor, total dissolved gas, and the rate of pressure change were found to only slightly increase the predictive power of equations relating probability of mortal injury to conditions of exposure or characteristics of test fish during simulated turbine passage. This research will assist engineers and fisheries managers in operating and improving hydroelectric facility efficiency while minimizing mortality and injury of turbine-passed juvenile Chinook salmon. The results are discussed in the context of turbine development and the necessity of understanding how different species of fish will respond to the hydraulic pressures of turbine passage.« less

  18. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix C: Anadromous Fish and Juvenile Fish Transportation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Columbia River System Operation Review

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.

  19. Yukon River King Salmon - Ichthyophonus Pilot Study

    USGS Publications Warehouse

    Kocan, R.M.; Hershberger, P.K.

    2001-01-01

    A method for non-lethal sampling of adult spawning Chinook salmon for Ichthyophonus was developed using known infected fish and live returning spawners. The method consisted of taking punch biopsies of skin and muscle and culturing the biopsy tissue in vitro. A 100% correlation was made between known infected fish and cultured biopsy tissue. 

  20. Disease resistance is related to inherent swimming performance in Atlantic salmon

    PubMed Central

    2013-01-01

    Background Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon. Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs. Results An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish. Conclusions This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish. PMID:23336751

  1. Disease resistance is related to inherent swimming performance in Atlantic salmon.

    PubMed

    Castro, Vicente; Grisdale-Helland, Barbara; Jørgensen, Sven M; Helgerud, Jan; Claireaux, Guy; Farrell, Anthony P; Krasnov, Aleksei; Helland, Ståle J; Takle, Harald

    2013-01-21

    Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon.Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs. An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish. This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish.

  2. 77 FR 75611 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... Chinook salmon population as hatchery-origin fish return to spawn naturally with wild fish and new habitat... take prohibitions for actions conducted under Limit 6 of the ESA 4(d) Rule for salmon and steelhead... salmon and steelhead in the Elwha River of Washington state. This document serves to notify the public...

  3. Columbia River Fishes of the Lewis and Clark Expedition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauble, Dennis D.

    2007-06-21

    The Lewis and Clark expedition crossed the Continental Divide in 1805 on the way west to the Pacific Ocean. Based on journal entries, members of the expedition probably encountered two species of resident salmonids and four of the six species of anadromous salmonids and steelhead (Family Salmonidae, genus Oncorhynchus). The salmonid species were called common salmon (now known as Chinook salmon O. tshawytscha), red char (sockeye salmon O.nerka) white salmon trout (coho salmon [also known as silver salmon] O. kisutch), salmon trout (steelhead O. mykiss), and spotted trout (cutthroat trout O. clarkii). There was no evidence of the expedition encounteringmore » pink salmon O. gorbuscha, chum salmon O. keta, or species of true char Salvelinus spp. Common fishes procured from Indian tribes living along the lower Columbia River included eulachon Thaleichthys pacificus and white sturgeon Acipenser transmontanus. The identity of three additional resident freshwater species is questionable. Available descriptions suggest that what they called mullet were largescale sucker Catastomus macrocheilus, and that chubb were peamouth Mylocheilus caurinus. The third questionable fish, which they called bottlenose, was probably mountain whitefish Prosopium williamsoni, although there is no evidence that the species was observed in the Columbia River drainage. Missing from the species list were more than 20 other fishes known to Sahaptin-speaking people from the mid-Columbia region. More complete documentation of the icthyofauna of the Pacific Northwest region did not occur until the latter half of the 19th century. However, journals from the Lewis and Clark expedition provide the first documentation of Columbia River fishes.« less

  4. Distribution and Joint Fish-Tag Survival of Juvenile Chinook Salmon Migrating through the Sacramento-San Joaquin River Delta, California, 2008

    USGS Publications Warehouse

    Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.

    2009-01-01

    Acoustic telemetry was used to obtain the movement histories of 915 juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) through the lower San Joaquin River and Sacramento-San Joaquin Delta, California, in 2008. Data were analyzed within a release-recapture framework to estimate survival, route distribution, and detection probabilities among three migration pathways through the Delta. The pathways included the primary route through the San Joaquin River and two less direct routes (Old River and Turner Cut). Strong inferences about survival were limited by premature tag failure, but estimates of fish distribution among migration routes should be unaffected by tag failure. Based on tag failure tests (N = 66 tags), we estimated that only 55-78 percent of the tags used in this study were still functioning when the last fish was detected exiting the study area 15 days after release. Due to premature tag failure, our 'survival' estimates represent the joint probability that both the tag and fish survived, not just survival of fish. Low estimates of fish-tag survival could have been caused by fish mortality or fish travel times that exceeded the life of the tag, but we were unable to differentiate between the two. Fish-tag survival through the Delta (from Durham Ferry to Chipps Island by all routes) ranged from 0.05 +or- 0.01 (SE) to 0.06 +or- 0.01 between the two weekly release groups. Among the three migration routes, fish that remained in the San Joaquin River exhibited the highest joint fish-tag survival (0.09 +or- 0.02) in both weeks, but only 22-33 percent of tagged fish used this route, depending on the week of release. Only 4-10 percent (depending on week) of tagged fish traveled through Turner Cut, but no tagged fish that used this route were detected exiting the Delta. Most fish (63-68 percent, depending on week of release) migrated through Old River, but fish-tag survival through this route (0.05 +or- 0.01) was only about one-half that of fish that

  5. 75 FR 13555 - Compliance Policy Guide Sec. 540.375 Canned Salmon - Adulteration Involving Decomposition (CPG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...] (Formerly Docket No. 1998N-0046) Compliance Policy Guide Sec. 540.375 Canned Salmon -- Adulteration... of Compliance Policy Guide Sec. 540.375 Canned Salmon -- Adulteration Involving Decomposition (CPG... relating to decomposition in fish and fishery products, including canned salmon, is provided in CPG Sec...

  6. Stabilizing Oils from Smoked Pink Salmon (Oncorhynchus gorbuscha)

    USDA-ARS?s Scientific Manuscript database

    Smoking of meats and fish is one of the earliest preservation technologies developed by humans. In this study, the smoking process was evaluated as a method for reducing oxidation of Pink Salmon (Oncorhynchus gorbuscha) oils and also maintaining the quality of oil in aged fish prior to oil extractio...

  7. Coronary arteriosclerosis in Atlantic salmon. No regression of lesions after spawning.

    PubMed

    Saunders, R L; Farrell, A P

    1988-01-01

    The incidence and severity of coronary arteriosclerosis were studied in 209 wild and cultured Atlantic salmon (Salmo salar L.) during various stages of recovery of bodily condition after spawning. All recently spawned fish had lesions of moderate to extreme severity. The incidence of lesions for each fish was high (73% to 94% of all arterial cross-sections examined). The incidence and severity of lesions did not decrease during 5 months in a group of wild salmon reconditioned in the laboratory. Wild salmon that were examined in the spring angling fishery in the Miramichi River, New Brunswick, about 5 months after spawning had a high incidence (89%) of severe lesions, not significantly different from recently spawned salmon from the same and another river. A population of cultured salmon sampled at intervals from a sea cage during 9 months after spawning showed no evidence of lesion regression, but rather a continued increase in both incidence and severity during recovery of bodily condition and growth. Thus, in contrast with previous studies with steelhead trout and Atlantic salmon where the possibility of lesion regression has been suggested, our observations on a large number of Atlantic salmon from various sources gave no evidence of lesion regression. Coronary arteriosclerosis in Salmo salar appears to be a progressive condition, which continues during recovery of bodily condition and growth after spawning.

  8. Relationships between metabolic rate, muscle electromyograms and swim performance of adult chinook salmon

    USGS Publications Warehouse

    Geist, D.R.; Brown, R.S.; Cullinan, V.I.; Mesa, M.G.; VanderKooi, S.P.; McKinstry, C.A.

    2003-01-01

    Oxygen consumption rates of adult spring chinook salmon Oncorhynchus tshawytscha increased with swim speed and, depending on temperature and fish mass, ranged from 609 mg O2 h-1 at 30 cm s-1 (c. 0.5 BLs-1) to 3347 mg O2 h-1 at 170 cm s -1 (c. 2.3 BLs-1). Corrected for fish mass, these values ranged from 122 to 670 mg O2 kg-1 h-1, and were similar to other Oncorhynchus species. At all temperatures (8, 12.5 and 17??C), maximum oxygen consumption values levelled off and slightly declined with increasing swim speed >170 cm s-1, and a third-order polynomial regression model fitted the data best. The upper critical swim speed (Ucrit) of fish tested at two laboratories averaged 155 cm s -1 (2.1 BLs-1), but Ucrit of fish tested at the Pacific Northwest National Laboratory were significantly higher (mean 165 cm s-1) than those from fish tested at the Columbia River Research Laboratory (mean 140 cm s-1). Swim trials using fish that had electromyogram (EMG) transmitters implanted in them suggested that at a swim speed of c. 135 cm s-1, red muscle EMG pulse rates slowed and white muscle EMG pulse rates increased. Although there was significant variation between individual fish, this swim speed was c. 80% of the Ucrit for the fish used in the EMG trials (mean Ucrit 168.2 cm s-1). Bioenergetic modelling of the upstream migration of adult chinook salmon should consider incorporating an anaerobic fraction of the energy budget when swim speeds are ???80% of the Ucrit. ?? 2003 The Fisheries Society of the British Isles.

  9. Coho salmon and steelhead trout of JDSF

    Treesearch

    Peter Cafferata; Karen Walton; Weldon Jones

    1989-01-01

    Spawning and rearing habitat for anadromous fish is the dominant use of Jackson Demonstration State Forest's (JDSF) many miles of streams. Both coho (silver) salmon and steelhead migrate from the ocean up our rivers in the fall and winter to spawn. About 90 miles of the Forest's streams have been classified as habitat for these fish.

  10. 9000 years of salmon fishing on the Columbia River, North America

    USGS Publications Warehouse

    Butler, V.L.; O'Connor, J. E.

    2004-01-01

    A large assemblage of salmon bones excavated 50 yr ago from an ???10,000-yr-old archaeological site near The Dalles, Oregon, USA, has been the primary evidence that early native people along the Columbia River subsisted on salmon. Recent debate about the human role in creating the deposit prompted excavation of additional deposits and analysis of archaeologic, geologic, and hydrologic conditions at the site. Results indicate an anthropogenic source for most of the salmonid remains, which have associated radiocarbon dates indicating that the site was occupied as long ago as 9300 cal yr B.P. The abundance of salmon bone indicates that salmon was a major food item and suggests that migratory salmonids had well-established spawning populations in some parts of the Columbia Basin by 9300-8200 yr ago. ?? 2004 University of Washington. All rights reserved.

  11. Levels of synthetic antioxidants (ethoxyquin, butylated hydroxytoluene and butylated hydroxyanisole) in fish feed and commercially farmed fish.

    PubMed

    Lundebye, A-K; Hove, H; Måge, A; Bohne, V J B; Hamre, K

    2010-12-01

    Several synthetic antioxidants are authorized for use as feed additives in the European Union. Ethoxyquin (EQ) and butylated hydroxytoluene (BHT) are generally added to fish meal and fish oil, respectively, to limit lipid oxidation. The study was conducted to examine the concentrations of EQ, BHT and butylated hydroxyanisole (BHA) in several commercially important species of farmed fish, namely Atlantic salmon, halibut and cod and rainbow trout, as well as concentrations in fish feed. The highest levels of BHT, EQ and BHA were found in farmed Atlantic salmon fillets, and were 7.60, 0.17 and 0.07 mg kg(-1), respectively. The lowest concentrations of the synthetic antioxidants found were in cod. The concentration of the oxidation product ethoxyquin dimer (EQDM) was more than ten-fold higher than the concentration of parent EQ in Atlantic salmon halibut and rainbow trout, whereas this dimer was not detected in cod fillets. The theoretical consumer exposure to the synthetic antioxidants EQ, BHA and BHT from the consumption of farmed fish was calculated. The contribution of EQ from a single portion (300 g) of skinned fillets of the different species of farmed fish would contribute at most 15% of the acceptable daily intake (ADI) for a 60 kg adult. The consumption of farmed fish would not contribute measurably to the intake of BHA; however, a 300 g portion of farmed Atlantic salmon would contribute up to 75% of the ADI for BHT.

  12. Paramyxoviruses of fish: Chapter 17

    USGS Publications Warehouse

    Meyers, Theodore R.; Batts, William N.; Kibenge, Frederick S. B.; Godoy, Marcos

    2016-01-01

    The first fish paramyxovirus was isolated from normal adult Chinook salmon returning to a coastal hatchery in Oregon in the fall of 1982. Subsequently, the virus was isolated from other stocks of adult Chinook salmon and one stock of adult coho salmon in California, Oregon, Washington and Alaska, leading to its designation as the Pacific salmon paramyxovirus (PSPV). The slow-growing virus can be isolated from tissues and ovarian fluids of healthy adult fish returning to spawn and apparently causes no clinical signs of disease or mortality. In 1995, a different and widely disseminated paramyxovirus was isolated from farmed Atlantic salmon in Norway and was designated as Atlantic salmon paramyxovirus (ASPV). Although this virus caused no disease or mortality when injected into juvenile Atlantic salmon, ASPV has been associated with proliferative gill inflammation in sea-reared yearling fish; however, additional infectious agents may be involved in the etiology of the condition. Sequence analysis of PSPV and ASPV isolates using the polymerase gene established their placement in the family Paramyxoviridaeand has shown the two viruses to be closely related but sufficiently different from each other and from other known paramyxoviruses to possibly represent new genera within the family. The viruses can be diagnosed by isolation in cell culture with final confirmation by molecular methods. Other paramyxovirus-like agents have been observed or isolated from rainbow trout in Germany, from seabream in Japan associated with epithelial necrosis, from turbot in Spain associated with erythrocytic inclusion bodies and buccal/opercular hemorrhaging and from koi and common carp associated with gill necrosis in the European Union.

  13. Transcriptomic analysis of spleen infected with infectious salmon anemia virus reveals distinct pattern of viral replication on resistant and susceptible Atlantic salmon (Salmo salar).

    PubMed

    Dettleff, Phillip; Moen, Thomas; Santi, Nina; Martinez, Victor

    2017-02-01

    The infectious salmon anemia virus (ISAv) produces a systemic infection in salmonids, causing large losses in salmon production. However, little is known regarding the mechanisms exerting disease resistance. In this paper, we perform an RNA-seq analysis in Atlantic salmon challenged with ISAv (using individuals coming from families that were highly susceptible or highly resistant to ISAv infection). We evaluated the differential expression of both host and ISAv genes in a target organ for the virus, i.e. the spleen. The results showed differential expression of host genes related to response to stress, immune response and protein folding (genes such as; atf3, mhc, mx1-3, cd276, cd2, cocs1, c7, il10, il10rb, il13ra2, ubl-1, ifng, ifngr1, hivep2, sigle14 and sigle5). An increased protein processing activity was found in susceptible fish, which generates a subsequent unfolded protein response. We observed extreme differences in the expression of viral segments between susceptible and resistant groups, demonstrating the capacity of resistant fish to overcome the virus replication, generating a very low viral load. This phenomenon and survival of this higher resistant fish seem to be related to differences in immune and translational process, as well as to the increase of HIV-EP2 (hivep2) transcript in resistant fish, although the causal mechanism is yet to be discovered. This study provides valuable information about disease resistance mechanisms in Atlantic salmon from a host-pathogen interaction point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pediatric autopsy case of asphyxia due to salmon egg (ikura) aspiration.

    PubMed

    Takamiya, Masataka; Niitsu, Hisae; Saigusa, Kiyoshi; Dewa, Koji

    2016-09-01

    Here we report an autopsy case of asphyxia due to aspiration of a salmon egg (ikura) into the airway. The patient was a 19-month-old girl. During breakfast, she put salmon eggs into her mouth, and began to walk. She slipped, fell down, and collapsed. She was pronounced dead following 2 h of resuscitation. The body was autopsied 28 h after death. The gastric contents consisted of rice, orange sections, and white salmon eggs. The lungs were deeply congested and over-inflated. In the right lung, areas of atelectasis in the upper and middle lobes were seen. A yellow salmon egg (8 mm in diameter) was found in the trachea. Although fish eggs are consumed throughout the world, reports of this sort are limited. The aspiration of fish eggs is under-acknowledged and underreported. The importance of preventive measures needs to be emphasized to parents and caregivers. © 2016 Japan Pediatric Society.

  15. [Intracellular Protein Degradation in Growth of Atlantic Salmon, Salmo salar L].

    PubMed

    Lysenko, L A; Kantserova, N P; Krupnova, M Yu; Veselov, A E; Nemova, N N

    2015-01-01

    A brief review on the common characteristics and specific features of proteolytic machinery in fish skeletal muscles (based on Atlantic salmon, Salmo salar L., Salmonidae) has been given. Among a variety of proteases in the muscle tissue, those determining protein degradation level in developing and intensively growing muscles in salmon young and by this way regulating protein retention intensity and growth at all namely lysosomal cathepsins B and D and calcium-dependent proteases (calpains) were comprehensively studied. Revealed age-related differences in intracellular protease activity in salmon skeletal muscles indicate the role of proteolysis regulation in growth in general and a specific role of the individual proteolytic enzymes in particular. The data on negative correlation of cathepsin D and calpain activity levels in muscles and the rate of weight increase in juvenile salmon were obtained. A revealed positive correlation of cathepsin B activity and morphometric parameters in fish young presumably indicates its primary contribution to non-myofibrillar protein turnover.

  16. Abundance, stock origin, and length of marked and unmarked juvenile Chinook salmon in the surface waters of greater Puget Sound

    USGS Publications Warehouse

    Rice, C.A.; Greene, C.M.; Moran, P.; Teel, D.J.; Kuligowski, D.R.; Reisenbichler, R.R.; Beamer, E.M.; Karr, J.R.; Fresh, K.L.

    2011-01-01

    This study focuses on the use by juvenile Chinook salmon Oncorhynchus tshawytscha of the rarely studied neritic environment (surface waters overlaying the sublittoral zone) in greater Puget Sound. Juvenile Chinook salmon inhabit the sound from their late estuarine residence and early marine transition to their first year at sea. We measured the density, origin, and size of marked (known hatchery) and unmarked (majority naturally spawned) juveniles by means of monthly surface trawls at six river mouth estuaries in Puget Sound and the areas in between. Juvenile Chinook salmon were present in all months sampled (April-November). Unmarked fish in the northern portion of the study area showed broader seasonal distributions of density than did either marked fish in all areas or unmarked fish in the central and southern portions of the sound. Despite these temporal differences, the densities of marked fish appeared to drive most of the total density estimates across space and time. Genetic analysis and coded wire tag data provided us with documented individuals from at least 16 source populations and indicated that movement patterns and apparent residence time were, in part, a function of natal location and time passed since the release of these fish from hatcheries. Unmarked fish tended to be smaller than marked fish and had broader length frequency distributions. The lengths of unmarked fish were negatively related to the density of both marked and unmarked Chinook salmon, but those of marked fish were not. These results indicate more extensive use of estuarine environments by wild than by hatchery juvenile Chinook salmon as well as differential use (e.g., rearing and migration) of various geographic regions of greater Puget Sound by juvenile Chinook salmon in general. In addition, the results for hatchery-generated timing, density, and length differences have implications for the biological interactions between hatchery and wild fish throughout Puget Sound. ?? American

  17. A Metabolomic Approach To Detect Effects of Salmon Farming on Wild Saithe (Pollachius virens) Populations.

    PubMed

    Maruhenda Egea, Frutos C; Toledo-Guedes, Kilian; Sanchez-Jerez, Pablo; Ibanco-Cañete, Ricardo; Uglem, Ingebrit; Saether, Bjørn-Steinar

    2015-12-16

    A metabolomics approach was used to analyze effects of salmon farming on wild saithe (Pollachius virens) populations. Saithe fish were captured at two salmon farms and at two control locations around the island of Hitra, Norway. Changes in diet seem to drive changes in metabolic status of fishes. The liver and muscle tissues, from the fishes captured around the farm, showed higher levels of lactate and certain amino acids (glutamine, glutamate, and alanine) and lower levels of glucose and choline than the fishes captured in the control locations, far from the farm locations. The higher levels of lactate and amino acids could be related to the facility of obtaining food around the farm and the deficit in choline to the deficit of this nutrient in the salmon feed. At each location the fish were captured with either benthic gill nets and automatic jigging machines, and this feature showed also variations in different metabolites.

  18. Fishing for Effective Conservation: Context and Biotic Variation are Keys to Understanding the Survival of Pacific Salmon after Catch-and-Release.

    PubMed

    Raby, Graham D; Donaldson, Michael R; Hinch, Scott G; Clark, Timothy D; Eliason, Erika J; Jeffries, Kenneth M; Cook, Katrina V; Teffer, Amy; Bass, Arthur L; Miller, Kristina M; Patterson, David A; Farrell, Anthony P; Cooke, Steven J

    2015-10-01

    Acute stressors are commonly experienced by wild animals but their effects on fitness rarely are studied in the natural environment. Billions of fish are captured and released annually around the globe across all fishing sectors (e.g., recreational, commercial, subsistence). Whatever the motivation, release often occurs under the assumption of post-release survival. Yet, capture by fisheries (hereafter "fisheries-capture") is likely the most severe acute stressor experienced in the animal's lifetime, which makes the problem of physiological recovery and survival of relevance to biology and conservation. Indeed, fisheries managers require accurate estimates of mortality to better account for total mortality from fishing, while fishers desire guidance on strategies for reducing mortality and maintaining the welfare of released fish, to maximize current and future opportunities for fishing. In partnership with stakeholders, our team has extensively studied the effects of catch-and-release on Pacific salmon in both marine and freshwater environments, using biotelemetry and physiological assessments in a combined laboratory-based and field-based approach. The emergent theme is that post-release rates of mortality are consistently context-specific and can be affected by a suite of interacting biotic and abiotic factors. The fishing gear used, location of a fishery, water temperature, and handling techniques employed by fishers each can dramatically affect survival of the salmon they release. Variation among individuals, co-migrating populations, and between sexes all seem to play a role in the response of fish to capture and in their subsequent survival, potentially driven by pre-capture pathogen-load, maturation states, and inter-individual variation in responsiveness to stress. Although some of these findings are fascinating from a biological perspective, they all create unresolved challenges for managers. We summarize our findings by highlighting the patterns that

  19. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura

    2008-12-17

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returnsmore » from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out

  20. Behavior and movements of adult spring Chinook salmon (Oncorhynchus tshawytscha) in the Chehalis River Basin, southwestern Washington, 2015

    USGS Publications Warehouse

    Liedtke, Theresa L.; Zimmerman, Mara S.; Tomka, Ryan G.; Holt, Curt; Jennings, Lyle

    2016-09-14

    Recent interest in flood control and restoration strategies in the Chehalis River Basin has increased the need to understand the current status and ecology of spring Chinook salmon. Based on the extended period between freshwater entry and spawn timing, spring Chinook salmon have the longest exposure of all adult Chinook salmon life histories to the low-flow and high water temperature conditions that typically occur during summer. About 100 adult spring Chinook salmon were found dead in the Chehalis River in July and August 2009. Adult Chinook salmon are known to hold in cool-water refugia during warm summer months, but the extent to which spring Chinook salmon might use thermal refugia in the Chehalis River is unknown. The movements and temperature exposures of adult spring Chinook salmon following their return to the Chehalis River were investigated using radiotelemetry and transmitters equipped with temperature sensors, combined with water temperature monitoring throughout the basin. A total of 23 spring Chinook salmon were radio-tagged between April and early July 2015; 11 were captured and released in the main-stem Chehalis River, and 12 were captured and released in the South Fork Newaukum River. Tagged fish were monitored with a combination of fixed-site monitoring locations and regular mobile tracking, from freshwater entry through the spawning period.Water temperature and flow conditions in the main-stem Chehalis River during 2015 were atypical compared to historical averages. Mean monthly water temperatures between March and July 2015 were higher than any decade since 1960 and mean daily flows were 30–70 percent of the flows in previous years. Overall, 96 percent of the tagged fish were detected, with a mean of 62 d in the detection history of tagged fish. Of the 11 fish released in the main-stem Chehalis River, six fish (55 percent) moved upstream, either shortly after release (2–7 d, 50 percent), or following a short delay (12–18 d, 50 percent

  1. 26 CFR 31.3306(c)(17)-1 - Fishing services.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Salmon and halibut fishing. Services performed in connection with the catching or taking of salmon or... taking of salmon or halibut, for commercial purposes, nor the services of any other individual in...

  2. 26 CFR 31.3306(c)(17)-1 - Fishing services.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Salmon and halibut fishing. Services performed in connection with the catching or taking of salmon or... taking of salmon or halibut, for commercial purposes, nor the services of any other individual in...

  3. Evidence for a carrier state of infectious hematopoietic necrosis virus in chinook salmon Oncorhynchus tshawytscha.

    PubMed

    St Hilaire, S; Ribble, C; Traxler, G; Davies, T; Kent, M L

    2001-10-08

    In British Columbia, Canada, infectious hematopoietic necrosis virus (IHNV) is prevalent in wild sockeye salmon Oncorhynchus nerka and has caused disease in seawater net-pen reared Atlantic salmon Salmo salar. In this study, chinook salmon Oncorhynchus tshawytscha experimentally exposed to an isolate of IHNV found in British Columbia became carriers of the virus. When Atlantic salmon were cohabited with these virus-exposed chinook salmon, IHNV was isolated from the Atlantic salmon. Identification of chinook salmon populations that have been exposed to IHNV may be difficult, as virus isolation was successful only in fish that were concurrently infected with either Renibacterium salmoninarum or Piscirickettisia salmonis. Also, IHNV-specific antibodies were detected in only 2 of the 70 fish experimentally exposed to the virus. Two samples collected from chinook salmon exposed to IHNV while at a salt water net-pen site had a seroprevalence of 19 and 22%; however, the inconsistencies between our laboratory and field data suggest that further research is required before we can rely on serological analysis for identifying potential carrier populations. Because of the difficulty in determining the exposure status of populations of chinook salmon, especially if there is no concurrent disease, it may be prudent not to cohabit Atlantic salmon with chinook salmon on a farm if there is any possibility that the latter have been exposed to the virus.

  4. Changes in movements of Chinook Salmon between lakes Huron and Michigan after Alewife population collapse

    USGS Publications Warehouse

    Clark, Richard D.; Bence, James R.; Claramunt, Randall M.; Clevenger, John A.; Kornis, Matthew S.; Bronte, Charles R.; Madenjian, Charles P.; Roseman, Edward

    2017-01-01

    Alewives Alosa pseudoharengus are the preferred food of Chinook Salmon Oncorhynchus tshawytscha in the Laurentian Great Lakes. Alewife populations collapsed in Lake Huron in 2003 but remained comparatively abundant in Lake Michigan. We analyzed capture locations of coded-wire-tagged Chinook Salmon before, during, and after Alewife collapse (1993–2014). We contrasted the pattern of tag recoveries for Chinook Salmon released at the Swan River in northern Lake Huron and Medusa Creek in northern Lake Michigan. We examined patterns during April–July, when Chinook Salmon were primarily occupied by feeding, and August–October, when the salmon were primarily occupied by spawning. We found evidence that Swan River fish shifted their feeding location from Lake Huron to Lake Michigan after the collapse. Over years, proportions of Swan River Chinook Salmon captured in Lake Michigan increased in correspondence with the Alewife decline in Lake Huron. Mean proportions of Swan River fish captured in Lake Michigan were 0.13 (SD = 0.14) before collapse (1993–1997) and 0.82 (SD = 0.22) after collapse (2008–2014) and were significantly different. In contrast, proportions of Medusa Creek fish captured in Lake Michigan did not change; means were 0.98 (SD = 0.05) before collapse and 0.99 (SD = 0.01) after collapse. The mean distance to the center of the coastal distribution of Swan River fish during April–July shifted 357 km (SD = 169) from central Lake Huron before collapse to central Lake Michigan after collapse. The coastal distributions during August–October were centered on the respective sites of origin, suggesting that Chinook Salmon returned to release sites to spawn regardless of their feeding locations. Regarding the impact on Alewife populations, this shift in interlake movement would be equivalent to increasing the Chinook Salmon stocking rate within Lake Michigan by 30%. The primary management implication is that interlake coordination of Chinook Salmon

  5. Modelling the Influence of Long-Term Hydraulic Conditions on Juvenile Salmon Habitats in AN Upland Scotish River

    NASA Astrophysics Data System (ADS)

    Fabris, L.; Malcolm, I.; Millidine, K. J.; Buddendorf, B.; Tetzlaff, D.; Soulsby, C.

    2015-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream

  6. Triploid atlantic salmon (Salmo salar L.) post-smolts accumulate prevalence more slowly than diploid salmon following bath challenge with salmonid alphavirus subtype 3

    PubMed Central

    Moore, Lindsey J.; Nilsen, Tom Ole; Jarungsriapisit, Jiraporn; Fjelldal, Per Gunnar; Stefansson, Sigurd O.; Taranger, Geir Lasse; Patel, Sonal

    2017-01-01

    Triploid Atlantic salmon (Salmo salar L.) may play an important role in the sustainable expansion of the Norwegian aquaculture industry. Therefore, the susceptibility of triploid salmon to common infections such as salmonid alphavirus (SAV), the causative agent of pancreas disease (PD), requires investigation. In this study, shortly after seawater transfer, diploid and triploid post-smolts were exposed to SAV type 3 (SAV3) using a bath challenge model where the infectious dose was 48 TCID50 ml-1 of tank water. Copy number analysis of SAV3 RNA in heart tissue showed that there was no difference in viral loads between the diploids and triploids. Prevalence reached 100% by the end of the 35-day experimental period in both infected groups. However, prevalence accumulated more slowly in the triploid group reaching 19% and 56% at 14 and 21 days post exposure (dpe) respectively. Whereas prevalence in the diploid group was 82% and 100% at the same time points indicating some differences between diploid and triploid fish. Both heart and pancreas from infected groups at 14 dpe showed typical histopathological changes associated with pancreas disease. Observation of this slower accumulation of prevalence following a natural infection route was possible due to the early sampling points and the exposure to a relatively low dose of virus. The triploid salmon in this study were not more susceptible to SAV3 than diploid salmon indicating that they could be used commercially to reduce the environmental impact of escaped farmed fish interbreeding with wild salmon. This is important information regarding the future use of triploid fish in large scale aquaculture where SAV3 is a financial threat to increased production. PMID:28403165

  7. Triploid atlantic salmon (Salmo salar L.) post-smolts accumulate prevalence more slowly than diploid salmon following bath challenge with salmonid alphavirus subtype 3.

    PubMed

    Moore, Lindsey J; Nilsen, Tom Ole; Jarungsriapisit, Jiraporn; Fjelldal, Per Gunnar; Stefansson, Sigurd O; Taranger, Geir Lasse; Patel, Sonal

    2017-01-01

    Triploid Atlantic salmon (Salmo salar L.) may play an important role in the sustainable expansion of the Norwegian aquaculture industry. Therefore, the susceptibility of triploid salmon to common infections such as salmonid alphavirus (SAV), the causative agent of pancreas disease (PD), requires investigation. In this study, shortly after seawater transfer, diploid and triploid post-smolts were exposed to SAV type 3 (SAV3) using a bath challenge model where the infectious dose was 48 TCID50 ml-1 of tank water. Copy number analysis of SAV3 RNA in heart tissue showed that there was no difference in viral loads between the diploids and triploids. Prevalence reached 100% by the end of the 35-day experimental period in both infected groups. However, prevalence accumulated more slowly in the triploid group reaching 19% and 56% at 14 and 21 days post exposure (dpe) respectively. Whereas prevalence in the diploid group was 82% and 100% at the same time points indicating some differences between diploid and triploid fish. Both heart and pancreas from infected groups at 14 dpe showed typical histopathological changes associated with pancreas disease. Observation of this slower accumulation of prevalence following a natural infection route was possible due to the early sampling points and the exposure to a relatively low dose of virus. The triploid salmon in this study were not more susceptible to SAV3 than diploid salmon indicating that they could be used commercially to reduce the environmental impact of escaped farmed fish interbreeding with wild salmon. This is important information regarding the future use of triploid fish in large scale aquaculture where SAV3 is a financial threat to increased production.

  8. Preliminary evaluation of the behavior and movements of adult spring Chinook salmon in the Chehalis River, southwestern Washington, 2014

    USGS Publications Warehouse

    Liedtke, Theresa L.; Hurst, William R.; Tomka, Ryan G.; Kock, Tobias J.; Zimmerman, Mara S.

    2017-01-30

    Recent interest in flood control and restoration strategies in the Chehalis River Basin has increased the need to understand the current status and ecology of spring Chinook salmon (Oncorhynchus tshawytscha). Spring Chinook salmon have the longest exposure of all adult Chinook salmon life histories to the low-flow and high water temperature conditions that typically occur during summer. About 100 adult spring Chinook salmon were found dead in the Chehalis River in July and August 2009. Adult Chinook salmon are known to hold in cool-water refugia during warm summer months, but the extent to which spring Chinook salmon might use thermal refugia in the Chehalis River is unknown. A preliminary evaluation of the movements and temperature exposures of adult spring Chinook salmon following their return to the Chehalis River was conducted using radiotelemetry and transmitters equipped with temperature sensors. A total of 12 spring Chinook salmon were captured, radio-tagged, and released in the main-stem Chehalis River between May and late June 2014. Tagged fish were monitored from freshwater entry through the spawning period using a combination of fixedsite monitoring locations and mobile tracking.Water temperature and flow conditions in the main-stem Chehalis River during 2014 were atypical compared to historical averages. Mean monthly water temperatures between March and August 2014 were higher than any decade since 1960 and mean monthly discharge was 90–206 percent of the discharge in previous years. Overall, 92 percent of the tagged fish were detected, with a mean of 102 d in the detection history of tagged fish. Seven tagged fish (58 percent) moved upstream, either shortly after release (5–8 d, 57 percent), or within about a month (34–35 d, 29 percent). One fish (14 percent) remained near the release location for 98 d before moving upstream. The final fates for the seven fish that moved upstream following release included six fish that were assigned a fate of

  9. 'Snorkel' lice barrier technology reduced two co- occurring parasites, the salmon louse (Lepeophtheirus salmonis) and the amoebic gill disease causing agent (Neoparamoeba perurans), in commercial salmon sea-cages.

    PubMed

    Wright, D W; Stien, L H; Dempster, T; Vågseth, T; Nola, V; Fosseidengen, J-E; Oppedal, F

    2017-05-01

    Diverse chemical-free parasite controls are gaining status in Atlantic salmon sea-cage farming. Yet, the intricacies of their use at commercial scale, including effects on co-occurring parasites, are seldom reported. A new salmon lice prevention method involves installing a deep net roof and 'snorkel' lice barrier in cages to shelter salmon from free-living infective larvae which concentrate at shallow depths, and allows salmon to jump and re- inflate their buoyancy-regulating swim bladder by swallowing air. We document use of snorkel cages (10m deep barrier) in commercial farms, where their effects on salmon lice levels, amoebic gill disease (AGD)-related gill scores, the cage environment, fish welfare and farm management practices were compared to standard cages. During an autumn-winter study involving only snorkel cages, high AGD-related gill scores were observed to decline when freshwater was pumped into snorkels, creating a freshwater surface layer for salmon to enter for self-treatment. In a spring-summer study incorporating snorkel and standard cages, snorkel cages were found to reduce new lice infestations by 84%. The deployment of snorkels and intermittent oxygen depletion detected within them in the spring-summer study did not alter fish welfare parameters. Overall, the results suggest snorkel technology has a place in the toolkit of commercial salmon sea-cage farmers co-managing salmon lice and amoebic gill disease outbreaks - two principal parasite issues facing the industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Salmon escapement estimates into the Togiak River using sonar, Togiak National Wildlife Refuge, Alaska, 1987, 1988, and 1990

    USGS Publications Warehouse

    Irving, David B.; Finn, James E.; Larson, James P.

    1995-01-01

    We began a three year study in 1987 to test the feasibility of using sonar in the Togiak River to estimate salmon escapements. Current methods rely on periodic aerial surveys and a counting tower at river kilometer 97. Escapement estimates are not available until 10 to 14 days after the salmon enter the river. Water depth and turbidity preclude relocating the tower to the lower river and affect the reliability of aerial surveys. To determine whether an alternative method could be developed to improve the timeliness and accuracy of current escapement monitoring, Bendix sonar units were operated during 1987, 1988, and 1990. Two sonar stations were set up opposite each other at river kilometer 30 and were operated 24 hours per day, seven days per week. Catches from gill nets with 12, 14, and 20 cm stretch mesh, a beach seine, and visual observations were used to estimate species composition. Length and sex data were collected from salmon caught in the nets to assess sampling bias.In 1987, sonar was used to select optimal sites and enumerate coho salmon. In 1988 and 1990, the sites identified in 1987 were used to estimate the escapement of five salmon species. Sockeye salmon escapement was estimated at 512,581 and 589,321, chinook at 7,698 and 15,098, chum at 246,144 and 134,958, coho at 78,588 and 28,290, and pink at 96,167 and 131,484. Sonar estimates of sockeye salmon were two to three times the Alaska Department of Fish and Game's escapement estimate based on aerial surveys and tower counts. The source of error was probably a combination of over-estimating the total number of targets counted by the sonar and by incorrectly estimating species composition.Total salmon escapement estimates using sonar may be feasible but several more years of development are needed. Because of the overlapped salmon run timing, estimating species composition appears the most difficult aspect of using sonar for management. Possible improvements include using a larger beach seine or

  11. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  12. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    USGS Publications Warehouse

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  13. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; ,; Gillikin, Daniel; ,

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  14. In situ measurement of coastal ocean movements and survival of juvenile Pacific salmon

    PubMed Central

    Welch, David W.; Melnychuk, Michael C.; Payne, John C.; Rechisky, Erin L.; Porter, Aswea D.; Jackson, George D.; Ward, Bruce R.; Vincent, Stephen P.; Wood, Chris C.; Semmens, Jayson

    2011-01-01

    Many salmon populations in both the Pacific and Atlantic Oceans have experienced sharply decreasing returns and high ocean mortality in the past two decades, with some populations facing extirpation if current marine survival trends continue. Our inability to monitor the movements of marine fish or to directly measure their survival precludes experimental tests of theories concerning the factors regulating fish populations, and thus limits scientific advance in many aspects of fisheries management and conservation. Here we report a large-scale synthesis of survival and movement rates of free-ranging juvenile salmon across four species, 13 river watersheds, and 44 release groups of salmon smolts (>3,500 fish tagged in total) in rivers and coastal ocean waters, including an assessment of where mortality predominantly occurs during the juvenile migration. Of particular importance, our data indicate that, over the size range of smolts tagged, (i) smolt survival was not strongly related to size at release, (ii) tag burden did not appear to strongly reduce the survival of smaller animals, and (iii) for at least some populations, substantial mortality occurred much later in the migration and more distant from the river of origin than generally expected. Our findings thus have implications for determining where effort should be invested to improve the accuracy of salmon forecasting, to understand the mechanisms driving salmon declines, and to predict the impact of climate change on salmon stocks. PMID:21558442

  15. Self-reporting bias in Chinook salmon sport fisheries in Idaho: implications for roving creel surveys

    USGS Publications Warehouse

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2013-01-01

    Self-reporting bias in sport fisheries of Chinook Salmon Oncorhynchus tshawytscha in Idaho was quantified by comparing observed and angler-reported data. A total of 164 observed anglers fished for 541 h and caught 74 Chinook Salmon. Fifty-eight fish were harvested and 16 were released. Anglers reported fishing for 604 h, an overestimate of 63 h. Anglers reported catching 66 fish; four less harvested and four less released fish were reported than observed. A Monte Carlo simulation revealed that when angler-reported data were used, total catch was underestimated by 14–15 fish (19–20%) using the ratio-of-means estimator to calculate mean catch rate. Negative bias was reduced to six fish (8%) when the means-of-ratio estimator was used. Multiple linear regression models to predict reporting bias in time fished had poor predictive value. However, actual time fished and a categorical covariate indicating whether the angler fished continuously during their fishing trip were two variables that were present in all of the top a priori models evaluated. Underreporting of catch and overreporting of time fished by anglers present challenges when managing Chinook Salmon sport fisheries. However, confidence intervals were near target levels and using more liberal definitions of angling when estimating effort in creel surveys may decrease sensitivity to bias in angler-reported data.

  16. Economics of wild salmon ecosystems: Bristol Bay, Alaska

    Treesearch

    John W. Duffield; Christopher J. Neher; David A. Patterson; Oliver S. Goldsmith

    2007-01-01

    This paper provides an estimate of the economic value of wild salmon ecosystems in the major watershed of Bristol Bay, Alaska. The analysis utilizes both regional economic and social benefit-cost accounting frameworks. Key sectors analyzed include subsistence, commercial fishing, sport fishing, hunting, and nonconsumptive wildlife viewing and tourism. The mixed cash-...

  17. Future of Pacific salmon in the face of environmental change: Lessons from one of the world's remaining productive salmon regions

    USGS Publications Warehouse

    Schoen, Erik R.; Wipfli, Mark S.; Trammell, Jamie; Rinella, Daniel J.; Floyd, Angelica L.; Grunblatt, Jess; McCarthy, Molly D.; Meyer, Benjamin E.; Morton, John M.; Powell, James E.; Prakash, Anupma; Reimer, Matthew N.; Stuefer, Svetlana L.; Toniolo, Horacio; Wells, Brett M.; Witmer, Frank D. W.

    2017-01-01

    Pacific salmon Oncorhynchus spp. face serious challenges from climate and landscape change, particularly in the southern portion of their native range. Conversely, climate warming appears to be allowing salmon to expand northwards into the Arctic. Between these geographic extremes, in the Gulf of Alaska region, salmon are at historically high abundances but face an uncertain future due to rapid environmental change. We examined changes in climate, hydrology, land cover, salmon populations, and fisheries over the past 30–70 years in this region. We focused on the Kenai River, which supports world-famous fisheries but where Chinook Salmon O. tshawytscha populations have declined, raising concerns about their future resilience. The region is warming and experiencing drier summers and wetter autumns. The landscape is also changing, with melting glaciers, wetland loss, wildfires, and human development. This environmental transformation will likely harm some salmon populations while benefiting others. Lowland salmon streams are especially vulnerable, but retreating glaciers may allow production gains in other streams. Some fishing communities harvest a diverse portfolio of fluctuating resources, whereas others have specialized over time, potentially limiting their resilience. Maintaining diverse habitats and salmon runs may allow ecosystems and fisheries to continue to thrive amidst these changes.

  18. Rapid counting of nematoda in salmon by peptic digestion

    USGS Publications Warehouse

    Stern, Joseph A.; Chakravarti, Diptiman; Uzmann, Joseph R.; Hesselholt, M.N.

    1958-01-01

    The population of Anisakis sp., larvae in chum salmon appears to be concentrated in the ventral section of the fish, that is, below the lateral line, which ಟ್ಗ that only the ventral quarters of the fish need to be examined for estimating infection intensity.

  19. Natural selection constrains personality and brain gene expression differences in Atlantic salmon (Salmo salar).

    PubMed

    Thörnqvist, Per-Ove; Höglund, Erik; Winberg, Svante

    2015-04-01

    In stream-spawning salmonid fishes there is a considerable variation in the timing of when fry leave the spawning nests and establish a feeding territory. The timing of emergence from spawning nests appears to be related to behavioural and physiological traits, e.g. early emerging fish are bolder and more aggressive. In the present study, emerging Atlantic salmon (Salmo salar L.) alevins were sorted into three fractions: early, intermediate and late emerging. At the parr stage, behaviour, stress responses, hindbrain monoaminergic activity and forebrain gene expression were explored in fish from the early and late emerging fractions (first and last 25%). The results show that when subjected to confinement stress, fish from the late emerging fraction respond with a larger activation of the brain serotonergic system than fish from the early fraction. Similarly, in late emerging fish, stress resulted in elevated expression of mRNA coding for serotonin 1A receptors (5-HT1A), GABA-A receptor-associated protein and ependymin, effects not observed in fish from the early emerging fraction. Moreover, fish from the early emerging fraction displayed bolder behaviour than their late emerging littermates. Taken together, these results suggest that time of emergence, boldness and aggression are linked to each other, forming a behavioural syndrome in juvenile salmon. Differences in brain gene expression between early and late emerging salmon add further support to a relationship between stress coping style and timing of emergence. However, early and late emerging salmon do not appear to differ in hypothalamus-pituitary-interrenal (HPI) axis reactivity, another characteristic of divergent stress coping styles. © 2015. Published by The Company of Biologists Ltd.

  20. Comparative genomics identifies candidate genes for infectious salmon anemia (ISA) resistance in Atlantic salmon (Salmo salar).

    PubMed

    Li, Jieying; Boroevich, Keith A; Koop, Ben F; Davidson, William S

    2011-04-01

    Infectious salmon anemia (ISA) has been described as the hoof and mouth disease of salmon farming. ISA is caused by a lethal and highly communicable virus, which can have a major impact on salmon aquaculture, as demonstrated by an outbreak in Chile in 2007. A quantitative trait locus (QTL) for ISA resistance has been mapped to three microsatellite markers on linkage group (LG) 8 (Chr 15) on the Atlantic salmon genetic map. We identified bacterial artificial chromosome (BAC) clones and three fingerprint contigs from the Atlantic salmon physical map that contains these markers. We made use of the extensive BAC end sequence database to extend these contigs by chromosome walking and identified additional two markers in this region. The BAC end sequences were used to search for conserved synteny between this segment of LG8 and the fish genomes that have been sequenced. An examination of the genes in the syntenic segments of the tetraodon and medaka genomes identified candidates for association with ISA resistance in Atlantic salmon based on differential expression profiles from ISA challenges or on the putative biological functions of the proteins they encode. One gene in particular, HIV-EP2/MBP-2, caught our attention as it may influence the expression of several genes that have been implicated in the response to infection by infectious salmon anemia virus (ISAV). Therefore, we suggest that HIV-EP2/MBP-2 is a very strong candidate for the gene associated with the ISAV resistance QTL in Atlantic salmon and is worthy of further study.

  1. Sexual difference in PCB concentrations of coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Madenjian, Charles P.; Schrank, Candy S.; Begnoche, Linda J.; Elliott, Robert F.; Quintal, Richard T.

    2010-01-01

    We determined polychlorinated biphenyl (PCB) concentrations in 35 female coho salmon (Oncorhynchus kisutch) and 60 male coho salmon caught in Lake Michigan (Michigan and Wisconsin, United States) during the fall of 1994 and 1995. In addition, we determined PCB concentrations in the skin-on fillets of 26 female and 19 male Lake Michigan coho salmon caught during the fall of 2004 and 2006. All coho salmon were age-2 fish. These fish were caught prior to spawning, and therefore release of eggs could not account for sexual differences in PCB concentrations because female coho salmon spawn only once during their lifetime. To investigate whether gross growth efficiency (GGE) differed between the sexes, we applied bioenergetics modeling. Results showed that, on average, males were 19% higher in PCB concentration than females, based on the 1994–1995 dataset. Similarly, males averaged a 20% higher PCB concentration in their skin-on fillets compared with females. According to the bioenergetics modeling results, GGE of adult females was less than 1% higher than adult male GGE. Thus, bioenergetics modeling could not explain the 20% higher PCB concentration exhibited by the males. Nonetheless, a sexual difference in GGE remained a plausible explanation for the sexual difference in PCB concentrations.

  2. Lack of evidence of infectious salmon anemia virus in pollock Pollachius virens cohabitating with infected farmed Atlantic salmon Salmo salar.

    PubMed

    McClure, Carol A; Hammell, K Larry; Dohoo, Ian R; Gagné, Nellie

    2004-10-21

    The infectious salmon anemia (ISA) virus causes lethargy, anemia, hemorrhage of the internal organs, and death in farmed Atlantic salmon Salmo salar. It has been a cause of disease in Norwegian farmed Atlantic salmon since 1984 and has since been identified in Canada, Scotland, the United States, and the Faroe Islands. Wild fish have been proposed as a viral reservoir because they are capable of close contact with farmed salmon. Laboratory studies have shown that brown trout and sea trout Salmo trutta, rainbow trout Oncorhynchus mykiss, and herring Clupea harengus tested positive for the virus weeks after intra-peritoneal injection of the ISA virus. Pollock Pollachius virens are commonly found in and around salmon cages, and their close association with the salmon makes them an important potential viral reservoir to consider. The objective of this study was to determine the presence or prevalence of ISA virus in pollock cohabitating with ISA-infected farmed Atlantic salmon. Kidney tissue from 93 pollock that were living with ISA-infected salmon in sea cages were tested with reverse transcription-polymerase chain reaction (RT-PCR) test. Results yielded the expected 193 bp product for positive controls, while no product was observed in any of the pollock samples, resulting in an ISA viral prevalence of 0%. This study strengthens the evidence that pollock are unlikely to be an ISA virus reservoir for farmed Atlantic salmon.

  3. A Virus-like disease of chinook salmon

    USGS Publications Warehouse

    Ross, A.J.; Pelnar, J.; Rucker, R.R.

    1960-01-01

    Consideration is given to a recurring disease of early feeding chinook salmon fingerlings at the Coleman, California, Federal Fish Cultural Station. The infection becomes manifest in the early spring months at low water temperatures and abates as the water temperature rises. Bacteriological studies have failed to yield the presence of a disease agent, either by cultural or staining procedures. The disease has been successfully transmitted from infected fish to healthy fish by the injection of bacteria-free filtrates prepared from diseased fish tissue. The causative agent is therefore believed to be a virus-like entity.

  4. Sequential tests for infectious hematopoietic necrosis virus in individuals and populations of sockeye salmon

    USGS Publications Warehouse

    Mulcahy, Daniel M.; Pascho, Ron

    1986-01-01

    The incidence and titer distribution of infectious hematopoietic necrosis virus in cavity fluid from spent female sockeye salmon (Oncorhynchus nerka) varied little when fish from a naturally spawning population were sampled three times on alternate days. However, when prespawning female sockeye salmon from a second population were individually tagged, penned, and sampled daily, the incidence and proportion of fish with high virus titer rose over a 6-d period. In 10 instances, consecutive cavity fluid samples from the same fish reverted from virus-positive to virus-negative. We suggest that spent fish should be sampled when accurate and quantitative data on the incidence and level of the virus are required.

  5. Disease resistance and health parameters of growth-hormone transgenic and wild-type coho salmon, Oncorhynchus kisutch.

    PubMed

    Kim, Jin-Hyoung; Balfry, Shannon; Devlin, Robert H

    2013-06-01

    To extend previous findings regarding fish health and disease susceptibility of growth-enhanced fish, hematological and immunological parameters have been compared between growth hormone (GH) transgenic and wild-type non-transgenic coho salmon (Oncorhynchus kisutch). Compared to non-transgenic coho salmon, transgenic fish had significantly higher hematocrit (Hct), hemoglobin (Hb), mean cellular hemoglobin (MCH), mean cellular volume (MCV), and erythrocyte numbers, and lower white cell numbers. In addition, resistance to the bacterial pathogen Aeromonas salmonicida (causal agent of furunculosis) has been assessed between the strains. Higher susceptibility of transgenic fish to this disease challenge was observed in two separate year classes of fish. The present findings provide fundamental knowledge of the disease resistance on GH enhanced transgenic coho salmon, which is of importance for assessing the fitness of transgenic strains for environmental risk assessments, and for improving our understanding effects of growth modification on basic immune functions. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Evaluation of Head-of-Reservoir Conditions for Downstream Migration of Juvenile Chinook Salmon and Steelhead at Shasta Lake, California

    NASA Astrophysics Data System (ADS)

    Clancey, K. M.; Saito, L.; Svoboda, C.; Bender, M. D.; Hannon, J.; Hellmann, K. M.

    2015-12-01

    Since completion of Shasta Dam, migration of Chinook salmon and steelhead trout in the Sacramento River has been blocked, causing loss of spawning and rearing habitat. This has been a factor leading to population declines of these fish species over several decades. Winter-run Chinook salmon, spring-run Chinook salmon and steelhead trout are now listed under the Endangered Species Act. A habitat assessment of the tributaries upstream of Shasta Dam showed that the Sacramento and McCloud tributaries have suitable habitat for reintroduction of adult salmon and steelhead for spawning. Such reintroduction would require downstream passage of juvenile Chinook salmon and steelhead past Shasta Dam. To evaluate the possibility of collecting and transporting juvenile Chinook salmon and steelhead past Shasta Dam, a CE-QUAL-W2 model of Shasta Lake and the Sacramento River, McCloud River, Pit River and Squaw Creek tributaries was used to assess where and when conditions were favorable at head-of-reservoir locations upstream of proposed temperature curtains to collect juvenile fish. Head-of-reservoir is the zone of transition between the river and the upstream end of the reservoir. Criteria for evaluating locations suitable to collect these fish included water temperature and velocities in the Sacramento and McCloud tributaries. Model output was analyzed during months of downstream migration under dry, median and wet year conditions. Potential for proposed temperature curtains, anchored and floating, to improve conditions for fish migration was also evaluated with the CE-QUAL-W2 model. Use of temperature curtains to assist fish migration is a novel approach that to our knowledge has not previously been assessed for recovery of Chinook salmon and steelhead populations. Providing safe passage conditions is challenging, however the study findings may assist in formulation of a juvenile fish passage alternative that is suitable for Shasta Lake.

  7. Directional selection by fisheries and the timing of sockeye salmon (Oncorhynchus nerka) migrations.

    PubMed

    Quinn, Thomas P; Hodgson, Sayre; Flynn, Lucy; Hilborn, Ray; Rogers, Donald E

    2007-04-01

    The timing of migration from feeding to breeding areas is a critical link between the growth and survival of adult animals, their reproduction, and the fitness of their progeny. Commercial fisheries often catch a large fraction of the migrants (e.g., salmon), and exploitation rates can vary systematically over the fishing season. We examined daily records of sockeye salmon (Oncorhynchus nerka) in the Egegik and Ugashik management districts in Bristol Bay, Alaska (USA), for evidence of such temporally selective fishing. In recent years, the early migrants have experienced lower fishing rates than later migrants, especially in the Egegik district, and the median migration date of the fish escaping the fisheries has been getting progressively earlier in both districts. Moreover, the overall runs (catch and escapement) in the Egegik district and, to a lesser extent the Ugashik district, have been getting earlier, as predicted in response to the selection on timing. The trends in timing were not correlated with sea surface temperature in the region of the North Pacific Ocean where the salmon tend to concentrate, but the trends in the two districts were correlated with each other, indicating that there may be some common environmental influence in addition to the effect of selection. Despite the selection, both groups of salmon have remained productive. We hypothesize that this resilience may result from representation of all component populations among the early and late migrants, so that the fisheries have not eliminated entire populations, and from density-dependent processes that may have helped maintain the productivity of these salmon populations.

  8. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  9. Restoration of fillet n-3 long-chain polyunsaturated fatty acid is improved by a modified fish oil finishing diet strategy for atlantic salmon (Salmo salar L.) smolts fed palm fatty acid distillate.

    PubMed

    Codabaccus, Mohamed B; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G

    2012-01-11

    Reducing the lipid content in fish prior to feeding a fish oil finishing diet (FOFD) has the potential to improve n-3 long-chain (≥ C(20)) polyunsaturated fatty acid (LC-PUFA) restoration. This study had two main objectives: (1) determine whether feeding Atlantic salmon smolt a 75% palm fatty acid distillate diet (75PFAD) improves the apparent digestibility (AD) of saturated fatty acids (SFA) and (2) examine whether a food deprivation period after growth on 75PFAD leads to higher n-3 LC-PUFA restoration in the fillet when applying a FOFD. The AD of SFA was higher for 75PFAD compared to that of a fish oil (FO) diet. The relative level (as % total fatty acids (FA)) of n-3 LC-PUFA was higher in unfed fish compared to that in continuously fed fish after 21 and 28 day FOFD periods, respectively. Our results suggest that a food deprivation period prior to feeding a FOFD improves the efficiency of n-3 LC-PUFA restoration in the fillet of Atlantic salmon smolt.

  10. Modelling scenarios on feed-to-fillet transfer of dioxins and dioxin-like PCBs in future feeds to farmed Atlantic salmon (Salmo salar).

    PubMed

    Berntssen, Marc H G; Sanden, Monica; Hove, Helge; Lie, Øyvind

    2016-11-01

    The salmon feed composition has changed the last decade with a replacement of traditionally use of fish oil and fishmeal diets with vegetable ingredients and the use decontaminated fish oils, causing reduced concentrations of dioxins and dioxin-like PCBs in farmed Norwegian Atlantic salmon. The development of novel salmon feeds has prompted the need for prediction on dioxins and dl-PCB concentrations in future farmed salmon. Prediction on fillet dioxins and dl-PCB concentrations from different feed composition scenarios are made using a simple one-compartmental transfer model based on earlier established dioxin and dl-PCB congener specific uptake and elimination kinetics rates. The model is validated with two independent feeding trials, with a significant linear correlation (r(2) = 0.96, y = 1.0x, p < 0.0001, n = 116) between observed and predicted values. Model fillet predictions are made for the following four scenarios; (1) general feed composition of 1999, (2) feed composition of 2013, (3) future feed composition with high fish oil and meal replacement, (4) future feed composition with high fish oil and meal replacement and decontaminated fish oil. Model predictions of fillet dioxin and dl-PCB concentrations from 1999 (1.05 ng WHO2005-TEQs kg(-1)ww) and 2013 (0.57 ng WHO2005-TEQs kg(-1)ww) are in line with the data observed in national surveillance programs of those years (1.1 and 0.52 ng WHO2005-TEQs kg(-1)ww, respectively). Future use of high replacement and decontaminated oils feeds gave predicted fillet concentrations of 0.27 ng WHO2005-TEQs kg(-1)ww, which is near the limit of quantification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Immunomodulatory effect of prolactin on Atlantic salmon (Salmo salar) macrophage function.

    PubMed

    Paredes, Marco; Gonzalez, Katerina; Figueroa, Jaime; Montiel-Eulefi, Enrique

    2013-10-01

    The in vitro and in vivo effect of prolactin (PRL) on kidney macrophages from Atlantic salmon (Salmo salar) was investigated under the assumption that PRL stimulates immune innate response in mammals. Kidney macrophages were treated two ways: first, cultured in RPMI 1640 medium containing 10, 25, 50 and 100 ng/mL of PRL and second, isolated from a fish with a PRL-injected dose of 100 ng/Kg. Reduced nitro blue tetrazolium (formazan) was used to produce intracellular superoxide anion. Phagocytic activity of PRL was determined in treated cells by optical microscopy observation of phagocytized Congo red-stained yeast. Kidney lysozyme activity was measured in PRL-injected fish. In vitro and in vivo macrophages treated with PRL presented an enhanced superoxide anion production, elevated phagocytic index and increased phagocytic activity. Treated fish showed higher levels of lysozyme activity in the head kidney compared to the control. These results indicate that PRL-stimulated innate immune response in Atlantic salmon and future studies will allow us to assess the possibility of using PRL as an immunostimulant in the Chilean salmon industry.

  12. Functional characterisation of a TLR accessory protein, UNC93B1, in Atlantic salmon (Salmo salar).

    PubMed

    Lee, P T; Zou, J; Holland, J W; Martin, S A M; Scott, C J W; Kanellos, T; Secombes, C J

    2015-05-01

    Toll-like receptors (TLRs) are indispensable components of the innate immune system, which recognise conserved pathogen associated molecular patterns (PAMPs) and induce a series of defensive immune responses to protect the host. Biosynthesis, localisation and activation of TLRs are dependent on TLR accessory proteins. In this study, we identified the accessory protein, UNC93B1, from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs aided by the conserved gene synteny of genes flanking UNC93B1 in fish, birds and mammals. Phylogenetic analysis showed that salmon UNC93B1 grouped with other vertebrate UNC93B1 molecules, and had highest amino acid identity and similarity to zebrafish UNC93B1. The salmon UNC93B1 gene organisation was also similar in structure to mammalian UNC93B1. Our gene expression studies revealed that salmon UNC93B1 was more highly expressed in spleen, liver and gill tissues but was expressed at a lower level in head kidney tissue in post-smolts relative to parr. Moreover, salmon UNC93B1 mRNA transcripts were up-regulated in vivo in spleen tissue from polyI:C treated salmon and in vitro in polyI:C or IFNγ stimulated Salmon Head Kidney-1 (SHK-1) cells. Initial studies into the functional role of salmon UNC93B1 in fish TLR signalling found that both wild type salmon UNC93B1 and a molecule with a site-directed mutation (H424R) co-immunoprecipitated with salmon TLR19, TLR20a and TLR20d. Overall, these data illustrate the potential importance of UNC93B1 as an accessory protein in fish TLR signalling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Fish induced anaphylactic reaction: report of one case.

    PubMed

    Lin, H Y; Shyur, S D; Fu, J L; Lai, Y C; Lin, J S

    1998-01-01

    In the past 2 years, a 4 year-old boy has had an anaphylactic reaction whenever he contacted food prepared with fish. The symptoms included intense itching in the throat and eyes, which progressed to generalized urticaria and facial angioedema. This was accompanied by cough, wheezing and dyspnea. Many fish preparations caused these episodes including several different kinds of fish (cod, tuna, salmon, trout, eel...), fish soup, chopsticks contaminated with fish preparations and canned fish. Elevated levels of total serum IgE (224 IU/ml) and specific IgE for cod (93.1 IU/ml), tuna (> 100 IU/ml), salmon (> 100 IU/ml), trout (64.4 IU/ml), mackerel (41.2 IU/ml) and eel (28.1 IU/ml) were found by the Pharmacia CAP system RAST FEIA in our allergy clinic. A skin prick test for mixed fish extracts (contain flounder, cod and halibut) was positive. A fish challenge test for cod, tuna, salmon, trout and eel all showed anaphylactic reactions. His allergic symptoms stabilized gradually after strictly avoiding ingestion of fish and using drug treatment. He also had a similar anaphylactic reaction to frogs. The best treatment for fish allergy is avoidance. Avoidance of fish may need to include both ingestion and inhalation of cooking vapors.

  14. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucera, Paul A.

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population.more » The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860

  15. Comparison of polyunsaturated fatty acids content in filets of anadromous and landlocked sockeye salmon Oncorhynchus nerka.

    PubMed

    Gladyshev, Michail I; Lepskaya, Ekaterina V; Sushchik, Nadezhda N; Makhutova, Olesia N; Kalachova, Galina S; Malyshevskaya, Kseniya K; Markevich, Grigory N

    2012-12-01

    Fatty acid composition and content of 2 forms of sockeye salmon Oncorhynchus nerka from lakes in Kamchatka Peninsula (Russia) were compared. One form of sockeye salmon was anadromous ("marine"), that is, adult fish migrated in ocean to feed and grow and than return in the lake to breed. Fish of another form, kokanee, never migrate in the ocean. Per cent levels of the main indicators of nutritive value, eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3), were significantly higher in the landlocked O. nerka. However, concentrations of EPA and DHA per wet weight of filets were higher in the marine form, because of the relatively higher content of sum of fatty acids in their muscle tissue. As concluded, fish fed in marine environment had higher contents of long-chain n-3 fatty acids per wet weight than fish of the same species, fed in fresh waters. In general, both the anadromous sockeye salmon and the landlocked kokanee salmon can be recommended for human diet as a valuable product concerning contents of EPA and DHA. © 2012 Institute of Food Technologists®

  16. Influence of species, size and relative abundance on the outcomes of competitive interactions between brook trout and juvenile coho salmon

    USGS Publications Warehouse

    Thornton, Emily J; Duda, Jeff; Quinn, Thomas P.

    2016-01-01

    Resource competition between animals is influenced by a number of factors including the species, size and relative abundance of competing individuals. Stream-dwelling animals often experience variably available food resources, and some employ territorial behaviors to increase their access to food. We investigated the factors that affect dominance between resident, non-native brook trout and recolonizing juvenile coho salmon in the Elwha River, WA, USA, to see if brook trout are likely to disrupt coho salmon recolonization via interference competition. During dyadic laboratory feeding trials, we hypothesized that fish size, not species, would determine which individuals consumed the most food items, and that species would have no effect. We found that species, not size, played a significant role in dominance; coho salmon won 95% of trials, even when only 52% the length of their brook trout competitors. As the pairs of competing fish spent more time together during a trial sequence, coho salmon began to consume more food, and brook trout began to lose more, suggesting that the results of early trials influenced fish performance later. In group trials, we hypothesized that group composition and species would not influence fish foraging success. In single species groups, coho salmon consumed more than brook trout, but the ranges overlapped. Brook trout consumption remained constant through all treatments, but coho salmon consumed more food in treatments with fewer coho salmon, suggesting that coho salmon experienced more intra- than inter-specific competition and that brook trout do not pose a substantial challenge. Based on our results, we think it is unlikely that competition from brook trout will disrupt Elwha River recolonization by coho salmon.

  17. Potential disease interaction reinforced: double-virus-infected escaped farmed Atlantic salmon, Salmo salar L., recaptured in a nearby river.

    PubMed

    Madhun, A S; Karlsbakk, E; Isachsen, C H; Omdal, L M; Eide Sørvik, A G; Skaala, Ø; Barlaup, B T; Glover, K A

    2015-02-01

    The role of escaped farmed salmon in spreading infectious agents from aquaculture to wild salmonid populations is largely unknown. This is a case study of potential disease interaction between escaped farmed and wild fish populations. In summer 2012, significant numbers of farmed Atlantic salmon were captured in the Hardangerfjord and in a local river. Genetic analyses of 59 of the escaped salmon and samples collected from six local salmon farms pointed out the most likely source farm, but two other farms had an overlapping genetic profile. The escapees were also analysed for three viruses that are prevalent in fish farming in Norway. Almost all the escaped salmon were infected with salmon alphavirus (SAV) and piscine reovirus (PRV). To use the infection profile to assist genetic methods in identifying the likely farm of origin, samples from the farms were also tested for these viruses. However, in the current case, all the three farms had an infection profile that was similar to that of the escapees. We have shown that double-virus-infected escaped salmon ascend a river close to the likely source farms, reinforcing the potential for spread of viruses to wild salmonids. © 2014 The Authors. Journal of Fish Diseases published by John Wiley & Sons Ltd.

  18. U.S. response to a report of infectious salmon anemia virus in Western North America

    USGS Publications Warehouse

    Amos, Kevin H; Gustafson, Lori; Warg, Janet; Whaley, Janet; Purcell, Maureen K.; Rolland, Jill B.; Winton, James R.; Snekvik, Kevin; Meyers, Theodore; Stewart, Bruce; Kerwin, John; Blair, Marilyn; Bader, Joel; Evered, Joy

    2014-01-01

    Federal, state, and tribal fishery managers, as well as the general public and their elected representatives in the United States, were concerned when infectious salmon anemia virus (ISAV) was suspected for the first time in free-ranging Pacific Salmon collected from the coastal areas of British Columbia, Canada. This article documents how national and regional fishery managers and fish health specialists of the U.S. worked together and planned and implemented actions in response to the reported finding of ISAV in British Columbia. To date, the reports by Simon Fraser University remain unconfirmed and preliminary results from collaborative U.S. surveillance indicate that there is no evidence of ISAV in U.S. populations of free-ranging or marine-farmed salmonids on the west coast of North America.

  19. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice

    USDA-ARS?s Scientific Manuscript database

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of...

  20. Cooperative fish-rearing programs in Hanford Site excess facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herborn, D.I.; Anderson, B.N.

    1994-05-01

    In, 1993, two successful fish-rearing pilot projects were conducted in Hanford Site 100 K Area water treatment pools (K Pools) that are excess to the US Department of Energy needs. Beginning this spring, two larger cooperative fish programs will be undertaken in the K Pools. One program will involve the Yakama Indian Nation, which will rear, acclimate, and release 500,000 fall chinook salmon. The other program involves the Washington Department of Fish and Wildlife, which will rear warm-water specie (walleye and channel catfish) for planting in state lakes. Renewed economic vitality is the goal expected from these and follow-on fishmore » programs.« less

  1. Open-jaw syndrome in chinook salmon (Oncorhynchus tshawytscha) at a hatchery

    USGS Publications Warehouse

    Crouch, Dennis E.; Yasutake, William T.; Rucker, Robert R.

    1973-01-01

    Nearly 0.5% of the yearling spring chinook salmon (Oncorhynchus tshawytscha) at a national fish hatchery were observed with mouth agape, the condition occurring in two of 16 ponds. X-radiographs and histological preparations indicated that the articular bone of the lower jaw was malformed and dislocated dorsal and posterior to its normal point of attachment. The bone appeared to be embedded in the mandibular muscle and surrounded by an extensive fibrous tissue network. Genetic aberration, environmental interaction, and teratogenic substances are discussed as possible causes of the anomaly.

  2. An Assessment of the Status of Captive Broodstock Technology of Pacific Salmon, 1995 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagg, Thomas A.; Mahnaken, Conrad V.W.; Hard, Jeffrey J.

    1995-06-01

    This report provides guidance for the refinement and use of captive broodstock technology for Pacific salmon (Oncorhynchus spp.) by bringing together information on the husbandry techniques, genetic risks, physiology, nutrition, and pathology affecting captive broodstocks. Captive broodstock rearing of Pacific salmon is an evolving technology, as yet without well defined standards. At present, we regard captive rearing of Pacific salmon as problematic: high mortality rates and low egg viability were common in the programs we reviewed for this report. One of the most important elements in fish husbandry is the culture environment itself. Many captive broodstock programs for Pacific salmonmore » have reared fish from smolt-to-adult in seawater net-pens, and most have shown success in providing gametes for recovery efforts. However, some programs have lost entire brood years to diseases that transmitted rapidly in this medium. Current programs for endangered species of Pacific salmon rear most fish full-term to maturity in fresh well-water, since ground water is low in pathogens and thus helps ensure survival to adulthood. Our review suggested that captive rearing of fish in either freshwater, well-water, or filtered and sterilized seawater supplied to land-based tanks should produce higher survival than culture in seawater net-pens.« less

  3. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest). Coho Salmon.

    DTIC Science & Technology

    1986-04-01

    method in fingerlinqs prey on sockeye salmon Puqet Sound to predict coho salmon fry ( Oncorhynchus nerka ); 30% of catches from stream discharqe data, coho...numbers of males distinguish it from chinook salmon and females in a soawninq run are sim- ( Oncorhynchus tshawytscha), which have ilar males may...behind sockeye salmon (qnco- qoal is te umber of spawners rhynchus nerka ), pink salmon (. necesar) to majinta1n the run of a -orhuscha), and chum salmon

  4. Intestinal morphology of the wild Atlantic salmon (Salmo salar).

    PubMed

    Løkka, Guro; Austbø, Lars; Falk, Knut; Bjerkås, Inge; Koppang, Erling Olaf

    2013-08-01

    The worldwide-industrialized production of Atlantic salmon (Salmo salar) has increased dramatically during the last decades, followed by diseases related to the on-going domestication process as a growing concern. Even though the gastrointestinal tract seems to be a target for different disorders in farmed fish, a description of the normal intestinal status in healthy, wild salmon is warranted. Here, we provide such information in addition to suggesting a referable anatomical standardization for the intestine. In this study, two groups of wild Atlantic salmon were investigated, consisting of post smolts on feed caught in the sea and of sexually mature, starved individuals sampled from a river. The two groups represent different stages in the anadromous salmon life cycle, which also are part of the production cycle of farmed salmon. Selected regions of gastrointestinal tract were subjected to morphological investigations including immunohistochemical, scanning electron microscopic, and morphometric analyses. A morphology-based nomenclature was established, defining the cardiac part of the stomach and five different regions of the Atlantic salmon intestine, including pyloric caeca, first segment of the mid-intestine with pyloric caeca, first segment of the mid-intestine posterior to pyloric caeca, second segment of the mid-intestine and posterior intestinal segment. In each of the above described regions, for both groups of fish, morphometrical measurements and regional histological investigations were performed with regards to magnitude and direction of mucosal folding as well as the composition of the intestinal wall. Additionally, immunohistochemistry showing cells positive for cytokeratins, α-actin and proliferating cell nuclear antigen, in addition to alkaline phosphatase reactivity in the segments is presented. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  5. Responses of pink salmon to CO2-induced aquatic acidification

    NASA Astrophysics Data System (ADS)

    Ou, Michelle; Hamilton, Trevor J.; Eom, Junho; Lyall, Emily M.; Gallup, Joshua; Jiang, Amy; Lee, Jason; Close, David A.; Yun, Sang-Seon; Brauner, Colin J.

    2015-10-01

    Ocean acidification negatively affects many marine species and is predicted to cause widespread changes to marine ecosystems. Similarly, freshwater ecosystems may potentially be affected by climate-change-related acidification; however, this has received far less attention. Freshwater fish represent 40% of all fishes, and salmon, which rear and spawn in freshwater, are of immense ecosystem, economical and cultural importance. In this study, we investigate the impacts of CO2-induced acidification during the development of pink salmon, in freshwater and following early seawater entry. At this critical and sensitive life stage, we show dose-dependent reductions in growth, yolk-to-tissue conversion and maximal O2 uptake capacity; as well as significant alterations in olfactory responses, anti-predator behaviour and anxiety under projected future increases in CO2 levels. These data indicate that future populations of pink salmon may be at risk without mitigation and highlight the need for further studies on the impact of CO2-induced acidification on freshwater systems.

  6. Surface properties of Streptococcus phocae strains isolated from diseased Atlantic salmon, Salmo salar L.

    PubMed

    González-Contreras, A; Magariños, B; Godoy, M; Irgang, R; Toranzo, A E; Avendaño-Herrera, R

    2011-03-01

    Streptococcus phocae is an emerging pathogen for Chilean Atlantic salmon, Salmo salar, but the factors determining its virulence are not yet elucidated. In this work, cell surface-related properties such as hydrophobicity and haemagglutination, adhesion to mucus and cell lines, capsule detection, survival and biofilm formation in skin mucus and serum resistance of the isolates responsible for outbreaks in Atlantic salmon and seals were examined. Adhesion to hydrocarbons and the results of salt aggregation tests indicated most of the S. phocae were strongly hydrophobic. All isolates exhibited a similar ability to attach to the Chinook salmon embryo (CHSE) cells line, but were not able to enter CHSE cells. Haemagglutination was not detected. Our data clearly indicate that S. phocae can resist the killing activity of mucus and serum and proliferate in them, which could be associated with the presence of a capsular layer around the cells. Pathogenicity studies using seal and fish isolates demonstrated mortality or pathological signs in fish injected only with the Atlantic salmon isolate. No mortalities or histopathological alterations were observed in fish injected with extracellular products. © 2011 Blackwell Publishing Ltd.

  7. Captive Rearing Program for Salmon River Chinook Salmon, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venditti, David; Willard, Catherine; James, Chris

    2003-11-01

    During 2002, the Idaho Department of Fish and Game continued to develop techniques to rear Chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 328) and the West Fork Yankee Fork Salmon River (WFYF; N = 308) to establish brood year 2002 culture cohorts. The eyed-eggs were incubated and reared at the Eagle Fish Hatchery, Eagle, Idaho (Eagle). Juveniles collected in 2000 were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidneymore » disease prior to being transferred to the NOAA Fisheries, Manchester Marine Experimental Station, Manchester, Washington (Manchester) for saltwater rearing through maturity. Smolt transfers included 203 individuals from the WFYF and 379 from the EFSR. Maturing fish transfers from Manchester to Eagle included 107 individuals from the LEM, 167 from the WFYF, and 82 from the EFSR. This was the second year maturing adults were held on chilled water at Eagle to test if water temperature manipulations could advance spawn timing. Adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) temperature groups while at Eagle. Forty-seven mature females from the LEM (19 chilled, 16 ambient, and 12 ambient not included in the temperature study) were spawned at Eagle with 42 males in 2002. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage averaged 66.5% and did not differ significantly between the temperature groups. Personnel from the Shoshone-Bannock Tribe placed a total of 47,977 eyed-eggs from these crosses in in-stream incubators. Mature adults (N = 215 including 56 precocial males) were released into the WFYF to evaluate their reproductive performance. After release, fish distributed themselves

  8. Clove oil as an anaesthetic for adult sockeye salmon: Field trials

    USGS Publications Warehouse

    Woody, C.A.; Nelson, Jack L.; Ramstad, K.

    2002-01-01

    Wild migrating sockeye salmon Oncorhynchus nerka exposed to 20, 50 and 80 mg 1-1 of clove oil could be handled within 3 min, recovered within 10 min, and survived 15 min exposure trials. Fish tested at 110 mg 1-1 did not recover from 15 min exposure trials. Response curves developed for induction and recovery time considered the following predictors: clove oil concentration, sex, fish length and depth. A significant positive dependence was observed between induction time and fish length for 20, 50 and 80 mg 1-1 test concentrations; no dependence was observed between induction time and length at 110 and 140 mg 1-1. Recovery time differed as a function of clove oil concentration, but not fish size. A concentration of 50 mg 1-1 is recommended for anaesthetizing sockeye salmon ranging in length from 400 to 550 mm at water temperatures averaging 9-10??C.

  9. Atlantic salmon reovirus infection causes a CD8 T cell myocarditis in Atlantic salmon (Salmo salar L.).

    PubMed

    Mikalsen, Aase B; Haugland, Oyvind; Rode, Marit; Solbakk, Inge Tom; Evensen, Oystein

    2012-01-01

    Heart and skeletal inflammation (HSMI) of farmed Atlantic salmon (Salmo salar L.) is a disease characterized by a chronic myocarditis involving the epicardium and the compact and spongious part of the heart ventricle. Chronic myositis of the red skeletal muscle is also a typical finding of HSMI. Piscine reovirus (PRV) has been detected by real-time PCR from farmed and wild salmon with and without typical changes of HSMI and thus the causal relationship between presence of virus and the disease has not been fully determined. In this study we show that the Atlantic salmon reovirus (ASRV), identical to PRV, can be passaged in GF-1 cells and experimental challenge of naïve Atlantic salmon with cell culture passaged reovirus results in cardiac and skeletal muscle pathology typical of HSMI with onset of pathology from 6 weeks, peaking by 9 weeks post challenge. ASRV replicates in heart tissue and the peak level of virus replication coincides with peak of heart lesions. We further demonstrate mRNA transcript assessment and in situ characterization that challenged fish develop a CD8+ T cell myocarditis.

  10. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2004-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  11. Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2006 - September 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Mueller, Robert P.; Murray, Katherine J.

    2008-08-08

    From 1999 through 2007, the Fish and Wildlife Program of the Bonneville Power Administration funded a project to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Data were collected to ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. The projects objectives are consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats tomore » the production of salmon in the Columbia River Basin. Because of the influence of mainstem habitat on salmon production, there is a continued need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. During FY 2007, Pacific Northwest National Laboratory focused on (1) locating and mapping deep-water fall Chinook salmon and chum salmon spawning areas, (2) investigating the interaction between groundwater and surface water near fall Chinook and chum salmon spawning areas, and (3) providing in-season hyporheic temperature and water surface elevation data to assist state agencies with emergence timing and redd dewatering estimates. This report documents the studies and tasks performed by PNNL during FY 2007. Chapter 1 provides a description of the searches conducted for deepwater redds-adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning

  12. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products

    PubMed Central

    2012-01-01

    Background The imbalance of the n-3/n-6 ratio in the Western diet is characterised by a low intake of n-3 long-chain (LC) PUFA and a concurrent high intake of n-6 PUFA. Fish, in particular marine fish, is a unique source of n-3 LC PUFA. However, FA composition of consumed fish changed, due to the increasing usage of n-6 PUFA-rich vegetable oils in aquaculture feed and in fish processing (frying) which both lead to a further shift in n-6 PUFA to the detriment of n-3 LC PUFA. The aim of this study was to determine the ratio of n-3/n-6 including the contents of EPA and DHA in fish fillets and fish products from the German market (n=123). Furthermore, the study focussed on the FA content in farmed salmon compared to wild salmon as well as in processed Alaska pollock fillet, e.g., fish fingers. Results Total fat and FA content in fish products varied considerably depending on fish species, feed management, and food processing. Mackerel, herring and trout fillets characteristically contained adequate dietary amounts of absolute EPA and DHA, due to their high fat contents. However, despite a lower fat content, tuna, pollock, and Alaska pollock can contribute considerable amounts of EPA and DHA to the human supply. Farmed salmon are an appropriate source of EPA and DHA owing to their higher fat content compared to wild salmon (12.3 vs. 2.1 wt %), however with elevated SFA, n-9 and n-6 FA contents representing the use of vegetable oils and oilseeds in aquaculture feed. The n-3/n-6 ratio was deteriorated (2.9 vs. 12.4) but still acceptable. Compared to pure fish fillets, breaded and pre-fried Alaska pollock fillet contained extraordinarily high fat and n-6 PUFA levels. Conclusions Since fish species vary with respect to their n-3 LC PUFA contents, eating a variety of fish is advisable. High n-6 PUFA containing pre-fried fish support the imbalance of n-3/n-6 ratio in the Western diet. Thus, consumption of pure fish fillets is to be favoured. The lower n-3 PUFA portion in

  13. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products.

    PubMed

    Strobel, Claudia; Jahreis, Gerhard; Kuhnt, Katrin

    2012-10-30

    The imbalance of the n-3/n-6 ratio in the Western diet is characterised by a low intake of n-3 long-chain (LC) PUFA and a concurrent high intake of n-6 PUFA. Fish, in particular marine fish, is a unique source of n-3 LC PUFA. However, FA composition of consumed fish changed, due to the increasing usage of n-6 PUFA-rich vegetable oils in aquaculture feed and in fish processing (frying) which both lead to a further shift in n-6 PUFA to the detriment of n-3 LC PUFA.The aim of this study was to determine the ratio of n-3/n-6 including the contents of EPA and DHA in fish fillets and fish products from the German market (n=123). Furthermore, the study focussed on the FA content in farmed salmon compared to wild salmon as well as in processed Alaska pollock fillet, e.g., fish fingers. Total fat and FA content in fish products varied considerably depending on fish species, feed management, and food processing. Mackerel, herring and trout fillets characteristically contained adequate dietary amounts of absolute EPA and DHA, due to their high fat contents. However, despite a lower fat content, tuna, pollock, and Alaska pollock can contribute considerable amounts of EPA and DHA to the human supply.Farmed salmon are an appropriate source of EPA and DHA owing to their higher fat content compared to wild salmon (12.3 vs. 2.1 wt %), however with elevated SFA, n-9 and n-6 FA contents representing the use of vegetable oils and oilseeds in aquaculture feed. The n-3/n-6 ratio was deteriorated (2.9 vs. 12.4) but still acceptable. Compared to pure fish fillets, breaded and pre-fried Alaska pollock fillet contained extraordinarily high fat and n-6 PUFA levels. Since fish species vary with respect to their n-3 LC PUFA contents, eating a variety of fish is advisable. High n-6 PUFA containing pre-fried fish support the imbalance of n-3/n-6 ratio in the Western diet. Thus, consumption of pure fish fillets is to be favoured. The lower n-3 PUFA portion in farmed fish can be offset by the

  14. Do Spawning Salmon Contribute Marine-Derived Contaminants to Southeast Alaskan Streams?

    NASA Astrophysics Data System (ADS)

    Nagorski, S. A.; Hudson, J. P.; Fellman, J.; Hood, E. W.; Vermilyea, A.; Krabbenhoft, D. P.; Ylitalo, G.

    2016-12-01

    Pacific salmon are well known contributors of marine-derived nutrients and carbon to freshwater systems where they spawn and die. A potentially negative side effect of their freshwater spawning legacy is their additional contribution of pollutants accumulated during the marine phase of their life cycle. Alaskan salmon, which undergo the majority of their bodily growth in the North Pacific, are being exposed to rising concentrations of pollutants in the waters and foodwebs of the north Pacific. In this study we investigated the contribution of mercury and persistent organic pollutants (POPs) by spawning Pacific salmon to five streams in the vicinity of Juneau, Alaska. Using a nested experimental design inherent in streams with natural migration barriers or steep density gradients, we collected samples from stream reaches with and without spawning salmon. We measured total and methyl mercury in filtered water, suspended particulates, streambed sediment, biofilm on incubated leaf packs, two taxa of benthic macroinvertebrate larvae, and rearing and/or resident fishes. The benthic macroinvertebrates and fishes were also analyzed for a suite of POPs, consisting of historic and current use pesticides and historic and urban use chemicals. For most parameters, contaminant concentrations were higher in the lower reaches where salmon spawners were present, with stronger effects in the streams with higher spawner densities. For example, in the two streams with the highest spawner densities, filtered methylmercury was an order of magnitude higher in the lower stream reach and comprised up to 33% of the total mercury. Alder leaf packs resulted in particularly consistent spatial patterns, while benthic macroinvertebrate larvae results were the least spatially consistent for both mercury and POPs. Although fish tissue mercury concentrations were not uniformly higher in lower stream reaches across our 5 study streams due to upstream sources of mercury and different fish species and

  15. 50 CFR 100.27 - Subsistence taking of fish.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subsistence fishing for salmon, you may not use a gillnet exceeding 50 fathoms in length, unless otherwise...) Bristol Bay Fishery Management Area—The total cash value per household of salmon taken within Federal... not exceed $500.00 annually. (ii) Upper Copper River District—The total number of salmon per household...

  16. Consequences of high temperatures and premature mortality on the transcriptome and blood physiology of wild adult sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M

    2012-01-01

    Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds. PMID:22957178

  17. Consequences of high temperatures and premature mortality on the transcriptome and blood physiology of wild adult sockeye salmon (Oncorhynchus nerka).

    PubMed

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M

    2012-07-01

    Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds.

  18. Yolo Bypass Juvenile Salmon Utilization Study 2016—Summary of acoustically tagged juvenile salmon and study fish release, Sacramento River, California

    USGS Publications Warehouse

    Liedtke, Theresa L.; Hurst, William R.

    2017-09-12

    The Yolo Bypass is a flood control bypass in Sacramento Valley, California. Flood plain habitats may be used for juvenile salmon rearing, however, the potential value of such habitats can be difficult to evaluate because of the intermittent nature of inundation events. The Yolo Bypass Juvenile Salmon Utilization Study (YBUS) used acoustic telemetry to evaluate the movements and survival of juvenile salmon adjacent to and within the Yolo Bypass during the winter of 2016. This report presents numbers, size data, and release data (times, dates, and locations) for the 1,197 acoustically tagged juvenile salmon released for the YBUS from February 21 to March 18, 2016. Detailed descriptions of the surgical implantation of transmitters are also presented. These data are presented to support the collaborative, interagency analysis and reporting of the study findings.

  19. Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis.

    PubMed

    Sutherland, Ben J G; Koczka, Kim W; Yasuike, Motoshige; Jantzen, Stuart G; Yazawa, Ryosuke; Koop, Ben F; Jones, Simon R M

    2014-03-15

    Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection. In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon. Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance

  20. Temporal signal processing of dolphin biosonar echoes from salmon prey.

    PubMed

    Au, Whitlow W L; Ou, Hui Helen

    2014-08-01

    Killer whales project short broadband biosonar clicks. The broadband nature of the clicks provides good temporal resolution of echo highlights and allows for the discriminations of salmon prey. The echoes contain many highlights as the signals reflect off different surfaces and parts of the fish body and swim bladder. The temporal characteristics of echoes from salmon are highly aspect dependent and six temporal parameters were used in a support vector machine to discriminate between species. Results suggest that killer whales can classify salmon based on their echoes and provide some insight as to which features might enable the classification.

  1. Olfactory gene expression in migrating adult sockeye salmon Oncorhynchus nerka.

    PubMed

    Bett, N N; Hinch, S G; Kaukinen, K H; Li, S; Miller, K M

    2018-04-16

    Expression of 12 olfactory genes was analysed in adult sockeye salmon Oncorhynchus nerka nearing spawning grounds and O. nerka that had strayed from their natal migration route. Variation was found in six of these genes, all of which were olfc olfactory receptors and had lower expression levels in salmon nearing spawning grounds. The results may reflect decreased sensitivity to natal water olfactory cues as these fish are no longer seeking the correct migratory route. The expression of olfactory genes during the olfactory-mediated spawning migration of Pacific salmon Oncorhynchus spp. is largely unexplored and these findings demonstrate a link between migratory behaviours and olfactory plasticity that provides a basis for future molecular research on salmon homing. © 2018 The Fisheries Society of the British Isles.

  2. Atlantic salmon and eastern oyster breeding programs at the National Cold Water Marine Aquaculture Center

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) focuses on the coldwater marine aquaculture industry’s highest priority research needs including development of improved genetic stocks. Coldwater aquaculture production has potential for expansion, and both Atlantic salmon and Eas...

  3. Atlantic salmon and eastern oyster breeding programs at the National Cold Water Marine Aquaculture Center

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) focuses on the coldwater marine aquaculture industry's highest priority research needs including development of improved genetic stocks. Coldwater aquaculture production has potential for expansion, and both Atlantic salmon and East...

  4. Evaluation of Infrasound and Strobe Lights for Eliciting Avoidance Behavior in Juvenile Salmon and Char

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Robert P.; Neitzel, Duane A.; Amidan, Brett G.

    2001-12-01

    Laboratory tests were conducted using juvenile chinook salmon Oncorhynchus tshawytscha, brook trout Salvelinus fontinalis, and rainbow trout O. mykiss to determine specific behavior responses to infrasound (< 20 Hz) and flashing strobe lights. The objective of these tests was to determine if juvenile salmonids could be deterred from entrainment at water diversion structures. Caged fish were acclimated in a static test tank and their behavior was recorded using low light cameras. Species-specific behavior was characterized by measuring movements of the fish within the cage and by observing startle and habituation responses. Wild chinook salmon (40-45 mm TL) and hatchery rearedmore » chinook salmon (45-50 mm TL) exhibited avoidance responses when initially exposed to a 10-Hz volume displacement source of infrasound. Rainbow and eastern brook trout (25-100 mm TL) did not respond with avoidance or other behaviors to infrasound. Evidence of habituation to the infrasound source was evident for chinook salmon during repeated exposures. Wild and hatchery chinook displayed a higher proportion of movement during the initial exposures to infrasound when the acclimation period in the test tank was 2-3 h as compared to a 12-15 h acclimation period. A flashing strobe light produced consistent movement in wild chinook salmon (60% of the tests), hatchery reared chinook salmon (50%), and rainbow trout (80%). No measurable responses were observed for brook trout. Results indicate that consistent, repeatable responses can be elicited from some fish using high-intensity strobe lights under a controlled laboratory testing. The species specific behaviors observed in these experiments might be used to predict how fish might react to low-frequency sound and strobe lights in a screening facility.« less

  5. Migration behavior and dispersal of adult spring Chinook salmon released into Lake Scanewa on the upper Cowlitz River during 2005

    USGS Publications Warehouse

    Perry, R.W.; Kock, Tobias J.; Kritter , M.A; Rondorf, Dennis W.

    2007-01-01

    During 2005, we conducted a radio-telemetry study to answer a number of basic questions about the migration behavior of adult Spring Chinook salmon (Oncorhynchus tshawytscha) released into the upper Cowlitz River watershed. We also conducted a pilot study of adult Coho salmon (Oncorhynchus kisutch) using radio-tags recovered from adult spring Chinook salmon. This data is included as an Appendix. Our study was designed to evaluate the dispersal of adult spring Chinook salmon to determine the proportion of the run 1) spawning in the Cispus River, 2) spawning in the Cowlitz River, 3) passing downstream through Cowlitz Falls Dam into Riffe Lake, and 4) remaining in Lake Scanewa. We also examined spatial patterns of movement in the study area and temporal patterns of fish movements. Last, we examined differences in migration behavior between hatchery and wild fish and male and female fish.

  6. Comparison of allergenic properties of salmon (Oncorhynchus nerka) between landlocked and anadromous species.

    PubMed

    Kondo, Yasuto; Ahn, Jeakun; Komatsubara, Ryo; Terada, Akihiko; Yasuda, Toshitaka; Tsuge, Ikuya; Urisu, Atsuo

    2009-06-01

    Salmon is one of the most widely consumed seafoods in Japan and many other countries around the world. Due to the confirmed cases of salmon-induced allergy, the food sanitation law in Japan stipulates salmon as one of the specific food items for which labeling is recommended when used as an ingredient of processed foods. However, trout, the landlocked form of anadromous salmon, is not subject to the allergen-labeling requirements, even though both populations belong to a single species. Since no supporting data have been demonstrated to make a clear distinction between these two populations in terms of allergenicity, we comparatively examined their allergenic properties using sera from patients allergic to fish. Extracts of Oncorhynchus nerka from different habitats were obtained: kokanee (landlocked) and red salmon (anadromous). Control extracts were derived from four other species. This study focused on the (1) IgE-binding capacity of the fish extracts in patients' sera (n = 50), (2) ELISA inhibition test (n = 6), and (3) inhibition immunoblot test (n = 8) between the kokanee and red salmon. The extracts from kokanee and red salmon showed the highest correlation with each other in terms of the IgE-binding capacity, and showed complete (100%) reciprocal cross-inhibition in the ELISA inhibition test. On immunoblotting, there was no marked difference in the staining pattern between the two extracts, and each IgE-binding band gradually disappeared when the patients' sera were preincubated with the counterpart antigen in a dose-dependent manner. These results suggest that kokanee has similar allergenic properties to red salmon.

  7. Juvenile Chinook Salmon mortality in a Snake River Reservoir: Smallmouth Bass predation revisited

    USGS Publications Warehouse

    Erhardt, John M.; Tiffan, Kenneth F.; Connor, William P.

    2018-01-01

    Predation by nonnative fishes has been identified as a contributing factor in the decline of juvenile salmonids in the Columbia River basin. We examined the diet composition of Smallmouth Bass Micropterus dolomieu and estimated the consumption and predation loss of juvenile Chinook Salmon Oncorhynchus tshawytscha in Lower Granite Reservoir on the Snake River. We examined 4,852 Smallmouth Bass stomachs collected from shoreline habitats during April–September 2013–2015. Chinook Salmon were the second most commonly consumed fish by all size‐classes of Smallmouth Bass (≥150 mm TL) throughout the study. Over the 3 years studied, we estimated that a total of 300,373 Chinook Salmon were consumed by Smallmouth Bass in our 22‐km study area, of which 97% (291,884) were subyearlings (age 0) based on length frequency data. A majority of the loss (61%) occurred during June, which coincided with the timing of hatchery releases of subyearling fall Chinook Salmon. Compared to an earlier study, mean annual predation loss increased more than 15‐fold from 2,670 Chinook Salmon during 1996–1997 to 41,145 Chinook Salmon during 2013–2015 (in reaches that could be compared), despite lower contemporary Smallmouth Bass abundances. This increase can be explained in part by increases in Smallmouth Bass consumption rates, which paralleled increases in subyearling Chinook Salmon densities—an expected functional response by an opportunistic consumer. Smallmouth Bass are currently significant predators of subyearling Chinook Salmon in Lower Granite Reservoir and could potentially be a large source of unexplained mortality.

  8. Estuarine environments as rearing habitats for juvenile Coho Salmon in contrasting south-central Alaska watersheds

    USGS Publications Warehouse

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2013-01-01

    For Pacific salmon, estuaries are typically considered transitional staging areas between freshwater and marine environments, but their potential as rearing habitat has only recently been recognized. The objectives of this study were two-fold: (1) to determine if Coho Salmon Oncorhynchus kisutch were rearing in estuarine habitats, and (2) to characterize and compare the body length, age, condition, and duration and timing of estuarine occupancy of juvenile Coho Salmon between the two contrasting estuaries. We examined use of estuary habitats with analysis of microchemistry and microstructure of sagittal otoliths in two watersheds of south-central Alaska. Juvenile Coho Salmon were classified as estuary residents or nonresidents (recent estuary immigrants) based on otolith Sr : Ca ratios and counts of daily growth increments on otoliths. The estuaries differed in water source (glacial versus snowmelt hydrographs) and in relative estuarine and watershed area. Juvenile Coho Salmon with evidence of estuary rearing were greater in body length and condition than individuals lacking evidence of estuarine rearing. Coho Salmon captured in the glacial estuary had greater variability in body length and condition, and younger age-classes predominated the catch compared with the nearby snowmelt-fed, smaller estuary. Estuary-rearing fish in the glacial estuary arrived later and remained longer (39 versus 24 d of summer growth) during the summer than did fish using the snowmelt estuary. Finally, we observed definitive patterns of overwintering in estuarine and near shore environments in both estuaries. Evidence of estuary rearing and overwintering with differences in fish traits among contrasting estuary types refute the notion that estuaries function as only staging or transitional habitats in the early life history of Coho Salmon.

  9. Assessment of Barotrauma from Rapid Decompression of Depth-Acclimated Juvenile Chinook Salmon Bearing Radiotelemetry Transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.

    2009-11-01

    This study investigated the mortality of and injury to juvenile Chinook salmon Oncorhynchus tshawytscha exposed to simulated pressure changes associated with passage through a large Kaplan hydropower turbine. Mortality and injury varied depending on whether a fish was carrying a transmitter, the method of transmitter implantation, the depth of acclimation, and the size of the fish. Juvenile Chinook salmon implanted with radio transmitters were more likely than those without to die or sustain injuries during simulated turbine passage. Gastric transmitter implantation resulted in higher rates of injury and mortality than surgical implantation. Mortality and injury increased with increasing pressure ofmore » acclimation. Injuries were more common in subyearling fish than in yearling fish. Gas emboli in the gills and internal hemorrhaging were the major causes of mortality. Rupture of the swim bladder and emphysema in the fins were also common. This research makes clear that the exposure of juvenile Chinook salmon bearing radiotelemetry transmitters to simulated turbine pressures with a nadir of 8-19 kPa can result in barotrauma, leading to immediate or delayed mortality. The study also identified sublethal barotrauma injuries that may increase susceptibility to predation. These findings have significant implications for many studies that use telemetry devices to estimate the survival and behavior of juvenile salmon as they pass through large Kaplan turbines typical of those within the Columbia River hydropower system. Our results indicate that estimates of turbine passage survival for juvenile Chinook salmon obtained with radiotelemetry devices may be negatively biased.« less

  10. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinookmore » captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging

  11. Fish vs. power: Remaking salmon, science and society on the Fraser River, 1900--1960

    NASA Astrophysics Data System (ADS)

    Evenden, Matthew Dominic

    Overlapping resource demands made the Fraser River a contested site of development politics in twentieth century British Columbia. Since the turn of the century, power interests surveyed the river's flow, sited dams and promoted development schemes. Fisheries interests, on the other hand, sought to maintain the river as salmon spawning habitat. They questioned the necessity of dams, supported fisheries research and rehabilitation and organized anti-development coalitions. Before the mid-1950s a number of dam projects proceeded on Fraser tributaries and major landslides at Hells Gate modeled the dangers of main stem development. Because of the concerted political lobbying of fisheries groups, the skeptical appraisal of fisheries scientists to development proposals and the legal and political authority of the federal Department of Fisheries and the International Pacific Salmon Fisheries Commission, major dam projects were defeated on the Fraser in the late 1950s. Delayed development on the Fraser helped to spur hydroelectric projects on other rivers in the province; the fish-power problem on the Fraser altered the province's spatial economy of power. Once development began on the Columbia and Peace Rivers, the Fraser was protected by implication. The study combines approaches from environmental history, the history of science and political economy to demonstrate the intersections and interactions between nature, knowledge and society. Research was conducted at eleven archives in Canada and the United States in the papers of organizations, corporations, government departments, politicians, scientists and individuals.

  12. [Microbiological rationale for using whey on salting salmon caviar].

    PubMed

    Kim, I N; Shtan'ko, T I

    2011-01-01

    The paper provides a rationale for the use of whey to salt salmon fishes instead of traditional preservatives, including those exported from low industrial potential countries, which do not undergo comprehensive sanitary and hygienic tests. On the basis of the performed studies, the authors recommend to use whey to salt salmon caviar, which ensures the ecological purity of the product containing the minimum amount of preservatives and other substances that fail to affect its organoleptic properties.

  13. Effect of chitosan-based coatings on the shelf life of salmon (Salmo salar).

    PubMed

    Souza, Bartolomeu W S; Cerqueira, Miguel A; Ruiz, Héctor A; Martins, Joana T; Casariego, Alicia; Teixeira, José A; Vicente, António A

    2010-11-10

    This study aimed at determining the effect of chitosan coating on shelf life extension of salmon ( Salmo salar ) fillets. The success of edible coatings depends highly on their effective wetting capacity of the surfaces on which they are applied. In this context in a first stage the surface properties of salmon fillets and the wetting capacity of the coatings on fish were evaluated. In terms of wettability there were no significant differences (p > 0.05) between the solutions presenting higher values (solutions 1-4); therefore, solution 1 with a spreading coefficient (Ws) of -4.73 mN m(-1), was chosen to be subsequently analyzed and applied on fish fillets. For shelf life analyses the fillets were coated and stored at 0 °C for 18 days. The control and coated fish samples were analyzed periodically for total aerobic plate count (TPC), pH, total volatile base nitrogen (TVB-N), trimethylamine (TMA), thiobarbituric acid (TBA), and ATP breakdown products (K value). The results showed that fish samples coated with chitosan presented a significant reduction (p < 0.05) for pH and K value after 6 days and for TVB, TMA, and TBA values after 9 days of storage, when compared to control samples. In terms of microbial growth, a slower increase in TPC was observed for the coated fish, indicating that chitosan-based coatings were effective in extending for an additional 3 days the shelf life of the salmon. These results demonstrate that chitosan-based coatings may be an alternative for extending the shelf life of salmon fillets during storage at 0 °C.

  14. Molecular cloning and functional expression of atlantic salmon peptide transporter 1 in Xenopus oocytes reveals efficient intestinal uptake of lysine-containing and other bioactive di- and tripeptides in teleost fish.

    PubMed

    Rønnestad, Ivar; Murashita, Koji; Kottra, Gabor; Jordal, Ann-Elise; Narawane, Shailesh; Jolly, Cecile; Daniel, Hannelore; Verri, Tiziano

    2010-05-01

    Atlantic salmon (Salmo salar L.) is one of the most economically important cultured fish and also a key model species in fish nutrition. During digestion, dietary proteins are enzymatically cleaved and a fraction of degradation products in the form of di- and tripeptides translocates from the intestinal lumen into the enterocyte via the Peptide Transporter 1 (PepT1). With this in mind, a full-length cDNA encoding the Atlantic salmon PepT1 (asPepT1) was cloned and functionally characterized. When overexpressed in Xenopus laevis oocytes, asPepT1 operated as a low-affinity/high-capacity transport system, and its maximal transport activity slightly increased as external proton concentration decreased (varying extracellular pH from 6.5 to 8.5). A total of 19 tested di- and tripeptides, some with acknowledged bioactive properties, some containing lysine, which is conditionally growth limiting in fish, were identified as well transported substrates, with affinities ranging between approximately 0.5 and approximately 1.5 mmol/L. Analysis of body tissue distribution showed the highest levels of asPepT1 mRNA in the digestive tract. In particular, asPepT1 mRNA was present in all segments after the stomach, with higher levels in the pyloric caeca and midgut region and lower levels in the hindgut. Depriving salmon of food for 6 d resulted in a approximately 70% reduction of intestinal PepT1 mRNA levels. asPepT1 will allow systematic in vitro analysis of transport of selected di- and tripeptides that may be generated in Atlantic salmon intestine during gastrointestinal transit. Also, asPepT1 will be useful as a marker to estimate protein absorption function along the intestine under various physiological and pathological conditions.

  15. Within-farm spread of infectious salmon anemia virus (ISAV) in Atlantic salmon Salmo salar farms in Chile.

    PubMed

    Mardones, F O; Jansen, P A; Valdes-Donoso, P; Jarpa, M; Lyngstad, T M; Jimenez, D; Carpenter, T E; Perez, A M

    2013-09-24

    Spread of infectious salmon anemia virus (ISAV) at the cage level was quantified using a subset of data from 23 Atlantic salmon Salmo salar farms located in southern Chile. Data collected from official surveillance activities were systematically organized to obtain detailed information on infectious salmon anemia (ISA) outbreaks. Descriptive statistics for outbreak duration, proportion of infected fish, and time to secondary infection were calculated to quantify the magnitude of ISAV incursions. Linear and multiple failure time (MFT) regression models were used to determine factors associated with the cage-level reproduction number (Rc) and hazard rate (HR) for recurrent events, respectively. In addition, the Knox test was used to assess if cage-to-cage transmissions were clustered in space and time. Findings suggest that within farms, ISA outbreaks, on average, lasted 30 wk (median = 26 wk, 95% CI = 24 to 37 wk) and affected 57.3% (95% CI = 47.7 to 67.0%) of susceptible cages. The median time to secondarily diagnosed cages was 23 d. Occurrence of clinical ISAV outbreaks was significantly associated with increased Rc, whereas increased HR was significantly associated with clinical outbreaks and with a large number of fish. Spatio-temporal analysis failed to identify clustering of cage cases, suggesting that within-farm ISAV spread is independent of the spatial location of the cages. Results presented here will help to better understand ISAV transmission, to improve the design of surveillance programs in Chile and other regions in which salmon are intensively farmed, and to examine the economic impact of ISAV and related management strategies on various cost and demand shifting factors.

  16. A non-lethal method to estimate CYP1A expression in laboratory and wild Atlantic salmon (Salmo salar)

    USGS Publications Warehouse

    Rees, C.B.; McCormick, S.D.; Li, W.

    2005-01-01

    Expression of cytochrome P4501A (CYP1A) has been used as a biomarker for possible exposure to contaminants such as PCBs and dioxins in teleost fish. Using a quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR) and a non-lethal gill biopsy, we estimated levels of CYP1A mRNA expression in Atlantic salmon (Salmo salar). Groups of ten Atlantic salmon juveniles (48–76 g) received an intraperitoneal injection of 50 μg g− 1 β-naphthoflavone (BNF) or vehicle. Their gill tissues were repeatedly sampled by non-lethal biopsies on day 0, 1, 2 and 7. Control fish expressed basal levels of CYP1A over the duration of sampling. BNF-treated salmon demonstrated similar levels of CYP1A to control fish at day 0 and higher levels over the course of each additional sampling point. Gill biopsies from wild salmon sampled from Millers River (South Royalston, Worcester County, MA, USA), known to contain PCBs, showed significantly higher CYP1A levels over an uncontaminated reference stream, Fourmile Brook (Northfield, Franklin County, MA, USA). We conclude that gill biopsies coupled with Q-RT-PCR analysis is a valuable tool in environmental assessment of wild Atlantic salmon populations and has the potential to be applied to other populations of fish as well.

  17. Deepening Thermocline Displaces Salmon Catch On The Oregon Coast

    NASA Astrophysics Data System (ADS)

    Harrison, C. S.; Lawson, P.

    2015-12-01

    Establishing a linkage between fish stock distributions and physical oceanography at a fine scale provides insights into the dynamic nature of near-shore ocean habitats. Characterization of habitat preferences adds to our understanding of the ecosystem, and may improve forecasts of distribution for harvest management. The Project CROOS (Collaborative Research on Oregon Ocean Salmon) Chinook salmon catch data set represents an unprecedented high-resolution record of catch location and depth, with associated in-situ temperature measurements and stock identification derived from genetic data. Here we connect this data set with physical ocean observations to gain understanding of how circulation affects salmon catch distributions. The CROOS observations were combined with remote and in situ observations of temperature, as well as a data assimilative regional ocean model that incorporates satellite and HF radar data. Across the CROOS data set, catch is primarily located within the upwelling front over the seamounts and reef structures associated with Heceta and Stonewall Banks along the shelf break. In late September of 2014 the anomalously warm "blob" began to arrive on the Oregon coast coincident with a strong downwelling event. At this time the thermocline deepened from 20 to 40 m, associated with a deepening of salmon catch depth. A cold "bulb" of water over Heceta Bank may have provided a thermal refuge for salmon during the initial onshore movement of the anomalously warm water. These observations suggest that a warming ocean, and regional warming events in particular, will have large effects on fish distributions at local and regional scales, in turn impacting fisheries.

  18. Dietary accumulation efficiencies and biotransformation of polybrominated diphenyl ethers in farmed Atlantic salmon (Salmo salar).

    PubMed

    Isosaari, P; Lundebye, A-K; Ritchie, G; Lie, O; Kiviranta, H; Vartiainen, T

    2005-09-01

    The consumer safety of farm-raised salmon could be improved by determining the transfer efficiency of hazardous pollutants from fish feed to the salmon. A controlled feeding trial for 30 weeks was carried out to investigate the transfer of polybrominated diphenyl ethers (PBDEs) in Atlantic salmon (Salmo salar). Using three feed concentrations, an average of 95% of the total PBDE content of feed accumulated in whole salmon. Skinned fillet accumulated 42-59% of the PBDE intake. Equal partitioning according to the lipid content of the tissue was demonstrated. The formation of less brominated PBDEs via preferential debromination from the meta-position was thought to explain the exceptional accumulation efficiencies of BDE 47, BDE 66, BDE 75, BDE 119 and BDE 183 that were either >100% or else increasing with the exposure dose. Monitoring of a larger number of PBDE congeners is recommended to verify the biotransformation routes. The PBDE concentration in salmon of different ages, fed on a known concentration of PBDEs in fish feed, could be predicted by using the accumulation efficiencies determined in this study.

  19. Cognitive antecedents of consumers' willingness to purchase fish rich in polyunsaturated fatty acids (PUFA).

    PubMed

    Foxall, G; Leek, S; Maddock, S

    1998-12-01

    A sample of UK consumers (N = 311) was interviewed in order to identify the attitudinal, cognitive and involvement characteristics of probable early adopters of polyunsaturated fatty acid (PUFA) fed fish. Attitude to fish significantly influenced PUFA fish, premium price PUFA fish, PUFA salmon, PUFA eel and PUFA sturgeon purchase. Involvement in healthy eating influenced PUFA fish, premium price PUFA fish and PUFA salmon purchase. Cognitive style did not influence PUFA fish and premium price PUFA fish purchase; nor, contrary to earlier research, did cognitive style and involvement interact to influence intended PUFA fish purchases.

  20. Summer temperature variation and implications for juvenile Atlantic salmon

    USGS Publications Warehouse

    Mather, M. E.; Parrish, D.L.; Campbell, C.A.; McMenemy, J.R.; Smith, Joseph M.

    2008-01-01

    Temperature is important to fish in determining their geographic distribution. For cool- and cold-water fish, thermal regimes are especially critical at the southern end of a species' range. Although temperature is an easy variable to measure, biological interpretation is difficult. Thus, how to determine what temperatures are meaningful to fish in the field is a challenge. Herein, we used the Connecticut River as a model system and Atlantic salmon (Salmo salar) as a model species with which to assess the effects of summer temperatures on the density of age 0 parr. Specifically, we asked: (1) What are the spatial and temporal temperature patterns in the Connecticut River during summer? (2) What metrics might detect effects of high temperatures? and (3) How is temperature variability related to density of Atlantic salmon during their first summer? Although the most southern site was the warmest, some northern sites were also warm, and some southern sites were moderately cool. This suggests localized, within basin variation in temperature. Daily and hourly means showed extreme values not apparent in the seasonal means. We observed significant relationships between age 0 parr density and days at potentially stressful, warm temperatures (???23??C). Based on these results, we propose that useful field reference points need to incorporate the synergistic effect of other stressors that fish encounter in the field as well as the complexity associated with cycling temperatures and thermal refuges. Understanding the effects of temperature may aid conservation efforts for Atlantic salmon in the Connecticut River and other North Atlantic systems. ?? 2008 Springer Science+Business Media B.V.

  1. Judging a salmon by its spots: environmental variation is the primary determinant of spot patterns in Salmo salar.

    PubMed

    Jørgensen, Katarina M; Solberg, Monica F; Besnier, Francois; Thorsen, Anders; Fjelldal, Per Gunnar; Skaala, Øystein; Malde, Ketil; Glover, Kevin A

    2018-04-12

    In fish, morphological colour changes occur from variations in pigment concentrations and in the morphology, density, and distribution of chromatophores in the skin. However, the underlying mechanisms remain unresolved in most species. Here, we describe the first investigation into the genetic and environmental basis of spot pattern development in one of the world's most studied fishes, the Atlantic salmon. We reared 920 salmon from 64 families of domesticated, F1-hybrid and wild origin in two contrasting environments (Hatchery; tanks for the freshwater stage and sea cages for the marine stage, and River; a natural river for the freshwater stage and tanks for the marine stage). Fish were measured, photographed and spot patterns evaluated. In the Hatchery experiment, significant but modest differences in spot density were observed among domesticated, F1-hybrid (1.4-fold spottier than domesticated) and wild salmon (1.7-fold spottier than domesticated). A heritability of 6% was calculated for spot density, and a significant QTL on linkage group SSA014 was detected. In the River experiment, significant but modest differences in spot density were also observed among domesticated, F1-hybrid (1.2-fold spottier than domesticated) and wild salmon (1.8-fold spottier than domesticated). Domesticated salmon were sevenfold spottier in the Hatchery vs. River experiment. While different wild populations were used for the two experiments, on average, these were 6.2-fold spottier in the Hatchery vs. River experiment. Fish in the Hatchery experiment displayed scattered to random spot patterns while fish in the River experiment displayed clustered spot patterns. These data demonstrate that while genetics plays an underlying role, environmental variation represents the primary determinant of spot pattern development in Atlantic salmon.

  2. Analysis of dam-passage survival of yearling and subyearling Chinook salmon and juvenile steelhead at The Dalles Dam, Oregon, 2010

    USGS Publications Warehouse

    Beeman, John W.; Kock, Tobias J.; Perry, Russell W.; Smith, Steven G.

    2011-01-01

    We performed a series of analyses of mark-recapture data from a study at The Dalles Dam during 2010 to determine if model assumptions for estimation of juvenile salmonid dam-passage survival were met and if results were similar to those using the University of Washington's newly developed ATLAS software. The study was conducted by the Pacific Northwest National Laboratory and used acoustic telemetry of yearling Chinook salmon, juvenile steelhead, and subyearling Chinook salmon released at three sites according to the new virtual/paired-release statistical model. This was the first field application of the new model, and the results were used to measure compliance with minimum survival standards set forth in a recent Biological Opinion. Our analyses indicated that most model assumptions were met. The fish groups mixed in time and space, and no euthanized tagged fish were detected. Estimates of reach-specific survival were similar in fish tagged by each of the six taggers during the spring, but not in the summer. Tagger effort was unevenly allocated temporally during tagging of subyearling Chinook salmon in the summer; the difference in survival estimates among taggers was more likely a result of a temporal trend in actual survival than of tagger effects. The reach-specific survival of fish released at the three sites was not equal in the reaches they had in common for juvenile steelhead or subyearling Chinook salmon, violating one model assumption. This violation did not affect the estimate of dam-passage survival, because data from the common reaches were not used in its calculation. Contrary to expectation, precision of survival estimates was not improved by using the most parsimonious model of recapture probabilities instead of the fully parameterized model. Adjusting survival estimates for differences in fish travel times and tag lives increased the dam-passage survival estimate for yearling Chinook salmon by 0.0001 and for juvenile steelhead by 0.0004. The

  3. Design and performance of recirculating systems for Atlantic salmon (Salmo salar) at the USDA ARS National Cold Water Marine Aquaculture Center (Franklin, Maine)

    USDA-ARS?s Scientific Manuscript database

    Atlantic salmon cultured in the NCWMAC breeding program have grown well in the fish culture systems during the first 3 years of operation. The systems were operated at approximately 98% reuse (2% makeup water on the basis of flow rate). The water recirculating systems maintained acceptable water qua...

  4. Immunoglobulin isotypes in Atlantic salmon, Salmo salar.

    PubMed

    Hordvik, Ivar

    2015-02-27

    There are three major immunoglobulin (Ig) isotypes in salmonid fish: IgM, IgD and IgT, defined by the heavy chains μ, δ and τ, respectively. As a result of whole genome duplication in the ancestor of the salmonid fish family, Atlantic salmon (Salmo salar) possess two highly similar Ig heavy chain gene complexes (A and B), comprising two μ genes, two δ genes, three intact τ genes and five τ pseudogenes. The μA and μB genes correspond to two distinct sub-populations of serum IgM. The IgM-B sub-variant has a characteristic extra cysteine near the C-terminal part of the heavy chain and exhibits a higher degree of polymer disulfide cross-linking compared to IgM-A. The IgM-B:IgM-A ratio in serum is typically 60:40, but skewed ratios are also observed. The IgT isotype appears to be specialized to mucosal immune responses in salmonid fish. The concentration of IgT in serum is 100 to 1000 times lower than IgM. Secreted forms of IgD have been detected in rainbow trout, but not yet in Atlantic salmon.

  5. [Downstream migration, behavior, and distribution of fish fry in the lower reaches of the Ozernaya River (southwestern Kamchatka)].

    PubMed

    Pavlov, D S; Kirillova, E A; Kirillov, P I; Nezdoliĭ, V K

    2015-01-01

    Fry of five species of salmonids are found in the lower reaches of the Ozernaya River. The most abundant are chum salmon and pink salmon which compose the bulk of fry which migrate downstream from the river to the sea. The dates and duration of migration of particular species differed according to the specific traits of their biology. Pink salmon is characterized by a simple migration strategy: it migrated downstream in a short time after emergence from theground. Chum salmon has two strategies of downstream migration: some fry start migration soon after emergence, and others remained in the river for several weeks. Downstream migration of pink salmon occurred mainly at night in contrast to that of chum salmon, over 24 h, the part of daytime increased with growth, of the fish. Migration of pink salmon was passive. Passive migration of chum salmon changed into active-passive with growth of the fish. The ratio of fish in the inshore zone and in the current was different in the course of 24 h. The number of fish in the inshore zone decreased in the period of intensive downstream migration.

  6. Updraft gasification of salmon processing waste.

    PubMed

    Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles

    2009-10-01

    The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable.

  7. Physiological development and migratory behavior of subyearling fall chinook salmon in the Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Wagner, P.G.

    2000-01-01

    We describe the migratory behavior and physiological development of subyearling fall chinook salmon Oncorhynchus tshawytscha migrating through John Day Reservoir on the Columbia River, Washington and Oregon. Fish were freeze-branded and coded-wire-tagged at McNary Dam, Oregon, from 1991 to 1994, to determine travel time to John Day Dam and subsequent adult contribution. Stepwise multiple regression showed that 47% of the variation in subyearling fall chinook salmon travel time was explained by the reciprocal of minimum flow and fish size. Smoltification, as measured by gill Na+-K+ adenosine triphosphatase (ATPase) activity, was not important in explaining variability in travel time of subyearling chinook salmon. Fish marked early in the out-migration generally traveled faster than middle and late migrants. Seawater challenges were used to describe physiological development and showed that osmoregulatory competence of premigrants in the Hanford Reach of the Columbia River increased with fish size and gill ATPase activity. Once active migrants began passing McNary Dam, fish generally had survival exceeding 90% and were able to regulate their blood plasma Na+ in seawater. Gill ATPase activity increased as premigrants, reared in nearshore areas of the Hanford Reach, reached a peak among active migrants in late June and early July then decreased through the remainder of the out-migration. Salinity preference also peaked in subyearling fall chinook salmon during late June to mid July in 1995. Return of adults from marked groups showed no consistent patterns that would suggest a survival advantage for any portion of the juvenile out-migration. Presumed wild migrants from the middle and late portions of the out-migration were primary contributors to all fisheries, except the Priest Rapids Hatchery. As such, fishery managers should take action to ensure the survival of these fish, especially because they migrate under more unfavorable environmental conditions than early

  8. Measurements of key life history metrics of Coho salmon in Pudding Creek, California

    Treesearch

    David W. Wright; Sean P. Gallagher; Christopher J. Hannon

    2012-01-01

    Since 2005, a life cycle monitoring project in Pudding Creek, California, has utilized a variety of methodologies including an adult trap, spawning surveys, PIT tags, electro-fishing, and a smolt trap to estimate coho salmon adult escapement, juvenile abundance, juvenile growth, winter survival, and marine survival. Adult coho salmon escapement and smolt abundance are...

  9. Off-flavor characterization and depuration in Atlantic salmon cultured to food-size within closed-containment systems

    USDA-ARS?s Scientific Manuscript database

    Atlantic salmon are typically cultured in marine net pens. However, technological advancements in recirculating aquaculture systems have increased the feasibility of culturing Atlantic salmon in land-based systems. One problem encountered when fish are harvested from recirculating systems is the pre...

  10. Survey for infectious hematopoietic necrosis (IHN) virus in Washington salmon

    USGS Publications Warehouse

    Amend, Donald F.; Wood, James W.

    1972-01-01

    A virus disease of juvenile sockeye salmon (Oncorhynchus nerka) has been a problem in Washington hatcheries since first reported by Rucker [9] in 1953. Presumably, the same disease has occurred in Oregon, and it is now referred to as the Oregon, and it is now referred to as the Oregon sockeye disease (OSD) or the sockeye salmon virus (SSV) [8,12]. The primary source of the disease was thought to be from the feeding of raw sockeye salmon viscera, and the incidence decreased when pasteurized diets were used [5]. However, sporadic attacks continue to occur even though pelleted diets containing pasteurized fish products are fed.  

  11. Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system.

    PubMed

    Zarkasi, K Z; Abell, G C J; Taylor, R S; Neuman, C; Hatje, E; Tamplin, M L; Katouli, M; Bowman, J P

    2014-07-01

    The relationship of Atlantic salmon gastrointestinal (GI) tract bacteria to environmental factors, in particular water temperature within a commercial mariculture system, was investigated. Salmon GI tract bacterial communities commercially farmed in south-eastern Tasmania were analysed, over a 13-month period across a standard commercial production farm cycle, using 454 16S rRNA-based pyrosequencing. Faecal bacterial communities were highly dynamic but largely similar between randomly selected fish. In postsmolt, the faecal bacteria population was dominated by Gram-positive fermentative bacteria; however, by midsummer, members of the family Vibrionaceae predominated. As fish progressed towards harvest, a range of different bacterial genera became more prominent corresponding to a decline in Vibrionaceae. The sampled fish were fed two different commercial diet series with slightly different protein, lipid and digestible energy level; however, the effect of these differences was minimal. The overall data demonstrated dynamic hind gut communities in salmon that were related to season and fish growth phases but were less influenced by differences in commercial diets used routinely within the farm system studied. This study provides understanding of farmed salmon GI bacterial communities and describes the relative impact of diet, environmental and farm factors. © 2014 The Society for Applied Microbiology.

  12. Radiotelemetry to estimate stream life of adult chum salmon in the McNeil River, Alaska

    USGS Publications Warehouse

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2011-01-01

    Estimating salmon escapement is one of the fundamental steps in managing salmon populations. The area-under-the-curve (AUC) method is commonly used to convert periodic aerial survey counts into annual salmon escapement indices. The AUC requires obtaining accurate estimates of stream life (SL) for target species. Traditional methods for estimating SL (e.g., mark–recapture) are not feasible for many populations. Our objective in this study was to determine the average SL of chum salmon Oncorhynchus keta in the McNeil River, Alaska, through radiotelemetry. During the 2005 and 2006 runs, 155 chum salmon were fitted with mortality-indicating radio tags as they entered the McNeil River and tracked until they died. A combination of remote data loggers, aerial surveys, and foot surveys were used to determine the location of fish and provide an estimate of time of death. Higher predation resulted in tagged fish below McNeil Falls having a significantly shorter SL (12.6 d) than those above (21.9 d). The streamwide average SL (13.8 d) for chum salmon at the McNeil River was lower than the regionwide value (17.5 d) previously used to generate AUC indices of chum salmon escapement for the McNeil River. We conclude that radiotelemetry is an effective tool for estimating SL in rivers not well suited to other methods.

  13. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  14. SALMON: A WORLD AND HISTORICAL PERSPECTIVE

    EPA Science Inventory

    The four nations of Salmon World have existed for 10,000 years. Since the end of the last Ice Age, salmon established naturally substantial populations and prospered in four large regions of the earth: (1) the European side of the North Atlantic; (2) the North American side of...

  15. Ichthyophoniasis: An emerging disease of Chinook salmon in the Yukon River

    USGS Publications Warehouse

    Kocan, R.; Hershberger, P.; Winton, J.

    2004-01-01

    Before 1985, Ichthyophonus was unreported among Pacific salmon Oncorhynchus spp. from the Yukon River; now it infects more than 40% of returning adult Chinook salmon O. tshawytscha. Overall infection prevalence reached about 45% in the Yukon River and about 30% in the Tanana River between 1999 and 2003. Mean infection prevalence was greater in females than males in the main-stem Yukon River during each of the 5 years of the study, but the infection prevalence in males increased each year until the difference was no longer significant. Clinical signs of ichthyophoniasis (presence of visible punctate white lesions in internal organs) were least at the mouth of the Yukon River (∼10%) but increased to 29% when fish reached the middle Yukon River and was 22% at the upper Tanana River. However, clinical signs increased each year from 7% in 1999 to 27% in 2003 at the mouth of the river. As fish approached the upper reaches of the Yukon River (Canada) and the spawning areas of the Chena and Salcha rivers (Alaska), infection prevalence dropped significantly to less than 15% in females on the Yukon River and less than 10% for both sexes in the Chena and Salcha rivers, presumably because of mortality among infected prespawn fish. Age was not a factor in infection prevalence, nor was the position of fish within the run. The source of infection was not determined, but Ichthyophonus was not found in 400 Pacific herring Clupea pallasi from the Bering Sea or in 120 outmigrating juvenile Chinook salmon from two drainages in Alaska and Canada. Freshwater burbot Lota lota from the middle Yukon River were subclinically infected with Ichthyophonus, but the origin and relationship of this agent to the Chinook salmon isolate is unknown.

  16. Salmon on the Edge: Growth and Condition of Juvenile Chum and Pink Salmon in the Northeastern Bering Sea

    NASA Astrophysics Data System (ADS)

    McPhee, M. V.

    2016-02-01

    As the Arctic and Subarctic regions warm, Pacific salmon (Oncorhynchus spp.) are expected to expand their range northward during ice-free periods in the Bering and Chukchi seas. The oscillating control hypothesis, which describes energetic differences of primary consumers between ice-associated and pelagic production phases, provides a framework for understanding how juvenile salmon might respond to changing conditions at the northern edge of their marine range. Additionally, relationships between growth/condition and temperature, salinity and bottom depth will help identify marine habitats supporting growth at the Arctic-Subarctic interface. In this study, we used survey data from NOAA and Arctic Ecosystem Integrated Survey project to 1) compare growth and condition of juvenile pink (O. gorbuscha) and chum (O. keta) salmon in the NE Bering Sea between warm and cool spring phases, and 2) describe relationships between summer environmental conditions and juvenile salmon growth and condition from 2006 - 2010. Chum and pink salmon were shorter, and chum salmon exhibited greater energy density, in years with cool springs; however, no other aspects of size and condition differed significantly between phases. Over all years, longer and more energy dense individuals of both species were caught at stations with greater bottom depths and in cooler sea-surface temperatures. We found little evidence that chlorophyll-a explained much of the variation in size or condition. We used insulin-like growth factor-1 (IGF-1) concentration as an indicator of relative growth rate for fishes sampled in 2009-2012 and that found juvenile salmon exhibited higher IGF-1 concentrations in 2010-2012 than in 2009. IGF-1 concentrations tended to increase with SST in chum salmon and with bottom depth (a proxy for distance from shore) in pink salmon, but more years of data are needed to adequately describe the relationship of IGF with environmental conditions. This study, although descriptive in

  17. Metabolism, health and fillet nutritional quality in Atlantic salmon (Salmo salar) fed diets containing n-3-rich microalgae.

    PubMed

    Kousoulaki, Katerina; Østbye, Tone-Kari Knutsdatter; Krasnov, Aleksei; Torgersen, Jacob Seilø; Mørkøre, Turid; Sweetman, John

    2015-01-01

    Microalgae, as primary producers of EPA and DHA, are among the most prominent alternative sources to fish oil for n-3 long-chain PUFA in animal and human nutrition. The present study aimed to assess technical, nutritional and fish health aspects of producing n-3-rich Atlantic salmon (Salmo salar) fish fillets by dietary supplementation of increasing levels of a DHA-producing Schizochytrium sp. and reduced or without use of supplemental fish oil. Atlantic salmon smolt were fed diets with graded levels of microalgae for 12 weeks, during which all fish showed high feed intake rates with postprandial plasma leptin levels inversely correlating with final mean fish body weights. Fish performance was optimal in all experimental treatments (thermal growth coefficient about 4·0 and feed conversion ratio 0·8-0·9), protein digestibility was equal in all diets, whereas dietary lipid digestibility inversely correlated with the dietary levels of the SFA 16 : 0. Fillet quality was good and similar to the control in all treatments in terms of n-3 long-chain PUFA content, gaping, texture and liquid losses during thawing. Histological fluorescence staining and immunofluorescence analysis of salmon intestines (midgut: base of intestine and villi) revealed significant effects on slime, goblet cell production and inducible nitric oxide synthase (iNOS) activity with increasing levels of dietary Schizochytrium sp. supplementation. Microarray analysis did not reveal any signs of toxicity, stress, inflammation or any other negative effects from Schizochytrium sp. supplementation in diets for Atlantic salmon.

  18. Inhibition of p38 MAPK during cellular activation modulate gene expression of head kidney leukocytes isolated from Atlantic salmon (Salmo salar) fed soy bean oil or fish oil based diets.

    PubMed

    Holen, E; Winterthun, S; Du, Z-Y; Krøvel, A V

    2011-01-01

    Head kidney leukocytes isolated from Atlantic salmon fed either a diet based on fish oil (FO) or soy bean oil (VO) were used in order to evaluate if different lipid sources could contribute to cellular activation of the salmon innate immune system. A specific inhibitor of p38 MAPK, SB202190, was used to investigate the effect of lipopolysaccharide (LPS) signalling in the head kidney leukocytes. The results show that LPS up regulate IL-1β, TNF-α, Cox2 expression in leukocytes isolated from fish fed either diet. The p38 MAPK inhibitor, SB202190, reduced the LPS induced expression of these genes in both dietary groups. In LPS stimulated leukocytes isolated from VO fed fish, SB202190 showed a clear dose dependent inhibitory effect on IL-1β, TNF-α and Cox2 expression. This effect was also observed for Cox2 in leukocytes isolated from FO fed fish. Furthermore, there was a stronger mean induction of Cox2 in LPS stimulated leucocytes isolated from the VO-group compared to LPS stimulated leukocytes isolated from the FO-group. In both dietary groups, LPS stimulation of salmon head kidney leukocytes increased the induction of CD83, a dendrite cell marker, while the inhibitor reduced CD83 expression in the VO fed fish only. The inhibitor also clearly reduced hsp27 expression in VO fed fish. Indicating a p38 MAPK feedback loop, LPS significantly inhibited the expression of p38MAPK itself in both diets, while SB202190 increased p38MAPK expression especially in the VO diet group. hsp70 expression was not affected by any treatment or feed composition. There were also differences in p38MAPK protein phosphorylation comparing treatment groups but no obvious difference comparing the two dietary groups. The results indicate that dietary fatty acids have the ability to modify signalling through p38 MAPK which may have consequences for the fish's ability to handle infections and stress. Signalling through p38MAPK is ligand dependent and affects gene and protein expression differently

  19. Update to the Atlantic salmon breeding program at the National Cold Water Marine Aquaculture Center

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, ME has been supporting the U.S. coldwater marine aquaculture industry for the past thirteen years by developing a genetically improved North American Atlantic salmon. The St. John's River stock was chosen as the focal ...

  20. How coarse is too coarse for salmon spawning substrates?

    NASA Astrophysics Data System (ADS)

    Wooster, J. K.; Riebe, C. S.; Ligon, F. K.; Overstreet, B. T.

    2009-12-01

    Populations of Pacific salmon species have declined sharply in many rivers of the western US. Reversing these declines is a top priority and expense of many river restoration projects. To help restore salmon populations, managers often inject gravel into rivers, to supplement spawning habitat that has been depleted by gravel mining and the effects of dams—which block sediment and thus impair habitat downstream by coarsening the bed where salmon historically spawned. However, there is little quantitative understanding nor a methodology for determining when a river bed has become too coarse for salmon spawning. Hence there is little scientific basis for selecting sites that would optimize the restoration benefits of gravel injection (e.g., sites where flow velocities are suitable but bed materials are too coarse for spawning). To develop a quantitative understanding of what makes river beds too coarse for salmon spawning, we studied redds and spawning use in a series of California and Washington rivers where salmon spawning ability appears to be affected by coarse bed material. Our working hypothesis is that for a given flow condition, there is a maximum “threshold” particle size that a salmon of a given size is able to excavate and/or move as she builds her redd. A second, related hypothesis is that spawning use should decrease and eventually become impossible with increasing percent coverage by immovable particles. To test these hypotheses, we quantified the sizes and spatial distributions of immovably coarse particles in a series of salmon redds in each river during the peak of spawning. We also quantified spawning use and how it relates to percent coverage by immovable particles. Results from our studies of fall-run chinook salmon (Oncorhynchus tshawytsha) in the Feather River suggest that immovable particle size varies as a function of flow velocity over the redd, implying that faster water helps fish move bigger particles. Our Feather River study also

  1. Differential use of salmon by vertebrate consumers: implications for conservation

    PubMed Central

    Wheat, Rachel E.; Allen, Jennifer M.; Wilmers, Christopher C.

    2015-01-01

    Salmon and other anadromous fish are consumed by vertebrates with distinct life history strategies to capitalize on this ephemeral pulse of resource availability. Depending on the timing of salmon arrival, this resource may be in surplus to the needs of vertebrate consumers if, for instance, their populations are limited by food availability during other times of year. However, the life history of some consumers enables more efficient exploitation of these ephemeral resources. Bears can deposit fat and then hibernate to avoid winter food scarcity, and highly mobile consumers such as eagles, gulls, and other birds can migrate to access asynchronous pulses of salmon availability. We used camera traps on pink, chum, and sockeye salmon spawning grounds with various run times and stream morphologies, and on individual salmon carcasses, to discern potentially different use patterns among consumers. Wildlife use of salmon was highly heterogeneous. Ravens were the only avian consumer that fed heavily on pink salmon in small streams. Eagles and gulls did not feed on early pink salmon runs in streams, and only moderately at early sockeye runs, but were the dominant consumers at late chum salmon runs, particularly on expansive river flats. Brown bears used all salmon resources far more than other terrestrial vertebrates. Notably, black bears were not observed on salmon spawning grounds despite being the most frequently observed vertebrate on roads and trails. From a conservation and management perspective, all salmon species and stream morphologies are used extensively by bears, but salmon spawning late in the year are disproportionately important to eagles and other highly mobile species that are seasonally limited by winter food availability. PMID:26339539

  2. Recent Salmon Declines: A Result of Lost Feeding Opportunities Due to Bad Timing?

    PubMed Central

    Chittenden, Cedar M.; Jensen, Jenny L. A.; Ewart, David; Anderson, Shannon; Balfry, Shannon; Downey, Elan; Eaves, Alexandra; Saksida, Sonja; Smith, Brian; Vincent, Stephen; Welch, David; McKinley, R. Scott

    2010-01-01

    As the timing of spring productivity blooms in near-shore areas advances due to warming trends in global climate, the selection pressures on out-migrating salmon smolts are shifting. Species and stocks that leave natal streams earlier may be favoured over later-migrating fish. The low post-release survival of hatchery fish during recent years may be in part due to static release times that do not take the timing of plankton blooms into account. This study examined the effects of release time on the migratory behaviour and survival of wild and hatchery-reared coho salmon (Oncorhynchus kisutch) using acoustic and coded-wire telemetry. Plankton monitoring and near-shore seining were also conducted to determine which habitat and food sources were favoured. Acoustic tags (n = 140) and coded-wire tags (n = 266,692) were implanted into coho salmon smolts at the Seymour and Quinsam Rivers, in British Columbia, Canada. Differences between wild and hatchery fish, and early and late releases were examined during the entire lifecycle. Physiological sampling was also carried out on 30 fish from each release group. The smolt-to-adult survival of coho salmon released during periods of high marine productivity was 1.5- to 3-fold greater than those released both before and after, and the fish's degree of smoltification affected their downstream migration time and duration of stay in the estuary. Therefore, hatchery managers should consider having smolts fully developed and ready for release during the peak of the near-shore plankton blooms. Monitoring chlorophyll a levels and water temperature early in the spring could provide a forecast of the timing of these blooms, giving hatcheries time to adjust their release schedule. PMID:20805978

  3. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis

    USGS Publications Warehouse

    Lind-Null, Angela; Larsen, Kimberly; Reisenbichler, Reginald

    2007-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act. The preservation of the Nisqually delta ecosystem coupled with extensive restoration of approximately 1,000 acres of diked estuarine habitat is identified as the highest priority action for the recovery of naturally spawning Nisqually River Fall Chinook salmon (Oncorhynchus tshawytscha) in the Nisqually Chinook Recovery Plan. In order to evaluate the response of Chinook salmon to restoration, a pre-restoration baseline of life history diversity and estuary utilization must be established. Otolith analysis has been proposed as a means to measure Chinook salmon life history diversity, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: (1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, (2) compare pre and post restoration residence times and growth rates, and (3) suggest whether estuary restoration yields substantial benefits for Chinook salmon. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile Chinook salmon can exhibit a variety of life history trajectories ? some enter the sea (or Puget Sound) as fry, some rear in the estuary before entering the sea, and some rear in the river and then move rapidly through the estuary into the sea as smolts. The

  4. Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean

    PubMed Central

    Krkošek, Martin; Revie, Crawford W.; Gargan, Patrick G.; Skilbrei, Ove T.; Finstad, Bengt; Todd, Christopher D.

    2013-01-01

    Parasites may have large effects on host population dynamics, marine fisheries and conservation, but a clear elucidation of their impact is limited by a lack of ecosystem-scale experimental data. We conducted a meta-analysis of replicated manipulative field experiments concerning the influence of parasitism by crustaceans on the marine survival of Atlantic salmon (Salmo salar L.). The data include 24 trials in which tagged smolts (totalling 283 347 fish; 1996–2008) were released as paired control and parasiticide-treated groups into 10 areas of Ireland and Norway. All experimental fish were infection-free when released into freshwater, and a proportion of each group was recovered as adult recruits returning to coastal waters 1 or more years later. Treatment had a significant positive effect on survival to recruitment, with an overall effect size (odds ratio) of 1.29 that corresponds to an estimated loss of 39 per cent (95% CI: 18–55%) of adult salmon recruitment. The parasitic crustaceans were probably acquired during early marine migration in areas that host large aquaculture populations of domesticated salmon, which elevate local abundances of ectoparasitic copepods—particularly Lepeophtheirus salmonis. These results provide experimental evidence from a large marine ecosystem that parasites can have large impacts on fish recruitment, fisheries and conservation. PMID:23135680

  5. Field estimate of net trophic transfer efficiency of PCBs to Lake Michigan chinook salmon from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Stewart, Donald J.; Miller, Michael A.; Masnado, Robert G.

    2002-01-01

    Chinook salmon (Oncorhynchus tshawytscha) has been the predominant piscivore in Lakes Michigan, Huron, and Ontario since the 1970s, and therefore accurate quantification of its energy budget is needed for effective management of Great Lakes fisheries. A new approach of evaluating a fish bioenergetics model in the field involves field estimation of the efficiency with which the fish retains PCBs from its food. We used diet information, PCB determinations in both chinook salmon and their prey, and bioenergetics modeling to generate a field estimate of the efficiency with which Lake Michigan chinook salmon retain PCBs from their food. Our field estimate is the most reliable field estimate to date because (a) the estimate was based on a relatively high number (N = 142) of PCB determinations for chinook salmon from Wisconsin waters of Lake Michigan in 1985, (b) a relatively long time series (1978−1988) of detailed observations on chinook salmon diet in Lake Michigan was available, and (c) the estimate incorporated new information from analyses of chinook salmon age and growth during the 1980s and 1990s in Lake Michigan. We estimated that chinook salmon from Lake Michigan retain 53% of the PCBs that are contained within their food.

  6. Aquatic community responses to salmon carcass analog and wood bundle additions in restored floodplain habitats in an Alaskan stream

    USGS Publications Warehouse

    Martin, Aaron E.; Wipfli, Mark S.; Spangler, Robert E.

    2010-01-01

    Land use activities often directly and indirectly limit the capacity of freshwater habitats to produce fish. Consequently, habitat creation and enhancement actions are often undertaken to increase the quantity and quality of resources available to aquatic communities within these impaired systems, with the intent to increase fish production. The objectives of this study were to (1) determine whether aquatic community colonization and development could be accelerated through additions of woody debris bundles and marine-derived nutrients (via salmon carcass analog pellets) and (2) measure how aquatic communities (biofilm, invertebrates, and fish) respond to these additions after the creation of off-channel (alcove) fish habitat in a stream in south-central Alaska. Biofilm, invertebrates, and juvenile coho salmon Oncorhynchus kisutch were sampled in four treatments (control, wood, analog, and analog plus wood). Biofilm chlorophyll-aconcentrations were 4–10 times higher in analog-enriched treatments than in the control and wood treatments. No treatment effects were detected in benthic invertebrate density; however, treatment differences were detected in coho salmon diets, with nearly twice the amount of invertebrate abundance and biomass (primarily various dipteran, ephemeropteran, and plecopteran larvae) in the analog and analog plus wood treatments compared with the control and wood treatments. Juvenile coho salmon density and biomass were significantly higher in the wood treatment than in the analog plus wood treatment, and fish in the control showed possible signs of density-dependent limitation. Further, body condition of juvenile coho salmon was highest in the two analog-enriched treatments at the end of the study; juveniles in these habitats showed nearly two times the condition increase of fish inhabiting the control and wood treatment alcoves. These results demonstrate that the combination of salmon carcass analog and woody debris bundle additions aids in

  7. 50 CFR 679.65 - Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR program). 679.65 Section 679.65 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE...

  8. Polyphasic characterization of Aeromonas salmonicida isolates recovered from salmonid and non-salmonid fish

    USGS Publications Warehouse

    Diamanka, A.; Loch, T.P.; Cipriano, R.C.; Faisal, M.

    2013-01-01

    Michigan's fisheries rely primarily upon the hatchery propagation of salmonid fish for release in public waters. One limitation on the success of these efforts is the presence of bacterial pathogens, including Aeromonas salmonicida, the causative agent of furunculosis. This study was undertaken to determine the prevalence of A. salmonicida in Michigan fish, as well as to determine whether biochemical or gene sequence variability exists among Michigan isolates. A total of 2202 wild, feral and hatchery-propagated fish from Michigan were examined for the presence of A. salmonicida. The examined fish included Chinook salmon, Oncorhynchus tshawytscha (Walbaum), coho salmon, O. kisutcha (Walbaum), steelhead trout, O. mykiss (Walbaum), Atlantic salmon, Salmo salar L., brook trout, Salvelinus fontinalis (Mitchill), and yellow perch, Perca flavescens (Mitchill). Among these, 234 fish yielded a brown pigment-producing bacterium that was presumptively identified as A. salmonicida. Further phenotypic and phylogenetic analyses identified representative isolates as Aeromonas salmonicida subsp. salmonicida and revealed some genetic and biochemical variability. Logistic regression analyses showed that infection prevalence varied according to fish species/strain, year and gender, whereby Chinook salmon and females had the highest infection prevalence. Moreover, this pathogen was found in six fish species from eight sites, demonstrating its widespread nature within Michigan.

  9. Radio tag retention and tag-related mortality among adult sockeye salmon

    USGS Publications Warehouse

    Ramstad, Kristina M.; Woody, Carol Ann

    2003-01-01

    Tag retention and tag-related mortality are concerns for any tagging study but are rarely estimated. We assessed retention and mortality rates for esophageal radio tag implants in adult sockeye salmon Oncorhynchus nerka. Migrating sockeye salmon captured at the outlet of Lake Clark, Alaska, were implanted with one of four different radio tags (14.5 × 43 mm (diameter × length), 14.5 × 49 mm, 16 × 46 mm, and 19 × 51 mm). Fish were observed for 15 to 35 d after tagging to determine retention and mortality rates. The overall tag retention rate was high (0.98; 95% confidence interval (CI), 0.92-1.00; minimum, 33 d), with one loss of a 19-mm × 51- mm tag. Mortality of tagged sockeye salmon (0.02; 95% CI, 0-0.08) was similar to that of untagged controls (0.03 (0-0.15)). Sockeye salmon with body lengths (mid-eye to tail fork) of 585-649 mm retained tags as large as 19 × 51 mm and those with body lengths of 499-628 mm retained tags as small as 14.5 × 43 mm for a minimum of 33 d with no increase in mortality. The tags used in this study represent a suite of radio tags that vary in size, operational life, and cost but that are effective in tracking adult anadromous salmon with little tag loss or increase in fish mortality.

  10. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrallymore » buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.« less

  11. Salmon trypsin stimulates the expression of interleukin-8 via protease-activated receptor-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Anett K.; Department of Pharmacology, Institute of Medical Biology, University of Tromso, Tromso; Seternes, Ole-Morten

    2008-08-01

    In this study, we focus on salmon trypsin as an activator of inflammatory responses in airway cells in vitro. The rationale behind the investigation is that salmon industry workers are exposed to aerosols containing enzymes, which are generated during industrial processing of the fish. Knowing that serine proteases such as trypsin are highly active mediators with diverse biological activities, the stimulation of nuclear factor-kappa B (NF-{kappa}B) and interleukin (IL)-8 and the role of protease-activated receptors (PAR) in inflammatory signal mediation were investigated. Protease-activated receptors are considered important under pathological situations in the human airways, and a thorough understanding of PAR-inducedmore » cellular events and their consequences in airway inflammation is necessary. Human airway epithelial cells (A549) were exposed to trypsin isolated from fish (Salmo salar), and we observed that purified salmon trypsin could generate secretion of IL-8 in a concentration-dependent manner. Furthermore, we demonstrate that PAR-2 activation by salmon trypsin is coupled to an induction of NF-{kappa}B-mediated transcription using a PAR-2 transfected HeLa cell model. Finally, we show that the release of IL-8 from A549 following stimulation with purified salmon trypsin is mediated through activation of PAR-2 using specific small interfering RNAs (siRNAs). The results presented suggest that salmon trypsin, via activation of PAR-2, might influence inflammation processes in the airways if inhaled in sufficient amounts.« less

  12. Can fisheries management make substantial progress towards further reductions in sport fish PCB concentrations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, L.J.

    1995-12-31

    Great Lakes managers continue to be concerned by PCB concentrations in Great Lakes sport fish. A reduction in sport fish consumption advisory levels would heighten public concern and increase pressure on managers to reduce contaminant levels in sport fish. PCB concentrations in Great Lakes sediments remain high and exchange with the water column is significant. Atmospheric inputs help maintain PCB availability in the Great Lakes. However, it is not technically feasible to control sediment and atmospheric inputs. Here the author uses a detailed age-structured simulation model of chinook salmon, alewife and rainbow smelt to examine the potential for fish managementmore » actions to make progress towards reducing PCB concentrations of sport fish consumed by humans. Chinook salmon PCB concentrations were found to be more affected by prey PCB concentrations than chinook salmon growth rates. Salmonid predators selectively attack the largest prey, but these prey are likely the oldest and most contaminated. The interaction between size selective predation by chinook salmon and their growth rates suggests that there is an ideal stocking level of sport fish that should keep the average prey fish small, and therefore have relatively low PCE concentrations, but not reduce the age structure of the alewife population to include few reproductive individuals. These results are applicable to other stocked salmonids too, (e.g., lake trout, brown trout, coho salmon, steelhead) because they also exhibit size selective predation and their recruitment is primarily by stocking.« less

  13. Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon (Salmo salar L.).

    PubMed

    Lysenko, Liudmila A; Kantserova, Nadezda P; Kaivarainen, Elena I; Krupnova, Marina Yu; Nemova, Nina N

    2017-09-01

    Growth-related dynamics of intracellular protease activities in four year classes of the Atlantic salmon (Salmo salar L. 1758) parr and smolts inhabiting salmon rivers of northwestern Russia (the White Sea basin) were studied. Cathepsin B, cathepsin D, proteasome, and calpain activities in the skeletal muscles of salmon were assessed to investigate their relative contribution to the total protein degradation as well as to young fish growth process. It was confirmed that calpain activity dominates in salmon muscles while proteasome plays a minor role, in contrast to terrestrial vertebrates. Calpain and proteasome activities were maximal at the early post-larval stage (in parrs 0+) and declined with age (parrs 1+ through 2+) dropping to the lowest level in salmon smolts. Annual growth increments and proteolytic activities of calpains and proteasome in the muscles of salmon juveniles changed with age in an orchestrated manner, while lysosomal cathepsin activities increased with age. Comparing protease activities and growth increments in salmon parr and smolts we suggested that the partial suppression of the protein degradation could be a mechanism stimulating efficient growth in smoltifying salmon. Growth and smoltification-related dynamics of protease activities was quite similar in salmon populations from studied spawning rivers, such as Varzuga and Indera; however, some habitat-related differences were observed. Growth increments and protease activities varied in salmon parr 0+ (but not on later ages) inhabiting either main rivers or small tributaries apparently due to habitat difference on the resources for fish growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Response of ecosystem metabolism to low densities of spawning Chinook salmon

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan; Watson, Grace A.

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to <10% of their historical abundance, with subsequent declines of marine derived nutrients once provided by large salmon runs. We explored whether low densities (<0.001 spawners/m2) of naturally spawning Chinook Salmon (Oncorhynchus tshawytscha) can affect ecosystem metabolism. We measured gross primary production (GPP) and ecosystem respiration (ER) continuously before, during, and after salmon spawning. We compared downstream reaches with low densities of spawning salmon to upstream reaches with fewer or no spawners in 3 mid-sized (4th-order) rivers in northern Washington. In addition, we measured chemical, physical, and biological factors that may be important in controlling rates of GPP and ER. We observed that low densities of spawning salmon can increase GPP by 46% during spawning, but values quickly return to those observed before spawning. No difference in ER was observed between up- and downstream reaches. Based on our results, salmon density, temperature, and the proximity to salmon redds were the most important factors controlling rates of GPP, whereas temperature was most important for ER. These results suggest that even at low spawning densities, salmon can stimulate basal resources that may propagate up the food web. Understanding how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.

  15. Bona Fide Evidence for Natural Vertical Transmission of Infectious Salmon Anemia Virus in Freshwater Brood Stocks of Farmed Atlantic Salmon (Salmo salar) in Southern Chile

    PubMed Central

    Ramírez, Ramón; Labra, Alvaro; Carmona, Marisela; Muñoz, Cristián

    2014-01-01

    ABSTRACT Infectious salmon anemia (ISA) is a severe disease that affects farmed Atlantic salmon (Salmo salar), causing outbreaks in seawater in most salmon-producing countries worldwide, with particular aggressiveness in southern Chile. The etiological agent of this disease is a virus belonging to the Orthomyxoviridae family, named infectious salmon anemia virus (ISAV). Although it has been suggested that this virus can be vertically transmitted, even in freshwater, there is a lack of compelling experimental evidence to confirm this. Here we demonstrate significant putative viral loads in the ovarian fluid as well as in the eggs of two brood stock female adult specimens that harbored the virus systemically but without clinical signs. The target virus corresponded to a highly polymorphic region 3 (HPR-3) variant, which is known to be virulent in seawater and responsible for recent and past outbreaks of this disease in Chile. Additionally, the virus recovered from the fluid as well as from the interior of the eggs was fully infective to a susceptible fish cell line. To our knowledge, this is the first robust evidence demonstrating mother-to-offspring vertical transmission of the infective virus on the one hand and the asymptomatic transmission of a virulent form of the virus in freshwater fish on the other hand. IMPORTANCE The robustness of the data presented here will contribute to a better understanding of the biology of the virus but most importantly will constitute a key management tool in the control of an aggressive agent constantly threatening the sustainability of the global salmon industry. PMID:24623436

  16. Bona fide evidence for natural vertical transmission of infectious salmon anemia virus in freshwater brood stocks of farmed Atlantic salmon (Salmo salar) in Southern Chile.

    PubMed

    Marshall, Sergio H; Ramírez, Ramón; Labra, Alvaro; Carmona, Marisela; Muñoz, Cristián

    2014-06-01

    Infectious salmon anemia (ISA) is a severe disease that affects farmed Atlantic salmon (Salmo salar), causing outbreaks in seawater in most salmon-producing countries worldwide, with particular aggressiveness in southern Chile. The etiological agent of this disease is a virus belonging to the Orthomyxoviridae family, named infectious salmon anemia virus (ISAV). Although it has been suggested that this virus can be vertically transmitted, even in freshwater, there is a lack of compelling experimental evidence to confirm this. Here we demonstrate significant putative viral loads in the ovarian fluid as well as in the eggs of two brood stock female adult specimens that harbored the virus systemically but without clinical signs. The target virus corresponded to a highly polymorphic region 3 (HPR-3) variant, which is known to be virulent in seawater and responsible for recent and past outbreaks of this disease in Chile. Additionally, the virus recovered from the fluid as well as from the interior of the eggs was fully infective to a susceptible fish cell line. To our knowledge, this is the first robust evidence demonstrating mother-to-offspring vertical transmission of the infective virus on the one hand and the asymptomatic transmission of a virulent form of the virus in freshwater fish on the other hand. The robustness of the data presented here will contribute to a better understanding of the biology of the virus but most importantly will constitute a key management tool in the control of an aggressive agent constantly threatening the sustainability of the global salmon industry.

  17. Analysis of Salmon and Steelhead Supplementation, 1990 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William H.; Coley, Travis C.; Burge, Howard L.

    Supplementation or planting salmon and steelhead into various locations in the Columbia River drainage has occurred for over 100 years. All life stages, from eggs to adults, have been used by fishery managers in attempts to establish, rebuild, or maintain anadromous runs. This report summarizes and evaluates results of past and current supplementation of salmon and steelhead. Conclusions and recommendations are made concerning supplementation. Hatchery rearing conditions and stocking methods can affect post released survival of hatchery fish. Stress was considered by many biologists to be a key factor in survival of stocked anadromous fish. Smolts were the most commonmore » life stage released and size of smolts correlated positively with survival. Success of hatchery stockings of eggs and presmolts was found to be better if they are put into productive, underseeded habitats. Stocking time, method, species stocked, and environmental conditions of the receiving waters, including other fish species present, are factors to consider in supplementation programs. The unpublished supplementation literature was reviewed primarily by the authors of this report. Direct contact was made in person or by telephone and data compiled on a computer database. Areas covered included Oregon, Washington, Idaho, Alaska, California, British Columbia, and the New England states working with Atlantic salmon. Over 300 projects were reviewed and entered into a computer database. The database information is contained in Appendix A of this report. 6 refs., 9 figs., 21 tabs.« less

  18. Seasonal variation exceeds effects of salmon carcass additions on benthic food webs in the Elwha River

    USGS Publications Warehouse

    Morley, S.A.; Coe, H.J.; Duda, J.J.; Dunphy, L.S.; McHenry, M.L.; Beckman, B.R.; Elofson, M.; Sampson, E. M.; Ward, L.

    2016-01-01

    Dam removal and other fish barrier removal projects in western North America are assumed to boost freshwater productivity via the transport of marine-derived nutrients from recolonizing Pacific salmon (Oncorhynchus spp.). In anticipation of the removal of two hydroelectric dams on the Elwha River in Washington State, we tested this hypothesis with a salmon carcass addition experiment. Our study was designed to examine how background nutrient dynamics and benthic food webs vary seasonally, and how these features respond to salmon subsidies. We conducted our experiment in six side channels of the Elwha River, each with a spatially paired reference and treatment reach. Each reach was sampled on multiple occasions from October 2007 to August 2008, before and after carcass placement. We evaluated nutrient limitation status; measured water chemistry, periphyton, benthic invertebrates, and juvenile rainbow trout (O. mykiss) response; and traced salmon-derived nutrient uptake using stable isotopes. Outside of winter, algal accrual was limited by both nitrogen and phosphorous and remained so even in the presence of salmon carcasses. One month after salmon addition, dissolved inorganic nitrogen levels doubled in treatment reaches. Two months after addition, benthic algal accrual was significantly elevated. We detected no changes in invertebrate or fish metrics, with the exception of 15N enrichment. Natural seasonal variability was greater than salmon effects for the majority of our response metrics. Yet seasonality and synchronicity of nutrient supply and demand are often overlooked in nutrient enhancement studies. Timing and magnitude of salmon-derived nitrogen utilization suggest that uptake of dissolved nutrients was favored over direct consumption of carcasses. The highest proportion of salmon-derived nitrogen was incorporated by herbivores (18–30%) and peaked 1–2 months after carcass addition. Peak nitrogen enrichment in predators (11–16%) occurred 2–3

  19. Epizootiology of the ectoparasitic protozoans Ichthyobodo salmonis and Trichodina truttae on wild chum salmon Oncorhynchus keta.

    PubMed

    Mizuno, Shinya; Urawa, Shigehiko; Miyamoto, Mahito; Saneyoshi, Hayato; Hatakeyama, Makoto; Koide, Nobuhisa; Ueda, Hiroshi

    2017-10-18

    Infestations of the ectoparasitic flagellate Ichthyobodo salmonis and the ciliate Trichodina truttae have caused acute mortalities of hatchery-reared juvenile chum salmon Oncorhynchus keta in Hokkaido, northern Japan. This study examined the epizootiology of I. salmonis and T. truttae on wild chum salmon as a possible infection source of the 2 parasitic protozoans in hatcheries. Infestations by both ectoparasites were detected on freshwater-adapted adult and juvenile chum salmon in all 4 rivers examined. This is the first study of an anadromous Pacific salmonid to report infestation of I. salmonis and T. truttae in adults returning for spawning. Among the marine-inhabiting phase of chum salmon, infestation with I. salmonis, but not T. truttae, was observed on adults and juveniles. The 2 protozoans were experimentally transmitted at the same time from wild to hatchery-reared chum salmon juveniles, and caused a high rate of mortality in the hatchery fish. In freshwater, the proliferation rate of T. truttae was greater than that of I. salmonis. These observations show that the euryhaline ectoparasite I. salmonis can infest chum salmon throughout their life cycle, in both river and ocean habitats, whereas T. truttae is able to infest these salmonids only in freshwater. Furthermore, wild chum salmon were shown to be a potential infestation source for both T. truttae and I. salmonis in hatchery fish.

  20. A novel "in-feed" delivery platform applied for oral DNA vaccination against IPNV enables high protection in Atlantic salmon (Salmon salar).

    PubMed

    Reyes, Miguel; Ramírez, Cesar; Ñancucheo, Ivan; Villegas, Ricardo; Schaffeld, Guillermo; Kriman, Luis; Gonzalez, Javier; Oyarzun, Patricio

    2017-01-23

    DNA vaccination has emerged as a promising tool against infectious diseases of farmed fish. Oral delivery allows stress-free administration that is ideal for mass immunization and of paramount importance for infectious pancreatic necrosis (IPN) and other viral disease that affect young salmonids and cause economic losses in aquaculture worldwide. We describe the development and in vivo assessment of an "in-feed" formulation strategy for oral immunization with liposomal DNA vaccines, by delivering a vaccine construct coding for an immunogenic region of the VP2 capsid protein. A challenge against IPNV was carried out to determine the vaccine efficacy, by comparing the mortality of pre-smolt Atlantic salmons immunized and non-immunized with the oral vaccine. The antibody response (ELISA) and hematological parameters after immunization were examined, as well as the vaccine effect on the growth and internal structures of fry salmons (histological analysis). The vaccine distribution in the experimental tank after oral administration was investigated by HPLC and PCR amplification. The oral vaccine induced detectable levels of VP2-specific antibodies and conferred significant protection following IPNV challenge, with relative percent survivals (RPS) of 58.2%, for single dose (1mg pDNA /kg fish ⋅d), and 66% for double dose (2mg pDNA /kg fish ⋅d). We further provide evidence in favour of the vaccine safety to fish and demonstrated absence of pDNA in the tank water, but presence of vaccine residues in faeces and unconsumed feed sediments (solid wastes). The delivery platform for liposomal DNA vaccination via feed was successfully proved against IPNV in Atlantic salmon, showing the oral vaccine to be immunogenic and safe for fish, and providing significant protection after oral administration. The "in-feed" technology for oral DNA vaccination holds potential to be applied against IPNV and other pathogens that currently threaten the aquaculture worldwide. Copyright © 2016

  1. Effects of TLR agonists and viral infection on cytokine and TLR expression in Atlantic salmon (Salmo salar).

    PubMed

    Arnemo, Marianne; Kavaliauskis, Arturas; Gjøen, Tor

    2014-10-01

    The development of efficient and cheap vaccines against several aquatic viruses is necessary for a sustainable fish farming industry. Toll-like receptor (TLR) ligands have already been used as good adjuvants in human vaccines. With more understanding of TLR expression, function, and ligand specificity in fish, more efficient adjuvants for fish viral vaccines can be developed. In this paper, we examine all known TLRs in Atlantic salmon (Salmo salar) and demonstrate that head kidney and spleen are the main organs expressing TLRs in salmon. We also show that adherent head kidney leucocytes from salmon are able to respond to many of the known agonists for human TLRs, and that viral infection can induce up-regulation of several TLRs. These findings substantiate these receptors' role in immune responses to pathogens in salmonids making their ligands attractive as vaccine adjuvant candidates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Diets containing salmon fillet delay development of high blood pressure and hyperfusion damage in kidneys in obese Zucker fa/fa rats.

    PubMed

    Vikøren, Linn A; Drotningsvik, Aslaug; Mwakimonga, Angela; Leh, Sabine; Mellgren, Gunnar; Gudbrandsen, Oddrun A

    2018-04-01

    Hypertension is the leading risk factor for cardiovascular and chronic renal diseases, affecting more than 1 billion people. Fish intake is inversely correlated with the prevalence of hypertension in several, but not all, studies, and intake of fish oil and fish proteins has shown promising potential to delay development of high blood pressure in rats. The effects of baked and raw salmon fillet intake on blood pressure and renal function were investigated in obese Zucker fa/fa rats, which spontaneously develop hypertension with proteinuria and renal failure. Rats were fed diets containing baked or raw salmon fillet in an amount corresponding to 25% of total protein from salmon and 75% of protein from casein, or casein as the sole protein source (control group) for 4 weeks. Results show lower blood pressure and lower urine concentrations of albumin and cystatin C (relative to creatinine) in salmon diet groups when compared to control group. Morphological examinations revealed less prominent hyperfusion damage in podocytes from rats fed diets containing baked or raw salmon when compared to control rats. In conclusion, diets containing baked or raw salmon fillet delayed the development of hypertension and protected against podocyte damage in obese Zucker fa/fa rats. Copyright © 2018 American Heart Association. Published by Elsevier Inc. All rights reserved.

  3. Synchronous cycling of Ichthyophoniasis with Chinook salmon density revealed during the annual Yukon River spawning migration

    USGS Publications Warehouse

    Zuray, Stanley; Kocan, Richard; Hershberger, Paul

    2012-01-01

    Populations of Chinook salmon Oncorhynchus tshawytscha in the Yukon River declined by more than 57% between 2003 and 2010, probably the result of a combination of anthropogenic and environmental factors. One possible contributor to this decline is Ichthyophonus, a mesomycetozoan parasite that has previously been implicated in significant losses of fish, including Chinook salmon. A multiyear epidemiological study of ichthyophoniasis in the Yukon River revealed that disease prevalence and Chinook salmon population abundance increased and decreased simultaneously (i.e., were concordant) from 1999 to 2010. The two values rose and fell synchronously 91% of the time for female Chinook salmon and 82% of the time for males; however, there was no significant correlation between Ichthyophonus prevalence and population abundance. This synchronicity might be explained by a single factor, such as a prey item that is critical to Chinook salmon survival as well as a source of Ichthyophonus infection. The host–parasite relationship between Ichthyophonus and migrating Chinook salmon from 2004 to 2010 was similar to that reported for the previous 5 years. During 2004–2010, overall disease prevalence was significantly higher among females (21%) than among males (8%), increased linearly with fish length for both males and females, and increased in both sexes as the fish progressed upriver. These regularly occurring features of host–parasite dynamics confirm a stable base of transmission for Ichthyophonus. However, from 2003 to 2010, disease prevalence decreased from 30% to just 8% in males and from 45% to 9% in females, paralleling a similar decline in Chinook salmon abundance during the same period. These findings may help clarify questions regarding the complex host–parasite dynamics that occur in marine species such as herrings Clupea spp., which have less well-defined population structures.

  4. Experimental infection studies demonstrating Atlantic salmon as a host and reservoir of viral hemorrhagic septicemia virus type IVa with insights into pathology and host immunity

    USGS Publications Warehouse

    Lovy, Jan; Piesik, P.; Hershberger, P.K.; Garver, K.A.

    2013-01-01

    In British Columbia, Canada (BC), aquaculture of finfish in ocean netpens has the potential for pathogen transmission between wild and farmed species due to the sharing of an aquatic environment. Viral hemorrhagic septicemia virus (VHSV) is enzootic in BC and causes serious disease in wild Pacific herring, Clupea pallasii, which often enter and remain in Atlantic salmon, Salmo salar, netpens. Isolation of VHSV from farmed Atlantic salmon has been previously documented, but the effects on the health of farmed salmon and the wild fish sharing the environment are unknown. To determine their susceptibility, Atlantic salmon were exposed to a pool of 9 isolates of VHSV obtained from farmed Atlantic salmon in BC by IP-injection or by waterborne exposure and cohabitation with diseased Pacific herring. Disease intensity was quantified by recording mortality, clinical signs, histopathological changes, cellular sites of viral replication, expression of interferon-related genes, and viral tissue titers. Disease ensued in Atlantic salmon after both VHSV exposure methods. Fish demonstrated gross disease signs including darkening of the dorsal skin, bilateral exophthalmia, light cutaneous hemorrhage, and lethargy. The virus replicated within endothelial cells causing endothelial cell necrosis and extensive hemorrhage in anterior kidney. Infected fish demonstrated a type I interferon response as seen by up-regulation of genes for IFNα, Mx, and ISG15. In a separate trial infected salmon transmitted the virus to sympatric Pacific herring. The results demonstrate that farmed Atlantic salmon can develop clinical VHS and virus can persist in the tissues for at least 10 weeks. Avoiding VHS epizootics in Atlantic salmon farms would limit the potential of VHS in farmed Atlantic salmon, the possibility for further host adaptation in this species, and virus spillback to sympatric wild fishes.

  5. Experimental infection studies demonstrating Atlantic salmon as a host and reservoir of viral hemorrhagic septicemia virus type IVa with insights into pathology and host immunity.

    PubMed

    Lovy, J; Piesik, P; Hershberger, P K; Garver, K A

    2013-09-27

    In British Columbia, Canada (BC), aquaculture of finfish in ocean netpens has the potential for pathogen transmission between wild and farmed species due to the sharing of an aquatic environment. Viral hemorrhagic septicemia virus (VHSV) is enzootic in BC and causes serious disease in wild Pacific herring, Clupea pallasii, which often enter and remain in Atlantic salmon, Salmo salar, netpens. Isolation of VHSV from farmed Atlantic salmon has been previously documented, but the effects on the health of farmed salmon and the wild fish sharing the environment are unknown. To determine their susceptibility, Atlantic salmon were exposed to a pool of 9 isolates of VHSV obtained from farmed Atlantic salmon in BC by IP-injection or by waterborne exposure and cohabitation with diseased Pacific herring. Disease intensity was quantified by recording mortality, clinical signs, histopathological changes, cellular sites of viral replication, expression of interferon-related genes, and viral tissue titers. Disease ensued in Atlantic salmon after both VHSV exposure methods. Fish demonstrated gross disease signs including darkening of the dorsal skin, bilateral exophthalmia, light cutaneous hemorrhage, and lethargy. The virus replicated within endothelial cells causing endothelial cell necrosis and extensive hemorrhage in anterior kidney. Infected fish demonstrated a type I interferon response as seen by up-regulation of genes for IFNα, Mx, and ISG15. In a separate trial infected salmon transmitted the virus to sympatric Pacific herring. The results demonstrate that farmed Atlantic salmon can develop clinical VHS and virus can persist in the tissues for at least 10 weeks. Avoiding VHS epizootics in Atlantic salmon farms would limit the potential of VHS in farmed Atlantic salmon, the possibility for further host adaptation in this species, and virus spillback to sympatric wild fishes. Published by Elsevier B.V.

  6. Experimental hexamitiasis in juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdner)

    USGS Publications Warehouse

    1965-01-01

    An exogenous strain of cultured Hexamita salmonis (Moore) was employed to induce trophic hexamitiasis in otherwise disease-free juveniles of coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri). Mortality and growth were the parameters used to detect the effects of hexamitiasis on the two species. Two levels of each of the three experimental factors under study, Hexamita infection, species of fish, and density of fish, were arranged in a three-way factorial design. Replicate lots involved a total of 1,440 fish held under controlled laboratory conditions.Comparisons of growth and mortality indicate that infection with H. salmonis over a period of 8 weeks is innocuous to coho salmon. Steelhead trout suffered a low, but statistically significant mortality which subsided after the sixth week; growth rate was not affected.

  7. Calcium from salmon and cod bone is well absorbed in young healthy men: a double-blinded randomised crossover design.

    PubMed

    Malde, Marian K; Bügel, Susanne; Kristensen, Mette; Malde, Ketil; Graff, Ingvild E; Pedersen, Jan I

    2010-07-20

    Calcium (Ca) - fortified foods are likely to play an important role in helping the consumer achieve an adequate Ca intake, especially for persons with a low intake of dairy products. Fish bones have a high Ca content, and huge quantities of this raw material are available as a by-product from the fish industry. Previously, emphasis has been on producing high quality products from fish by-products by use of bacterial proteases. However, documentation of the nutritional value of the enzymatically rinsed Ca-rich bone fraction remains unexplored. The objective of the present study was to assess the bioavailability of calcium in bones of Atlantic salmon (oily fish) and Atlantic cod (lean fish) in a double-blinded randomised crossover design. Ca absorption was measured in 10 healthy young men using 47Ca whole body counting after ingestion of a test meal extrinsically labelled with the 47Ca isotope. The three test meals contained 800 mg of Ca from three different calcium sources: cod bones, salmon bones and control (CaCO3). Mean Ca absorption (+/- SEE) from the three different Ca sources were 21.9 +/- 1.7%, 22.5 +/- 1.7% and 27.4 +/- 1.8% for cod bones, salmon bones, and control (CaCO3), respectively. We conclude that bones from Atlantic salmon and Atlantic cod are suitable as natural Ca sources in e.g. functional foods or as supplements.

  8. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon leftmore » the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  9. Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis.

    PubMed

    Morais, Sofia; Pratoomyot, Jarunan; Taggart, John B; Bron, James E; Guy, Derrick R; Bell, J Gordon; Tocher, Douglas R

    2011-05-20

    Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. This study has identified

  10. Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis

    PubMed Central

    2011-01-01

    Background Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. Results A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. Conclusions

  11. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha

    PubMed Central

    Kemp, Brian M.; Thorgaard, Gary H.

    2018-01-01

    The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha). Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed “the four H’s”: habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins may have

  12. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and onemore » private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.« less

  13. Use of electromyogram telemetry to assess swimming activity of adult spring Chinook salmon migrating past a Columbia River dam

    USGS Publications Warehouse

    Brown, R.S.; Geist, D.R.; Mesa, M.G.

    2006-01-01

    Electromyogram (EMG) radiotelemetry was used to estimate the swim speeds of spring Chinook salmon Oncorhynchus tshawytscha migrating upstream past a Columbia River dam. Electrodes from EMG transmitters were surgically implanted in the red muscle of fish captured at Bonneville Dam, and output from the tags was calibrated to defined swim speeds for each fish in a tunnel respirometer. The fish were then released below Bonneville Dam and radio-tracked as they migrated through the tailraces, fishways, and forebays of the dam. On average, swim speed was significantly higher when tagged salmon were moving through tailraces than when they were moving through other parts of the dam. Specifically, swim speeds for fish in tailraces (106.4 cm/s) were 23% higher than those of fish in fishways (84.9 cm/s) and 32% higher than those of fish in forebays (80.2 cm/s). Swim speeds were higher in fishways during the day than during the night, but there were no diel differences in swim speeds in tailraces and forebays. During dam passage, Chinook salmon spent the most time in tailraces, followed by fishways and forebays. ?? Copyright by the American Fisheries Society 2006.

  14. Cardiomyopathy syndrome in Atlantic salmon Salmo salar L.: A review of the current state of knowledge.

    PubMed

    Garseth, Å H; Fritsvold, C; Svendsen, J C; Bang Jensen, B; Mikalsen, A B

    2018-01-01

    Cardiomyopathy syndrome (CMS) is a severe cardiac disease affecting Atlantic salmon Salmo salar L. The disease was first recognized in farmed Atlantic salmon in Norway in 1985 and subsequently in farmed salmon in the Faroe Islands, Scotland and Ireland. CMS has also been described in wild Atlantic salmon in Norway. The demonstration of CMS as a transmissible disease in 2009, and the subsequent detection and initial characterization of piscine myocarditis virus (PMCV) in 2010 and 2011 were significant discoveries that gave new impetus to the CMS research. In Norway, CMS usually causes mortality in large salmon in ongrowing and broodfish farms, resulting in reduced fish welfare, significant management-related challenges and substantial economic losses. The disease thus has a significant impact on the Atlantic salmon farming industry. There is a need to gain further basic knowledge about the virus, the disease and its epidemiology, but also applied knowledge from the industry to enable the generation and implementation of effective prevention and control measures. This review summarizes the currently available, scientific information on CMS and PMCV with special focus on epidemiology and factors influencing the development of CMS. © 2017 The Authors. Journal of Fish Diseases Published by John Wiley & Sons Ltd.

  15. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, Catherine; Plaster, Kurtis; Castillo, Jason

    2005-01-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returnsmore » from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2003, progeny from the captive broodstock program were released using three strategies: eyed-eggs were planted in Pettit and Alturas lakes in November and December, age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2003. Age-0 through age-4 O. nerka were captured in Redfish Lake, and population abundance was estimated at 81,727 fish. Age-0 through age-3 O. nerka were captured in Alturas Lake, and population abundance was estimated at 46,234 fish. Age-0 through age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 11,961 fish. Angler surveys were conducted from May 25 through August 7, 2003 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 179 anglers and estimated that 424 kokanee were harvested. The calculated kokanee catch rate was 0.09 fish/hour. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 15 to

  16. Atlantic salmon brood stock management and breeding handbook

    USGS Publications Warehouse

    Kincaid, Harold L.; Stanley, Jon G.

    1989-01-01

    Anadromus runs of Atlantic salmon have been restored to the Connecticut, Merrimack, Pawcatuck, Penobscot, and St. Croix rivers in New England by the stocking of more than 8 million smolts since 1948. Fish-breeding methods have been developed that minimize inbreeding and domestication and enhance natural selection. Methods are available to advance the maturation of brood stock, control the sex of production lots and store gametes. Current hatchery practices emphasize the use of sea-run brood stock trapped upon return to the rivers and a limited number of captive brood stock and rejuvenated kelts. Fish are allowed to mature naturally, after which they are spawned and incubated artificially. Generally, 1-year smolts are produced, and excess fish are stocked as fry in headwater streams. Smolts are stocked during periods of rising water in spring. Self-release pools are planned that enable smolts to choose the emigration time. Culturists keep good records that permit evaluation of the performance of strains and the effects of breeding practices. As Atlantic salmon populations expand, culturists must use sound breeding methods that enhance biotic potential while maintaining genetic diversity and protecting unique gene pools.

  17. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    NASA Astrophysics Data System (ADS)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely

  18. The effect of nonylphenol on gene expression in Atlantic salmon smolts.

    PubMed

    Robertson, Laura S; McCormick, Stephen D

    2012-10-15

    The parr-smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na(+)/K(+)-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers. Published by Elsevier B.V.

  19. The effect of nonylphenol on gene expression in Atlantic salmon smolts

    USGS Publications Warehouse

    Robertson, Laura S.; McCormick, Stephen D.

    2012-01-01

    The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na+/K+-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers.

  20. A survey of wild marine fish identifies a potential origin of an outbreak of viral haemorrhagic septicaemia in wrasse, Labridae, used as cleaner fish on marine Atlantic salmon, Salmo salar L., farms.

    PubMed

    Wallace, I S; Donald, K; Munro, L A; Murray, W; Pert, C C; Stagg, H; Hall, M; Bain, N

    2015-06-01

    Viral haemorrhagic septicaemia virus (VHSV) was isolated from five species of wrasse (Labridae) used as biological controls for parasitic sea lice predominantly, Lepeophtheirus salmonis (Krøyer, 1837), on marine Atlantic salmon, Salmo salar L., farms in Shetland. As part of the epidemiological investigation, 1400 wild marine fish were caught and screened in pools of 10 for VHSV using virus isolation. Eleven pools (8%) were confirmed VHSV positive from: grey gurnard, Eutrigla gurnardus L.; Atlantic herring, Clupea harengus L.; Norway pout, Trisopterus esmarkii (Nilsson); plaice, Pleuronectes platessa L.; sprat, Sprattus sprattus L. and whiting, Merlangius merlangus L. The isolation of VHSV from grey gurnard is the first documented report in this species. Nucleic acid sequencing of the partial nucleocapsid (N) and glycoprotein (G) genes was carried out for viral characterization. Sequence analysis confirmed that all wild isolates were genotype III the same as the wrasse and there was a close genetic similarity between the isolates from wild fish and wrasse on the farms. Infection from these local wild marine fish is the most likely source of VHSV isolated from wrasse on the fish farms. © 2014 Crown Copyright. Journal of Fish Diseases © 2014 John Wiley & Sons Ltd.

  1. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaney, Mark D.

    2009-04-15

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fishmore » production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment

  2. 77 FR 60631 - Fraser River Sockeye Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ...-XC222 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  3. 75 FR 78929 - Fraser River Sockeye Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...-XZ20 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders; request for comments. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate salmon fisheries in U.S. waters. The orders were issued by the Fraser River Panel (Panel) of the...

  4. Effects of diluted bitumen exposure on juvenile sockeye salmon: From cells to performance.

    PubMed

    Alderman, Sarah L; Lin, Feng; Farrell, Anthony P; Kennedy, Christopher J; Gillis, Todd E

    2017-02-01

    Diluted bitumen (dilbit; the product of oil sands extraction) is transported through freshwater ecosystems critical to Pacific salmon. This is concerning, because crude oil disrupts cardiac development, morphology, and function in embryonic fish, and cardiac impairment in salmon can have major consequences on migratory success and fitness. The sensitivity of early life-stage salmon to dilbit and its specific cardiotoxic effects are unknown. Sockeye salmon parr were exposed to environmentally relevant concentrations of the water-soluble fraction (WSF) of dilbit for 1 wk and 4 wk, followed by an examination of molecular, morphological, and organismal endpoints related to cardiotoxicity. We show that parr are sensitive to WSF of dilbit, with total polycyclic aromatic hydrocarbon (PAH) concentrations of 3.5 µg/L sufficient to induce a liver biomarker of PAH exposure, and total PAH of 16.4 µg/L and 66.7 µg/L inducing PAH biomarkers in the heart. Furthermore, WSF of dilbit induces concentration-dependent cardiac remodeling coincident with performance effects: fish exposed to 66.7 µg/L total PAH have relatively fewer myocytes and more collagen in the compact myocardium and impaired swimming performance at 4 wk, whereas the opposite changes occur in fish exposed to 3.5 µg/L total PAH. The results demonstrate cardiac sensitivity to dilbit exposure that could directly impact sockeye migratory success. Environ Toxicol Chem 2017;36:354-360. © 2016 SETAC. © 2016 SETAC.

  5. Changes in fish communities following recolonization of the Cedar river, Wa, USA by Pacific salmon after 103 years of local extirpation

    USGS Publications Warehouse

    Kiffney, P.M.; Pess, G.R.; Anderson, J.H.; Faulds, P.; Burton, Kenneth; Riley, S.C.

    2009-01-01

    Migration barriers are a major reason for species loss and population decline of freshwater organisms. Significant efforts have been made to remove or provide passage around these barriers; however, our understanding of the ecological effects of these efforts is minimal. Installation of a fish passage facility at the Landsburg Dam, WA, USA provided migratory fish access to habitat from which they had been excluded for over 100 years. Relying on voluntary recruitment, we examined the effectiveness of this facility in restoring coho (Oncorhynchus kisutch) salmon populations above the diversion, and whether reintroduction of native anadromous species affected the distribution and abundance of resident trout (O. mykiss and O. clarki). Before the ladder, late summer total salmonid (trout only) density increased with distance from the dam. This pattern was reversed after the ladder was opened, as total salmonid density (salmon {thorn} trout) approximately doubled in the three reaches closest to the dam. These changes were primarily due to the addition of coho, but small trout density also increased in lower reaches and decreased in upper reaches. A nearby source population, dispersal by adults and juveniles, low density of resident trout and high quality habitat above the barrier likely promoted rapid colonization of targeted species. Our results suggest that barrier removal creates an opportunity for migratory species to re-establish populations leading to range expansion and potentially to increased population size. ?? 2008 John Wiley & Sons, Ltd.

  6. Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years.

    PubMed

    Finney, B P; Gregory-Eaves, I; Sweetman, J; Douglas, M S; Smol, J P

    2000-10-27

    The effects of climate variability on Pacific salmon abundance are uncertain because historical records are short and are complicated by commercial harvesting and habitat alteration. We use lake sediment records of delta15N and biological indicators to reconstruct sockeye salmon abundance in the Bristol Bay and Kodiak Island regions of Alaska over the past 300 years. Marked shifts in populations occurred over decades during this period, and some pronounced changes appear to be related to climatic change. Variations in salmon returns due to climate or harvesting can have strong impacts on sockeye nursery lake productivity in systems where adult salmon carcasses are important nutrient sources.

  7. Nonlethal gill biopsy does not affect juvenile chinook salmon implanted with radio transmitters

    USGS Publications Warehouse

    Martinelli-Liedtke, T. L.; Shively, R.S.; Holmberg, G.S.; Sheer, M.B.; Schrock, R.M.

    1999-01-01

    Using gastric and surgical transmitter implantation, we compared radio-tagged juvenile chinook salmon Oncorhynchus tshawytscha (T(O)) with tagged fish also having a gill biopsy (T(B)) to determine biopsy effects on fish implanted with radio transmitters. We found no evidence during the 21-d period to suggest that a gill biopsy reduced survival, growth, or gross condition of the tagged-biopsy group, regardless of transmitter implantation technique. We recorded 100% survival of all treatment groups. Relative growth rates of T(O) and T(B) fish did not differ significantly. Leukocrit and lysozyme levels were not significantly different among groups, suggesting that no signs of infection were present. Our findings suggest that small chinook salmon can tolerate the combination of transmitter implantation and gill biopsy without compromising condition relative to fish receiving only the transmitter. We believe a gill biopsy can be used in field telemetry studies, especially when physiological data are needed in addition to behavioral data.

  8. Sea trout adapt their migratory behaviour in response to high salmon lice concentrations.

    PubMed

    Halttunen, E; Gjelland, K-Ø; Hamel, S; Serra-Llinares, R-M; Nilsen, R; Arechavala-Lopez, P; Skarðhamar, J; Johnsen, I A; Asplin, L; Karlsen, Ø; Bjørn, P-A; Finstad, B

    2018-06-01

    Sea trout face growth-mortality trade-offs when entering the sea to feed. Salmon lice epizootics resulting from aquaculture have shifted these trade-offs, as salmon lice might both increase mortality and reduce growth of sea trout. We studied mortality and behavioural adaptations of wild sea trout in a large-scale experiment with acoustic telemetry in an aquaculture intensive area that was fallowed (emptied of fish) synchronically biannually, creating large variations in salmon lice concentrations. We tagged 310 wild sea trout during 3 years, and gave half of the individuals a prophylaxis against further salmon lice infestation. There was no difference in survival among years or between treatments. In years of high infestation pressure, however, sea trout remained closer to the river outlet, used freshwater (FW) habitats for longer periods and returned earlier to the river than in the low infestation year. This indicates that sea trout adapt their migratory behaviour by actively choosing FW refuges from salmon lice to escape from immediate mortality risk. Nevertheless, simulations show that these adaptations can lead to lost growth opportunities. Reduced growth can increase long-term mortality of sea trout due to prolonged exposure to size-dependent predation risk, lead to lower fecundity and, ultimately, reduce the likelihood of sea migration. © 2017 The Authors. Journal of Fish Diseases Published by John Wiley & Sons Ltd.

  9. Laboratory evidence for short and long-term damage to pink salmon incubating in oiled gravel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heintz, R.; Rice, S.; Wiedmer, M.

    1995-12-31

    Pink salmon, incubating in gravel contaminated with crude oil, demonstrated immediate and delayed responses in the laboratory at doses consistent with the concentrations observed in oiled streams in Prince William Sound. The authors incubated pink salmon embryos in a simulated intertidal environment with gravel contaminated by oil from the Exxon Valdez. During the incubation and emergence periods the authors quantified dose-response curves for characters affected directly by the oil. After emergence, fish were coded wire tagged and released, or cultured in netpens. Delayed responses have been observed among the cultured fish, and further observations will be made when coded wiremore » tagged fish return in September 1995. The experiments have demonstrated that eggs need not contact oiled gravel to experience increased mortality, and doses as low as 17 ppb tPAH in water can have delayed effects on growth. A comparison of sediment tPAH concentrations from streams in Prince William Sound with these laboratory data suggests that many 1989 brood pink salmon were exposed to deleterious quantities of oil.« less

  10. 50 CFR 71.11 - Opening of national fish hatchery areas to fishing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... THE INTERIOR (CONTINUED) MANAGEMENT OF FISHERIES CONSERVATION AREAS HUNTING AND FISHING ON NATIONAL... hatchery areas may be opened to sport fishing when such activity is not detrimental to the propagation and...

  11. 50 CFR 71.11 - Opening of national fish hatchery areas to fishing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... THE INTERIOR (CONTINUED) MANAGEMENT OF FISHERIES CONSERVATION AREAS HUNTING AND FISHING ON NATIONAL... hatchery areas may be opened to sport fishing when such activity is not detrimental to the propagation and...

  12. 50 CFR 71.11 - Opening of national fish hatchery areas to fishing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... THE INTERIOR (CONTINUED) MANAGEMENT OF FISHERIES CONSERVATION AREAS HUNTING AND FISHING ON NATIONAL... hatchery areas may be opened to sport fishing when such activity is not detrimental to the propagation and...

  13. 50 CFR 71.11 - Opening of national fish hatchery areas to fishing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... THE INTERIOR (CONTINUED) MANAGEMENT OF FISHERIES CONSERVATION AREAS HUNTING AND FISHING ON NATIONAL... hatchery areas may be opened to sport fishing when such activity is not detrimental to the propagation and...

  14. Floodplain farm fields provide novel rearing habitat for Chinook salmon

    PubMed Central

    Jeffres, Carson; Conrad, J. Louise; Sommer, Ted R.; Martinez, Joshua; Brumbaugh, Steve; Corline, Nicholas; Moyle, Peter B.

    2017-01-01

    When inundated by floodwaters, river floodplains provide critical habitat for many species of fish and wildlife, but many river valleys have been extensively leveed and floodplain wetlands drained for flood control and agriculture. In the Central Valley of California, USA, where less than 5% of floodplain wetland habitats remain, a critical conservation question is how can farmland occupying the historical floodplains be better managed to improve benefits for native fish and wildlife. In this study fields on the Sacramento River floodplain were intentionally flooded after the autumn rice harvest to determine if they could provide shallow-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus tshawytscha). Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g) were reared on two hectares for six weeks (Feb-March) between the fall harvest and spring planting. A subsample of the fish were uniquely tagged to allow tracking of individual growth rates (average 0.76 mm/day) which were among the highest recorded in fresh water in California. Zooplankton sampled from the water column of the fields were compared to fish stomach contents. The primary prey was zooplankton in the order Cladocera, commonly called water fleas. The compatibility, on the same farm fields, of summer crop production and native fish habitat during winter demonstrates that land management combining agriculture with conservation ecology may benefit recovery of native fish species, such as endangered Chinook salmon. PMID:28591141

  15. Growth and condition of juvenile chum and pink salmon in the northeastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Wechter, Melissa E.; Beckman, Brian R.; Andrews, Alexander G., III; Beaudreau, Anne H.; McPhee, Megan V.

    2017-01-01

    As the Arctic continues to warm, abundances of juvenile Pacific salmon (Oncorhynchus spp.) in the northern Bering Sea are expected to increase. However, information regarding the growth and condition of juvenile salmon in these waters is limited. The first objective of this study was to describe relationships between size, growth, and condition of juvenile chum (O. keta) and pink (O. gorbuscha) salmon and environmental conditions using data collected in the northeastern Bering Sea (NEBS) from 2003-2007 and 2009-2012. Salmon collected at stations with greater bottom depths and cooler sea-surface temperature (SST) were longer, reflecting their movement further offshore out of the warmer Alaska Coastal Water mass, as the season progressed. Energy density, after accounting for fish length, followed similar relationships with SST and bottom depth while greater condition (weight-length residuals) was associated with warm SST and shallower stations. We used insulin-like growth factor-1 (IGF-1) concentrations as an indicator of relative growth rate for fishes sampled in 2009-2012 and that found fish exhibited higher IGF-1 concentrations in 2010-2012 than in 2009, although these differences were not clearly attributable to environmental conditions. Our second objective was to compare size and condition of juvenile chum and pink salmon in the NEBS between warm and cool spring thermal regimes of the southeastern Bering Sea (SEBS). This comparison was based on a hypothesis informed by the strong role of sea-ice retreat in the spring for production dynamics in the SEBS and prevailing northward currents, suggesting that feeding conditions in the NEBS may be influenced by production in the SEBS. We found greater length (both species) and condition (pink salmon) in years with warm thermal regimes; however, both of these responses changed more rapidly with day of year in years with cool springs. Finally, we compared indicators of energy allocation between even and odd brood

  16. Guide for Fish Kill Investigations.

    DTIC Science & Technology

    1980-05-09

    11 cm 1.1-1.7 0-83% 12-20 Oncorhynchus nerka Adult 2.3-2.7 most 21-23 Sockeye salmon Perca flavescens 10 cm 0.5-1.2 50% 10-20 Yellow perch yearling 0.4...Guide for Fish Kill Investigations Scientific Name Common Name Size DO mg/L* Deaths Temp ’C Oncorhynchus kisutch Yearling 1.2-1.6 50% 14 Coho salmon 4

  17. Ecological, morphological, genetic and life history characteristics of two sockeye salmon populations, Tustumena Lake, Alaska

    USGS Publications Warehouse

    Woody, Carol Ann

    1998-01-01

    Populations can differ in both phenotypic and molecular genetic traits. Phenotypic differences likely result from differential selection pressures in the environment, whereas differences in neutral molecular markers result from genetic drift associated with some degree of reproductive isolation. Two sockeye salmon, Oncorhynchus nerka, populations were compared using both phenotypic and genotypic characters, and causal factors were examined. Salmon spawning in a short (<3 km), shallow (<21 cm), clear, homogenous spring-fed study site spawned later, were younger, smaller, and produced fewer and smaller eggs than salmon spawning in a longer (∼80 km), deeper, stained, diverse, precipitation-dominated stream. Run timing differences were associated with differences in stream thermal regimes. Age and size at maturity differences are likely due to differences in age-specific mortality rates. Fish in the shallow spring-fed system suffered higher adult predation rates and exhibited greater egg to fry survival compared to fish in the precipitation-fed system. Salmon in both streams exhibited non-random nest site selection for deeper habitats and smaller substrates (≥2 to <64 mm mean diameter) relative to available habitat; fish from the precipitation system avoided low velocity habitats containing fine (<2 mm) substrates. Genetic comparisons of six microsatellite loci indicated that run time was a more effective reproductive isolating mechanism than geographical distance. Differences between and within the tributary spawning populations are discussed in terms of selection, genetic drift, and the homogenizing effects of gene flow. This study indicates important adaptive differences may exist between proximate spawning groups of salmon which should be considered when characterizing populations for conservation or management purposes.

  18. Research on Captive Broodstock Programs for Pacific Salmon, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Current velocity in rearing vessels had little if any effect on reproductive behavior of captively reared steelhead. However, males and females reared in high velocity vessels participated a greater number of spawning events than siblings reared in low velocity tanks. Observations of nesting females and associated malesmore » in a natural stream (Hamma Hamma River) were consistent with those observed in a controlled spawning channel. DNA pedigree analyses did not reveal significant differences in the numbers of fry produced by steelhead reared in high and low velocity vessels. To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon are being exposed to known odorants at key developmental stages. Subsequently they will be tested for development of long-term memories of these odorants. In 2002-2003, the efficacy of EOG analysis for assessing imprinting was demonstrated and will be applied in these and other behavioral and molecular tools in the current work plan. Results of these experiments will be important to determine the critical periods for imprinting for the offspring of captively-reared fish destined for release into natal rivers or lakes. By early August, the oocytes of all of Rapid River Hatchery chinook salmon females returning from the ocean had advanced to the tertiary yolk globule stage; whereas, only some of the captively reared Lemhi River females sampled had advanced to this stage, and the degree of advancement was not dependent on rearing temperature. The mean spawning time of captive Lemhi River females was 3-4 weeks after that of the Rapid River

  19. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Alcorn, S.W.; Murray, A.L.; Pascho, R.J.

    2002-01-01

    To determine if the defences of sockeye salmon (Oncorhynchus nerka) raised in captivity are affected by the rearing temperature or their life-cycle stage, various indices of the humoral and cellular immune functions were measured in fish reared at either 8 or 12??C for their entire life-cycle. Measures of humoral immunity included the commonly used haematological parameters, as well as measurements of complement, and lysozyme activity. Cellular assays quantified the ability of macrophages from the anterior kidney to phagocytise Staphylococcus aureus cells, or the activities of certain bactericidal systems of those cells. The T-dependent antibody response to a recombinant 57 kDa protein of Renibacterium salmoninarum was used to quantify the specific immune response. Fish were sampled during the spring and fall of their second, third and fourth years, corresponding to a period that began just before smolting and ended at sexual maturation. Fish reared at 8??C tended to have a greater percentage of phagocytic kidney macrophages during the first 2 years of sampling than the fish reared at 12??C. During the last half of the study the complement activity of the fish reared at 8??C was greater than that of the 12??C fish. Conversely, a greater proportion of the blood leucocytes were lymphocytes in fish reared at 12??C compared to the fish reared at 8??C. Fish reared at 12??C also produced a greater antibody response than those reared at 8??C. Results suggested that the immune apparatus of sockeye salmon reared at 8??C relied more heavily on the non-specific immune response, while the specific immune response was used to a greater extent when the fish were reared at 12??C. Although a seasonal effect was not detected in any of the indices measured, varying effects were observed in some measurements during sexual maturation of fish in both temperature groups. At that time there were dramatic decreases in complement activity and lymphocyte numbers. This study was unique in

  20. Pseudo-membranes on internal organs associated with Rhodococcus qingshengii infection in Atlantic salmon (Salmo salar).

    PubMed

    Avendaño-Herrera, Rubén; Balboa, Sabela; Doce, Alejandra; Ilardi, Pedro; Lovera, Pablo; Toranzo, Alicia E; Romalde, Jesús L

    2011-01-10

    This paper describes a pathological condition in intensive reared Atlantic salmon (Salmo salar), restricted to the appearance of pseudo-membranes covering internal organs (i.e. spleen, liver, heart and others) associated with the presence of large numbers of a Gram-positive bacteria. Isolate 79043-3, obtained as pure culture from affected fish, was subjected to a polyphasic taxonomic study in order to determine its exact taxonomic position, as well as to experimental challenges leading to determine its pathogenic potential for cultured fish. Based on this characterization, we report the first isolation of Rhodococcus qingshengii, from a farmed population of Atlantic salmon in Chile. Virulence studies demonstrated that the isolate fulfilled the Koch's postulates, suggesting that this bacterial species could be considered as an opportunistic pathogen for Atlantic salmon. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Fish everywhere, all the time: modeling fish in the riverscape

    EPA Science Inventory

    From 2002-2006, EPA’s Western Ecology Division conducted innovative research on the population dynamics of fish within an entire stream network. Employing individual tagging and tracking technology, we examined spatial patterns of juvenile coho salmon (Oncorhynchus kisutch...

  2. Identification and characterisation of TLR18-21 genes in Atlantic salmon (Salmo salar).

    PubMed

    Lee, P T; Zou, J; Holland, J W; Martin, S A M; Collet, B; Kanellos, T; Secombes, C J

    2014-12-01

    Teleost fish possess many types of toll-like receptor (TLR) some of which exist in other vertebrate groups and some that do not (ie so-called "fish-specific" TLRs). In this study, we identified in Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs seven TLRs that are not found in mammals, including six types of fish-specific TLRs (one TLR18, one TLR19, and four TLR20 members (two of which are putative soluble forms (s)) and one TLR21. Phylogenetic analysis revealed that teleost TLR19-21 are closely related with murine TLR11-TLR13, whilst teleost TLR18 groups with mammalian TLR1, 2, 6 and 10. A typical TLR protein domain structure was found in all these TLRs with the exception of TLR20b(s) and TLR20c(s). TLR-GFP expression plasmids transfected into SHK-1 cells showed that salmon TLR19, TLR20a and TLR20d were preferentially localised to the intracellular compartment. Real time PCR analysis suggested that salmon TLR19-TLR21 are mainly expressed in immune related organs, such as spleen, head kidney and gills, while TLR18 transcripts are more abundant in muscle. In vitro stimulation of primary head kidney cells with type I IFN, IFNγ and IL-1β had no impact on TLR expression. Infectious salmon anaemia virus (ISAV) infection, in vivo, down-regulated TLR20a, TLR20b(s), TLR20d and TLR21 in infected salmon kidney tissue. In contrast, up-regulation of TLR19 and TLR20a expression was found in posterior kidney in rainbow trout with clinical proliferative kidney disease (PKD). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. PCB congener patterns in rats consuming diets containing Great Lakes salmon: Analysis of fish, diets, and adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, S.A.; Feeley, M.M.

    1999-02-01

    As part of a multidisciplinary toxicological investigation into Great Lakes contaminants, chinook salmon were collected from lake Huron (LH) and Lake Ontario (LO) and incorporated into standard rat diets as 20 or 100% of the protein complement. Final PCB concentrations in the experiment ranged from 3.15 ng/g in the control diet to 1,080 ngg in the high-dose LO diet, with maximal estimated daily consumption by the rats of 82 {micro}g PCBs/kg body wt in the LO20 dietary group. Seventeen PCB congeners, PCB 85, 99, 101, 105, 110, 118, 128, 129, 132, 138, 149, 153, 170, 177, 180, 187, and 199,more » occurred at > 3.0% of the total PCBs in the fish with no major site differences. Cumulatively, these 17 congeners accounted for up to 75% of the total PCBs in the fish compared to 44 and 54% in two commercial Aroclors, 1254 and 1260, respectively. PCB 77 was the major dioxin-like congener in the fish, followed by PCB 126 and then PCB 169. All major dietary congeners bioaccumulated in the adipose tissue of the rats with the exception of PCB congeners 101, 110, 132, and 149.« less

  4. Glandular kallikrein in the innate immune system of Atlantic salmon (Salmo salar).

    PubMed

    Haussmann, D; Figueroa, J

    2011-02-15

    Glandular Kallikrein is a serine-protease with trypsin-like activity and is able to generate bioactive peptides from inactive precursors. We have evaluated the presence of this protease in the different organs of the Atlantic salmon (Salmo salar). The results clearly indicate that GK and PRL are generated in the same pituitary cells based on a co-localization by confocal microscopy. Based on probed cross-reactivity between C. striata and C. carpio glandular anti-GK antibodies, we used a homologous antibody to detect the presence of GK in several salmon tissues. We have evaluated the GK expression in healthy and defied fish. P. salmonis and V. ordalii. The GK immunoreaction in organs such as leukocytes, gills and skin is considerably increased in defied fish compared to healthy fish. This increase was present in the cells of the excretory kidney and in the intercellular tissue, where the development of hematopoietic and lymphocytic lines in fish take place. One of the most interesting organs to study was the skin, bearing in mind that this is a primary barrier to all pathogens. The skin of the defied fish exhibited an increase in immunoreactivity for glandular kallikrein similar to the protease found in mucus. An immunoreactive tissue kallikrein-like protein was identified and partially separated by perfusion chromatography. Enzymatic activity of salmon muscle prokallikrein was determined before and after trypsin activation. Kallikrein activity was characterized with respect to their ability to cleave the chromogenic leaving group, p-nitroanilide, from the peptidyl kallikrein and trypsin substrate. These findings constitute a important contribution to reveal the role of kallikrein in the innate immune system of fish. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Deciphering microbial landscapes of fish eggs to mitigate emerging diseases

    PubMed Central

    Liu, Yiying; de Bruijn, Irene; Jack, Allison LH; Drynan, Keith; van den Berg, Albert H; Thoen, Even; Sandoval-Sierra, Vladimir; Skaar, Ida; van West, Pieter; Diéguez-Uribeondo, Javier; van der Voort, Menno; Mendes, Rodrigo; Mazzola, Mark; Raaijmakers, Jos M

    2014-01-01

    Animals and plants are increasingly suffering from diseases caused by fungi and oomycetes. These emerging pathogens are now recognized as a global threat to biodiversity and food security. Among oomycetes, Saprolegnia species cause significant declines in fish and amphibian populations. Fish eggs have an immature adaptive immune system and depend on nonspecific innate defences to ward off pathogens. Here, meta-taxonomic analyses revealed that Atlantic salmon eggs are home to diverse fungal, oomycete and bacterial communities. Although virulent Saprolegnia isolates were found in all salmon egg samples, a low incidence of Saprolegniosis was strongly correlated with a high richness and abundance of specific commensal Actinobacteria, with the genus Frondihabitans (Microbacteriaceae) effectively inhibiting attachment of Saprolegniato salmon eggs. These results highlight that fundamental insights into microbial landscapes of fish eggs may provide new sustainable means to mitigate emerging diseases. PMID:24671087

  6. 36 CFR 13.1204 - Traditional red fish fishery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Traditional red fish fishery... Provisions § 13.1204 Traditional red fish fishery. Local residents who are descendants of Katmai residents... fish (spawned-out sockeye salmon that have no significant commercial value). ...

  7. 36 CFR 13.1204 - Traditional red fish fishery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Traditional red fish fishery... Provisions § 13.1204 Traditional red fish fishery. Local residents who are descendants of Katmai residents... fish (spawned-out sockeye salmon that have no significant commercial value). ...

  8. 36 CFR 13.1204 - Traditional red fish fishery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Traditional red fish fishery... Provisions § 13.1204 Traditional red fish fishery. Local residents who are descendants of Katmai residents... fish (spawned-out sockeye salmon that have no significant commercial value). ...

  9. Calcium from salmon and cod bone is well absorbed in young healthy men: a double-blinded randomised crossover design

    PubMed Central

    2010-01-01

    Background Calcium (Ca) - fortified foods are likely to play an important role in helping the consumer achieve an adequate Ca intake, especially for persons with a low intake of dairy products. Fish bones have a high Ca content, and huge quantities of this raw material are available as a by-product from the fish industry. Previously, emphasis has been on producing high quality products from fish by-products by use of bacterial proteases. However, documentation of the nutritional value of the enzymatically rinsed Ca-rich bone fraction remains unexplored. The objective of the present study was to assess the bioavailability of calcium in bones of Atlantic salmon (oily fish) and Atlantic cod (lean fish) in a double-blinded randomised crossover design. Methods Ca absorption was measured in 10 healthy young men using 47Ca whole body counting after ingestion of a test meal extrinsically labelled with the 47Ca isotope. The three test meals contained 800 mg of Ca from three different calcium sources: cod bones, salmon bones and control (CaCO3). Results Mean Ca absorption (± SEE) from the three different Ca sources were 21.9 ± 1.7%, 22.5 ± 1.7% and 27.4 ± 1.8% for cod bones, salmon bones, and control (CaCO3), respectively. Conclusion We conclude that bones from Atlantic salmon and Atlantic cod are suitable as natural Ca sources in e.g. functional foods or as supplements. PMID:20646299

  10. Vaccination and triploidy increase relative heart weight in farmed Atlantic salmon, Salmo salar L.

    PubMed

    Fraser, T W K; Mayer, I; Hansen, T; Poppe, T T; Skjaeraasen, J E; Koppang, E O; Fjelldal, P G

    2015-02-01

    Heart morphology is particularly plastic in teleosts and differs between farmed and wild Atlantic salmon. However, little is known about how different culture practices and sex affect heart morphology. This study investigated how vaccination, triploidy and sex affected heart size and heart morphology (ventricle shape, angle of the bulbus arteriosus) in farmed Atlantic salmon for 18 months following vaccination (from c. 50-3000 g body weight). In addition, hearts were examined histologically after 7 months in sea water. All fish sampled were sexually immature. Vaccinated fish had significantly heavier hearts relative to body weight and a more triangular ventricle than unvaccinated fish, suggesting a greater cardiac workload. Irrespective of time, triploids had significantly heavier hearts relative to body weight, a more acute angle of the bulbus arteriosus and less fat deposition in the epicardium than diploids. The ventricle was also more triangular in triploids than diploids at seawater transfer. Sex had transient effects on the angle of the bulbus arteriosus, but no effect on relative heart weight or ventricle shape. From a morphological perspective, the results indicate that vaccination and triploidy increase cardiac workload in farmed Atlantic salmon. © 2014 John Wiley & Sons Ltd.

  11. Physiological consequences of the salmon louse (Lepeophtheirus salmonis) on juvenile pink salmon (Oncorhynchus gorbuscha): implications for wild salmon ecology and management, and for salmon aquaculture.

    PubMed

    Brauner, C J; Sackville, M; Gallagher, Z; Tang, S; Nendick, L; Farrell, A P

    2012-06-19

    Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.

  12. Plasticity in growth of farmed and wild Atlantic salmon: is the increased growth rate of farmed salmon caused by evolutionary adaptations to the commercial diet?

    PubMed

    Harvey, Alison Catherine; Solberg, Monica Favnebøe; Troianou, Eva; Carvalho, Gary Robert; Taylor, Martin Ian; Creer, Simon; Dyrhovden, Lise; Matre, Ivar Helge; Glover, Kevin Alan

    2016-12-01

    Domestication of Atlantic salmon for commercial aquaculture has resulted in farmed salmon displaying substantially higher growth rates than wild salmon under farming conditions. In contrast, growth differences between farmed and wild salmon are much smaller when compared in the wild. The mechanisms underlying this contrast between environments remain largely unknown. It is possible that farmed salmon have adapted to the high-energy pellets developed specifically for aquaculture, contributing to inflated growth differences when fed on this diet. We studied growth and survival of 15 families of farmed, wild and F1 hybrid salmon fed three contrasting diets under hatchery conditions; a commercial salmon pellet diet, a commercial carp pellet diet, and a mixed natural diet consisting of preserved invertebrates commonly found in Norwegian rivers. For all groups, despite equal numbers of calories presented by all diets, overall growth reductions as high 68 and 83%, relative to the salmon diet was observed in the carp and natural diet treatments, respectively. Farmed salmon outgrew hybrid (intermediate) and wild salmon in all treatments. The relative growth difference between wild and farmed fish was highest in the carp diet (1: 2.1), intermediate in the salmon diet (1:1.9) and lowest in the natural diet (1:1.6). However, this trend was non-significant, and all groups displayed similar growth reaction norms and plasticity towards differing diets across the treatments. No indication of genetic-based adaptation to the form or nutritional content of commercial salmon diets was detected in the farmed salmon. Therefore, we conclude that diet alone, at least in the absence of other environmental stressors, is not the primary cause for the large contrast in growth differences between farmed and wild salmon in the hatchery and wild. Additionally, we conclude that genetically-increased appetite is likely to be the primary reason why farmed salmon display higher growth rates than

  13. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabe, Craig D.; Nelson, Douglas D.

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket stylemore » weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition

  14. Effects of individual variation in length, condition and run-time on return rates of wild-reared Atlantic salmon Salmo salar smolts.

    PubMed

    Armstrong, J D; McKelvey, S; Smith, G W; Rycroft, P; Fryer, R J

    2018-03-01

    Groups of wild-reared Atlantic salmon Salmo salar smolts were captured during their seaward migration on a tributary of the River Conon, Scotland, U.K., from 1999 to 2014 and tagged with passive integrated transponders (PIT). Fish that subsequently returned to the river after growing at sea were recorded automatically by a PIT-detector in a fish pass. Return rate was related directly to length and condition and inversely to day of the year that the smolt was tagged. Over years, as the study progressed, there was a significant increase in the proportion of smolts returning after two or more years at sea and no trend in returns of salmon having spent one winter at sea. There was no trend in the date of return of salmon across the study period. Fish that had spent more winters at sea returned earlier in the year. © 2018 Crown Copyright. Journal of Fish Biology © 2018 The Fisheries Society of the British Isles.

  15. Influence of Incision Location on Transmitter Loss, Healing, Incision Lengths, Suture Retention, and Growth of Juvenile Chinook Salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panther, Jennifer L.; Brown, Richard S.; Gaulke, Greggory L.

    2010-05-11

    In this study, conducted by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District, we measured differences in survival and growth, incision openness, transmitter loss, wound healing, and erythema among abdominal incisions on the linea alba, lateral and parallel to the linea alba (muscle-cutting), and following the underlying muscle fibers (muscle-sparing). A total of 936 juvenile Chinook salmon were implanted with both Juvenile Salmon Acoustic Tracking System transmitters (0.43 g dry) and passive integrated transponder tags. Fish were held at 12°C (n = 468) or 20°C (n = 468) and examined once weekly over 98 days.more » We found survival and growth did not differ among incision groups or between temperature treatment groups. Incisions on the linea alba had less openness than muscle-cutting and muscle-sparing incisions during the first 14 days when fish were held at 12°C or 20°C. Transmitter loss was not different among incision locations by day 28 when fish were held at 12°C or 20°C. However, incisions on the linea alba had greater transmitter loss than muscle-cutting and muscle-sparing incisions by day 98 at 12°C. Results for wound closure and erythema differed among temperature groups. Results from our study will be used to improve fish-tagging procedures for future studies using acoustic or radio transmitters.« less

  16. A field efficacy evaluation of emamectin benzoate for the control of sea lice on Atlantic salmon.

    PubMed

    Armstrong, R; MacPhee, D; Katz, T; Endris, R

    2000-08-01

    This study evaluated the efficacy of emamectin benzoate, 0.2% aquaculture premix, against sea lice on Atlantic salmon in eastern Canada. Salmon pens received either emamectin benzoate, orally, in feed at 50 micrograms/kg body weight/day for 7 consecutive days, or the same diet with no added medication. The site veterinarian had the option of administering a bath treatment with azamethiphos to any pen in the trial. The mean number of lice per fish was lower (P < 0.05) in the experimental group when measured 1, 3, 4, and 6 weeks after the start of medication. Treatment efficacy was 70%, 88%, 95%, and 61%, respectively. Three azamethiphos bath treatments were applied to each control pen during the trial, while the treatment pens received no bath treatment. No gravid female parasites were observed on any fish in the treatment group, while these life stages were observed on fish in the control group. Orally administered emamectin benzoate was palatable and highly effective for control of sea lice on salmon.

  17. A field efficacy evaluation of emamectin benzoate for the control of sea lice on Atlantic salmon.

    PubMed Central

    Armstrong, R; MacPhee, D; Katz, T; Endris, R

    2000-01-01

    This study evaluated the efficacy of emamectin benzoate, 0.2% aquaculture premix, against sea lice on Atlantic salmon in eastern Canada. Salmon pens received either emamectin benzoate, orally, in feed at 50 micrograms/kg body weight/day for 7 consecutive days, or the same diet with no added medication. The site veterinarian had the option of administering a bath treatment with azamethiphos to any pen in the trial. The mean number of lice per fish was lower (P < 0.05) in the experimental group when measured 1, 3, 4, and 6 weeks after the start of medication. Treatment efficacy was 70%, 88%, 95%, and 61%, respectively. Three azamethiphos bath treatments were applied to each control pen during the trial, while the treatment pens received no bath treatment. No gravid female parasites were observed on any fish in the treatment group, while these life stages were observed on fish in the control group. Orally administered emamectin benzoate was palatable and highly effective for control of sea lice on salmon. PMID:10945125

  18. Age-related thermal habitat use by Pacific salmon Oncorhynchus spp.

    PubMed

    Morita, K; Fukuwaka, M; Tanimata, N

    2010-09-01

    Age-related thermal habitat use by sockeye Oncorhynchus nerka, chum Oncorhynchus keta and pink Oncorhynchus gorbuscha salmon was examined using trawl data obtained in spring in the North Pacific Ocean. Thermal habitat use differed by species and age. Larger and older fishes inhabited cooler areas, whereas smaller and younger fishes inhabited warmer areas. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  19. 46 CFR 105.05-1 - Commercial fishing vessels dispensing petroleum products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... salmon or crab fisheries of Oregon, Washington, and Alaska, the construction of which is contracted for... apply to all commercial fishing vessels of not more than 500 gross tons used in the salmon or crab...

  20. 46 CFR 105.05-1 - Commercial fishing vessels dispensing petroleum products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... salmon or crab fisheries of Oregon, Washington, and Alaska, the construction of which is contracted for... apply to all commercial fishing vessels of not more than 500 gross tons used in the salmon or crab...

  1. Tracing salmon-derived nutrients and contaminants in freshwater food webs across a pronounced spawner density gradient.

    PubMed

    Gregory-Eaves, Irene; Demers, J Marc J; Kimpe, Lynda; Krümmel, Eva M; Macdonald, Robie W; Finney, Bruce P; Blais, Jules M

    2007-06-01

    Many have demonstrated that anadromous Pacific salmon are significant vectors of nutrients from the ocean to freshwaters. Recently. however, it has been recognized that salmon spawners also input significant quantities of contaminants. The objectives of this paper are to delineate the extent to which salmon-derived nutrients are integrated into the freshwater food web using delta(15)N and delta(13)C and to assess the influence of the salmon pathway in the accumulation of contaminants in rainbow trout (Oncorhynchus mykiss). We found that the delta(15)N and delta(13)C of food web components were related positively and significantly to sockeye salmon (Oncorhynchus nerka) spawner density. Contaminant concentrations in rainbow trout also positively and significantly were related to sockeye salmon spawner density. These data suggest that the anadromous salmon nutrient and contaminant pathways are related and significantly impact the contaminant burden of resident fish.

  2. A historical review of the key bacterial and viral pathogens of Scottish wild fish.

    PubMed

    Wallace, I S; McKay, P; Murray, A G

    2017-12-01

    Thousands of Scottish wild fish were screened for pathogens by Marine Scotland Science. A systematic review of published and unpublished data on six key pathogens (Renibacterium salmoninarum, Aeromonas salmonicida, IPNV, ISAV, SAV and VHSV) found in Scottish wild and farmed fish was undertaken. Despite many reported cases in farmed fish, there was a limited number of positive samples from Scottish wild fish, however, there was evidence for interactions between wild and farmed fish. A slightly elevated IPNV prevalence was reported in wild marine fish caught close to Atlantic salmon, Salmo salar L., farms that had undergone clinical IPN. Salmonid alphavirus was isolated from wild marine fish caught near Atlantic salmon farms with a SAV infection history. Isolations of VHSV were made from cleaner wrasse (Labridae) used on Scottish Atlantic salmon farms and VHSV was detected in local wild marine fish. However, these pathogens have been detected in wild marine fish caught remotely from aquaculture sites. These data suggest that despite the large number of samples taken, there is limited evidence for clinical disease in wild fish due to these pathogens (although BKD and furunculosis historically occurred) and they are likely to have had a minimal impact on Scottish wild fish. © 2017 Crown Copyright. Journal of Fish Diseases © 2017 John Wiley & Sons Ltd.

  3. A probabilistic approach to quantifying hydrologic thresholds regulating migration of adult Atlantic salmon into spawning streams

    NASA Astrophysics Data System (ADS)

    Lazzaro, G.; Soulsby, C.; Tetzlaff, D.; Botter, G.

    2017-03-01

    Atlantic salmon is an economically and ecologically important fish species, whose survival is dependent on successful spawning in headwater rivers. Streamflow dynamics often have a strong control on spawning because fish require sufficiently high discharges to move upriver and enter spawning streams. However, these streamflow effects are modulated by biological factors such as the number and the timing of returning fish in relation to the annual spawning window in the fall/winter. In this paper, we develop and apply a novel probabilistic approach to quantify these interactions using a parsimonious outflux-influx model linking the number of female salmon emigrating (i.e., outflux) and returning (i.e., influx) to a spawning stream in Scotland. The model explicitly accounts for the interannual variability of the hydrologic regime and the hydrological connectivity of spawning streams to main rivers. Model results are evaluated against a detailed long-term (40 years) hydroecological data set that includes annual fluxes of salmon, allowing us to explicitly assess the role of discharge variability. The satisfactory model results show quantitatively that hydrologic variability contributes to the observed dynamics of salmon returns, with a good correlation between the positive (negative) peaks in the immigration data set and the exceedance (nonexceedance) probability of a threshold flow (0.3 m3/s). Importantly, model performance deteriorates when the interannual variability of flow regime is disregarded. The analysis suggests that flow thresholds and hydrological connectivity for spawning return represent a quantifiable and predictable feature of salmon rivers, which may be helpful in decision making where flow regimes are altered by water abstractions.

  4. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Robert

    2003-09-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (>1 m) downstream of Bonneville Dam in the fall of 2002. This report documents the number and extent of chinook salmon spawning near Ives and Pierce Islands of the Columbia River, and is the fourth in a series of reports prepared since 1999. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates ofmore » adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds located in the deeper sections near below Hamilton Creek. There was a significant increase in the number of fall chinook salmon redds found in the locations surveyed during the 2002 surveys when compared to previous surveys by Pacific Northwest National Laboratory. A total of 192 redds were found in two general locations adjacent to Pierce Island (river km 228.5) encompassing an area of approximately 9.31 ha. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 15, 2002. An estimated 1,768 fall chinook salmon redds at water depths exceeding {approx}1.m ({approx} 125 kcfs) were documented in 2002. This estimate is the expanded number based on the number of redds found within the pre-defined survey area. Fall chinook salmon redds were found at water depths from 0.9 to 8.5 m and were constructed in gravel to large cobble ranging in size from 4.83 to 13.4 cm in diameter. No chum salmon redds were found in areas surveyed during 2002, although several carcasses were found at the mouth of Woodward Creek and in the deeper sections below Hamilton Creek.« less

  5. Reduced Anxiety in Forensic Inpatients after a Long-Term Intervention with Atlantic Salmon

    PubMed Central

    Hansen, Anita L.; Olson, Gina; Dahl, Lisbeth; Thornton, David; Grung, Bjørn; Graff, Ingvild E.; Frøyland, Livar; Thayer, Julian F.

    2014-01-01

    The aim of the present study was to investigate the effects of Atlantic salmon consumption on underlying biological mechanisms associated with anxiety such as heart rate variability (HRV) and heart rate (HR) as well as a measure of self-reported anxiety. Moreover, these biological and self-reported outcome measures were investigated in relation to specific nutrients; vitamin D status, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Ninety-five male forensic inpatients were randomly assigned into a Fish (Atlantic salmon three times per week from September to February) or a Control group (alternative meal, e.g., chicken, pork, or beef three times per week during the same period). HRV measured as the root mean square of successive differences (rMSSD), HR, state- and trait-anxiety (STAI), were assessed before (pre-test) and at the end of the 23 weeks dietary intervention period (post-test). The Fish group showed significant improvements in both rMSSD and HR. The Fish group also showed significant decreases in state-anxiety. Finally, there was a positive relationship between rMSSD and vitamin D status. The findings suggest that Atlantic salmon consumption may have an impact on mental health related variables such as underlying mechanisms playing a key role in emotion-regulation and state-anxiety. PMID:25431880

  6. Reduced anxiety in forensic inpatients after a long-term intervention with Atlantic salmon.

    PubMed

    Hansen, Anita L; Olson, Gina; Dahl, Lisbeth; Thornton, David; Grung, Bjørn; Graff, Ingvild E; Frøyland, Livar; Thayer, Julian F

    2014-11-26

    The aim of the present study was to investigate the effects of Atlantic salmon consumption on underlying biological mechanisms associated with anxiety such as heart rate variability (HRV) and heart rate (HR) as well as a measure of self-reported anxiety. Moreover, these biological and self-reported outcome measures were investigated in relation to specific nutrients; vitamin D status, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Ninety-five male forensic inpatients were randomly assigned into a Fish (Atlantic salmon three times per week from September to February) or a Control group (alternative meal, e.g., chicken, pork, or beef three times per week during the same period). HRV measured as the root mean square of successive differences (rMSSD), HR, state- and trait-anxiety (STAI), were assessed before (pre-test) and at the end of the 23 weeks dietary intervention period (post-test). The Fish group showed significant improvements in both rMSSD and HR. The Fish group also showed significant decreases in state-anxiety. Finally, there was a positive relationship between rMSSD and vitamin D status. The findings suggest that Atlantic salmon consumption may have an impact on mental health related variables such as underlying mechanisms playing a key role in emotion-regulation and state-anxiety.

  7. 76 FR 42099 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... gear, which consists of large nets towed through the water by the vessel. At times, Chinook salmon and... vessel does its best to avoid Chinook salmon at all times while fishing for pollock and that collectively... provide a qualitative evaluation and some quantitative information on the effectiveness of the IPAs. Each...

  8. Migratory salmonid redd habitat characteristics in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; McKenna, James E.

    2010-01-01

    Non-native migratory salmonids ascend tributaries to spawn in all the Great Lakes. In Lake Ontario, these species include Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), steelhead (O. mykiss), and brown trout (Salmo trutta). Although successful natural reproduction has been documented for many of these species, little research has been conducted on their spawning habitat. We examined the spawning habitat of these four species in the Salmon River, New York. Differences in fish size among the species were significantly correlated with spawning site selection. In the Salmon River, the larger species spawned in deeper areas with larger size substrate and made the largest redds. Discriminant function analysis correctly classified redds by species 64–100% of the time. The size of substrate materials below Lighthouse Hill Dam is within the preferred ranges for spawning for these four species indicating that river armoring has not negatively impacted salmonid production. Intra-specific and inter-specific competition for spawning sites may influence redd site selection for smaller salmonids and could be an impediment for Atlantic salmon (S. salar) restoration.

  9. Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis)

    PubMed Central

    Skugor, Stanko; Glover, Kevin Alan; Nilsen, Frank; Krasnov, Aleksei

    2008-01-01

    Background The salmon louse (SL) is an ectoparasitic caligid crustacean infecting salmonid fishes in the marine environment. SL represents one of the major challenges for farming of salmonids, and veterinary intervention is necessary to combat infection. This study addressed gene expression responses of Atlantic salmon infected with SL, which may account for its high susceptibility. Results The effects of SL infection on gene expression in Atlantic salmon were studied throughout the infection period from copepodids at 3 days post infection (dpi) to adult lice (33 dpi). Gene expression was analyzed at three developmental stages in damaged and intact skin, spleen, head kidney and liver, using real-time qPCR and a salmonid cDNA microarray (SFA2). Rapid detection of parasites was indicated by the up-regulation of immunoglobulins in the spleen and head kidney and IL-1 receptor type 1, CD4, beta-2-microglobulin, IL-12β, CD8α and arginase 1 in the intact skin of infected fish. Most immune responses decreased at 22 dpi, however, a second activation was observed at 33 dpi. The observed pattern of gene expression in damaged skin suggested the development of inflammation with signs of Th2-like responses. Involvement of T cells in responses to SL was witnessed with up-regulation of CD4, CD8α and programmed death ligand 1. Signs of hyporesponsive immune cells were seen. Cellular stress was prevalent in damaged skin as seen by highly significant up-regulation of heat shock proteins, other chaperones and mitochondrial proteins. Induction of the major components of extracellular matrix, TGF-β and IL-10 was observed only at the adult stage of SL. Taken together with up-regulation of matrix metalloproteinases (MMP), this classifies the wounds afflicted by SL as chronic. Overall, the gene expression changes suggest a combination of chronic stress, impaired healing and immunomodulation. Steady increase of MMP expression in all tissues except liver was a remarkable feature of SL

  10. Genome-wide transcription analysis of histidine-related cataract in Atlantic salmon (Salmo salar L)

    PubMed Central

    Waagbø, Rune; Breck, Olav; Stavrum, Anne-Kristin; Petersen, Kjell; Olsvik, Pål A.

    2009-01-01

    Purpose Elevated levels of dietary histidine have previously been shown to prevent or mitigate cataract formation in farmed Atlantic salmon (Salmo salar L). The aim of this study was to shed light on the mechanisms by which histidine acts. Applying microarray analysis to the lens transcriptome, we screened for differentially expressed genes in search for a model explaining cataract development in Atlantic salmon and possible markers for early cataract diagnosis. Methods Adult Atlantic salmon (1.7 kg) were fed three standard commercial salmon diets only differing in the histidine content (9, 13, and 17 g histidine/kg diet) for four months. Individual cataract scores for both eyes were assessed by slit-lamp biomicroscopy. Lens N-acetyl histidine contents were measured by high performance liquid chromatography (HPLC). Total RNA extracted from whole lenses was analyzed using the GRASP 16K salmonid microarray. The microarray data were analyzed using J-Express Pro 2.7 and validated by quantitative real-time polymerase chain reaction (qRT–PCR). Results Fish developed cataracts with different severity in response to dietary histidine levels. Lens N-acetyl histidine contents reflected the dietary histidine levels and were negatively correlated to cataract scores. Significance analysis of microarrays (SAM) revealed 248 significantly up-regulated transcripts and 266 significantly down-regulated transcripts in fish that were fed a low level of histidine compared to fish fed a higher histidine level. Among the differentially expressed transcripts were metallothionein A and B as well as transcripts involved in lipid metabolism, carbohydrate metabolism, regulation of ion homeostasis, and protein degradation. Hierarchical clustering and correspondence analysis plot confirmed differences in gene expression between the feeding groups. The differentially expressed genes could be categorized as “early” and “late” responsive according to their expression pattern relative to

  11. Effects of surgically and gastrically implanted radio transmitters on growth and feeding behavior of juvenile chinook salmon

    USGS Publications Warehouse

    Adams, N.S.; Rondorf, D.W.; Evans, S.D.; Kelly, J.E.

    1997-01-01

    We examined the effects of surgically and gastrically implanted radio transmitters (representing 2.3-5.5% of body weight) on the growth and feeding behavior of 192 juvenile chinook salmon Oncorhynchus tshawytscha (114-159 mm in fork length). Throughout the 54-d study, the 48 fish with transmitters in their stomachs (gastric fish) consistently grew more slowly than fish with surgically implanted transmitters (surgery fish), fish with surgery but no implanted transmitter (sham-surgery fish), or fish exposed only to handling (control fish). Growth rates of surgery fish were also slightly impaired at day 21, but by day 54 they were growing at rates comparable with those of control fish. Despite differences in growth, overall health was similar among all test fish. However, movement of the transmitter antenna caused abrasions at the corner of the mouth in all gastric fish, whereas only 22% of the surgery fish had inflammation around the antenna exit wound. Feeding activity was similar among groups, but gastric fish exhibited a coughing behavior and appeared to have difficulty retaining swallowed food. Because growth and feeding behavior were less affected by the presence of surgically implanted transmitters than by gastric implants, we recommend surgically implanting transmitters for biotelemetry studies of juvenile chinook salmon between 114 and 159 mm fork length.

  12. 50 CFR 71.1 - Opening of national fish hatchery areas to hunting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Opening of national fish hatchery areas to hunting. 71.1 Section 71.1 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF... FISH HATCHERY AREAS Hunting § 71.1 Opening of national fish hatchery areas to hunting. National fish...

  13. 50 CFR 71.1 - Opening of national fish hatchery areas to hunting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Opening of national fish hatchery areas to hunting. 71.1 Section 71.1 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF... FISH HATCHERY AREAS Hunting § 71.1 Opening of national fish hatchery areas to hunting. National fish...

  14. 50 CFR 71.1 - Opening of national fish hatchery areas to hunting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Opening of national fish hatchery areas to hunting. 71.1 Section 71.1 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF... FISH HATCHERY AREAS Hunting § 71.1 Opening of national fish hatchery areas to hunting. National fish...

  15. 50 CFR 71.1 - Opening of national fish hatchery areas to hunting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Opening of national fish hatchery areas to hunting. 71.1 Section 71.1 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF... FISH HATCHERY AREAS Hunting § 71.1 Opening of national fish hatchery areas to hunting. National fish...

  16. 50 CFR 71.1 - Opening of national fish hatchery areas to hunting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Opening of national fish hatchery areas to hunting. 71.1 Section 71.1 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF... FISH HATCHERY AREAS Hunting § 71.1 Opening of national fish hatchery areas to hunting. National fish...

  17. FDA Approved Registration of Erythromycin for Treatment of Bacterial Kidney Disease (BKD) in Juvenile and Adult Chinook Salmon : Annual Report, Reporting Period March 10, 1989 to March 9, 1990.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffitt, Christine A.

    1991-04-01

    Erythromycin is a therapeutic substance useful against bacterial kidney disease in salmon. In 1989 we began a multi year project to learn more about erythromycin applied to juvenile and adult salmon, with the goal of achieving registration of erythromycin with the US Food and Drug Administration. To begin the study, we studied the pharmacokinetics of erythromycin administered to both adult and juvenile chinook salmon. We monitored blood plasmas time curves from individual adult fish injected with two forms of injectable erythromycin using one of three routes of administration. In addition, we began experiments to evaluate hatchery applications of erythromycin tomore » individually marked adult salmon, and we recovered blood tissues from these fish at the time of spawning. To determine how to use erythromycin in juvenile salmon, we evaluated the adsorption and elimination of erythromycin applied arterially and orally to individual juvenile fish. In feeding trials we determined the palatability to juvenile chinook salmon of feed made with one of two different carriers for erythromycin thiocyanate. 35 refs., 4 figs. , 3 tabs.« less

  18. Pharmacokinetics and transcriptional effects of the anti-salmon lice drug emamectin benzoate in Atlantic salmon (Salmo salar L.)

    PubMed Central

    Olsvik, Pål A; Lie, Kai K; Mykkeltvedt, Eva; Samuelsen, Ole B; Petersen, Kjell; Stavrum, Anne-Kristin; Lunestad, Bjørn T

    2008-01-01

    Background Emamectin benzoate (EB) is a dominating pharmaceutical drug used for the treatment and control of infections by sea lice (Lepeophtheirus salmonis) on Atlantic salmon (Salmo salar L). Fish with an initial mean weight of 132 g were experimentally medicated by a standard seven-day EB treatment, and the concentrations of drug in liver, muscle and skin were examined. To investigate how EB affects Atlantic salmon transcription in liver, tissues were assessed by microarray and qPCR at 7, 14 and 35 days after the initiation of medication. Results The pharmacokinetic examination revealed highest EB concentrations in all three tissues at day 14, seven days after the end of the medication period. Only modest effects were seen on the transcriptional levels in liver, with small fold-change alterations in transcription throughout the experimental period. Gene set enrichment analysis (GSEA) indicated that EB treatment induced oxidative stress at day 7 and inflammation at day 14. The qPCR examinations showed that medication by EB significantly increased the transcription of both HSP70 and glutathione-S-transferase (GST) in liver during a period of 35 days, compared to un-treated fish, possibly via activation of enzymes involved in phase II conjugation of metabolism in the liver. Conclusion This study has shown that a standard seven-day EB treatment has only a modest effect on the transcription of genes in liver of Atlantic salmon. Based on GSEA, the medication seems to have produced a temporary oxidative stress response that might have affected protein stability and folding, followed by a secondary inflammatory response. PMID:18786259

  19. Pharmacokinetics and transcriptional effects of the anti-salmon lice drug emamectin benzoate in Atlantic salmon (Salmo salar L.).

    PubMed

    Olsvik, Pål A; Lie, Kai K; Mykkeltvedt, Eva; Samuelsen, Ole B; Petersen, Kjell; Stavrum, Anne-Kristin; Lunestad, Bjørn T

    2008-09-11

    Emamectin benzoate (EB) is a dominating pharmaceutical drug used for the treatment and control of infections by sea lice (Lepeophtheirus salmonis) on Atlantic salmon (Salmo salar L). Fish with an initial mean weight of 132 g were experimentally medicated by a standard seven-day EB treatment, and the concentrations of drug in liver, muscle and skin were examined. To investigate how EB affects Atlantic salmon transcription in liver, tissues were assessed by microarray and qPCR at 7, 14 and 35 days after the initiation of medication. The pharmacokinetic examination revealed highest EB concentrations in all three tissues at day 14, seven days after the end of the medication period. Only modest effects were seen on the transcriptional levels in liver, with small fold-change alterations in transcription throughout the experimental period. Gene set enrichment analysis (GSEA) indicated that EB treatment induced oxidative stress at day 7 and inflammation at day 14. The qPCR examinations showed that medication by EB significantly increased the transcription of both HSP70 and glutathione-S-transferase (GST) in liver during a period of 35 days, compared to un-treated fish, possibly via activation of enzymes involved in phase II conjugation of metabolism in the liver. This study has shown that a standard seven-day EB treatment has only a modest effect on the transcription of genes in liver of Atlantic salmon. Based on GSEA, the medication seems to have produced a temporary oxidative stress response that might have affected protein stability and folding, followed by a secondary inflammatory response.

  20. Protective oral vaccination against infectious salmon anaemia virus in Salmo salar.

    PubMed

    Caruffo, Mario; Maturana, Carlos; Kambalapally, Swetha; Larenas, Julio; Tobar, Jaime A

    2016-07-01

    Infectious salmon anemia (ISA) is a systemic disease caused by an orthomyxovirus, which has a significant economic impact on the production of Atlantic salmon (Salmo salar). Currently, there are several commercial ISA vaccines available, however, those products are applied through injection, causing stress in the fish and leaving them susceptible to infectious diseases due to the injection process and associated handling. In this study, we evaluated an oral vaccine against ISA containing a recombinant viral hemagglutinin-esterase and a fusion protein as antigens. Our findings indicated that oral vaccination is able to protect Atlantic salmon against challenge with a high-virulence Chilean isolate. The oral vaccination was also correlated with the induction of IgM-specific antibodies. On the other hand, the vaccine was unable to modulate expression of the antiviral related gene Mx, showing the importance of the humoral response to the disease survival. This study provides new insights into fish protection and immune response induced by an oral vaccine against ISA, but also promises future development of preventive solutions or validation of the current existing therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Chemical physiological and morphological studies of feral baltic salmon (Salmo salar) suffering from abnormal fry mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norrgren, L.; Andersson, T.; Bergqvist, P.A.

    In 1974, abnormally high mortality was recorded among yolk-sac fry of Baltic salmon (Salmo salar) originating from feral females manually stripped and fertilized with milt from feral males. The cause of this mortality, designated M74, is unknown. The hypothesis is that xenobiotic compounds responsible for reproduction failure in higher vertebrates in the Baltic Sea also interfere with reproduction in Baltic salmon. The significance of M74 should not be underestimated, because the syndrome has caused up to 75% yearly mortality of developing Baltic salmon yolk-sac larvae in a fish hatchery dedicated to production of smolt during the last two decades. Themore » author cannot exclude the possibility that only a relatively low number of naturally spawned eggs develop normally because of M74. No individual pollutant has been shown to be responsible for the development of M74 syndrome. However, a higher total body burden of organochlorine substances may be responsible for the M74 syndrome. The presence of induced hepatic cytochrome P450 enzymes in both yolk-sac fry suffering from M74 and adult feral females producing offspring affected by M74 supports this hypothesis. In addition, the P450 enzyme activity in offspring from feral fish is higher than the activity in yolk-sac fry from hatchery-raised fish, suggesting that feral Baltic salmon are influenced by organic xenobiotics.« less

  2. Mucous lysozyme levels in hatchery coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) early in the parr-smolt transformation

    USGS Publications Warehouse

    Schrock, R.M.; Smith, S.D.; Maule, A.G.; Doulos, S.K.; Rockowski, J.J.

    2001-01-01

    Mucous lysozyme concentrations were determined in juvenile coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) to establish reference levels during the time associated with the parr-smolt transformation. The first reported naris and vent mucous lysozyme levels are provided for spring chinook salmon and coho salmon. Naris mucous lysozyme levels ranged between 300 and 700 ??g ml-1, vent mucous lysozyme from 100 to 300 ??g ml-1, and skin mucous lysozyme levels were below 130 ??g ml-1. Lysozyme levels in the two species showed the same relationship with the highest levels in naris mucous, and the lowest in skin mucous. A seasonal decrease occurred in both species with a significant decrease in naris mucous lysozyme between February and March. Gill ATPase levels used to monitor smolt development during the same period did not reach ranges reported for smolts for either species during emigration. Identification of seasonal levels of lysozyme activity in mucous provides an alternative determination of developmental status prior to release of fish from the hatchery when salmonids are still undergoing the parr-smolt transformation. ?? 2001 Elsevier Science B.V.

  3. NPDES Permit for Leadville National Fish Hatchery in Colorado

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number CO-0000582, the U.S. Department of the Interior, Fish and Wildlife Service is authorized to discharge from its Leadville National Fish Hatchery wastewater treatment facility in Colorado.

  4. Genome Sequence of Streptococcus phocae subsp. salmonis Strain C-4T, Isolated from Atlantic Salmon (Salmo salar)

    PubMed Central

    Suarez, Rudy; Lazo, Eduardo; Bravo, Diego; Llegues, Katerina O.; Romalde, Jesús L.; Godoy, Marcos G.

    2014-01-01

    Streptococcus phocae subsp. salmonis is a fish pathogen that has an important impact on the Chilean salmon industry. Here, we report the genome sequence of the type strain C-4T isolated from Atlantic salmon (Salmo salar), showing a number of interesting features and genes related to its possible virulence factors. PMID:25502668

  5. Identification of marine-derived lipids in juvenile coho salmon and aquatic insects through fatty acid analysis

    USGS Publications Warehouse

    Heintz, Ron A.; Wipfli, Mark S.; Hudson, John P.

    2010-01-01

    The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams.

  6. Distributions of PCB congeners and homologues in white sucker and coho salmon from Lake Michigan

    USGS Publications Warehouse

    Stapanian, Martin A.; Madenjian, Charles P.; Batterman, Stuart A.; Chernyak, Sergei M.; Edwards, William H.; McIntyre, Peter B.

    2018-01-01

    We tested the hypothesis of the proportion of higher chlorinated biphenyl (PCB) congeners increasing with increasing trophic level by comparing the respective PCB homologue distributions in an omnivore, white sucker (Catostomus commersoni), and a top predator, coho salmon (Oncorhynchus kisutch), from Lake Michigan. Adult females had the same congener and homologue proportions of total PCB concentration (ΣPCB) as adult males in both species. Hexachlorinated congeners comprised the largest proportion (32%) found in white sucker, followed by heptachlorinated (21%) and octochlorinated (18%) congeners. In contrast, pentachlorinated congeners comprised the largest proportion (33%) of ΣPCB found in coho salmon, followed by hexachlorinated (26%) and tetrachlorinated (24%) congeners. Coho salmon contained significantly higher proportions of tri-, tetra-, and pentachlorinated congeners, whereas white sucker contained significantly higher proportions of hexa- through decachlorinated congeners. Our results were opposite of the hypothesis of greater degree of PCB chlorination with increasing trophic level, and supported the contention that the PCB congener proportions in fish depends mainly on diet, and does not necessarily reflect the trophic level of the fish. Our results also supported the contention that diets do not vary between the sexes in most fish populations.

  7. Species-specific patterns of aggregation of wild fish around fish farms

    NASA Astrophysics Data System (ADS)

    Dempster, T.; Sanchez-Jerez, P.; Uglem, I.; Bjørn, P.-A.

    2010-01-01

    Fish-farming structures are widespread in coastal waters and are highly attractive to wild fish. Several studies have estimated that tons to tens of tons of wild fish aggregate around fish farms. These estimates assumed that the majority of wild fish are concentrated immediately beneath farms, although this assumption has never been explicitly tested. We tested the hypothesis that abundances of wild fish would be greatest immediately beneath farms and progressively diminish with distance at 4 full-scale coastal salmon ( Salmo salar) farms in Norway. At each farm, fish were counted with a video-camera system at 5 different distances from the cages (farm = 0 m, 25, 50, 100 and 200 m) throughout the water column on three separate days. Combined across all locations and times, the total abundance of wild fish was 20 times greater at the farm than at the 200 m sampling distance. Saithe ( Pollachius virens) dominated assemblages at all 4 farms and were consistently significantly more abundant at the farm than at the 25-200 m distances. This 'tight aggregation' around farms corresponds to the reliance of saithe on waste feed when they school near farms. In contrast, patterns of distribution of both cod ( Gadus morhua) and poor cod ( Trisopterus minutus) varied among farms, with either highest abundances at the farm or a more even distribution of abundance across all 5 distances sampled. No specific pattern of aggregation was evident for the bottom-dwelling haddock ( Melanogrammus aeglefinus). Our results suggest that the present 100 m no-fishing zone around salmon farms protects the greatest proportion of farm-aggregated saithe and cod from fishing during the daytime. However, whether this reduces their overall susceptibility to fishing requires further research regarding nighttime distribution and movements.

  8. The control of sea lice in Atlantic salmon by selective breeding.

    PubMed

    Gharbi, Karim; Matthews, Louise; Bron, James; Roberts, Ron; Tinch, Alan; Stear, Michael

    2015-09-06

    Sea lice threaten the welfare of farmed Atlantic salmon and the sustainability of fish farming across the world. Chemical treatments are the major method of control but drug resistance means that alternatives are urgently needed. Selective breeding can be a cheap and effective alternative. Here, we combine experimental trials and diagnostics to provide a practical protocol for quantifying resistance to sea lice. We then combined quantitative genetics with epidemiological modelling to make the first prediction of the response to selection, quantified in terms of reduced need for chemical treatments. We infected over 1400 young fish with Lepeophtheirus salmonis, the most important species in the Northern Hemisphere. Mechanisms of resistance were expressed early in infection. Consequently, the number of lice per fish and the ranking of families were very similar at 7 and 17 days post infection, providing a stable window for assessing susceptibility to infection. The heritability of lice numbers within this time window was moderately high at 0.3, confirming that selective breeding is viable. We combined an epidemiological model of sea lice infection and control on a salmon farm with genetic variation in susceptibility among individuals. We simulated 10 generations of selective breeding and examined the frequency of treatments needed to control infection. Our model predicted that substantially fewer chemical treatments are needed to control lice outbreaks in selected populations and chemical treatment could be unnecessary after 10 generations of selection. Selective breeding for sea lice resistance should reduce the impact of sea lice on fish health and thus substantially improve the sustainability of Atlantic salmon production. © 2015 The Author(s).

  9. Hypersalinity Acclimation Increases the Toxicity of the Insecticide Phorate in Coho Salmon (Oncorhynchus kisutch)

    PubMed Central

    Lavado, Ramon; Maryoung, Lindley A.; Schlenk, Daniel

    2012-01-01

    Previous studies in euryhaline fish have shown that acclimation to hypersaline environments enhances the toxicity of thioether organophosphate and carbamate pesticides. To better understand the potential mechanism of enhanced toxicity, the effects of the organophosphate insecticide phorate were evaluated in coho salmon (Oncorhynchus kisutch) maintained in freshwater (<0.5 g/L salinity) and 32 g/L salinity. The observed 96-h LC50 in freshwater fish (67.34 ± 3.41 μg/L) was significantly reduced to 2.07 ± 0.16 μg/L in hypersaline-acclimated fish. Because organophosphates often require bioactivation to elicit toxicity through acetylcholinesterase (AChE) inhibition, the in vitro biotransformation of phorate was evaluated in coho salmon maintained in different salinities in liver, gills, and olfactory tissues. Phorate sulfoxide was the predominant metabolite in each tissue but rates of formation diminished in a salinity-dependent manner. In contrast, formation of phorate-oxon (gill; olfactory tissues), phorate sulfone (liver), and phorate-oxon sulfoxide (liver; olfactory tissues) was significantly enhanced in fish acclimated to higher salinities. From previous studies, it was expected that phorate and phorate sulfoxide would be less potent AChE inhibitors than phorate-oxon, with phorate-oxon sulfoxide being the most potent of the compounds tested. This trend was confirmed in this study. In summary, these results suggest that differential expression and/or catalytic activities of Phase I enzymes may be involved to enhance phorate oxidative metabolism and subsequent toxicity of phorate to coho salmon under hypersaline conditions. The outcome may be enhanced fish susceptibility to anticholineterase oxon sulfoxides. PMID:21488666

  10. Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar)

    PubMed Central

    Leaver, Michael J; Villeneuve, Laure AN; Obach, Alex; Jensen, Linda; Bron, James E; Tocher, Douglas R; Taggart, John B

    2008-01-01

    Background There is an increasing drive to replace fish oil (FO) in finfish aquaculture diets with vegetable oils (VO), driven by the short supply of FO derived from wild fish stocks. However, little is known of the consequences for fish health after such substitution. The effect of dietary VO on hepatic gene expression, lipid composition and growth was determined in Atlantic salmon (Salmo salar), using a combination of cDNA microarray, lipid, and biochemical analysis. FO was replaced with VO, added to diets as rapeseed (RO), soybean (SO) or linseed (LO) oils. Results Dietary VO had no major effect on growth of the fish, but increased the whole fish protein contents and tended to decrease whole fish lipid content, thus increasing the protein:lipid ratio. Expression levels of genes of the highly unsaturated fatty acid (HUFA) and cholesterol biosynthetic pathways were increased in all vegetable oil diets as was SREBP2, a master transcriptional regulator of these pathways. Other genes whose expression was increased by feeding VO included those of NADPH generation, lipid transport, peroxisomal fatty acid oxidation, a marker of intracellular lipid accumulation, and protein and RNA processing. Consistent with these results, HUFA biosynthesis, hepatic β-oxidation activity and enzymic NADPH production were changed by VO, and there was a trend for increased hepatic lipid in LO and SO diets. Tissue cholesterol levels in VO fed fish were the same as animals fed FO, whereas fatty acid composition of the tissues largely reflected those of the diets and was marked by enrichment of 18 carbon fatty acids and reductions in 20 and 22 carbon HUFA. Conclusion This combined gene expression, compositional and metabolic study demonstrates that major lipid metabolic effects occur after replacing FO with VO in salmon diets. These effects are most likely mediated by SREBP2, which responds to reductions in dietary cholesterol. These changes are sufficient to maintain whole body cholesterol

  11. Characterisation of a monoclonal antibody detecting Atlantic salmon endothelial and red blood cells, and its association with the infectious salmon anaemia virus cell receptor.

    PubMed

    Aamelfot, Maria; Weli, Simon C; Dale, Ole B; Koppang, Erling O; Falk, Knut

    2013-05-01

    Endothelial cells (ECs) line the luminal surfaces of the cardiovascular system and play an important role in cardiovascular functions such as regulation of haemostasis and vasomotor tone. A number of fish and mammalian viruses target these cells in the course of their infection. Infectious salmon anaemia virus (ISAV) attacks ECs and red blood cells (RBCs) of farmed Atlantic salmon (Salmo salar L.), producing the severe disease of infectious salmon anaemia (ISA). The investigation of ISA has up to now been hampered by the lack of a functional marker for ECs in Atlantic salmon in situ. In this study, we report the characterisation and use of a novel monoclonal antibody (MAb) detecting Atlantic salmon ECs (e.g. vessel endothelium, endocardial cells and scavenger ECs) and RBCs. The antibody can be used with immunohistochemistry, IFAT and on Western blots. It appears that the epitope recognised by the antibody is associated with the ISAV cellular receptor. Besides being a tool to identify ECs in situ, it could be useful in further studies of the pathogenicity of ISA. Finally, the detection of an epitope shared by ECs and RBCs agrees with recent findings that these cells share a common origin, thus the MAb can potentially be used to study the ontogeny of these cells in Atlantic salmon. © 2013 Anatomical Society.

  12. Identification and characterisation of the IL-27 p28 subunits in fish: Cloning and comparative expression analysis of two p28 paralogues in Atlantic salmon Salmo salar.

    PubMed

    Husain, Mansourah; Martin, Samuel A M; Wang, Tiehui

    2014-11-01

    Interleukin (IL)-27 is an IL-6/IL-12 family member with pro-inflammatory and anti-inflammatory properties. It is a heterodimeric cytokine composed of an α-chain p28 and a β-chain Ebi3 (Epstein-Barr virus induce gene 3). The p28 subunit can also be secreted as a monomer and function as IL-30 that acts as an inhibitor of IL-27 signalling. At present, the p28 gene has only been described in mammals. Thus, for the first time outwith mammals, we have identified seven p28 molecules in six divergent teleost fish species, Atlantic salmon, two cichlids, two cyprinids and a yellowtail. The fish p28 molecules have higher similarities to mammalian p28 than other IL-6/12 family members. Critical residues involved in the interaction with Ebi3 and the receptor gp130 are highly conserved. The prediction that these are true orthologues is supported by phylogenetic and synteny analysis. Two p28 paralogues (p28a and p28b) sharing 72% aa identity have been identified and characterised in Atlantic salmon. There are multiple upstream ATGs in the 5'-UTR and ATTTA motifs in the 3'-UTR of both cDNA sequences, suggesting regulation at the post-transcriptional and translational level. Both salmon p28 genes are highly expressed in immune relevant tissues, such as thymus, gills, spleen and head kidney. Conversely salmon Ebi3 is highly expressed in other organs, such as liver and caudal kidney. The expression of p28 but not Ebi3 was induced by PAMPs and recombinant cytokines in head kidney cells, and in spleen by Poly I:C challenge in vivo. The dissociation of the expression and modulation of p28 and Ebi3 suggest that both p28 and Ebi3 may be secreted alone or with other partners. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Movements of adult chinook salmon during spawning migration in a metals-contaminated system, Coeur d'Alene River, Idaho

    USGS Publications Warehouse

    Goldstein, J.N.; Woodward, D.F.; Farag, A.M.

    1999-01-01

    Spawning migration of adult male chinook salmon Oncorhynchus tshawytscha was monitored by radio telemetry to determine their response to the presence of metals contamination in the South Fork of the Coeur d'Alene River, Idaho. The North Fork of the Coeur d'Alene River is relatively free of metals contamination and was used as a control. In all, 45 chinook salmon were transported from their natal stream, Wolf Lodge Creek, tagged with radio transmitters, and released in the Coeur d'Alene River 2 km downstream of the confluence of the South Fork and the North Fork of the Coeur d'Alene River. Fixed telemetry receivers were used to monitor the upstream movement of the tagged chinook salmon through the confluence area for 3 weeks after release. During this period, general water quality and metals concentrations were monitored in the study area. Of the 23 chinook salmon observed to move upstream from the release site and through the confluence area, the majority (16 fish, 70%) moved up the North Fork, and only 7 fish (30%) moved up the South Fork, where greater metals concentrations were observed. Our results agree with laboratory findings and suggest that natural fish populations will avoid tributaries with high metals contamination.

  14. Physiological and hematological changes in Chum Salmon artificially infected with Erythrocytic Necrosis virus

    USGS Publications Warehouse

    Haney, D.C.; Hursh, D.A.; Mix, M.C.; Winton, J.R.

    1992-01-01

    Chum salmon Oncorhynchus keta were injected with erythrocytic necrosis virus (ENV) to study the physiological and hematological consequences of ENV infection. Infected and control fish were held in pathogen-free seawater and sampled for 5 weeks. Physiological tests included measures of plasma cortisol, glucose, protein, and osmolality; blood lactic acid; and liver glycogen. In general, ENV-infected fish had lower plasma glucose and blood lactic acid, and higher liver glycogen concentrations than did control fish. Hematological tests included red and white blood cell (RBC and WBC) counts, hematocrit, measurement of blood hemoglobin concentration, and a determination of erythrocyte fragility. Infected fish had lower RBC counts, hematocrits, and hemoglobin concentrations; higher WBC counts; and less fragile erythrocytes than did control fish. The hematology data indicated that erythrocytes of infected fish had higher mean corpuscular volume, depressed mean corpuscular hemoglobin concentration, and slightly lower mean corpuscular hemoglobin. Erythrocytic inclusions were observed in the cytoplasm of RBCs from infected fish. The infection progressed steadily through week 4, after which the fish appeared to begin recovering. In a second study, fish were infected with ENV for 3 weeks, and recovery from a stress challenge test was measured. Plasma glucose concentrations and osmclality were higher in infected fish, whereas plasma cortisol and blood lactate were only slightly elevated. These studies indicate that chum salmon withstood the effects of ENV infection without in-eversible physiological consequences. However, when subjected to a stress challenge test, infected fish recovered more slowly than control fish and had increased osmoregulatory difficulties.

  15. Vaccines for fish in aquaculture.

    PubMed

    Sommerset, Ingunn; Krossøy, Bjørn; Biering, Eirik; Frost, Petter

    2005-02-01

    Vaccination plays an important role in large-scale commercial fish farming and has been a key reason for the success of salmon cultivation. In addition to salmon and trout, commercial vaccines are available for channel catfish, European seabass and seabream, Japanese amberjack and yellowtail, tilapia and Atlantic cod. In general, empirically developed vaccines based on inactivated bacterial pathogens have proven to be very efficacious in fish. Fewer commercially available viral vaccines and no parasite vaccines exist. Substantial efficacy data are available for new fish vaccines and advanced technology has been implemented. However, before such vaccines can be successfully commercialized, several hurdles have to be overcome regarding the production of cheap but effective antigens and adjuvants, while bearing in mind environmental and associated regulatory concerns (e.g., those that limit the use of live vaccines). Pharmaceutical companies have performed a considerable amount of research on fish vaccines, however, limited information is available in scientific publications. In addition, salmonids dominate both the literature and commercial focus, despite their relatively small contribution to the total volume of farmed fish in the world. This review provides an overview of the fish vaccines that are currently commercially available and some viewpoints on how the field is likely to evolve in the near future.

  16. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    USGS Publications Warehouse

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  17. Common relationships among proximate composition components in fishes

    USGS Publications Warehouse

    Hartman, K.J.; Margraf, F.J.

    2008-01-01

    Relationships between the various body proximate components and dry matter content were examined for five species of fishes, representing anadromous, marine and freshwater species: chum salmon Oncorhynchus keta, Chinook salmon Oncorhynchus tshawytscha, brook trout Salvelinus fontinalis, bluefish Pomatomus saltatrix and striped bass Morone saxatilis. The dry matter content or per cent dry mass of these fishes can be used to reliably predict the per cent composition of the other components. Therefore, with validation it is possible to estimate fat, protein and ash content of fishes from per cent dry mass information, reducing the need for costly and time-consuming laboratory proximate analysis. This approach coupled with new methods of non-lethal estimation of per cent dry mass, such as from bioelectrical impedance analysis, can provide non-destructive measurements of proximate composition of fishes. ?? 2008 The Authors.

  18. Sea lice infestations on farmed Atlantic salmon in Scotland and the use of ectoparasitic treatments.

    PubMed

    Revie, C W; Gettinby, G; Treasurer, J W; Grant, A N; Reid, S W J

    A recently compiled national database on sea lice infestations on farmed Atlantic salmon, contains detailed records for the period 1996 to 2000 from over 30 commercial sites on the west coast of Scotland. The data indicate that the two prevalent species of lice, Lepeophtheirus salmonis and Caligus elongatus, have different trends in abundance and distinctive seasonal patterns of infestation on farmed salmon. For the economically important species L salmonis, its abundance on fish varies with the time of the production cycle, the time of year and the particular year. Weekly fluctuations in sea lice counts indicate that treatment can be very effective in controlling infestations but that the counts recover rapidly and regular treatments are necessary to ensure control. A comparison of sites using medium or large numbers of treatments suggests that they do not reduce sea lice infestations to the same levels. There is also evidence that sites using treatments based on different chemical constituents had significantly different levels of infestation.

  19. Hormonal control of hepatic glycogen metabolism in food-deprived, continuously swimming coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    Vijayan, M.M.; Maule, A.G.; Schreck, C.B.; Moon, T.W.

    1993-01-01

    The plasma cortisol concentration and liver cytosolic glucocorticoid receptor activities of continuously swimming, food-deprived coho salmon (Oncorhynchus kisutch) did not differ from those of resting, fed fish. Plasma glucose concentration was significantly higher in the exercising, starved fish, but there were no significant differences in either hepatic glycogen concentration or hepatic activities of glycogen phosphorylase, glycogen synthase, pyruvate kinase, or lactate dehydrogenase between the two groups. Total glucose production by hepatocytes did not differ significantly between the two groups; glycogen breakdown accounted for all the glucose produced in the resting, fed fish whereas it explained only 59% of the glucose production in the exercised animals. Epinephrine and glucagon stimulation of glucose production by hepatocytes was decreased in the exercised fish without significantly affecting hepatocyte glycogen breakdown in either group. Insulin prevented glycogen breakdown and enhanced glycogen deposition in exercised fish. The results indicate that food-deprived, continuously swimming coho salmon conserve glycogen by decreasing the responsiveness of hepatocytes to catabolic hormones and by increasing the responsiveness to insulin (anabolic hormone).

  20. Shedding of Renibacterium salmoninarum by infected chinook salmon Oncorhynchus tschawytscha

    USGS Publications Warehouse

    McKibben, C.L.; Pascho, R.J.

    1999-01-01

    Laboratory studies of the transmission and pathogenesis of Renibacterium salmoninarum may describe more accurately what is occurring in the natural environment if test fish are infected by waterborne R. salmoninarum shed from infected fish. To quantify bacterial shedding by chinook salmon Oncorhynchus tschawytscha at 13??C in freshwater, groups of fish were injected intraperitoneally with R. salmoninarum at either 1.3 x 106 colony forming units (CFU) fish-1 (high-dose injection group) or 1.5 x 103 CFU fish-1 (low-dose injection group). R. salmoninarum infection levels were measured in the exposed fish by the enzyme-linked immunosorbent assay (BKD-ELISA). At regular intervals for 30 d, the numbers of R. salmoninarum shed by the injected fish were calculated on the basis of testing water samples by the membrane filtration-fluorescent antibody test (MF-FAT) and bacteriological culture. Mean BKD-ELISA optical densities (ODs) for fish in the low-dose injection group were not different from those of control fish [p > 0.05), and no R. salmoninarum were detected in water samples taken up to 30 d after injection of fish in the low-dose group. By 12 d after injection a proportion of the fish from the high-dose infection group had high (BKD-ELISA OD ??? 1.000) to severe (BKD-ELISA OD ??? 2.000) R. salmoninarum infection levels, and bacteria were detected in the water by both tests. However, measurable levels of R. salmoninarum were not consistently detected in the water until a proportion of the fish maintained high to severe infection levels for an additional 8 d. The concentrations of R salmoninarum in the water samples ranged from undetectable up to 994 cells ml-1 on the basis of the MF-FAT, and up to 1850 CFU ml-1 on the basis of bacteriological culture. The results suggest that chinook salmon infected with R. salmoninarum by injection of approximately 1 x 106 CFU fish-1 can be used as the source of infection in cohabitation challenges beginning 20 darter injection.

  1. Geographic patterns of fishes and jellyfish in Puget Sound surface waters

    USGS Publications Warehouse

    Rice, Casimir A.; Duda, Jeffrey J.; Greene, Correigh M.; Karr, James R.

    2012-01-01

    We explored patterns of small pelagic fish assemblages and biomass of gelatinous zooplankton (jellyfish) in surface waters across four oceanographic subbasins of greater Puget Sound. Our study is the first to collect data documenting biomass of small pelagic fishes and jellyfish throughout Puget Sound; sampling was conducted opportunistically as part of a juvenile salmon survey of daytime monthly surface trawls at 52 sites during May–August 2003. Biomass composition differed spatially and temporally, but spatial differences were more distinct. Fish dominated in the two northern basins of Puget Sound, whereas jellyfish dominated in the two southern basins. Absolute and relative abundance of jellyfish, hatchery Chinook salmon Oncorhynchus tshawytscha, and chum salmon O. keta decreased with increasing latitude, whereas the absolute and relative abundance of most fish species and the average fish species richness increased with latitude. The abiotic factors with the strongest relationship to biomass composition were latitude, water clarity, and sampling date. Further study is needed to understand the spatial and temporal heterogeneity in the taxonomic composition we observed in Puget Sound surface waters, especially as they relate to natural and anthropogenic influences.

  2. Allergy to fish parvalbumins: studies on the cross-reactivity of allergens from 9 commonly consumed fish.

    PubMed

    Van Do, Thien; Elsayed, Said; Florvaag, Erik; Hordvik, Ivar; Endresen, Curt

    2005-12-01

    Fish-hypersensitive patients can probably tolerate some fish species while being allergic to others. To determine the allergenic cross-reactivity between 9 commonly edible fish: cod, salmon, pollack, mackerel, tuna, herring, wolffish, halibut, and flounder. Sera from 10 patients allergic to fish and rabbit antisera against 3 parvalbumins (Gad c 1, Sal s 1, and The c 1) were used. Cross-reactivity was investigated by SDS/PAGE and IgE immunoblotting, IgG ELISA, IgE ELISA inhibition, and skin prick test (SPT). Cod (Gad c 1), salmon (Sal s 1), pollack (The c 1), herring, and wolffish share antigenic and allergenic determinants as shown by immunoblots and IgE ELISA, whereas halibut, flounder, tuna, and mackerel displayed lowest cross-reactivities. The highest mean IgE ELISA inhibition percent of 10 sera was obtained by Gad c 1, followed by The c 1, herring, Sal s 1, wolffish, halibut, flounder, tuna, and mackerel with the least inhibition. Nine of the 10 patients showed positive SPT to cod, salmon, and pollack; 8 patients reacted to recombinant (r) Sal s 1. Positive SPTs to rGad c 1 and rThe c 1 were demonstrated in 1 patient. Gad c 1, Sal s 1, The c 1, herring, and wolffish contained the most potent cross-reacting allergens, whereas halibut, flounder, tuna, and mackerel were the least allergenic in the current study. The latter could probably be tolerated by some of the tested patients.

  3. Impacts of ferry terminals on juvenile salmon movement along Puget Sound shorelines

    DOT National Transportation Integrated Search

    2006-06-01

    This study used both standardized surveys and innovative fish tagging and tracking technologies to address whether Washington State Ferries (WSF) terminals alter the behavior of migrating juvenile salmon, and if so, which attributes mediate abundance...

  4. The impact of temperature stress and pesticide exposure on mortality and disease susceptibility of endangered Pacific salmon.

    PubMed

    Dietrich, Joseph P; Van Gaest, Ahna L; Strickland, Stacy A; Arkoosh, Mary R

    2014-08-01

    Anthropogenic stressors, including chemical contamination and temperature stress, may contribute to increased disease susceptibility in aquatic animals. Specifically, the organophosphate pesticide malathion has been detected in surface waters inhabited by threatened and endangered salmon. In the presence of increasing water temperatures, malathion may increase susceptibility to disease and ultimately threaten salmon survival. This work examines the effect of acute and sublethal exposures to malathion on ocean-type subyearling Chinook salmon held under two temperature regimes. Chinook salmon were exposed to malathion at optimal (11 °C) or elevated (19 and 20 °C) temperatures. The influence of temperature on the acute toxicity of malathion was determined by generating 96-h lethal concentration (LC) curves. A disease challenge assay was also used to assess the effects of sublethal malathion exposure. The malathion concentration that resulted in 50% mortality (LC50; 274.1 μg L(-1)) of the Chinook salmon at 19 °C was significantly less than the LC50 at 11 °C (364.2 μg L(-1)). Mortality increased 11.2% in Chinook salmon exposed to malathion at the elevated temperature and challenged with Aeromonas salmonicida compared to fish held at the optimal temperature and exposed to malathion or the carrier control. No difference in disease challenge mortality was observed among malathion-exposed and unexposed fish at the optimal temperature. The interaction of co-occurring stressors may have a greater impact on salmon than if they occur in isolation. Ecological risk assessments considering the effects of an individual stressor on threatened and endangered salmon may underestimate risk when additional stressors are present in the environment. Published by Elsevier Ltd.

  5. 76 FR 70062 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ...-XA803 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  6. 78 FR 69002 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ...-XC965 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  7. Effects of mining chemicals on fish: exposure to tailings containing Lilaflot D817M induces CYP1A transcription in Atlantic salmon smolt.

    PubMed

    Olsvik, Pål A; Urke, Henning A; Nilsen, Tom O; Ulvund, John B; Kristensen, Torstein

    2015-08-29

    Mine tailings, containing metals and production chemicals such as flotation chemicals and flocculants, may pose an environmental threat to aquatic organisms living in downstream ecosystems. The aim of this work was to study to which degree Lilaflot D817M, a flotation chemical extensively used by the mining industry, represents a hazard for migrating salmon in rivers affected by mining activity. Smoltifying Atlantic salmon were exposed to four concentrations of iron-ore mine tailings containing residual Lilaflot D817M [water versus tailing volumes of 0.002 (Low), 0.004 (Medium), 0.013 (High) and 0.04 (Max)]. After 96 h of exposure, gill and liver tissues were harvested for transcriptional responses. Target genes included markers for oxidative stress, detoxification, apoptosis and DNA repair, cell signaling and growth. Of the 16 evaluated markers, significant transcriptional responses of exposure to tailings enriched with Lilaflot D817M were observed for CYP1A, HSP70 and HMOX1 in liver tissue and CYP1A in gill tissue. The significant induction of CYP1A in both liver and gills suggest that the flotation chemical is taken up by the fish and activates cytochrome P450 detoxification via phase I biotransformation in the cells. The overall weak transcriptional responses to short-term exposure to Lilaflot D817M-containing iron-ore tailings suggest that the mining chemical has relatively low toxic effect on fish. The underlying mechanisms behind the observed CYP1A induction should be studied further.

  8. Passage probabilities of juvenile Chinook salmon through the powerhouse and regulating outlet at Cougar Dam, Oregon, 2011

    USGS Publications Warehouse

    Beeman, John W.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Smith, Collin D.

    2012-01-01

    Cougar Dam near Springfield, Oregon, is one of several federally owned and operated flood-control projects within the Willamette Valley of western Oregon that were determined by the National Oceanic and Atmospheric Administration’s National Marine Fisheries Service in 2008 to impact the long-term viability of several salmonid stocks. In response to this ruling, the U.S. Army Corps of Engineers is looking for means to reduce impacts to salmonids, including improving downstream passage of juvenile salmonids at Cougar Dam. This study of juvenile Chinook salmon (Oncorhynchus tshawytscha) passage at Cougar Dam was conducted to inform decisions about potential improvements for downstream fish passage. The primary objective of the study was to estimate route-specific passage probabilities of yearling Chinook salmon at Cougar Dam. The study was conducted using fish from a nearby hatchery surgically implanted with radio transmitters and passive integrated transponder (PIT) tags and released near the entrance of a temperature control tower through which all water going through the dam must pass. Water passing through the temperature control tower may be routed through a penstock to a powerhouse with two Francis turbines, or to a spillway-like structure called the regulating outlet. Secondary objectives of the study were to estimate the probability that fish enter a bypass at a non-federal facility downstream, and to estimate dam-passage and in-river fish survival. Dam operating conditions during the study included an average forebay elevation of 1,580 feet (National Geodetic Vertical Datum of 1929) and an average of 48.2 percent of the total dam discharge of 1,106 cubic feet per second passing through a regulating outlet opening of 1.25 feet. Dam passage probability was greatest at night (0.8741 standard error [SE] 0.0265) and primarily through the regulating outlet (0.8896 SE 0.0617 day; 0.9417 SE 0.0175 night). The joint probability of entering the bypass at Leaburg Dam

  9. Identification of Saprolegnia Spp. Pathogenic in Chinook Salmon : Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whisler, Howard C.

    1997-06-01

    This project has developed procedures to assess the role of the fungal parasite, Saprolegnia in the biology of salmon, particularly adult Chinook, in the Columbia River Basin. Both morphological and DNA ``fingerprinting`` surveys reveal that Saprolegnia parasitica (=S. diclina, Type I) is the most common pathogen of these fish. In the first phase of this study 92% of 620 isolates, from salmon lesions, conformed to this taxa of Saprolegnia. In the current phase, the authors have developed variants of DNA fingerprinting (RAPD and SWAPP analysis) that permit examination of the sub-structure of the parasite population. These results confirm the predominancemore » of S. parasitica, and suggest that at least three different sub-groups of this fungus occur in the Pacific N.W., USA. The use of single and paired primers with PCR amplification permits identification of pathogenic types, and distinction from other species of the genus considered to be more saprophytic in character. A year`s survey of saprolegniaceous fungi from Lake Washington indicated that the fish-pathogen was not common in the water column. Where and how fish encounter this parasite can be approached with the molecular tags identified in this project.« less

  10. Yakima/Klickitat Fisheries Project: Short Project Overview of Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, David E.; Bosch, William J.

    2005-09-01

    The Yakima/Klickitat Fisheries Project (YKFP) is on schedule to ascertain whether new artificial production techniques can be used to increase harvest and natural production of spring Chinook salmon while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits. The Cle Elum Supplementation and Research Facility (CESRF) collected its first spring chinook brood stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. In these initial years of CESRF operation, recruitment of hatchery origin fish has exceededmore » that of fish spawning in the natural environment, but early indications are that hatchery origin fish are not as successful at spawning in the natural environment as natural origin fish when competition is relatively high. When competition is reduced, hatchery fish produced similar numbers of progeny as their wild counterparts. Most demographic variables are similar between natural and hatchery origin fish, however hatchery origin fish were smaller-at-age than natural origin fish. Long-term fitness of the target population is being evaluated by a large-scale test of domestication. Slight changes in predation vulnerability and competitive dominance, caused by domestication, were documented. Distribution of spawners has increased as a result of acclimation site location and salmon homing fidelity. Semi-natural rearing and predator avoidance training have not resulted in significant increases in survival of hatchery fish. However, growth manipulations in the hatchery appear to be reducing the number of precocious males produced by the YKFP and consequently increasing the number of migrants. Genetic impacts to non-target populations appear to be low because of the low stray rates of YKFP fish. Ecological impacts to valued non-target taxa were within containment objectives or

  11. Concentrations of boron, molybdenum, and selenium in chinook salmon

    USGS Publications Warehouse

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  12. Return of salmon-derived nutrients from the riparian zone to the stream during a storm in southeastern Alaska

    Treesearch

    Jason B. Fellman; Eran Hood; Rick T. Edwards; David V. D' Amore

    2008-01-01

    Spawning salmon deliver nutrients (salmon-derived nutrients, SDN) to natal watersheds that can be incorporated into terrestrial and aquatic food webs, potentially increasing ecosystem productivity. Peterson Creek, a coastal watershed in southeast Alaska that supports several species of anadromous fish, was sampled over the course of a storm during September 2006 to...

  13. A test for the relative strength of maternal and stock effects in spring Chinook salmon (Oncorhynchus tshawytscha) from two different hatcheries (Study site: Warm Springs Hatchery; Stocks: Warm Springs Hatchery and Carson Hatchery; Year class: 1993): Chapter 10

    USGS Publications Warehouse

    Wetzel, Lisa A.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Stenberg, Karl D.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    An experiment was undertaken to determine the relative strength of maternal and stock effects in Chinook salmon (Oncorhynchus tshawytscha) reared in a common environment, as a companion study to our investigation of hatchery and wild Chinook salmon. Pure-strain and reciprocal crosses were made between two hatchery stocks (Carson and Warm Springs National Fish Hatcheries). The offspring were reared together in one of the hatcheries to the smolt stage, and then were transferred to a seawater rearing facility (USGS-Marrowstone Field Station). Differences in survival, growth and disease prevalence were assessed. Fish with Carson parentage grew to greater size at the hatchery and in seawater than the pure-strain Warm Springs fish, but showed higher mortality at introduction to seawater. The analyses of maternal and stock effects were inconclusive, but the theoretical responses to different combinations of maternal and stock effects may be useful in interpreting stock comparison studies.

  14. Early nutritional programming affects liver transcriptome in diploid and triploid Atlantic salmon, Salmo salar.

    PubMed

    Vera, L M; Metochis, C; Taylor, J F; Clarkson, M; Skjærven, K H; Migaud, H; Tocher, D R

    2017-11-17

    To ensure sustainability of aquaculture, plant-based ingredients are being used in feeds to replace marine-derived products. However, plants contain secondary metabolites which can affect food intake and nutrient utilisation of fish. The application of nutritional stimuli during early development can induce long-term changes in animal physiology. Recently, we successfully used this approach to improve the utilisation of plant-based diets in diploid and triploid Atlantic salmon. In the present study we explored the molecular mechanisms occurring in the liver of salmon when challenged with a plant-based diet in order to determine the metabolic processes affected, and the effect of ploidy. Microarray analysis revealed that nutritional history had a major impact on the expression of genes. Key pathways of intermediary metabolism were up-regulated, including oxidative phosphorylation, pyruvate metabolism, TCA cycle, glycolysis and fatty acid metabolism. Other differentially expressed pathways affected by diet included protein processing in endoplasmic reticulum, RNA transport, endocytosis and purine metabolism. The interaction between diet and ploidy also had an effect on the hepatic transcriptome of salmon. The biological pathways with the highest number of genes affected by this interaction were related to gene transcription and translation, and cell processes such as proliferation, differentiation, communication and membrane trafficking. The present study revealed that nutritional programming induced changes in a large number of metabolic processes in Atlantic salmon, which may be associated with the improved fish performance and nutrient utilisation demonstrated previously. In addition, differences between diploid and triploid salmon were found, supporting recent data that indicate nutritional requirements of triploid salmon may differ from those of their diploid counterparts.

  15. White-spot disease of salmon fry

    USGS Publications Warehouse

    Mazuranich, J.J.; Nielson, W.E.

    1959-01-01

     White-spot disease, sometimes referred to as coagulated-yolk disease, has been associated with excessive mortalities occurring among the fry and early fingerling stages of the fall chinook salmon (Oncorhynchus tshawytacha) at the U.S. Fish-Cultural Stations at Carson, Cook, Underwood, and Willard, Washington. This disease of eggs and fry should not be confused with the "white-spot" infection that is caused in fingerlings by members of the protozoan genus Ichthyophthirius.

  16. A new specific reference gene based on growth hormone gene (GH1) used for detection and relative quantification of Aquadvantage® GM salmon (Salmo salar L.) in food products.

    PubMed

    Hafsa, Ahmed Ben; Nabi, Nesrine; Zellama, Mohamed Salem; Said, Khaled; Chaouachi, Maher

    2016-01-01

    Genetic transformation of fish is mainly oriented towards the improvement of growth for the benefit of the aquaculture. Actually, Atlantic salmon (Salmo salar) is the species most transformed to achieve growth rates quite large compared to the wild. To anticipate the presence of contaminations with GM salmon in fish markets and the lack of labeling regulations with a mandatory threshold, the proper methods are needed to test the authenticity of the ingredients. A quantitative real-time polymerase chain reaction (QRT-PCR) method was used in this study. Ct values were obtained and validated using 15 processed food containing salmon. The relative and absolute limits of detection were 0.01% and 0.01 ng/μl of genomic DNA, respectively. Results demonstrate that the developed QRT-PCR method is suitable specifically for identification of S. salar in food ingredients based on the salmon growth hormone gene 1 (GH1). The processes used to develop the specific salmon reference gene case study are intended to serve as a model for performing quantification of Aquadvantage® GM salmon on future genetically modified (GM) fish to be commercialized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom and...

  18. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom and...

  19. Assessing the Influence of Hydrological Connectivity on the Spawning Migration of Atlantic Salmon.

    NASA Astrophysics Data System (ADS)

    Lazzaro, G.; Soulsby, C.; Tetzlaff, D.; Botter, G.

    2016-12-01

    Atlantic salmon is an economically and ecologically important fish species, whose survival is critically impacted by successful spawning in headwater gravel-bed rivers. Streamflow dynamics may have a strong control on spawning because adult fish require sufficiently high discharges to move upriver and reach spawning sites. We present a simple outflux-influx model linking the number of female salmon emigrating (i.e. outflux) and returning (i.e. influx) to a small spawning stream in Scotland (the Girnock Burn). The model explicitly accounts for the inter-annual variability of the hydrologic regime and its influence on hydrological connectivity. Model results are then compared against a unique long-term hydro-ecological dataset that includes annual fluxes of immigrant and emigrant salmon and daily discharges for about 40 years. The satisfactory model results confirm that hydrologic variability contributes significantly to the observed dynamics of salmon returns to the Girnock, with a good correlation between the positive (negative) peaks in the immigration dataset and the exceedance (non-exceedance) probability of a threshold flow (0.3 m3/s). Importantly, model performance deteriorates when the inter-annual variability of flow regime is disregarded. The analysis suggests that the hydrological connectivity represents a key feature of riverine systems, which needs to be carefully considered in settings where flow regimes are altered by water abstractions or diversions.

  20. An Assessment of Potential Mining Impacts on Salmon ...

    EPA Pesticide Factsheets

    The Bristol Bay watershed in southwestern Alaska supports the largest sockeye salmon fishery in the world, is home to 25 federally recognized tribal governments, and contains large mineral resources. The potential for large-scale mining activities in the watershed has raised concerns about the impact of mining on the sustainability of Bristol Bay’s world-class commercial, recreational and subsistence fisheries and the future of Alaska Native tribes in the watershed who have maintained a salmon-based culture and subsistence-based way of life for at least 4,000 years. The purpose of this assessment is to provide a characterization of the biological and mineral resources of the Bristol Bay watershed, increase understanding of the potential impacts of large-scale mining on the region’s fish resources, and inform future government decisions related to protecting and maintaining the chemical, physical, and biological integrity of the watershed. It will also serve as a technical resource for the public, tribes, and governments who must consider how best to address the challenges of mining and ecological protection in the Bristol Bay watershed. The purpose of this assessment is to understand how future large-scale mining may affect water quality and the Bristol Bay salmon fisheries, which includes the largest wild sockeye salmon fishery in the world. Bristol Bay, Alaska, is home to a salmon fishery that is of significant economic and subsistence value to the peopl

  1. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  2. Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin

    USGS Publications Warehouse

    Connor, W.P.; Sneva, J.G.; Tiffan, K.F.; Steinhorst, R.K.; Ross, D.

    2005-01-01

    Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however, that some fall Chinook salmon juveniles in the Snake River basin spent their first winter in a reservoir and resumed seaward movement the following spring at age 1 (hereafter, reservoir-type juveniles). We collected wild and hatchery ocean-type fall Chinook salmon juveniles in 1997 and wild and hatchery reservoir-type juveniles in 1998 to assess the condition of the reservoir-type juveniles at the onset of seaward movement. The ocean-type juveniles averaged 112-139 mm fork length, and the reservoir-type juveniles averaged 222-224 mm fork length. The large size of the reservoir-type juveniles suggested a high potential for survival to salt water and subsequent return to freshwater. Scale pattern analyses of the fall Chinook salmon spawners we collected during 1998-2003 supported this point. Of the spawners sampled, an overall average of 41% of the wild fish and 51% of the hatchery fish had been reservoir-type juveniles. Males that had been reservoir-type juveniles often returned as small "minijacks" (wild, 16% of total; hatchery, 40% of total), but 84% of the wild males, 60% of the hatchery males, and 100% of the wild and hatchery females that had been reservoir-type juveniles returned at ages and fork lengths commonly observed in populations of Chinook salmon. We conclude that fall Chinook salmon in the Snake River basin exhibit two alternative juvenile life histories, namely ocean-type and reservoir-type. ?? Copyright by the American Fisheries Society 2005.

  3. Growth of enterotoxigenic Bacillus cereus on salmon (Oncorhynchus nerka).

    PubMed

    Labbé, Ronald; Rahmati, Talat

    2012-06-01

    We previously demonstrated the widespread presence of enterotoxigenic Bacillus cereus in marine foods. In view of the widespread consumption of raw fish, we sought to determine the ability of this organism to grow on the surface of wild Alaskan salmon at abusive temperatures (12, 16, and 20°C), using an isolate able to produce elevated levels of hemolysin BL enterotoxin and nonhemolytic enterotoxin. An incubation temperature of 37°C for colony formation was found to be selective for B. cereus grown on salmon held for up to 24 h at each temperature. A fivefold increase in log CFU per gram was observed after 26 and 22 h at 16 and 20°C, respectively, while a >4-log CFU/g increase occurred on salmon held at 12°C for 48 h. Generation times of 169.7, 53.5, and 45.6 min were observed at 12, 16, and 20°C. Nonhemolytic enterotoxin was detected when levels of B. cereus were in excess of 10(8) CFU/g. Nisin, at concentrations of 1 and 15 m g/g of salmon, reduced levels of B. cereus 2.5- and 25-fold, respectively. Our results indicate that fresh salmon can serve as an excellent substrate for enterotoxigenic B. cereus and that this organism can reach levels associated with foodborne illness following moderate temperature abuse.

  4. Residues of DDT in lake trout (Salvelinus namaycush) and coho salmon (Oncorhynchus kisutch) from the Great Lakes

    USGS Publications Warehouse

    Reinert, Robert E.; Bergman, Harold L.

    1974-01-01

    Concentrations of DDT residues were higher in lake trout (Salvelinus namaycush) from southern Lake Michigan in 1966–70 (average 18.1 ppm in fish 558–684 mm long) than in lake trout of the same size-class from Lake Superior in 1968–69 (4.4 ppm), and higher in adult coho salmon (Oncorhynchus kisutch) from Lake Michigan in 1968–71 (averages for different year-classes, 9.9–14.0 ppm) than in those from Lake Erie in 1969 (2.2 ppm). Residues were significantly higher in lake trout from southern Lake Michigan than in those from the northern part of the lake. In lakes Michigan and Superior, the levels increased with length of fish and percentage oil. In Lake Michigan coho salmon, the residues remained nearly stable (2–4 ppm) from September of the 1st yr of lake residence through May or early June of the 2nd yr, but increased three to four times in the next 3 mo. Residues in Lake Erie coho salmon did not increase during this period, which preceded the spawning season. Although the concentrations of total residues in whole, maturing Lake Michigan coho salmon remained unchanged from August 1968 until near the end of the spawning season in January 1969, the residues were redistributed in the tissues of the spawning-run fish; concentrations in the loin and brain were markedly higher in January than in August. This relocation of DDT residues accompanied a marked decrease in the percentage of oil in the fish, from 13.2 in August to 2.8 in January. Concentrations of residues were relatively high in eggs of both lake trout (4.6 ppm) and coho salmon (7.4–10.2 ppm) from Lake Michigan. The percentage composition of the residues (p,p′DDE, o,p′/DDT, p,p′DDT, and p,p′DDT) did not differ significantly with life stage, size, age, or locality, or date of collection of lake trout or coho salmon.

  5. Historical record of Yersinia ruckeri and Aeromonas salmonicida among sea-run Atlantic salmon (Salmo salar) in the Penobscot River

    USGS Publications Warehouse

    Cipriano, R.C.; Coll, J.

    2005-01-01

    Despite restoration efforts, only about 2,000 Atlantic salmon (Salmo salar) salmon have annually returned to New England Rivers and more than 71% of these fish migrate to the Penobscot River alone. This report provides a historical compilation on the prevalence's of both Yersinia ruckeri, cause of enteric redmouth disease, and Aeromonas salmonicida, cause of furunculosis, among mature sea-run Atlantic salmon that returned to the Penobscot River from 1976 to 2003. Aeromonas salmonicida was detected in 28.6% and Yersinia ruckeri was detected among 50% of the yearly returns. Consequently, Atlantic salmon that return to the river are potential reservoirs of infection.

  6. Acute exposure to gas-supersaturated water does not affect reproductive success of female adult chinook salmon late in maturation

    USGS Publications Warehouse

    Gale, William L.; Maule, A.G.; Postera, A.; Peters, M.H.

    2004-01-01

    At times, total dissolved gas concentrations in the Columbia and Snake rivers have been elevated due to involuntary spill from high spring runoff and voluntary spill used as a method to pass juvenile salmonids over dams. The goal of this project was to determine if acute exposure to total dissolved gas supersaturation (TDGS) affects the reproductive performance of female chinook salmon late in their maturation. During this study, adult female spring chinook salmon were exposed to mean TDGS levels of 114.1 % to 125.5%. We ended exposures at first mortality, or at the appearance of impending death. Based on this criterion, exposures lasted from 10 to 68 h and were inversely related to TDGS. There was no effect of TDGS on pre-spawning mortality or fecundity when comparing treatment fish to experimental controls or the general hatchery population four to six weeks after exposures. Egg quality, based on egg weight and egg diameter, did not differ between treatment and control fish. Fertilization rate and survival to eyed-stage was high (>94%) for all groups. With the exception of Renibacterium salmoninarum (the causative agent of bacterial kidney disease; BKD), no viral or bacterial fish pathogens were isolated from experimental fish. The prevalence (about 45%) and severity of R. salmoninarum did not differ among the groups or the general hatchery population. We conclude that these acute exposures to moderate levels of gas-supersaturated water-perhaps similar to that experienced by immigrating adult salmon as they approach and pass a hydropower dam on the Columbia River-did not affect reproductive success of female chinook salmon late in their maturation. These results are most applicable to summer and fall chinook salmon, which migrate in the summer/fall and spawn shortly after reaching their natal streams. Published in 2004 by John Wiley and Sons, Ltd.

  7. Mercury and selenium concentrations in biofilm, macroinvertebrates, and fish collected in the Yankee Fork of the Salmon River, Idaho, USA, and their potential effects on fish health.

    PubMed

    Rhea, Darren T; Farag, Aïda M; Harper, David D; McConnell, Elizabeth; Brumbaugh, William G

    2013-01-01

    The Yankee Fork is a large tributary of the Salmon River located in central Idaho, USA, with an extensive history of placer and dredge-mining activities. Concentrations of selenium (Se) and mercury (Hg) in various aquatic trophic levels were measured in the Yankee Fork during 2001 and 2002. Various measurements of fish health were also performed. Sites included four on the mainstem of the Yankee Fork and two off-channel sites in partially reclaimed dredge pools used as rearing habitat for cultured salmonid eggs and fry. Hg concentrations in whole mountain whitefish and shorthead sculpin ranged from 0.28 to 0.56 μg/g dry weight (dw), concentrations that are generally less than those reported to have significant impacts on fish. Biofilm and invertebrates ranged from 0.05 to 0.43 μg Hg/g dw. Se concentrations measured in biota samples from the Yankee Fork were greater than many representative samples collected in the Snake and Columbia watersheds and often exceeded literature-based toxic thresholds. Biofilm and invertebrates ranged from 0.58 to 4.66 μg Se/g dw. Whole fish ranged from 3.92 to 7.10 μg Se/g dw, and gonads ranged from 6.91 to 31.84 μg Se/g dw. Whole-body Se concentrations exceeded reported toxicological thresholds at three of four sites and concentrations in liver samples were mostly greater than concentrations shown to have negative impacts on fish health. Histological examinations performed during this study noted liver abnormalities, especially in shorthead sculpin, a bottom-dwelling species.

  8. Phylogenetic Evidence of Long Distance Dispersal and Transmission of Piscine Reovirus (PRV) between Farmed and Wild Atlantic Salmon

    PubMed Central

    Garseth, Åse Helen; Ekrem, Torbjørn; Biering, Eirik

    2013-01-01

    The extent and effect of disease interaction and pathogen exchange between wild and farmed fish populations is an ongoing debate and an area of research that is difficult to explore. The objective of this study was to investigate pathogen transmission between farmed and wild Atlantic salmon (Salmo salar L.) populations in Norway by means of molecular epidemiology. Piscine reovirus (PRV) was selected as the model organism as it is widely distributed in both farmed and wild Atlantic salmon in Norway, and because infection not necessarily will lead to mortality through development of disease. A matrix comprised of PRV protein coding sequences S1, S2 and S4 from wild, hatchery-reared and farmed Atlantic salmon in addition to one sea-trout (Salmo trutta L.) was examined. Phylogenetic analyses based on maximum likelihood and Bayesian inference indicate long distance transport of PRV and exchange of virus between populations. The results are discussed in the context of Atlantic salmon ecology and the structure of the Norwegian salmon industry. We conclude that the lack of a geographical pattern in the phylogenetic trees is caused by extensive exchange of PRV. In addition, the detailed topography of the trees indicates long distance transportation of PRV. Through its size, structure and infection status, the Atlantic salmon farming industry has the capacity to play a central role in both long distance transportation and transmission of pathogens. Despite extensive migration, wild salmon probably play a minor role as they are fewer in numbers, appear at lower densities and are less likely to be infected. An open question is the relationship between the PRV sequences found in marine fish and those originating from salmon. PMID:24349221

  9. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007

  10. Use of seasonal freshwater wetlands by fishes in a temperate river floodplain

    USGS Publications Warehouse

    Henning, Julie A.; Gresswell, Robert E.; Fleming, Ian A.

    2007-01-01

    This study examined the use of freshwater wetland restoration and enhancement projects (i.e. non-estuarine wetlands subject to seasonal drying) by fish populations. To quantify fish use of freshwater emergent wetlands and assess the effect of wetland enhancement (i.e. addition of water control structures), two enhanced and two unenhanced emergent wetlands were compared, as well as two oxbow habitats within the Chehalis River floodplain. Eighteen fish species were captured using fyke nets and emigrant traps from January to the beginning of June, with the most abundant being three-spined stickleback Gasterosteus aculeatus and Olympic mudminnow Novumbra hubbsi. Coho salmon Oncorhynchus kisutch was the dominant salmonid at all sites. Enhanced wetlands, with their extended hydroperiods, had significantly higher abundances of yearling coho salmon than unenhanced wetlands. Both enhanced and unenhanced emergent wetlands yielded higher abundances of non-game native fishes than oxbow habitats. Oxbow habitats, however, were dominated by coho salmon. Fish survival in the wetland habitats was dependent on emigration to the river before dissolved oxygen concentrations decreased and wetlands became isolated and stranding occurred. This study suggests that wetland enhancement projects with an outlet to the river channel appear to provide fishes with important temporary habitats if they have the opportunity to leave the wetland as dissolved oxygen levels deteriorate.

  11. Effects of post-capture ventilation assistance and elevated water temperature on sockeye salmon in a simulated capture-and-release experiment

    PubMed Central

    Robinson, Kendra A.; Hinch, Scott G.; Gale, Marika K.; Clark, Timothy D.; Wilson, Samantha M.; Donaldson, Michael R.; Farrell, Anthony P.; Cooke, Steven J.; Patterson, David A.

    2013-01-01

    The live release of wild adult Pacific salmon (Oncorhynchus spp.) following capture is a management tactic often used in commercial, aboriginal, and recreational fisheries. Fisheries capture and handling can be both exhausting and stressful to fish, which can limit their ability to swim and survive after release. As a result, researchers have assessed methods intended to improve post-release survival by assisting the flow of water over the gills of fish prior to release. Such approaches use recovery bags or boxes that direct water over the gills of restrained fish. This study evaluated a method of assisting ventilation that mimics one often employed by recreational anglers (i.e. holding fish facing into a current). Under laboratory conditions, wild Fraser River sockeye salmon (Oncorhynchus nerka) either received manual ventilation assistance for 1 min using a jet of water focused at the mouth or were left to recover unassisted following a capture-and-release simulation. A control group consisted of fish that were not exposed to the simulation or ventilation assistance. The experiment was conducted at 16 and 21°C, average and peak summer water temperatures for the Fraser River, and fish survival was monitored for 33 days. At 21°C, all fish perished within 3 days after treatment in all experimental groups, highlighting the consequences of handling adult sockeye salmon during elevated migration temperatures. Survival was higher at 16°C, with fish surviving on average 15–20 days after treatment. At 16°C, the capture-and-release simulation and ventilation assistance did not affect the survival of males; however, female survival was poor after the ventilation assistance compared with the unassisted and control groups. Our results suggest that the method of ventilation assistance tested in this study may not enhance the post-release survival of adult Fraser River sockeye salmon migrating in fresh water. PMID:27293599

  12. Genome Sequence of Streptococcus phocae subsp. salmonis Strain C-4T, Isolated from Atlantic Salmon (Salmo salar).

    PubMed

    Avendaño-Herrera, Ruben; Suarez, Rudy; Lazo, Eduardo; Bravo, Diego; Llegues, Katerina O; Romalde, Jesús L; Godoy, Marcos G

    2014-12-11

    Streptococcus phocae subsp. salmonis is a fish pathogen that has an important impact on the Chilean salmon industry. Here, we report the genome sequence of the type strain C-4(T) isolated from Atlantic salmon (Salmo salar), showing a number of interesting features and genes related to its possible virulence factors. Copyright © 2014 Avendaño-Herrera et al.

  13. A systematic surveillance programme for infectious salmon anaemia virus supports its absence in the Pacific Northwest of the United States

    USGS Publications Warehouse

    Gustafson, Lori L.; Creekmore, Lynn H.; Snekvik, Kevin R.; Ferguson, Jayde A.; Warg, Janet V.; Blair, Marilyn; Meyers, Theodore R.; Stewart, Bruce; Warheit, Kenneth I.; Kerwin, John; Goodwin, Andrew E.; Rhodes, Linda D.; Whaley, Janet E.; Purcell, Maureen K.; Bentz, Collette; Shasa, Desiree; Bader, Joel; Winton, James R.

    2018-01-01

    In response to reported findings of infectious salmon anaemia virus (ISAV) in British Columbia (BC), Canada, in 2011, U.S. national, state and tribal fisheries managers and fish health specialists developed and implemented a collaborative ISAV surveillance plan for the Pacific Northwest region of the United States. Accordingly, over a 3-1/2-year period, 4,962 salmonids were sampled and successfully tested by real-time reverse-transcription PCR. The sample set included multiple tissues from free-ranging Pacific salmonids from coastal regions of Alaska and Washington and farmed Atlantic salmon (Salmo salar L.) from Washington, all representing fish exposed to marine environments. The survey design targeted physiologically compromised or moribund animals more vulnerable to infection as well as species considered susceptible to ISAV. Samples were handled with a documented chain of custody and testing protocols, and criteria for interpretation of test results were defined in advance. All 4,962 completed tests were negative for ISAV RNA. Results of this surveillance effort provide sound evidence to support the absence of ISAV in represented populations of free-ranging and marine-farmed salmonids on the northwest coast of the United States.

  14. A systematic surveillance programme for infectious salmon anaemia virus supports its absence in the Pacific Northwest of the United States.

    PubMed

    Gustafson, L L; Creekmore, L H; Snekvik, K R; Ferguson, J A; Warg, J V; Blair, M; Meyers, T R; Stewart, B; Warheit, K I; Kerwin, J; Goodwin, A E; Rhodes, L D; Whaley, J E; Purcell, M K; Bentz, C; Shasa, D; Bader, J; Winton, J R

    2018-02-01

    In response to reported findings of infectious salmon anaemia virus (ISAV) in British Columbia (BC), Canada, in 2011, U.S. national, state and tribal fisheries managers and fish health specialists developed and implemented a collaborative ISAV surveillance plan for the Pacific Northwest region of the United States. Accordingly, over a 3-1/2-year period, 4,962 salmonids were sampled and successfully tested by real-time reverse-transcription PCR. The sample set included multiple tissues from free-ranging Pacific salmonids from coastal regions of Alaska and Washington and farmed Atlantic salmon (Salmo salar L.) from Washington, all representing fish exposed to marine environments. The survey design targeted physiologically compromised or moribund animals more vulnerable to infection as well as species considered susceptible to ISAV. Samples were handled with a documented chain of custody and testing protocols, and criteria for interpretation of test results were defined in advance. All 4,962 completed tests were negative for ISAV RNA. Results of this surveillance effort provide sound evidence to support the absence of ISAV in represented populations of free-ranging and marine-farmed salmonids on the northwest coast of the United States. © 2017 John Wiley & Sons Ltd.

  15. Sea lice infestations on juvenile chum and pink salmon in the Broughton Archipelago, Canada, from 2003 to 2012.

    PubMed

    Patanasatienkul, Thitiwan; Sanchez, Javier; Rees, Erin E; Krkosek, Martin; Jones, Simon R M; Revie, Crawford W

    2013-07-22

    Juvenile pink salmon Oncorhynchus gorbuscha and chum salmon O. keta were sampled by beach or purse seine to assess levels of sea lice infestation in the Knight Inlet and Broughton Archipelago regions of coastal British Columbia, Canada, during the months of March to July from 2003 to 2012. Beach seine data were analyzed for sea lice infestation that was described in terms of prevalence, abundance, intensity, and intensity per unit length. The median annual prevalence for chum was 30%, ranging from 14% (in 2008 and 2009) to 73% (in 2004), while for pink salmon, the median was 27% and ranged from 10% (in 2011) to 68% (in 2004). Annual abundance varied from 0.2 to 5 sea lice per fish with a median of 0.47 for chum and from 0.1 to 3 lice (median 0.42) for pink salmon. Annual infestation followed broadly similar trends for both chum and pink salmon. However, the abundance and intensity of Lepeophtheirus salmonis and Caligus clemensi, the 2 main sea lice species of interest, were significantly greater on chum than on pink salmon in around half of the years studied. Logistic regression with random effect was used to model prevalence of sea lice infestation for the combined beach and purse seine data. The model suggested inter-annual variation as well as a spatial clustering effect on the prevalence of sea lice infestation in both chum and pink salmon. Fish length had an effect on prevalence, although the nature of this effect differed according to host species.

  16. Density-dependence at sea for coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Emlen, J.M.; Reisenbichler, R.R.; McGie, A.M.; Nickelson, T.E.

    1990-01-01

    The success of expanded salmon hatchery programs will depend strongly on the degree of density-induced diminishing returns per smolt released. Several authors have addressed the question of density-dependent mortality at sea in coho salmon (Oncorhynchus kisutch), but have come to conflicting conclusions. We believe there are compelling reasons to reinvestigate the data, and have done so for public hatchery fish, using a variety of approaches. The results provide evidence that survival of these public hatchery fish is negatively affected, directly by the number of public hatchery smolts and indirectly by the number of private hatchery smolts. These results are weak, statistically, and should be considered primarily as a caution to those who, on the basis of other published work, believe that density-dependence does not exist. The results reported here also re-emphasize the often overlooked point that inferences drawn from data are strongly biased by investigators' views of how the systems of interest work and by the statistical assumptions they make preparatory to the analysis of those data.

  17. Fish Passage Through a Simulated Horizontal Bulb Turbine Pressure Regime: A Supplement to"Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abernethy, Cary S.; Amidan, Brett G.; Cada, G F.

    Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were comparedmore » to results from previous test series. Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were compared to results from previous test series. Both fish species were acclimated for 16-22 hours at either surface (101 kPa; 1 atm) or 30 ft (191 kPa; 1.9 atm) of pressure in a hyperbaric chamber before exposure to a pressure scenario simulating passage through a horizontal bulb turbine. The simulation was as follows: gradual pressure increase to about 2 atm of pressure, followed by a sudden (0.4 second) decrease in pressure to either 0.7 or 0.95 atm, followed by gradual return to 1 atm (surface water pressure). Following the exposure, fish were held

  18. Predicting the effectiveness of depth-based technologies to prevent salmon lice infection using a dispersal model.

    PubMed

    Samsing, Francisca; Johnsen, Ingrid; Stien, Lars Helge; Oppedal, Frode; Albretsen, Jon; Asplin, Lars; Dempster, Tim

    2016-07-01

    Salmon lice is one of the major parasitic problems affecting wild and farmed salmonid species. The planktonic larval stages of these marine parasites can survive for extended periods without a host and are transported long distances by water masses. Salmon lice larvae have limited swimming capacity, but can influence their horizontal transport by vertical positioning. Here, we adapted a coupled biological-physical model to calculate the distribution of farm-produced salmon lice (Lepeophtheirus salmonis) during winter in the southwest coast of Norway. We tested 4 model simulations to see which best represented empirical data from two sources: (1) observed lice infection levels reported by farms; and (2) experimental data from a vertical exposure experiment where fish were forced to swim at different depths with a lice-barrier technology. Model simulations tested were different development time to the infective stage (35 or 50°-days), with or without the presence of temperature-controlled vertical behaviour of lice early planktonic stages (naupliar stages). The best model fit occurred with a 35°-day development time to the infective stage, and temperature-controlled vertical behaviour. We applied this model to predict the effectiveness of depth-based preventive lice-barrier technologies. Both simulated and experimental data revealed that hindering fish from swimming close to the surface efficiently reduced lice infection. Moreover, while our model simulation predicted that this preventive technology is widely applicable, its effectiveness will depend on environmental conditions. Low salinity surface waters reduce the effectiveness of this technology because salmon lice avoid these conditions, and can encounter the fish as they sink deeper in the water column. Correctly parameterized and validated salmon lice dispersal models can predict the impact of preventive approaches to control this parasite and become an essential tool in lice management strategies. Copyright

  19. Pattern of shoreline spawning by sockeye salmon in a glacially turbid lake: evidence for subpopulation differentiation

    USGS Publications Warehouse

    Burger, C.V.; Finn, J.E.; Holland-Bartels, L.

    1995-01-01

    Alaskan sockeye salmon typically spawn in lake tributaries during summer (early run) and along clear-water lake shorelines and outlet rivers during fall (late run). Production at the glacially turbid Tustumena Lake and its outlet, the Kasilof River (south-central Alaska), was thought to be limited to a single run of sockeye salmon that spawned in the lake's clear-water tributaries. However, up to 40% of the returning sockeye salmon enumerated by sonar as they entered the lake could not be accounted for during lake tributary surveys, which suggested either substantial counting errors or that a large number of fish spawned in the lake itself. Lake shoreline spawning had not been documented in a glacially turbid system. We determined the distribution and pattern of sockeye salmon spawning in the Tustumena Lake system from 1989 to 1991 based on fish collected and radiotagged in the Kasilof River. Spawning areas and time were determined for 324 of 413 sockeye salmon tracked upstream into the lake after release. Of these, 224 fish spawned in tributaries by mid-August and 100 spawned along shoreline areas of the lake during late August. In an additional effort, a distinct late run was discovered that spawned in the Kasilof River at the end of September. Between tributary and shoreline spawners, run and spawning time distributions were significantly different. The number of shoreline spawners was relatively stable and independent of annual escapement levels during the study, which suggests that the shoreline spawning component is distinct and not surplus production from an undifferentiated run. Since Tustumena Lake has been fully deglaciated for only about 2,000 years and is still significantly influenced by glacier meltwater, this diversification of spawning populations is probably a relatively recent and ongoing event.

  20. The Expression of Leptin, Estrogen Receptors, and Vitellogenin mRNAs in Migrating Female Chum Salmon, Oncorhynchus keta: The Effects of Hypo-osmotic Environmental Changes

    PubMed Central

    Choi, Young Jae; Kim, Na Na; Shin, Hyun Suk; Choi, Cheol Young

    2014-01-01

    Leptin plays an important role in energy homeostasis and reproductive function in fish, especially in reproduction. Migrating fish, such as salmonoids, are affected by external environmental factors, and salinity changes are a particularly important influence on spawning migrations. The aim of this study was to test whether changes in salinity affect the expression of leptin, estrogen receptors (ERs), and vitellogenin (VTG) in chum salmon (Oncorhynchus keta). The expression and activity of leptin, the expression of ERs and VTG, and the levels of estradiol-17β and cortisol increased after the fish were transferred to FW, demonstrating that changes in salinity stimulate the HPG axis in migrating female chum salmon. These findings reveal details about the role of elevated leptin levels and sex steroid hormones in stimulating sexual maturation and reproduction in response to salinity changes in chum salmon. PMID:25049977