Science.gov

Sample records for salmon oncorhynchus tschawytscha

  1. Shedding of Renibacterium salmoninarum by infected chinook salmon Oncorhynchus tschawytscha

    USGS Publications Warehouse

    McKibben, C.L.; Pascho, R.J.

    1999-01-01

    Laboratory studies of the transmission and pathogenesis of Renibacterium salmoninarum may describe more accurately what is occurring in the natural environment if test fish are infected by waterborne R. salmoninarum shed from infected fish. To quantify bacterial shedding by chinook salmon Oncorhynchus tschawytscha at 13??C in freshwater, groups of fish were injected intraperitoneally with R. salmoninarum at either 1.3 x 106 colony forming units (CFU) fish-1 (high-dose injection group) or 1.5 x 103 CFU fish-1 (low-dose injection group). R. salmoninarum infection levels were measured in the exposed fish by the enzyme-linked immunosorbent assay (BKD-ELISA). At regular intervals for 30 d, the numbers of R. salmoninarum shed by the injected fish were calculated on the basis of testing water samples by the membrane filtration-fluorescent antibody test (MF-FAT) and bacteriological culture. Mean BKD-ELISA optical densities (ODs) for fish in the low-dose injection group were not different from those of control fish [p > 0.05), and no R. salmoninarum were detected in water samples taken up to 30 d after injection of fish in the low-dose group. By 12 d after injection a proportion of the fish from the high-dose infection group had high (BKD-ELISA OD ??? 1.000) to severe (BKD-ELISA OD ??? 2.000) R. salmoninarum infection levels, and bacteria were detected in the water by both tests. However, measurable levels of R. salmoninarum were not consistently detected in the water until a proportion of the fish maintained high to severe infection levels for an additional 8 d. The concentrations of R salmoninarum in the water samples ranged from undetectable up to 994 cells ml-1 on the basis of the MF-FAT, and up to 1850 CFU ml-1 on the basis of bacteriological culture. The results suggest that chinook salmon infected with R. salmoninarum by injection of approximately 1 x 106 CFU fish-1 can be used as the source of infection in cohabitation challenges beginning 20 darter injection.

  2. Changes in brain gonadotropin-releasing hormone, pituitary and plasma gonadotropins, and plasma thyroxine during smoltification in chinook salmon (Oncorhynchus tschawytscha).

    PubMed

    Lewis, K A; Swanson, P; Sower, S A

    1992-09-01

    Concentrations of brain salmon gonadotropin-releasing hormone (sGnRH), plasma gonadotropin I (GTH I), and pituitary GTH I and GTH II were determined in yearling chinook salmon (Oncorhynchus tschawytscha) during the parr-smolt transformation in two successive seasons. There were significant elevations in brain sGnRH content from February to March in 1988, and from February to April in 1989. Increases in brain sGnRH content coincided with elevations in plasma thyroxine levels that occurred from February to March, 1988 and 1989. Plasma GTH levels were relatively constant (1-2 ng/ml) throughout the period of sampling. However, during 1988, plasma concentrations of GTH I decreased significantly between late March and early April. During 1989, plasma GTH I levels appeared to reach a peak (2 ng/ml) in mid-February, but otherwise remained near 1 ng/ml. Previous studies have shown that GTH II was not detectable in plasma at this stage. During 1989, pituitary GTH I concentrations were 50- to 70-fold higher than that of GTH II, and increased, though not significantly, from February through April. Although GTH II was detected in the pituitary by RIA, it is likely that the measurable levels are due to GTH I cross-reaction in the GTH II RIA. Histological examination of the gonads indicated that throughout smoltification the oocytes remained in the perinucleolar stage of oogenesis and the testes were in the spermatogonial stage of spermatogenesis. Although no observable changes in gametogenesis occurred, the changes in brain sGnRH content, plasma GTH I levels, and pituitary GTH content suggest that some changes in the hypothalamic-pituitary axis may occur during smoltification.

  3. Kidney disease postorbital lesions in spring chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Hendricks, Jerry D.; Leek, Steve L.

    1975-01-01

    Gross exophthalmos in one or both eyes of yearling spring chinook salmon (Oncorhynchus tshawytscha) was caused by postorbital, granulomatous inflammatory tissue that developed in response to invasion of the site by Corynebacterium sp., the causative agent of bacterial kidney disease.

  4. Teratological hermaphroditism in the chum salmon Oncorhynchus keta (Walbaum)

    USGS Publications Warehouse

    Uzmann, J.R.; Hesselholt, M.N.

    1957-01-01

    The anomalous condition of hermaphroditism appears to be no less rare in fish than in other normally dioecious animals. Previous records of bisexuality' in the Pacific salmons, Oncorhynchus spp., are few in number despite the intensive study accorded this group. Rutter (1902) reported the condition in two king salmon (O. tshawytscha); Crawford (1927) reported the condition in a silver salmon (O. kisutch); and Gibbs (1956) described a bisexual steelhead trout (Salmo gairdneri) and briefly noted another instance of hermaphroditism in the king salmon. We wish to record an example of this anomaly in the chum salmon (O. keta).

  5. Stabilizing Oils from Smoked Pink Salmon (Oncorhynchus gorbuscha)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smoking of meats and fish is one of the earliest preservation technologies developed by humans. In this study, the smoking process was evaluated as a method for reducing oxidation of Pink Salmon (Oncorhynchus gorbuscha) oils and also maintaining the quality of oil in aged fish prior to oil extractio...

  6. Physiological consequences of the salmon louse (Lepeophtheirus salmonis) on juvenile pink salmon (Oncorhynchus gorbuscha): implications for wild salmon ecology and management, and for salmon aquaculture.

    PubMed

    Brauner, C J; Sackville, M; Gallagher, Z; Tang, S; Nendick, L; Farrell, A P

    2012-06-19

    Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.

  7. Design and Analysis of Salmonid Tagging Studies in the Columbia Basin, Volume VIII; New Model for Estimating Survival Probabilities and Residualization from a Release-Recapture Study of Fall Chinook Salmon Smolts in the Snake River, 1995 Technical Report.

    SciTech Connect

    Lowther, Alan B.; Skalski, John R.

    1997-09-01

    Standard release-recapture analysis using Cormack-Jolly-Seber (CJS) models to estimate survival probabilities between hydroelectric facilities for Snake River fall chinook salmon (Oncorhynchus tschawytscha) ignore the possibility of individual fish residualizing and completing their migration in the year following tagging.

  8. Sexual difference in PCB concentrations of coho salmon (Oncorhynchus kisutch).

    PubMed

    Madenjian, Charles P; Schrank, Candy S; Begnoche, Linda J; Elliott, Robert F; Quintal, Richard T

    2010-03-01

    We determined polychlorinated biphenyl (PCB) concentrations in 35 female coho salmon (Oncorhynchus kisutch) and 60 male coho salmon caught in Lake Michigan (Michigan and Wisconsin, United States) during the fall of 1994 and 1995. In addition, we determined PCB concentrations in the skin-on fillets of 26 female and 19 male Lake Michigan coho salmon caught during the fall of 2004 and 2006. All coho salmon were age-2 fish. These fish were caught prior to spawning, and therefore release of eggs could not account for sexual differences in PCB concentrations because female coho salmon spawn only once during their lifetime. To investigate whether gross growth efficiency (GGE) differed between the sexes, we applied bioenergetics modeling. Results showed that, on average, males were 19% higher in PCB concentration than females, based on the 1994-1995 dataset. Similarly, males averaged a 20% higher PCB concentration in their skin-on fillets compared with females. According to the bioenergetics modeling results, GGE of adult females was less than 1% higher than adult male GGE. Thus, bioenergetics modeling could not explain the 20% higher PCB concentration exhibited by the males. Nonetheless, a sexual difference in GGE remained a plausible explanation for the sexual difference in PCB concentrations.

  9. Sexual difference in PCB concentrations of coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Madenjian, Charles P.; Schrank, Candy S.; Begnoche, Linda J.; Elliott, Robert F.; Quintal, Richard T.

    2010-01-01

    We determined polychlorinated biphenyl (PCB) concentrations in 35 female coho salmon (Oncorhynchus kisutch) and 60 male coho salmon caught in Lake Michigan (Michigan and Wisconsin, United States) during the fall of 1994 and 1995. In addition, we determined PCB concentrations in the skin-on fillets of 26 female and 19 male Lake Michigan coho salmon caught during the fall of 2004 and 2006. All coho salmon were age-2 fish. These fish were caught prior to spawning, and therefore release of eggs could not account for sexual differences in PCB concentrations because female coho salmon spawn only once during their lifetime. To investigate whether gross growth efficiency (GGE) differed between the sexes, we applied bioenergetics modeling. Results showed that, on average, males were 19% higher in PCB concentration than females, based on the 1994–1995 dataset. Similarly, males averaged a 20% higher PCB concentration in their skin-on fillets compared with females. According to the bioenergetics modeling results, GGE of adult females was less than 1% higher than adult male GGE. Thus, bioenergetics modeling could not explain the 20% higher PCB concentration exhibited by the males. Nonetheless, a sexual difference in GGE remained a plausible explanation for the sexual difference in PCB concentrations.

  10. Chum salmon Oncorhynchus keta respond to moonlight during homeward migrations.

    PubMed

    Hasegawa, E I

    2012-07-01

    The swimming depth of chum salmon Oncorhynchus keta equipped with archival tags was investigated off the Pacific Ocean coast of Hokkaido and North Honshu, Japan. As shown from movements of the fish with disc tags, O. keta swam at shallower depths during the full-moon phase than in the other phases and their swimming speed during this phase was faster compared to other phases. In addition, the circadian rhythm suggests a biological clock. These observations are all consistent with the view that O. keta make use of moonlight in order to navigate at night-time during homeward migration.

  11. Dorsal hump morphology in pink salmon (Oncorhynchus gorbuscha).

    PubMed

    Susuki, Kenta; Ichimura, Masaki; Koshino, Yosuke; Kaeriyama, Masahide; Takagi, Yasuaki; Adachi, Shinji; Kudo, Hideaki

    2014-05-01

    Mature male Pacific salmon (Genus Oncorhynchus) develop a dorsal hump, as a secondary male sexual characteristic, during the spawning period. Previous gross anatomical studies have indicated that the dorsal humps of salmon are mainly composed of cartilaginous tissue (Davidson [1935] J Morphol 57:169-183.) However, the histological and biochemical characteristics of such humps are poorly understood. In this study, the detailed microstructures and components of the dorsal humps of pink salmon were analyzed using histochemical techniques and electrophoresis. In mature males, free interneural spines and neural spines were located in a line near to the median septum of the dorsal hump. No cartilaginous tissue was detected within the dorsal hump. Fibrous and mucous connective tissues were mainly found in three regions of the dorsal hump: i) the median septum, ii) the distal region, and iii) the crescent-shaped region. Both the median septum and distal region consisted of connective tissue with a high water content, which contained elastic fibers and hyaluronic acid. It was also demonstrated that the lipid content of the dorsal hump connective tissue was markedly decreased in the mature males compared with the immature and maturing males. Although, the crescent-shaped region of the hump consisted of connective tissue, it did not contain elastic fibers, hyaluronic acid, or lipids. In an ultrastructural examination, it was found that all of the connective tissues in the dorsal hump were composed of collagen fibers. Gel electrophoresis of collagen extracts from these tissues found that the collagen in the dorsal hump is composed of Type I collagen, as is the case in salmon skin. These results indicate that in male pink salmon the dorsal hump is formed as a result of an increase in the amount of connective tissue, rather than cartilage, and the growth of free interneural spines and neural spines.

  12. Proteomic analysis of chinook salmon (Oncorhynchus tshawytscha) ovarian fluid.

    PubMed

    Johnson, Sheri L; Villarroel, Marsha; Rosengrave, Patrice; Carne, Alan; Kleffmann, Torsten; Lokman, P Mark; Gemmell, Neil J

    2014-01-01

    The ovarian, or coelomic, fluid that is released with the egg mass of many fishes is increasingly found to play an important role in several biological processes crucial for reproductive success. These include maintenance of oocyte fertility and developmental competence, prolonging of sperm motility, and enhancing sperm swimming speed. Here we examined if and how the proteome of chinook salmon (Oncorhynchus tshawytscha) ovarian fluid varied among females and then sought to examine the composition of this fluid. Ovarian fluid in chinook salmon was analyzed using 1D SDS PAGE and LC-MS/MS tryptic digest screened against Mascot and Sequest databases. We found marked differences in the number and concentrations of proteins in salmon ovarian fluid across different females. A total of 174 proteins were identified in ovarian fluid, 47 of which were represented by six or more peptides, belonging to one of six Gene Ontology pathways. The response to chemical stimulus and response to hypoxia pathways were best represented, accounting for 26 of the 174 proteins. The current data set provides a resource that furthers our understanding of those factors that influence successful egg production and fertilisation in salmonids and other species. PMID:25089903

  13. Proteomic Analysis of Chinook Salmon (Oncorhynchus tshawytscha) Ovarian Fluid

    PubMed Central

    Johnson, Sheri L.; Villarroel, Marsha; Rosengrave, Patrice; Carne, Alan; Kleffmann, Torsten; Lokman, P. Mark; Gemmell, Neil J.

    2014-01-01

    The ovarian, or coelomic, fluid that is released with the egg mass of many fishes is increasingly found to play an important role in several biological processes crucial for reproductive success. These include maintenance of oocyte fertility and developmental competence, prolonging of sperm motility, and enhancing sperm swimming speed. Here we examined if and how the proteome of chinook salmon (Oncorhynchus tshawytscha) ovarian fluid varied among females and then sought to examine the composition of this fluid. Ovarian fluid in chinook salmon was analyzed using 1D SDS PAGE and LC-MS/MS tryptic digest screened against Mascot and Sequest databases. We found marked differences in the number and concentrations of proteins in salmon ovarian fluid across different females. A total of 174 proteins were identified in ovarian fluid, 47 of which were represented by six or more peptides, belonging to one of six Gene Ontology pathways. The response to chemical stimulus and response to hypoxia pathways were best represented, accounting for 26 of the 174 proteins. The current data set provides a resource that furthers our understanding of those factors that influence successful egg production and fertilisation in salmonids and other species. PMID:25089903

  14. Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Pavey, Scott A.; Nielsen, Jennifer L.; Hamon, Troy R.

    2010-01-01

    Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (~500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000–15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.

  15. Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka).

    PubMed

    Pavey, Scott A; Nielsen, Jennifer L; Hamon, Troy R

    2010-06-01

    Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (approximately 500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000-15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.

  16. Multigenerational outbreeding effects in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Lehnert, Sarah J; Love, Oliver P; Pitcher, Trevor E; Higgs, Dennis M; Heath, Daniel D

    2014-08-01

    Outbreeding, mating between genetically divergent individuals, may result in negative fitness consequences for offspring via outbreeding depression. Outbreeding effects are of notable concern in salmonid research as outbreeding can have major implications for salmon aquaculture and conservation management. We therefore quantified outbreeding effects in two generations (F1 hybrids and F2 backcrossed hybrids) of Chinook salmon (Oncorhynchus tshawytscha) derived from captively-reared purebred lines that had been selectively bred for differential performance based on disease resistance and growth rate. Parental lines were crossed in 2009 to create purebred and reciprocal hybrid crosses (n = 53 families), and in 2010 parental and hybrid crosses were crossed to create purebred and backcrossed hybrid crosses (n = 66 families). Although we found significant genetic divergence between the parental lines (FST = 0.130), reciprocal F1 hybrids showed no evidence of outbreeding depression (hybrid breakdown) or favorable heterosis for weight, length, condition or survival. The F2 backcrossed hybrids showed no outbreeding depression for a suite of fitness related traits measured from egg to sexually mature adult life stages. Our study contributes to the current knowledge of outbreeding effects in salmonids and supports the need for more research to better comprehend the mechanisms driving outbreeding depression. PMID:24952720

  17. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  18. Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka).

    PubMed

    Pavey, Scott A; Nielsen, Jennifer L; Hamon, Troy R

    2010-06-01

    Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (approximately 500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000-15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier. PMID:20030707

  19. Development of the salmon louse Lepeophtheirus salmonis and its effects on juvenile sockeye salmon Oncorhynchus nerka.

    PubMed

    Jakob, E; Sweeten, T; Bennett, W; Jones, S R M

    2013-11-01

    Responses of sockeye salmon Oncorhynchus nerka during infection with Lepeophtheirus salmonis were assessed in controlled laboratory trials. Juvenile salmon were exposed to 100 copepodids fish-1 (Trials 1 and 2) or 300 copepodids fish-1 (Trial 3) at mean weights of approximately 40, 80 and 135 g, respectively. Infections occurred on all salmon in all trials, and mean abundances (infection densities) ranged between 3.3 and 19.4 lice fish-1 (0.08 and 0.44 lice g-1 fish) in Trial 1, between 7.2 and 18.3 (0.09 and 0.22) in Trial 2 and between 19.5 and 60.7 (0.15 and 0.46) in Trial 3. A cumulative mortality of 24.4% occurred in Trial 3. At attachment sites on gills, we observed hyperplasia of basal epithelial cells and fusion of secondary lamellae occasionally associated with a cellular infiltrate. At attachment sites on fins, partial to complete skin erosion occurred, with limited evidence of hyperplasia or inflammation. Scale loss and abrasions coincided with pre-adult lice around 20 d post infection (dpi). Plasma osmolality was significantly elevated in exposed fish in Trials 1 (21 dpi), 2 (15 and 36 dpi) and 3 (20 dpi), whereas haematocrit was significantly depressed in exposed fish in Trials 1 (21 and 28 dpi) and 3 (20 dpi). Plasma cortisol was significantly elevated in exposed fish at 20 dpi (Trial 3). Physiological changes and mortality were related to the intensity of infection and became most prominent with pre-adult stages, suggesting patterns of infection and response in sockeye salmon similar to those reported for Atlantic and Chinook salmon. PMID:24191999

  20. Physiological mechanisms of imprinting and homing migration in Pacific salmon Oncorhynchus spp.

    PubMed

    Ueda, H

    2012-07-01

    After several years of feeding at sea, salmonids have an amazing ability to migrate long distances from the open ocean to their natal stream to spawn. Three different research approaches from behavioural to molecular biological studies have been used to elucidate the physiological mechanisms underpinning salmonid imprinting and homing migration. The study was based on four anadromous Pacific salmon Oncorhynchus spp., pink salmon Oncorhynchus gorbuscha, chum salmon Oncorhynchus keta, sockeye salmon Oncorhynchus nerka and masu salmon Oncorhynchus masou, migrating from the North Pacific Ocean to the coast of Hokkaido, Japan, as well as lacustrine O. nerka and O. masou in Lake Toya, Hokkaido, where the lake serves as the model oceanic system. Behavioural studies using biotelemetry techniques showed swimming profiles from the Bering Sea to the coast of Hokkaido in O. keta as well as homing behaviours of lacustrine O. nerka and O. masou in Lake Toya. Endocrinological studies on hormone profiles in the brain-pituitary-gonad axis of O. keta, and lacustrine O. nerka identified the hormonal changes during homing migration. Neurophysiological studies revealed crucial roles of olfactory functions on imprinting and homing during downstream and upstream migration, respectively. These findings are discussed in relation to the physiological mechanisms of imprinting and homing migration in anadromous and lacustrine salmonids.

  1. The epithelial neoplasm observed in the cultured coho salmon, Oncorhynchus kisutch.

    PubMed

    Atsuta, S; Sakai, M; Kobayashi, M; Sasaki, T

    1990-09-01

    The epithelial neoplasms were observed on the mouth of the cultured coho salmon, Oncorhynchus kisutch. Histopathologically, the tumors were formed to be proliferative epithelial cells, but no change was observed in other organs. The virus from this tumor was isolated in RTG-2 and CHSE-214 cells and developed the cytopathic effect which characterized to be the formation of syncytia and the migration of chromatin. This virus was neutralized with anti-Oncorhynchus masou virus (OMV) rabbit serum. PMID:2096259

  2. Plasma levels on thyroid hormones in sockeye salmon (Oncorhynchus nerka) decrease before spawning.

    PubMed

    Biddiscombe, S; Idler, D R

    1983-12-01

    Blood samples were taken from mature sockeye salmon (Oncorhynchus nerka) at various stages in their upstream migration to spawn at Adam's River in British Columbia, Canada. Plasma T3 and T4 levels decreased significantly in both males and females between time of entry into fresh water and postspawning.

  3. Renal excretion in coho salmon (Oncorhynchus kisutch) after acute exposure to 3-trifluoromethyl-4-nitrophenol

    USGS Publications Warehouse

    Hunn, J.B.; Allen, J.L.

    1975-01-01

    COHO SALMON (ONCORHYNCHUS KISUTCH) EXPOSED TO AN ACUTE, SUBLETHAL CONCENTRATION OF 3-TRIFLUOROMETHLY 1-4 NITROPHENOL (TFM) EXHIBITED AN INCREASED OUTPUT OF URINE WHEN COMPARED WITH CONTROLS, BUT THE URINARY EXCRETION OF NA, K, CA, MG AND C1 WAS NOT AFFECTED. ABOUT 35 TIMES MORE CONJUGATED TFM THAN FREE TFM WAS EXCRETED DURING THE 24-HOUR STUDY PERIOD.

  4. Heritability of tolerance for infectious hematopoietic necrosis in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    McIntyre, John D.; Amend, Donald F.

    1978-01-01

    A hierarchical breeding design was used to demonstrate the heritability of tolerance for infectious hematopoietic necrosis (IHN) in sockeye salmon. Oncorhynchus nerka. Heritability was about 30%, indicating that artificial selection may increase the number of fish that can tolerate the disease.

  5. Comparative diets of subyearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, J.H.

    2007-01-01

    Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) have established naturalized populations throughout the Great Lakes. Young-of-year of these species occur sympatrically for about one month in Lake Ontario tributaries. This study examined the diets of subyearling Chinook salmon and steelhead relative to available food in the Salmon River, New York. Terrestrial invertebrates and trichopterans were the major prey of Chinook salmon, whereas steelhead fed primarily on baetid nymphs and chironomid larvae. Diet overlap was low (0.45) between the species. The diet of Chinook was closely associated to the composition of the drift (0.88). Steelhead diet drew equally from the drift and benthos during the first year of the study, but more closely matched the benthos during the second year. Differences in prey selection, perhaps associated with differences in fish size, in addition to apparent differences in feeding mode (drift versus benthic), likely reduce competitive interactions between these species.

  6. Elevation of plasma cortisol during the spawning migration of landlocked kokanee salmon (Oncorhynchus nerka kennerlyi).

    PubMed

    Carruth, L L; Dores, R M; Maldonado, T A; Norris, D O; Ruth, T; Jones, R E

    2000-09-01

    Kokanee salmon (Oncorhynchus nerka kennerlyi ), a landlocked subspecies of sockeye salmon, exhibited hypothalamic-pituitary interrenal (HPI, adrenal homologue) axis activation and an increase in plasma cortisol concentration up to 639 +/- 55.9 ng/ml in association with upstream migration in the upper Colorado River even though they were not exposed to a change in salinity and lengthy migration. Kokanee salmon were collected at various stages of migration and concomitant sexual maturation. The pattern of cortisol elevation in kokanee is similar to that in ocean-run sockeye salmon (O. nerka nerka). The presence of plasma cortisol elevation in an upstream migrating, landlocked Pacific salmon suggests that stressors previously considered to cause the cortisol increase, such as long-distance migration and changes in salinity, may not be primary causes of the HPI axis activation.

  7. Stabilizing Smoked Salmon (Oncorhynchus gorbuscha) Tissue after Extraction of Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alaska salmon oils are rich in n-3 polyunsaturated fatty acids and are prized by the food and pharmaceutical industries. However, the tissue that remains after oil extraction does not have an established market. Discarded salmon tissues were preserved using a combination of smoke-processing and acid...

  8. Genetic stock identification of immature chum salmon ( Oncorhynchus keta) in the western Bering Sea, 2004

    NASA Astrophysics Data System (ADS)

    Kang, Minho; Kim, Suam; Low, Loh-Lee

    2016-03-01

    Genetic stock identification studies have been widely applied to Pacific salmon species to estimate stock composition of complex mixed-stock fisheries. In a September-October 2004 survey, 739 chum salmon ( Oncorhynchus keta) specimens were collected from 23 stations in the western Bering Sea. We determined the genetic stock composition of immature chum salmon based on the previous mitochondria DNA baseline. Each regional estimate was computed based on the conditional maximum likelihood method using 1,000 bootstrap resampling and then pooled to the major regional groups: Korea - Japan - Primorie (KJP) / Russia (RU) / Northwest Alaska (NWA) / Alaska Peninsula - Southcentral Alaska - Southeast Alaska - British Columbia - Washington (ONA). The stock composition of immature chum salmon in the western Bering Sea was a mix of 0.424 KJP, 0.421 RU, 0.116 NWA, and 0.039 ONA stocks. During the study period, the contribution of Asian chum salmon stocks gradually changed from RU to KJP stock. In addition, North American populations from NWA and ONA were small but present near the vicinity of the Russian coast and the Commander Islands, suggesting that the study areas in the western Bering Sea were an important migration route for Pacific chum salmon originating both from Asia and North America during the months of September and October. These results make it possible to better understand the chum salmon stock composition of the mixed-stock fisheries in the western Bering Sea and the stock-specific distribution pattern of chum salmon on the high-seas.

  9. [CATALITICAL PROPERTIES OF LIVER MONOAMINE OXIDASE IN THE CHUM SALMON ONCORHYNCHUS KETA].

    PubMed

    Basova, I N; Basova, N E; Yagodina, O V

    2015-01-01

    The substrate and inhibitory specificity of mitochondrial monoamine oxidase (MAO) in the liver of males of the summer form of the chum salmon Oncorhynchus keta was studied. As to the spectrum of deaminated substrates, the hepatic MAO of the chum salmon is similar to MAO of most terrestrial mammals, for eight classical MAO substrates similarity in their substrate characteristics were found. Analysis of the antimonoamine oxidase activity of two derivaties of 2-propinilamine, five derivatives of acridine as well as of pyronine G revealed significant qualitative and quantitative differences as compared to the hepatic enzyme of tuna and whitefish. The compounds tested manifested themselves as irreversible inhibitors of chum salmon's hepatic MAO possessing various efficacy, but lacking the selectivity of action as dependent on the deaminated substrate. The obtained data on the substrate and inhibitory analysis provide an indirect evidence for the presence of a single molecular form of MAO in the chum salmon liver.

  10. Recent physical connections may explain weak genetic structure in western Alaskan chum salmon (Oncorhynchus keta) populations

    PubMed Central

    Garvin, Michael R; Kondzela, Christine M; Martin, Patrick C; Finney, Bruce; Guyon, Jeffrey; Templin, William D; DeCovich, Nick; Gilk-Baumer, Sara; Gharrett, Anthony J

    2013-01-01

    Low genetic divergence at neutral loci among populations is often the result of high levels of contemporary gene flow. Western Alaskan summer-run chum salmon (Oncorhynchus keta) populations demonstrate weak genetic structure, but invoking contemporary gene flow as the basis for the low divergence is problematic because salmon home to their natal streams and some of the populations are thousands of kilometers apart. We used genotypes from microsatellite and single nucleotide polymorphism loci to investigate alternative explanations for the current genetic structure of chum salmon populations from western Alaska. We also estimated current levels of gene flow among Kuskokwim River populations. Our results suggest that weak genetic structure is best explained by physical connections that occurred after the Holocene Thermal Maximum among the Yukon, Kuskokwim, and Nushagak drainages that allowed gene flow to occur among now distant populations. PMID:23919176

  11. The stress of Formalin treatments in rainbow trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Wedemeyer, Gary

    1971-01-01

    Changes in gill function, acid–base balance and pituitary activation occurring during standard 200 ppm formalin treatments of juvenile rainbow trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch) were compared. Plasma Cl−, Ca++, total CO2, and interrenal vitamin C in the trout declined continuously and in proportion to the exposure time, but the salmon were able to maintain these metabolic parameters at approximately initial levels. Blood pH and alkaline reserve regulation of the salmon was also less affected by formalin treatments, especially during prolonged exposures. The oxygen consumption of both species was depressed, but substantially more so in the trout than could be accounted for by decreased ventilation rates. Little frank hemolysis occurred in either species, but there was a significant bilirubinemia in the trout.

  12. Purification and characteristics of trypsin from masu salmon (Oncorhynchus masou) cultured in fresh-water.

    PubMed

    Kanno, Gaku; Yamaguchi, Takahito; Kishimura, Hideki; Yamaha, Etsurou; Saeki, Hiroki

    2010-09-01

    Trypsin from the pyloric ceca of masu salmon (Oncorhynchus masou) cultured in fresh water was purified by a series of chromatographies including Sephacryl S-200, Sephadex G-50 and diethylaminoethyl cellulose to obtain a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and native PAGE. The molecular mass of the purified trypsin was estimated to be approximately 24,000 Da by SDS-PAGE. The enzyme activity was strongly inhibited by phenylmethylsulfonyl fluoride, soybean trypsin inhibitor, and N ( alpha )-p-tosyl-L: -lysine chloromethyl ketone. Masu salmon trypsin was stabilized by calcium ion. The optimum pH of the masu salmon trypsin was around pH 8.5, and the trypsin was unstable below pH 5.0. The optimum temperature of the masu salmon trypsin was around 60 degrees C, and the trypsin was stable below 50 degrees C, like temperate-zone and tropical-zone fish trypsins. The N-terminal 20 amino acid sequence of the masu salmon trypsin was IVGGYECKAYSQPHQVSLNS, and its charged amino acid content was lower than those of trypsins from frigid-zone fish and similar to those of trypsins from temperate-zone and tropical-zone fish. In the phylogenetic tree, the masu salmon trypsin was classified into the group of the temperate-zone fish trypsin.

  13. Cryopreservation of sperm from the endangered formosan landlocked salmon (Oncorhynchus masou formosanus).

    PubMed

    Gwo, J C; Ohta, H; Okuzawa, K; Wu, H C

    1999-02-01

    The Formosan landlocked salmon (Oncorhynchus masou formosanus) are at a high risk of extinction, and the sustained maintenance of the population will soon depend on aquaculture systems, which use cryopreservation of spermatozoa to increase genetic diversity. We investigated the effectiveness of dimethyl sulfoxide (DMSO), dimethyl-acetamide (DMA), and methanol as cryoprotectants in combination with 300 mM glucose as extender on the freezing of Formosan landlocked salmon spermatozoa. We also evaluated the morphological changes of Formosan landlocked salmon spermatozoa after their immediate dilution in the 300 mM glucose-DMSO extender and after freeze-thawing. The spermatozoa frozen with DMSO as a cryoprotectant showed significantly higher post-thaw motility and fertility than spermatozoa frozen with DMA or methanol. The fertilization capacity of frozen-thawed Formosan landlocked salmon was comparable to that of fresh spermatozoa. Intersubspecies fertilization trials between cryopreserved Formosan landlocked salmon spermatozoa and Amago salmon eggs showed high fertilization rates. Based on the findings, the potential value of using sperm bank to safeguard this endangered species is discussed.

  14. Linking marine and freshwater growth in western Alaska Chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.; Agler, B.A.

    2009-01-01

    The hypothesis that growth in Pacific salmon Oncorhynchus spp. is dependent on previous growth was tested using annual scale growth measurements of wild Chinook salmon Oncorhynchus tshawytscha returning to the Yukon and Kuskokwim Rivers, Alaska, from 1964 to 2004. First-year marine growth in individual O. tshawytscha was significantly correlated with growth in fresh water. Furthermore, growth during each of 3 or 4 years at sea was related to growth during the previous year. The magnitude of the growth response to the previous year's growth was greater when mean year-class growth during the previous year was relatively low. Length (eye to tail fork, LETF) of adult O. tshawytscha was correlated with cumulative scale growth after the first year at sea. Adult LETF was also weakly correlated with scale growth that occurred during freshwater residence 4 to 5 years earlier, indicating the importance of growth in fresh water. Positive growth response to previous growth in O. tshawytscha was probably related to piscivorous diet and foraging benefits of large body size. Faster growth among O. tshawytscha year classes that initially grew slowly may reflect high mortality in slow growing fish and subsequent compensatory growth in survivors. Oncorhynchus tshawytscha in this study exhibited complex growth patterns showing a positive relationship with previous growth and a possible compensatory response to environmental factors affecting growth of the age class.

  15. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Dolan, Brian P; Fisher, Kathleen M; Colvin, Michael E; Benda, Susan E; Peterson, James T; Kent, Michael L; Schreck, Carl B

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  16. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Dolan, Brian P; Fisher, Kathleen M; Colvin, Michael E; Benda, Susan E; Peterson, James T; Kent, Michael L; Schreck, Carl B

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning. PMID:26581919

  17. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  18. Are there intergenerational and population-specific effects of oxidative stress in sockeye salmon (Oncorhynchus nerka)?

    PubMed

    Taylor, Jessica J; Wilson, Samantha M; Sopinka, Natalie M; Hinch, Scott G; Patterson, David A; Cooke, Steven J; Willmore, William G

    2015-06-01

    Intergenerational effects of stress have been reported in a wide range of taxa; however, few researchers have examined the intergenerational consequences of oxidative stress. Oxidative stress occurs in living organisms when reactive oxygen species remain unquenched by antioxidant defense systems and become detrimental to cells. In fish, it is unknown how maternal oxidative stress and antioxidant capacity influence offspring quality. The semelparous, migratory life history of Pacific salmon (Oncorhynchus spp.) provides a unique opportunity to explore intergenerational effects of oxidative stress. This study examined the effects of population origin on maternal and developing offspring oxidative stress and antioxidant capacity, and elucidated intergenerational relationships among populations of sockeye salmon (Oncorhynchus nerka) with varying migration effort. For three geographically distinct populations of Fraser River sockeye salmon (British Columbia, Canada), antioxidant capacity and oxidative stress were measured in adult female plasma, heart, brain, and liver, as well as in developing offspring until time of emergence. Maternal and offspring oxidative stress and antioxidant capacity varied among populations but patterns were not consistent across tissue/developmental stage. Furthermore, maternal oxidative stress and antioxidant capacity did not affect offspring oxidative stress and antioxidant capacity across any of the developmental stages or populations sampled. Our results revealed that offspring develop their endogenous antioxidant systems at varying rates across populations; however, this variability is overcome by the time of emergence. While offspring may be relying on maternally derived antioxidants in the initial stages of development, they rapidly develop their own antioxidant systems (mainly glutathione) during later stages of development. PMID:25660296

  19. Post-release behavior and movement patterns of Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) after capture using alternative commercial fish gear, lower Columbia River, Washington and Oregon, 2013

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Evans, Scott D.; Hansen, Gabriel S.; Rondorf, Dennis W.

    2014-01-01

    In 2011 and 2012, WDFW conducted post-release mortality studies of steelhead (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) that were captured using beach or purse seines. These studies were comprised of two groups of fish tagged with passive integrated transponder tags (PIT tags): (1) treatment fish that were captured by one of the gear types 9–25 river kilometers (rkm) downstream of Bonneville Dam (rkm 234); and (2) control fish that were captured at the Adult Fish Facility near the Washington shore fish ladder at Bonneville Dam, and then transported and released 8 rkm downstream of the Bonneville Dam. Fish were confirmed to have survived if they moved upstream and were detected on PIT-tag antennas at or upstream of Bonneville Dam, were recovered at hatcheries or at the dam, or were captured by commercial or sport fishers. Post-release survival estimates were higher for steelhead (89–98 percent) than for Chinook salmon and coho salmon (50–90 percent; Washington Department of Fish and Wildlife, unpub. data, 2014). However, some Chinook salmon and coho salmon return to hatcheries, or spawn in the mainstem Columbia River and in tributaries downstream of Bonneville Dam. The proportion of Chinook salmon and coho salmon in the treatment group that were destined for areas downstream of Bonneville Dam likely was higher than in the control group because the control fish were collected as they were attempting to pass the dam. If this assertion was true, mortality would have been overestimated in these studies, so WDFW developed a study plan to determine the post-release movements and intended location of Chinook salmon and coho salmon collected with beach and purse seines in the lower Columbia River.

  20. Global Assessment of Extinction Risk to Populations of Sockeye Salmon Oncorhynchus nerka

    PubMed Central

    Rand, Peter S.; Goslin, Matthew; Gross, Mart R.; Irvine, James R.; Augerot, Xanthippe; McHugh, Peter A.; Bugaev, Victor F.

    2012-01-01

    Background Concern about the decline of wild salmon has attracted the attention of the International Union for the Conservation of Nature (IUCN). The IUCN applies quantitative criteria to assess risk of extinction and publishes its results on the Red List of Threatened Species. However, the focus is on the species level and thus may fail to show the risk to populations. The IUCN has adapted their criteria to apply to populations but there exist few examples of this type of assessment. We assessed the status of sockeye salmon Oncorhynchus nerka as a model for application of the IUCN population-level assessments and to provide the first global assessment of the status of an anadromous Pacific salmon. Methods/Principal Findings We found from demographic data that the sockeye salmon species is not presently at risk of extinction. We identified 98 independent populations with varying levels of risk within the species' range. Of these, 5 (5%) are already extinct. We analyzed the risk for 62 out of 93 extant populations (67%) and found that 17 of these (27%) are at risk of extinction. The greatest number and concentration of extinct and threatened populations is in the southern part of the North American range, primarily due to overfishing, freshwater habitat loss, dams, hatcheries, and changing ocean conditions. Conclusions/Significance Although sockeye salmon are not at risk at the species-level, about one-third of the populations that we analyzed are at risk or already extinct. Without an understanding of risk to biodiversity at the level of populations, the biodiversity loss in salmon would be greatly underrepresented on the Red List. We urge government, conservation organizations, scientists and the public to recognize this limitation of the Red List. We also urge recognition that about one-third of sockeye salmon global population diversity is at risk of extinction or already extinct. PMID:22511930

  1. Ontogeny of the stress response in chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Feist, G.; Schreck, C.B.

    2001-01-01

    Whole body concentrations of cortisol were determined via radioimmunoassay in chinook salmon, Onchorynchus tshawytscha, during early development in both stressed and non-stressed fish to determine when the corticosteroidogenic stress response first appeared. Progeny from both pooled and individual females were examined to determine if differences existed in offspring from different females. Levels of cortisol were low in eyed eggs, increased at hatch, decreased 2 weeks later and then remained constant thereafter. Differences in cortisol between stressed and control fish were found 1 week after hatch and persisted for the remainder of the study. The magnitude of the stress response, or relative amount of cortisol produced, generally increased from the time when it was first detected, but a decrease in the ability to elicit cortisol was seen 4 weeks after hatching. Cortisol content of separate progeny from two individual females showed a similar pattern to that seen in pooled eggs. Our results indicate that chinook salmon are capable of producing cortisol following a stressful event approximately 1 week after the time of hatching. The decrease in endogenous cortisol content seen 2 weeks after hatching, and the decrease in the magnitude of the stress response seen 4 weeks after hatching may be comparable to developmental events documented in mammals where corticosteroid synthesis is inhibited to neutralize possible detrimental effects of these hormones during critical periods of development.

  2. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    USGS Publications Warehouse

    Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.

    2016-01-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.

  3. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    PubMed

    Garver, K A; Marty, G D; Cockburn, S N; Richard, J; Hawley, L M; Müller, A; Thompson, R L; Purcell, M K; Saksida, S

    2016-02-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon. PMID:25630226

  4. Secondary sexual characters and sperm traits in coho salmon Oncorhynchus kisutch.

    PubMed

    Pitcher, T E; Doucet, S M; Beausoleil, J-M J; Hanley, D

    2009-05-01

    A study was undertaken to examine secondary sexual characters (spawning colouration and overall body size) in relation to sperm metrics in one alternative reproductive tactic of coho salmon Oncorhynchus kisutch: large hooknose males that spawn in dominance-based hierarchies. Males with less intense red spawning colouration had higher sperm velocities than males with darker red spawning colouration. There was no relationship between male body size and sperm metrics. These results suggest that within an alternative reproductive tactic, variation in sperm competition intensity may select for a trade-off between investment in sexual colouration and sperm quality.

  5. Atmospheric depression-mediated water temperature changes affect the vertical movement of chum salmon Oncorhynchus keta.

    PubMed

    Kitagawa, Takashi; Hyodo, Susumu; Sato, Katsufumi

    2016-08-01

    The Sanriku coastal area, Japan, is one of the southern-most natural spawning regions of chum salmon Oncorhynchus keta. Here, we report their behavioral response to changes in ambient temperature after the passage of an atmospheric depression during the early spawning season. Before the passage, all electrically tagged fish moved vertically for several hours to depths below the shallow thermocline at >100 m. However, during the atmospheric depression, the salmon shortened the duration of their vertical movements and spent most time at the surface. The water column was homogenous at <150 m deep except for the surface. The descending behavior may have been discontinued because the cooler water below the thermocline was no longer in a thermally defined layer, due to strong vertical mixing by high wave action. Instead, they likely spent time within the cooler water temperatures at the surface of bays to minimize metabolic energy cost during migration.

  6. Experimental hexamitiasis in juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdner)

    USGS Publications Warehouse

    1965-01-01

    An exogenous strain of cultured Hexamita salmonis (Moore) was employed to induce trophic hexamitiasis in otherwise disease-free juveniles of coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri). Mortality and growth were the parameters used to detect the effects of hexamitiasis on the two species. Two levels of each of the three experimental factors under study, Hexamita infection, species of fish, and density of fish, were arranged in a three-way factorial design. Replicate lots involved a total of 1,440 fish held under controlled laboratory conditions.Comparisons of growth and mortality indicate that infection with H. salmonis over a period of 8 weeks is innocuous to coho salmon. Steelhead trout suffered a low, but statistically significant mortality which subsided after the sixth week; growth rate was not affected.

  7. SalmonDB: a bioinformatics resource for Salmo salar and Oncorhynchus mykiss

    PubMed Central

    Di Génova, Alex; Aravena, Andrés; Zapata, Luis; González, Mauricio; Maass, Alejandro; Iturra, Patricia

    2011-01-01

    SalmonDB is a new multiorganism database containing EST sequences from Salmo salar, Oncorhynchus mykiss and the whole genome sequence of Danio rerio, Gasterosteus aculeatus, Tetraodon nigroviridis, Oryzias latipes and Takifugu rubripes, built with core components from GMOD project, GOPArc system and the BioMart project. The information provided by this resource includes Gene Ontology terms, metabolic pathways, SNP prediction, CDS prediction, orthologs prediction, several precalculated BLAST searches and domains. It also provides a BLAST server for matching user-provided sequences to any of the databases and an advanced query tool (BioMart) that allows easy browsing of EST databases with user-defined criteria. These tools make SalmonDB database a valuable resource for researchers searching for transcripts and genomic information regarding S. salar and other salmonid species. The database is expected to grow in the near feature, particularly with the S. salar genome sequencing project. Database URL: http://genomicasalmones.dim.uchile.cl/ PMID:22120661

  8. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2004-2005 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Duff, Cameron; Friesen, Thomas A.

    2006-02-01

    Pacific salmon Oncorhynchus spp. populations have declined over the last century due to a variety of human impacts. Chum salmon O. keta populations in the Columbia River have remained severely depressed for the past several decades, while upriver bright (URB) fall Chinook salmon O. tschawytscha populations have maintained relatively healthy levels. For the past seven years we have collected data on adult spawning and juvenile emergence and outmigration of URB fall Chinook and chum salmon populations in the Ives and Pierce islands complex below Bonneville Dam. In 2004, we estimated 1,733 fall Chinook salmon and 336 chum salmon spawned in our study area. Fall Chinook salmon spawning peaked 19 November with 337 redds and chum salmon spawning peaked 3 December with 148 redds. Biological characteristics continue to suggest chum salmon in our study area are similar to nearby stocks in Hardy and Hamilton creeks, and Chinook salmon we observe are similar to upriver bright stocks. Temperature data indicated that 2004 brood URB fall Chinook salmon emergence began on 6 January and ended 27 May 2005, with peak emergence occurring 12 March. Chum salmon emergence began 4 February and continued through 2 May 2005, with peak emergence occurring on 21 March. Between 13 January and 28 June, we sampled 28,984 juvenile Chinook salmon and 1,909 juvenile chum salmon. We also released 32,642 fin-marked and coded-wire tagged juvenile fall Chinook salmon to assess survival. The peak catch of juvenile fall Chinook salmon occurred on 18 April. Our results suggested that the majority of fall Chinook salmon outmigrate during late May and early June, at 70-80 mm fork length (FL). The peak catch of juvenile chum salmon occurred 25 March. Juvenile chum salmon appeared to outmigrate at 40-55 mm FL. Outmigration of chum salmon peaked in March but extended into April and May.

  9. Epizootic ameloblastomas in Chinook salmon (Oncorhynchus tshawytscha) of the northwestern United States.

    PubMed

    Grim, K C; Wolfe, M J; Edwards, M; Kaufman, J; Onjukka, S; Moran, P; Wolf, J C

    2009-07-01

    Abnormal growths were observed on the lips and in the oral cavities of 2- and 3-year-old Chinook salmon (Oncorhynchus tshawytscha) maintained in one freshwater and one saltwater captive fish-rearing facility in the Columbia River (Pacific Northwest). Initially presenting as bilaterally symmetrical, red, irregular plaques on oral mucosal surfaces, the lesions developed progressively into large, disfiguring masses. Of the 502 natural parr collected for captive broodstock, 432 (86%) displayed these tumors, whereas cohort salmon (i.e., same year classes) in these same facilities remained unaffected. Morphologically similar neoplasms were collected occasionally from adult Chinook salmon that had returned to their natal streams. Histologic features of the tumors suggested that they were derived from the portion of dental lamina destined to form tooth root sulci; therefore, these neoplasms were diagnosed as ameloblastomas. The lesions also resembled archived specimens of Chinook salmon oral tumors, which had been described decades earlier. Etiologic investigations performed during the current outbreak included bacteriologic, virologic, genetic, ultrastructural analyses, and cohabitation exposure studies. Results of these efforts did not indicate an obvious genetic basis for this syndrome, attempts to isolate potentially causative viruses or bacteria were negative, and disease transmission to naïve fish was unsuccessful. A few intracytoplasmic hexagonal structures, possibly consistent with viral particles (approximately 100 nm), were observed ultrastructurally in a tumor cell from 1 of 6 specimens submitted for transmission electron microscopy. Although the presence of these particles does not constitute sufficient evidence for causality, an infectious or multifactorial etiology seems plausible.

  10. Release of persistent organic contaminants from carcasses of Lake Ontario Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    O'Toole, Shaun; Metcalfe, Chris; Craine, Ian; Gross, Mart

    2006-03-01

    About 20,000 Chinook salmon (Oncorhynchus tshawytscha) from Lake Ontario enter the Credit River, Ontario, Canada every fall to spawn and die. In this study, samples of muscle and eggs collected from female Chinook salmon entering the Credit River contained total PCBs, DDT compounds and other organochlorine (OC) compounds at mug/kg concentrations. Semi-permeable membrane devices (SPMDs) were deployed at a reference site above the spawning grounds and at two downstream sites at intervals over a 14-month period that spanned two spawning runs. There was an increase in the concentrations of total PCBs, total DDT and other classes of OCs in the SPMDs deployed at the two downstream sites during and after both spawning runs; indicating that the decay of salmon releases contaminants into the river. Based upon the concentrations of contaminants in the salmon tissues, approximately 75 g of total PCBs and 35 g of total DDT compounds would be transported annually into the Credit River from this source.

  11. Discovery and characterization of single nucleotide polymorphisms in coho salmon, Oncorhynchus kisutch.

    PubMed

    Starks, Hilary A; Clemento, Anthony J; Garza, John Carlos

    2016-01-01

    Molecular population genetic analyses have become an integral part of ecological investigation and population monitoring for conservation and management. Microsatellites have been the molecular marker of choice for such applications over the last several decades, but single nucleotide polymorphism (SNP) markers are rapidly expanding beyond model organisms. Coho salmon (Oncorhynchus kisutch) is native to the north Pacific Ocean and its tributaries, where it is the focus of intensive fishery and conservation activities. As it is an anadromous species, coho salmon typically migrate across multiple jurisdictional boundaries, complicating management and requiring shared data collection methods. Here, we describe the discovery and validation of a suite of novel SNPs and associated genotyping assays which can be used in the genetic analyses of this species. These assays include 91 that are polymorphic in the species and one that discriminates it from a sister species, Chinook salmon. We demonstrate the utility of these SNPs for population assignment and phylogeographic analyses, and map them against the draft trout genome. The markers constitute a large majority of all SNP markers described for coho salmon and will enable both population- and pedigree-based analyses across the southern part of the species native range. PMID:25965351

  12. Comparison of polyunsaturated fatty acids content in filets of anadromous and landlocked sockeye salmon Oncorhynchus nerka.

    PubMed

    Gladyshev, Michail I; Lepskaya, Ekaterina V; Sushchik, Nadezhda N; Makhutova, Olesia N; Kalachova, Galina S; Malyshevskaya, Kseniya K; Markevich, Grigory N

    2012-12-01

    Fatty acid composition and content of 2 forms of sockeye salmon Oncorhynchus nerka from lakes in Kamchatka Peninsula (Russia) were compared. One form of sockeye salmon was anadromous ("marine"), that is, adult fish migrated in ocean to feed and grow and than return in the lake to breed. Fish of another form, kokanee, never migrate in the ocean. Per cent levels of the main indicators of nutritive value, eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3), were significantly higher in the landlocked O. nerka. However, concentrations of EPA and DHA per wet weight of filets were higher in the marine form, because of the relatively higher content of sum of fatty acids in their muscle tissue. As concluded, fish fed in marine environment had higher contents of long-chain n-3 fatty acids per wet weight than fish of the same species, fed in fresh waters. In general, both the anadromous sockeye salmon and the landlocked kokanee salmon can be recommended for human diet as a valuable product concerning contents of EPA and DHA. PMID:23240970

  13. p,p'-DDE depresses the immune competence of chinook salmon (Oncorhynchus tshawytscha) leukocytes

    USGS Publications Warehouse

    Misumi, Ichiro; Vella, Anthony T.; Leong, Jo-Ann C.; Nakanishi, Teruyuki; Schreck, Carl B.

    2005-01-01

    p,p′-DDE, the main metabolite of DDT, is still detected in aquatic environments throughout the world. Here, the effects and mechanisms by which p,p′-DDE exposure might affect the immune system of chinook salmon (Oncorhynchus tshawytscha) was studied. Isolated salmon splenic and pronephric leukocytes were incubated with different concentrations of p,p′-DDE, and cell viability, induction of apoptosis, and mitogenic responses were measured by flow cytometry and Alamar Blue assay. p,p′-DDE significantly reduced cell viability and proliferation and increased apoptosis. The effect of p,p′-DDE on pronephric leukocytes was more severe than on splenic leukocytes, likely because pronephric leukocytes had a higher proportion of granulocytes, cells that appear more sensitive to p,p′-DDE. The effect of p,p′-DDE on leukocytes appeared to vary between developmental stages or seasonal differences. The mitogenic response of leukocytes of chinook salmon exposed to p,p′-DDE in vivo exhibited a biphasic dose–response relationship. Only leukocytes isolated from salmon treated with 59 ppm p,p′-DDE had a significantly lower percentage of Ig+ blasting cells than controls, although the response was biphasic. These results support the theory that exposure to chemical contaminants could lead to an increase in disease susceptibility and mortality of fish due to immune suppression.

  14. Genetic variation in chinook, Oncorhynchus tshawytscha, and coho, O. Kisutchsalmon from the north coast of Washington

    USGS Publications Warehouse

    Reisenbichler, R.R.; Phelps, S.R.

    1987-01-01

    We used starch-gel electrophoresis to genetically characterize the populations of chinook salmon, Oncorhynchus tshawytscha, and coho salmon, O. kisutch, in the major drainages of the north coast of Washington (the Quillayute, Uoh, Queets, and Quinault Rivers). Of 55 loci examined for electrophoretically detectable variation. 6 were polymorphic (frequency of the common allele was less than 0.95) in chinook salmon and 3 in coho salmon. Statistical tests of interdrainage and intradrainage variation for coho salmon were tenuous because most of the fish examined were from a single year class so that we could not account for variation among year classes. Nevertheless, these tests suggested that distinct stocks ofcoho salmon exist within drainages. and that variation was not significantly greater among drainages than within drainages. Interdrainage variation for wild chinook salmon was not significant. The data suggested that summer chinook salmon were electrophoretically different from fall chinook salmon, and the hatchery populations of chinook salmon were distinct from wild fish. A hatchery population developed primarily from north coast fish was electrophoretically more similar to wild chinook salmon than were the others.

  15. Pesticides and PCBs in Pacific salmon (Oncorhynchus tshawytscha and O. kisutch) from Puget Sound, Washington

    SciTech Connect

    O`Neill, S.M.; West, J.E.

    1995-12-31

    The Washington Department of Fish and Wildlife initiated a long-term study to monitor levels of contaminants in two species of Pacific salmon (Oncorhynchus tshawytscha and O. kisutch) and other marine fishes of Puget Sound. The study is one component of the Puget Sound Ambient Monitoring Program (PSAMP), a multi-agency effort to assess the environmental health of Puget Sound. Here the authors summarize results from their ongoing study of O. tshawytscha and O. kisutch. Samples of muscle tissue were collected for chemical analyses from adult salmon that were purchased from licensed fish buyers or treaty tribal fisherman. From 1992 through 1994, both salmon species were sampled at seven fishing areas in marine waters and river mouths of Puget Sound. 4,4-DDE and 4,4-DDD, metabolites of the pesticide DDT, and polychlorinated biphenyls (PCBS) were consistently detected in both species and were consistently higher in O. tshawytscha. Low to moderate concentrations of DDT metabolites (3 to 59 ug/kg wet weight) were detected in the salmon samples but were seldom detected in other fish species sampled by PSAMP. Total PCBs concentrations (Arochlor 1254 + 1260) ranged from 10 to 211 ug/kg wet weight in 0. tshawytscha, with many samples containing PCBs concentrations similar to those detected in benthic flatfish, (Pleuronectes vetulus), sampled from urbanized embayments. A stepwise linear regression model was used to identify parameters correlated with accumulation of PCBs and DDT metabolites in salmon. In addition to species differences, factors such as fish age, percent lipids and sampling location may affect the accumulation of these contaminants. Results of this study are contrasted with contaminant levels previously reported for Canadian and Alaskan Pacific salmon. Possible sources of contaminants are outlined.

  16. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska

    USGS Publications Warehouse

    Lang, D.W.; Reeves, G.H.; Hall, J.D.; Wipfli, M.S.

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchus kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from ponds that did not receive spawners and also with fish from ponds that were artificially enriched with salmon carcasses and eggs. The response to spawning salmon was variable. In some ponds, fall-spawning salmon increased growth rates and improved the condition of juvenile coho salmon. The enrichment with salmon carcasses and eggs significantly increased growth rates of fish in nonspawning ponds. However, there was little evidence that the short-term growth benefits observed in the fall led to greater overwinter growth or survival to outmigration when compared with fish from the nonspawning ponds. One potential reason for this result may be that nutrients from spawning salmon are widely distributed across the delta because of hydrologic connectivity and hyporheic flows. The relationship among spawning salmon, overwinter growth, and smolt production on the Copper River Delta does not appear to be limited entirely to a simple positive feedback loop. ?? 2006 NRC.

  17. Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Araneda, Cristian; Díaz, Nelson F.; Gomez, Gilda; López, María Eugenia; Iturra, Patricia

    2012-01-01

    Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map. PMID:22888302

  18. Preliminary examination of oxidative stress in juvenile spring Chinook salmon (Oncorhynchus tshawytscha) of wild origin sampled from transport barges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Migrating juvenile wild Chinook salmon (Oncorhynchus tshawytscha), collected and loaded onto transport barges at Lower Granite Dam on the Snake River, were sampled from barges at John Day Dam, 348 km downstream, at five-day intervals beginning late April and ending late May. An increase in lipid per...

  19. Does among-population variation in burst swimming performance of sockeye salmon Oncorhynchus nerka fry reflect early life migrations?

    PubMed

    Sopinka, N M; Hinch, S G; Lotto, A G; Whitney, C K; Patterson, D A

    2013-11-01

    Using a fixed-speed test, burst swimming performance was found to vary among nine populations of emergent sockeye salmon Oncorhynchus nerka fry reared in a common-garden environment. No consistent relationship was, however, detected between difficulty of fry migration (upstream v. downstream) to rearing areas and total burst swimming duration or bursting rate. PMID:24117961

  20. Low cardiac and aerobic scope in a coastal population of sockeye salmon Oncorhynchus nerka with a short upriver migration.

    PubMed

    Eliason, E J; Wilson, S M; Farrell, A P; Cooke, S J; Hinch, S G

    2013-06-01

    This study showed that a coastal population (Harrison) of Fraser River sockeye salmon Oncorhynchus nerka had a lower aerobic and cardiac scope compared with interior populations with more challenging upriver spawning migrations, providing additional support to the idea that Fraser River O. nerka populations have adapted physiologically to their local migratory environment. PMID:23731155

  1. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, D.J.; Wipfli, M.S.; Stricker, C.A.; Heintz, R.A.; Rinella, M.J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  2. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, Daniel J.; Wipfli, Mark S.; Stricker, Craig A.; Heintz, Ron A.; Rinella, Matthew J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  3. Costs of living for juvenile Chinook salmon (Oncorhynchus tshawytscha) in an increasingly warming and invaded world

    USGS Publications Warehouse

    Kuehne, Lauren M.; Olden, Julian D.; Duda, Jeffrey J.

    2012-01-01

    Rapid environmental change in freshwater ecosystems has created a need to understand the interactive effects of multiple stressors, with temperature and invasive predators identified as key threats to imperiled fish species. We tested the separate and interactive effects of water temperature and predation by non-native smallmouth bass (Micropterus dolomieu) on the lethal (mortality) and sublethal (behavior, physiology, and growth) effects for juvenile Chinook salmon (Oncorhynchus tshawytscha) in seminatural stream channel experiments. Over 48 h trials, there was no difference in direct predation with warmer temperatures, but significant interactive effects on sublethal responses of juvenile salmon. Warmer temperatures resulted in significantly stronger and more variable antipredator responses (surface shoaling and swimming activity), while physiological indicators (plasma glucose, plasma cortisol) suggested suppression of physiological mechanisms in response to the combined stressors. These patterns corresponded with additive negative growth in predation, temperature, and combined treatments. Our results suggest that chronic increases in temperature may not increase direct predation over short periods, but can result in significant sublethal costs with negative implications for long-term development, disease resistance, and subsequent size-selective mortality of Pacific salmon.

  4. Characterization and application of a quantitative DNA marker that discriminates sex in chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clifton, D.R.; Rodriguez, R.J.

    1997-01-01

    A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.

  5. Characterization and application of a quantitative DNA marker that discriminates sex in Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clifton, D.R.; Rodriguez, R.J.

    1997-01-01

    A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.

  6. Bacterial infections of Chinook salmon, Oncorhynchus tshawytscha (Walbaum), returning to gamete collecting weirs in Michigan.

    PubMed

    Loch, T P; Scribner, K; Tempelman, R; Whelan, G; Faisal, M

    2012-01-01

    Herein, we describe the prevalence of bacterial infections in Chinook salmon, Oncorhynchus tshawytscha (Walbaum), returning to spawn in two tributaries within the Lake Michigan watershed. Ten bacterial genera, including Renibacterium, Aeromonas, Carnobacterium, Serratia, Proteus, Pseudomonas, Hafnia, Salmonella, Shewanella and Morganella, were detected in the kidneys of Chinook salmon (n = 480) using culture, serological and molecular analyses. Among these, Aeromonas salmonicida was detected at a prevalence of ∼15%. Analyses revealed significant interactions between location/time of collection and gender for these infections, whereby overall infection prevalence increased greatly later in the spawning run and was significantly higher in females. Renibacterium salmoninarum was detected in fish kidneys at an overall prevalence of >25%. Logistic regression analyses revealed that R. salmoninarum prevalence differed significantly by location/time of collection and gender, with a higher likelihood of infection later in the spawning season and in females vs. males. Chi-square analyses quantifying non-independence of infection by multiple pathogens revealed a significant association between R. salmoninarum and motile aeromonad infections. Additionally, greater numbers of fish were found to be co-infected by multiple bacterial species than would be expected by chance alone. The findings of this study suggest a potential synergism between bacteria infecting spawning Chinook salmon.

  7. An integrated linkage map reveals candidate genes underlying adaptive variation in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    McKinney, G J; Seeb, L W; Larson, W A; Gomez-Uchida, D; Limborg, M T; Brieuc, M S O; Everett, M V; Naish, K A; Waples, R K; Seeb, J E

    2016-05-01

    Salmonids are an important cultural and ecological resource exhibiting near worldwide distribution between their native and introduced range. Previous research has generated linkage maps and genomic resources for several species as well as genome assemblies for two species. We first leveraged improvements in mapping and genotyping methods to create a dense linkage map for Chinook salmon Oncorhynchus tshawytscha by assembling family data from different sources. We successfully mapped 14 620 SNP loci including 2336 paralogs in subtelomeric regions. This improved map was then used as a foundation to integrate genomic resources for gene annotation and population genomic analyses. We anchored a total of 286 scaffolds from the Atlantic salmon genome to the linkage map to provide a framework for the placement 11 728 Chinook salmon ESTs. Previously identified thermotolerance QTL were found to colocalize with several candidate genes including HSP70, a gene known to be involved in thermal response, as well as its inhibitor. Multiple regions of the genome with elevated divergence between populations were also identified, and annotation of ESTs in these regions identified candidate genes for fitness related traits such as stress response, growth and behaviour. Collectively, these results demonstrate the utility of combining genomic resources with linkage maps to enhance evolutionary inferences. PMID:26490135

  8. Changes in Size and Age of Chinook Salmon Oncorhynchus tshawytscha Returning to Alaska.

    PubMed

    Lewis, Bert; Grant, W Stewart; Brenner, Richard E; Hamazaki, Toshihide

    2015-01-01

    The average sizes of Pacific salmon have declined in some areas in the Northeast Pacific over the past few decades, but the extent and geographic distribution of these declines in Alaska is uncertain. Here, we used regression analyses to quantify decadal trends in length and age at maturity in ten datasets from commercial harvests, weirs, and spawner abundance surveys of Chinook salmon Oncorhynchus tshawytscha throughout Alaska. We found that on average these fish have become smaller over the past 30 years (~6 generations), because of a decline in the predominant age at maturity and because of a decrease in age-specific length. The proportion of older and larger 4-ocean age fish in the population declined significantly (P < 0.05) in all stocks examined by return year or brood year. Our analyses also indicated that the age-specific lengths of 4-ocean fish (9 of 10 stocks) and of 3-ocean fish (5 of 10 stocks) have declined significantly (P < 0.05). Size-selective harvest may be driving earlier maturation and declines in size, but the evidence is not conclusive, and additional factors, such as ocean conditions or competitive interactions with other species of salmon, may also be responsible. Regardless of the cause, these wide-spread phenotypic shifts influence fecundity and population abundance, and ultimately may put populations and associated fisheries at risk of decline. PMID:26090990

  9. Examining the relationships between egg cortisol and oxidative stress in developing wild sockeye salmon (Oncorhynchus nerka).

    PubMed

    Taylor, Jessica J; Sopinka, Natalie M; Wilson, Samantha M; Hinch, Scott G; Patterson, David A; Cooke, Steven J; Willmore, William G

    2016-10-01

    Maternally-derived hormones in oocytes, such as glucocorticoids (GCs), play a crucial role in embryo development in oviparous taxa. In fishes, maternal stressor exposure increases circulating and egg cortisol levels, the primary GC in fishes, as well as induces oxidative stress. Elevated egg cortisol levels modify offspring traits but whether maternal oxidative stress correlates with circulating and egg cortisol levels, and whether maternal/egg cortisol levels correlate with offspring oxidative stress have yet to be determined. The objective of this study was to examine the relationships among maternal and egg cortisol, and maternal and offspring oxidative stress to provide insight into the potential intergenerational effects of stressor exposure in sockeye salmon (Oncorhynchus nerka). Antioxidant concentration and oxidative stress were measured in maternal tissues (plasma, brain, heart and liver) as well as offspring developmental stages (pre-fertilization, 24h post-fertilization, eyed, and hatch), and were compared to both naturally-occurring and experimentally-elevated (via cortisol egg bath) levels of cortisol in eggs. Oxygen radical absorptive capacity of tissues from maternal sockeye salmon was measured spectrophotometrically and was not correlated with maternal or egg cortisol concentrations. Also, naturally-occurring and experimentally-elevated cortisol levels in eggs (to mimic maternal stress) did not affect oxidative stress or antioxidant capacity of the offspring. We conclude that the metrics of maternal stress examined in sockeye salmon (i.e., maternal/egg cortisol, maternal oxidative stress) are independent of each other, and that egg cortisol content does not influence offspring oxidative stress.

  10. Impacts of multispecies parasitism on juvenile coho salmon (Oncorhynchus kisutch) in Oregon

    USGS Publications Warehouse

    Ferguson, Jayde A.; Romer, Jeremy; Sifneos, Jean C.; Madsen, Lisa; Schreck, Carl B.; Glynn, Michael; Kent, Michael L.

    2011-01-01

    We are studying the impacts of parasites on threatened stocks of Oregon coastal coho salmon (Oncorhynchus kisutch). In our previous studies, we have found high infections of digeneans and myxozoans in coho salmon parr from the lower main stem of West Fork Smith River (WFSR), Oregon. In contrast parr from tributaries of this river, and outmigrating smolts, harbor considerably less parasites. Thus, we have hypothesized that heavy parasite burdens in parr from this river are associated with poor overwintering survival. The objective of the current study was to ascertain the possible effects these parasites have on smolt fitness. We captured parr from the lower main stem and tributaries of WFSR and held them in the laboratory to evaluate performance endpoints of smolts with varying degrees of infection by three digeneans (Nanophyetus salmincola, Apophallus sp., and neascus) and one myxozoan (Myxobolus insidiosus). The parameters we assessed were weight, fork length, growth, swimming stamina, and gill Na+,K+-ATPase activity. We repeated our study on the subsequent year class and with hatchery reared coho salmon experimentally infected with N. salmincola. The most significant associations between parasites and these performance or fitness endpoints were observed in the heavily infected groups from both years. We found that all parasite species, except neascus, were negatively associated with fish fitness. This was corroborated for N. salmincola causing reduced growth with our experimental infection study. Parasites were most negatively associated with growth and size, and these parameters likely influenced the secondary findings with swimming stamina and ATPase activity levels.

  11. Environmental adaptation in Chinook salmon (Oncorhynchus tshawytscha) throughout their North American range.

    PubMed

    Hecht, Benjamin C; Matala, Andrew P; Hess, Jon E; Narum, Shawn R

    2015-11-01

    Landscape genomics is a rapidly growing field with recent advances in both genotyping efficiency and statistical analyses that provide insight towards local adaptation of populations under varying environmental and selective pressure. Chinook salmon (Oncorhynchus tshawytscha) are a broadly distributed Pacific salmon species, occupying a diversity of habitats throughout the northeastern Pacific with pronounced variation in environmental and climate features but little is understood regarding local adaptation in this species. We used a multivariate method, redundancy analysis (RDA), to identify polygenic correlations between 19,703 SNP loci and a suite of environmental variables in 46 collections of Chinook salmon (1956 total individuals) distributed throughout much of its North American range. Models in RDA were conducted on both rangewide and regional scales by hierarchical partitioning of the populations into three distinct genetic lineages. Our results indicate that between 5.8 and 21.8% of genomic variation can be accounted for by environmental features, and 566 putatively adaptive loci were identified as targets of environmental adaptation. The most influential drivers of adaptive divergence included precipitation in the driest quarter of the year (Rangewide and North Coastal Lineage, anova P = 0.002 and 0.01, respectively), precipitation in the wettest quarter of the year (Interior Columbia River Stream-Type Lineage, anova P = 0.03), variation in mean diurnal range in temperature (South Coastal Lineage, ANOVA P = 0.005), and migration distance (Rangewide, anova P = 0.001). Our results indicate that environmental features are strong drivers of adaptive genomic divergence in this species, and provide a foundation to investigate how Chinook salmon might respond to global environmental change. PMID:26465117

  12. Amoebic gill infection in coho salmon Oncorhynchus kisutch farmed in Korea.

    PubMed

    Kim, Wi-Sik; Kong, Kyoung-Hui; Kim, Jong-Oh; Oh, Myung-Joo

    2016-08-31

    About 70% mortality occurred in cultured coho salmon Oncorhynchus kisutch at a marine farm in the South Sea of Korea in 2014. Diseased fish showed greyish or pale patches on the gills, with no internal signs of disease. No bacteria or viruses were isolated from diseased fish, but numerous amoebae were found on the gills. Histopathological examinations revealed extensive hyperplastic epithelium and lamellar fusion in the gills. Numerous amoebae were seen between gill filaments. The amoebae had a 630 bp partial 18S rRNA gene fragment specific to Neoparamoeba perurans. Phylogenetic analysis based on partial 18S rRNA gene nucleotide sequences revealed that this Korean amoeba belonged to the N. perurans group. This is the first report of N. perurans infection in Korea. PMID:27596862

  13. Family size and effective population size in a hatchery stock of coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Simon, R.C.; McIntyre, J.D.; Hemmingsen, A.R.

    1986-01-01

    Means and variances of family size measured in five year-classes of wire-tagged coho salmon (Oncorhynchus kisutch) were linearly related. Population effective size was calculated by using estimated means and variances of family size in a 25-yr data set. Although numbers of age 3 adults returning to the hatchery appeared to be large enough to avoid inbreeding problems (the 25-yr mean exceeded 4500), the numbers actually contributing to the hatchery production may be too low. Several strategies are proposed to correct the problem perceived. Argument is given to support the contention that the problem of effective size is fairly general and is not confined to the present study population.

  14. Immunization of sockeye salmon (Oncorhynchus nerka) against vibriosis using the hyperosmotic infiltration technique

    USGS Publications Warehouse

    Croy, Thomas R.; Amend, Donald F.

    1977-01-01

    Various procedures of hyperosmotic infiltration (HI) and intraperitoneal injection were used to vaccinate sockeye salmon (Oncorhynchus nerka) with killed Vibrio anguillarum. Excellent protection was evident against experimentally induced vibriosis in the groups immunized by HI with 10 × Hanks' balanced salt solution (HBSS), 1 × HBSS with 8.0% NaCl and 5.3% NaCl, as well as in the injected groups. Comparisons were made among the various immunization methods by vaccinating fish with ten-fold serial dilutions of bacterin, then challenging them by the water contact method after 6 or 9 weeks. Protection was somewhat better with 10 × HBSS than with 5.3% NaCl, and 1 × HBSS containing 8.0% NaCl was markedly superior to the vaccination of fish without hyperosmotic treatment. Agglutinin titers did not exceed 1 : 8 in any group.

  15. Stress of formalin treatment in juvenile spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri)

    USGS Publications Warehouse

    Wedemeyer, Gary; Yasutake, W.T.

    1973-01-01

    The physiological stress of 200 ppm formalin treatments at 10 C is more severe in the juvenile steelhead trout (Salmo gairdneri) than in the spring chinook salmon (Oncorhynchus tshawytscha). In the steelhead, a marked hypochloremia follows a 1-hr treatment and recovery requires about 24 hr. During longer treatments, hypercholesterolemia together with reduced regulatory precision, hypercortisolemia, alkaline reserve depletion, and hypocapnia unaccompanied by a fall in blood pH occur — suggestive of compensated respiratory alkalosis. In the spring chinook, hypochloremia and reduced plasma cholesterol regulatory precision are the significant treatment side effects but recovery requires only a few hours.Formalin treatments also cause epithelial separation, hypertrophy, and necrosis in the gills of both fishes but again, consistent with the physiological dysfunctions, these are more severe in the steelhead.

  16. Nutritional factors in the biochemical pathology of Corynebacterial kidney disease in the coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Wedemeyer, Gary A.; Ross, A.J.

    1973-01-01

    The influence of diet ingredient on the morbidity and biochemical pathogenesis of corynebacterial kidney disease was investigated using juvenile coho salmon (Oncorhynchus kisutch) fed the Abernathy dry ration made up with either corn gluten or cottonseed meal (isoprotein, isocaloric substitution). Evaluation of incidence of infection, pituitary activation and aspects of carbohydrate metabolism, acid-base balance, renal function, and hematopoietic activity showed that the actual disease incidence was about the same for both diets but the nonspecific stress of infection was more severe in fish fed the corn gluten.Discriminant function calculations combining four physiological parameters gave a probability of 0.86 for successfully diagnosing infected fish on the basis of these blood chemistry tests.

  17. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    SciTech Connect

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and

  18. Breeding site selection by coho salmon (Oncorhynchus kisutch) in relation to large wood additions and factors that influence reproductive success

    USGS Publications Warehouse

    Clark, Steven M.; Dunham, Jason B.; McEnroe, Jeffery R.; Lightcap, Scott W.

    2014-01-01

    The fitness of female Pacific salmon (Oncorhynchus spp.) with respect to breeding behavior can be partitioned into at least four fitness components: survival to reproduction, competition for breeding sites, success of egg incubation, and suitability of the local environment near breeding sites for early rearing of juveniles. We evaluated the relative influences of habitat features linked to these fitness components with respect to selection of breeding sites by coho salmon (Oncorhynchus kisutch). We also evaluated associations between breeding site selection and additions of large wood, as the latter were introduced into the study system as a means of restoring habitat conditions to benefit coho salmon. We used a model selection approach to organize specific habitat features into groupings reflecting fitness components and influences of large wood. Results of this work suggest that female coho salmon likely select breeding sites based on a wide range of habitat features linked to all four hypothesized fitness components. More specifically, model parameter estimates indicated that breeding site selection was most strongly influenced by proximity to pool-tail crests and deeper water (mean and maximum depths). Linkages between large wood and breeding site selection were less clear. Overall, our findings suggest that breeding site selection by coho salmon is influenced by a suite of fitness components in addition to the egg incubation environment, which has been the emphasis of much work in the past.

  19. Self-sustaining populations, population sinks or aggregates of strays: chum (Oncorhynchus keta) and Chinook salmon (Oncorhynchus tshawytscha) in the Wood River system, Alaska.

    PubMed

    Lin, Jocelyn E; Hilborn, Ray; Quinn, Thomas P; Hauser, Lorenz

    2011-12-01

    Small populations can provide insights into ecological and evolutionary aspects of species distributions over space and time. In the Wood River system in Alaska, USA, small aggregates of Chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) spawn in an area dominated by sockeye salmon (O. nerka). Our objective was to determine whether these Chinook and chum salmon are reproductively isolated, self-sustaining populations, population sinks that produce returning adults but receive immigration, or strays from other systems that do not produce returning adults. DNA samples collected from adult chum salmon from 16 streams and Chinook salmon from four streams in the Wood River system over 3 years were compared to samples from large populations in the nearby Nushagak River system, a likely source of strays. For both species, microsatellite markers indicated no significant genetic differentiation between the two systems. Simulations of microsatellite data in a large source and a smaller sink population suggested that considerable immigration would be required to counteract the diverging effects of genetic drift and produce genetic distances as small as those observed, considering the small census sizes of the two species in the Wood River system. Thus, the Wood River system likely receives substantial immigration from neighbouring watersheds, such as the Nushagak River system, which supports highly productive runs. Although no data on population productivity in the Wood River system exist, our results suggest source-sink dynamics for the two species, a finding relevant to other systems where salmonid population sizes are limited by habitat factors.

  20. Using broad landscape level features to predict redd densities of steelhead trout (Oncorhynchus mykiss) and Chinook Salmon (Oncorhynchus tshawytscha) in the Methow River watershed, Washington

    USGS Publications Warehouse

    Romine, Jason G.; Perry, Russell W.; Connolly, Patrick J.

    2013-01-01

    We used broad-scale landscape feature variables to model redd densities of spring Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Methow River watershed. Redd densities were estimated from redd counts conducted from 2005 to 2007 and 2009 for steelhead trout and 2005 to 2009 for spring Chinook salmon. These densities were modeled using generalized linear mixed models. Variables examined included primary and secondary geology type, habitat type, flow type, sinuosity, and slope of stream channel. In addition, we included spring effect and hatchery effect variables to account for high densities of redds near known springs and hatchery outflows. Variables were associated with National Hydrography Database reach designations for modeling redd densities within each reach. Reaches were assigned a dominant habitat type, geology, mean slope, and sinuosity. The best fit model for spring Chinook salmon included sinuosity, critical slope, habitat type, flow type, and hatchery effect. Flow type, slope, and habitat type variables accounted for most of the variation in the data. The best fit model for steelhead trout included year, habitat type, flow type, hatchery effect, and spring effect. The spring effect, flow type, and hatchery effect variables explained most of the variation in the data. Our models illustrate how broad-scale landscape features may be used to predict spawning habitat over large areas where fine-scale data may be lacking.

  1. Coho Salmon (Oncorhynchus kisutch) Prefer and Are Less Aggressive in Darker Environments.

    PubMed

    Gaffney, Leigh P; Franks, Becca; Weary, Daniel M; von Keyserlingk, Marina A G

    2016-01-01

    Fish are capable of excellent vision and can be profoundly influenced by the visual properties of their environment. Ambient colours have been found to affect growth, survival, aggression and reproduction, but the effect of background darkness (i.e., the darkness vs. lightness of the background) on preference and aggression has not been evaluated systematically. One-hundred Coho salmon (Oncorhynchus kisutch), a species that is increasing in popularity in aquaculture, were randomly assigned to 10 tanks. Using a Latin-square design, every tank was bisected to allow fish in each tank to choose between all the following colour choices (8 choices in total): black vs. white, light grey, dark grey, and a mixed dark grey/black pattern, as well as industry-standard blue vs. white, light grey, dark grey, and black. Fish showed a strong preference for black backgrounds over all other options (p < 0.01). Across tests, preference strength increased with background darkness (p < 0.0001). Moreover, having darker backgrounds in the environment resulted in less aggressive behaviour throughout the tank (p < 0.0001). These results provide the first evidence that darker tanks are preferred by and decrease aggression in salmonids, which points to the welfare benefits of housing farmed salmon in enclosures containing dark backgrounds. PMID:27028731

  2. Use of a genetic marker to examine genetic interaction among subpopulations of pink salmon (Oncorhynchus gorbuscha).

    PubMed

    Gharrett, A J; Lane, S; McGregor, A J; Taylor, S G

    2001-01-01

    In 1979 and 1981, a genetic marker was bred into one of the five identifiable subpopulations of pink salmon [Oncorhynchus gorbuscha (Walbaum)] in the Auke Lake drainage in Southeast Alaska. As a result of the marking effort, the frequencies of two malate dehydrogenase (MDH-B1, 2*) alleles were changed in the marked subpopulation, but not in other subpopulations that spawn at different times or places. Between 1983 and 1989, the marker allele frequencies were monitored in many of these subpopulations and in early- and late-run pink salmon spawning in nearby Waydelich Creek, located approximately 1 km away. Changes in allele frequencies at MDH-B1, 2*, used to obtain direct estimates of average migration rates (m) from the marked to the unmarked subpopulations, revealed little or no introgression into early subpopulations or into nearby Waydelich Creek. Moreover, spatially distinct late-run Auke Creek subpopulations were not immediately overrun by the more abundant marked subpopulation. These observations suggest that genetic isolation exists between temporally distinct spawning runs and that small temporal and spatial (or ecological) differences contribute to population structure. These observations should be considered in taking actions that affect conservation and harvest management or extensive culture of salmonids.

  3. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow

    PubMed Central

    O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A

    2013-01-01

    Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing. PMID:24478800

  4. Pathogenesis of infectious hematopoietic necrosis virus in adult sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Mulcahy, D.M.; Burke, J.; Pascho, R.J.; Jenes, C.K.

    1982-01-01

    The concentration of infectious hematopoietic necrosis (IHN) virus was determined in eight organs and two body fluids from each of 60 adult sockeye salmon (Oncorhynchus nerka). Included in the sample were 4 males and 56 prespawning, spawning, or spent female fish. All fish were infected, and virus was present in nearly all organs. There was an overall tendency for the mean concentration to increase in many of the organs over time as the fish progressed in ripeness. In prespawning females, IHN virus could be detected in all organs and in ovarian fluid but not in serum; the incidences were highest in the gills, spleen, and pyloric ceca, and the titers were highest in the pyloric ceca and liver. Incidences of infection in the organs were higher in spawning than in prespawning females and higher still in spent females in which the incidence of virus was 100% in all organs except brains (78%) and sera (67%). Virus concentrations in organs or fluids ranged from 5 to 4.0 × 109 plaque-forming units per millilitre. In males, the highest incidences of virus were found in gills, pyloric ceca, and liver. The gills were the only organ in which the virus concentration in males exceeded that of females.Key words: infectious hematopoietic necrosis, IHN, fish virus, viral pathogenesis, sockeye salmon

  5. Quantitative threat analysis for management of an imperiled species: Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Hoekstra, Jonathan M; Bartz, Krista K; Ruckelshaus, Mary H; Moslemi, Jennifer M; Harms, Tamara K

    2007-10-01

    Chinook salmon (Oncorhynchus tshawytscha) have declined dramatically across the Pacific Northwest because of multiple human impacts colloquially characterized as the four "H's": habitat degradation, harvest, hydroelectric and other dams, and hatchery production. We use this conceptual framework to quantify the relative importance of major threats to the current status of 201 Chinook populations. Current status is characterized by two demographic indices: population density and trend. We employ path analytic models and information theoretic methods for multi-model inference. Our results indicate that dams most strongly affect variation in population density, while harvest and hatchery production most strongly affect variation in population trend. Comparable results arise when the sample size of the analysis is reduced to 22 Chinook populations within a smaller region typical of the scale at which salmon recovery planning is conducted. Results from these threat analyses suggest that recovery strategies targeting specific demographic indices, and those considering natural and human-mediated interdependencies of major threats, are most likely to succeed. PMID:17974341

  6. Coho Salmon (Oncorhynchus kisutch) Prefer and Are Less Aggressive in Darker Environments

    PubMed Central

    Gaffney, Leigh P.; Franks, Becca; Weary, Daniel M.; von Keyserlingk, Marina A. G.

    2016-01-01

    Fish are capable of excellent vision and can be profoundly influenced by the visual properties of their environment. Ambient colours have been found to affect growth, survival, aggression and reproduction, but the effect of background darkness (i.e., the darkness vs. lightness of the background) on preference and aggression has not been evaluated systematically. One-hundred Coho salmon (Oncorhynchus kisutch), a species that is increasing in popularity in aquaculture, were randomly assigned to 10 tanks. Using a Latin-square design, every tank was bisected to allow fish in each tank to choose between all the following colour choices (8 choices in total): black vs. white, light grey, dark grey, and a mixed dark grey/black pattern, as well as industry-standard blue vs. white, light grey, dark grey, and black. Fish showed a strong preference for black backgrounds over all other options (p < 0.01). Across tests, preference strength increased with background darkness (p < 0.0001). Moreover, having darker backgrounds in the environment resulted in less aggressive behaviour throughout the tank (p < 0.0001). These results provide the first evidence that darker tanks are preferred by and decrease aggression in salmonids, which points to the welfare benefits of housing farmed salmon in enclosures containing dark backgrounds. PMID:27028731

  7. Epizootiology and histopathology of Parvicapsula sp. in coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    Yasutake, William T.; Elliott, Diane G.

    2003-01-01

    The epizootiology and histopathology of the myxosporean Parvicapsula sp. was studied during monthly health surveys of 4 groups of coho salmon Oncorhynchus kisutch at a commercial farm in Puget Sound, Washington, USA, from 1984 to 1986. No Parvicapsula sp. was detected in histological samples taken from juvenile fish in fresh water, but the parasite was detected in fish from all groups 2 to 8 mo after transfer to seawater net pens. Groups placed in seawater net pens in November and December had a higher prevalence of infection, and a longer period of continuous detected infection, than those introduced into net pens in May. For the groups transferred to seawater in November and December, the highest infection prevalence (45 to 90%) was detected during the following March and April. Among 13 tissues examined histologically, only the pseudobranch and kidney were positive for Parvicapsula sp., with 26 (62%) of 42 positive fish showing infections only in the pseudobranch, 5 (12%) showing infections only in the kidney, and 11 (26%) showing infections in both organs. Both the pseudobranch and kidney were apparent primary infection sites, but pseudobranch infections appeared to persist longer in a population. Pseudobranch infections were frequently heavy and associated with extensive inflammation and necrosis of filament and lamellar tissues. The kidney had been the only infection site reported for Parvicapsula sp. in previous studies of coho salmon.

  8. Genomic and metabolic preparation of muscle in sockeye salmon Oncorhynchus nerka for spawning migration.

    PubMed

    Morash, Andrea J; Yu, Wilson; Le Moine, Christophe M R; Hills, Jayme A; Farrell, Anthony P; Patterson, David A; McClelland, Grant B

    2013-01-01

    Prolonged endurance exercise and fasting are two major metabolic challenges facing Pacific salmon during spawning migrations that often occur over 1,000 km. Because both prolonged exercise and fasting stimulate the oxidation of lipids, particularly in heavily recruited tissues such as muscle, we sought to investigate the regulatory mechanisms that establish and maintain the capacity for substrate oxidation at four separate locations during the final 750 km of nonfeeding migration in sockeye salmon Oncorhynchus nerka. Transcript levels of multiple genes encoding for important regulators of lipid, carbohydrate, and protein oxidation as well as the activity of several important enzymes involved in lipid and carbohydrate oxidation were examined in red and white muscle. We found in both muscle types that the messenger RNA (mRNA) expression of carnitine palmitoyltransferase I isoforms, peroxisome proliferator-activated receptors α and β, and adenosine monophosphate-activated protein kinase β1 were all significantly higher at the onset compared to later stages of nonfeeding migration. However, the activities of β-hydroxyacyl-CoA dehydrogenase and citrate synthase were higher only early in migration and only in red muscle. Later in the migration and as muscle lipid stores were greatly depleted, the mRNA levels of hexokinase I and aspartate aminotransferase increased in white muscle. Overall, at the onset of migration, high transcript and metabolic enzyme activity levels in skeletal muscle of sockeye salmon may help support the high rates of lipid oxidation needed for endurance swimming. Furthermore, we suggest that the muscle capacity to use carbohydrates and proteins may be adjusted throughout migration on an as-needed basis to fuel burst exercise through very difficult hydraulic passages in the river and perhaps during mating activities. PMID:24241071

  9. Examining the relationships between egg cortisol and oxidative stress in developing wild sockeye salmon (Oncorhynchus nerka).

    PubMed

    Taylor, Jessica J; Sopinka, Natalie M; Wilson, Samantha M; Hinch, Scott G; Patterson, David A; Cooke, Steven J; Willmore, William G

    2016-10-01

    Maternally-derived hormones in oocytes, such as glucocorticoids (GCs), play a crucial role in embryo development in oviparous taxa. In fishes, maternal stressor exposure increases circulating and egg cortisol levels, the primary GC in fishes, as well as induces oxidative stress. Elevated egg cortisol levels modify offspring traits but whether maternal oxidative stress correlates with circulating and egg cortisol levels, and whether maternal/egg cortisol levels correlate with offspring oxidative stress have yet to be determined. The objective of this study was to examine the relationships among maternal and egg cortisol, and maternal and offspring oxidative stress to provide insight into the potential intergenerational effects of stressor exposure in sockeye salmon (Oncorhynchus nerka). Antioxidant concentration and oxidative stress were measured in maternal tissues (plasma, brain, heart and liver) as well as offspring developmental stages (pre-fertilization, 24h post-fertilization, eyed, and hatch), and were compared to both naturally-occurring and experimentally-elevated (via cortisol egg bath) levels of cortisol in eggs. Oxygen radical absorptive capacity of tissues from maternal sockeye salmon was measured spectrophotometrically and was not correlated with maternal or egg cortisol concentrations. Also, naturally-occurring and experimentally-elevated cortisol levels in eggs (to mimic maternal stress) did not affect oxidative stress or antioxidant capacity of the offspring. We conclude that the metrics of maternal stress examined in sockeye salmon (i.e., maternal/egg cortisol, maternal oxidative stress) are independent of each other, and that egg cortisol content does not influence offspring oxidative stress. PMID:27316822

  10. Genomic and metabolic preparation of muscle in sockeye salmon Oncorhynchus nerka for spawning migration.

    PubMed

    Morash, Andrea J; Yu, Wilson; Le Moine, Christophe M R; Hills, Jayme A; Farrell, Anthony P; Patterson, David A; McClelland, Grant B

    2013-01-01

    Prolonged endurance exercise and fasting are two major metabolic challenges facing Pacific salmon during spawning migrations that often occur over 1,000 km. Because both prolonged exercise and fasting stimulate the oxidation of lipids, particularly in heavily recruited tissues such as muscle, we sought to investigate the regulatory mechanisms that establish and maintain the capacity for substrate oxidation at four separate locations during the final 750 km of nonfeeding migration in sockeye salmon Oncorhynchus nerka. Transcript levels of multiple genes encoding for important regulators of lipid, carbohydrate, and protein oxidation as well as the activity of several important enzymes involved in lipid and carbohydrate oxidation were examined in red and white muscle. We found in both muscle types that the messenger RNA (mRNA) expression of carnitine palmitoyltransferase I isoforms, peroxisome proliferator-activated receptors α and β, and adenosine monophosphate-activated protein kinase β1 were all significantly higher at the onset compared to later stages of nonfeeding migration. However, the activities of β-hydroxyacyl-CoA dehydrogenase and citrate synthase were higher only early in migration and only in red muscle. Later in the migration and as muscle lipid stores were greatly depleted, the mRNA levels of hexokinase I and aspartate aminotransferase increased in white muscle. Overall, at the onset of migration, high transcript and metabolic enzyme activity levels in skeletal muscle of sockeye salmon may help support the high rates of lipid oxidation needed for endurance swimming. Furthermore, we suggest that the muscle capacity to use carbohydrates and proteins may be adjusted throughout migration on an as-needed basis to fuel burst exercise through very difficult hydraulic passages in the river and perhaps during mating activities.

  11. Some physiological aspects of sublethal heat stress in the juvenile steelhead trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Wedemeyer, Gary

    1973-01-01

    A rapid (3 min) but sublethal temperature increase from 10 to 20 imposed a greater stress on juvenile coho salmon (Oncorhynchus kisutch) than on juvenile steelhead trout (Salmo gairdneri). Both species suffered hyperglycemia, hypocholesterolemia, increased blood hemoglobin, and decreased blood sugar regulatory precision, but the steelhead recovered more quickly. Acid–base equilibrium was essentially unaffected, and only the coho suffered any significant interrenal vitamin C depletion. Vitamin C normalization required about 24 hr.

  12. Transcriptomics of environmental acclimatization and survival in wild adult Pacific sockeye salmon (Oncorhynchus nerka) during spawning migration.

    PubMed

    Evans, Tyler G; Hammill, Edd; Kaukinen, Karia; Schulze, Angela D; Patterson, David A; English, Karl K; Curtis, Janelle M R; Miller, Kristina M

    2011-11-01

    Environmental shifts accompanying salmon spawning migrations from ocean feeding grounds to natal freshwater streams can be severe, with the underlying stress often cited as a cause of increased mortality. Here, a salmonid microarray was used to characterize changes in gene expression occurring between ocean and river habitats in gill and liver tissues of wild migrating sockeye salmon (Oncorhynchus nerka Walbaum) returning to spawn in the Fraser River, British Columbia, Canada. Expression profiles indicate that the transcriptome of migrating salmon is strongly affected by shifting abiotic and biotic conditions encountered along migration routes. Conspicuous shifts in gene expression associated with changing salinity, temperature, pathogen exposure and dissolved oxygen indicate that these environmental variables most strongly impact physiology during spawning migrations. Notably, transcriptional changes related to osmoregulation were largely preparatory and occurred well before salmon encountered freshwater. In the river environment, differential expression of genes linked with elevated temperatures indicated that thermal regimes within the Fraser River are approaching tolerance limits for adult salmon. To empirically correlate gene expression with survival, biopsy sampling of gill tissue and transcriptomic profiling were combined with telemetry. Many genes correlated with environmental variables were differentially expressed between premature mortalities and successful migrants. Parametric survival analyses demonstrated a broad-scale transcriptional regulator, cofactor required for Sp1 transcriptional activation (CRSP), to be significantly predictive of survival. As the environmental characteristics of salmon habitats continue to change, establishing how current environmental conditions influence salmon physiology under natural conditions is critical to conserving this ecologically and economically important fish species.

  13. Evidence for competitive dominance of Pink salmon (Oncorhynchus gorbuscha) over other Salmonids in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.

    2004-01-01

    Relatively little is known about fish species interactions in offshore areas of the world's oceans because adequate experimental controls are typically unavailable in such vast areas. However, pink salmon (Oncorhynchus gorbuscha) are numerous and have an alternating-year pattern of abundance that provides a natural experimental control to test for interspecific competition in the North Pacific Ocean and Bering Sea. Since a number of studies have recently examined pink salmon interactions with other salmon, we reviewed them in an effort to describe patterns of interaction over broad regions of the ocean. Research consistently indicated that pink salmon significantly altered prey abundance of other salmon species (e.g., zooplankton, squid), leading to altered diet, reduced total prey consumption and growth, delayed maturation, and reduced survival, depending on species and locale. Reduced survival was observed in chum salmon (O. keta) and Chinook salmon (O. tshawytscha) originating from Puget Sound and in Bristol Bay sockeye salmon (O. nerka). Growth of pink salmon was not measurably affected by other salmon species, but their growth was sometimes inversely related to their own abundance. In all marine studies, pink salmon affected other species through exploitation of prey resources rather than interference. Interspecific competition was observed in nearshore and offshore waters of the North Pacific Ocean and Bering Sea, and one study documented competition between species originating from different continents. Climate change had variable effects on competition. In the North Pacific Ocean, competition was observed before and after the ocean regime shift in 1977 that significantly altered abundances of many marine species, whereas a study in the Pacific Northwest reported a shift from predation- to competition-based mortality in response to the 1982/1983 El Nino. Key traits of pink salmon that influenced competition with other salmonids included great abundance, high

  14. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Farag, A.M.; May, T.; Marty, G.D.; Easton, M.; Harper, D.D.; Little, E.E.; Cleveland, L.

    2006-01-01

    This study was designed to determine fish health impairment of Chinook salmon (Oncorhynchus tshawytscha) exposed to chromium. Juvenile Chinook salmon were exposed to aqueous chromium concentrations (0-266 ??g l-1) that have been documented in porewater from bottom sediments and in well waters near salmon spawning areas in the Columbia River in the northwestern United States. After Chinook salmon parr were exposed to 24 and 54 ??g Cr l -1 for 105 days, neither growth nor survival of parr was affected. On day 105, concentrations were increased from 24 to 120 ??g Cr l-1 and from 54 to 266 ??g Cr l-1 until the end of the experiment on day 134. Weight of parr was decreased in the 24/120 ??g Cr l-1 treatment, and survival was decreased in the 54/266 ??g Cr l-1 treatment. Fish health was significantly impaired in both the 24/120 and 54/266 ??g Cr l-1 treatments. The kidney is the target organ during chromium exposures through the water column. The kidneys of fish exposed to the greatest concentrations of chromium had gross and microscopic lesions (e.g. necrosis of cells lining kidney tububules) and products of lipid peroxidation were elevated. These changes were associated with elevated concentrations of chromium in the kidney, and reduced growth and survival. Also, variations in DNA in the blood were associated with pathological changes in the kidney and spleen. These changes suggest that chromium accumulates and enters the lipid peroxidation pathway where fatty acid damage and DNA damage (expressed as chromosome changes) occur to cause cell death and tissue damage. While most of the physiological malfunctions occurred following parr exposures to concentrations ???120 ??g Cr l-1, nuclear DNA damage followed exposures to 24 ??g Cr l-1, which was the smallest concentration tested. The abnormalities measured during this study are particularly important because they are associated with impaired growth and reduced survival at concentrations ???120 ??g Cr l-1. Therefore, these

  15. Predation on juvenile pacific salmon oncorhynchus spp. in downstream migrant traps in prairie creek, california

    USGS Publications Warehouse

    Duffy, W.G.; Bjorkstedt, E.P.; Ellings, C.S.

    2011-01-01

    Downstream migrant traps are a widely applied fishery management tool for sampling anadromous Pacific salmon Oncorhynchus spp. and steelhead O. mykiss smolts along theWest Coast of North America and elsewhere, yet predation on juvenile salmonids in traps has not been studied quantitatively.We assessed the frequency of occurrence and abundance of juvenile salmonids in the stomachs of coastal cutthroat trout O. clarkii clarkii, coho salmon O. kisutch, steelhead, and prickly sculpin Cottus asper (>70 mm fork length) captured in traps and in nearby stream habitats. All four predator species took juvenile salmonids with much greater frequency in traps than in stream habitats. Among free-swimming predators, only coastal cutthroat trout were observed with salmonid fry in their stomachs, but they took fewer salmonid prey and appeared to rely more heavily on insect prey than did coastal cutthroat trout captured in traps. Predators consumed up to 25% of the available prey over a broad range of prey abundances. Over the course of the study, predators consumed 2.5% of all salmonid fry captured in traps, but this fraction ranged from less than 1% to more than 10% in any given year. The number of prey taken in traps increased with predator length and with prey abundance in traps, and predation in traps peaked during the period of most intense downstream migration by salmon fry. In contrast, live-box design and trap location had little or no effect on the total number of prey taken by individual predators.We estimated that the predation mortality of juvenile salmon increased by 0.5-1.0% due to in-trap predation (i.e., a 9-10% relative increase over natural predation rates). We found no evidence that predators selected for prey on the basis of species. These results should motivate additional research on methods that reduce or eliminate predation in trap live-boxes and protocols for efficiently measuring predation associated with the trapping of downstream migrants. ?? American

  16. Differences in neurobehavioral responses of chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper and cobalt: Behavioral avoidance

    SciTech Connect

    Hansen, J.A.; Marr, J.C.A.; Lipton, J.; Cacela, D.; Bergman, H.L.

    1999-09-01

    Behavioral avoidance of copper (Cu), cobalt (Co), and a Cu and Co mixture in soft water differed greatly between rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha). Chinook salmon avoided at least 0.7 {micro}g Cu/L, 24 {micro}g Co/L, and the mixture of 1.0 {micro}g Cu/L and 0.9 {micro}g Co/L, whereas rainbow trout avoided at least 1.6 {micro}g Cu/L, 180 {micro}g Co/L, and the mixture of 2.6 {micro}g Cu/L and 2.4 {micro}g Co/L. Chinook salmon were also more sensitive to the toxic effects of Cu in that they failed to avoid {ge}44 {micro}g Cu/L, whereas rainbow trout failed to avoid {ge}180 {micro}g Cu/L. Furthermore, following acclimation to 2 {micro}g Cu/L, rainbow trout avoided 4 {micro}g Cu/L and preferred clean water, but chinook salmon failed to avoid any Cu concentrations and did not prefer clean water. The failure to avoid high concentrations of metals by both species suggests that the sensory mechanism responsible for avoidance responses was impaired. Exposure to Cu concentrations that were not avoided could result in lethality from prolonged Cu exposure or in impairment of sensory-dependent behaviors that are essential for survival and reproduction.

  17. [Intra- and interpopulation variability of southwestern Kamchatka sockeye salmon Oncorhynchus nerka inferred from the data on single nucleotide polymorphism].

    PubMed

    Khrustaleva, A M; Klovach, N V; Gritsenko, O F; Seeb, J E

    2014-07-01

    The variability of 45 single nucleotide polymorphism (SNP) loci was studied in nine samples of the sockeye salmon Oncorhynchus nerka from the rivers of southwestern Kamchatka. The Wahlund effect, gametic disequilibrium at some loci, and a decrease in interpopulation genetic diversity estimates observed in samples from the Bolshaya River outlet are explained in terms of the samples' heterogeneity. Partitioning of mixed samples using some biological characteristics of the individuals led to a noticeable decrease in the frequency of these phenomena. It was demonstrated that the allelic diversity between the populations within the river Plotnikovs accounted for the larger part of genetic variation, as compared to the differentiation between the basins. The SNP loci responsible for intra- and interpopulation differentiation of sockeye salmon from the rivers of southwestern Kamchatka were identified. Some recommendations for field population genetic studies of Asian sockeye salmon were formulated. PMID:25720142

  18. Differentiating size-dependent responses of juvenile pink salmon (Oncorhynchus gorbuscha) to sea lice (Lepeophtheirus salmonis) infections.

    PubMed

    Sutherland, Ben J G; Jantzen, Stuart G; Sanderson, Dan S; Koop, Ben F; Jones, Simon R M

    2011-06-01

    Salmon infected with an ectoparasitic marine copepod, the salmon louse Lepeophtheirus salmonis, incur a wide variety of consequences depending upon host sensitivity. Juvenile pink salmon (Oncorhynchus gorbuscha) migrate from natal freshwater systems to the ocean at a young age relative to other Pacific salmon, and require rapid development of appropriate defenses against marine pathogens. We analyzed the early transcriptomic responses of naïve juvenile pink salmon of sizes 0.3 g (no scales), 0.7 g (mid-scale development) and 2.4 g (scales fully developed) six days after a low-level laboratory exposure to L. salmonis copepodids. All infected size groups exhibited unique transcriptional profiles. Inflammation and inhibition of cell proliferation was identified in the smallest size class (0.3 g), while increased glucose absorption and retention was identified in the middle size class (0.7 g). Tissue-remodeling genes were also up-regulated in both the 0.3 g and 0.7 g size groups. Profiles of the 2.4 g size class indicated cell-mediated immunity and possibly parasite-induced growth augmentation. Understanding a size-based threshold of resistance to L. salmonis is important for fisheries management. This work characterizes molecular responses reflecting the gradual development of innate immunity to L. salmonis between the susceptible (0.3 g) and refractory (2.4 g) pink salmon size classes. PMID:21543273

  19. Persistent organic pollutants in chinook salmon (Oncorhynchus tshawytscha): implications for resident killer whales of British Columbia and adjacent waters.

    PubMed

    Cullon, Donna L; Yunker, Mark B; Alleyne, Carl; Dangerfield, Neil J; O'Neill, Sandra; Whiticar, Michael J; Ross, Peter S

    2009-01-01

    We measured persistent organic pollutant (POP) concentrations in chinook salmon (Oncorhynchus tshawytscha) in order to characterize dietary exposure in the highly contaminated, salmon-eating northeastern Pacific resident killer whales. We estimate that 97 to 99% of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dichlorodiphenyltrichloroethane (DDT), and hexachlorocyclohexane (HCH) in returning adult chinook were acquired during their time at sea. Highest POP concentrations (including PCBs, PCDDs, PCDFs, and DDT) and lowest lipids were observed in the more southerly chinook sampled. While feeding by salmon as they enter some more POP-contaminated near-shore environments inevitably contribute to their contamination, relationships observed between POP patterns and both lipid content and delta13C also suggest a migration-related metabolism and loss of the less-chlorinated PCB congeners. This has implications for killer whales, with the more PCB-contaminated salmon stocks in the south partly explaining the 4.0 to 6.6 times higher estimated daily intake for sigmaPCBs in southern resident killer whales compared to northern residents. We hypothesize that the lower lipid content of southerly chinook stocks may cause southern resident killer whales to increase their salmon consumption by as much as 50%, which would further increase their exposure to POPs.

  20. Ontogenetic changes in photoreceptor opsin gene expression in coho salmon (Oncorhynchus kisutch, Walbaum).

    PubMed

    Temple, S E; Veldhoen, K M; Phelan, J T; Veldhoen, N J; Hawryshyn, C W

    2008-12-01

    Pacific salmonids start life in fresh water then migrate to the sea, after a metamorphic event called smoltification, later returning to their natal freshwater streams to spawn and die. To accommodate changes in visual environments throughout life history, salmon may adjust their spectral sensitivity. We investigated this possibility by examining ontogenetic and thyroid hormone (TH)-induced changes in visual pigments in coho salmon (Oncorhynchus kisutch, Walbaum). Using microspectrophotometry, we measured the spectral absorbance (quantified by lambda(max)) of rods, and middle and long wavelength-sensitive (MWS and LWS) cones in three age classes of coho, representing both freshwater and marine phases. The lambda(max) of MWS and LWS cones differed among freshwater (alevin and parr) and ocean (smolt) phases. The lambda(max) of rods, on the other hand, did not vary, which is evidence that vitamin A(1)/A(2) visual pigment chromophore ratios were similar among freshwater and ocean phases when sampled at the same time of year. Exogenous TH treatment long wavelength shifted the lambda(max) of rods, consistent with an increase in A(2). However, shifts in cones were greater than predicted for a change in chromophore ratio. Real-time quantitative RT-PCR demonstrated that at least two RH2 opsin subtypes were expressed in MWS cones, and these were differentially expressed among alevin, parr and TH-treated alevin groups. Combined with changes in A(1)/A(2) ratio, differential expression of opsin subtypes allows coho to alter the spectral absorbance of their MWS and LWS cones by as much as 60 and 90 nm, respectively. To our knowledge, this is the largest spectral shift reported in a vertebrate photoreceptor.

  1. Migratory Patterns of Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-flowing River Basin

    USGS Publications Warehouse

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  2. The Olfactory Transcriptome and Progression of Sexual Maturation in Homing Chum Salmon Oncorhynchus keta

    PubMed Central

    Palstra, Arjan P.; Fukaya, Kosuke; Chiba, Hiroaki; Dirks, Ron P.; Planas, Josep V.; Ueda, Hiroshi

    2015-01-01

    Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation. PMID:26397372

  3. Juvenile habitat partitioning and relative productivity in allochronically isolated sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    Miller, EK Fillatre; Bradbury, IR; Heath, DD

    2011-01-01

    Allochronic divergence, like spatial isolation, may contribute to population diversity and adaptation, however the challenges for tracking habitat utilization in shared environments are far greater. Adult Klukshu River (Yukon, Canada) sockeye salmon, Oncorhynchus nerka, return as genetically distinct “early” and “late” runs. Early and late adult spawning populations (1999 and 2000) and their subsequent fry (sampled at 7 sites in 2000 and at 8 sites in 2001 throughout Klukshu Lake and River) were genotyped at eight microsatellite loci. Bayesian assignment was used to determine the spatial distribution of early versus late fry; although intermixed, the distribution of fry significantly differed in Klukshu Lake and in the Klukshu River in 2001, based on crosstab analyses. Late-run fry predominated in Klukshu Lake at all sites, while early-run fry were most common in the north and south of Klukshu Lake and in Klukshu River. Early-run spawners had significantly higher relative productivity (early life survival) than late-run fish (2.9 times more fry produced per early-run adult in 2000, and 9.2 times more in 2001). This study demonstrates spatial habitat partitioning and differences in the contribution of allochronically isolated populations to fry abundance, and highlights annual variability that likely contributes to recruitment variation. PMID:22393527

  4. Immersion vaccination of sockeye salmon (Oncorhynchus nerka) with two pathogenic strains of Vibrio anguillarum

    USGS Publications Warehouse

    Gould, R.W.; Antipa, R.; Amend, D.F.

    1979-01-01

    Sockeye salmon (Oncorhynchus nerka) were immersion-vaccinated in suspensions containing 5 × 107, 5 × 106, 5 × 105, or 5 × 104 bacteria/mL of bivalent or monovalent, formalin-killedVibrio anguillarum, Types I and II. The fish were split into two lots and held for 54 d. At that time one lot was challenged with living, virulent V. anguillarum, Type I, and one with living, virulent V.anguillarum, Type II. Immunization with bivalent bacterin effectively protected the fish from vibriosis, but monovalent vaccine was effective only against the homologous challenge. Immunization with the highest concentration of Type I monovalent bacterin resulted in 0% Type I and 58% Type II challenge mortality. Immunization with the highest concentration of Type II monovalent bacterin resulted in 41% Type I and 0% Type II challenge mortality. Immunization with the highest concentration of bivalent Type I/Type II bacterin resulted in 2% mortality in both challenges. Protective bacterins were effective at concentrations down to 5 × 105 bacteria/mL.Key words: immersion vaccination, bivalent vaccines, Vibrio anguillarum, vibriosis.

  5. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha)

    PubMed Central

    Larson, Wesley A; Seeb, Lisa W; Everett, Meredith V; Waples, Ryan K; Templin, William D; Seeb, James E

    2014-01-01

    Recent advances in population genomics have made it possible to detect previously unidentified structure, obtain more accurate estimates of demographic parameters, and explore adaptive divergence, potentially revolutionizing the way genetic data are used to manage wild populations. Here, we identified 10 944 single-nucleotide polymorphisms using restriction-site-associated DNA (RAD) sequencing to explore population structure, demography, and adaptive divergence in five populations of Chinook salmon (Oncorhynchus tshawytscha) from western Alaska. Patterns of population structure were similar to those of past studies, but our ability to assign individuals back to their region of origin was greatly improved (>90% accuracy for all populations). We also calculated effective size with and without removing physically linked loci identified from a linkage map, a novel method for nonmodel organisms. Estimates of effective size were generally above 1000 and were biased downward when physically linked loci were not removed. Outlier tests based on genetic differentiation identified 733 loci and three genomic regions under putative selection. These markers and genomic regions are excellent candidates for future research and can be used to create high-resolution panels for genetic monitoring and population assignment. This work demonstrates the utility of genomic data to inform conservation in highly exploited species with shallow population structure. PMID:24665338

  6. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha in the Willamette River, Oregon, USA

    USGS Publications Warehouse

    Billman, E.J.; Whitman, L.D.; Schroeder, R.K.; Sharpe, C.S.; Noakes, David L. G.; Schreck, Carl B.

    2014-01-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  7. Timing games in the reproductive phenology of female pacific salmon (Oncorhynchus spp.).

    PubMed

    Morbey, Yolanda E; Ydenberg, Ronald C

    2003-02-01

    We use a game-theoretic framework to investigate the reproductive phenology of female kokanee (Oncorhynchus nerka). As in the other semelparous species of Pacific salmon, females construct nests in gravel, spawn with males, bury their fertilized eggs, and defend their nest sites until they die several days later. Later-breeding females may reuse previous nest sites, and their digging behavior is thought to subject previously buried eggs to mortality. Using game-theoretic models, we show that females can reduce this risk by allocating resources to longevity (the period between arrival and death) as opposed to eggs. Waiting before territory settlement is also expected if it allows females to conserve energy and delay senescence. The models demonstrate how these costs and benefits interact to select for a seasonal decline in longevity, a well-known phenomenon in the salmonid literature, and a seasonal decline in wait duration. Both of these predictions were supported in a field study of kokanee. Female state of reproductive maturity was the most important proximate factor causing variation in longevity and wait duration. With more than 30% of territories being reused, dig-up is likely an important selective force in this population.

  8. Latitudinal variation in sexual size dimorphism of sea-run masu salmon, Oncorhynchus masou.

    PubMed

    Tamate, Tsuyoshi; Maekawa, Koji

    2006-01-01

    Sexual size dimorphism (SSD), a difference in body size between the sexes, occurs in many animal species. Although the larger sex is often considered invariable within species, patterns of selection may result in interpopulation variation or even reversal of SSD. We evaluated correlations between latitude and female body size, male body size, and relative body size (male body size/female body size) in 22 populations (ranging from 37 degrees N to 49 degrees N) of sea-run masu salmon (Oncorhynchus masou) that spawn in rivers along the Sea of Japan coast. Male size and the relative body size increased with latitude, but female size did not correlate with latitude. In addition, increase in male size with latitude was sufficient to result in a reversal of SSD, the switch-point being around 45 degrees N. We suggest that the positive correlation between latitude and male size is due to increasing operational sex ratios or sexual selection on sea-run male body size that result from sex-biased patterns of anadromy. In conclusion, our study provides the first example of predictable geographic variation in SSD shaped by apparent patterns of sexual selection.

  9. The influence of maternal condition on offspring performance in sockeye salmon Oncorhynchus nerka.

    PubMed

    Tierney, K B; Patterson, D A; Kennedy, C J

    2009-10-01

    Eggs were taken from adult sockeye salmon Oncorhynchus nerka that had reached their journey's end in spawn-ready and moribund condition, and fertilized by healthy males. Egg number, size, hatching success and offspring growth did not differ with maternal condition, which suggests the absence of any persisting physiological maternal effects. Differences were noted in the swimming behaviour and physiology of the offspring at parr stage. In a 30 min schooling test conducted using groups of five in a flume, parr from moribund females were more likely to fatigue, were not as tightly schooled, and had a diminished startle response, both in the per cent responding and the burst distance. In individual, confined swimming tests conducted within a tube, post-exercise plasma lactate concentration, which is an indicator of white muscle use, was greater for parr from moribund adult females. The moribund females also had elevated lactate following exercise (their migration), which suggests heritable differences may exist in muscle use. This study shows that juvenile O. nerka artificially propagated from females exhausted by their return migration can exhibit swimming performance differences, indicating that maternal condition may need to be considered in breeding programmes.

  10. Loma salmonae (Protozoa: Microspora) infections in seawater reared coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    Kent, M.L.; Elliott, D.G.; Groff, J.M.; Hedrick, R.P.

    1989-01-01

    Loma salmonae (Putz et al., 1965) infections were observed in five groups of coho salmon, Oncorhynchus kisutch, reared in seawater net-pens in Washington State, U.S.A. in 1984–1986. Ultrastructural characteristics, size of spores, tissues and host infected, and geographical location identified the microsporidium as Loma salmonae. Preserved spores measured 4.4×2.3 (4–5.6×2–2.4) μm and exhibited 14–17 turns of the polar filament. Infections were evident in the gills of some fish before seawater entry, but few parasites were observed and they caused little tissue damage. Infections observed in fish after transfer to seawater were associated with significant pathological changes in the gills. A mixed inflammatory infiltrate was associated with ruptured microsporidian xenomas within the vessels and interstitium of the primary lamellae. Microsporidian spores were dispersed throughout the lesions and were often seen inside phagocytes. The parasite was also observed in the heart, spleen, kidney and pseudobranchs; however, the inflammatory lesions were common only in the heart.Monthly examination of fish after transfer to seawater showed peak prevalences (33–65%) of gill infections during the summer. Although moribund fish were often infected with other pathogens, the high prevalence of L. salmonae infections and the severity of the lesions it caused, suggested that this parasite significantly contributed to the recurrent summer mortalities observed at this net-pen site.

  11. Using parentage analysis to estimate rates of straying and homing in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Ford, Michael J; Murdoch, Andrew; Hughes, Michael

    2015-03-01

    We used parentage analysis based on microsatellite genotypes to measure rates of homing and straying of Chinook salmon (Oncorhynchus tshawytscha) among five major spawning tributaries within the Wenatchee River, Washington. On the basis of analysis of 2248 natural-origin and 11594 hatchery-origin fish, we estimated that the rate of homing to natal tributaries by natural-origin fish ranged from 0% to 99% depending on the tributary. Hatchery-origin fish released in one of the five tributaries homed to that tributary at a far lower rate than the natural-origin fish (71% compared to 96%). For hatchery-released fish, stray rates based on parentage analysis were consistent with rates estimated using physical tag recoveries. Stray rates among major spawning tributaries were generally higher than stray rates of tagged fish to areas outside of the Wenatchee River watershed. Within the Wenatchee watershed, rates of straying by natural-origin fish were significantly affected by spawning tributary and by parental origin: progeny of naturally spawning hatchery-produced fish strayed at significantly higher rates than progeny whose parents were themselves of natural origin. Notably, none of the 170 offspring that were products of mating by two natural-origin fish strayed from their natal tributary. Indirect estimates of gene flow based on FST statistics were correlated with but higher than the estimates from the parentage data. Tributary-specific estimates of effective population size were also correlated with the number of spawners in each tributary. PMID:25626589

  12. Adrenocorticotropin- and opiate-like hormones from pituitaries of the sockeye salmon Oncorhynchus nerka.

    PubMed

    Ng, T B; Hon, W K; Idler, D R

    1987-04-01

    The pituitaries of vitellogenic sockeye salmon (Oncorhynchus nerka) were extracted with a mixture of acetone, water, and hydrochloric acid. The precipitate which formed upon the addition of a copious volume of acetone to the extract, designated acid acetone powder, was subjected to salt fractionation and desalting, followed by ion-exchange chromatography on CM-cellulose. An unadsorbed fraction (S-1) and four adsorbed fractions (S-2, S-3, S-4 and S-5) were obtained. Adrenocorticotropic activity was detected in the fractions by their ability to stimulate isolated rat adrenal decapsular cells to produce corticosterone and by their immunoreactivities in an adrenocorticotropin-specific radioimmunoassay. The steroidogenic activities of all fractions, except S-4, were blocked by corticotropin inhibiting peptide. Opiate activity was detected in the fractions by their ability to inhibit the binding of either [3H]naloxone or (D-ala2, D-leu5)-[3H]enkephalin to rat brain membranes. There was a discrepancy in the potencies of the five fractions in the two opiate radioreceptor assays, indicating the presence of opiate peptides with different affinities of binding to the micron- and delta-opiate receptors of the rat brain. There was a separation between adrenocorticotropic and opiate receptor binding activities, suggesting that the activities were due to separate molecular entities. PMID:3038149

  13. Incubation temperature, developmental biology, and the divergence of sockeye salmon (Oncorhynchus nerka) within Lake Washington

    USGS Publications Warehouse

    Hendry, A.P.; Hensleigh, J.E.; Reisenbichler, R.R.

    1998-01-01

    Sockeye salmon (Oncorhynchus nerka) introduced into Lake Washington in the 1930s and 1940s now spawn at several different sites and over a period of more than 3 months. To test for evolutionary divergence within this derived lineage, embryos that would have incubated in different habitats (Cedar River or Pleasure Point Beach) or at different times (October, November, or December in the Cedar River) were reared in the laboratory at 5, 9, and 12.5??C. Some developmental variation mirrored predictions of adaptive divergence: (i) survival at 12.5??C was highest for embryos most likely to experience such temperatures in the wild (Early Cedar), (ii) development rate was fastest for progeny of late spawners (Late Cedar), and (iii) yolk conversion efficiency was matched to natural incubation temperatures. These patterns likely had a genetic basis because they were observed in a common environment and could not be attributed to differences in egg size. The absolute magnitude of divergence in development rates was moderate (Late Cedar embryos emerged only 6 days earlier at 9??C) and some predictions regarding development rates were not supported. Nonetheless our results provide evidence of adaptive divergence in only 9-14 generations.

  14. Provenance matters: thermal reaction norms for embryo survival among sockeye salmon Oncorhynchus nerka populations.

    PubMed

    Whitney, C K; Hinch, S G; Patterson, D A

    2013-04-01

    Differences in thermal tolerance during embryonic development in Fraser River sockeye salmon Oncorhynchus nerka were examined among nine populations in a controlled common-garden incubation experiment. Forcing embryonic development at an extreme temperature (relative to current values) of 16° C, representing a future climate change scenario, significantly reduced survival compared to the more ecologically moderate temperature of 10° C (55% v. 93%). Survival at 14° C was intermediate between the other two temperatures (85%). More importantly, this survival response varied by provenance within and between temperature treatments. Thermal reaction norms showed an interacting response of genotype and environment (temperature), suggesting that populations of O. nerka may have adapted differentially to elevated temperatures during incubation and early development. Moreover, populations that historically experience warmer incubation temperatures at early development displayed a higher tolerance for warm temperatures. In contrast, thermal tolerance does not appear to transcend life stages as adult migration temperatures were not related to embryo thermal tolerance. The intra-population variation implies potential for thermal tolerance at the species level. The differential inter-population variation in thermal tolerance that was observed suggests, however, limited adaptive potential to thermal shifts for some populations. This infers that the intergenerational effects of increasing water temperatures may affect populations differentially, and that such thermally mediated adaptive selection may drive population, and therefore species, persistence. PMID:23557297

  15. Revisiting evolutionary dead ends in sockeye salmon ( Oncorhynchus nerka) life history

    USGS Publications Warehouse

    Pavey, S.A.; Hamon, T.R.; Nielsen, J.L.

    2007-01-01

    This study challenges recent hypotheses about sockeye salmon (Oncorhynchus nerka) colonization based on life history and broadens the pathways that investigators should consider when studying sockeye colonization of novel habitats. Most sockeye populations exhibit lake-type life histories. Riverine populations are thought to be more likely to stray from their natal stream to spawn and therefore colonize new habitat. We examined genetic relationships among five geographically proximate sockeye populations from the Aniakchak region of the Alaska Peninsula, Alaska. Specifically, we sought to determine if the genetic population structure was consistent with the hypothesis that a riverine population colonized a recently available upriver volcanic caldera lake, and whether recent volcanism led to genetic bottlenecks in these sockeye populations. Heterozygosity and allelic richness were not higher in the riverine population. Patterns of genetic divergence suggested that the geographically proximate riverine sockeye population did not colonize the lake; the caldera populations were more genetically divergent from the downstream riverine population (FST  =  0.047) than a lake-type population in a different drainage (FST  =  0.018). Our results did not suggest the presence of genetic bottlenecks in the caldera populations.

  16. Thermal regime, predation danger and the early marine exit of sockeye salmon Oncorhynchus nerka.

    PubMed

    Katinic, P J; Patterson, D A; Ydenberg, R C

    2015-01-01

    Marine exit timing of sockeye salmon Oncorhynchus nerka populations on the Haida Gwaii Archipelago, British Columbia, Canada, is described, with specific focus on Copper Creek. Marine exit in Copper Creek occurs > 130 days prior to spawning, one of the longest adult freshwater residence periods recorded for any O. nerka population. Copper Creek presents an easy upstream migration, with mild water temperatures (7 to 14°  C), short distance (13·1 km) and low elevation gain (41 m) to the lake where fish hold prior to spawning. An energetic model estimates that <1% of the initial energy reserve is required for upstream migration, compared with 62% for lake holding and 38% for reproductive development. Historical records suggest that it is unlikely that water temperature in any of the O.nerka streams in Haida Gwaii has ever exceeded the presumed temperature threshold (19° C) for early marine exit. Although it is not impossible that the thermal tolerance of Copper Creek O.nerka is very low, the data presented here appear inconsistent with thermal avoidance as an explanation for the early marine exit timing in Copper Creek and in three other populations on the archipelago with early marine exit. PMID:25494933

  17. Recovery of Barotrauma Injuries in Chinook Salmon, Oncorhynchus tshawytscha from Exposure to Pile Driving Sound

    PubMed Central

    Casper, Brandon M.; Popper, Arthur N.; Matthews, Frazer; Carlson, Thomas J.; Halvorsen, Michele B.

    2012-01-01

    Juvenile Chinook salmon, Oncorhynchus tshawytscha, were exposed to simulated high intensity pile driving signals to evaluate their ability to recover from barotrauma injuries. Fish were exposed to one of two cumulative sound exposure levels for 960 pile strikes (217 or 210 dB re 1 µPa2·s SELcum; single strike sound exposure levels of 187 or 180 dB re 1 µPa2⋅s SELss respectively). This was followed by an immediate assessment of injuries, or assessment 2, 5, or 10 days post-exposure. There were no observed mortalities from the pile driving sound exposure. Fish exposed to 217 dB re 1 µPa2·s SELcum displayed evidence of healing from injuries as post-exposure time increased. Fish exposed to 210 dB re 1 µPa2·s SELcum sustained minimal injuries that were not significantly different from control fish at days 0, 2, and 10. The exposure to 210 dB re 1 µPa2·s SELcum replicated the findings in a previous study that defined this level as the threshold for onset of injury. Furthermore, these data support the hypothesis that one or two Mild injuries resulting from pile driving exposure are unlikely to affect the survival of the exposed animals, at least in a laboratory environment. PMID:22745794

  18. Some blood chemistry values for the juvenile coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Wedemeyer, Gary; Chatterton, K.

    1971-01-01

    Overlapping Gaussian distribution curves were resolved into normal ranges for 1800 clinical test values obtained from caudal arterial blood or plasma of more than 1000 juvenile coho salmon (Oncorhynchus kisutch) held under defined conditions of diet and temperature. Estimated normal blood chemistry ranges were bicarbonate, 9.5–12.6 mEq/liter; blood urea nitrogen (BUN), 0.9–3.4 mg/100 ml; chloride, 122–136 mEq/liter; cholesterol, 88–262 mg/100 ml;pCO2, 2.6–6.1 mm Hg (10 C); glucose, 41–135 mg/100 ml; hematocrit, 32.5–52.5%; hemoglobin, 6.5–9.9 g/100 ml; total protein, 1.4–4.3 g/100 ml; blood pH (10 C), 7.51–7.83. The calculated range of normal acid–base balance vs. water temperature is also presented.

  19. Ecological transcriptomics of lake-type and riverine sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    2011-01-01

    Background There are a growing number of genomes sequenced with tentative functions assigned to a large proportion of the individual genes. Model organisms in laboratory settings form the basis for the assignment of gene function, and the ecological context of gene function is lacking. This work addresses this shortcoming by investigating expressed genes of sockeye salmon (Oncorhynchus nerka) muscle tissue. We compared morphology and gene expression in natural juvenile sockeye populations related to river and lake habitats. Based on previously documented divergent morphology, feeding strategy, and predation in association with these distinct environments, we expect that burst swimming is favored in riverine population and continuous swimming is favored in lake-type population. In turn we predict that morphology and expressed genes promote burst swimming in riverine sockeye and continuous swimming in lake-type sockeye. Results We found the riverine sockeye population had deep, robust bodies and lake-type had shallow, streamlined bodies. Gene expression patterns were measured using a 16K microarray, discovering 141 genes with significant differential expression. Overall, the identity and function of these genes was consistent with our hypothesis. In addition, Gene Ontology (GO) enrichment analyses with a larger set of differentially expressed genes found the "biosynthesis" category enriched for the riverine population and the "metabolism" category enriched for the lake-type population. Conclusions This study provides a framework for understanding sockeye life history from a transcriptomic perspective and a starting point for more extensive, targeted studies determining the ecological context of genes. PMID:22136247

  20. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Alcorn, S.W.; Murray, A.L.; Pascho, R.J.

    2002-01-01

    To determine if the defences of sockeye salmon (Oncorhynchus nerka) raised in captivity are affected by the rearing temperature or their life-cycle stage, various indices of the humoral and cellular immune functions were measured in fish reared at either 8 or 12??C for their entire life-cycle. Measures of humoral immunity included the commonly used haematological parameters, as well as measurements of complement, and lysozyme activity. Cellular assays quantified the ability of macrophages from the anterior kidney to phagocytise Staphylococcus aureus cells, or the activities of certain bactericidal systems of those cells. The T-dependent antibody response to a recombinant 57 kDa protein of Renibacterium salmoninarum was used to quantify the specific immune response. Fish were sampled during the spring and fall of their second, third and fourth years, corresponding to a period that began just before smolting and ended at sexual maturation. Fish reared at 8??C tended to have a greater percentage of phagocytic kidney macrophages during the first 2 years of sampling than the fish reared at 12??C. During the last half of the study the complement activity of the fish reared at 8??C was greater than that of the 12??C fish. Conversely, a greater proportion of the blood leucocytes were lymphocytes in fish reared at 12??C compared to the fish reared at 8??C. Fish reared at 12??C also produced a greater antibody response than those reared at 8??C. Results suggested that the immune apparatus of sockeye salmon reared at 8??C relied more heavily on the non-specific immune response, while the specific immune response was used to a greater extent when the fish were reared at 12??C. Although a seasonal effect was not detected in any of the indices measured, varying effects were observed in some measurements during sexual maturation of fish in both temperature groups. At that time there were dramatic decreases in complement activity and lymphocyte numbers. This study was unique in

  1. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    SciTech Connect

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon.

  2. Oil spill impact on Pacific salmon (g. Oncorhynchus) of northwestern Sakhalin (Tengi River Basin as a pattern)

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexander N.; Tarasov, Nikolay N.; Pusankov, Konstantin L.; Ivanova, Lubov V.; Pusankova, Ekaterina N.

    2001-01-01

    Northern Sakhalin is a region of the intensive oil and gas transportation by oil-pipe lines. In July 2, 1997, the oil spill has happened at the oil-pipe line 'Okha-Komsomolsk-on- Amur.' Oil pollution spread over the basin of Tengi Rive (Amur estuary). The Tengi River is a spawning area for endemic and important commercial fish. There is a reserve on the river. Genus Oncorhynchus (pink and chum salmon) prevail in ichthyofauna. A satellite data analysis (NOAA-12, NOAA-14) was a success to accurate the oil distribution over the Amur estuary. As a result of the accident, more than 120 t of oil have been spilled. 26.3 km of the river area, more than 60 km of the Amur estuary coast and about 850 km2 of its water area were polluted. In the basin of Tengi River about 58000 m2 of spawning area were lost. The main damage (89%) was caused to the fry feeding near the coast. The loss of fish production has constituted about 1800 t. By species the damage was as follows: 53% -- pink salmon, 29% -- chum salmon, 11% -- masu salmon and 7% -- coho salmon.

  3. Early marine growth in relation to marine-stage survival rates for Alaska sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Farley, Edward V.; Murphy, J.M.; Adkison, M.D.; Eisner, L.B.; Helle, J.H.; Moss, J.H.; Nielsen, J.

    2007-01-01

    We tested the hypothesis that larger juvenile sockeye salmon (Oncorhynchus nerka) in Bristol Bay, Alaska, have higher marine-stage survival rates than smaller juvenile salmon. We used scales from returning adults (33 years of data) and trawl samples of juveniles (n = 3572) collected along the eastern Bering Sea shelf during August through September 2000-02. The size of juvenile sockeye salmon mirrored indices of their marine-stage survival rate (e.g., smaller fish had lower indices of marine-stage survival rate). However, there was no relationship between the size of sockeye salmon after their first year at sea, as estimated from archived scales, and brood-year survival size was relatively uniform over the time series, possibly indicating size-selective mortality on smaller individuals during their marine residence. Variation in size, relative abundance, and marine-stage survival rate of juvenile sockeye salmon is likely related to ocean conditions affecting their early marine migratory pathways along the eastern Bering Sea shelf.

  4. Seasonal marine growth of Bristol Bay sockeye salmon (Oncorhynchus nerka) in relation to competition with Asian pink salmon (O. gorbuscho) and the 1977 ocean regime shift

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Farley, E.; Nielsen, Jennifer L.; Hagen, P.

    2005-01-01

    Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each growth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2. smolts was significantly higher than age-1. smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10-18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean regime shift. During 1977-2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955-1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977-2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd

  5. Competition between Asian pink salmon (Oncorhynchus gorbuscha) and Alaskan sockeye salmon (O. nerka) in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Zimmermann, M.; Myers, K.W.; Nielsen, J.L.; Rogers, D.E.

    2003-01-01

    The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd-numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd-year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977-97 indicated that smolts entering the ocean during even-numbered years and interacting with abundant odd-year pink salmon during the following year experienced 26% (age-2 smolt) to 45% (age-1 smolt) lower survival compared with smolts migrating during odd-numbered years. Adult sockeye salmon returning to Bristol Bay from even-year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd-year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.

  6. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawytscha) Near Ives and Pierce Island of the Columbia River, 2000.

    SciTech Connect

    Mueller, Robert P.

    2001-10-01

    Fall chinook salmon (Oncorhynchus tshawytscha), thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas included gravel beds on the Washington side of the river near Hamilton Creek and Ives Island. The size of this population from 1994 to 1996 was estimated at 1,800 to 5,200 fish (Hymer 1997), and 554 fish in 1998 (Van der Naald et al. 1999). These estimates were based on carcass surveys and visual observation of redds by boat near the shoreline. Pacific Northwest National Laboratory (PNNL) conducted underwater video surveys in the fall of 1999 and 2000 to determine the extent of the fall chinook salmon spawning and to estimate the number of redds occurring in deeper water. Estimates of redds occurring in water depths exceeding 2.2 m at 143,000 cubic feet per second (kcfs) were 499 in 1999 (Mueller and Dauble 1999) and 567 redds >2.2 m at 127 kcfs in 2000 (this study). The majority of the redds found were confined near the main river channel adjacent to Pierce Island. Chum salmon (O. keta) also have been documented using the mouth of Hamilton Creek and portions of Hamilton Slough for spawning. The majority of chum salmon were found to spawn in shallow water at the mouth of Hamilton Creek adjacent to Ives Island. Estimates of the natural chum salmon spawning population for 1998 were 226 (Van der Naald et al. 1999). Chum salmon spawning near Ives Island are part of the Columbia River evolutionary significant unit (ESU), and are included in the Endangered Species Act of 1973 (ESA) listing in March 1999. Our main objective of this study was to locate deep water spawning locations of fall chinook salmon in the main Columbia River channel and to collect additional data on physical habitat parameters at spawning sites. The secondary objective was to map any chum salmon redds located in the deep sections of

  7. Antibody-producing cells correlated to body weight in juvenile chinook salmon (Oncorhynchus tshawytscha) acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, C.B.; Maule, A.G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21?? C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures. ?? 2001 Academic Press.

  8. Effects of freshwater exposure to arsenic trioxide on the parr-smolt transformation of coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Nichols, J.W.; Wedemeyer, G.A.; Mayer, F.L.; Dickhoff, Walton W.; Gregory, S.V.; Yasutake, W.T.; Smith, S.D.

    1984-01-01

    The effects of chronic (6 months) exposure to arsenic trioxide in fresh water on the Parr-smolt transformation of coho salmon (Oncorhynchus kisutch) were evaluated. Exposure to 300 μg As/L (as As2O3) appeared to delay the onset of the normal increase in plasma thyroxine concentration and cause a transient reduction of gill Na+,K+-ATPase activity. Fish exposed to 300 μg As/L also migrated to the sea less successfully than did nonexposed smolts, but there were no effects on the survival and growth of smolts held in 28‰ salt water for 6 months.

  9. Temperature seasonality during fry out-migration influences the survival of hatchery-reared chum salmon Oncorhynchus keta.

    PubMed

    Morita, K; Nakashima, A

    2015-10-01

    Among years, fry-to-adult survival of hatchery-reared chum salmon Oncorhynchus keta was positively correlated with the length (in days) of the fry out-migration period with temperatures suitable for migration. Furthermore, survival decreased with increasing difference in mean temperature between May and June. Thus, prolonged out-migration periods increased the probability of survival from fry to adult, lending support to the hypothesis that long migration periods decrease the risk of mortality (bet-hedging), and increase the probability of migration when environmental conditions in fresh water and the ocean are suitable (match-mismatch).

  10. Relative virulence of three isolates of Piscirickettsia salmonis for coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    House, M.L.; Bartholomew, J.L.; Winton, J.R.; Fryer, J.L.

    1999-01-01

    Piscirickettsia salmonis was first recognized as the cause of mortality among pen-reared coho salmon Oncorhynchus kisutch in Chile. Since the initial isolation of this intracellular Gram-negative bacterium in 1989, similar organisms have been described from several areas of the world, but the associated outbreaks were not reported to be as serious as those that occurred in Chile. To determine if this was due to differences in virulence among isolates of P. salmonis, we conducted an experiment comparing isolates from Chile, British Columbia, Canada, and Norway (LF-89, ATL-4-91 and NOR-92, respectively). For each of the isolates, 3 replicates of 30 coho salmon were injected intraperitoneally with each of 3 concentrations of the bacterium. Negative control fish were injected with MEM-10. Mortalities were collected daily for 41 d post-injection. Piscirickettsiosis was observed in fish injected with each of the 3 isolates, and for each isolate, cumulative mortality was directly related to the concentration of bacterial cells administered. The LF-89 isolate was the most virulent, with losses reaching 97% in the 3 replicates injected with 105.0 TCID50, 91% in the replicates injected with 104.0 TCID50, and 57% in the fish injected with 103.0 TCID50. The ATL-4-91 isolate caused losses of 92% in the 3 replicates injected with 105.0 TCID50, 76% in the fish injected with 104.0 TCID50, and 32% in those injected with 103.0 TCID50. The NOR-92 isolate was the least virulent, causing 41% mortality in the replicates injected with 104.6 TCID50. At 41 d post-injection, 6% of the fish injected with 103.6 TCID50 NOR-92 had died. Mortality was only 2% in the fish injected with 102.6 TCID50 NOR-92, which was the same as the negative control group. Because the group injected with the highest concentration (104.6 TCID50) of NOR-92 was still experiencing mortality at 41 d, it was held for an additional 46 d. At 87 d post-injection, the cumulative mortality in this group had reached 70

  11. The use of immobilised digestive lipase from Chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk.

    PubMed

    Kurtovic, Ivan; Marshall, Susan N; Cleaver, Helen L; Miller, Matthew R

    2016-05-15

    The aim of this research was to determine the potential of immobilised digestive lipase from Chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk. The lipase was immobilised on hydrophobic resin (Toyopearl® Butyl) and used to hydrolyse milk lipids in a batch reactor. The lipase was stable when immobilised and there was no significant resin fouling or enzyme inhibition between cycles. Eight cycles were achieved before the hydrolysis rate dropped significantly because of physical losses of the immobilised lipase. The immobilised lipase showed the highest specificity towards short-chain fatty acids butanoic and hexanoic acids, the main dairy product flavour and odour compounds. Based on the performance of the reactor, and the ability of the lipase to alter free fatty acid composition and sensory characteristics of milk, the immobilised salmon lipase has potential applications in developing dairy products with unique flavours. PMID:26775978

  12. Behavioural response of juvenile Chinook salmon Oncorhynchus tshawytscha during a sudden temperature increase and implications for survival

    SciTech Connect

    Bellgraph, Brian J.; McMichael, Geoffrey A.; Mueller, Robert P.; Monroe, Jennifer L.

    2010-01-01

    The behaviours of juvenile Chinook salmon Oncorhynchus tshawytscha were evaluated during a temperature increase from 8.8 to 23.2°C, which was designed to simulate unique thermal conditions present in a hydroelectric reservoir. The percent of fish with an active swimming behaviour increased from 26 to 93 % and mean opercular beat rates increased from 76 to 159 beats per minute between basal and maximum temperatures. Fish equilibrium did not change significantly throughout the experiment and relatively little mortality (12 %) occurred. Thermal stress is likely incurred by juvenile salmon experiencing a temperature change of this magnitude; however, stress induced in this study was primarily sublethal. Behavioural changes accompanying thermal stress (e.g., erratic swimming) may increase predation potential in the wild despite being sublethal during laboratory experiments.

  13. Behavioural thermoregulation by subyearling fall (autumn) Chinook salmon oncorhynchus tshawytscha in a reservoir

    USGS Publications Warehouse

    Tiffan, K.F.; Kock, T.J.; Connor, W.P.; Steinhorst, R.K.; Rondorf, D.W.

    2009-01-01

    This study investigated behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir on the Snake River, Washington, U.S.A. During the summer, temperatures in the reservoir varied from 23?? C on the surface to 11?? C at 14 m depth. Subyearlings implanted with temperature-sensing radio transmitters were released at the surface at temperatures >20?? C during three blocks of time in summer 2004. Vertical profiles were taken to measure temperature and depth use as the fish moved downstream over an average of 5??6-7??2 h and 6??0-13??8 km. The majority of the subyearlings maintained average body temperatures that differed from average vertical profile temperatures during most of the time they were tracked. The mean proportion of the time subyearlings tracked within the 16-20?? C temperature range was larger than the proportion of time this range was available, which confirmed temperature selection opposed to random use. The subyearlings selected a depth and temperature combination that allowed them to increase their exposure to temperatures of 16-20?? C when temperatures 20?? C were available at lower and higher positions in the water column. A portion of the subyearlings that selected a temperature c. 17??0?? C during the day, moved into warmer water at night coincident with an increase in downstream movement rate. Though subyearlings used temperatures outside of the 16-20?? C range part of the time, behavioural thermoregulation probably reduced the effects of intermittent exposure to suboptimal temperatures. By doing so, it might enhance growth opportunity and life-history diversity in the population of subyearlings studied.

  14. Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper: Neurophysiological and histological effects on the olfactory system

    SciTech Connect

    Hansen, J.A.; Rose, J.D.; Jenkins, R.A.; Gerow, K.G.; Bergman, H.L.

    1999-09-01

    Olfactory epithelial structure and olfactory bulb neurophysiological responses were measured in chinook salmon and rainbow trout in response to 25 to 300 {micro}g copper (Cu)/L. Using confocal laser scanning microscopy, the number of olfactory receptors was significantly reduced in chinook salmon exposed to {ge}50 {micro}g Cu/L and in rainbow trout exposed to {ge}200 {micro}g cu/L for 1 h. The number of receptors was significantly reduced in both species following exposure to 25 {micro}g Cu/L for 4 h. Transmission electron microscopy of olfactory epithelial tissue indicated that the loss of receptors was from cellular necrosis. Olfactory bulk electroencephalogram (EEG) responses to 10{sup {minus}3} M L-serine were initially reduced by all Cu concentrations but were virtually eliminated in chinook salmon exposed to {ge}50 {micro}g Cu/L and in rainbow trout exposed to {ge}200 {micro}g Cu/L within 1 h of exposure. Following Cu exposure, EEG response recovery rates were slower in fish exposed to higher Cu concentrations. The higher sensitivity of the chinook salmon olfactory system to Cu-induced histological damage and neurophysiological impairment parallels the relative species sensitivity observed in behavioral avoidance experiments. This difference in species sensitivity may reduce the survival and reproductive potential of chinook salmon compared with that of rainbow trout in Cu-contaminated waters.

  15. Detection and mapping of QTL for temperature tolerance and body size in Chinook salmon (Oncorhynchus tshawytscha) using genotyping by sequencing

    PubMed Central

    Everett, Meredith V; Seeb, James E

    2014-01-01

    Understanding how organisms interact with their environments is increasingly important for conservation efforts in many species, especially in light of highly anticipated climate changes. One method for understanding this relationship is to use genetic maps and QTL mapping to detect genomic regions linked to phenotypic traits of importance for adaptation. We used high-throughput genotyping by sequencing (GBS) to both detect and map thousands of SNPs in haploid Chinook salmon (Oncorhynchus tshawytscha). We next applied this map to detect QTL related to temperature tolerance and body size in families of diploid Chinook salmon. Using these techniques, we mapped 3534 SNPs in 34 linkage groups which is consistent with the haploid chromosome number for Chinook salmon. We successfully detected three QTL for temperature tolerance and one QTL for body size at the experiment-wide level, as well as additional QTL significant at the chromosome-wide level. The use of haploids coupled with GBS provides a robust pathway to rapidly develop genomic resources in nonmodel organisms; these QTL represent preliminary progress toward linking traits of conservation interest to regions in the Chinook salmon genome. PMID:24822082

  16. Interaction of growth hormone overexpression and nutritional status on pituitary gland clock gene expression in coho salmon, Oncorhynchus kisutch.

    PubMed

    Kim, Jin-Hyoung; White, Samantha L; Devlin, Robert H

    2015-02-01

    Clock genes are involved in generating a circadian rhythm that is integrated with the metabolic state of an organism and information from the environment. Growth hormone (GH) transgenic coho salmon, Oncorhynchus kisutch, show a large increase in growth rate, but also attenuated seasonal growth modulations, modified timing of physiological transformations (e.g. smoltification) and disruptions in pituitary gene expression compared with wild-type salmon. In several fishes, circadian rhythm gene expression has been found to oscillate in the suprachiasmatic nucleus of the hypothalamus, as well as in multiple peripheral tissues, but this control system has not been examined in the pituitary gland nor has the effect of transgenic growth modification been examined. Thus, the daily expression of 10 core clock genes has been examined in pituitary glands of GH transgenic (T) and wild-type coho salmon (NT) entrained on a regular photocycle (12L: 12D) and provided either with scheduled feeding or had food withheld for 60 h. Most clock genes in both genotypes showed oscillating patterns of mRNA levels with light and dark cycles. However, T showed different amplitudes and patterns of expression compared with wild salmon, both in fed and starved conditions. The results from this study indicate that constitutive expression of GH is associated with changes in clock gene regulation, which may play a role in the disrupted behavioural and physiological phenotypes observed in growth-modified transgenic strains.

  17. Comparative analysis of innate immune responses to Streptococcus phocae strains in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Salazar, Soraya; Oliver, Cristian; Yáñez, Alejandro J; Avendaño-Herrera, Ruben

    2016-04-01

    Streptococcus phocae subsp. salmonis is a Gram-positive bacterium that causes mortality only in Atlantic salmon (Salmo salar) farmed in Chile, even when this species is co-cultured with rainbow trout (Oncorhynchus mykiss). This susceptibility could be determined by innate immune response components and their responses to bacterial infection. This fish pathogen shares subspecies status with Streptococcus phocae subsp. phocae isolated from seals. The present study compared innate immune system mechanisms in Atlantic salmon and rainbow trout when challenged with different S. phocae, including two isolates from Atlantic salmon (LM-08-Sp and LM-13-Sp) and two from seal (ATCC 51973(T) and P23). Streptococcus phocae growth was evaluated in the mucus and serum of both species, with rainbow trout samples evidencing inhibitory effects. Lysozyme activity supported this observation, with significantly higher (p < 0.01) expression in rainbow trout serum and mucus as compared to Atlantic salmon. No differences were found in phagocytic capacity between fish species when stimulated with ATCC 51973(T) and P23. Against all S. phocae strains, rainbow trout and Atlantic salmon showed up to two-fold increased bactericidal activity, and rainbow trout demonstrated up to three-fold greater reactive oxygen species production in macrophages. In conclusion, the non-specific humoral and cellular barriers of Atlantic salmon were immunologically insufficient against S. phocae subsp. salmonis, thereby facilitating streptococcosis. Moreover, the more robust response of rainbow trout to S. phocae could not be attributed to any specific component of the innate immune system, but was rather the consequence of a combined response by the evaluated components. PMID:26876354

  18. Linkages between life history type and migration pathways in freshwater and marine environments for Chinook salmon, Oncorhynchus tshawytscha

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi; Quinn, Thomas P.

    2012-05-01

    Chinook salmon, Oncorhynchus tshawytscha, are commonly categorized as ocean-type (migrating to the ocean in their first year of life) or stream-type (migrating after a full year in freshwater). These two forms have been hypothesized to display different ocean migration pathways; the former are hypothesized to migrate primarily on the continental shelf whereas the latter are hypothesized to migrate off the shelf to the open ocean. These differences in migration patterns have important implications for management, as fishing mortality rates are strongly influenced by ocean migration. Ocean-type Chinook salmon predominate in coastal rivers in the southern part of the species' range, whereas stream-type predominate in the interior and northerly rivers. This latitudinal gradient has confounded previous efforts to test the hypothesis regarding ocean migration pathways. To address this problem, we used a pair-wise design based on coded wire tagging data to compare the marine distributions of stream- and ocean-type Chinook salmon from a suite of rivers producing both forms. Both forms of Chinook salmon from the lower Columbia River, Oregon coast, lower Fraser River, and northern British Columbia rivers followed similar migration paths, contradicting the hypothesis. In contrast, recoveries of tagged Chinook salmon from the upper Columbia River, Snake River, and the upper Fraser River revealed migration patterns consistent with the hypothesis. These findings have important implications for our understanding of these life history types, and also for the conservation and management of declining, threatened, or endangered stream-type Chinook salmon populations in the US and Canada.

  19. Comparative analysis of innate immune responses to Streptococcus phocae strains in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Salazar, Soraya; Oliver, Cristian; Yáñez, Alejandro J; Avendaño-Herrera, Ruben

    2016-04-01

    Streptococcus phocae subsp. salmonis is a Gram-positive bacterium that causes mortality only in Atlantic salmon (Salmo salar) farmed in Chile, even when this species is co-cultured with rainbow trout (Oncorhynchus mykiss). This susceptibility could be determined by innate immune response components and their responses to bacterial infection. This fish pathogen shares subspecies status with Streptococcus phocae subsp. phocae isolated from seals. The present study compared innate immune system mechanisms in Atlantic salmon and rainbow trout when challenged with different S. phocae, including two isolates from Atlantic salmon (LM-08-Sp and LM-13-Sp) and two from seal (ATCC 51973(T) and P23). Streptococcus phocae growth was evaluated in the mucus and serum of both species, with rainbow trout samples evidencing inhibitory effects. Lysozyme activity supported this observation, with significantly higher (p < 0.01) expression in rainbow trout serum and mucus as compared to Atlantic salmon. No differences were found in phagocytic capacity between fish species when stimulated with ATCC 51973(T) and P23. Against all S. phocae strains, rainbow trout and Atlantic salmon showed up to two-fold increased bactericidal activity, and rainbow trout demonstrated up to three-fold greater reactive oxygen species production in macrophages. In conclusion, the non-specific humoral and cellular barriers of Atlantic salmon were immunologically insufficient against S. phocae subsp. salmonis, thereby facilitating streptococcosis. Moreover, the more robust response of rainbow trout to S. phocae could not be attributed to any specific component of the innate immune system, but was rather the consequence of a combined response by the evaluated components.

  20. Consequences of high temperatures and premature mortality on the transcriptome and blood physiology of wild adult sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M

    2012-01-01

    Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds. PMID:22957178

  1. Assessing the suitability of a partial water reuse system for rearing juvenile Chinook salmon Oncorhynchus tshawytscha for stocking in Washington State

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Health and welfare of juvenile Chinook salmon Oncorhynchus tshawytsha reared in a pilot circular tank-based partial water reuse system in Washington State were evaluated in comparison to fish from the same spawn reared in a flow-through raceway, in order to assess the suitability of using water reus...

  2. Antigen-binding cells in the peripheral blood of sockeye salmon, Oncorhynchus nerka Walbaum, induced by immersion or intraperitoneal injection of Vibrio languilarum bacterin

    USGS Publications Warehouse

    1981-01-01

    We used an immunocytoadherence assay to monitor the response of antigen-binding cells (ABC) in the peripheral blood of sockeye salmon, Oncorhynchus nerka, after immersion in, or intraperitoneal injection of, Vibrio anguillarum LS 1–74 bacterin. Both methods initiated an elevated ABC response in less than one day; this response persisted one week longer in the injected than in the immersed fish.

  3. Persistent organic pollutants in outmigrant juvenile chinook salmon from the Lower Columbia Estuary, USA.

    PubMed

    Johnson, Lyndal L; Ylitalo, Gina M; Sloan, Catherine A; Anulacion, Bernadita F; Kagley, Anna N; Arkoosh, Mary R; Lundrigan, Tricia A; Larson, Kim; Siipola, Mark; Collier, Tracy K

    2007-03-15

    Although chemical contaminants are recognized as a potential factor contributing to the salmon declines in the Pacific Northwest, United States, information on contaminant concentrations in threatened and endangered salmon from the Columbia Estuary is limited. In this study we monitored exposure to several persistent organic pollutants [polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and other organochlorine pesticides] in outmigrant juvenile fall chinook salmon (Oncorhynchus tschawytscha) in the Lower Columbia River, and evaluated the potential for adverse effects on salmon and the estuarine food web. Contaminants were measured in whole bodies and stomach contents of subyearling to yearling chinook collected in 2001 and 2002 from sites near the confluence of the Columbia and Willamette Rivers, Longview, and within the lower Estuary. The contaminants detected at highest concentrations in salmon whole bodies were PCBs and DDTs. Average concentrations of PCBs in salmon from the sampling sites ranged from 1300 to 14,000 ng/g lipid, in some cases exceeding the recently estimated threshold for adverse health effects in juvenile salmonids of 2400 ng/g lipid. Average DDT concentrations ranged from 1800 to 27,000 ng/g lipid. These levels are among the highest measured in juvenile salmon from Pacific Northwest estuaries to date. Concentrations of PCBs and DDTs in salmon whole bodies showed no clear spatial gradient from the Willamette/Columbia Confluence to the mouth of the Columbia, but tended to be higher in larger fish and older fish, suggesting a correlation with estuarine residence time. PCBs, DDTs, and PAHs were all found in salmon stomach contents, indicating that prey is a source of exposure. Hatchery feed may have contributed to contaminant body burdens in those fish that were of hatchery origin. Contaminant body burdens in salmon were poorly correlated with contaminant concentrations previously

  4. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming.

    PubMed

    Lee, C G; Farrell, A P; Lotto, A; Hinch, S G; Healey, M C

    2003-09-01

    The present study measured the excess post-exercise oxygen cost (EPOC) following tests at critical swimming speed (Ucrit) in three stocks of adult, wild, Pacific salmon (Oncorhynchus sp.) and used EPOC to estimate the time required to return to their routine level of oxygen consumption (recovery time) and the total oxygen cost of swimming to Ucrit. Following exhaustion at Ucrit, recovery time was 42-78 min, depending upon the fish stock. The recovery times are several-fold shorter than previously reported for juvenile, hatchery-raised salmonids. EPOC varied fivefold among the fish stocks, being greatest for Gates Creek sockeye salmon (O. nerka), which was the salmon stock that had the longest in-river migration, experienced the warmest temperature and achieved the highest maximum oxygen consumption compared with the other salmon stocks that were studied. EPOC was related to Ucrit, which in turn was directly influenced by ambient test temperature. The non-aerobic cost of swimming to Ucrit was estimated to add an additional 21.4-50.5% to the oxygen consumption measured at Ucrit. While these non-aerobic contributions to swimming did not affect the minimum cost of transport, they were up to three times higher than the value used previously for an energetic model of salmon migration in the Fraser River, BC, Canada. As such, the underestimate of non-aerobic swimming costs may require a reevaluation of the importance of how in-river barriers like rapids and bypass facilities at dams, and year-to-year changes in river flows and temperatures, affect energy use and hence migration success.

  5. A dense linkage map for Chinook salmon (Oncorhynchus tshawytscha) reveals variable chromosomal divergence after an ancestral whole genome duplication event.

    PubMed

    Brieuc, Marine S O; Waters, Charles D; Seeb, James E; Naish, Kerry A

    2014-03-20

    Comparisons between the genomes of salmon species reveal that they underwent extensive chromosomal rearrangements following whole genome duplication that occurred in their lineage 58-63 million years ago. Extant salmonids are diploid, but occasional pairing between homeologous chromosomes exists in males. The consequences of re-diploidization can be characterized by mapping the position of duplicated loci in such species. Linkage maps are also a valuable tool for genome-wide applications such as genome-wide association studies, quantitative trait loci mapping or genome scans. Here, we investigated chromosomal evolution in Chinook salmon (Oncorhynchus tshawytscha) after genome duplication by mapping 7146 restriction-site associated DNA loci in gynogenetic haploid, gynogenetic diploid, and diploid crosses. In the process, we developed a reference database of restriction-site associated DNA loci for Chinook salmon comprising 48528 non-duplicated loci and 6409 known duplicated loci, which will facilitate locus identification and data sharing. We created a very dense linkage map anchored to all 34 chromosomes for the species, and all arms were identified through centromere mapping. The map positions of 799 duplicated loci revealed that homeologous pairs have diverged at different rates following whole genome duplication, and that degree of differentiation along arms was variable. Many of the homeologous pairs with high numbers of duplicated markers appear conserved with other salmon species, suggesting that retention of conserved homeologous pairing in some arms preceded species divergence. As chromosome arms are highly conserved across species, the major resources developed for Chinook salmon in this study are also relevant for other related species.

  6. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming.

    PubMed

    Lee, C G; Farrell, A P; Lotto, A; Hinch, S G; Healey, M C

    2003-09-01

    The present study measured the excess post-exercise oxygen cost (EPOC) following tests at critical swimming speed (Ucrit) in three stocks of adult, wild, Pacific salmon (Oncorhynchus sp.) and used EPOC to estimate the time required to return to their routine level of oxygen consumption (recovery time) and the total oxygen cost of swimming to Ucrit. Following exhaustion at Ucrit, recovery time was 42-78 min, depending upon the fish stock. The recovery times are several-fold shorter than previously reported for juvenile, hatchery-raised salmonids. EPOC varied fivefold among the fish stocks, being greatest for Gates Creek sockeye salmon (O. nerka), which was the salmon stock that had the longest in-river migration, experienced the warmest temperature and achieved the highest maximum oxygen consumption compared with the other salmon stocks that were studied. EPOC was related to Ucrit, which in turn was directly influenced by ambient test temperature. The non-aerobic cost of swimming to Ucrit was estimated to add an additional 21.4-50.5% to the oxygen consumption measured at Ucrit. While these non-aerobic contributions to swimming did not affect the minimum cost of transport, they were up to three times higher than the value used previously for an energetic model of salmon migration in the Fraser River, BC, Canada. As such, the underestimate of non-aerobic swimming costs may require a reevaluation of the importance of how in-river barriers like rapids and bypass facilities at dams, and year-to-year changes in river flows and temperatures, affect energy use and hence migration success. PMID:12909706

  7. Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet.

    PubMed

    Eliason, E J; Farrell, A P

    2016-01-01

    Over the past several decades, a substantial amount of research has examined how cardiorespiratory physiology supports the diverse activities performed throughout the life cycle of Pacific salmon, genus Oncorhynchus. Pioneering experiments emphasized the importance of aerobic scope in setting the functional thermal tolerance for activity in fishes. Variation in routine metabolism can have important performance and fitness consequences as it is related to dominance, aggression, boldness, territoriality, growth rate, postprandial oxygen consumption, life history, season, time of day, availability of shelter and social interactions. Wild fishes must perform many activities simultaneously (e.g. swim, obtain prey, avoid predators, compete, digest and reproduce) and oxygen delivery is allocated among competing organ systems according to the capacity of the heart to deliver blood. For example, salmonids that are simultaneously swimming and digesting trade-off maximum swimming performance in order to support the oxygen demands of digestion. As adult Pacific salmonids cease feeding in the ocean prior to their home migration, endogenous energy reserves and cardiac capacity are primarily partitioned among the demands for swimming upriver, sexual maturation and spawning behaviours. Furthermore, the upriver spawning migration is under strong selection pressure, given that Pacific salmonids are semelparous (single opportunity to spawn). Consequently, these fishes optimize energy expenditures in a number of ways: strong homing, precise migration timing, choosing forward-assist current paths and exploiting the boundary layer to avoid the strong currents in the middle of the river, using energetically efficient swimming speeds, and recovering rapidly from anaerobic swimming. Upon arrival at the spawning ground, remaining energy can be strategically allocated to the various spawning behaviours. Strong fidelity to natal streams has resulted in reproductively isolated populations that

  8. Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet.

    PubMed

    Eliason, E J; Farrell, A P

    2016-01-01

    Over the past several decades, a substantial amount of research has examined how cardiorespiratory physiology supports the diverse activities performed throughout the life cycle of Pacific salmon, genus Oncorhynchus. Pioneering experiments emphasized the importance of aerobic scope in setting the functional thermal tolerance for activity in fishes. Variation in routine metabolism can have important performance and fitness consequences as it is related to dominance, aggression, boldness, territoriality, growth rate, postprandial oxygen consumption, life history, season, time of day, availability of shelter and social interactions. Wild fishes must perform many activities simultaneously (e.g. swim, obtain prey, avoid predators, compete, digest and reproduce) and oxygen delivery is allocated among competing organ systems according to the capacity of the heart to deliver blood. For example, salmonids that are simultaneously swimming and digesting trade-off maximum swimming performance in order to support the oxygen demands of digestion. As adult Pacific salmonids cease feeding in the ocean prior to their home migration, endogenous energy reserves and cardiac capacity are primarily partitioned among the demands for swimming upriver, sexual maturation and spawning behaviours. Furthermore, the upriver spawning migration is under strong selection pressure, given that Pacific salmonids are semelparous (single opportunity to spawn). Consequently, these fishes optimize energy expenditures in a number of ways: strong homing, precise migration timing, choosing forward-assist current paths and exploiting the boundary layer to avoid the strong currents in the middle of the river, using energetically efficient swimming speeds, and recovering rapidly from anaerobic swimming. Upon arrival at the spawning ground, remaining energy can be strategically allocated to the various spawning behaviours. Strong fidelity to natal streams has resulted in reproductively isolated populations that

  9. Effects of Renibacterium salmoninarum on olfactory organs of Chinook salmon (Oncorhynchus tshawytscha) marked with coded wire tags

    USGS Publications Warehouse

    Elliott, Diane G.; Conway, Carla M.; Bruno, D.W.; Elliott, D.G.; Nowak, B.

    2014-01-01

    Bacterial kidney disease (BKD) caused by Renibacterium salmoninarum can cause significant morbidity and mortality in Chinook salmon (Oncorhynchus tshawytscha), particularly in Chinook salmon of the stream (spring) life history type, which migrate to sea as yearlings rather than subyearlings. R. salmoninarum can be transmitted vertically from the female parent to the progeny in association with the egg, as well as horizontally from fish to fish. This study was conducted as part of a research project to investigate whether the prevalence and intensity of R. salmoninarum infections in adult spring Chinook salmon could affect the survival and pathogen prevalence and intensity in their progeny (Pascho et al., 1991, 1993; Elliott et al., 1995). Fish from two brood years (1988 and 1989) were reared at Dworshak National Fish Hatchery (Idaho, USA) for about 1-1/2 years, released as yearling smolts, and allowed to migrate to the Pacific Ocean for maturation. The majority of progeny fish were marked with coded wire tags (CWTs) about 4 months before they were released from the hatchery so that adult returns could be monitored. The CWTs were implanted in the snouts of the fish by an experienced team of fish markers using automated wire-tagging machines. The intended placement site was the cartilage, skeletal muscle or loose connective tissue of the snout.

  10. Testing of male sockeye salmon (Oncorhynchus nerka) and steelhead trout (Salmo gairdneri) for infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.; Batts, W.N.

    1987-01-01

    Infectious hematopoietic necrosis (IHN) virus has been isolated only rarely from whole milt samples of male sockeye salmon (Oncorhynchus nerka). In 3 yr of testing, virus incidences in males ranged from 0 to 13% when milt was sampled but were 60–100% with spleen or kidney. When IHN virus was isolated from sockeye salmon milt at titers less than 3.00 log10 plaque-forming units (pfu)/mL, the level of virus in the kidney or spleen exceeded 7.00 log10 pfu/g. Higher rates of IHN virus isolation from kidney or spleen than from milt were also generally found in steelhead trout (Salmo gairdneri), although the differences were less pronounced than in sockeye salmon. Furthermore, virus was sometimes isolated from steelhead trout milt when the level of virus in kidney or spleen samples was very low, and was recovered from some milt samples when none was isolated from the corresponding spleen sample. When male salmonids are tested for IHN virus, kidney or spleen samples are superior to whole milt, but milt should be included for critical examinations.

  11. Specific PCR for Myxobolus arcticus SSU rDNA in juvenile sockeye salmon Oncorhynchus nerka from British Columbia, Canada.

    PubMed

    Mahony, Amelia; Fraser, Sarah; Groman, David B; Jones, Simon R M

    2015-06-29

    A PCR for the specific detection of the salmon brain parasite Myxobolus arcticus (Pugachev and Khokhlov, 1979) was developed using primers designed to amplify a 1363 base pair fragment of the small subunit rDNA. The assay did not amplify DNA from 5 other Myxobolus species or from 7 other myxozoan species belonging to 5 other genera. For juvenile sockeye salmon Oncorhynchus nerka (Walbaum) collected from Chilko Lake, British Columbia (BC), Canada, in 2011, the prevalence by PCR was 96%, in contrast to 71% by histological examination of brain tissue. In 2010, the histological prevalence was 52.5%. Sequence identity between M. arcticus from Chilko Lake and other sites in BC ranged from 99.7 to 99.8% and was 99.6% for a Japanese sequence. In contrast, an M. arcticus sequence from Norway shared 95.3% identity with the Chilko Lake sequence, suggesting misidentification of the parasite. Chilko Lake sockeye salmon were previously reported free of infection with M. arcticus, and more research is required to understand the processes involved in the local and global dispersion of this parasite. PMID:26119303

  12. Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha) from Diverse Genetic Stocks and a Large Spatial Extent

    PubMed Central

    Scheuerell, Mark D.; Simenstad, Charles A.; Bottom, Daniel L.

    2016-01-01

    Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010–2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity. PMID:27695094

  13. Transportation of chinook salmon, Oncorhynchus tshawytscha, and steelhead, Salmo gairdneri, smolts in the Columbia River and effects on adult returns

    SciTech Connect

    Ebel, W.J.

    1980-04-01

    Chinook salmon, Oncorhynchus tshawytscha, and steelhead, Salmo gairdneri, were captured at Little Goose Dam in the Snake River during their seaward migration and transported 400 km downstream to the lower Columbia River below Bonneville Dam. Their survival was increased from 1.1 to 15 times as compared with control fish which passed by seven mainstem low-level dams and reservoirs. Variations in survival were mainly dependent on species and environmental conditions in the river during the period fish were transported. The homing ability of the adult fish was not significantly diminished; less than 0.2% of strays occurred among adult returns from groups transported. Transportation did not affect ocean age or size of returning adult steelhead, but ocean age of returning adult chinook salmon may have been affected. Steelhead returned to Little Goose Dam at a substantially higher rate (1.4 to 2.7%) than chinook salmon (0.1 to 0.8%) from groups transported. The timing of adult returns of both species to Little Goose Dam was not related to the time of capture and downstream release of smolts.

  14. Bioaccumulation of HCHs and DDTs in organs of Pacific salmon (genus Oncorhynchus) from the Sea of Okhotsk and the Bering Sea.

    PubMed

    Lukyanova, Olga N; Tsygankov, Vasiliy Yu; Boyarova, Margarita D; Khristoforova, Nadezhda K

    2016-08-01

    Concentrations of isomers of hexachlorocyclohexane (α-, β-, γ-HCH) and dichlorodiphenyltrichloroethane (DDT) and its metabolites (dichlorodiphenyldichloroethane (DDD) and dichlorodiphenyldichloroethylene (DDE) were assessed in organs of the pink (Oncorhynchus gorbuscha), chum (Oncorhynchus keta), chinook (Oncorhynchus tshawytscha), and sockeye salmon (Oncorhynchus nerka), caught near the Kuril Islands (the northern-western part of the Pacific Ocean), in the Sea of Okhotsk and the Bering Sea. Pesticides have been found to accumulate in fish organs in the following: muscles < liver < eggs < male gonads. The highest concentrations in muscles and liver have been recorded from sockeye. Of the DDT group, only DDE has been detected. The average concentration of HCHs + DDE in the muscles of pink, chum, chinook, and sockeye was 141, 125, 1241, 1641 ng/g lipids, respectively; and in the liver, 279, 183, 1305, 3805 ng/g lipids, respectively. The total concentration of HCHs isomers was higher than that of DDE. Average HCHs + DDE concentration in organs of salmon from study area is lower than that in salmon from Pacific coast of North America. PMID:27219293

  15. Exceptional aerobic scope and cardiovascular performance of pink salmon (Oncorhynchus gorbuscha) may underlie resilience in a warming climate.

    PubMed

    Clark, Timothy D; Jeffries, Kenneth M; Hinch, Scott G; Farrell, Anthony P

    2011-09-15

    Little is known of the physiological mechanisms underlying the effects of climate change on animals, yet it is clear that some species appear more resilient than others. As pink salmon (Oncorhynchus gorbuscha) in British Columbia, Canada, have flourished in the current era of climate warming in contrast to other Pacific salmonids in the same watershed, this study investigated whether the continuing success of pink salmon may be linked with exceptional cardiorespiratory adaptations and thermal tolerance of adult fish during their spawning migration. Sex-specific differences existed in minimum and maximum oxygen consumption rates (M(O2,min) and M(O2,max), respectively) across the temperature range of 8 to 28°C, reflected in a higher aerobic scope (M(O2,max)-M(O2,min)) for males. Nevertheless, the aerobic scope of both sexes was optimal at 21°C (T(opt)) and was elevated across the entire temperature range in comparison with other Pacific salmonids. As T(opt) for aerobic scope of this pink salmon population is higher than in other Pacific salmonids, and historic river temperature data reveal that this population rarely encounters temperatures exceeding T(opt), these findings offer a physiological explanation for the continuing success of this species throughout the current climate-warming period. Despite this, declining cardiac output was evident above 17°C, and maximum attainable swimming speed was impaired above ∼23°C, suggesting negative implications under prolonged thermal exposure. While forecasted summer river temperatures over the next century are likely to negatively impact all Pacific salmonids, we suggest that the cardiorespiratory capacity of pink salmon may confer a selective advantage over other species.

  16. Heritability and Y-chromosome influence in the jack male life history of chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Heath, D D; Rankin, L; Bryden, C A; Heath, J W; Shrimpton, J M

    2002-10-01

    Jacking in chinook salmon (Oncorhynchus tshawytscha) is an alternative reproductive strategy in which males sexually mature at least 1 year before other members of their year class. We characterize the genetic component of this reproductive strategy using two approaches; hormonal phenotypic sex manipulation, and a half-sib breeding experiment. We 'masculinized' chinook salmon larvae with testosterone, reared them to first maturation, identified jacks and immature males based on phenotype, and genotyped all fish as male ('XY') or female ('XX') using PCR-based Y-chromosome markers. The XY males had a much higher incidence of jacking than the XX males (30.8% vs 9.9%). There was no difference in body weight, gonad weight, and plasma concentrations of testosterone and 17beta-estradiol between the two jack genotypes, although XY jacks did have a higher gonadosomatic index (GSI) than XX jacks. In the second experiment, we bred chinook salmon in two modified half-sib mating designs, and scored the number of jacks and immature fish at first maturation. Heritability of jacking was estimated using two ANOVA models: dams nested within sires, and sires nested within dams with one-half of the half-sib families common to the two models. The sire component of the additive genetic variance yielded a high heritability estimate and was significantly higher than the dam component (h(2)(sire) = 0.62 +/- 0.21; h(2)(dam) = -0.14 +/- 0.12). Our experiments both indicated a strong sex-linked component (Y-chromosome) to jacking in chinook salmon, although evidence for at least some autosomal contribution was also observed. PMID:12242648

  17. Effects of temperature and growth hormone on individual growth trajectories of wild-type and transgenic coho salmon Oncorhynchus kisutch.

    PubMed

    Lõhmus, M; Björklund, M; Sundström, L F; Devlin, R H

    2010-02-01

    In this study, individual growth patterns of wild-type and growth-enhanced coho salmon Oncorhynchus kisutch at 8, 12 and 16 degrees C water temperature were followed. Despite large differences among individuals in growth rates, there was generally little variation in the shape of the growth curves among O. kisutch individuals of both genotypes and at all temperatures. Typically, individuals that were relatively large initially were also relatively large at the end of the growth period. The limitation in variation was more pronounced in the growth-enhanced O. kisutch than in the wild type, where the relative size of some individuals reared at 12 and 8 degrees C changed by the end of the trial. As a warmer temperature seems to decrease the plasticity of growth trajectories in wild-type fish, it is possible that global warming will influence the ability of wild fish to adapt their growth to changing conditions.

  18. Preliminary examination of oxidative stress in juvenile spring Chinook salmon Oncorhynchus tshawytscha of wild origin sampled from transport barges.

    PubMed

    Welker, T L; Congleton, J L

    2009-11-01

    Migrating juvenile wild Chinook salmon Oncorhynchus tshawytscha, collected and loaded onto transport barges at Lower Granite Dam on the Snake River, were sampled from barges at John Day Dam, 348 km downstream, at 5 day intervals beginning in late April and ending in late May. An increase in lipid peroxidation and decrease in vitamin E in liver were observed from early to late in the barge transportation season. These changes seemed unrelated to changes in plasma cortisol or corresponding glucose levels, which declined from early to late in the season, or the concentration of n-3 highly unsaturated fatty acid (HUFA) concentrations in tissue but may be related to water temperature, which increased during the transport season, or other changes associated with the parr-smolt transformation.

  19. Some physiological consequences of handling stress in the juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri)

    USGS Publications Warehouse

    Wedemeyer, Gary

    1972-01-01

    The stress of handling juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri) in soft water and in water with added salts was evaluated using blood and tissue chemistry fluctuations as indices of metabolic and endocrine function. Changes in plasma glucose, chloride, calcium, and cholesterol levels indicated that significant osmoregulatory and metabolic dysfunctions can occur and persist for about 24 hr after handling in soft water. Pituitary activation, as judged by lack of interrenal ascorbate depletion, did not occur. Increasing the ambient NaCl and Ca++ levels to about 100 milliosmols and 75–120 ppm, respectively, partially or completely alleviated the hyperglycemia and hypochloremia indicating that the stress of handling had been reduced.

  20. Evidence That GABA Mediates Dopaminergic and Serotonergic Pathways Associated with Locomotor Activity in Juvenile Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clements, S.; Schreck, C.B.

    2004-01-01

    The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems-gamma-amino-n-butyric acid (GABA), dopamine, and serotonin-as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAAagonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4???,4??? -difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.

  1. Using otolith chemical and structural analysis to investigate reservoir habitat use by juvenile Chinook salmon Oncorhynchus tshawytscha.

    PubMed

    Bourret, S L; Kennedy, B P; Caudill, C C; Chittaro, P M

    2014-11-01

    Isotopic composition of (87) Sr:(86) Sr and natural elemental tracers (Sr, Ba, Mg, Mn and Ca) were quantified from otoliths in juvenile and adult Chinook salmon Oncorhynchus tshawytscha to assess the ability of otolith microchemistry and microstructure to reconstruct juvenile O. tshawytscha rearing habitat and growth. Daily increments were measured to assess relative growth between natal rearing habitats. Otolith microchemistry was able to resolve juvenile habitat use between reservoir and natal tributary rearing habitats (within headwater basins), but not among catchments. Results suggest that 90% (n = 18) of sampled non-hatchery adults returning to the Middle Fork Willamette River were reared in a reservoir and 10% (n = 2) in natal tributary habitat upstream from the reservoir. Juveniles collected in reservoirs had higher growth rates than juveniles reared in natal streams. The results demonstrate the utility of otolith microchemistry and microstructure to distinguish among rearing habitats, including habitats in highly altered systems. PMID:25229130

  2. Triploidy does not decrease contents of eicosapentaenoic and docosahexaenoic acids in filets of pink salmon Oncorhynchus gorbuscha.

    PubMed

    Gladyshev, Michail I; Artamonova, Valentina S; Makhrov, Alexander A; Sushchik, Nadezhda N; Kalachova, Galina S; Dgebuadze, Yury Y

    2017-02-01

    Triploid fish has become an important item of commercial aquaculture, but data on its fatty acid (FA) composition are still controversial, especially regarding essential polyunsaturated fatty acids, eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA). We studied FA composition and content of diploid and triploid pink salmon Oncorhynchus gorbuscha, reared in aquaculture in a bay of the White Sea (Russia). FA composition, measured as percentages of total FA of triploids and immature diploid females significantly differed from that of mature diploid fish. Specifically, mature diploids had higher percentage of EPA and DHA in their muscle tissue (filets) compared to that of triploids and immature diploid females. Nevertheless, the contents of EPA and DHA per mass of the filets in diploid and triploid specimens were similar. Thus, no special efforts are needed to improve EPA and DHA contents in filets of triploids. PMID:27596393

  3. Ecological relationship between freshwater sculpins (Genus cottus) and beach-spawning sockeye salmon (Oncorhynchus nerka) in Iliamna Lake, Alaska

    USGS Publications Warehouse

    Foote, C.J.; Brown, G.S.

    1998-01-01

    The interaction between two sculpin species, Cottus cognatus and Cottus aleuticus, and island beach spawning sockeye salmon (Oncorhynchus nerka) was examined in Iliamna Lake, Alaska. We conclude that sculpins actively move to specific spawning beaches and that the initiation of their movements precedes the start of spawning. Sculpin predation on sockeye eggs is positively dependent on sculpin size and on the state of the eggs (fresh versus water hardened), with the largest sculpins able to consume nearly 50 fresh eggs at a single feeding and 130 over a 7-day period. The number of sculpins in sockeye nests is greatest at the beginning of the spawning run, lowest in the middle, and high again at the end, with peak numbers of over 100 sculpins per nest (1 m2). We discuss the results in terms of energy flow of marine-derived nutrients into an oligotrophic system and in terms of the coevolution of sockeye spawning behavior and the predatory behavior of sculpins.

  4. Mortality due to infectious hematopoietic necrosis of sockeye salmon (Oncorhynchus nerka) fry in streamside egg incubation boxes

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.; Jenes, C.K.

    1983-01-01

    Infectious hematopoietic necrosis virus caused mortality of sockeye salmon (Oncorhynchus nerka) in streamside egg incubation boxes. Virus was not detectable in eggs or alevins; its first isolation coincided with the appearance of dead fish in a trap on the outflow from the box. Mortality due to the virus did not occur in every egg box studied. However, when fry from the boxes were held in the laboratory, epizootics began as much as 3 wk later, with total mortality exceeding 90%. More than 96% of the dead fry had titers exceeding 105 plaque-forming units per gram. The peak incidence of virus in fry migrating in the river coincided with the arrival of hatchery-produced fry, although some fry believed to have been produced by natural spawning were also infected.Englis

  5. Appearance and quantification of infectious hematopoietic necrosis virus in female sockeye salmon (Oncorhynchus nerka) during their spawning migration

    USGS Publications Warehouse

    Mulcahy, D.; Jenes, C.K.; Pascho, R.J.

    1984-01-01

    The incidence and amount of infectious hematopoietic necrosis (IHN) virus was determined in 10 organs and body fluids from each of 100 female sockeye salmon(Oncorhynchus nerka) before, during, and after their spawning migration into freshwater. Virus was found in high concentrations only in fish sampled during and after spawning. Infection rates increased from nil to 100 percent within 2 weeks. In spawning fish, incidences of IHN virus were high in all organs and fluids except brain and serum, and the highest concentrations were in the pyloric caeca and lower gut. Immediately before spawning, IHN virus was found most frequently in the gills, less frequently in the pyloric caeca and spleen, and rarely in other organs.

  6. Using hierarchical models to estimate effects of ocean anomalies on north-west Pacific Chinook salmon Oncorhynchus tshawytscha recruitment.

    PubMed

    Sharma, R; Liermann, M

    2010-11-01

    The high variability in survival over the past three decades of north-west Pacific Chinook salmon Oncorhynchus tshawytscha is summarized for 24 stocks and analysed using hierarchical Bayesian models. Results from a simple model indicate that recruitment anomalies appear to be correlated in time and space. A simple model with a covariate based on basin-scale effects (Pacific Decadal Oscillation and El Niño Southern Oscillation) and local-scale effects (sea surface temperature, SST anomaly) was introduced to explain this variability. The model still exhibited residual patterns that were removed when a random-walk component was added to the model. The analysis indicates that recruitment is negatively related to SST anomaly for all stocks and the effect of basin-scale variables is negligible. The effect of climate over the next century is expected to result in estimated recruitment declining by an average of 13% for O. tshawytscha stocks coastwide.

  7. Residues of DDT in lake trout (Salvelinus namaycush) and coho salmon (Oncorhynchus kisutch) from the Great Lakes

    USGS Publications Warehouse

    Reinert, Robert E.; Bergman, Harold L.

    1974-01-01

    Concentrations of DDT residues were higher in lake trout (Salvelinus namaycush) from southern Lake Michigan in 1966–70 (average 18.1 ppm in fish 558–684 mm long) than in lake trout of the same size-class from Lake Superior in 1968–69 (4.4 ppm), and higher in adult coho salmon (Oncorhynchus kisutch) from Lake Michigan in 1968–71 (averages for different year-classes, 9.9–14.0 ppm) than in those from Lake Erie in 1969 (2.2 ppm). Residues were significantly higher in lake trout from southern Lake Michigan than in those from the northern part of the lake. In lakes Michigan and Superior, the levels increased with length of fish and percentage oil. In Lake Michigan coho salmon, the residues remained nearly stable (2–4 ppm) from September of the 1st yr of lake residence through May or early June of the 2nd yr, but increased three to four times in the next 3 mo. Residues in Lake Erie coho salmon did not increase during this period, which preceded the spawning season. Although the concentrations of total residues in whole, maturing Lake Michigan coho salmon remained unchanged from August 1968 until near the end of the spawning season in January 1969, the residues were redistributed in the tissues of the spawning-run fish; concentrations in the loin and brain were markedly higher in January than in August. This relocation of DDT residues accompanied a marked decrease in the percentage of oil in the fish, from 13.2 in August to 2.8 in January. Concentrations of residues were relatively high in eggs of both lake trout (4.6 ppm) and coho salmon (7.4–10.2 ppm) from Lake Michigan. The percentage composition of the residues (p,p′DDE, o,p′/DDT, p,p′DDT, and p,p′DDT) did not differ significantly with life stage, size, age, or locality, or date of collection of lake trout or coho salmon.

  8. Mortality and kidney histopathology of Chinook salmon Oncorhynchus tshawytscha exposed to virulent and attenuated Renibacterium salmoninarum strains

    USGS Publications Warehouse

    O'Farrell, Caroline L.; Elliott, Diane G.; Landolt, Marsha L.

    2001-01-01

    An isolate of Renibacterium salmoninarum (strain MT 239) exhibiting reduced virulence in rainbow trout Oncorhynchus mykiss was tested for its ability to cause bacterial kidney disease (BKD) in chinook salmon Oncorhynchus tshawytscha, a salmonid species more susceptible to BKD. Juvenile chinook salmon were exposed to either 33209, the American Type Culture Collection type strain of R. salmoninarum, or to MT 239, by an intraperitoneal injection of 1 x 10(3) or 1 x 10(6) bacteria fish(-1), or by a 24 h immersion in 1 x 10(5) or 1 x 10(7) bacteria ml(-1). For 22 wk fish were held in 12 degrees C water and monitored for mortality. Fish were sampled periodically for histological examination of kidney tissues. In contrast to fish exposed to the high dose of strain 33209 by either injection or immersion, none of the fish exposed to strain MT 239 by either route exhibited gross clinical signs or histopathological changes indicative of BKD. However, the MT 239 strain was detected by the direct fluorescent antibody technique in 4 fish that died up to 11 wk after the injection challenge and in 5 fish that died up to 20 wk after the immersion challenge. Viable MT 239 was isolated in culture from 3 fish that died up to 13 wk after the immersion challenge. Total mortality in groups injected with the high dose of strain MT 239 (12%) was also significantly lower (p < 0.05) than mortality in groups injected with strain 33209 (73 %). These data indicate that the attenuated virulence observed with MT 239 in rainbow trout also occurs in a salmonid species highly susceptible to BKD. The reasons for the attenuated virulence of MT 239 were not determined but may be related to the reduced levels of the putative virulence protein p57 associated with this strain.

  9. Mortality and kidney histopathology of chinook salmon Oncorhynchus tshawytscha exposed to virulent and attenuated Renibacterium salmoninarum strains

    USGS Publications Warehouse

    O'Farrell, C. L.; Elliott, D.G.; Landolt, M.L.

    2000-01-01

    An isolate of Renibacterium salmoninarum (strain MT 239) exhibiting reduced virulence in rainbow trout Oncorhynchus mykiss was tested for its ability to cause bacterial kidney disease (BKD) in chinook salmon Oncorhynchus tshawytscha, a salmonid species more susceptible to BKD. Juvenile chinook salmon were exposed to either 33209, the American Type Culture Collection type strain of R. salmoninarum, or to MT 239, by an intraperitoneal injection of 1 ?? 103 or 1 ?? 106 bacteria fish-1, or by a 24 h immersion in 1 ?? 105 or 1 ?? 107 bacteria ml-1. For 22 wk fish were held in 12??C water and monitored for mortality. Fish were sampled periodically for histological examination of kidney tissues. In contrast to fish exposed to the high dose of strain 33209 by either injection or immersion, none of the fish exposed to strain MT 239 by either route exhibited gross clinical signs or histopathological changes indicative of BKD. However, the MT 239 strain was detected by the direct fluorescent antibody technique in 4 fish that died up to 11 wk after the injection challenge and in 5 fish that died up to 20 wk after the immersion challenge. Viable MT 239 was isolated in culture from 3 fish that died up to 13 wk after the immersion challenge. Total mortality in groups injected with the high dose of strain MT 239 (12%) was also significantly lower (p < 0.05) than mortality in groups injected with strain 33209 (73%). These data indicate that the attenuated virulence observed with MT 239 in rainbow trout also occurs in a salmonid species highly susceptible to BKD. The reasons for the attenuated virulence of MT 239 were not determined but may be related to the reduced levels of the putative virulence protein p57 associated with this strain.

  10. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    USGS Publications Warehouse

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  11. Physical and nutritional properties of baby food containing added red salmon oil (Oncorhynchus nerka) and microencapsulated red salmon oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unpurified red salmon oil (UPSO) was purified (PSO) using chitosan. Both unpurified and purified oils were evaluated for peroxide value (PV), free fatty acids (FFA), fatty acid methyl esters (FAME), moisture, and color. An emulsion system containing PSO (EPSO) was prepared: system was analyzed for c...

  12. Using remotely sensed imagery and GIS to monitor and research salmon spawning: A case study of the Hanford Reach fall chinook (Oncorhynchus Tshawytscha)

    SciTech Connect

    RH Visser

    2000-03-16

    The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., the Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities.

  13. A time-lapse photography method for monitoring salmon (Oncorhynchus spp.) passage and abundance in streams.

    PubMed

    Deacy, William W; Leacock, William B; Eby, Lisa A; Stanford, Jack A

    2016-01-01

    Accurately estimating population sizes is often a critical component of fisheries research and management. Although there is a growing appreciation of the importance of small-scale salmon population dynamics to the stability of salmon stock-complexes, our understanding of these populations is constrained by a lack of efficient and cost-effective monitoring tools for streams. Weirs are expensive, labor intensive, and can disrupt natural fish movements. While conventional video systems avoid some of these shortcomings, they are expensive and require excessive amounts of labor to review footage for data collection. Here, we present a novel method for quantifying salmon in small streams (<15 m wide, <1 m deep) that uses both time-lapse photography and video in a model-based double sampling scheme. This method produces an escapement estimate nearly as accurate as a video-only approach, but with substantially less labor, money, and effort. It requires servicing only every 14 days, detects salmon 24 h/day, is inexpensive, and produces escapement estimates with confidence intervals. In addition to escapement estimation, we present a method for estimating in-stream salmon abundance across time, data needed by researchers interested in predator--prey interactions or nutrient subsidies. We combined daily salmon passage estimates with stream specific estimates of daily mortality developed using previously published data. To demonstrate proof of concept for these methods, we present results from two streams in southwest Kodiak Island, Alaska in which high densities of sockeye salmon spawn. PMID:27326378

  14. A time-lapse photography method for monitoring salmon (Oncorhynchus spp.) passage and abundance in streams.

    PubMed

    Deacy, William W; Leacock, William B; Eby, Lisa A; Stanford, Jack A

    2016-01-01

    Accurately estimating population sizes is often a critical component of fisheries research and management. Although there is a growing appreciation of the importance of small-scale salmon population dynamics to the stability of salmon stock-complexes, our understanding of these populations is constrained by a lack of efficient and cost-effective monitoring tools for streams. Weirs are expensive, labor intensive, and can disrupt natural fish movements. While conventional video systems avoid some of these shortcomings, they are expensive and require excessive amounts of labor to review footage for data collection. Here, we present a novel method for quantifying salmon in small streams (<15 m wide, <1 m deep) that uses both time-lapse photography and video in a model-based double sampling scheme. This method produces an escapement estimate nearly as accurate as a video-only approach, but with substantially less labor, money, and effort. It requires servicing only every 14 days, detects salmon 24 h/day, is inexpensive, and produces escapement estimates with confidence intervals. In addition to escapement estimation, we present a method for estimating in-stream salmon abundance across time, data needed by researchers interested in predator--prey interactions or nutrient subsidies. We combined daily salmon passage estimates with stream specific estimates of daily mortality developed using previously published data. To demonstrate proof of concept for these methods, we present results from two streams in southwest Kodiak Island, Alaska in which high densities of sockeye salmon spawn.

  15. A time-lapse photography method for monitoring salmon (Oncorhynchus spp.) passage and abundance in streams

    PubMed Central

    Leacock, William B.; Eby, Lisa A.; Stanford, Jack A.

    2016-01-01

    Accurately estimating population sizes is often a critical component of fisheries research and management. Although there is a growing appreciation of the importance of small-scale salmon population dynamics to the stability of salmon stock-complexes, our understanding of these populations is constrained by a lack of efficient and cost-effective monitoring tools for streams. Weirs are expensive, labor intensive, and can disrupt natural fish movements. While conventional video systems avoid some of these shortcomings, they are expensive and require excessive amounts of labor to review footage for data collection. Here, we present a novel method for quantifying salmon in small streams (<15 m wide, <1 m deep) that uses both time-lapse photography and video in a model-based double sampling scheme. This method produces an escapement estimate nearly as accurate as a video-only approach, but with substantially less labor, money, and effort. It requires servicing only every 14 days, detects salmon 24 h/day, is inexpensive, and produces escapement estimates with confidence intervals. In addition to escapement estimation, we present a method for estimating in-stream salmon abundance across time, data needed by researchers interested in predator--prey interactions or nutrient subsidies. We combined daily salmon passage estimates with stream specific estimates of daily mortality developed using previously published data. To demonstrate proof of concept for these methods, we present results from two streams in southwest Kodiak Island, Alaska in which high densities of sockeye salmon spawn. PMID:27326378

  16. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    SciTech Connect

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.

  17. Growth and condition of juvenile coho salmon Oncorhynchus kisutch relate positively to species richness of trophically transmitted parasites.

    PubMed

    Losee, J P; Fisher, J; Teel, D J; Baldwin, R E; Marcogliese, D J; Jacobson, K C

    2014-11-01

    The aims of this study were first, to test the hypothesis that metrics of fish growth and condition relate positively to parasite species richness (S(R)) in a salmonid host; second, to identify whether S(R) differs as a function of host origin; third, to identify whether acquisition of parasites through marine v. freshwater trophic interactions was related to growth and condition of juvenile salmonids. To evaluate these questions, species diversity of trophically transmitted parasites in juvenile coho salmon Oncorhynchus kisutch collected off the coast of the Oregon and Washington states, U.S.A. in June 2002 and 2004 were analysed. Fish infected with three or more parasite species scored highest in metrics of growth and condition. Fish originating from the Columbia River basin had lower S(R) than those from the Oregon coast, Washington coast and Puget Sound, WA. Parasites obtained through freshwater or marine trophic interactions were equally important in the relationship between S(R) and ocean growth and condition of juvenile O. kisutch salmon.

  18. Duplicated Clock genes with unique polyglutamine domains provide evidence for nonhomologous recombination in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    O'Malley, K G; Banks, M A

    2008-01-01

    Circadian rhythms underlie diverse life functions ranging from cellular activities to behavior. Multiple clock genes play a central role in the generation of these rhythms. We partially characterized two copies of the Clock gene from Chinook salmon (Oncorhynchus tshawytscha), OtsClock1a and OtsClock1b. The 6,460 bp OtsClock1a sequence contains 16 exons, 15 introns and encompasses three highly conserved domains indicating it is a novel member of the bHLH-PAS superfamily of transcription factors. The second copy, OtsClock1b, consists of five exons and five introns spanning 1,945 bp. A polyglutamine repeat motif (PolyQ), characteristic of a majority of CLOCK proteins, is present in both OTSCLOCK1a and OTSCLOCK1b. However, the Chinook PolyQ domains are uniquely positioned inside the gene. Interestingly, a 1,200 bp non-coding segment located downstream of the OtsClock1a PolyQ domain is absent from OtsClock1b. This insertion/deletion is 91% similar to the Salmo salar Transferrin gene. A phylogenetic analysis of 11 CLOCK proteins shows that OtsClock1a and OtsClock1b are paralogs which likely arose subsequent to the salmonid genome-wide duplication event. Ultimately, the Chinook salmon Clock genes are key components to our understanding the genetic mechanisms underlying temporally regulated life history traits in Pacific salmonids. PMID:17503191

  19. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon

    USGS Publications Warehouse

    Garver, K.A.; LaPatra, S.E.; Kurath, G.

    2005-01-01

    The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 ??g doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish. ?? Inter-Research 2005.

  20. Relationships between mesoscale morphological units, stream hydraulics and Chinook salmon ( Oncorhynchus tshawytscha) spawning habitat on the Lower Yuba River, California

    NASA Astrophysics Data System (ADS)

    Moir, Hamish J.; Pasternack, Gregory B.

    2008-08-01

    An expert-based approach was used to identify 10 morphological unit types within a reach of the gravel bed, regulated Yuba River, California, that is heavily utilized by spawning Chinook salmon ( Oncorhynchus tshawytscha). Analysis of these units was carried out using two-dimensional hydrodynamic modeling, field-based geomorphic assessment, and detailed spawning surveying. Differently classified morphological units tended to exhibit discrete hydraulic signatures. In most cases, the Froude number adequately differentiated morphological units, but joint depth-velocity distributions proved the most effective hydraulic classification approach. Spawning activity was statistically differentiated at the mesoscale of the morphological unit. Salmon preferred lateral bar, riffle, and riffle entrance units. These units had moderately high velocity (unit median > 0.45 m s - 1 ) and low depth (unit median < 0.6 m), but each exhibited a unique joint depth-velocity distribution. A large proportion of redds (79%) were associated with conditions of convective flow acceleration at riffle and riffle entrance locations. In addition to reflecting microhabitat requirements of fish, it was proposed that the hydraulic segregation of preferred from avoided or tolerated morphological units was linked to the mutual association of specific hydraulic conditions with suitable caliber sediment that promotes the provision and maintenance of spawning habitat.

  1. The influence of hydrology and waterway distance on population structure of Chinook salmon Oncorhynchus tshawytscha in a large river.

    PubMed

    Olsen, J B; Beacham, T D; Wetklo, M; Seeb, L W; Smith, C T; Flannery, B G; Wenburg, J K

    2010-04-01

    Adult Chinook salmon Oncorhynchus tshawytscha navigate in river systems using olfactory cues that may be influenced by hydrologic factors such as flow and the number, size and spatial distribution of tributaries. Thus, river hydrology may influence both homing success and the level of straying (gene flow), which in turn influences population structure. In this study, two methods of multivariate analysis were used to examine the extent to which four indicators of hydrology and waterway distance explained population structure of O. tshawytscha in the Yukon River. A partial Mantel test showed that the indicators of hydrology were positively associated with broad-scale (Yukon basin) population structure, when controlling for the influence of waterway distance. Multivariate multiple regression showed that waterway distance, supplemented with the number and flow of major drainage basins, explained more variation in broad-scale population structure than any single indicator. At an intermediate spatial scale, indicators of hydrology did not appear to influence population structure after accounting for waterway distance. These results suggest that habitat changes in the Yukon River, which alter hydrology, may influence the basin-wide pattern of population structure in O. tshawytscha. Further research is warranted on the role of hydrology in concert with waterway distance in influencing population structure in Pacific salmon.

  2. Effects of disturbance on contribution of energy sources to growth of juvenile chinook salmon (Oncorhynchus tshawytscha) in boreal streams

    USGS Publications Warehouse

    Perry, R.W.; Bradford, M.J.; Grout, J.A.

    2003-01-01

    We used stable isotopes of carbon in a growth-dependent tissue-turnover model to quantify the relative contribution of autochthonous and terrestrial energy sources to juvenile chinook salmon (Oncorhynchus tshawytscha) in five small boreal streams tributary to the upper Yukon River. We used a tissue-turnover model because fish did not grow enough to come into isotopic equilibrium with their diet. In two streams, autochthonous energy sources contributed 23 and 41% to the growth of juvenile salmon. In the other three, fish growth was largely due to terrestrial (i.e., allochthonous) energy sources. This low contribution of autochthonous energy appeared to be related to stream-specific disturbances: a recent forest fire impacted two of the streams and the third was affected by a large midsummer spate during the study. These disturbances reduced the relative abundance of herbivorous macroinvertebrates, the contribution of autochthonous material to other invertebrates, and ultimately, the energy flow between stream algae and fish. Our findings suggest that disturbances to streams can be an important mechanism affecting transfer of primary energy sources to higher trophic levels.

  3. Genetic effects of ELISA-based segregation for control of bacterial kidney disease in Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Hard, J.J.; Elliott, D.G.; Pascho, R.J.; Chase, D.M.; Park, L.K.; Winton, J.R.; Campton, D.E.

    2006-01-01

    We evaluated genetic variation in ability of Chinook salmon (Oncorhynchus tshawytscha) to resist two bacterial pathogens: Renibacterium salmoninarum, the agent of bacterial kidney disease (BKD), and Listonella anguillarum, an agent of vibriosis. After measuring R. salmoninarum antigen in 499 adults by enzyme-linked immunosorbent assay (ELISA), we mated each of 12 males with high or low antigen levels to two females with low to moderate levels and exposed subsets of their progeny to each pathogen separately. We found no correlation between R. salmoninarum antigen level in parents and survival of their progeny following pathogen exposure. We estimated high heritability for resistance to R. salmoninarum (survival h2 = 0.890 ?? 0.256 (mean ?? standard error)) independent of parental antigen level, but low heritability for resistance to L. anguillarum (h2 = 0.128 ?? 0.078). The genetic correlation between these survivals (rA = -0.204 ?? 0.309) was near zero. The genetic and phenotypic correlations between survival and antigen levels among surviving progeny exposed to R. salmoninarum were both negative (rA = -0.716 ?? 0.140; rP = -0.378 ?? 0.041), indicating that variation in antigen level is linked to survival. These results suggest that selective culling of female broodstock with high antigen titers, which is effective in controlling BKD in salmon hatcheries, will not affect resistance of their progeny. ?? 2006 NRC.

  4. Effects of surgically and gastrically implanted radio transmitters on swimming performance and predator avoidance of juvenile chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Adams, N.S.; Rondorf, D.W.; Evans, S.D.; Kelly, J.E.; Perry, R.W.

    1998-01-01

    Radiotelemetry data are often used to make inferences about an entire study population; therefore, the transmitter attachment method should be the one that least affects the study animal. Juvenile chinook salmon (Oncorhynchus tshawytscha) <120 mm in fork length (FL) with either gastrically or surgically implanted transmitters had significantly lower critical swimming speeds than control fish 1 and 19-23 days after tagging. For fish >120 mm FL, fish with gastric implants swam as well as controls 1 day but not 19-23 days after tagging. In contrast, fish with surgical implants swam as well as controls 19-23 days but not 1 day after tagging. During predation trials, fish with gastric or surgical implants were eaten by smallmouth bass (Micropterus dolomieu) in significantly greater numbers than controls. We do not recommend implanting transmitters (representing 4.6-10.4% of the fish's body weight) in fish <120 mm FL. Furthermore, surgical implants (representing 2.2-5.6% of the fish's body weight) may be the preferred method for biotelemetry studies of juvenile chinook salmon >120 mm FL.

  5. Effects of oil-contaminated prey on the feeding, growth, and related energetics on pink salmon, Oncorhynchus gorbuscha Walbaum, fry

    SciTech Connect

    Schwartz, J.P.

    1984-01-01

    Pink salmon, Oncorhynchus gorbuscha Walbaum, fry were exposed to oil contaminated prey (OCP) in a series of experiments to determine the effect of oil exposure via the diet on the ability of pink fry to survive. Brine shrimp, Artemia salina, nauplii were contaminated with petroleum hydrocarbons by exposure to the water-soluble fraction (WSF) of Cook Inlet crude oil and fed to the fish. Feeding rates were measured for 10 days using OCP and for 5 days using uncontaminated prey (post-exposure period). In a separate experiment, fry growth was measured over a 50 day period. In another experiment, fry oxygen consumption, food absorption and utilization, and ammonia excretion was measured to determine the effects of OCP on fry metabolic activity. Results indicate that exposure to OCP can reduce fry growth primarily by reducing food intake, but additional nutrition is lost from the non-absorption of ingested food. Reductions in growth could decrease fry survival, and thereby reduce the number of returning adult pink salmon.

  6. Identification of Multiple QTL Hotspots in Sockeye Salmon (Oncorhynchus nerka) Using Genotyping-by-Sequencing and a Dense Linkage Map.

    PubMed

    Larson, Wesley A; McKinney, Garrett J; Limborg, Morten T; Everett, Meredith V; Seeb, Lisa W; Seeb, James E

    2016-03-01

    Understanding the genetic architecture of phenotypic traits can provide important information about the mechanisms and genomic regions involved in local adaptation and speciation. Here, we used genotyping-by-sequencing and a combination of previously published and newly generated data to construct sex-specific linkage maps for sockeye salmon (Oncorhynchus nerka). We then used the denser female linkage map to conduct quantitative trait locus (QTL) analysis for 4 phenotypic traits in 3 families. The female linkage map consisted of 6322 loci distributed across 29 linkage groups and was 4082 cM long, and the male map contained 2179 loci found on 28 linkage groups and was 2291 cM long. We found 26 QTL: 6 for thermotolerance, 5 for length, 9 for weight, and 6 for condition factor. QTL were distributed nonrandomly across the genome and were often found in hotspots containing multiple QTL for a variety of phenotypic traits. These hotspots may represent adaptively important regions and are excellent candidates for future research. Comparing our results with studies in other salmonids revealed several regions with overlapping QTL for the same phenotypic trait, indicating these regions may be adaptively important across multiple species. Altogether, our study demonstrates the utility of genomic data for investigating the genetic basis of important phenotypic traits. Additionally, the linkage map created here will enable future research on the genetic basis of phenotypic traits in salmon. PMID:26712859

  7. Sockeye salmon (Oncorhynchus nerka) return after an absence of nearly 90 years: A case of reversion to anadromy

    USGS Publications Warehouse

    Godbout, L.; Wood, C.C.; Withler, R.E.; Latham, S.; Nelson, R.J.; Wetzel, L.; Barnett-Johnson, R.; Grove, M.J.; Schmitt, A.K.; McKeegan, K.D.

    2011-01-01

    We document the recent reappearance of anadromous sockeye salmon (Oncorhynchus nerka) that were thought to have been extirpated by the construction of hydroelectric dams on the Coquitlam and Alouette rivers in British Columbia, Canada, in 1914 and 1927, respectively. Unexpected downstream migrations of juveniles during experimental water releases into both rivers in 2005 and 2006 preceded upstream return migrations of adults in 2007 and 2008. Genetic (microsatellite and mitochondrial DNA) markers and stable isotope (??34S and 87Sr/86Sr) patterns in otoliths confirm that both the juvenile downstream migrants and adult upstream migrants were progeny of nonanadromous sockeye salmon (kokanee) that inhabit Coquitlam and Alouette reservoirs. Low genetic diversity and evidence of genetic bottlenecks suggest that the kokanee populations in both reservoirs originated from relatively few anadromous individuals that residualized after downstream migration was largely prevented by the construction of dams. Once given an opportunity for upstream and downstream migration, both populations appear capable of reverting to a successful anadromous form, even after 25 generations.

  8. Rapid growth in the early marine period improves the marine survival of Chinook salmon (Oncorhynchus tshawytscha) in Puget Sound, Washington

    USGS Publications Warehouse

    Duffy, Elisabeth J.; Beauchamp, David A.

    2011-01-01

    We examined the effect of early marine entry timing and body size on the marine (smolt-to-adult) survival of Puget Sound Chinook salmon (Oncorhynchus tshawytscha). We used data from coded wire tag release groups of hatchery Chinook salmon to test whether hatchery release date, release size, and size in offshore waters in July and September influenced marine survival. Marine survival was most strongly related to the average body size in July, with larger sizes associated with higher survivals. This relationship was consistent over multiple years (1997–2002), suggesting that mortality after July is strongly size-dependent. Release size and date only slightly improved this relationship, whereas size in September showed little relationship to marine survival. Specifically, fish that experienced the highest marine survivals were released before 25 May and were larger than 17 g (or 120 mm fork length) by July. Our findings highlight the importance of local conditions in Puget Sound (Washington, USA) during the spring and summer, and suggest that declines in marine survival since the 1980s may have been caused by reductions in the quality of feeding and growing conditions during early marine life.

  9. Rapid growth in the early marine period improves the marine survival of Chinook salmon (Oncorhynchus tshawytscha) in Puget Sound, Washington

    USGS Publications Warehouse

    Duffy, E.J.; Beauchamp, D.A.

    2011-01-01

    We examined the effect of early marine entry timing and body size on the marine (smolt-to-adult) survival of Puget Sound Chinook salmon (Oncorhynchus tshawytscha). We used data from coded wire tag release groups of hatchery Chinook salmon to test whether hatchery release date, release size, and size in offshore waters in July and September influenced marine survival. Marine survival was most strongly related to the average body size in July, with larger sizes associated with higher survivals. This relationship was consistent over multiple years (1997-2002), suggesting that mortality after July is strongly size-dependent. Release size and date only slightly improved this relationship, whereas size in September showed little relationship to marine survival. Specifically, fish that experienced the highest marine survivals were released before 25 May and were larger than 17 g (or 120 mm fork length) by July. Our findings highlight the importance of local conditions in Puget Sound (Washington, USA) during the spring and summer, and suggest that declines in marine survival since the 1980s may have been caused by reductions in the quality of feeding and growing conditions during early marine life.

  10. Effect of salinity changes on olfactory memory-related genes and hormones in adult chum salmon Oncorhynchus keta.

    PubMed

    Kim, Na Na; Choi, Young Jae; Lim, Sang-Gu; Jeong, Minhwan; Jin, Deuk-Hee; Choi, Cheol Young

    2015-09-01

    Studies of memory formation have recently concentrated on the possible role of N-methyl-d-aspartate receptors (NRs). We examined changes in the expression of three NRs (NR1, NR2B, and NR2C), olfactory receptor (OR), and adrenocorticotropic hormone (ACTH) in chum salmon Oncorhynchus keta using quantitative polymerase chain reaction (QPCR) during salinity change (seawater→50% seawater→freshwater). NRs were significantly detected in the diencephalon and telencephalon and OR was significantly detected in the olfactory epithelium. The expression of NRs, OR, and ACTH increased after the transition to freshwater. We also determined that treatment with MK-801, an antagonist of NRs, decreased NRs in telencephalon cells. In addition, a reduction in salinity was associated with increased levels of dopamine, ACTH, and cortisol (in vivo). Reductions in salinity evidently caused NRs and OR to increase the expression of cortisol and dopamine. We concluded that memory capacity and olfactory imprinting of salmon is related to the salinity of the environment during the migration to spawning sites. Furthermore, salinity affects the memory/imprinting and olfactory abilities, and cortisol and dopamine is also related with olfactory-related memories during migration.

  11. Evaluation of fast green FCF dye for non-lethal detection of integumental injuries in juvenile Chinook salmon Oncorhynchus tshawytscha.

    PubMed

    Elliott, Diane G; Conway, Carla M; Applegate, LynnMarie J

    2009-04-01

    A rapid staining procedure for detection of recent skin and fin injuries was tested in juvenile Chinook salmon Oncorhynchus tshawytscha. Immersion of anesthetized fish for 1 min in aerated aqueous solutions of the synthetic food dye fast green FCF (Food Green 3) at concentrations of 0.1 to 0.5% produced consistent and visible staining of integumental injuries. A 0.1% fast green concentration was satisfactory for visual evaluation of injuries, whereas a 0.5% concentration was preferable for digital photography. A rinsing procedure comprised of two 30 s rinses in fresh water was most effective for removal of excess stain after exposure of fish. Survival studies in fresh water and seawater and histopathological analyses indicated that short exposures to aqueous solutions of fast green were non-toxic to juvenile Chinook salmon. In comparisons of the gross and microscopic appearance of fish exposed to fast green at various times after injury, the dye was observed only in areas of the body where epidermal disruption was present as determined by scanning electron microscopy. No dye was observed in areas where epidermal integrity had been restored. Further comparisons showed that fast green exposure produced more consistent and intense staining of skin injury sites than a previously published procedure using trypan blue. Because of its relatively low cost, ease of use and the rapid and specific staining of integumental injuries, fast green may find widespread application in fish health and surface injury evaluations.

  12. Evaluation of fast green FCF dye for non-lethal detection of integumental injuries in juvenile chinook salmon oncorhynchus tshawytscha

    USGS Publications Warehouse

    Elliott, D.G.; Conway, C.M.; Applegate, L.M.J.

    2009-01-01

    A rapid staining procedure for detection of recent skin and fin injuries was tested in juvenile Chinook salmon Oncorhynchus tshawytscha. Immersion of anesthetized fish for 1 min in aerated aqueous solutions of the synthetic food dye fast green FCF (Food Green 3) at concentrations of 0.1 to 0.5% produced consistent and visible staining of integumental injuries. A 0.1% fast green concentration was satisfactory for visual evaluation of injuries, whereas a 0.5% concentration was preferable for digital photography. A rinsing procedure comprised of two 30 s rinses in fresh water was most effective for removal of excess stain after exposure of fish. Survival studies in fresh water and seawater and histopathological analyses indicated that short exposures to aqueous solutions of fast green were non-toxic to juvenile Chinook salmon. In comparisons of the gross and microscopic appearance of fish exposed to fast green at various times after injury, the dye was observed only in areas of the body where epidermal disruption was present as determined by scanning electron microscopy. No dye was observed in areas where epidermal integrity had been restored. Further comparisons showed that fast green exposure produced more consistent and intense staining of skin injury sites than a previously published procedure using trypan blue. Because of its relatively low cost, ease of use and the rapid and specific staining of integumental injuries, fast green may find widespread application in fish health and surface injury evaluations. ?? Inter-Research 2009.

  13. Freshwater movement patterns by juvenile Pacific salmon Oncorhynchus spp. before they migrate to the ocean: Oh the places you'll go!

    PubMed

    Shrimpton, J M; Warren, K D; Todd, N L; McRae, C J; Glova, G J; Telmer, K H; Clarke, A D

    2014-10-01

    Juvenile movement patterns for coho salmon Oncorhynchus kisutch and Chinook salmon Oncorhynchus tshawytscha from two large interior rivers of British Columbia, Canada, were examined. Otoliths from post-spawned fishes were collected on spawning grounds and elemental signatures were determined through transects from sectioned otoliths using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Large variations in otolith elemental signatures were found during the freshwater life stage indicative of movement downstream to rivers and tributaries that differed in elemental signature. This study highlights that downstream movements occur before migration to the ocean during the parr-smolt transformation. Extensive downstream movements of parr appear to be a successful life-history strategy based on variations observed in the otolith elemental signatures of spawners. Movements downstream in parr and the remarkable homing ability of adults also suggest that imprinting to natal streams must occur prior to the parr-smolt transformation. PMID:25053226

  14. Effects of seawater transfer and fasting on the endocrine and biochemical growth indices in juvenile chum salmon (Oncorhynchus keta).

    PubMed

    Taniyama, Natsumi; Kaneko, Nobuto; Inatani, Yu; Miyakoshi, Yasuyuki; Shimizu, Munetaka

    2016-09-15

    Insulin-like growth factor (IGF)-I, IGF-binding protein (IGFBP)-1 and RNA/DNA ratio are endocrine and biochemical parameters used as growth indices in fish, however, they are subjected to environmental modulation. Chum salmon (Oncorhynchus keta) migrate from freshwater (FW) to seawater (SW) at fry/juvenile stage weighing around 1g and suffer growth-dependent mortality during the early phase of their marine life. In order to reveal environmental modulation of the IGF/IGFBP system and establish a reliable growth index for juvenile chum salmon, we examined effects of SW transfer and fasting on IGF-I, IGFBP-1 and RNA/DNA ratio, and correlated them to individual growth rate. Among serum IGF-I, liver and muscle igf-1, igfbp-1a, igfbp-1b and RNA/DNA ratio examined, muscle RNA/DNA ratio and muscle igfbp-1a responded to SW transfer. Serum IGF-I, liver igf-1 and liver RNA/DNA ratio were sensitive to nutritional change by being reduced in 1week in both FW and SW while muscle igf-1 was reduced 2weeks after fasting. In contrast, igfbp-1a in both tissues was increased by 2weeks of fasting and igfbp-1b in the liver of SW fish was increased in 1week. These results suggest that the sensitivity of igf-1 and igfbp-1s to fasting differs between tissues and subtypes, respectively. When chum salmon juveniles in SW were marked and subjected to feeding or fasting, serum IGF-I showed the highest correlation with individual growth rate. Liver igfbp-1a and -1b, and muscle igf-1 exhibited moderate correlation coefficients with growth rate. These results show that serum IGF-I is superior to the other parameters as a growth index in juvenile chum salmon in term of its stability to salinity change, high sensitivity to fasting and strong relationship with growth rate. On the one hand, when collecting blood from chum salmon fry/juveniles is not practical, measuring liver igfbp-1a and -1b, or/and muscle igf-1 is an alternative.

  15. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  16. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  17. Geo-Referenced, Abundance Calibrated Ocean Distribution of Chinook Salmon (Oncorhynchus tshawytscha) Stocks across the West Coast of North America.

    PubMed

    Bellinger, M Renee; Banks, Michael A; Bates, Sarah J; Crandall, Eric D; Garza, John Carlos; Sylvia, Gil; Lawson, Peter W

    2015-01-01

    Understanding seasonal migration and localized persistence of populations is critical for effective species harvest and conservation management. Pacific salmon (genus Oncorhynchus) forecasting models predict stock composition, abundance, and distribution during annual assessments of proposed fisheries impacts. Most models, however, fail to account for the influence of biophysical factors on year-to-year fluctuations in migratory distributions and stock-specific survival. In this study, the ocean distribution and relative abundance of Chinook salmon (O. tshawytscha) stocks encountered in the California Current large marine ecosystem, U.S.A were inferred using catch-per-unit effort (CPUE) fisheries and genetic stock identification data. In contrast to stock distributions estimated through coded-wire-tag recoveries (typically limited to hatchery salmon), stock-specific CPUE provides information for both wild and hatchery fish. Furthermore, in contrast to stock composition results, the stock-specific CPUE metric is independent of other stocks and is easily interpreted over multiple temporal or spatial scales. Tests for correlations between stock-specific CPUE and stock composition estimates revealed these measures diverged once proportional contributions of locally rare stocks were excluded from data sets. A novel aspect of this study was collection of data both in areas closed to commercial fisheries and during normal, open commercial fisheries. Because fishing fleet efficiency influences catch rates, we tested whether CPUE differed between closed area (non-retention) and open area (retention) data sets. A weak effect was indicated for some, but not all, analyzed cases. Novel visualizations produced from stock-specific CPUE-based ocean abundance facilitates consideration of how highly refined, spatial and genetic information could be incorporated in ocean fisheries management systems and for investigations of biogeographic factors that influence migratory

  18. Echolocation signals of free-ranging killer whales (Orcinus orca) and modeling of foraging for chinook salmon (Oncorhynchus tshawytscha)

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.; Ford, John K. B.; Horne, John K.; Allman, Kelly A. Newman

    2004-02-01

    Fish-eating ``resident''-type killer whales (Orcinus orca) that frequent the coastal waters off northeastern Vancouver Island, Canada have a strong preference for chinook salmon (Oncorhynchus tshawytscha). The whales in this region often forage along steep cliffs that extend into the water, echolocating their prey. Echolocation signals of resident killer whales were measured with a four-hydrophone symmetrical star array and the signals were simultaneously digitized at a sample rate of 500 kHz using a lunch-box PC. A portable VCR recorded the images from an underwater camera located adjacent to the array center. Only signals emanating from close to the beam axis (1185 total) were chosen for a detailed analysis. Killer whales project very broadband echolocation signals (Q equal 0.9 to 1.4) that tend to have bimodal frequency structure. Ninety-seven percent of the signals had center frequencies between 45 and 80 kHz with bandwidths between 35 and 50 kHz. The peak-to-peak source level of the echolocation signals decreased as a function of the one-way transmission loss to the array. Source levels varied between 195 and 224 dB re:1 μPa. Using a model of target strength for chinook salmon, the echo levels from the echolocation signals are estimated for different horizontal ranges between a whale and a salmon. At a horizontal range of 100 m, the echo level should exceed an Orcinus hearing threshold at 50 kHz by over 29 dB and should be greater than sea state 4 noise by at least 9 dB. In moderately heavy rain conditions, the detection range will be reduced substantially and the echo level at a horizontal range of 40 m would be close to the level of the rain noise.

  19. Prevalence and analysis of Renibacterium salmoninarum infection among juvenile Chinook salmon Oncorhynchus tshawytscha in North Puget Sound.

    PubMed

    Rhodes, Linda D; Durkin, Colleen; Nance, Shelly L; Rice, Casimir A

    2006-08-30

    Renibacterium salmoninarum causes bacterial kidney disease (BKD), a chronic and sometimes fatal disease of salmon and trout that could lower fitness in populations with high prevalences of infection. Prevalence of R. salmoninarum infection among juvenile Chinook salmon Oncorhynchus tshawytscha inhabiting neritic marine habitats in North Puget Sound, Washington, USA, was assessed in 2002 and 2003. Fish were collected by monthly surface trawl at 32 sites within 4 bays, and kidney infections were detected by a quantitative fluorescent antibody technique (qFAT). The sensitivity of the qFAT was within an order of magnitude of the quantitative real-time PCR (qPCR) sensitivity. Prevalence of infection was classified by fish origin (marked/hatchery vs. unmarked/likely natural spawn), month of capture, capture location and stock origin. The highest percentages of infected fish (63.5 to 63.8%) and the greatest infection severity were observed for fish collected in Bellingham Bay. The lowest percentages were found in Skagit Bay (11.4 to 13.5%); however, there was no difference in prevalence between marked and unmarked fish among the capture locations. The optimal logistic regression model of infection probabilities identified the capture location of Bellingham Bay as the strongest effect, and analysis of coded wire tagged (CWT) fish revealed that prevalence of infection was associated with the capture location and not with the originating stock. These results suggest that infections can occur during the early marine life stages of Chinook salmon that may be due to common reservoirs of infection or horizontal transmission among fish stocks.

  20. Geo-Referenced, Abundance Calibrated Ocean Distribution of Chinook Salmon (Oncorhynchus tshawytscha) Stocks across the West Coast of North America

    PubMed Central

    Bellinger, M. Renee; Banks, Michael A.; Bates, Sarah J.; Crandall, Eric D.; Garza, John Carlos; Sylvia, Gil; Lawson, Peter W.

    2015-01-01

    Understanding seasonal migration and localized persistence of populations is critical for effective species harvest and conservation management. Pacific salmon (genus Oncorhynchus) forecasting models predict stock composition, abundance, and distribution during annual assessments of proposed fisheries impacts. Most models, however, fail to account for the influence of biophysical factors on year-to-year fluctuations in migratory distributions and stock-specific survival. In this study, the ocean distribution and relative abundance of Chinook salmon (O. tshawytscha) stocks encountered in the California Current large marine ecosystem, U.S.A were inferred using catch-per-unit effort (CPUE) fisheries and genetic stock identification data. In contrast to stock distributions estimated through coded-wire-tag recoveries (typically limited to hatchery salmon), stock-specific CPUE provides information for both wild and hatchery fish. Furthermore, in contrast to stock composition results, the stock-specific CPUE metric is independent of other stocks and is easily interpreted over multiple temporal or spatial scales. Tests for correlations between stock-specific CPUE and stock composition estimates revealed these measures diverged once proportional contributions of locally rare stocks were excluded from data sets. A novel aspect of this study was collection of data both in areas closed to commercial fisheries and during normal, open commercial fisheries. Because fishing fleet efficiency influences catch rates, we tested whether CPUE differed between closed area (non-retention) and open area (retention) data sets. A weak effect was indicated for some, but not all, analyzed cases. Novel visualizations produced from stock-specific CPUE-based ocean abundance facilitates consideration of how highly refined, spatial and genetic information could be incorporated in ocean fisheries management systems and for investigations of biogeographic factors that influence migratory

  1. Journey of the Oncorhynchus: A Story of the Pacific Northwest Salmon.

    SciTech Connect

    United States. Bonneville Power Administration.

    1994-06-01

    This report tells the story of the Pacific Northwest salmon in words that children can understand. The life cycle of chinook salmon is depicted through pictures and elementary language from the egg to juvenile fish in fresh water, to maturing fish in the ocean, and the adults migrating back up to spawning grounds in the Columbia River. This can be very useful in the education of children.

  2. Evidence of Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus Tshawytscha) : Spawning Near Ives and Pierce Island of the Columbia River, 1999.

    SciTech Connect

    Mueller, Robert P.; Dauble, Dennis D.

    2000-04-01

    Fall chinook salmon Oncorhynchus tshawytscha, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives island. Limited spawning ground surveys were conducted in the area around Ives and Pierce Islands during 1994-1997 and based on these surveys it was believed that fall chinook salmon successfully spawned in this area. The size of this population from 1994 to 1996 was estimated at 1,800 to 5,200 fish (Hymer 1997). Recently, chum salmon were also documented spawning downstream of Bonneville Dam. Chum salmon O. kisutch were listed as threatened under the Endangered Species Act (ESA) in March, 1999. There are several ongoing investigations to define the physical habitat characteristics associated with fall chinook and chum salmon spawning areas downstream of Bonneville Dam. A major concern is to determine what flows (i.e. surface elevations) are necessary to ensure their long-term survival. Our objective was to locate deepwater spawning locations in the main Columbia River channel and to collect additional data on physical habitat parameters at the site. This objective is consistent with the high priority that the Northwest Power Planning Council's Independent Advisory Board and the salmon managers have placed on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin.

  3. [Single-nucleotide polymorphism in populations of sockeye salmon Oncorhynchus nerka from Kamchatka Peninsula].

    PubMed

    Khrustaleva, A M; Gritsenko, O F; Klovach, N V

    2013-11-01

    The genetic polymorphism of 45 single-nucleotide polymorphism loci was examined in the four largest wild populations of sockeye salmon Oncorhynchusnerka from drainages of the Asian coast of the Pacific Ocean (Eastern and Western Kamchatka). It was demonstrated that sockeye salmon from the Palana River were considerably different from all other populations examined. The most probable explanation of the observed differences is the suggestion on possible demographic events in the history of this population associated with the decrease in its effective number. To study the origin, colonization patterns, and evolution of Asian sockeye salmon, as well as to resolve some of the applied tasks, like population assignment and genetic identification, a differentiation approach to SNP-marker selection was suggested. Adaptively important loci that evolve under the pressure of balancing (stabilizing) selection were identified, thanks to which the number of loci that provide the baseline classification error rates in the population assignment tests was reduced to 30. It was demonstrated that SNPs located in the MHC2 and GPH genes were affected by diversifying selection. Procedures for selecting single-nucleotide polymorphisms for phylogenetic studies of Asian sockeye salmon were suggested. Using principal-component analysis, 17 loci that adequately reproduce genetic differentiation within arid among the regions of the origin of Kamchatka sockeye salmon, were selected. PMID:25470934

  4. [Single-nucleotide polymorphism in populations of sockeye salmon Oncorhynchus nerka from Kamchatka Peninsula].

    PubMed

    2013-11-01

    The genetic polymorphism of 45 single-nucleotide polymorphism loci was examined in the four largest wild populations of sockeye salmon Oncorhynchusnerka from drainages of the Asian coast of the Pacific Ocean (Eastern and Western Kamchatka). It was demonstrated that sockeye salmon from the Palana River were considerably different from all other populations examined. The most probable explanation of the observed differences is the suggestion on possible demographic events in the history of this population associated with the decrease in its effective number. To study the origin, colonization patterns, and evolution of Asian sockeye salmon, as well as to resolve some of the applied tasks, like population assignment and genetic identification, a differentiation approach to SNP-marker selection was suggested. Adaptively important loci that evolve under the pressure of balancing (stabilizing) selection were identified, thanks to which the number of loci that provide the baseline classification error rates in the population assignment tests was reduced to 30. It was demonstrated that SNPs located in the MHC2 and GPH genes were affected by diversifying selection. Procedures for selecting single-nucleotide polymorphisms for phylogenetic studies of Asian sockeye salmon were suggested. Using principal-component analysis, 17 loci that adequately reproduce genetic differentiation within arid among the regions of the origin of Kamchatka sockeye salmon, were selected. PMID:25508561

  5. Infectious haematopoietic necrosis virus genogroup-specific virulence mechanisms in sockeye salmon, Oncorhynchus nerka (Walbaum), from Redfish Lake, Idaho

    USGS Publications Warehouse

    Purcell, M.K.; Garver, K.A.; Conway, C.; Elliott, D.G.; Kurath, G.

    2009-01-01

    Characterization of infectious haematopoietic necrosis virus (IHNV) field isolates from North America has established three main genogroups (U, M and L) that differ in host-specific virulence. In sockeye salmon, Oncorhynchus nerka, the U genogroup is highly virulent, whereas the M genogroup is nearly non-pathogenic. In this study, we sought to characterize the virus-host dynamics that contribute to genogroup-specific virulence in a captive stock of sockeye salmon from Redfish Lake in Idaho. Juvenile sockeye salmon were challenged by immersion and injection with either a representative U or M viral strain and sampled periodically until 14 days post-infection (p.i.). Fish challenged with each strain had positive viral titre by day 3, regardless of challenge route, but the fish exposed to the M genogroup virus had significantly lower virus titres than fish exposed to the U genogroup virus. Gene expression analysis by quantitative reverse transcriptase PCR was used to simultaneously assess viral load and host interferon (IFN) response in the anterior kidney. Viral load was significantly higher in the U-challenged fish relative to M-challenged fish. Both viruses induced expression of the IFN-stimulated genes (ISGs), but expression was usually significantly lower in the M-challenged group, particularly at later time points (7 and 14 days p.i.). However, ISG expression was comparable with 3 days post-immersion challenge despite a significant difference in viral load. Our data indicated that the M genogroup virus entered the host, replicated and spread in the sockeye salmon tissues, but to a lesser extent than the U genogroup. Both virus types induced a host IFN response, but the high virulence strain (U) continued to replicate in the presence of this response, whereas the low virulence strain (M) was cleared below detectable levels. We hypothesize that high virulence is associated with early in vivo replication allowing the virus to achieve a threshold level, which the

  6. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytscha) within a Snake River watershed

    USGS Publications Warehouse

    Neville, Helen; Issacs, Frank B.; Thurow, Russel; Dunham, J.B.; Rieman, B.

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.

  7. Spatio-temporal covariability in coho salmon ( Oncorhynchus kisutch) survival, from California to southeast Alaska

    NASA Astrophysics Data System (ADS)

    Teo, Steven L. H.; Botsford, Louis W.; Hastings, Alan

    2009-12-01

    One of the motivations of the GLOBEC Northeast Pacific program is to understand the apparent inverse relationship between the increase in salmon catches in the Gulf of Alaska and concurrent declines in the California Current System (CCS). We therefore used coded wire tag (CWT) data to examine the spatial and temporal patterns of covariability in the survival of hatchery coho salmon along the coast from California to southeast Alaska between release years 1980 and 2004. There is substantial covariability in coho salmon survival between neighboring regions along the coast, and there is clear evidence for increased covariability within two main groups - a northern and southern group. The dividing line between the groups lies approximately at the north end of Vancouver Island. However, CWT survivals do not support inverse covariability in hatchery coho salmon survival between southeast Alaska and the CCS over this 25 year time span. Instead, the hatchery coho survival in southeast Alaska is relatively uncorrelated with coho survival in the California Current System on inter-annual time scales. The 50% correlation and e-folding scales (distances at which magnitude of correlations decreases to 50% and e -1 (32.8%), respectively) of pairwise correlations between individual hatcheries were 150 and 217 km, which are smaller than that reported for sockeye, pink, and chum salmon. The 50% correlation scale of coho salmon is also substantially smaller than those reported for upwelling indices and sea surface temperature. There are also periods of 5-10 years with high covariability between adjacent regions on the scale of hundreds of km, which may be of biological and physical significance.

  8. Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark, Alaska

    USGS Publications Warehouse

    Ramstad, K.M.; Woody, C.A.; Sage, G.K.; Allendorf, F.W.

    2004-01-01

    Bottlenecks can have lasting effects on genetic population structure that obscure patterns of contemporary gene flow and drift. Sockeye salmon are vulnerable to bottleneck effects because they are a highly structured species with excellent colonizing abilities and often occupy geologically young habitats. We describe genetic divergence among and genetic variation within spawning populations of sockeye salmon throughout the Lake Clark area of Alaska. Fin tissue was collected from sockeye salmon representing 15 spawning populations of Lake Clark, Six-mile Lake, and Lake Iliamna. Allele frequencies differed significantly at 11 microsatellite loci in 96 of 105 pairwise population comparisons. Pairwise estimates of FST ranged from zero to 0.089. Six-mile Lake and Lake Clark populations have historically been grouped together for management purposes and are geographically proximate. However, Six-mile Lake populations are genetically similar to Lake Iliamna populations and are divergent from Lake Clark populations. The reduced allelic diversity and strong divergence of Lake Clark populations relative to Six-mile Lake and Lake Iliamna populations suggest a bottleneck associated with the colonization of Lake Clark by sockeye salmon. Geographic distance and spawning habitat differences apparently do not contribute to isolation and divergence among populations. However, temporal isolation based on spawning time and founder effects associated with ongoing glacial retreat and colonization of new spawning habitats contribute to the genetic population structure of Lake Clark sock-eye salmon. Nonequilibrium conditions and the strong influence of genetic drift caution against using estimates of divergence to estimate gene flow among populations of Lake Clark sockeye salmon.

  9. Thiamine content of eggs and lengths of coho salmon (Oncorhynchus kisutch) in relation to abundance of alewife (Alosa pseudoharengus) in eastern Lake ontario, 2003 to 2006

    USGS Publications Warehouse

    Ketola, H.G.; Rinchard, J.; O'Gorman, R.; Begnoche, L.J.; Bishop, D.L.; Greulich, A.W.

    2009-01-01

    Early mortality syndrome in fry of Great Lakes salmonines is linked to reduced levels of thiamine in eggs, which reflects maternal consumption of forage fishes such as alewife (Alosa pseudoharengus) that contain thiaminase, an enzyme that destroys thiamine. We assessed annual variations in abundance and condition of alewives and thiamine status of coho salmon (Oncorhynchus kisutch) in Lake Ontario. We analyzed total thiamine in eggs of 20 coho salmon collected annually between 2003 and 2006 at the Salmon River Hatchery on the Salmon River, New York. Alewife abundance was assessed annually in southern and eastern Lake Ontario with bottom trawls during late April and early May. Mean thiamine concentration in eggs varied annually, with those collected in 2003 (2.5 nmol/g) being significantly higher than those collected in 2004 to 2006 (1.5 to 1.7 nmol/g). Although we did not test survival of fry, if reported threshold levels of thiamine for preventing mortality of Lake Michigan coho salmon fry apply, then many or most Lake Ontario coho salmon produced fry were likely to incur thiamine-deficiency mortality, especially during years 2004 to 2006. Comparison to indices of annual abundance of alewife in Lake Ontario with thiamine concentration in coho salmon eggs failed to show any significant correlations (P > 0.05). However, total length of female spawning coho salmon was positively correlated (P < 0.05) with increasing condition and estimated energy content of adult alewives in the previous spring. These results suggest that growth of coho salmon in Lake Ontario was first limited by energy intake, whereas the amount of thiamine provided by alewives was sufficient for growth (in length) but not for producing thiamine-adequate eggs.

  10. Contaminant exposure and associated biological effects in juvenile chinook salmon (oncorhynchus tshawytscha) from urban and nonurban estuaries of puget sound. Technical memo

    SciTech Connect

    Varanasi, U.; Casillas, E.; Arkoosh, M.R.; Hom, T.; Misitano, D.A.

    1993-04-01

    The report presents and interprets the results of chemical, biochemical, and biological studies on juvenile chinook salmon (Oncorhynchus tshawytscha) outmigrating from urban and nonurban estuaries of Puget Sound, Washington. These studies were conducted between 1989 and 1991. The objective of these studies was to determine the degree of chemical exposure to juvenile chinook salmon as they migrate through urban-associated compared to nonurban estuaries and to evaluate the effects of chemical contaminant exposure on these animals. The chemical indicators of contaminant exposure include levels of hepatic polychlorinated biphenyls (PCBs) and biliary levels of fluorescent aromatic compounds (FACs), which are semiquantitative measures of exposure to aromatic hydrocarbons (AHs). Stomach contents of juvenile salmon were also analyzed for selected AHs and chlorinated hydrocarbons (CHs) to assess the importance of diet as a possible route of uptake of xenobiotics from polluted estuaries.

  11. Candidate loci reveal genetic differentiation between temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Local adaptation is a dynamic process driven by selection that can vary both in space and time. One important temporal adaptation for migratory animals is the timing of migration and breeding within a reproductive season. Anadromous salmon are excellent subjects for studying the genetic basis of t...

  12. Partial migration in introduced wild chinook salmon (Oncorhynchus tshawytscha) of southern Chile

    NASA Astrophysics Data System (ADS)

    Araya, Miguel; Niklitschek, Edwin J.; Secor, Dave H.; Piccoli, Philip M.

    2014-08-01

    Partial migration, the incidence of opposing migration behaviors within the same population, has been a key factor in the invasive ecology of Pacific salmon within South America. Here, we examined such life-cycle variation in of an introduced chinook salmon population in the Aysén watershed, one of the largest fjord systems in NW Patagonia. The chinook salmon is the most successful invasive salmonid species in Patagonia and has recently colonized numerous Patagonian watersheds of the Pacific and Atlantic Oceans. Using analyses of fish scales and otolith strontium:calcium ratios, our results suggest the presence of two distinct ecotypes in the chinook population, an ocean type and a stream type, in a 3:2 ratio. The distribution of back-calculated length at the time of emigration from river to marine habitats showed a mode of 14 cm for the ocean ecotype and 30 cm for the stream ecotype. River residence time for the ocean ecotype ranged from 1 to 10 months, while that of the stream ecotype varied between 14 and 20 months. Returning adults reproduced in riverine habitats between August and March, but reproduction by the stream ecotype was limited to the period between October and February. Our results show that exotic chinook salmon populations established in NW Patagonia present a diversity of life-history strategies, which seems to be as large as the ones exhibited by the species in its native distribution range and in other invaded ecosystems. Chinook salmon have successfully invaded most major rivers in Patagonia, placing priority on science and conservation related to their ecological impact.

  13. Central administration of corticotropin-releasing hormone alters downstream movement in an artificial stream in juvenile chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Clements, Shaun; Schreck, Carl B

    2004-05-15

    We evaluated the effect of corticotropin-releasing hormone (CRH) on spatial distribution and downstream movement in an artificial stream in juvenile Chinook salmon (Oncorhynchus tshawytscha) during the period when the fish were able to tolerate seawater. An intracerebroventricular (ICV) injection of CRH (500 ng) to hatchery fish significantly increased the proportion of fish that were distributed downstream of a mid-stream release site. A second group of hatchery fish were given ICV injections of saline (control) or CRH (500 ng) and released near the top of the stream. The time taken to enter a trap at the lower end of the stream was recorded. In all cases the groups given CRH had a higher proportion of fish that did not enter the trap within 60 min of release. However, in those fish that did enter the trap, treatment with CRH increased the speed of downstream movement to this point relative to control fish. Wild sub-yearling Chinook salmon were captured during their downstream migration to the estuary and given ICV injections of saline or CRH (500 ng) either 2, 3, or 7 days after transport from the river. As with hatchery fish, a significantly higher proportion of wild fish that were administered CRH did not enter the trap at the lower end of the stream. The mean time of passage for control fish decreased on each successive day (day 2 > day 3 > day 7). In contrast, the mean passage time of the wild fish that were given CRH was relatively constant through time, and was only significantly faster than control fish on day 2. The current study provides evidence that CRH alters the downstream movement of juvenile Chinook in a simulated stream environment, and produces behavioral effects similar to those of juvenile salmonids that are stressed during their downstream migration. PMID:15094330

  14. Gamete-associated flavobacteria of the oviparous Chinook salmon (Oncorhynchus tshawytscha) in lakes Michigan and Huron, North America.

    PubMed

    Loch, Thomas P; Faisal, Mohamed

    2016-07-01

    Flavobacterial diseases, caused by multiple members of the Family Flavobacteriaceae, elicit serious losses in wild and farmed fish around the world. Flavobacteria are known to be transmitted horizontally; however, vertical transmission has been suspected but proven only for one fish-pathogenic flavobacterial species (e.g., Flavobacterium psychrophilum). Herein, we report on the isolation and molecular identification of multiple Flavobacterium and Chryseobacterium taxa from the ovarian fluid and eggs of feral Great Lakes Chinook salmon (Oncorhynchus tshawytscha). Identified egg- and ovarian fluid-associated flavobacteria were either well-known flavobacterial fish pathogens (e.g., F. psychrophilum and F. columnare), most similar to emerging fish-associated flavobacteria (e.g., F. spartansii, F. tructae, F. piscis, C. piscium, C. scophthalmum), or were distinct from all other described Chryseobacterium and Flavobacterium spp., as determined by phylogenetic analyses using neighbor-joining, Bayesian, and Maximum Likelihood methodologies. The gamete-associated flavobacteria fell into three groups (e.g., those that were recovered from the ovarian fluid but not eggs; those that were recovered from the ovarian fluid and eggs; and those that were recovered from eggs but not ovarian fluid), a portion of which were recovered from eggs that were surface disinfected with iodophor at the commonly used dose and duration for egg disinfection. Some gamete-associated flavobacteria were also found in renal, splenic, and neurological tissues. Systemic polymicrobial infections comprised of F. psychrophilum and F. columnare were also detected at nearly an 11% prevalence. This study highlights the potential role that sexual products of female Great Lakes Chinook salmon may play in the transmission of fish-associated flavobacteria. PMID:27350613

  15. Coho salmon Oncorhynchus kisutch strain differences in disease resistance and non-specific immunity, following immersion challenges with Vibrio anguillarum

    USGS Publications Warehouse

    Balfry, Shannon K.; Maule, Alec G.; Iwama, George K.

    2001-01-01

    Two strains of freshwater-reared coho salmon Oncorhynchus kisutch were compared for differences in the activity of selected non-specific immune factors before and after lethal and non-lethal immersion challenges with the marine bacterial pathogen Vibrio anguillarum (Vang). Two disease challenge experiments were performed. The first experimental challenge resulted in no mortality; however, significant strain and challenge treatment effects were detected at Day 16 post-challenge. Strain differences in plasma lysozyme activity were found in pre-challenge samples. The second challenge experiment compared the same strains of coho salmon following immersion challenges in different doses of Vang. The fish were sampled at Days 0, 2, 7, and 18 post-challenge and mortality, plasma lysozyme, and anterior kidney phagocyte respiratory burst activity were compared. There were significant strain differences in mortality in the high dose group. The more disease-resistant strain was found to have higher levels of plasma lysozyme and anterior kidney phagocyte respiratory burst activity. These strain differences were detected at various times in the lethal (high dose) and non-lethal challenge groups. There was a clear relationship between the enhanced survival of the more disease-resistant strain and a more sustained, elevated non-specific immune response following the experimental disease challenges. The results of this study suggest that the basis for strain differences in innate disease resistance is related to the ability of the fish to respond quickly to the initial infection and to maintain the response until the infection is quelled.

  16. Migratory Patterns of Wild Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-Flowing River Basin.

    PubMed

    Eiler, John H; Evans, Allison N; Schreck, Carl B

    2014-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002-2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28-40 km d-1) compared to upper basin stocks (52-62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between "hares" (faster fish becoming slower) and "tortoises" (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation exhibited among

  17. Additive and non-additive genetic components of the jack male life history in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Forest, Adriana R; Semeniuk, Christina A D; Heath, Daniel D; Pitcher, Trevor E

    2016-08-01

    Chinook salmon, Oncorhynchus tshawytscha, exhibit alternative reproductive tactics (ARTs) where males exist in two phenotypes: large "hooknose" males and smaller "jacks" that reach sexual maturity after only 1 year in seawater. The mechanisms that determine "jacking rate"-the rate at which males precociously sexually mature-are known to involve both genetics and differential growth rates, where individuals that become jacks exhibit higher growth earlier in life. The additive genetic components have been studied and it is known that jack sires produce significantly more jack offspring than hooknose sires, and vice versa. The current study was the first to investigate both additive and non-additive genetic components underlying jacking through the use of a full-factorial breeding design using all hooknose sires. The effect of dams and sires descendant from a marker-assisted broodstock program that identified "high performance" and "low performance" lines using growth- and survival-related gene markers was also studied. Finally, the relative growth of jack, hooknose, and female offspring was examined. No significant dam, sire, or interaction effects were observed in this study, and the maternal, additive, and non-additive components underlying jacking were small. Differences in jacking rates in this study were determined by dam performance line, where dams that originated from the low performance line produced significantly more jacks. Jack offspring in this study had a significantly larger body size than both hooknose males and females starting 1 year post-fertilization. This study provides novel information regarding the genetic architecture underlying ARTs in Chinook salmon that could have implications for the aquaculture industry, where jacks are not favoured due to their small body size and poor flesh quality. PMID:27450674

  18. Migratory Patterns of Wild Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-Flowing River Basin

    PubMed Central

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  19. Additive and non-additive genetic components of the jack male life history in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Forest, Adriana R; Semeniuk, Christina A D; Heath, Daniel D; Pitcher, Trevor E

    2016-08-01

    Chinook salmon, Oncorhynchus tshawytscha, exhibit alternative reproductive tactics (ARTs) where males exist in two phenotypes: large "hooknose" males and smaller "jacks" that reach sexual maturity after only 1 year in seawater. The mechanisms that determine "jacking rate"-the rate at which males precociously sexually mature-are known to involve both genetics and differential growth rates, where individuals that become jacks exhibit higher growth earlier in life. The additive genetic components have been studied and it is known that jack sires produce significantly more jack offspring than hooknose sires, and vice versa. The current study was the first to investigate both additive and non-additive genetic components underlying jacking through the use of a full-factorial breeding design using all hooknose sires. The effect of dams and sires descendant from a marker-assisted broodstock program that identified "high performance" and "low performance" lines using growth- and survival-related gene markers was also studied. Finally, the relative growth of jack, hooknose, and female offspring was examined. No significant dam, sire, or interaction effects were observed in this study, and the maternal, additive, and non-additive components underlying jacking were small. Differences in jacking rates in this study were determined by dam performance line, where dams that originated from the low performance line produced significantly more jacks. Jack offspring in this study had a significantly larger body size than both hooknose males and females starting 1 year post-fertilization. This study provides novel information regarding the genetic architecture underlying ARTs in Chinook salmon that could have implications for the aquaculture industry, where jacks are not favoured due to their small body size and poor flesh quality.

  20. Clock genes localize to quantitative trait loci for stage-specific growth in juvenile coho salmon, Oncorhynchus kisutch.

    PubMed

    O'Malley, Kathleen G; McClelland, Erin K; Naish, Kerry A

    2010-01-01

    In most organisms, an internal circadian clock coordinates the expression of biological rhythms and enables individuals to anticipate and respond to the seasonally changing environment. There is remarkable conservation of function in the molecular machinery underlying this circadian clock across taxa with 4 canonical proteins interacting to form an autoregulatory feedback loop: CLOCK, CRYPTOCHROME, PERIOD, and BMAL. We mapped duplicated copies of Clock and Cryptochrome in coho salmon (Oncorhynchus kisutch) to determine if these genes localize to quantitative trait loci (QTL) for hatch timing, weight, length, and growth rate measured throughout the juvenile life-history stage. We found that Cryptochrome2b mapped to a QTL region for growth (measured at 304 days post-hatching) on linkage group OKI06. The percentage of variation (PEV) explained by this QTL was 15.2%. Cryptochrome2b was also associated with a marginally nonsignificant QTL for length (measured at 395 days post-hatching). OtsClock1b mapped to a QTL region for growth rate (PEV 10.1%) and length (PEV 10.5%) on linkage group OKI24 (measured at 479 days posthatching). Neither gene localized to QTL for hatch timing or weight. Our findings indicate that the growth rate and length QTL associated with OtsClock1b and Cryptochrome2b are development stage-specific and may result from temporally differentiated gene expression patterns.

  1. Acute toxicity of fire-retardant and foam-suppressant chemicals to early life stages of chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Buhl, Kevin J.; Hamilton, Steven J.

    1998-01-01

    Laboratorys studies were conducted to determine the acute toxicity of three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F), and two fire-suppressant foams (Phos-Chek WD-881 and Ansul Silv-Ex) to early life stages of chinook salmon, Oncorhynchus tshawytscha, in hard and soft water. Regardless of water type, swim-up fry and juveniles (60 and 90 d posthatch) exhibited similar sensitivities to each chemical and these life stages were more sensitive than eyed eggs. Foam suppressants were more toxic to each life stage than the fire retardants in both water types. The descending rank order of toxicity for these chemicals tested with swim-up fry and juveniles (range of 96-h median lethal concentrations [LC50s]) was Phos-Chek WD-881 (7–13 mg/L) > Ansul Silv-Ex (11–22 mg/L) > Phos-Chek D75-F (218–305 mg/L) > Fire-Trol GTS-R (218–412 mg/L) > Fire-Trol LCG-R (685–1,195 mg/L). Water type had a minor effect on the toxicity of these chemicals. Comparison of acute toxicity values with recommended application concentrations indicates that accidental inputs of these chemicals into stream environments would require substantial dilution (237- to 1,429-fold) to reach concentrations equivalent to their 96-h LC50s.

  2. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity

    PubMed Central

    Lavado, Ramon; Bammler, Theo K.; Gallagher, Evan P.; Stapleton, Patricia L.; Beyer, Richard P.; Farin, Federico M.; Hardiman, Gary; Schlenk, Daniel

    2015-01-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors. PMID:26260986

  3. Inactivation of Listeria innocua in nisin-treated salmon (Oncorhynchus keta) and sturgeon (Acipenser transmontanus) caviar heated by radio frequency.

    PubMed

    Al-Holy, M; Ruiter, J; Lin, M; Kang, D H; Rasco, B

    2004-09-01

    Recent regulatory concerns about the presence of the pathogen Listeria monocytogenes in ready-to-eat aquatic foods such as caviar has prompted the development of postpackaging pasteurization processes. However, caviar is heat labile, and conventional pasteurization processes affect the texture, color, and flavor of these foods negatively. In this study, chum salmon (Oncorhynchus keta, 2.5% total salt) caviar or ikura and sturgeon (Acipenser transmontanus, 3.5% total salt) caviar were inoculated with three strains of Listeria innocua in stationary phase at a level of more than 10(7) CFU/g. L innocua strains were used because they exhibit an equivalent response to L monocytogenes for many physicochemical processing treatments, including heat treatment. The products were treated by immersion in 500 IU/ml nisin solution and heat processed (an 8-D process without nisin or a 4-D process with 500 IU/ml nisin) in a newly developed radio frequency (RF; 27 MHz) heating method at 60, 63, and 65 degrees C. RF heating along with nisin acted synergistically to inactivate L. innocua cells and total mesophilic microorganisms. In the RF-nisin treatment at 65 degrees C, no surviving L. innocua microbes were recovered in sturgeon caviar or ikura. The come-up times in the RF-heated product were significantly lower compared with the water bath-heated caviar at all treatment temperatures. The visual quality of the caviar products treated by RF with or without nisin was comparable to the untreated control. PMID:15453574

  4. Effects of stocking hatchery fish on the phenotype of indigenous populations in the amago salmon Oncorhynchus masou ishikawae in Japan.

    PubMed

    Kawamura, K; Furukawa, M; Kubota, M; Harada, Y

    2012-07-01

    The expression of colour marks (parr marks, red and black spots) of the amago salmon Oncorhynchus masou ishikawae was compared with microsatellite information, to see the effects of stocking hatchery fish on the phenotype of indigenous populations, which face extinction through extensive stocking. A Bayesian-based assignment test suggested introgression of two exotic clusters into one indigenous cluster in the stocked area and its vicinity. The number of parr marks was significantly higher in one hatchery-origin population, which exclusively comprised one exotic cluster. An increased number of red spots in stocked hatchery fish was probably a consequence of hatchery feeding conditions. The number of black spots was correlated with body size in many populations, except for hatchery and heavily introgressed populations. Coefficients of correlation and regression of black spots with body size, which were largest in indigenous populations, decreased with an increase of introgression by hatchery fish. As indigenous populations have low genetic diversity with high relatedness, it was inferred that the height of correlation and regression coefficients in black spots is caused by high genetic homogeneity and fixation of alleles in loci related to the increase of black spots, both of which might have collapsed with introgression by hatchery fish. These results suggest the possibility that introgression by stocked fish causes a change of phenotype in indigenous populations.

  5. Differences in Ichthyophonus prevalence and infection severity between upper Yukon River and Tanana River chinook salmon, Oncorhynchus tshawytscha (Walbaum), stocks

    USGS Publications Warehouse

    Kocan, R.; Hershberger, P.

    2006-01-01

    Two genetically distinct populations of chinook salmon, Oncorhynchus tshawytscha (Walbaum), were simultaneously sampled at the confluence of the Yukon and Tanana rivers in 2003. Upper Yukon-Canadian fish had significantly higher infection prevalence as well as more severe infections (higher parasite density in heart tissue) than the lower Yukon-Tanana River fish. Both populations had migrated the same distance from the mouth of the Yukon River at the time of sampling but had significantly different distances remaining to swim before reaching their respective spawning grounds. Multiple working hypotheses are proposed to explain the differences between the two stocks: (1) the two genetically distinct populations have different inherent resistance to infection, (2) genetically influenced differences in feeding behaviour resulted in temporal and/or spatial differences in exposure, (3) physiological differences resulting from different degrees of sexual maturity influenced the course of disease, and (4) the most severely infected Tanana River fish either died en route or fatigued and were unable to complete their migration to the Tanana River, thus leaving a population of apparently healthier fish. ?? 2006 Blackwell Publishing Ltd.

  6. Comparisons of spawning areas and times for two runs of chinook salmon (Oncorhynchus tshawytscha) in the Kenai River, Alaska

    USGS Publications Warehouse

    Burger, C.V.; Wilmot, R.L.; Wangaard, D.B.

    1985-01-01

    From 1979 to 1982,188 chinook salmon (Oncorhynchus tshawytscha) were tagged with radio transmitters to locate spawning areas in the glacial Kenai River, southcentral Alaska. Results confirmed that an early run entered the river in May and June and spawned in tributaries, and a late run entered the river from late June through August and spawned in the main stem. Spawning peaked during August in tributaries influenced by lakes, but during July in other tributaries. Lakes may have increased fall and winter temperatures of downstream waters, enabling successful reproduction for later spawning fish within these tributaries. This hypothesis assumes that hatching and emergence can be completed in a shorter time in lake-influenced waters. The time of upstream migration and spawning (mid- to late August) of the late run is unique among chinook stocks in Cook Inlet. This behavior may have developed only because two large lakes (Kenai and Skilak) directly influence the main-stem Kenai River. If run timing is genetically controlled, and if the various components of the two runs are isolated stocks that have adapted to predictable stream temperatures, there are implications for stock transplantation programs and for any activities of man that alter stream temperatures.

  7. A latitudinal cline in the Chinook salmon (Oncorhynchus tshawytscha) Clock gene: evidence for selection on PolyQ length variants.

    PubMed

    O'Malley, Kathleen G; Banks, Michael A

    2008-12-22

    A critical seasonal event for anadromous Chinook salmon (Oncorhynchus tshawytscha) is the time at which adults migrate from the ocean to breed in freshwater. We investigated whether allelic variation at the circadian rhythm genes, OtsClock1a and OtsClock1b, underlies genetic control of migration timing among 42 populations in North America. We identified eight length variants of the functionally important polyglutamine repeat motif (PolyQ) of OtsClock1b while OtsClock1a PolyQ was highly conserved. We found evidence of a latitudinal cline in average allele length and frequency of the two most common OtsClock1b alleles. The shorter 335 bp allele increases in frequency with decreasing latitude while the longer 359 bp allele increases in frequency at higher latitudes. Comparison to 13 microsatellite loci showed that 335 and 359 bp deviate significantly from neutral expectations. Furthermore, a hierarchical gene diversity analysis based on OtsClock1b PolyQ variation revealed that run timing explains 40.9 per cent of the overall genetic variance among populations. By contrast, an analysis based on 13 microsatellite loci showed that run timing explains only 13.2 per cent of the overall genetic variance. Our findings suggest that length polymorphisms in OtsClock1b PolyQ may be maintained by selection and reflect an adaptation to ecological factors correlated with latitude, such as the seasonally changing day length.

  8. Predator avoidance ability of juvenile chinook salmon (Oncorhynchus tshawytscha) subjected to sublethal exposures of gas-supersaturated water

    USGS Publications Warehouse

    Mesa, M.G.; Warren, J.J.

    1997-01-01

    To assess the effects of gas bubble trauma (GBT) on the predator avoidance ability of juvenile chinook salmon (Oncorhynchus tshawytscha), we created groups of fish that differed in prevalence and severity of gas emboli in their lateral lines, fins, and gills by exposing them to 112% total dissolved gas (TDG) for 13 days, 120% TDG for 8 h, or 130% TDG for 3.5 h. We subjected exposed and unexposed control fish simultaneously to predation by northern squawfish (Ptychocheilus oregonensis) in water of normal gas saturation in 6, 18, and 10 tests using prey exposed to 112, 120, and 130% TDG, respectively. Only fish exposed to 130% TDG showed a significant increase in vulnerability to predation. The signs of GBT exhibited by fish sampled just prior to predator exposure were generally more severe in fish exposed to 130% TDG, which had the most extensive occlusion of the lateral line and gill filaments with gas emboli. Fish exposed to 112% TDG had the most severe signs of GBT in the fins. Our results suggest that fish showing GBT signs similar to those of our fish exposed to 130% TDG, regardless of their precise exposure history, may be more vulnerable to predation.

  9. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity.

    PubMed

    Maryoung, Lindley A; Lavado, Ramon; Bammler, Theo K; Gallagher, Evan P; Stapleton, Patricia L; Beyer, Richard P; Farin, Federico M; Hardiman, Gary; Schlenk, Daniel

    2015-12-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors.

  10. Vulnerability to predation and physiological stress responses in juvenile chinook salmon (Oncorhynchus tshawytscha) experimentally infected with Renibacterium salmoninarum

    USGS Publications Warehouse

    Mesa, M.G.; Poe, T.P.; Maule, A.G.; Schreck, C.B.

    1998-01-01

    We experimentally infected juvenile chinook salmon (Oncorhynchus tshawytscha) with Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease (BKD), to examine the vulnerability to predation of fish with differing levels of Rs infection and assess physiological change during progression of the disease. Immersion challenges conducted during 1992 and 1994 produced fish with either a low to moderate (1992) or high (1994) infection level of Rs during the 14-week postchallenge rearing period. When equal numbers of treatment and unchallenged control fish were subjected to predation by either northern squaw fish (Ptychocheilus oregonensis) or smallmouth bass (Micropterus dolomieui), Rs-challenged fish were eaten in significantly greater numbers than controls by nearly two to one. In 1994, we also sampled fish every 2 weeks after the challenge to determine some stressful effects of Rs infection. During disease progression in fish, plasma cortisol and lactate increased significantly whereas glucose decreased significantly. Our results indicate the role that BKD may play in predator-prey interactions, thus ascribing some ecological significance to this disease beyond that of direct pathogen-related mortality. In addition, the physiological changes observed in our fish during the chronic progression of BKD indicate that this disease is stressful, particularly during the later stages.

  11. Sphaerospora elwhaiensis sp.n. (Myxosporea: Sphaerosporidae) from landlocked sockeye salmon Oncorhynchus nerka (Salmoniformes: Salmonidae) in Washington State, USA.

    PubMed

    Jones, Simon; Fiala, Ivan; Prosperi-Porta, Gina; House, Marcia; Mumford, Sonia

    2011-06-01

    A new species of sphaerosporid myxosporean, Sphaerospora elwhaiensis sp. n., is described from kidney of non-anadromous sockeye salmon (kokanee) Oncorhynchus nerka (Walbaum) from Lake Sutherland in the northern Olympic Peninsula, Washington, USA. Infection with the parasite was detected in 45% of 177 kokanee examined over 5 years. While conforming to the morphological criteria by which members of the genus are defined, the parasite is distinguished from congeners in salmonids of western North America by a unique combination of valvular sculpting of the myxospore, the relatively large size of the myxospore and monosporous development within the pseudoplasmodium. In addition, nucleotide sequences of the parasite's small and large subunit ribosomal RNA gene are unique. Phylogenetic analyses of these sequences suggested that the parasite is most closely related to freshwater Myxidium spp. and Zschokkella spp. The molecular data have provided further evidence for a polyphyletic association previously recognized among members of the genus and emphasize the need for a taxonomic revision of Sphaerospora Thélohan, 1892 and related genera. PMID:21776889

  12. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2002-2003 Annual Report.

    SciTech Connect

    Mueller, Robert

    2003-09-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (>1 m) downstream of Bonneville Dam in the fall of 2002. This report documents the number and extent of chinook salmon spawning near Ives and Pierce Islands of the Columbia River, and is the fourth in a series of reports prepared since 1999. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds located in the deeper sections near below Hamilton Creek. There was a significant increase in the number of fall chinook salmon redds found in the locations surveyed during the 2002 surveys when compared to previous surveys by Pacific Northwest National Laboratory. A total of 192 redds were found in two general locations adjacent to Pierce Island (river km 228.5) encompassing an area of approximately 9.31 ha. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 15, 2002. An estimated 1,768 fall chinook salmon redds at water depths exceeding {approx}1.m ({approx} 125 kcfs) were documented in 2002. This estimate is the expanded number based on the number of redds found within the pre-defined survey area. Fall chinook salmon redds were found at water depths from 0.9 to 8.5 m and were constructed in gravel to large cobble ranging in size from 4.83 to 13.4 cm in diameter. No chum salmon redds were found in areas surveyed during 2002, although several carcasses were found at the mouth of Woodward Creek and in the deeper sections below Hamilton Creek.

  13. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    USGS Publications Warehouse

    Wheelock, C.E.; Eder, K.J.; Werner, I.; Huang, H.; Jones, P.D.; Brammell, B.F.; Elskus, A.A.; Hammock, B.D.

    2005-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 ??g/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 ??g/l), but not a low dose (1.2 ??g/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ???30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  14. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    PubMed Central

    Wheelock, Craig E.; Eder, Kai J.; Werner, Inge; Huang, Huazhang; Jones, Paul D.; Brammell, Benjamin F.; Elskus, Adria A.; Hammock, Bruce D.

    2006-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 μg/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 μg/l), but not a low dose (1.2 μg/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ∼30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  15. Membrane filtration-fluorescent antibody staining procedure for detecting and quantifying Renibacterium salmoninarum in coelomic fluid of Chinook salmon Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Elliott, D.G.; Barila, T.Y.

    1988-01-01

    e developed a rapid method for detecting and quantifying the pathogen Renibacterium salmoninarum in coelomic fluid of spring chinook salmon (Oncorhynchus tshawytscha) by concentrating the bacteria on 0.2-μm polycarbonate filters and staining them with specific fluorescein-labeled antibody. Centrifugation of samples and resuspension of the sedimented material in phosphate-buffered saline containing Triton X-100 increased the ease of filtration. Background fluorescence was reduced by counterstaining filters with Eriochrome black T. Postfiltration staining, rinsing, and counterstaining were done in the syringe-mounted filter holders, reducing handling of the filters and possible loss of bacteria. The number of bacteria detected by the filtration – fluorescent antibody technique in a broth culture of R. salmoninarum ranged from 6.7 × 107to7.6 × 107/mL and was slightly higher than that determined by plate count (9.6 × 106/mL). Increasing the sample dilution or decreasing the number of microscope fields examined generally increased the variability of filter counts of R. salmoninarum. Using the filtration – fluorescent antibody technique, we detected the bacterium in the coelomic fluid of 85% of spawning female spring chinook salmon sampled from a hatchery population. Membrane Filtration – Fluorescent Antibody Staining Procedure for Detecting and Quantifying Renibacterium salmoninarum in Coelomic Fluid of Chinook Salmon (oncorhynchus tshawytscha) (PDF Download Available). 

  16. Mortality of experimentally descaled smolts of coho salmon (Oncorhynchus kisutch) in fresh and salt water

    USGS Publications Warehouse

    Bouck, Gerald R.; Smith, Stanley D.

    1979-01-01

    Removal of slime from 25% of the body caused no deaths among smolts of coho salmon in fresh water or in seawater (28‰). Removal of slime and scales from the same percentage of body area caused no deaths in fresh water, but 75% mortality within 10 days in seawater. The 10-day median tolerance limit was 10% scale removal immediately before the smolts entered seawater. Mortality was highest when the scales were removed from the area of the rib cage. Recovery of smolts in fresh water from a loss of scales that would be lethal in seawater occurred rapidly; 90% of the fish regained tolerance to seawater within 1 day.

  17. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus Tshawytscha) : Spawning Near Ives and Pierce Island of the Columbia River, 2001 Annual Report.

    SciTech Connect

    Mueller, Robert P.

    2002-10-01

    Pacific Northwest National Laboratory initiated studies to identify potential fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat and assess the extent of spawning in deep water (>1 m) downstream of Bonneville Dam in the fall of 1999. This report provides results from 2001, the third year of our effort. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the area. The secondary objective was to map any chum salmon redds located in the deeper sections near Hamilton Slough. River flows during the spawning surveys in 2001 were lower than in 1999 and 2000. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 9, 2001. The location of the spawning area was similar to that of 1999 and 2000. One difference was the majority of redds were found in deeper water (>1.5 m) and closer to the shoreline adjacent to Pierce Island. Because of the low river flows during the fall of 2001, only a handful of redds were found using the boat-deployed video system within Hamilton Slough. No chum salmon (O. keta) redds were found in areas surveyed during 2000. (Note: surveys were limited to deeper sections of Hamilton Slough and near the main river channel.) An estimated 717 fall chinook salmon redds at water depths exceeding 1.5 m ({approx} 125 kcfs) were documented in 2001. These estimates are expanded from the number of redds found within a predefined survey area. Fall chinook salmon redds were found at water depths from 1.5-4.6 m and were located in a general area of {approx} 4.9 ha. Fall chinook salmon redds were constructed in gravels ranging from 3.2-13.4 cm in diameter and water velocities of 0.29-0.70 m/s.

  18. Effects of temperature on Renibacterium salmoninarum infection and transmission potential in Chinook salmon, Oncorhynchus tshawytscha (Walbaum).

    PubMed

    Purcell, M K; McKibben, C L; Pearman-Gillman, S; Elliott, D G; Winton, J R

    2016-07-01

    Renibacterium salmoninarum is a significant pathogen of salmonids and the causative agent of bacterial kidney disease (BKD). Water temperature affects the replication rate of pathogens and the function of the fish immune system to influence the progression of disease. In addition, rapid shifts in temperature may serve as stressors that reduce host resistance. This study evaluated the effect of shifts in water temperature on established R. salmoninarum infections. We challenged Chinook salmon with R. salmoninarum at 12 °C for 2 weeks and then divided the fish into three temperature groups (8, 12 and 15 °C). Fish in the 8 °C group had significantly higher R. salmoninarum-specific mortality, kidney R. salmoninarum loads and bacterial shedding rates relative to the fish held at 12 or 15 °C. There was a trend towards suppressed bacterial load and shedding in the 15 °C group, but the results were not significant. Bacterial load was a significant predictor of shedding for the 8 and 12 °C groups but not for the 15 °C group. Overall, our results showed little effect of temperature stress on the progress of infection, but do support the conclusion that cooler water temperatures contribute to infection progression and increased transmission potential in Chinook salmon infected with R. salmoninarum. PMID:26449619

  19. In situ biomonitoring of caged, juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Lower Duwamish Waterway

    PubMed Central

    Kelley, Matthew; Gillespie, Annika; Zhou, Guo-Dong; Zhang, Shu; Meador, James P.; Duncan, Bruce; Donnelly, Kirby; McDonald, Thomas

    2011-01-01

    Contaminated sediments may have wide-ranging impacts on human and ecological health. A series of in situ caged exposure studies using juvenile Chinook salmon was conducted in the Lower Duwamish Waterway (LDW). Chemical analysis of sediment, water, and fish tissue were completed. Additionally, in 2004, DNA adducts in hepatic and gill tissues were measured. Gills contained significantly higher DNA adducts at stations B2 and B4, prompting further analysis of gills in 2006 and 2007. Fluorescent aromatic compounds (FACs) in bile, and CYP1A1 in hepatic tissue were also measured during the 2006 and 2007, respectively. FACs in field-caged fish were comparable or significantly higher than wild-caught fish LDW fish and significantly higher than lab fish after only 8–10 days, demonstrating the equivalency of exposure to that of migrating salmon. Furthermore, selected biomarkers appear to be capable of detecting spikes in contamination between sampling years, emphasizing the need for multiple year data collection. PMID:21906759

  20. Effects of temperature on Renibacterium salmoninarum infection and transmission potential in Chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Purcell, Maureen K.; McKibben, Constance L.; Pearman-Gillman, Schuyler; Elliott, Diane G.; Winton, James R.

    2016-01-01

    Renibacterium salmoninarum is a significant pathogen of salmonids and the causative agent of bacterial kidney disease (BKD). Water temperature affects the replication rate of pathogens and the function of the fish immune system to influence the progression of disease. In addition, rapid shifts in temperature may serve as stressors that reduce host resistance. This study evaluated the effect of shifts in water temperature on established R. salmoninarum infections. We challenged Chinook salmon with R. salmoninarum at 12°C for 2 weeks and then divided the fish into three temperature groups (8, 12 and 15°C). Fish in the 8°C group had significantly higher R. salmoninarum-specific mortality, kidney R. salmoninarum loads and bacterial shedding rates relative to the fish held at 12 or 15°C. There was a trend towards suppressed bacterial load and shedding in the 15°C group, but the results were not significant. Bacterial load was a significant predictor of shedding for the 8 and 12°C groups but not for the 15°C group. Overall, our results showed little effect of temperature stress on the progress of infection, but do support the conclusion that cooler water temperatures contribute to infection progression and increased transmission potential in Chinook salmon infected with R. salmoninarum.

  1. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.

    SciTech Connect

    Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

    2002-08-30

    This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of passing

  2. Validation of daily increments and a marine-entry check in the otoliths of sockeye salmon Oncorhynchus nerka post-smolts.

    PubMed

    Freshwater, C; Trudel, M; Beacham, T D; Neville, C-E; Tucker, S; Juanes, F

    2015-07-01

    Juvenile sockeye salmon Oncorhynchus nerka that were reared and smolted in laboratory conditions were found to produce otolith daily increments, as well as a consistently visible marine-entry check formed during their transition to salt water. Field-collected O. nerka post-smolts of an equivalent age also displayed visible checks; however, microchemistry estimates of marine-entry date using Sr:Ca ratios differed from visual estimates by c. 9 days suggesting that microstructural and microchemical processes occur on different time scales. PMID:25959504

  3. Effects of cadmium on olfactory mediated behaviors and molecular biomarkers in coho salmon (Oncorhynchus kisutch).

    PubMed

    Williams, Chase R; Gallagher, Evan P

    2013-09-15

    The olfactory system of salmonids is sensitive to the adverse effects of metals such as copper and cadmium. In the current study, we analyzed olfactory-mediated alarm responses, epithelial injury and recovery, and a suite of olfactory molecular biomarkers encoding genes critical in maintaining olfactory function in juvenile coho salmon receiving acute exposures to cadmium (Cd). The molecular biomarkers analyzed included four G-protein coupled receptors (GPCRs) representing the two major classes of odorant receptors (salmon olfactory receptor sorb and vomeronasal receptors svra, svrb, and gpr27), as well as markers of neurite outgrowth (nrn1) and antioxidant responses to metals, including heme oxygenase 1 (hmox1), and peroxiredoxin 1 (prdx1). Coho received acute (8-168 h) exposures to 3.7 ppb and 347 ppb Cd, and a subset of fish was analyzed following a 16-day depuration. Coho exposed to 347 ppb Cd over 48 h exhibited a reduction in freeze responses, and an extensive loss of olfaction accompanied by histological injury to the olfactory epithelium. The olfactory injury in coho exposed to 347 ppb Cd was accompanied at the gene level by significant decreases in expression of the olfactory GPCRs and increased expression of hmox1. Persistent behavioral deficits, histological injury and altered expression of a subset of olfactory biomarkers were still evident in Cd-exposed coho following a 16-day depuration in clean water. Exposure to 3.7 ppb Cd also resulted in reduced freeze responses and histological changes to the olfactory epithelium within 48 h of Cd exposure, although the extent of olfactory injury was less severe than observed for fish in the high dose Cd group. Furthermore adverse behavioral effects were present in some coho receiving the low dose of Cd following a 16-day depuration. In summary, acute exposures to environmental levels of Cd can cause olfactory injury in coho salmon that may persist following depuration. Mechanism-based biomarkers of oxidative

  4. Effects of cadmium on olfactory mediated behaviors and molecular biomarkers in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Williams, Chase R.; Gallagher, Evan P.

    2013-01-01

    The olfactory system of salmonids is sensitive to the adverse effects of metals such as copper and cadmium. In the current study, we analyzed olfactory-mediated alarm responses, epithelial injury and recovery, and a suite of olfactory molecular biomarkers encoding genes critical in maintaining olfactory function in juvenile coho salmon receiving acute exposures to cadmium (Cd). The molecular biomarkers analyzed included four G-protein coupled receptors (GPCRs) representing the two major classes of odorant receptors (salmon olfactory receptor sorb and vomeronasal receptors svra, svrb, and gpr27), as well as markers of neurite outgrowth (nrn1) and antioxidant responses to metals, including heme oxygenase 1 (hmox1), and peroxiredoxin 1 (prdx1). Coho received acute (8–168 hr) exposures to 3.7 ppb and 347 ppb Cd, and a subset of fish was analyzed following a 16-day depuration. Coho exposed to 347 ppb Cd over 48 hrs exhibited a reduction in freeze responses, and an extensive loss of olfaction accompanied by histological injury to the olfactory epithelium. The olfactory injury in coho exposed to 347 ppb Cd was accompanied at the gene level by significant decreases in expression of the olfactory GPCRs and increased expression of hmox1. Persistent behavioral deficits, histological injury and altered expression of a subset of olfactory biomarkers were still evident in Cd-exposed coho following a 16-day depuration in clean water. Exposure to 3.7 ppb Cd also resulted in reduced freeze responses and histological changes to the olfactory epithelium within 48 hrs of Cd exposure, although the extent of olfactory injury was less severe than observed for fish in the high dose Cd group. Furthermore adverse behavioral effects were present in some coho receiving the low dose of Cd following a 16-day depuration. In summary, acute exposures to environmental levels of Cd can cause olfactory injury in coho salmon that may persist following depuration. Mechanism-based biomarkers of

  5. Growth and physiological responses to surgical and gastric radio transmitter implantation techniques in subyearling chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Martinelli, T.L.; Hansel, H.C.; Shively, R.S.

    1998-01-01

    We examined the effects of surgical and gastric transmitter implantation techniques on the growth, general physiology and behavior of 230 subyearling chinook salmon (Oncorhynchus tshawytscha, Walbaum) (100 mm-154 mm fork length). The transmitter weighed 1.3 g in air (0.9 g in water) and comprised, on average, 6% of the body weight of the fish (in air). Individuals were randomly assigned to an experimental group (control, surgical or gastric) and a sampling period (day 5 or day 21). Relative growth rate was expressed as% body weight gained/day. General condition was assessed by necropsy. Physiological response variables included hematocrit, leucocrit and plasma protein concentration. The mean relative growth rates of control, surgical and gastric fish were not significantly different at day 5. By day 21, the gastric group had a significantly lower relative growth rate (1.3%) as compared to the surgical group (1.8%) and the control group (1.9%) (P = 0.0001). Mean hematocrit values were significantly lower in the surgical (41.8%) and gastric (42.2%) groups as compared to controls (47.3%) at day 5 (P = 0.01), but all were within normal range for salmonids. No significant differences in hematocrit values were detected at day 21. Leucocrit values for all groups were ??? 1% in 99% of the fish. Both tagged groups had significantly lower mean plasma protein levels as compared to controls at day 5 (P = 0.001) and day 21 (P = 0.0001). At day 21 the gastric group (64.4 g 100 m1-1) had significantly lower mean plasma protein levels than the surgical group (68.8 g 100 ml-1) (P = 0.0001). Necropsies showed decreasing condition of gastrically tagged fish over time, and increasing condition of surgical fish. Paired releases of surgically and gastrically implanted yearling chinook salmon in the lower Columbia River in spring, 1996 revealed few significant differences in migration behavior through two reservoirs. We conclude that gastrically implanted fish show decreased growth and

  6. Effect of loading density of sockeye salmon, Oncorhynchus nerka (Walbaum), eggs in incubation boxes on mortality caused by infectious haematopoietic necrosis

    USGS Publications Warehouse

    Mulcahy, D.; Bauersfeld, K.

    1983-01-01

    Infectious haematopoietic necrosis (IHN) can cause massive mortalities of sockeye salmon, Oncorhynchus nerka (Walbaum), cultured in hatcheries. One method of enhancing sockeye salmon populations is to use a streamside egg incubation box from which the fry are automatically released into the stream as they emerge from the gravel. In this system, however, IHN epizootics occur as the fry emerge and continue for up to two months after the fry leave the box (Mulcahy, unpublished data). In as much as the high density of eggs and alevins in incubation boxes might be conducive to the fulmination of an IHN epizootic, we varied the egg density in incubation boxes and studied the cffect on mortality caused by IHN.

  7. Testing of candidate non-lethal sampling methods for detection of Renibacterium salmoninarum in juvenile Chinook salmon Oncorhynchus tshawytscha.

    PubMed

    Elliott, Diane G; McKibben, Constance L; Conway, Carla M; Purcell, Maureen K; Chase, Dorothy M; Applegate, LynnMarie J

    2015-05-11

    Non-lethal pathogen testing can be a useful tool for fish disease research and management. Our research objectives were to determine if (1) fin clips, gill snips, surface mucus scrapings, blood draws, or kidney biopsies could be obtained non-lethally from 3 to 15 g Chinook salmon Oncorhynchus tshawytscha, (2) non-lethal samples could accurately discriminate between fish exposed to the bacterial kidney disease agent Renibacterium salmoninarum and non-exposed fish, and (3) non-lethal samples could serve as proxies for lethal kidney samples to assess infection intensity. Blood draws and kidney biopsies caused ≥5% post-sampling mortality (Objective 1) and may be appropriate only for larger fish, but the other sample types were non-lethal. Sampling was performed over 21 wk following R. salmoninarum immersion challenge of fish from 2 stocks (Objectives 2 and 3), and nested PCR (nPCR) and real-time quantitative PCR (qPCR) results from candidate non-lethal samples were compared with kidney tissue analysis by nPCR, qPCR, bacteriological culture, enzyme-linked immunosorbent assay (ELISA), fluorescent antibody test (FAT) and histopathology/immunohistochemistry. R. salmoninarum was detected by PCR in >50% of fin, gill, and mucus samples from challenged fish. Mucus qPCR was the only non-lethal assay exhibiting both diagnostic sensitivity and specificity estimates>90% for distinguishing between R. salmoninarum-exposed and non-exposed fish and was the best candidate for use as an alternative to lethal kidney sample testing. Mucus qPCR R. salmoninarum quantity estimates reflected changes in kidney bacterial load estimates, as evidenced by significant positive correlations with kidney R. salmoninarum infection intensity scores at all sample times and in both fish stocks, and were not significantly impacted by environmental R. salmoninarum concentrations. PMID:25958804

  8. Testing of candidate non-lethal sampling methods for detection of Renibacterium salmoninarum in juvenile Chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Elliott, Diane G.; McKibben, Constance L.; Conway, Carla M.; Purcell, Maureen K.; Chase, Dorothy M.; Applegate, Lynn M.

    2015-01-01

    Non-lethal pathogen testing can be a useful tool for fish disease research and management. Our research objectives were to determine if (1) fin clips, gill snips, surface mucus scrapings, blood draws, or kidney biopsies could be obtained non-lethally from 3 to 15 g Chinook salmon Oncorhynchus tshawytscha, (2) non-lethal samples could accurately discriminate between fish exposed to the bacterial kidney disease agent Renibacterium salmoninarum and non-exposed fish, and (3) non-lethal samples could serve as proxies for lethal kidney samples to assess infection intensity. Blood draws and kidney biopsies caused ≥5% post-sampling mortality (Objective 1) and may be appropriate only for larger fish, but the other sample types were non-lethal. Sampling was performed over 21 wk following R. salmoninarum immersion challenge of fish from 2 stocks (Objectives 2 and 3), and nested PCR (nPCR) and real-time quantitative PCR (qPCR) results from candidate non-lethal samples were compared with kidney tissue analysis by nPCR, qPCR, bacteriological culture, enzyme-linked immunosorbent assay (ELISA), fluorescent antibody test (FAT) and histopathology/immunohistochemistry. R. salmoninarum was detected by PCR in >50% of fin, gill, and mucus samples from challenged fish. Mucus qPCR was the only non-lethal assay exhibiting both diagnostic sensitivity and specificity estimates >90% for distinguishing between R. salmoninarum-exposed and non-exposed fish and was the best candidate for use as an alternative to lethal kidney sample testing. Mucus qPCR R. salmoninarum quantity estimates reflected changes in kidney bacterial load estimates, as evidenced by significant positive correlations with kidney R. salmoninaruminfection intensity scores at all sample times and in both fish stocks, and were not significantly impacted by environmentalR. salmoninarum concentrations.

  9. Alterations in gene expression during fasting-induced atresia of early secondary ovarian follicles of coho salmon, Oncorhynchus kisutch.

    PubMed

    Yamamoto, Yoji; Luckenbach, J Adam; Young, Graham; Swanson, Penny

    2016-11-01

    Molecular processes that either regulate ovarian atresia or are consequences of atresia are poorly understood in teleost fishes. We hypothesized that feed restriction that perturbs normal ovarian growth and induces follicular atresia would alter ovarian gene expression patterns. Previtellogenic, two-year old coho salmon (Oncorhynchus kisutch) were subjected to prolonged fasting to induce atresia or maintained on a normal feeding schedule that would promote continued ovarian development. To identify genes that were specifically up- or down-regulated during oocyte growth in healthy, growing fish compared to fasted fish, reciprocal suppression subtractive hybridization (SSH) cDNA libraries were generated using ovaries from fed and fasted animals. Differential expression of genes identified by SSH was confirmed with quantitative PCR. The SSH library representing genes elevated in ovaries of fed fish relative to those of fasted fish contained steroidogenesis-related genes (e.g., hydroxy-delta-5-steroid dehydrogenase), Tgf-beta superfamily members (e.g., anti-Mullerian hormone) and cytoskeletal intermediate filament proteins (e.g., type I keratin s8). Overall, these genes were associated with steroid production, cell proliferation and differentiation, and ovarian epithelialization. The library representing genes elevated in ovaries of fasted fish relative to fed fish contained genes associated with apoptosis (e.g., programmed cell death protein 4), cortical alveoli (e.g., alveolin), the zona pellucida (e.g., zona pellucida protein c), and microtubules (e.g., microtubule associated protein tau). Elevated expression of this suite of genes was likely associated with the initiation of atresia and/or a reduced rate of follicle development in response to fasting. This study revealed ovarian genes involved in normal early secondary oocyte growth and potential early markers of atresia.

  10. Alterations in gene expression during fasting-induced atresia of early secondary ovarian follicles of coho salmon, Oncorhynchus kisutch.

    PubMed

    Yamamoto, Yoji; Luckenbach, J Adam; Young, Graham; Swanson, Penny

    2016-11-01

    Molecular processes that either regulate ovarian atresia or are consequences of atresia are poorly understood in teleost fishes. We hypothesized that feed restriction that perturbs normal ovarian growth and induces follicular atresia would alter ovarian gene expression patterns. Previtellogenic, two-year old coho salmon (Oncorhynchus kisutch) were subjected to prolonged fasting to induce atresia or maintained on a normal feeding schedule that would promote continued ovarian development. To identify genes that were specifically up- or down-regulated during oocyte growth in healthy, growing fish compared to fasted fish, reciprocal suppression subtractive hybridization (SSH) cDNA libraries were generated using ovaries from fed and fasted animals. Differential expression of genes identified by SSH was confirmed with quantitative PCR. The SSH library representing genes elevated in ovaries of fed fish relative to those of fasted fish contained steroidogenesis-related genes (e.g., hydroxy-delta-5-steroid dehydrogenase), Tgf-beta superfamily members (e.g., anti-Mullerian hormone) and cytoskeletal intermediate filament proteins (e.g., type I keratin s8). Overall, these genes were associated with steroid production, cell proliferation and differentiation, and ovarian epithelialization. The library representing genes elevated in ovaries of fasted fish relative to fed fish contained genes associated with apoptosis (e.g., programmed cell death protein 4), cortical alveoli (e.g., alveolin), the zona pellucida (e.g., zona pellucida protein c), and microtubules (e.g., microtubule associated protein tau). Elevated expression of this suite of genes was likely associated with the initiation of atresia and/or a reduced rate of follicle development in response to fasting. This study revealed ovarian genes involved in normal early secondary oocyte growth and potential early markers of atresia. PMID:27320185

  11. A cohabitation challenge to compare the efficacies of vaccines for bacterial kidney disease (BKD) in chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Alcorn, S.; Murray, A.L.; Pascho, R.J.; Varney, J.

    2005-01-01

    The relative efficacies of 1 commercial and 5 experimental vaccines for bacterial kidney disease (BKD) were compared through a cohabitation waterborne challenge. Groups of juvenile chinook salmon Oncorhynchus tshawytscha were vaccinated with one of the following: (1) killed Renibacterium salmoninarum ATCC 33209 (Rs 33209) cells; (2) killed Rs 33209 cells which had been heated to 37??C for 48 h, a process that destroys the p57 protein; (3) killed R. salmoninarum MT239 (Rs MT239) cells; (4) heated Rs MT239 cells; (5) a recombinant version of the p57 protein (r-p57) emulsified in Freund's incomplete adjuvant (FIA); (6) the commercial BKD vaccine Renogen; (7) phosphate-buffered saline (PBS) emulsified with an equal volume of FIA; or (8) PBS alone. Following injection, each fish was marked with a subcutaneous fluorescent latex tag denoting its treatment group and the vaccinated fish were combined into sham and disease challenge tanks. Two weeks after these fish were vaccinated, separate groups of fish were injected with either PBS or live R. salmoninarum GL64 and were placed inside coated-wire mesh cylinders (liveboxes) in the sham and disease challenge tanks, respectively. Mortalities in both tanks were recorded for 285 d. Any mortalities among the livebox fish were replaced with an appropriate cohort (infected with R. salmoninarum or healthy) fish. None of the bacterins evaluated in this study induced protective immunity against the R. salmoninarum shed from the infected livebox fish. The percentage survival within the test groups in the R. salmoninarum challenge tank ranged from 59% (heated Rs MT239 bacterin) to 81 % (PBS emulsified with FIA). There were no differences in the percentage survival among the PBS-, PBS/FIA-, r-p57-and Renogen-injected groups. There also were no differences in survival among the bacterin groups, regardless of whether the bacterial cells had been heated or left untreated prior to injection. ?? Inter-Research 2005.

  12. Interpopulation Comparison of Sex-Biased Mortality and Sexual Size Dimorphism in Sea-Run Masu Salmon, Oncorhynchus masou.

    PubMed

    Tamate, Tsuyoshi

    2015-08-01

    Evolutionary ecologists often expect that natural and sexual selection result in systematic co-occurrence patterns of sex-biased mortality and sexual size dimorphism (SSD) within animal species. However, whether such patterns actually occur in wild animals is poorly examined. The following expectation, the larger sex suffers higher mortality, was primarily tested here for apparently native sea-run masu salmon (Oncorhynchus masou) in three populations in Hokkaido, Japan. Field surveys on sex ratios, body sizes, and ages of smolts and returning adults revealed that two of the three populations exhibited an expected pattern, a female-biased marine mortality and SSD, but one population demonstrated an unexpected co-occurrence of male-biased marine mortality and female-biased SSD. These female-biased SSDs were attributed to faster marine growth of females because of no sex difference in smolt body size. It has been previously suggested that breeding selection favoring large size generally act more strongly in females than in males in Japanese anadromous masu, as there is a weak sexual selection on adult males but universally intensive natural selection on adult females. Thus, this hypothesis explains female-biased SSDs well in all study populations. Interpopulation variation in sex-biased mortality found here might result from differences in marine predation and/or fishing pressures, given that selection driving female-biased SSD makes females forage more aggressively than males during the marine phase. Taken together, these results raise the possibility that evolutionary forces have shaped adaptive sex-specific foraging strategies under relationships between growth and mortality, resulting in co-occurrence patterns of sex-biased mortality and SSD within animal species.

  13. Effect of daily oscillation in temperature and increased suspended sediment on growth and smolting in juvenile chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Shrimpton, J.M.; Zydlewski, J.D.; Heath, J.W.

    2007-01-01

    We examined the effect of temperature oscillation and increased suspended sediment concentration on growth and smolting in juvenile ocean-type chinook salmon (Oncorhynchus tshawytscha). Fish were ponded on February 26; each treatment group had three replicates of 250 fish. Mean temperatures for the entire experiment were 12.3????C for all tanks with a total of 1348 and 1341 degree days for the constant temperature and oscillating temperature tanks, respectively. Daily fluctuation in temperature averaged 7.5????C in the variable temperature groups and less than 1????C for the constant temperature group. Starting on April 5, bentonite clay was added each day to tanks as a pulse event to achieve a suspended sediment concentration of 200??mg l- 1; clay cleared from the tanks within approximately 8??h. Fish were sampled at approximately two??week intervals from ponding until mid-June. On the last sample date, June 12, a single gill arch was removed and fixed for histological examination of gill morphology. By early May, significant differences were seen in size between the groups; control > temperature = sediment > (temperature ?? sediment). This relationship was consistent throughout the experiment except for the last sample date when the temperature group had a mean weight significantly greater than the sediment group. Gill Na+,K+-ATPase activity was not affected by daily temperature oscillations, but groups subjected to increased suspended sediment had significantly lower enzyme activities compared to controls. Mean cell size for gill chloride cells did not differ between groups. Plasma cortisol increased significantly during the spring, but there were no significant differences between groups. ?? 2007 Elsevier B.V. All rights reserved.

  14. Genetic Analysis of Snake River Sockeye Salmon (Oncorhynchus Nerka), 2003 Technical Report.

    SciTech Connect

    Faler, Joyce; Powell, Madison

    2003-12-01

    A total of 1720 Oncorhynchus nerka tissue samples from 40 populations were characterized using mitochondrial DNA RFLPs (Restriction Fragment Length Polymorphisms). Analysis of anadromous sockeye populations indicated the historical presence of four major maternal lineages. Thirty-five composite mitochondrial haplotypes were observed from the 40 populations of O. nerka sampled throughout the Pacific Northwest. Six of these composite haplotypes ranged in frequency from 7-26% overall and were commonly observed in most populations. The six haplotypes together comprised 90% of the sampled O. nerka. An average of 4.6 composite haplotypes were observed per population. Genetic markers used were satisfactory in separating Redfish Lake anadromous sockeye, residual sockeye and outmigrants from the sympatric kokanee population that spawns in the Fishhook Creek tributary. Outmigrants appear to be primarily composed of progeny from resident residual sockeye, and captively-reared progeny of the captive broodstock program. Thus, residual sockeye may be considered a suitable source of genetic variation to maintain genetic diversity among captive broodstocks of anadromous sockeye. Fishhook Creek kokanee are genetically diverse and during spawning, are temporally and spatially isolated from the residual sockeye population. Eleven composite haplotypes were observed in the kokanee population. The unusually high number of haplotypes is most likely a consequence of periodic stocking of Redfish Lake with kokanee from other sources. Genetic data from Redfish Lake creel samples taken during 1996-1999 putatively indicate the incidental take of a listed resident sockeye.

  15. The potential for chromium to affect the fertilization process of Chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, Washington, USA

    USGS Publications Warehouse

    Farag, A.M.; Harper, D.D.; Cleveland, L.; Brumbaugh, W.G.; Little, E.E.

    2006-01-01

    The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 ??g Cr l-1. The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 ??g Cr l-1. Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 ??g Cr l-1. Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 ??g Cr l-1. Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 ??g Cr l-1 is most likely protective of Chinook salmon fertilization. ?? 2006 Springer Science+Business Media, Inc.

  16. Deposition Form and Bioaccessibility of Keto-carotenoids from Mamey Sapote (Pouteria sapota), Red Bell Pepper (Capsicum annuum), and Sockeye Salmon (Oncorhynchus nerka) Filet.

    PubMed

    Chacón-Ordóñez, Tania; Esquivel, Patricia; Jiménez, Víctor M; Carle, Reinhold; Schweiggert, Ralf M

    2016-03-01

    The ultrastructure and carotenoid-bearing structures of mamey sapote (Pouteria sapota) chromoplasts were elucidated using light and transmission electron microscopy and compared to carotenoid deposition forms in red bell pepper (Capsicum annuum) and sockeye salmon (Oncorhynchus nerka). Globular-tubular chromoplasts of sapote contained numerous lipid globules and tubules embodying unique provitamin A keto-carotenoids in a lipid-dissolved and presumably liquid-crystalline form, respectively. Bioaccessibility of sapotexanthin and cryptocapsin was compared to that of structurally related keto-carotenoids from red bell pepper and salmon. Capsanthin from bell pepper was the most bioaccessible pigment, followed by sapotexanthin and cryptocapsin esters from mamey sapote. In contrast, astaxanthin from salmon was the least bioaccessible keto-carotenoid. Thermal treatment and fat addition consistently enhanced bioaccessibility, except for astaxanthin from naturally lipid-rich salmon, which remained unaffected. Although the provitamin A keto-carotenoids from sapote were highly bioaccessible, their qualitative and quantitative in vivo bioavailability and their conversion to vitamin A remains to be confirmed.

  17. Bioenergetic model estimates of interannual and spatial patterns in consumption demand and growth potential of juvenile pink salmon (Oncorhynchus gorbuscha) in the Gulf of Alaska

    USGS Publications Warehouse

    Moss, J.H.; Beauchamp, D.A.; Cross, A.D.; Farley, E.V.; Murphy, J.M.; Helle, J.H.; Walker, R.V.; Myers, K.W.

    2009-01-01

    A bioenergetic model of juvenile pink salmon (Oncorhynchus gorbuscha) was used to estimate daily prey consumption and growth potential of four ocean habitats in the Gulf of Alaska during 2001 and 2002. Growth potential was not significantly higher in 2002 than in 2001 at an alpha level of 0.05 (P=0.073). Average differences in growth potential across habitats were minimal (slope habitat=0.844 g d-1, shelf habitat=0.806 g d-1, offshore habitat=0.820 g d-1, and nearshore habitat=0.703 g d-1) and not significantly different (P=0.630). Consumption demand differed significantly between hatchery and wild stocks (P=0.035) when examined within year due to the interaction between hatchery verses wild origin and year. However, the overall effect of origin across years was not significant (P=0.705) due to similar total amounts of prey consumed by all juvenile pink salmon in both study years. We anticipated that years in which ocean survival was high would have had high growth potential, but this relationship did not prove to be true. Therefore, modeled growth potential may not be useful as a tool for forecasting survival of Prince William Sound hatchery pink salmon stocks. Significant differences in consumption demand and a two-fold difference in nearshore abundance during 2001 of hatchery and wild pink salmon confirmed the existence of strong and variable interannual competition and the importance of the nearshore region as being a potential competitive bottleneck.

  18. Deposition Form and Bioaccessibility of Keto-carotenoids from Mamey Sapote (Pouteria sapota), Red Bell Pepper (Capsicum annuum), and Sockeye Salmon (Oncorhynchus nerka) Filet.

    PubMed

    Chacón-Ordóñez, Tania; Esquivel, Patricia; Jiménez, Víctor M; Carle, Reinhold; Schweiggert, Ralf M

    2016-03-01

    The ultrastructure and carotenoid-bearing structures of mamey sapote (Pouteria sapota) chromoplasts were elucidated using light and transmission electron microscopy and compared to carotenoid deposition forms in red bell pepper (Capsicum annuum) and sockeye salmon (Oncorhynchus nerka). Globular-tubular chromoplasts of sapote contained numerous lipid globules and tubules embodying unique provitamin A keto-carotenoids in a lipid-dissolved and presumably liquid-crystalline form, respectively. Bioaccessibility of sapotexanthin and cryptocapsin was compared to that of structurally related keto-carotenoids from red bell pepper and salmon. Capsanthin from bell pepper was the most bioaccessible pigment, followed by sapotexanthin and cryptocapsin esters from mamey sapote. In contrast, astaxanthin from salmon was the least bioaccessible keto-carotenoid. Thermal treatment and fat addition consistently enhanced bioaccessibility, except for astaxanthin from naturally lipid-rich salmon, which remained unaffected. Although the provitamin A keto-carotenoids from sapote were highly bioaccessible, their qualitative and quantitative in vivo bioavailability and their conversion to vitamin A remains to be confirmed. PMID:26888016

  19. Morphological changes in the retina in Pacific ocean salmon Oncorhynchus masou fry in response to neutralization of the geomagnetic field in conditions of normal illumination.

    PubMed

    Maksimovich, A A; Kondrashev, S L; Gnyubkina, V P

    2008-10-01

    The studies reported here provide the first demonstration that retinal responses in both the fry of the migratory salmon trout Oncorhynchus masou and the dwarf form of this species changed in conditions of experimental neutralization of the geomagnetic field (GMF); migratory salmon trout fry and dwarves showed different changes. The responses of different types of retinal photoreceptor in migratory salmon trout fry to neutralization of the GMF differed: while rods and double cones perceived neutralization of the GMF as the onset of darkness (the scotopic reaction), single (generally blue-sensitive) cones responded to neutralization of the GMF both as presentation of blue light or (very rarely) ultraviolet irradiation. The retina of dwarf male salmon trout responded to neutralization of the GMF with a double response: rods showed a light (photopic) response, while double (red/green-sensitive) cones produced dark (scotopic) responses. Single (blue-sensitive) cones responded to neutralization of the GMF as bright blue light. Thus, the morphological picture of the retina in dwarf male salmon trout in these experimental conditions corresponds to the perception of blue light. The initial conditions were different--normal diffuse daylight with a brightness of about 7.5 Lx. It is likely that neutralization of the magnetic field had no effect on rods, while double, red-green, cones responded as to darkness, i.e., the fish did not perceive red or green light in the visible spectrum, but perceived only blue and, possibly, ultraviolet light by means of central blue-sensitive and accessory cones. Thus, these experiments demonstrated that in conditions of normal daylight illumination, retinal photoreceptors in salmon fry respond to changes in the earth's magnetic field, i.e., objectively function as magnetoreceptors.

  20. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawytscha) near Ives and Pierce Island of the Columbia River, 2004-2005 Annual Report.

    SciTech Connect

    Mueller, Robert

    2005-10-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (greater than 1 m) downstream of Bonneville Dam in fall 2004. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce Islands of the Columbia River and is the sixth in a series of reports prepared since 1999. The main objectives of this study were to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The primary search area was adjacent to the upper portion of Pierce Island, and the secondary search zone was downstream of this area near the lower portion of Pierce Island. A secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections downstream of Hamilton Creek (slough zone search area). Fall Chinook salmon redd numbers were down slightly from the record number found during 2003. The number of fall Chinook redds found in the Ives-Pierce Island complex (river km 228.5) during 2004 was 293, which does not include the number of shallow water redds found by visual observation by boat by the Oregon Department of Fish and Wildlife. The redds encompassed an area of 14.6 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 16, 2004. An expanded redd count based on percentage video coverage in the primary and secondary search zones was 3,198 fall Chinook salmon redds at water depths exceeding approximately 1.0 m (approximately 125 kcfs) with an estimated spawning population of 10,800. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging in size from 7

  1. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2003-2004 Annual Report.

    SciTech Connect

    Mueller, Robert

    2004-10-01

    Pacific Northwest National Laboratory conducted video-based boat surveys in fall 2003 to identify spawning areas for fall Chinook salmon (Oncorhynchus tshawytscha) in deep water (>1 m) downstream of Bonneville Dam. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce islands of the Columbia River, and is the fifth in a series of reports prepared since 1999. The primary objective of this study was to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections near below Hamilton Creek. Results from the 2003 study show a continuing trend upward in the number of fall Chinook salmon redds found within the survey zones. The number of fall Chinook redds found in the Ives Pierce Island complex (river km 228.5) has increased by a factor of five since the surveys began in 1999. The total number of redds found during 2003 was 336, which compares to 192 in 2002, 43 in 2001, 76 in 2000, and 64 in 1999. The redds encompassed an area of 13.7 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 24, 2003. An expanded redd count based on percentage of video coverage in the primary and secondary search zones was 3,218 fall Chinook salmon redds in water exceeding 1 m deep and flowing at about 125 kcfs. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging from 7.6 to 15.2 cm in diameter. Two chum salmon redds were found in a small location downstream from Hamilton Creek in water depths of approximately 1 m. No salmon redds were found in other areas searched, including near

  2. Refined liquid smoke: a potential antilisterial additive to cold-smoked sockeye salmon (Oncorhynchus nerka).

    PubMed

    Montazeri, Naim; Himelbloom, Brian H; Oliveira, Alexandra C M; Leigh, Mary Beth; Crapo, Charles A

    2013-05-01

    Cold-smoked salmon (CSS) is a potentially hazardous ready-to-eat food product due to the high risk of contamination with Listeria monocytogenes and lack of a listericidal step. We investigated the antilisterial property of liquid smokes (LS) against Listeria innocua ATCC 33090 (surrogate to L. monocytogenes) as a potential supplement to vacuum-packaged CSS. A full-strength LS (Code 10-Poly), and three commercially refined fractions (AM-3, AM-10, and 1291) having less color and flavor (lower content of phenols and carbonyl-containing compounds) were tested. In vitro assays showed strong inhibition for all LS except for 1291. The CSS strips were surface coated with AM-3 and AM-10 at 1% LS (vol/wt) with an L-shaped glass rod and then inoculated with L. innocua at 3.5 log CFU/g, vacuum packaged, and stored at 4°C. The LS did not completely eliminate L. innocua but provided a 2-log reduction by day 14, with no growth up to 35 days of refrigerated storage. A simple difference sensory test by 180 untrained panelists showed the application of AM-3 did not significantly influence the overall sensorial quality of CSS. In essence, the application of the refined LS as an antilisterial additive to CSS is recommended.

  3. Refined liquid smoke: a potential antilisterial additive to cold-smoked sockeye salmon (Oncorhynchus nerka).

    PubMed

    Montazeri, Naim; Himelbloom, Brian H; Oliveira, Alexandra C M; Leigh, Mary Beth; Crapo, Charles A

    2013-05-01

    Cold-smoked salmon (CSS) is a potentially hazardous ready-to-eat food product due to the high risk of contamination with Listeria monocytogenes and lack of a listericidal step. We investigated the antilisterial property of liquid smokes (LS) against Listeria innocua ATCC 33090 (surrogate to L. monocytogenes) as a potential supplement to vacuum-packaged CSS. A full-strength LS (Code 10-Poly), and three commercially refined fractions (AM-3, AM-10, and 1291) having less color and flavor (lower content of phenols and carbonyl-containing compounds) were tested. In vitro assays showed strong inhibition for all LS except for 1291. The CSS strips were surface coated with AM-3 and AM-10 at 1% LS (vol/wt) with an L-shaped glass rod and then inoculated with L. innocua at 3.5 log CFU/g, vacuum packaged, and stored at 4°C. The LS did not completely eliminate L. innocua but provided a 2-log reduction by day 14, with no growth up to 35 days of refrigerated storage. A simple difference sensory test by 180 untrained panelists showed the application of AM-3 did not significantly influence the overall sensorial quality of CSS. In essence, the application of the refined LS as an antilisterial additive to CSS is recommended. PMID:23643122

  4. Temporal variation in selection on body length and date of return in a wild population of coho salmon, Oncorhynchus kisutch

    PubMed Central

    2012-01-01

    Background A number of studies have measured selection in nature to understand how populations adapt to their environment; however, the temporal dynamics of selection are rarely investigated. The aim of this study was to assess the temporal variation in selection by comparing the mode, direction and strength of selection on fitness-related traits between two cohorts of coho salmon (Oncorhynchus kisutch). Specifically, we quantified individual reproductive success and examined selection on date of return and body length in a wild population at Big Beef Creek, Washington (USA). Results Reproductive success and the mode, direction and strength of selection on date of return and body length differed between two cohorts sampled in 2006 and 2007. Adults of the first brood year had greater success over those of the second. In 2006, disruptive selection favored early and late returning individuals in 2-year-old males, and earlier returning 3-year-old males had higher fitness. No evidence of selection on date of return was detected in females. In 2007, selection on date of return was not observed in males of either age class, but stabilizing selection on date of return was observed in females. No selection on body length was detected in males of both age classes in 2006, and large size was associated with higher fitness in females. In 2007, selection favored larger size in 3-year-old males and intermediate size in females. Correlational selection between date of return and body length was observed only in 2-year-old males in 2006. Conclusions We found evidence of selection on body length and date of return to the spawning ground, both of which are important fitness-related traits in salmonid species, but this selection varied over time. Fluctuation in the mode, direction and strength of selection between two cohorts was likely to be due to factors such as changes in precipitation, occurrence of catastrophic events (flooding), the proportion of younger- versus older

  5. Building an ecosystem model using mismatched and fragmented data: A probabilistic network of early marine survival for coho salmon Oncorhynchus kisutch in the Strait of Georgia

    NASA Astrophysics Data System (ADS)

    Andres Araujo, H.; Holt, Carrie; Curtis, Janelle M. R.; Perry, R. I.; Irvine, James R.; Michielsens, Catherine G. J.

    2013-08-01

    We evaluated the effects of biophysical conditions and hatchery production on the early marine survival of coho salmon Oncorhynchus kisutch in the Strait of Georgia, British Columbia, Canada. Due to a paucity of balanced multivariate ecosystem data, we developed a probabilistic network that integrated physical and ecological data and information from literature, expert opinion, oceanographic models, and in situ observations. This approach allowed us to evaluate alternate hypotheses about drivers of early marine survival while accounting for uncertainties in relationships among variables. Probabilistic networks allow users to explore multiple environmental settings and evaluate the consequences of management decisions under current and projected future states. We found that the zooplankton biomass anomaly, calanoid copepod biomass, and herring biomass were the best indicators of early marine survival. It also appears that concentrating hatchery supplementation during periods of negative PDO and ENSO (Pacific Decadal and El Niño Southern Oscillation respectively), indicative of generally favorable ocean conditions for salmon, tends to increase survival of hatchery coho salmon while minimizing negative impacts on the survival of wild juveniles. Scientists and managers can benefit from the approach presented here by exploring multiple scenarios, providing a basis for open and repeatable ecosystem-based risk assessments when data are limited.

  6. Controls on the entrainment of juvenile Chinook Salmon (Oncorhynchus tshawytscha) into large water diversions and estimates of population-level loss.

    PubMed

    Zeug, Steven C; Cavallo, Bradley J

    2014-01-01

    Diversion of freshwater can cause significant changes in hydrologic dynamics and this can have negative consequences for fish populations. Additionally, fishes can be directly entrained into diversion infrastructure (e.g. canals, reservoirs, pumps) where they may become lost to the population. However, the effect of diversion losses on fish population dynamics remains unclear. We used 15 years of release and recovery data from coded-wire-tagged juvenile Chinook Salmon (Oncorhynchus tshawytscha) to model the physical, hydrological and biological predictors of salvage at two large water diversions in the San Francisco Estuary. Additionally, entrainment rates were combined with estimates of mortality during migration to quantify the proportion of total mortality that could be attributed to diversions. Statistical modeling revealed a strong positive relationship between diversion rate and fish entrainment at both diversions and all release locations. Other significant relationships were specific to the rivers where the fish were released, and the specific diversion facility. Although significant relationships were identified in statistical models, entrainment loss and the mean contribution of entrainment to total migration mortality were low. The greatest entrainment mortality occurred for fish released along routes that passed closest to the diversions and certain runs of Chinook Salmon released in the Sacramento River suffered greater mortality but only at the highest diversion rates observed during the study. These results suggest losses at diversions should be put into a population context in order to best inform effective management of Chinook Salmon populations. PMID:25019205

  7. Controls on the Entrainment of Juvenile Chinook Salmon (Oncorhynchus tshawytscha) into Large Water Diversions and Estimates of Population-Level Loss

    PubMed Central

    Zeug, Steven C.; Cavallo, Bradley J.

    2014-01-01

    Diversion of freshwater can cause significant changes in hydrologic dynamics and this can have negative consequences for fish populations. Additionally, fishes can be directly entrained into diversion infrastructure (e.g. canals, reservoirs, pumps) where they may become lost to the population. However, the effect of diversion losses on fish population dynamics remains unclear. We used 15 years of release and recovery data from coded-wire-tagged juvenile Chinook Salmon (Oncorhynchus tshawytscha) to model the physical, hydrological and biological predictors of salvage at two large water diversions in the San Francisco Estuary. Additionally, entrainment rates were combined with estimates of mortality during migration to quantify the proportion of total mortality that could be attributed to diversions. Statistical modeling revealed a strong positive relationship between diversion rate and fish entrainment at both diversions and all release locations. Other significant relationships were specific to the rivers where the fish were released, and the specific diversion facility. Although significant relationships were identified in statistical models, entrainment loss and the mean contribution of entrainment to total migration mortality were low. The greatest entrainment mortality occurred for fish released along routes that passed closest to the diversions and certain runs of Chinook Salmon released in the Sacramento River suffered greater mortality but only at the highest diversion rates observed during the study. These results suggest losses at diversions should be put into a population context in order to best inform effective management of Chinook Salmon populations. PMID:25019205

  8. Genetic Structure of Chum Salmon (Oncorhynchus Keta) Populations in the Lower Columbia River: Are Chum Salmon in Cascade Tributaries Remnant Populations?

    SciTech Connect

    Small, Maureen P.; Pichahchy, A.E.; Von Bargen, J.F.; Young, S.F.

    2004-09-01

    Prior to the 1950's, the lower Columbia River drainage supported a run of over a million chum salmon composed of at least 16 populations. By the late 1950's, over-fishing and habitat destruction had decreased the run to as little as a few hundred fish. With the exception of Grays River in the coastal region of the Columbia River and an aggregation of chum salmon spawning in creeks and the mainstem near Bonneville Dam in the Columbia Gorge region, most populations were considered extinct. However, over the years, WDFW biologists detected chum salmon spawning in tributaries originating in the Cascade Range: the Cowlitz, Lewis, and Washougal rivers. Further, chum salmon in the Cowlitz River appeared to have summer and fall run-timings. To assess whether Cascade spawners were strays from Grays River and Gorge regions or remnants of former populations, chum salmon from the Coastal, Cascade and Gorge regions were characterized genetically at 17 microsatellite loci. With the exception of Washougal River chum salmon, which grouped strongly with the Gorge genetic group, significant heterogeneity in genotype distributions were detected between regions and genotype distributions overlapped among collections within regions. In a neighbor-joining consensus tree, regional groups occupied branches with over 77% bootstrap support. In assignment tests, over 63% of individuals were correctly assigned back to region of origin although an average of 29% assigned to river of origin. Genetic distinction of Cascade region chum salmon was similar to distinction of Coastal and Gorge chum salmon and the Cascade region chum salmon had twice the number of private regional alleles. Further, the Cowlitz River supports the only summer chum salmon run in the Columbia River drainage. We propose that chum salmon in the Cascade region are remnants of original populations. We attribute the strong divergence between regional groups to diverse ecological conditions in each region, which promoted

  9. Differential modulation of resistance biomarkers in skin of juvenile and mature pink salmon, Oncorhynchus gorbuscha by the salmon louse, Lepeophtheirus salmonis.

    PubMed

    Braden, Laura M; Barker, Duane E; Koop, Ben F; Jones, Simon R M

    2015-11-01

    Juvenile pink salmon larger than 0.7 g reject the sea louse, Lepeophtheirus salmonis, and are considered resistant to the infection. Robust innate defense responses in the skin contribute to the observed resistance. In contrast adult pink salmon captured at sea or shortly before spawning carry large numbers of the parasite, suggesting inability to control the infection. The purpose of this research is to better understand these apparently contradictory conclusions by comparing a suite of genetic and cellular markers of resistance to L. salmonis in the skin of juvenile and mature pink salmon. The expression of major histocompatibility factor II, C-reactive protein, interleukin-1β, interleukin-8 and cyclooxygenase-2 was down-regulated in mature but not juvenile pink salmon. Similarly, skin at the site of parasite attachment in juvenile salmon was highly populated with MHIIβ(+) and IL-1β(+) cells that were either absent, or at reduced levels at similar sites in mature salmon. In addition, mucocyte density was relatively low in the skin of mature salmon, irrespective of louse infection. In juveniles, the higher mucocyte density decreased following louse attachment. We show that in mature pink salmon, genetic and histological responses in skin are depressed and speculate that salmonid defense against L. salmonis is modulated by maturation.

  10. Assignment of Chinook salmon (Oncorhynchus tshawytscha) linkage groups to specific chromosomes reveals a karyotype with multiple rearrangements of the chromosome arms of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Phillips, Ruth B; Park, Linda K; Naish, Kerry A

    2013-12-09

    The Chinook salmon genetic linkage groups have been assigned to specific chromosomes using fluorescence in situ hybridization with bacterial artificial chromosome probes containing genetic markers mapped to each linkage group in Chinook salmon and rainbow trout. Comparison of the Chinook salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout as expected. In almost every case, the markers were found at approximately the same location on the chromosome arm in each species, suggesting conservation of marker order on the chromosome arms of the two species in most cases. Although theoretically a few centric fissions could convert the karyotype of rainbow trout (2N = 58-64) into that of Chinook salmon (2N = 68) or vice versa, our data suggest that chromosome arms underwent multiple centric fissions and subsequent new centric fusions to form the current karyotypes. The morphology of only approximately one-third of the chromosome pairs have been conserved between the two species.

  11. Comparative study of GH-transgenic and non-transgenic amago salmon (Oncorhynchus masou ishikawae) allergenicity and proteomic analysis of amago salmon allergens.

    PubMed

    Nakamura, Rika; Satoh, Rie; Nakajima, Yukari; Kawasaki, Nana; Yamaguchi, Teruhide; Sawada, Jun-Ichi; Nagoya, Hiroyuki; Teshima, Reiko

    2009-12-01

    Genetically modified (GM) foods are beneficial from the standpoint of ensuring a constant supply of foodstuffs, but they must be tested for safety before being released on the market, including by allergenicity tests to ensure that they do not contain new allergens or higher concentrations of known allergens than the same non-GM foods. In this study we used GM-amago salmon into which a growth hormone gene had been introduced and compared the allergens contained in the GM and the non-GM-amago salmons. We used a combination of Western blotting with allergen-specific antibodies and a proteomic analysis of their allergens with patients' sera, a so-called allergenome analysis, to analyze allergens. Western blotting with specific antibodies showed no increase in the content of the known allergens fish parvalbumin and fish type-I collagen in GM-amago salmon, in comparison with their content in non-GM-amago salmon. The allergenome analysis of two fish-allergic patients allowed us to identify several IgE-binding proteins in amago salmon, including parvalbumin, triose-phosphate isomerase, fructose-bisphosphate aldolase A, and serum albumin, and there were no qualitative differences in these proteins between GM and non-GM-amago salmons. These results indicate that amago salmon endogenous allergen expression does not seem to be altered by genetic modification.

  12. Alternative models of climatic effects on sockeye salmon (Oncorhynchus nerka) productivity in Bristol Bay, Alaska, and the Fraser River, British Columbia

    USGS Publications Warehouse

    Adkison, M.; Peterman, R.; Lapointe, M.; Gillis, D.; Korman, J.

    1996-01-01

    We compare alternative models of sockeye salmon (Oncorhynchus nerka) productivity (returns per spawner) using more than 30 years of catch and escapement data for Bristol Bay, Alaska, and the Fraser River, British Columbia. The models examined include several alternative forms of models that incorporate climatic influences as well as models not based on climate. For most stocks, a stationary stock-recruitment relationship explains very little of the interannual variation in productivity. In Bristol Bay, productivity co-varies among stocks and appears to be strongly related to fluctuations in climate. The best model for Bristol Bay sockeye involved a change in the 1970s in the parameters of the Ricker stock-recruitment curve; the stocks generally became more productive. In contrast, none of the models of Fraser River stocks that we examined explained much of the variability in their productivity.

  13. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river.

    PubMed

    Furey, N B; Hinch, S G; Lotto, A G; Beauchamp, D A

    2015-01-01

    Stomach contents were collected and analysed from 22 bull trout Salvelinus confluentus at the edge of the Chilko Lake and Chilko River in British Columbia, Canada, during spring outmigration of sockeye salmon Oncorhynchus nerka smolts. Twenty of the 22 (>90%) stomachs contained prey items, virtually all identifiable prey items were outmigrant O. nerka smolts and stomach contents represented a large portion (0·0-12·6%) of estimated S. confluentus mass. The results demonstrate nearly exclusive and intense feeding by S. confluentus on outmigrant smolts, and support recent telemetry observations of high disappearance rates of O. nerka smolts leaving large natural lake systems prior to entering high-order unregulated river systems. PMID:25494841

  14. Changes in salmon (Oncorhynchus keta) flesh quality following ultra-high pressure treatment and 30 d of chilled storage.

    PubMed

    Park, Dae-Hun; Jung, Jong-Gi; Jung, Bo-Ram; Kim, Gyeyeop; Lee, Honggyun; Kim, Hyeon-A; Bang, Mi-Ae

    2015-01-01

    The approximately 1.5 million tons of salmon traded in 31 countries in 2008 provides clear evidence that salmon is a popular food source throughout the world. There are many methods for the preservation of salmon flesh, such as vacuum-packaging, smoking, and freezing. Ultra-high pressure (UHP) does not require heat, preserves the quality of salmon flesh, and allows for an increase in the chilled storage period. In this study, the quality of salmon flesh was assessed after exposure to UHP (200, 400, or 600 MPa compared with no UHP) and 30 d of storage at 4 °C. Salmon flesh quality analyses included the degree of changes in the interspacing of muscle bundles, color, texture profiles (hardness, chewiness, cohesiveness, and elasticity), and microbial growth. The use of UHP (>400 MPa) improved the color, hardness, and chewiness of the flesh. Study results suggested that the application of UHP (≥400 MPa) may be useful in preserving salmon flesh, and could be used by the salmon aquaculture and distribution industries.

  15. Disparate infection patterns of Ceratomyxa shasta (Myxozoa) in rainbow trout (Oncorhynchus mykiss) and Chinook salmon (Oncorhynchus tshawytscha) correlate with internal transcribed spacer-1 sequence variation in the parasite.

    PubMed

    Atkinson, Stephen D; Bartholomew, Jerri L

    2010-04-01

    Ceratomyxa shasta is a virulent myxosporean parasite of salmon and trout in the Pacific Northwest of North America. The parasite is endemic in the Klamath River, Oregon/California, where a series of dams prevent movement of fish hosts between the upper and lower parts of the basin. Ceratomyxa shasta exhibits a range of infection patterns in different fish species above and below the dams. We hypothesised that the variations in infection and disease are indicators that different strains of the parasite exist, each with distinct host associations. Accordingly, we sought to identify strain-specific genetic markers in the ssrRNA and internal transcribed spacer region 1 (ITS-1). We examined 46 C. shasta isolates from water samples and two fish hosts, from June 2007 field exposures at upper and lower Klamath River sites with similarly high parasite densities. We found 100% of non-native rainbow trout became infected and died at both locations. In contrast, mortality in native Chinook salmon was <10% in the upper basin, compared with up to 40% in the lower basin. Parasite ssrRNA sequences were identical from all fish. However, ITS-1 sequences contained multiple polymorphic loci and a trinucleotide repeat (ATC)(0-3) from which we defined four genotypes: 0, I, II and III. Non-native rainbow trout at both sites were infected with genotype II and with a low level of genotype III. Chinook salmon in the upper basin had genotypes II and III, whereas in the lower basin genotype I predominated. Genotype I was not detected in water from the upper basin, a finding consistent with the lack of anadromous Chinook salmon there. Genotype O was only detected in water from the upper basin. Resolution of C. shasta into sympatric, host-specific genotypes has implications for taxonomy, monitoring and management of this significant parasite. PMID:19895812

  16. The uptake, distribution and metabolism of benzo[a]pyrene in coho salmon (Oncorhynchus kisutch) during the parr-smolt transformation

    SciTech Connect

    Lemke, M.A.; Kennedy, C.J.

    1997-07-01

    Benzo[a]pyrene (BaP) uptake, distribution, and metabolism patterns were investigated from February to June during the transformation of freshwater coho salmon (Oncorhynchus kisutch) parr to smolts. At a BaP concentration of 5 {micro}g/L, uptake rates increased significantly from 0.01 {+-} 0.000 {micro}g/g/h in February to 0.04 {+-} 0.003 {micro}g/g/h in May and declined to 0.035 {+-} 0.004 {micro}g/g/h in June. Following a 24-h exposure to BaP, the highest percent of body burden of BaP was found in the liver, gills, skin, and bile. The proportion of BaP in the liver and gills increased in fish from February to May and declined in June, whereas the proportion of BaP in the bile continued to rise until June when it reached a maximum of 49% of the body burden. The percent body burden of BaP in tissues such as the stomach, intestine, visceral fat, muscle, and brain did not show significant changes through the duration of the study. An analysis of bile suggests that both coho salmon parr and smolts are capable of metabolizing BaP via phase 1 and 2 biotransformation reactions to glucuronide, sulfate, and other conjugated metabolites. No significant changes occurred in the proportions of metabolite classes during the parr-smolt transformation process.

  17. Increase in maturation size after the closure of a high seas gillnet fishery on hatchery-reared chum salmon Oncorhynchus keta

    PubMed Central

    Fukuwaka, Masa-aki; Morita, Kentaro

    2008-01-01

    Gillnet fisheries are strongly size-selective and seem to produce changes in size at maturity for exploited fishes. After Word War II, large-scale gillnet fisheries targeted Pacific salmon (Oncorhynchus spp.) in the high seas area of the North Pacific and the Bering Sea, but these fisheries were closed in 1993. To assess the effects of this high seas gillnet fishery (and its closing) on size at maturity, we examined long-term trends in size at 50% probability of maturing (L50) for chum salmon (O. keta) from three populations in Hokkaido, Japan. The L50 trends were statistically different among rivers, but showed similar temporal patterns with decreases in the 1970s and early 1980s and increases after the 1985 brood year. While fishery-induced evolution seemed largely responsible for this temporal change in L50 during the fishing period, natural selection and phenotypic plasticity induced by environmental changes could contribute to the increases in L50 after the relaxation of fishing pressure. PMID:25567638

  18. Physiological response of juvenile coho salmon (Oncorhynchus kisutch) and rainbow trout (Salmo gairdneri) to handling and crowding stress in intensive fish culture

    USGS Publications Warehouse

    Wedemeyer, Gary A.

    1976-01-01

    Moving 4–5-in. coho salmon (Oncorhynchus kisutch) held in soft (20 ppm CaCO3) water from the relatively light loading density of 0.5 lb/ft3 to 1, 2, or 4 lb/ft3 (density index, DI = 0.1, 0.2, 0.4, 0.8) caused significant stress as indicated by loss of feeding behavior, but only minimal physiological disturbances, as indicated by lack of hyperglycemia or hypochloremia. However, moving them to 6 or 12 lb/ft3 (DI = 1.2, 2.4) caused significant physiological stress which required at least a week for recovery. Smolting coho salmon were physiologically stressed by population densities of 1 lb/ft3 or more and a subclinical corynebacterial kidney infection was activated. Rainbow trout (Salmo gairdneri) (4–5 in.) were physiologically stressed when moved and held at 1 lb/ft3 or more but retained normal feeding behavior. This indicates that handling and crowding stress will be minimized in softwater areas if densities in fish distribution trucks or in ponds or raceways during disease treatments are held to 0.1–0.5 lb/gal.

  19. Changes in ligand binding to GABAA receptor sites in pacific salmon (Oncorhynchus) brain during spawning migration and "aging".

    PubMed

    Erdö, S L; Meyer, D L; Malz, C R; Hofmann, M H; Ebbesson, S O

    1992-01-01

    When several years old, pacific salmon return to the site of birth, to spawn. At this time, a rapid aging process begins and the fish die within a few weeks after reproducing. Age-related changes of high and low affinity GABA binding sites were studied in salmon brains at three different phases of the spawning migration, i.e. shortly after returning to the natal stream, at the time of spawning, and thereafter. High affinity GABA binding slightly increased while the fish deteriorated. The low affinity component showed a remarkable decrease in density and a concomitant increase in affinity during this final episode of salmon life.

  20. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    SciTech Connect

    Patton, Gregory W.; Dauble, Dennis D.; Chamness, Michele A.; Abernethy, Cary S.; McKinstry, Craig A.

    2001-07-10

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs.

  1. Sensitivity and specificity of histology for diagnoses of four common pathogens and detection of nontarget pathogens in adult Chinook salmon (Oncorhynchus tshawytscha) in fresh water.

    PubMed

    Kent, Michael L; Benda, Susan; St-Hilaire, Sophie; Schreck, Carl B

    2013-05-01

    Histology is often underutilized in aquatic animal disease screening and diagnostics. The agreement between histological classifications of infection and results using diagnostic testing from the American Fisheries Society's Blue Book was conducted with 4 common salmon pathogens: Aeromonas salmonicida, Renibacterium salmoninarum, Ceratomyxa shasta, and Nanophyetus salmincola. Adult Chinook salmon (Oncorhynchus tshawytscha) in Oregon were evaluated, and agreement between tests was calculated. Live and dead (both pre- and postspawning) salmon were collected from the Willamette River, Oregon, its tributaries, the Willamette Hatchery, and after holding in cool, pathogen-free water during maturation at Oregon State University. Sensitivity and specificity of histology compared to Blue Book methods for all fish, live fish only, and dead (pre- and postspawned combined) fish only were, respectively, as follows: A. salmonicida (n = 105): specificity 87.5%, 87.5%, 87.5% and sensitivity 38.6%, 14.8%, 60.0%; R. salmoninarum (n = 111): specificity 91.9%, 85.7%, 97.7% and sensitivity 16.0%, 7.1%, 27.2%; C. shasta (n = 136): specificity 56.0%, 63.3%, 28.6% and sensitivity 83.3%, 86.2%, 71.4%; N. salmincola (n = 228): specificity 68.2%, 66.7%, not possible to calculate for dead fish and sensitivity 83.5%, 80.5%, 87.3%. The specificity was good for bacterial pathogens. This was not the case for C. shasta, likely due to detection of presporogenic forms only by histology. Sensitivity of histology for bacterial pathogens was low with the exception of dead fish with A. salmonicida. Kappa analysis for agreement between Blue Book and histology methods was poor to moderate. However, histological observations revealed the presence of other pathogens that would not be detected by other methods.

  2. Estimating juvenile Chinook salmon (Oncorhynchus tshawytscha) abundance from beach seine data collected in the Sacramento–San Joaquin Delta and San Francisco Bay, California

    USGS Publications Warehouse

    Perry, Russell W.; Kirsch, Joseph E.; Hendrix, A. Noble

    2016-06-17

    Resource managers rely on abundance or density metrics derived from beach seine surveys to make vital decisions that affect fish population dynamics and assemblage structure. However, abundance and density metrics may be biased by imperfect capture and lack of geographic closure during sampling. Currently, there is considerable uncertainty about the capture efficiency of juvenile Chinook salmon (Oncorhynchus tshawytscha) by beach seines. Heterogeneity in capture can occur through unrealistic assumptions of closure and from variation in the probability of capture caused by environmental conditions. We evaluated the assumptions of closure and the influence of environmental conditions on capture efficiency and abundance estimates of Chinook salmon from beach seining within the Sacramento–San Joaquin Delta and the San Francisco Bay. Beach seine capture efficiency was measured using a stratified random sampling design combined with open and closed replicate depletion sampling. A total of 56 samples were collected during the spring of 2014. To assess variability in capture probability and the absolute abundance of juvenile Chinook salmon, beach seine capture efficiency data were fitted to the paired depletion design using modified N-mixture models. These models allowed us to explicitly test the closure assumption and estimate environmental effects on the probability of capture. We determined that our updated method allowing for lack of closure between depletion samples drastically outperformed traditional data analysis that assumes closure among replicate samples. The best-fit model (lowest-valued Akaike Information Criterion model) included the probability of fish being available for capture (relaxed closure assumption), capture probability modeled as a function of water velocity and percent coverage of fine sediment, and abundance modeled as a function of sample area, temperature, and water velocity. Given that beach seining is a ubiquitous sampling technique for

  3. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.210 Central California... (Oncorhynchus kisutch). Critical habitat is designated to include all river reaches accessible to listed...

  4. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.210 Central California... (Oncorhynchus kisutch). Critical habitat is designated to include all river reaches accessible to listed...

  5. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.210 Central California... (Oncorhynchus kisutch). Critical habitat is designated to include all river reaches accessible to listed...

  6. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.210 Central California... (Oncorhynchus kisutch). Critical habitat is designated to include all river reaches accessible to listed...

  7. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.210 Central California... (Oncorhynchus kisutch). Critical habitat is designated to include all river reaches accessible to listed...

  8. Comparative mapping between Coho Salmon (Oncorhynchus kisutch) and three other salmonids suggests a role for chromosomal rearrangements in the retention of duplicated regions following a whole genome duplication event.

    PubMed

    Kodama, Miyako; Brieuc, Marine S O; Devlin, Robert H; Hard, Jeffrey J; Naish, Kerry A

    2014-09-01

    Whole genome duplication has been implicated in evolutionary innovation and rapid diversification. In salmonid fishes, however, whole genome duplication significantly pre-dates major transitions across the family, and re-diploidization has been a gradual process between genomes that have remained essentially collinear. Nevertheless, pairs of duplicated chromosome arms have diverged at different rates from each other, suggesting that the retention of duplicated regions through occasional pairing between homeologous chromosomes may have played an evolutionary role across species pairs. Extensive chromosomal arm rearrangements have been a key mechanism involved in re-dipliodization of the salmonid genome; therefore, we investigated their influence on degree of differentiation between homeologs across salmon species. We derived a linkage map for coho salmon and performed comparative mapping across syntenic arms within the genus Oncorhynchus, and with the genus Salmo, to determine the phylogenetic relationship between chromosome arrangements and the retention of undifferentiated duplicated regions. A 6596.7 cM female coho salmon map, comprising 30 linkage groups with 7415 and 1266 nonduplicated and duplicated loci, respectively, revealed uneven distribution of duplicated loci along and between chromosome arms. These duplicated regions were conserved across syntenic arms across Oncorhynchus species and were identified in metacentric chromosomes likely formed ancestrally to the divergence of Oncorhynchus from Salmo. These findings support previous studies in which observed pairings involved at least one metacentric chromosome. Re-diploidization in salmon may have been prevented or retarded by the formation of metacentric chromosomes after the whole genome duplication event and may explain lineage-specific innovations in salmon species if functional genes are found in these regions.

  9. Comparative mapping between Coho Salmon (Oncorhynchus kisutch) and three other salmonids suggests a role for chromosomal rearrangements in the retention of duplicated regions following a whole genome duplication event.

    PubMed

    Kodama, Miyako; Brieuc, Marine S O; Devlin, Robert H; Hard, Jeffrey J; Naish, Kerry A

    2014-09-01

    Whole genome duplication has been implicated in evolutionary innovation and rapid diversification. In salmonid fishes, however, whole genome duplication significantly pre-dates major transitions across the family, and re-diploidization has been a gradual process between genomes that have remained essentially collinear. Nevertheless, pairs of duplicated chromosome arms have diverged at different rates from each other, suggesting that the retention of duplicated regions through occasional pairing between homeologous chromosomes may have played an evolutionary role across species pairs. Extensive chromosomal arm rearrangements have been a key mechanism involved in re-dipliodization of the salmonid genome; therefore, we investigated their influence on degree of differentiation between homeologs across salmon species. We derived a linkage map for coho salmon and performed comparative mapping across syntenic arms within the genus Oncorhynchus, and with the genus Salmo, to determine the phylogenetic relationship between chromosome arrangements and the retention of undifferentiated duplicated regions. A 6596.7 cM female coho salmon map, comprising 30 linkage groups with 7415 and 1266 nonduplicated and duplicated loci, respectively, revealed uneven distribution of duplicated loci along and between chromosome arms. These duplicated regions were conserved across syntenic arms across Oncorhynchus species and were identified in metacentric chromosomes likely formed ancestrally to the divergence of Oncorhynchus from Salmo. These findings support previous studies in which observed pairings involved at least one metacentric chromosome. Re-diploidization in salmon may have been prevented or retarded by the formation of metacentric chromosomes after the whole genome duplication event and may explain lineage-specific innovations in salmon species if functional genes are found in these regions. PMID:25053705

  10. Emigration of Natural and Hatchery Naco x (Chinook salmon; Oncorhynchus tshawytscha) and Heeyey (Steelhead; Oncorhynchus mykiss) Smolts from the Imnaha River, Oregon from 5 October 2006 to 21 June 2007, Annual Report 2007.

    SciTech Connect

    Michaels, Brian; Espinosa, Neal

    2009-02-18

    This report summarizes the Nez Perce Tribe (NPT) Department of Fisheries Resources Management (DFRM) results for the Lower Snake River Compensation Plan (LSRCP) Hatchery Evaluation studies and the Imnaha River Smolt Monitoring Program (SMP) for the 2007 smolt migration from the Imnaha River, Oregon. These studies are closely coordinated and provide information about juvenile natural and hatchery spring/summer Naco x (Chinook Salmon; Oncorhynchus tshawytscha) and Heeyey (steelhead; O. mykiss) biological characteristics, emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam (MCD) on the Columbia River. These studies provide information on listed Naco x (Chinook salmon) and Heeyey (steelhead) for the Federal Columbia River Power System (FCRPS) Biological Opinion (NMFS 2000). The Lower Snake River Compensation Plan program's goal is to maintain a hatchery production program of 490,000 Naco x (Chinook salmon) and 330,000 Heeyey (steelhead) for annual release in the Imnaha River (Carmichael et al. 1998, Whitesel et al. 1998). These hatchery releases occur to compensate for fish losses due to the construction and operation of the four lower Snake River hydroelectric facilities. One of the aspects of the LSRCP hatchery evaluation studies in the Imnaha River is to determine natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolt performance, emigration characteristics and survival (Kucera and Blenden 1998). A long term monitoring effort was established to document smolt emigrant timing and post release survival within the Imnaha River, estimate smolt survival downstream to McNary Dam, compare natural and hatchery smolt performance, and collect smolt-to-adult return information. This project collects information for, and is part of, a larger effort entitled Smolt Monitoring by Federal and Non-Federal Agencies (BPA Project No. 198712700). This larger project provides data on movement of smolts out of major drainages

  11. [Mitochondrial DNA variation in populations of the chum salmon Oncorhynchus keta (Walbaum) from rivers of the Prymorye and Sakhalin].

    PubMed

    Brykov, V A; Kirillova, O N; Kukhlevskiĭ, A D; Poliakova, N E; Skurikhina, L A

    2000-10-01

    Mitochondrial DNA (mtDNA) variation was studied using restriction fragment length polymorphism (RFLP) in chum salmon populations from three rivers in southern Primorye and one river in Sakhalin Island. Significant differences were detected between the samples from Primorye and Sakhalin Island. No differences were found between the samples from the rivers of Primorye, which can be explained by a high rate of gene flow due to transplantation of spawn from one river to another. The effect of fish breeding on the chum salmon populations correlated with the indices of haplotype and nucleotide diversity (h and pi, respectively). The lowest diversity was found in the completely artificial population from the Ryazanovka River; the highest, in natural populations from the Narva and Naiba rivers. Frequencies of haplotypes in consecutive generations were significantly different, which confirms the effects of genetic drift on the small-size chum salmon populations of Primorye.

  12. Spawning and abundance of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, 1948--1988

    SciTech Connect

    Dauble, D.D.; Watson, D.G.

    1990-03-01

    The Hanford Reach of the Columbia River provides the only major spawning habitat for the upriver bright (URB) race of fall chinook salmon in the mainstem Columbia River. Hanford Site biologists have conducted aerial surveys of spawning salmon in the Hanford Reach since 1948. This report summarizes data on fall chinook salmon spawning in the Hanford Reach and presents a discussion of factors that may affect population trends. Most data are limited to fisheries agency reports and other working documents. Fisheries management practices in the Columbia River system have changed rapidly over the last decade, particularly under requirements of the Pacific Northwest Power Planning and Conservation Act of 1980. New information has been generated and included in this report. 75 refs., 17 figs., 11 tabs.

  13. Simultaneous biologging of heart rate and acceleration, and their relationships with energy expenditure in free-swimming sockeye salmon (Oncorhynchus nerka).

    PubMed

    Clark, Timothy Darren; Sandblom, E; Hinch, S G; Patterson, D A; Frappell, P B; Farrell, A P

    2010-06-01

    Monitoring the physiological status and behaviour of free-swimming fishes remains a challenging task, although great promise stems from techniques such as biologging and biotelemetry. Here, implanted data loggers were used to simultaneously measure heart rate (f (H)), visceral temperature, and a derivation of acceleration in two groups of wild adult sockeye salmon (Oncorhynchus nerka) held at two different water speeds (slow and fast). Calibration experiments performed with individual fish in a swim tunnel respirometer generated strong relationships between acceleration, f (H), tail beat frequency and energy expenditure over a wide range of swimming velocities. The regression equations were then used to estimate the overall energy expenditure of the groups of fish held at different water speeds. As expected, fish held at faster water speeds exhibited greater f (H) and acceleration, and correspondingly a higher estimated energy expenditure than fish held at slower water speeds. These estimates were consistent with gross somatic energy density of fish at death, as determined using proximate analyses of a dorsal tissue sample. Heart rate alone and in combination with acceleration, rather than acceleration alone, provided the most accurate proxies for energy expenditure in these studies. Even so, acceleration provided useful information on the behaviour of fish and may itself prove to be a valuable proxy for energy expenditure under different environmental conditions, using a different derivation of the acceleration data, and/or with further calibration experiments. These results strengthen the possibility that biologging or biotelemetry of f (H) and acceleration may be usefully applied to migrating sockeye salmon to monitor physiology and behaviour, and to estimate energy use in the natural environment. PMID:20063165

  14. Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams. Final Report 1992.

    SciTech Connect

    Underwood, Keith D.

    1995-01-01

    The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed.

  15. Plasma insulin-like growth factor-I concentrations in yearling chinook salmon (Oncorhynchus tshawytscha) migrating from the Snake River Basin, USA

    USGS Publications Warehouse

    Congleton, J.L.; Biga, P.R.; Peterson, B.C.

    2003-01-01

    During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week spring migration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility, yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses of migrating fish either did not increase during the migration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations in migrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability of migrating smolts to maintain relatively elevated IGF-I levels despite restricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance. ?? 2004 Kluwer Academic Publishers.

  16. Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams : 1991 Annual Report.

    SciTech Connect

    Martin, Steven W.

    1992-07-01

    Bull trout (Salvelinus confluentus) are native to many tributaries of the Snake River in southeast Washington. The Washington Department of Wildlife (WDW) and the American Fisheries Society (AFS) have identified bull trout as a species of special concern which means that they may become threatened or endangered by relatively, minor disturbances to their habitat. Steelhead trout/rainbow trout (Oncorhynchus mykiss) and spring chinook salmon (O.tshawytscha) are also native to several tributaries of the Snake river in southeast Washington. These species of migratory fishes are depressed, partially due to the construction of several dams on the lower Snake river. In response to decreased run size, large hatchery program were initiated to produce juvenile steelhead and salmon to supplement repressed tributary stocks, a practice known as supplementation. There is a concern that supplementing streams with artificially high numbers of steelhead and salmon may have an impact on resident bull trout in these streams. Historically, these three species of fish existed together in large numbers, however, the amount of high-quality habitat necessary for reproduction and rearing has been severely reduced in recent years, as compared to historic amounts. The findings of the first year of a two year study aimed at identifying species interactions in southeast Washington streams are presented in this report. Data was collected to assess population dynamics; habitat utilization and preference, feeding habits, fish movement and migration, age, condition, growth, and the spawning requirements of bull trout in each of four streams. A comparison of the indices was then made between the study streams to determine if bull trout differ in the presence of the putative competitor species. Bull trout populations were highest in the Tucannon River (supplemented stream), followed by Mill Creek (unsupplemented stream). Young of the year bull trout utilized riffle and cascade habitat the most in all

  17. Effects of soybean meal and salinity on intestinal transport of nutrients in Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Nordrum, S; Bakke-McKellep, A M; Krogdahl, A; Buddington, R K

    2000-03-01

    Groups of fresh- and seawater-adapted Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss) were fed diets with (SBM diet) or without (control diet) extracted soybean meal (30% of protein substituted with SBM) for 3 weeks. Average fish size per group ranged from 597 to 1763 g. One tank or net pen per species, dietary group and water salinity was used. In vitro nutrient transport (D-glucose, the L-amino acids aspartate, lysine, methionine, phenylalanine and proline, and the dipeptide glycyl-sarcosine) was measured using intact tissue (everted sleeve method) from the different postgastric intestinal regions. The dimensions of the different intestinal regions were also measured for each treatment group. Results indicate that SBM causes decreased carrier-mediated transport and increased permeability of distal intestinal epithelium for the nutrients, and the capacity of this region to absorb nutrient was diminished. Salinity may also affect the relative contribution of carrier-mediated and independent uptake to total nutrient absorption. PMID:10818266

  18. Assessing possible thermal rearing restrictions for juvenile coho salmon (Oncorhynchus kisutch) through thermal infrared imaging and in-stream monitoring, Redwood Creek, California

    USGS Publications Warehouse

    Madej, M.A.; Currens, C.; Ozaki, V.; Yee, J.; Anderson, D.G.

    2006-01-01

    We quantified patterns in stream temperature in a northern coastal California river using thermal infrared (TIR) imaging and in-stream monitoring and related temperature patterns to the historical and present distributions of juvenile coho salmon (Oncorhynchus kisutch). In Redwood Creek, California, water temperature increased from the headwaters to about 60 km downstream, then gradually decreased over the next 40 km as the river approaches the Pacific Ocean. Despite the lack of fish migration barriers, juvenile coho are currently only observed in the downstream-most 20 km, whereas historically they were found in 90 km of river channel. Maximum daily temperatures and duration of elevated stream temperatures were not significantly different in the headwater and downstream reaches but were significantly higher in the 50 km long intervening reach, where maximum weekly maximum temperatures ranged from 23 to 27??C. An increase in stream temperatures in the middle basin during the last three decades as a result of channel aggradation, widening, and the removal of large riparian conifers may play an important role in restricting juvenile coho to one-fifth of their historical range. ?? 2006 NRC.

  19. Prevalence and levels of Renibacterium salmoninarum in spring-summer Chinook salmon (Oncorhynchus tshawytscha) smolts at dams on the Columbia and Snake Rivers.

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.; Jackson, L.M.; Mathews, G.M.; Harmon, J.R.

    1997-01-01

    We evaluated Renibaeterium salmoninarum infection in smolts of hatchery and wild spring-summer Chinook salmon Oncorhynchus tshawytscha sampled during most of the outmigration at Little Goose (1988) and Lower Granite dams (1988–1991) on the Snake River and at Priest Rapids and McNary dams on the Columbia River (1988–1990). We sampled 860–2,178 fish per dam each year. Homogenates of kidney–spleen tissue from all fish were tested for the presence of R. salmoninarum antigens by the enzyme-linked immunosorbent assay (ELISA), and homogenates from 10% of the fish were examined by the fluorescent antibody technique (FAT). Although only 1–11% of fish sampled at a given dam during any l year exhibited lesions characteristic of bacterial kidney disease, 86–100% of the fish tested positive for R. salmoninarum antigen by ELISA, whereas 4–17% of the fish tested positive by the FAT. During most years, a majority (68–87%) of fish testing positive by the ELISA had low R. salmoninarum antigen levels, but in 1989, 53% of positive fish from Lower Granite Dam and 52% from McNary Dam showed medium-to-high antigen levels. For most years, the highest mean antigen levels were measured in fish sampled after 75% of the total out-migrants had passed a given dam. When the largest numbers of fish were being collected for bypass or downriver transportation, mean antigen levels were relatively low.

  20. Perturbation in protein expression of the sterile salmonid hybrids between female brook trout Salvelinus fontinalis and male masu salmon Oncorhynchus masou during early spermatogenesis.

    PubMed

    Zheng, Liang; Senda, Yoshie; Abe, Syuiti

    2013-05-01

    Most males and females of intergeneric hybrid (BM) between female brook trout (Bt) Salvelinus fontinalis and male masu salmon (Ms) Oncorhynchus masou had undeveloped gonads, with abnormal germ cell development shown by histological examination. To understand the cause of this hybrid sterility, expression profiles of testicular proteins in the BM and parental species were examined with 2-DE coupled with MALDI-TOF/TOF MS. Compared with the parental species, more than 60% of differentially expressed protein spots were down-regulated in BM. A total of 16 up-regulated and 48 down-regulated proteins were identified in BM. Up-regulated were transferrin and other somatic cell-predominant proteins, whereas down-regulated were some germ cell-specific proteins such as DEAD box RNA helicase Vasa. Other pronouncedly down-regulated proteins included tubulins and heat shock proteins that are supposed to have roles in spermatogenesis. The present findings suggest direct association of the observed perturbation in protein expression with the failure of spermatogenesis and the sterility in the examined salmonid hybrids.

  1. Infection of gill and kidney of Fraser River sockeye salmon, Oncorhynchus nerka (Walbaum), by Parvicapsula minibicornis and its effect on host physiology.

    PubMed

    Bradford, M J; Lovy, J; Patterson, D A

    2010-09-01

    Adult sockeye salmon, Oncorhynchus nerka (Walbaum), migrating upstream in the Fraser River, British Columbia, are exposed to the myxozoan parasite Parvicapsula minibicornis when they enter the river from the ocean. Infections are initially localized in the kidney but have recently been associated with branchitis in one population. Adult fish from five locations in the watershed were sampled to determine whether branchitis was widespread. P. minibicornis infections in kidney glomeruli were prevalent in all samples except for a sample of fish that had just entered the Fraser River from the ocean. For fish captured in spawning streams, parasites were observed in the renal tubules and gill, and branchitis was observed in 70% of fish. Plasma osmolality was negatively correlated with the number of parasites in the kidney tubules, which we hypothesize to be caused by the breach of glomerular membranes as the parasite leaves the fish. Plasma lactate values increased with increasing levels of pathology in gills. These findings support the hypothesis that P. minibicornis impacts the physiology of migrating fish, which may in turn affect the likelihood that adults will be able to migrate and spawn successfully.

  2. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha that express different migratory phenotypes in the Willamette River, Oregon, U.S.A.

    PubMed

    Billman, E J; Whitman, L D; Schroeder, R K; Sharpe, C S; Noakes, D L G; Schreck, C B

    2014-10-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation. PMID:25082498

  3. Patterns of selection and allele diversity of class I and class II major histocompatibility loci across the species range of sockeye salmon (Oncorhynchus nerka).

    PubMed

    McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Kaukinen, Karia H; Beacham, Terry D; Withler, Ruth E; Miller, Kristina M

    2013-09-01

    The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non-neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations. PMID:24033436

  4. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha that express different migratory phenotypes in the Willamette River, Oregon, U.S.A.

    PubMed

    Billman, E J; Whitman, L D; Schroeder, R K; Sharpe, C S; Noakes, D L G; Schreck, C B

    2014-10-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  5. Guidelines for monitoring and adaptively managing restoration of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) on the Elwha River

    USGS Publications Warehouse

    Peters, R.J.; Duda, J.J.; Pess, G.R.; Zimmerman, M.; Crain, P.; Hughes, Z.; Wilson, A.; Liermann, M.C.; Morley, S.A.; McMillan, J.; Denton, K.; Warheit, K.

    2014-01-01

    The restoration of the migration route to spawning and rearing habitats upstream of the former Glines Canyon Dam represents a great opportunity for salmon on the Olympic Peninsula. By removing two aging structures, it will be possible for all 5 species of salmon and steelhead to return to wild stretches of the Elwha River and major floodplain habitat characterized by multiple channels, as well as significant portions of numerous tributaries. Measuring the progress of restoration, from the perspective of both salmon populations and the ecosystem upon which they depend, is a great test for a collaborative team of scientists. The normally challenging conditions of working in a steep gradient, high velocity wilderness river are exacerbated by the release of millions of cubic yards of sediment that had accumulated in the reservoirs. After the first two years of the dam decommissioning process, this release has changed the ecology of the river, estuary, and nearshore habitats downstream of the dams. Our goal in developing the guidelines described is to provide a roadmap for tracking what hopefully will become a successful outcome. If successfully implemented, this information should prove useful as others begin planning for the removal, alteration, or reconstruction of dams throughout North America and elsewhere, an inevitable outcome of an aging dam infrastructure.

  6. Behavior and movements of adult spring Chinook salmon (Oncorhynchus tshawytscha) in the Chehalis River Basin, southwestern Washington, 2015

    USGS Publications Warehouse

    Liedtke, Theresa L.; Zimmerman, Mara S.; Tomka, Ryan G.; Holt, Curt; Jennings, Lyle

    2016-09-14

    Recent interest in flood control and restoration strategies in the Chehalis River Basin has increased the need to understand the current status and ecology of spring Chinook salmon. Based on the extended period between freshwater entry and spawn timing, spring Chinook salmon have the longest exposure of all adult Chinook salmon life histories to the low-flow and high water temperature conditions that typically occur during summer. About 100 adult spring Chinook salmon were found dead in the Chehalis River in July and August 2009. Adult Chinook salmon are known to hold in cool-water refugia during warm summer months, but the extent to which spring Chinook salmon might use thermal refugia in the Chehalis River is unknown. The movements and temperature exposures of adult spring Chinook salmon following their return to the Chehalis River were investigated using radiotelemetry and transmitters equipped with temperature sensors, combined with water temperature monitoring throughout the basin. A total of 23 spring Chinook salmon were radio-tagged between April and early July 2015; 11 were captured and released in the main-stem Chehalis River, and 12 were captured and released in the South Fork Newaukum River. Tagged fish were monitored with a combination of fixed-site monitoring locations and regular mobile tracking, from freshwater entry through the spawning period.Water temperature and flow conditions in the main-stem Chehalis River during 2015 were atypical compared to historical averages. Mean monthly water temperatures between March and July 2015 were higher than any decade since 1960 and mean daily flows were 30–70 percent of the flows in previous years. Overall, 96 percent of the tagged fish were detected, with a mean of 62 d in the detection history of tagged fish. Of the 11 fish released in the main-stem Chehalis River, six fish (55 percent) moved upstream, either shortly after release (2–7 d, 50 percent), or following a short delay (12–18 d, 50 percent

  7. Sequence features and phylogenetic analysis of the stress protein Hsp90α in chinook salmon (Oncorhynchus tshawytscha), a poikilothermic vertebrate

    USGS Publications Warehouse

    Palmisano, Aldo N.; Winton, James R.; Dickhoff, Walton W.

    1999-01-01

    We cloned and sequenced a chinook salmon Hsp90 cDNA; sequence analysis shows it to be Hsp90??. Phylogenetic analysis supports the hypothesis that ?? and ?? paralogs of Hsp90 arose as a result of a gene duplication event and that they diverged early in the evolution of vertebrates, before tetrapods separated from the teleost lineage. Among several differences distinguishing poikilothermic Hsp90?? sequences from their bird and mammal orthologs, the teleost versions specifically lack a characteristic QTQDQP phosphorylation site near the N-terminus. We used the cDNA to develop an RNA (Northern) blot to quantify cellular Hsp90 mRNA levels. Chinook salmon embryonic (CHSE-214) cells responded to heat shock with a rapid rise in Hsp90 mRNA through 4 h, followed by a gradual decline over the next 20 h. Hsp90 mRNA level may be useful as a stress indicator, especially in a laboratory setting or in response to acute heat stress.

  8. Bioaccumulation of polychlorinated biphenyls in juvenile chinook salmon (Oncorhynchus tshawytscha) outmigrating through a contaminated urban estuary: dynamics and application.

    PubMed

    Meador, James P; Ylitalo, Gina M; Sommers, Frank C; Boyd, Daryle T

    2010-01-01

    A field study was conducted to examine bioaccumulation of polychlorinated biphenyls (PCBs) for hatchery-raised and naturally reared (wild) ocean-type juvenile chinook salmon outmigrating through the Lower Duwamish Waterway (LDW), a contaminated urban estuary in Seattle, WA, USA. These results show differences in bioaccumulation of PCBs over time and space in this estuary, which may also occur for any contaminant that is distributed heterogeneously in this system. Highly mobile, outmigrating salmon accumulated approximately 3-5 times more PCBs on the east side of the LDW than fish on the west side, which is supported by an almost identical difference in mean sediment concentrations. The tPCB concentration data suggest that for most of the spring and early summer, juvenile chinook were likely segregated between the east and west side of the LDW, but may have crossed the channel later in the year as larger fish. Additionally, we used biota-sediment accumulation factors to assess the relative degree of bioaccumulation and explore these factors as potential metrics for predicting adverse sediment concentrations. These results highlight the importance of time and space in sampling design for a highly mobile species in a heterogeneous estuary. PMID:19685184

  9. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus tshawytscha) in the Klickitat River, Washington

    SciTech Connect

    Brown, Richard S.; Geist, David R.

    2002-07-01

    This report describes a field study by PNNL for Bonneville Power Administration in fall 2001 to study the migration and energy use of adult fall chinook salmon traveling up the Klickitat River to spawn. The salmon were tagged with surgically implanted electromyogram transmitters or gastrically implanted coded transmitters. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted to pass three waterfalls on the lower Klickitat and as they traversed free-flowing stretches between and below the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat, 40% passed the first falls, 36% passed the second falls, and 20% reached Lyle Falls but were unable to leap over. Mean swimming speeds ranged from as low as 52.6 cm/sec between falls to as high as 158.1 cm/sec at falls passage. Fish exhibited a higher percentage of occurrences of burst swimming while passing the falls than while between falls (58.9% versus 1.7%). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (52.3-236.2 kcals versus 0.3-1.1 kcals). Male-female and day-night differences in falls passage success were noted. PNNL also examined energy costs and swimming speeds for fish released above Lyle Falls as they migrated to upstream spawning areas. This journey averaged 15.93 days at a mean rate of 2.36 km/day to travel a mean maximum of 37.6 km upstream at a total energy cost of approx 4,492 kcals (32% anaerobic/68% aerobic). When the salmon have expended the estimated 968 kcals needed to get through Bonneville Dam and the three falls on the Lower Klickitat, plus this 4,492 kcals to reach the spawning grounds, they are left with approximately 8 to 12% (480 to 742 kcals) of their energy reserves for spawning. A delay of 4 to 7 days along the lower Klickitat River could deplete their remaining energy reserves (at a rate of about 103 kcals/day), resulting in death before spawning would occur.

  10. A test for the relative strength of maternal and stock effects in spring Chinook salmon (Oncorhynchus tshawytscha) from two different hatcheries (Study site: Warm Springs Hatchery; Stocks: Warm Springs Hatchery and Carson Hatchery; Year class: 1993): Chapter 10

    USGS Publications Warehouse

    Wetzel, Lisa A.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Stenberg, Karl D.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    An experiment was undertaken to determine the relative strength of maternal and stock effects in Chinook salmon (Oncorhynchus tshawytscha) reared in a common environment, as a companion study to our investigation of hatchery and wild Chinook salmon. Pure-strain and reciprocal crosses were made between two hatchery stocks (Carson and Warm Springs National Fish Hatcheries). The offspring were reared together in one of the hatcheries to the smolt stage, and then were transferred to a seawater rearing facility (USGS-Marrowstone Field Station). Differences in survival, growth and disease prevalence were assessed. Fish with Carson parentage grew to greater size at the hatchery and in seawater than the pure-strain Warm Springs fish, but showed higher mortality at introduction to seawater. The analyses of maternal and stock effects were inconclusive, but the theoretical responses to different combinations of maternal and stock effects may be useful in interpreting stock comparison studies.

  11. Population Viability of the Snake River Chinook Salmon (Oncorhynchus Tshawytscha) : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 11 of 11.

    SciTech Connect

    Emlen, John Merritt

    1993-06-01

    A stochastic simulation model of spring chinook population dynamics was parameterized using 36 years of redd count data from five index streams on the middle fork of the Salmon River in Idaho. Two versions of the model, one in which spawning age structure was presumed to follow an evolutionarily stable strategy and another in which spawning age structure was constrained to observed values were examined. The models were then used to generate 1000 statistically representative population projections over the next 100 years to assess risk of extinction and prospects for stock rebuilding. Current levels of production and mortality appear to suffice for maintaining the status quo, virtually assuring persistence over the next 100 years, barring catastophes, but providing no hope for rebuilding. A doubling of the current population level over the next 100 years can be expected to follow an increase in {alpha} (density independent mortality or fry production) of 5 to 25%, but rebuilding to the population levels prevailing in the 1950`s will require an increase in {alpha} of at least 37%.

  12. Alternate Directed Anthropogenic Shifts in Genotype Result in Different Ecological Outcomes in Coho Salmon Oncorhynchus kisutch Fry

    PubMed Central

    Leggatt, Rosalind A.; Sundström, L. Fredrik; Vandersteen, Wendy E.; Devlin, Robert H.

    2016-01-01

    Domesticated and growth hormone (GH) transgenic salmon provide an interesting model to compare effects of selected versus engineered phenotypic change on relative fitness in an ecological context. Phenotype in domestication is altered via polygenic selection of traits over multiple generations, whereas in transgenesis is altered by a single locus in one generation. These established and emerging technologies both result in elevated growth rates in culture, and are associated with similar secondary effects such as increased foraging, decreased predator avoidance, and similar endocrine and gene expression profiles. As such, there is concern regarding ecological consequences should fish that have been genetically altered escape to natural ecosystems. To determine if the type of genetic change influences fitness components associated with ecological success outside of the culture environments they were produced for, we examined growth and survival of domesticated, transgenic, and wild-type coho salmon fry under different environmental conditions. In simple conditions (i.e. culture) with unlimited food, transgenic fish had the greatest growth, while in naturalized stream tanks (limited natural food, with or without predators) domesticated fish had greatest growth and survival of the three fish groups. As such, the largest growth in culture conditions may not translate to the greatest ecological effects in natural conditions, and shifts in phenotype over multiple rather than one loci may result in greater success in a wider range of conditions. These differences may arise from very different historical opportunities of transgenic and domesticated strains to select for multiple growth pathways or counter-select against negative secondary changes arising from elevated capacity for growth, with domesticated fish potentially obtaining or retaining adaptive responses to multiple environmental conditions not yet acquired in recently generated transgenic strains. PMID:26848575

  13. Application of AN Empirically Scaled Digital Echo Integrator for Assessment of Juvenile Sockeye Salmon (oncorhynchus Nerka Walbaum) Populations.

    NASA Astrophysics Data System (ADS)

    Nunnallee, Edmund Pierce, Jr.

    1980-03-01

    This dissertation consists of an investigation into the empirical scaling of a digital echo integrator for assessment of a population of juvenile sockeye salmon in Cultus Lake, British Columbia, Canada. The scaling technique was developed over the last ten years for use with totally uncalibrated but stabilized data collection and analysis equipment, and has been applied to populations of fish over a wide geographical range. This is the first investigation into the sources of bias and the accuracy of the technique, however, and constitutes a verification of the method. The initial section of the investigation describes hydroacoustic data analysis methods for estimation of effective sampling volume which is necessary for estimation of fish density. The second section consists of a computer simulation of effective sample volume estimation by this empirical method and is used to investigate the degree of bias introduced by electronic and physical parameters such as boat speed -fish depth interaction effects, electronic thresholding and saturation, transducer beam angle, fish depth stratification by size and spread of the target strength distribution of the fish. Comparisons of simulation predictions of sample volume estimation bias to actual survey results are given at the end of this section. A verification of the scaling method is then presented by comparison of a hydroacoustically derived estimation of the Cultus Lake smolt population to an independent and concurrent estimate made by counting the migrant fish as they passed through a weir in the outlet stream of the lake. Finally, the effect on conduct and accuracy of hydroacoustic assessment of juvenile sockeye salmon due to several behavioral traits are discussed. These traits include movements of presmolt fish in a lake just prior to their outmigration, daily vertical migrations and the emergence and dispersal of sockeye fry in Cultus Lake. In addition, a comparison of the summer depth preferences of the fish

  14. Migration and rearing histories of chinook salmon (Oncorhynchus tshawytscha) determined by ion microprobe Sr isotope and Sr/Ca transects of otoliths

    USGS Publications Warehouse

    Bacon, C.R.; Weber, P.K.; Larsen, K.A.; Reisenbichler, R.; Fitzpatrick, J.A.; Wooden, J.L.

    2004-01-01

    Strontium isotope and Sr/Ca ratios measured in situ by ion microprobe along radial transects of otoliths of juvenile chinook salmon (Oncorhynchus tshawytscha) vary between watersheds with contrasting geology. Otoliths from ocean-type chinook from Skagit River estuary, Washington, had prehatch regions with 87Sr/86Sr ratios of ???0.709, suggesting a maternally inherited marine signature, extensive fresh water growth zones with 87Sr/86Sr ratios similar to those of the Skagit River at ???0.705, and marine-like 87Sr/86Sr ratios near their edges. Otoliths from stream-type chinook from central Idaho had prehatch 87Sr/86Sr ratios ???0.711, indicating that a maternal marine Sr isotopic signature is not preserved after the ???1000- to 1400-km migration from the Pacific Ocean. 87Sr/86Sr ratios in the outer portions of otoliths from these Idaho juveniles were similar to those of their respective streams (???0.708-0.722). For Skagit juveniles, fresh water growth was marked by small decreases in otolith Sr/Ca, with increases in Sr/Ca corresponding to increases in 87Sr/86Sr with migration into salt water. Otoliths of Idaho fish had Sr/Ca radial variation patterns that record seasonal fluctuation in ambient water Sr/Ca ratios. The ion microprobe's ability to measure both 87Sr/86Sr and Sr/Ca ratios of otoliths at high spatial resolution in situ provides a new tool for studies of fish rearing and migration. ?? 2004 NRC Canada.

  15. Effects of selenium dietary enhancement on hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), when compared with wild coho: hepatic enzymes and seawater adaptation evaluated.

    USGS Publications Warehouse

    Felton, S.P.; Landolt, M.L.; Grace, R.; Palmisano, A.N.

    1996-01-01

    Hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), were fed elevated levels of selenium (as Na2SeO3) to raise eviscerated body burdens to the level measured in wild counterparts. The goal was to find a dietary concentration that would achieve the desired effect without causing damage to growth and normal development. To measure some indices of health, the detoxifying enzymes chosen were hepatic glutathione peroxidase (GSH-Px) and hepatic superoxide dismutase (SOD). Eviscerated body selenium (Se) concentration, GSH-Px and SOD levels were measured during and at the end of the 9 month freshwater feeding trial. Selenium retention and enzyme activity were also measured during 6 months’residence in sea water (SW). Selenium supplements were added to a commercial ration to give final concentrations of 1.1, 8.6, 11.1, 13.6 μg g-1 Se in the four respective diets. The results indicated that a dietary concentration of 8.6 μg g-1selenium was capable of inducing eviscerated body burdens similar to those found in wild fish. The elevated selenium levels persisted throughout the freshwater (FW) rearing phase, but declined when the fish were fed an unsupplemented ration upon SW entry. Superoxide dismutase levels did not increase above control levels. Glutathione peroxidase levels increased in fish fed the supplemented diets. GSH-Px activity declined in the higher supplemented dietary groups when all groups were reduced to the control group level of 1.1 μg g-1. Cumulative mortality in SW was 20% in fish fed either the 1.1 or the 8.6 μg g-1 Se diets. The 8.6 μg g-1 Se supplemented diets did produce healthy coho, comparable to their wild counterparts.

  16. Expression of aquaporin-3 and -8 mRNAs in the parr and smolt stages of sockeye salmon, Oncorhynchus nerka: effects of cortisol treatment and seawater acclimation.

    PubMed

    Choi, Young Jae; Shin, Hyun Suk; Kim, Na Na; Cho, Sung Hwoan; Yamamoto, Yuzo; Ueda, Hiroshi; Lee, Jehee; Choi, Cheol Young

    2013-06-01

    This study aimed to examine the role of 2 aquaporin (AQP) isoforms (AQP3, and -8) in sockeye salmon (Oncorhynchus nerka) in response to a hyperosmotic challenge from freshwater to seawater (SW) during the parr and smoltification (smolt) stages. AQP3 mRNA was primarily detected in the osmoregulatory organs, such as gills, while AQP8 mRNA was primarily found in the intestine. These results suggested that AQP isoforms play a role in osmoregulation in specific osmoregulatory organs. Similarly, AQP3 mRNA expression in the gills (mean values:1.06 ± 0.05 [parr] and 1.29 ± 0.07 [smolt]) was significantly higher than AQP8 mRNA levels (parr: 0.04 ± 0.003; smolt: 0.14 ± 0.004), and in the intestine, AQP8 mRNA expression (parr: 0.89 ± 0.007; smolt: 1.91 ± 0.03) was significantly higher than AQP3 mRNA levels (parr: 0.24 ± 0.006; smolt: 0.83 ± 0.005); these expression patterns were similar in vivo and in vitro. Additionally, AQP mRNA levels were lower in cortisol treated than in control groups. Therefore, these results suggest that AQPs play important roles in the water absorption mechanisms associated with multiple AQP isoforms, and that cortisol enhances the hypo-osmoregulatory capacity of fish in SW, and also controls the expression of AQPs in a hyperosmotic environment. PMID:23507572

  17. Comparison of two fluorescent antibody techniques (FATS) for detection and quantification of Renibacterium salmoninarum in coelomic fluid of spawning chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Elliott, D.G.; McKibben, C.L.

    1997-01-01

    Two versions of the fluorescent antibody technique (FAT) were compared for detection and quantification of Renibacterium salmoninarum in coelomic fluid samples from naturally infected spawning chinook salmon Oncorhynchus tshawytscha. For the membrane filtration-FAT (MF-FAT), trypsin-treated samples were passed through 0.2 ??m polycarbonate filters to concentrate bacteria for direct enumeration by immunofluorescence microscopy. For the smear-FAT (S-FAT), samples were centrifuged at 8800 x g for 10 min and the pelleted material was smeared on slides for immunofluorescence staining Detected prevalences of Renibacterium salmoninarum were 1.8 to 3.4 times higher by the MF-FAT than by the S-FAT: differences were significant at p ??? 0.0002. The S-FAT consistently detected R. salmoninarum only in samples with calculated bacterial concentrations ??? 2.4 x 103 cells ml-1 by MF-FAT testing. Increasing the area examined on a filter or slide from 50 to 100 microscope fields at 1000x magnification resulted in the detection of a maximum of 4% additional positive samples by the MF-FAT and 7% additional positive samples by the S-FAT. In individual samples for which bacterial counts were obtained by both the MF-FAT and the S-FAT, the counts averaged from 47 times (??30 SD) to 175 times (??165 SD) higher by the MF-FAT. Centrifugation of samples at 10000 x g for 10 min resulted in a 4-fold increase in mean bacterial counts by the S-FAT compared with a 10-min centrifugation at 2000 x g, but the highest calculated bacterial concentration obtained by S-FAT testing was more than 6-fold lower than that obtained for the same sample by MF-FAT testing. Because of its greater sensitivity, the MF-FAT is preferable to the S-FAT for use in critical situations requiring the detection of low numbers of R. salmoninarum.

  18. DNA and allozyme markers provide concordant estimates of population differentiation: Analyses of U.S. and Canadian populations of Yukon River fall-run chum salmon (Oncorhynchus keta)

    USGS Publications Warehouse

    Scribner, K.T.; Crane, P.A.; Spearman, W.J.; Seeb, L.W.

    1998-01-01

    Although the number of genetic markers available for fisheries research has steadily increased in recent years, there is limited information on their relative utility. In this study, we compared the performance of different 'classes' of genetic markers (mitochondrial DNA (mtDNA), nuclear DNA (nDNA), and allozymes) in terms of estimating levels and partitioning of genetic variation and of the relative accuracy and precision in estimating population allocations to mixed-stock fisheries. Individuals from eight populations of fall-run chum salmon (Oncorhynchus keta) from the Yukon River in Alaska and Canada were assayed at 25 loci. Significant differences in mitochondrial haplotype and nuclear allele frequencies were observed among five drainages. Populations from the U.S.-Canada border region were not clearly distinguishable based on multilocus allele frequencies. Although estimates of total genetic diversities were higher for the DNA loci (H(t) = 0.592 and h = 0.647 for nDNA and mtDNA, respectively) compared with protein allozymes (H(t) = 0.250), estimates of the extent of population differentiation were highly concordant across marker classes (mean ?? = 0.010, 0.011, and 0.016 for allozymes, nDNA, and mtDNA, respectively). Simulations of mixed-stock fisheries composed of varying contributions of U.S. and Canadian populations revealed a consistent bias for overallocation of Canadian stocks when expected Canadian contributions varied from 0 to 40%, due primarily to misallocations among genetically similar border populations. No single marker class is superior for differentiating populations of this species at the spatial scale examined.

  19. Immunostimulatory effect of salmon prolactin on expression of Toll-like receptors in Oncorhynchus mykiss infected with Piscirickettsia salmonis.

    PubMed

    Peña, B; Isla, A; Haussmann, D; Figueroa, J

    2016-04-01

    In aquaculture, antibiotics are the traditional treatment used against bacterial infections. However, their use has increasingly come into question given their effects on fish and, possibly, on human health. Consequently, there is interest in developing alternative treatments aimed at stimulating the innate immune response of fish, which is the first line of defense against pathogens. In relation to this, the Toll-like receptors (TLR) aid in the selective identification of pathogens. The present study evaluated immunostimulatory activity of prolactin (PRL) hormone on expression levels of TLR1, 9, and 22, MyD88, and IL-1β during in vitro infection with the fish pathogen Piscirickettsia salmonis, in primary cultures of Oncorhynchus mykiss head kidney cells. Results indicated that PRL increased expression of TLRs and MyD88 during the first hours of bacterial infection, while a constant increase in expression was found for IL-1β. These findings suggest that PRL indirectly modulates expression of TLRs by activating expression of suppressors of cytokine signaling, thereby regulating immune response over long periods of time during bacterial infection.

  20. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2002 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam in 2002. This was the seventh year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 479,358 yearlings released from the Fall Chinook Acclimation Project facilities exceeded the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,545 PIT tagged yearlings from Pittsburg Landing, 7,482 from Big Canyon and 2,487 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium to high with 43-62% of fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 146.7 mm (146.2-147.2 mm) at Captain John Rapids to 164.8 mm (163.5-166.1 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.14 at Pittsburg Landing and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 88.6% (86.0-91.1%) for Pittsburg Landing to 97.0% (92.4-101.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 54.3% (50.2-58.3%) for Big Canyon to 70.5% (65.4-75.5%) for Pittsburg Landing. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 8.1 river kilometers per

  1. Oral administration of marine collagen peptides prepared from chum salmon (Oncorhynchus keta) improves wound healing following cesarean section in rats

    PubMed Central

    Wang, Junbo; Xu, Meihong; Liang, Rui; Zhao, Ming; Zhang, Zhaofeng; Li, Yong

    2015-01-01

    Background The goal of the present study was to investigate the wound-healing potential of marine collagen peptides (MCPs) from chum salmon skin administered to rats following cesarean section (CS). Methods Ninety-six pregnant Sprague-Dawley rats were randomly divided into four groups: a vehicle group and three MCP groups. After CS, rats were intragastrically given MCPs at doses of 0, 0.13, 0.38, 1.15 g/kg*bw, respectively. On postoperative days 7, 14, and 21, the uterine bursting pressure, skin tensile strength, hydroxyproline (Hyp) concentrations, and histological and immunohistochemical characteristics of the scar tissue were examined. Results In the MCP groups, the skin tensile strength, uterine bursting pressure, and Hyp were significantly higher than those in the vehicle group at all three time points (p<0.05). The formation of capillary, fibroblast, and collagen fiber, the expression of platelet-endothelial cell adhesion molecule-1, basic fibroblast growth factor, and transforming growth factor beta-1 were increased in the MCP groups (p<0.05). Conclusion MCPs could accelerate the process of wounding healing in rats after CS. PMID:25976613

  2. Homozygous and heterozygous GH transgenesis alters fatty acid composition and content in the liver of Amago salmon (Oncorhynchus masou ishikawae).

    PubMed

    Sugiyama, Manabu; Takenaga, Fumio; Kitani, Yoichiro; Yamamoto, Goshi; Okamoto, Hiroyuki; Masaoka, Tetsuji; Araki, Kazuo; Nagoya, Hiroyuki; Mori, Tsukasa

    2012-10-15

    Growth hormone (GH) transgenic Amago (Oncorhynchus masou ishikawae), containing the sockeye GH1 gene fused with metallothionein-B promoter from the same species, were generated and the physiological condition through lipid metabolism compared among homozygous (Tg/Tg) and heterozygous GH transgenic (Tg/+) Amago and the wild type control (+/+). Previously, we have reported that the adipose tissue was generally smaller in GH transgenic fish compared to the control, and that the Δ-6 fatty acyl desaturase gene was down-regulated in the Tg/+ fish. However, fatty acid (FA) compositions have not been measured previously in these fish. In this study we compared the FAs composition and content in the liver using gas chromatography. Eleven kinds of FA were detected. The composition of saturated and monounsaturated fatty acids (SFA and MUFA) such as myristic acid (14:0), palmitoleic acid (16:1n-7), and cis-vaccenic acid (cis-18:1n-7) was significantly (P<0.05) decreased in GH transgenic Amago. On the other hand, the composition of polyunsaturated fatty acids (PUFAs) such as linoleic acid (18:2n-6), arachidonic acid (20:4n-6), and docosapentaenoic acid (22:5n-3) was significantly (P<0.05) increased. Levels of serum glucose and triacylglycerol were significantly (P<0.05) decreased in the GH transgenics compared with +/+ fish. Furthermore, 3'-tag digital gene expression profiling was performed using liver tissues from Tg/Tg and +/+ fish, and showed that Mid1 interacting protein 1 (Mid1ip1), which is an important factor to activate Acetyl-CoA carboxylase (ACC), was down-regulated in Tg/Tg fish, while genes involved in FA catabolism were up-regulated, including long-chain-fatty-acid-CoA ligase 1 (ACSL1) and acyl-coenzyme A oxidase 3 (ACOX3). These data suggest that liver tissue from GH transgenic Amago showed starvation by alteration in glucose and lipid metabolism due to GH overexpression. The decrease of serum glucose suppressed Mid1ip1, and caused a decrease of de novo FA

  3. Long-term effects of translocation and release numbers on fine-scale population structure among coho salmon (Oncorhynchus kisutch).

    PubMed

    Eldridge, William H; Naish, Kerry A

    2007-06-01

    Management actions, such as translocations, reintroductions and supportive breeding, can have both negative and positive effects on population recovery. Several studies have examined the incidence of introgression following such actions, but few studies have explored the effect of release numbers on gene flow between closely related recipient populations. We examined population structure of coho salmon in Puget Sound (Washington State, USA) to evaluate the relationship between the number of individuals transferred between rivers, and the number released within rivers, on inter- and intrariver population divergence. Eleven microsatellite loci were surveyed in 23 hatchery and wild samples collected from 11 rivers within and one hatchery outside Puget Sound. Pairwise genetic divergences between most populations were significant, but the population structure could not be explained by an isolation-by-distance model (Mantel test, P > 0.05). In contrast, we detected significant hatchery influence on population structure. The numbers of fish transferred among rivers between 1952 and 2004 was negatively correlated with differentiation between rivers (partial Mantel test, P = 0.005) but not within rivers (t-test, P = 0.41). Number of fish released from hatcheries that collect broodstock locally was negatively correlated with population structure within rivers (t-test P = 0.002), and between nearby rivers (partial Mantel P = 0.04). Our results indicate that the population structure can, to some degree, be altered by the number of individuals transferred and by local release number of individuals in ongoing artificial propagation programs. The findings presented here emphasize the need to control the number of individuals that are either inadvertently introduced, or are deliberately released under conservation scenarios.

  4. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2000 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2000. This was the fifth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 397,339 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,477 PIT tagged yearlings from Pittsburg Landing, 7,421 from Big Canyon and 2,488 from Captain John Rapids. The Washington Department of Fish and Wildlife released 980 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 157.7 mm (157.3-158.1 mm) at Big Canyon to 172.9 mm (172.2-173.6 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Captain John Rapids and Lyons Ferry Hatchery to 1.12 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.0% (84.7-89.4%) for Pittsburg Landing to 95.2% (91.5-98.9%) for Captain John Rapids. Estimated survival from release to

  5. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2003 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for Captain

  6. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 1999 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1999. This was the fourth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 453,117 yearlings released from the Fall Chinook Acclimation Project facilities not only slightly exceeded the 450,000 fish quota, but a second release of 76,386 yearlings (hereafter called Surplus) were acclimated at the Big Canyon facility and released about two weeks after the primary releases. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 9,941 PIT tagged yearlings from Pittsburg Landing, 9,583 from Big Canyon, 2,511 Big Canyon Surplus and 2,494 from Captain John Rapids. The Washington Department of Fish and Wildlife released 983 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low and did not appear to increase after transport to the acclimation facilities. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Pittsburg Landing and Lyons Ferry Hatchery and relatively high at Big Canyon and Captain John Rapids. Mean fork lengths (95% confidence interval) of the release groups ranged from 147.4 mm (146.7-148.1 mm) at Captain John Rapids to 163.7 mm (163.3-164.1 mm) at Pittsburg Landing. Mean condition factors ranged from 1.04 at

  7. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2001 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2001. This was the sixth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 318,932 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,503 PIT tagged yearlings from Pittsburg Landing, 7,499 from Big Canyon and 2,518 from Captain John Rapids. The Washington Department of Fish and Wildlife released 991 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 155.4 mm (154.7-156.1 mm) at Captain John Rapids to 171.6 mm (170.7-172.5 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.02 at Lyons Ferry Hatchery to 1.16 at Big Canyon and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.4% (73.2-75.5%) for Big Canyon to 85.2% (83.5-87.0%) for Captain John Rapids. Estimated survival from release

  8. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2004 Annual Report.

    SciTech Connect

    Rocklage, Stephen J. Nez Perce Tribe, Department of Fisheries Resource Management, Lapawi, ID)

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2004. This was the ninth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 414,452 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 4,983 PIT tagged yearlings from Pittsburg Landing, 4,984 from Big Canyon and 4,982 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered low with 53-94% rating not detected to low. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 154.6 mm (154.0-155.2 mm) at Pittsburg Landing to 163.0 mm (162.6-163.4 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.16 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.7% (72.9-76.5%) for Big Canyon to 88.1% (85.7-90.6%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 45.3% (39.2-51.5%) for Pittsburg Landing to 52.1% (42.9-61.2%) for Big Canyon. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.5 river kilometers per day (rkm/d) for Captain John Rapids to 12.8 rkm/d for Pittsburg Landing. Median migration

  9. Relative resistance of Pacific salmon to infectious salmon anaemia virus

    USGS Publications Warehouse

    Rolland, J.B.; Winton, J.R.

    2003-01-01

    Infectious salmon anaemia (ISA) is a major disease of Atlantic salmon, Salmo salar, caused by an orthomyxovirus (ISAV). Increases in global aqua culture and the international movement of fish made it important to determine if Pacific salmon are at risk. Steelhead trout, Oncorhynchus mykiss, and chum, O. keta, Chinook, O. tshawytscha, coho, O. kisutch, and Atlantic salmon were injected intraperitoneally with a high, medium, or low dose of a Norwegian strain of ISAV. In a second challenge, the same species, except chum salmon, were injected with a high dose of either a Canadian or the Norwegian strain. Average cumulative mortality of Atlantic salmon in trial 1 was 12% in the high dose group, 20% in the medium dose group and 16% in the low dose group. The average cumulative mortality of Atlantic salmon in trial 2 was 98%. No signs typical of ISA and no ISAV-related mortality occurred among any of the groups of Oncorhynchus spp. in either experiment, although ISAV was reisolated from some fish sampled at intervals post-challenge. The results indicate that while Oncorhynchus spp. are quite resistant to ISAV relative to Atlantic salmon, the potential for ISAV to adapt to Oncorhynchus spp. should not be ignored.

  10. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.

    SciTech Connect

    Kucera, Paul A.

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical

  11. Disentangling the roles of air exposure, gill net injury, and facilitated recovery on the postcapture and release mortality and behavior of adult migratory sockeye salmon (Oncorhynchus nerka) in freshwater.

    PubMed

    Nguyen, Vivian M; Martins, Eduardo G; Robichaud, Dave; Raby, Graham D; Donaldson, Michael R; Lotto, Andrew G; Willmore, William G; Patterson, David A; Farrell, Anthony P; Hinch, Scott G; Cooke, Steven J

    2014-01-01

    We sought to improve the understanding of delayed mortality in migrating sockeye salmon (Oncorhynchus nerka) captured and released in freshwater fisheries. Using biotelemetry, blood physiology, and reflex assessments, we evaluated the relative roles of gill net injury and air exposure and investigated whether using a recovery box improved survival. Fish (n=238), captured by beach seine, were allocated to four treatment groups: captured only, air exposed, injured, and injured and air exposed. Only half of the fish in each group were provided with a 15-min facilitated recovery. After treatment, fish were radio-tagged and released to resume their migration. Blood status was assessed in 36 additional untagged fish sampled after the four treatments. Compared with fish sampled immediately on capture, all treatments resulted in elevated plasma lactate and cortisol concentrations. After air exposure, plasma osmolality was elevated and reflexes were significantly impaired relative to the control and injured treatments. Injured fish exhibited reduced short-term migration speed by 3.2 km/d and had a 14.5% reduced survival to subnatal watersheds compared to controls. The 15-min facilitated recovery improved reflex assessment relative to fish released immediately but did not affect survival. We suggest that in sockeye salmon migrating in cool water temperatures (∼13°-16°C), delayed mortality can result from injury and air exposure, perhaps through sublethal stress, and that injury created additive delayed mortality likely via secondary infections.

  12. Disentangling the roles of air exposure, gill net injury, and facilitated recovery on the postcapture and release mortality and behavior of adult migratory sockeye salmon (Oncorhynchus nerka) in freshwater.

    PubMed

    Nguyen, Vivian M; Martins, Eduardo G; Robichaud, Dave; Raby, Graham D; Donaldson, Michael R; Lotto, Andrew G; Willmore, William G; Patterson, David A; Farrell, Anthony P; Hinch, Scott G; Cooke, Steven J

    2014-01-01

    We sought to improve the understanding of delayed mortality in migrating sockeye salmon (Oncorhynchus nerka) captured and released in freshwater fisheries. Using biotelemetry, blood physiology, and reflex assessments, we evaluated the relative roles of gill net injury and air exposure and investigated whether using a recovery box improved survival. Fish (n=238), captured by beach seine, were allocated to four treatment groups: captured only, air exposed, injured, and injured and air exposed. Only half of the fish in each group were provided with a 15-min facilitated recovery. After treatment, fish were radio-tagged and released to resume their migration. Blood status was assessed in 36 additional untagged fish sampled after the four treatments. Compared with fish sampled immediately on capture, all treatments resulted in elevated plasma lactate and cortisol concentrations. After air exposure, plasma osmolality was elevated and reflexes were significantly impaired relative to the control and injured treatments. Injured fish exhibited reduced short-term migration speed by 3.2 km/d and had a 14.5% reduced survival to subnatal watersheds compared to controls. The 15-min facilitated recovery improved reflex assessment relative to fish released immediately but did not affect survival. We suggest that in sockeye salmon migrating in cool water temperatures (∼13°-16°C), delayed mortality can result from injury and air exposure, perhaps through sublethal stress, and that injury created additive delayed mortality likely via secondary infections. PMID:24457927

  13. Genetic diversity of sockeye salmon (`oncorhynchus nerka`) of Cook Inlet, Alaska, and its application to restoration of injured populations of the Kenai River. Exxon Valdez Oil Spill Restoration Project 93012 and 94255-2. Final report

    SciTech Connect

    Seeb, L.W.; Habicht, C.; Templin, W.D.; Fetzner, J.W.; Gates, R.B.

    1995-11-01

    Genetic data from sockeye salmon (Oncorhynchus nerka) were collected from all significant spawning populations contributing to mixed-stock harvests in Cook Inlet. A total of 68 allozyme loci were resolved from 37 populations. Mitochondrial DNA data from the NADH subunits 5 and 6 were collected from 19 of the populations. Mixed-stock analyses using maximum likelihood methods with 27 loci were evaluated to estimate the proportion of Kenai River populations in Central District drift fisheries. Simulations indicate that Kenai River populations can be identified in mixtures at a level of precision and accuracy useful for restoration and fishery management. Mixed-stock samples from Cook Inlet drift net fisheries were analyzed both inseason (48 hr) and post-season. Samples from fish wheels from the Kenai, Kasilof, Yentna, and Susitna River systems were also analyzed. Inclusion of mtDNA data in the analysis is being investigated to determine if it improves precision and accuracy. Results from this study are currently being used in the management and restoration of Kenai River sockeye salmon injured in the 1989 Exxon Valdex oil spill.

  14. Effects of dehulling, steam-cooking and microwave-irradiation on digestive value of white lupin (Lupinus albus) seed meal for rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar).

    PubMed

    Saez, Patricio; Borquez, Aliro; Dantagnan, Patricio; Hernández, Adrián

    2015-01-01

    A digestibility trial was conducted to assess the effect of dehulling, steam-cooking and microwave-irradiation on the apparent digestibility of nutrients in white lupin (Lupinus albus) seed meal when fed to rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Six ingredients, whole lupin seed meal (LSM), dehulled LSM, dehulled LSM steam-cooked for 15 or 45 min (SC15 and SC45, respectively) and LSM microwave-irradiated at 375 or 750 W (MW375 and MW750, respectively), were evaluated for digestibility of dry matter, crude protein (CP), lipids, nitrogen-free extractives (NFE) and gross energy (GE). The diet-substitution approach was used (70% reference diet + 30% test ingredient). Faeces from each tank were collected using a settlement column. Dehulled LSM showed higher levels of proximate components (except for NFE and crude fibre), GE and phosphorus in comparison to whole LSM. Furthermore, SC15, SC45, MW375 and MW750 showed slight variations of chemical composition in comparison to dehulled LSM. Results from the digestibility trial indicated that dehulled LSM, SC15, SC45 and MW375 are suitable processing methods for the improvement of nutrients' apparent digestibility coefficient (ADC) in whole LSM. MW750 showed a lower ADC of nutrients (except for CP and lipids for rainbow trout) in comparison with MW350 for rainbow trout and Atlantic salmon, suggesting a heat damage of the ingredient when microwave-irradiation exceeded 350 W.

  15. Movement and Injury Rates for Three Life Stages of Spring Chinook Salmon Oncorhynchus Tshawytscha : A Comparison of Submerged Orifices and an Overflow Weir for Fish Bypass in a Modular Rotary Drum Fish Screen : Annual Report 1995.

    SciTech Connect

    Abernethy, C. Scott; Neitzel, Duane A.; Mavros, William V.

    1996-03-01

    The Pacific Northwest National Laboratory (PNNL) evaluated the effectiveness of 6-in. and 2-in. submerged orifices, and an overflow weir for fish bypass at a rotary drum fish screening facility. A modular drum screen built by the Washington Department of Fish and Wildlife (WDFW) was installed at PNNL`s Aquatic Ecology research laboratory in Richland, Washington. Fry, subyearlings, and smolts of spring chinook salmon (Oncorhynchus tshawyacha) were introduced into the test system, and their movement and injury rates were monitored. A total of 33 tests (100 fish per test) that lasted from 24 to 48 hr were completed from 1994 through 1995. Passage rate depended on both fish size and bypass configuration. For fry/fingerling spring chinook salmon, there was no difference in passage rate through the three bypass configurations (2-in. orifice, 6-in. orifice, or overflow weir). Subyearlings moved sooner when the 6-in. orifice was used, with more than 50% exiting through the fish bypass in the first 8 hr. Smolts exited quickly and preferred the 6-in. orifice, with over 90% of the smolts exiting through the bypass in less than 2 hr. Passage was slightly slower when a weir was used, with 90% of the smolts exiting in about 4 hr. When the 2-in. orifice was used in the bypass, 90% of the smolts did not exit until after 8 hr. In addition, about 7% of the smolts failed to migrate from the forebay within 24 hr, indicating that smolts were significantly delayed when the 2-in. orifice was used. Few significant injuries were detected for any of the life stages. However, light descaling occurred on about 15% of chinook salmon smolts passing through the 2-in. orifice. Although a single passage through the orifice did not appear to cause significant scale loss or other damage, passing through several screening facilities with 2-in. orifices could cause cumulative injuries.

  16. A statistical analysis of the distribution of a larval nematode (Anisakis sp.) in the musculature of chum salmon (Oncorhynchus keta - Walbaum)

    USGS Publications Warehouse

    Novotny, A.J.

    1960-01-01

    The one factor which probably contributes the greatest effect on distributional patterns of Anisakis within chum salmon musculature is the total intensity of infection (or population density of Anisakis) in each fish.

  17. Immunomodulation in C57Bl/6 mice following consumption of halogenated aromatic hydrocarbon-contaminated coho salmon (Oncorhynchus kisutch) from Lake Ontario

    SciTech Connect

    Cleland, G.B.; McElroy, P.J.; Sonstegard, R.A. )

    1989-01-01

    This report describes studies designed to assess the immunomodulatory effects associated with the consumption of coho salmon containing halogenated aromatic hydrocarbons (HAHs) and other compounds naturally bioaccumulated from Lake Ontario. Diets containing 33% coho salmon from Lake Ontario or the Pacific Ocean were fed to juvenile C57Bl/6 mice for 2-4 mo. Following 60 d, the mice that consumed Lake Ontario salmon had reduced IgM, IgG, and IgA plaque-forming cell responses to sheep erythrocytes. No changes were observed in total numbers of spleen lymphocytes, total T-lymphocytes or T-lymphocyte subsets as determined by flow cytometry. Cellular immunity, assessed by the cytotoxic T-lymphocyte response to allogeneic tumor target cells, was not altered following dietary exposure to Lake Ontario coho salmon for 4 mo. The observed humoral immunomodulation correlated with elevated PCB levels in the Lake Ontario salmon diets. The levels of pollutants such as mercury, tin compounds and other metals, PCDDs, and PCDFs were not examined.

  18. Life history reconstruction of modern and fossil sockeye salmon ( Oncorhynchus nerka) by oxygen isotopic analysis of otoliths, vertebrae, and teeth: Implication for paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Zazzo, A.; Smith, G. R.; Patterson, W. P.; Dufour, E.

    2006-09-01

    We evaluate the use of oxygen isotope values of biogenic apatite for tracking freshwater to marine migration in modern and fossil Pacific sockeye salmon. Oxygen isotope analyses of otoliths, vertebrae, and teeth of three anadromous modern sockeye salmon from Alaska establish a basis for the interpretation of fossil vertebrae and tooth apatite from Pleistocene sockeye salmon of the Skokomish River Valley, Washington. High resolution δ18O profiles in salmon otoliths provide, at a monthly resolution, a detailed record of individual history including continental rearing, migration to sea, seasonal variation in sea surface temperatures during marine life, and spawning migration before capture. Pacific salmon teeth are constantly renewed with the last set of teeth forming under the influence of freshwater. Therefore, they do not allow inference concerning sea-run versus landlocked life history in fossil salmon. Salmon vertebrae are also ambiguous indicators of life history regarding fresh versus marine water because centra are minimally ossified in the freshwater stages of life and the outermost layer of vertebral bone might be resorbed to provide nutrients during the non-feeding phase of the spawning migration. Therefore, δ18O values of accretionary growth rings in sea-run salmon vertebrae are dominated by the marine signal only if they are not diagenetically altered in freshwater deposits. In Pleistocene sockeye reported here, neither the teeth nor vertebral apatite present clear marine δ18O values due to the combined effects of tooth replacement and diagenetic alteration of bone and dentine. δ18O(PO 4) values of fossil vertebrae are intermediate between δ18O(PO 4) values of enamel and basal tooth dentin. Assuming a similar rate of isotope exchange of vertebrae and dentine with freshwater during diagenesis, these results are interpreted to reflect formation of the teeth under the influence of freshwater, and formation of the vertebrae under the influence of

  19. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    SciTech Connect

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  20. Enzymatic Digestion of Eye and Brain Tissues of Sockeye and Coho Salmon, and Dusky Rockfish Commercially Harvested in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential feed ingredients with high lipid content were made by enzymatic digestion followed by centrifugation of eye tissue from dusky rockfish (Sebastes ciliatos), coho salmon (Oncorhynchus kisutch), and sockeye salmon (Oncorhynchus nerka) and brain tissue from sockeye salmon. Materials with high ...

  1. A comparison of implantation methods for large PIT tags or injectable acoustic transmitters in juvenile Chinook salmon

    SciTech Connect

    Cook, Katrina V.; Brown, Richard S.; Deng, Zhiqun; Klett, Ryan S.; Li, Huidong; Seaburg, Adam; Eppard, M. B.

    2014-04-15

    The miniaturization of acoustic transmitters may allow greater flexibility in terms of the size and species of fish available to tag. New downsized injectable acoustic tags similar in shape to passive integrated transponder tags can be rapidly injected rather than surgically implanted through a sutured incision, as is current practice. Before wide-scale field use of these injectable transmitters, standard protocols to ensure the most effective and least damaging methods of implantation must be developed. Three implantation methods were tested in various sizes of juvenile Chinook salmon Oncorhynchus tschawytscha. Methods included a needle bevel-down injection, a needle bevel-up injection with a 90-degree rotation, and tag implantation through an unsutured incision. Tagged fish were compared to untagged control groups. Weight and wound area were measured at tagging and every week for 3 weeks; holding tanks were checked daily for mortalities and tag losses. No differences among treatments were found in growth, tag loss, or survival, but wound area was significantly reduced among incision-treated fish. The bevel-up injection had the worst results in terms of tag loss and wound area and also had high mortality. Implantation through an incision resulted in the lowest tag loss but the highest mortality. Fish from the bevel-down treatment group had the least mortality; wound areas also were smaller than the bevel-up treatment group. Cumulatively, the data suggest that the unsutured incision and bevel-down injection methods were the most effective; the drawbacks of both methods are described in detail. However, we further recommend larger and longer studies to find more robust thresholds for tagging size that include more sensitive measures.

  2. Effect of dietary alpha-tocopherol, ascorbic acid, selenium, and iron on oxidative stress in sub-yearling Chinook salmon (Oncorhynchus tshawytscha)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-variable central composite design coupled with surface-response analysis was used to examine the effects of dietary alpha-tocopherol + ascorbic acid (TOCAA), selenium (Se), and iron (Fe) on indices of oxidative stress in juvenile spring Chinook salmon. Each dietary factor was tested at five ...

  3. Assessing the impact of swimming exercise and the relative susceptibility of rainbow trout oncorhynchus mykiss (walbaum) and atlantic salmon salmo salar L. following injection challenge with weissella ceti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All-female rainbow trout and mixed-sex Atlantic salmon (approximately 200 g and 120 g initial weight, respectively) were maintained in small circular tanks in a flow-through system under study conditions for a period of five months. The four tank populations consisted of rainbow trout exposed to ei...

  4. Effects of Flow on the Migratory Behavior and Survival of Juvenile Fall and Summer Chinook Salmon in John Day Reservoir : Annual Report 1985. [Oncorhynchus Tshawytscha

    SciTech Connect

    Miller, David R.; Giorgi, Albert E.

    1985-12-01

    As part of a study to define the effects of instream flows on the passage time, migration behavior, and survival of phi age chinook salmon migrating through John Day Reservoir from June through August juvenile fish were tagged and released below McNary Dam in 1981. This report discusses adult returns through 1984. (ACR)

  5. Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.

    SciTech Connect

    Backman, Thomas; Sprague, Sherman; Bretz, Justin

    2009-06-10

    The Nez Perce Tribal Hatchery (NPTH) program has the following goals (BPA, et al., 1997): (1) Protect, mitigate, and enhance Clearwater Subbasin anadromous fish resources; (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater Subbasin; (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project initiation; (4) Sustain long-term fitness and genetic integrity of targeted fish populations; (5) Keep ecological and genetic impacts to non-target populations within acceptable limits; and (6) Promote Nez Perce Tribal management of Nez Perce Tribal Hatchery Facilities and production areas within Nez Perce Treaty lands. The NPTH program was designed to rear and release 1.4 million fall and 625,000 spring Chinook salmon. Construction of the central incubation and rearing facility NPTH and spring Chinook salmon acclimation facilities were completed in 2003 and the first full term NPTH releases occurred in 2004 (Brood Year 03). Monitoring and evaluation plans (Steward, 1996; Hesse and Cramer, 2000) were established to determine whether the Nez Perce Tribal Hatchery program is achieving its stated goals. The monitoring and evaluation action plan identifies the need for annual data collection and annual reporting. In addition, recurring 5-year program reviews will evaluate emerging trends and aid in the determination of the effectiveness of the NPTH program with recommendations to improve the program's implementation. This report covers the Migratory Year (MY) 2007 period of the NPTH Monitoring & Evaluation (M&E) program. There are three NPTH spring Chinook salmon treatment streams: Lolo Creek, Newsome Creek, and Meadow Creek. In 2007, Lolo Creek received 140,284 Brood Year (BY) 2006 acclimated pre-smolts at an average weight of 34.9 grams per fish, Newsome Creek received 77,317 BY 2006 acclimated pre-smolts at an average of 24.9 grams

  6. Disruption of seasonality in growth hormone-transgenic coho salmon (Oncorhynchus kisutch) and the role of cholecystokinin in seasonal feeding behavior.

    PubMed

    Lõhmus, Mare; Raven, Peter A; Sundström, L Fredrik; Devlin, Robert H

    2008-09-01

    Seasonal variation in daily food intake is a well-documented phenomenon in many organisms including wild-type coho salmon where the appetite is noticeably reduced during periods of decreased day length and low water temperature. This reduction may in part be explained by altered production of cholecystokinin (CCK) and growth hormone (GH). CCK is a hormone produced in the brain and gut that mediates a feeling of satiety and thus has an inhibitory effect on food intake and foraging behaviour. Growth hormone (GH) enhances feeding behaviour and consequently growth, but its production is reduced during winter. The objectives of this study were: first, to compare the seasonal feeding behaviour of wild and GH-transgenic coho salmon; second, to determine the behavioural effect of blocking the action of CCK (by using devazepide) on the seasonal food intake; and third, to measure CCK expression in brain and gut tissues between the two genotypes across seasons. We found that, in contrast to wild salmon, food intake in transgenic salmon was not reduced during winter indicating that seasonal control of appetite regulation has been disrupted by constitutive production of GH in transgenic animals. Blocking of CCK increased food intake in both genotypes in all seasons. The increase was stronger in wild genotypes than transgenic fish; however blocking CCK in wild-type fish in winter did not elevate appetites to levels observed in the summer. The response to devazepide was generally faster in transgenic than in wild salmon with more rapid effects observed during summer than during winter, possibly due to a higher temperature in summer. Overall, a seasonal effect on CCK mRNA levels was observed in telencephalon with levels during winter being higher compared to the summer in wild fish, but with no seasonal effect in transgenic fish. No differences in seasonal CCK expression were found in hypothalamus. Higher levels of CCK were detected in the gut of both genotypes in winter compared

  7. Fitness and behavioral correlates of pre-stress and stress-induced plasma cortisol titers in pink salmon (Oncorhynchus gorbuscha) upon arrival at spawning grounds.

    PubMed

    Cook, K V; McConnachie, S H; Gilmour, K M; Hinch, S G; Cooke, S J

    2011-11-01

    Semelparous Pacific salmon (Onchorynchus spp.) serve as an excellent model for examining the relationships between life history, behavior and individual variation in glucocorticoid (GC) stress hormone levels because reproductive behaviors are highly variable between individuals and failure to reproduce results in zero fitness. Pink salmon (O. gorbuscha) were intercepted upon arrival at the spawning grounds across three time periods. Pre-stress and stress-induced plasma cortisol concentrations were assessed in relation to behavior, longevity and reproductive success. Results revealed differences between sexes and with arrival time. The study period marked a year of high reproductive success and only nine females (12% of sample) failed to spawn. Female pre-spawn mortalities were characterized by significantly elevated stress-induced cortisol concentrations and decreased longevity as well as pre-stress cortisol above the normal range in pink salmon from the study area. Interestingly, reproductive behaviors were only associated with pre-stress cortisol levels. For females, aggression and mate interaction time were reduced in individuals with elevated pre-stress cortisol concentrations. In males, a similar negative relationship between pre-stress cortisol concentration and mate interaction time was detected. The observed behavioral correlations are likely a factor of social status where dominant individuals, known to have higher reproductive success, are characterized by lower cortisol levels relative to subordinate conspecifics. Findings show both elevated pre-stress and stress-induced cortisol concentrations at arrival to the spawning grounds to be associated with reduced survival.

  8. Declining wild salmon populations in relation to parasites from farm salmon.

    PubMed

    Krkosek, Martin; Ford, Jennifer S; Morton, Alexandra; Lele, Subhash; Myers, Ransom A; Lewis, Mark A

    2007-12-14

    Rather than benefiting wild fish, industrial aquaculture may contribute to declines in ocean fisheries and ecosystems. Farm salmon are commonly infected with salmon lice (Lepeophtheirus salmonis), which are native ectoparasitic copepods. We show that recurrent louse infestations of wild juvenile pink salmon (Oncorhynchus gorbuscha), all associated with salmon farms, have depressed wild pink salmon populations and placed them on a trajectory toward rapid local extinction. The louse-induced mortality of pink salmon is commonly over 80% and exceeds previous fishing mortality. If outbreaks continue, then local extinction is certain, and a 99% collapse in pink salmon population abundance is expected in four salmon generations. These results suggest that salmon farms can cause parasite outbreaks that erode the capacity of a coastal ecosystem to support wild salmon populations.

  9. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    USGS Publications Warehouse

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  10. Quantification of ventricular β2 -adrenoceptor density and ligand binding affinity in wild sockeye salmon Oncorhynchus nerka smolts using a novel modification to the tritiated ligand technique.

    PubMed

    Goulding, A T; Farrell, A P

    2016-05-01

    A new, image-based, tritiated ligand technique for measuring cardiac β2 -adrenoceptor (β2 -AR) binding characteristics was developed and validated with adult rainbow trout Oncorhynchus mykiss hearts so that the tissue limitation of traditional receptor binding techniques could be overcome and measurements could be made in hearts nearly 14-times smaller than previously used. The myocardial cell-surface (functional) β2 -AR density of O. nerka smolts sampled at the headwaters of the Chilko River was 54·2 fmol mg protein(-1) and about half of that previously found in return migrating adults of the same population, but still more than twice that of adult hatchery O. mykiss (21·1 fmol mg protein(-1) ). This technique now opens the possibility of investigating cardiac receptor density in a much wider range of fish species and life stages. PMID:27095288

  11. Relationship of farm salmon, sea lice, and wild salmon populations.

    PubMed

    Marty, Gary D; Saksida, Sonja M; Quinn, Terrance J

    2010-12-28

    Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10-20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon--proposed through coordinated fallowing or closed containment--will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability.

  12. Effect of dietary α-tocopherol + ascorbic acid, selenium, and iron on oxidative stress in sub-yearling Chinook salmon (Oncorhynchus tshawytscha Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2009-01-01

    A three-variable central composite design coupled with surface-response analysis was used to examine the effects of dietary ??-tocopherol + ascorbic acid (TOCAA), selenium (Se), and iron (Fe) on indices of oxidative stress in juvenile spring Chinook salmon. Each dietary factor was tested at five levels for a total of fifteen dietary combinations (diets). Oxidative damage in liver and kidney (lipid peroxidation, protein carbonyls) and erythrocytes (erythrocyte resistance to peroxidative lysis, ERPL) was determined after feeding experimental diets for 16 (early December) and 28 (early March) weeks. Only TOCAA influenced oxidative stress in this study, with most measures of oxidative damage decreasing (liver lipid peroxidation in December and March; ERPL in December; liver protein carbonyl in March) with increasing levels of TOCAA. We also observed a TOCAA-stimulated increase in susceptibility of erythrocytes to peroxidative lysis in March at the highest levels of TOCAA. The data suggest that under most circumstances a progressive decrease in oxidative stress occurs as dietary TOCAA increases, but higher TOCAA concentrations can stimulate oxidative damage in some situations. Higher levels of TOCAA in the diet were required in March than in December to achieve comparable levels of protection against oxidative damage, which may have been due to physiological changes associated with the parr-smolt transformation. Erythrocytes appeared to be more sensitive to variation in dietary levels of TOCAA than liver and kidney tissues. Using the March ERPL assay results as a baseline, a TOCAA level of approximately 350-600 mg/kg diet would provide adequate protection against lipid peroxidation under most circumstances in juvenile Chinook salmon. ?? 2008 The Authors.

  13. On signals of phase transitions in salmon population dynamics.

    PubMed

    Krkošek, Martin; Drake, John M

    2014-06-01

    Critical slowing down (CSD) reflects the decline in resilience of equilibria near a bifurcation and may reveal early warning signals (EWS) of ecological phase transitions. We studied CSD in the recruitment dynamics of 120 stocks of three Pacific salmon (Oncorhynchus spp.) species in relation to critical transitions in fishery models. Pink salmon (Oncorhynchus gorbuscha) exhibited increased variability and autocorrelation in populations that had a growth parameter, r, close to zero, consistent with EWS of extinction. However, models and data for sockeye salmon (Oncorhynchus nerka) indicate that portfolio effects from heterogeneity in age-at-maturity may obscure EWS. Chum salmon (Oncorhynchus keta) show intermediate results. The data do not reveal EWS of Ricker-type bifurcations that cause oscillations and chaos at high r. These results not only provide empirical support for CSD in some ecological systems, but also indicate that portfolio effects of age structure may conceal EWS of some critical transitions. PMID:24759855

  14. Habitat use by subyearling Chinook and coho salmon in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.

    2014-01-01

    The habitat use of subyearling Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) was examined in three tributaries of Lake Ontario. A total of 1781 habitat observations were made on Chinook salmon (698) and coho salmon (1083). During both spring and fall, subyearling coho salmon used pool habitat with abundant cover. During spring, principal component analysis revealed that water depth was the most important variable governing subyearling Chinook salmon habitat use. Substrate materials used by Chinook salmon in the spring and coho salmon in the fall were significantly smaller than were present on average within the study reaches. When the two species occurred sympatrically during spring they exhibited similar habitat selection. Although the habitat used by coho salmon in Lake Ontario tributaries was consistent with observations of habitat use in their native range, higher water velocities were less important to Chinook salmon than has previously been reported.

  15. Effects of various feed supplements containing fish protein hydrolysate or fish processing by-products on the innate immune functions of juvenile coho salmon (oncorhynchus kisutch)

    USGS Publications Warehouse

    Murray, A.L.; Pascho, R.J.; Alcorn, S.W.; Fairgrieve, W.T.; Shearer, K.D.; Roley, D.

    2003-01-01

    Immunomodulators administered to fish in the diet have been shown in some cases to enhance innate immune defense mechanisms. Recent studies have suggested that polypeptide fractions found in fish protein hydrolysates may stimulate factors in fish important for disease resistance. For the current study, groups of coho salmon were reared on practical feeds that contained either fish meal (Control diet), fish meal supplemented with cooked fish by-products, or fish meal supplemented with hydrolyzed fish protein alone, or with hydrolyzed fish protein and processed fish bones. For each diet group, three replicate tanks of fish were fed the experimental diets for 6 weeks. Morphometric measurements, and serologic and cellular assays were used to evaluate the general health and immunocompetence of fish in the various feed groups. Whereas the experimental diets had no effect on the morphometric and cellular measurements, fish fed cooked by-products had increased leucocrit levels and lower hematocrit levels than fish from the other feed groups. Innate cellular responses were increased in all feed groups after feeding the four experimental diets compared with pre-feed results. Subgroups of fish from each diet group were also challenged with Vibrio anguillarum (ca. 7.71 ?? 105 bacteria ml-1) at 15??C by immersion. No differences were found in survival among the various feed groups.

  16. Integration of Random Forest with population-based outlier analyses provides insight on the genomic basis and evolution of run timing in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Brieuc, Marine S O; Ono, Kotaro; Drinan, Daniel P; Naish, Kerry A

    2015-06-01

    Anadromous Chinook salmon populations vary in the period of river entry at the initiation of adult freshwater migration, facilitating optimal arrival at natal spawning. Run timing is a polygenic trait that shows evidence of rapid parallel evolution in some lineages, signifying a key role for this phenotype in the ecological divergence between populations. Studying the genetic basis of local adaptation in quantitative traits is often impractical in wild populations. Therefore, we used a novel approach, Random Forest, to detect markers linked to run timing across 14 populations from contrasting environments in the Columbia River and Puget Sound, USA. The approach permits detection of loci of small effect on the phenotype. Divergence between populations at these loci was then examined using both principle component analysis and FST outlier analyses, to determine whether shared genetic changes resulted in similar phenotypes across different lineages. Sequencing of 9107 RAD markers in 414 individuals identified 33 predictor loci explaining 79.2% of trait variance. Discriminant analysis of principal components of the predictors revealed both shared and unique evolutionary pathways in the trait across different lineages, characterized by minor allele frequency changes. However, genome mapping of predictor loci also identified positional overlap with two genomic outlier regions, consistent with selection on loci of large effect. Therefore, the results suggest selective sweeps on few loci and minor changes in loci that were detected by this study. Use of a polygenic framework has provided initial insight into how divergence in a trait has occurred in the wild. PMID:25913096

  17. Effects of Aroclor 1254 and No. 2 fuel oil, singly and in combination, on predator-prey interactions in coho salmon (Oncorhynchus kisutch)

    SciTech Connect

    Folmar, L.C.; Hodgins, H.O.

    1982-07-01

    The effects of No. 2 fuel oil on predator-prey interactions of coho salmon were examined. Since aquatic organisms under natural conditions are simultaneously exposed to more than one toxicant, the effects of fuel oil plus polychlorinated biphenyls (PCBs) were also evaluated. Experimental fish were either injected with a single intraperitoneal dose of 150 g/kg Aroclor 1254, exposed to fuel oil in seawater, or injected with PCB and then exposed to fuel oil. Most of the fish subjected to the fuel oil or PCB treatment began to show behavioral modifications after 5 days of exposure. Those fish were, in general, lethargic and did not attempt to capture the prey presented to them. PCB content of the livers from fish sacrificed at the termination of the predator-prey evaluations were as follows: PCB injected, 329 +/- 98 ..mu..g/kg: oil exposed, 58 +/- 21 ..mu..g/kg; PCB injected plus oil exposed 309 +/- 83 ..mu..g/kg. Concentrations of all hydrocarbons detected by gas chromatography were significantly higher in the livers of the fish exposed to fuel oil only then in the fish which were injected with PCB seven days prior to the fuel oil exposure. The highest hydrocarbon concentrations detected were those of the naphthalenic compounds. (JMT)

  18. Integration of Random Forest with population-based outlier analyses provides insight on the genomic basis and evolution of run timing in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Brieuc, Marine S O; Ono, Kotaro; Drinan, Daniel P; Naish, Kerry A

    2015-06-01

    Anadromous Chinook salmon populations vary in the period of river entry at the initiation of adult freshwater migration, facilitating optimal arrival at natal spawning. Run timing is a polygenic trait that shows evidence of rapid parallel evolution in some lineages, signifying a key role for this phenotype in the ecological divergence between populations. Studying the genetic basis of local adaptation in quantitative traits is often impractical in wild populations. Therefore, we used a novel approach, Random Forest, to detect markers linked to run timing across 14 populations from contrasting environments in the Columbia River and Puget Sound, USA. The approach permits detection of loci of small effect on the phenotype. Divergence between populations at these loci was then examined using both principle component analysis and FST outlier analyses, to determine whether shared genetic changes resulted in similar phenotypes across different lineages. Sequencing of 9107 RAD markers in 414 individuals identified 33 predictor loci explaining 79.2% of trait variance. Discriminant analysis of principal components of the predictors revealed both shared and unique evolutionary pathways in the trait across different lineages, characterized by minor allele frequency changes. However, genome mapping of predictor loci also identified positional overlap with two genomic outlier regions, consistent with selection on loci of large effect. Therefore, the results suggest selective sweeps on few loci and minor changes in loci that were detected by this study. Use of a polygenic framework has provided initial insight into how divergence in a trait has occurred in the wild.

  19. Movement of Fall Chinook Salmon Fry Oncorhynchus Tshawytscha : A Comparison of Approach Angles for Fish Bypass in a Modular Rotary Drum Fish Screen.

    SciTech Connect

    Neitzel, D.A.; Blanton, S.L.; Abernethy, C. Scott; Daly, D.S.

    1996-08-01

    The Pacific Northwest National Laboratory (PNNL) performed tests to determine whether a significant difference in fish passage existed between a 6-ft screening facility built perpendicularly to canal flow and an identical screening facility with the screen mounted at a 45-degree angle to the approach channel. A modular drum screen built by the Washington Department of Fish and Wildlife was installed at PNNL`s Aquatic Ecology research laboratory in Richland, Washington. Fall chinook salmon fry were introduced into the test system, and their movements were monitored. A total of 14 tests (400 fish per test) that lasted 20 hours were completed during April and May, 1996. There was no significant difference in fish passage rate through the two approach configurations. Attraction flow to the bypass across the face of the screen was more evident for the angled approach, although this did not appear to play a significant role in attracting fish to the bypass. Approach velocities at the face of the screen did not exceed the 0.4 fps criteria for either approach configuration and posed not threat to fish. No fish passed over, around, or through the drum screen during any test.

  20. Masou salmon (Oncorhynchus masou) ethanol extract decreases 3-hydroxy-3-methylglutaryl coenzyme A reductase expression in diet-induced obese mice.

    PubMed

    Oh, Hyun-Taek; Chung, Mi Ja; Kim, Soo-Hyun; Choi, Hyun-Jin; Ham, Seung-Shi

    2009-02-01

    This study was designed to evaluate the hypocholesterolemic effects of masou salmon 70% ethanol extract (MSE) and to determine the molecular mechanism by which MSE exerts its effects in high-fat (HF) diet-induced obese mice. We hypothesize that the MSE may contain abundant n-3 fatty acids, so a diet containing MSE may also have hypolipidemic effects by assessing several key gene expressions in cholesterol metabolism such as the low-density lipoprotein (LDL) receptor, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, and cholesterol 7alpha-hydroxylase (CYP7A1). To test this hypothesis, C57BL/6J mice were fed a 40% HF diet for 5 weeks, after which time the animals were fed an HF diet containing 0 mg/kg, 75 mg/kg, or 150 mg/kg MSE (HF, HF + MSE 1, and HF + MSE 2 groups, respectively) for an additional 4 weeks (n = 8 in each group, for a total of 24 mice). We found that feeding MSE with an HF diet prevented hypercholesterolemia in diet-induced obese mice; daily MSE feeding reduced total cholesterol levels in plasma and liver by 12.3% and 16.2%, respectively. Furthermore, we examined the expression of key cholesterol metabolism genes by reverse transcription-polymerase chain reaction and found that messenger RNA levels of HMG-CoA reductase were decreased by up to 5-fold, but the expression of both LDL receptor and CYP7A1 did not change. Thus, MSE may exert its hypocholesterolemic effect by altering the expression of HMG-CoA reductase. PMID:19285603

  1. Hypoxia increases the release of salmon cardiac peptide (sCP) from the heart of rainbow trout (Oncorhynchus mykiss) under constant mechanical load in vitro.

    PubMed

    Arjamaa, Olli; Vuolteenaho, Olli; Kivi, Elina; Nikinmaa, Mikko

    2014-02-01

    Our aim was to study the effects of hypoxia on the release of salmon cardiac peptide (sCP) from an isolated heart ventricle of trout during a constant mechanical load. Trout heart ventricles were studied in vitro. The ventricle was placed in an organ bath at 12 °C in which a constant mechanical load could be imposed on the ventricle while buffer solution was circulating. Ventricles were field-stimulated with a supramaximal voltage pulse at a rate of about 0.3 s⁻¹. Samples of 1 ml were collected at an interval of 10 min for 200 min from the organ bath and assessed with a radioimmunoassay for sCP. After a control period of 20 min, ventricles were exposed to hypoxia produced with N₂ gassing (n = 9) or to hypoxia with 20 mM BDM, a nonselective myosin ATPase inhibitor locking cross-bridges in a pre-power-stroke state inhibiting force production with normal electrical activity (n = 10). In this model and setup, hypoxia stimulated the release of sCP, but the interindividual variation in the response was large. At the end of hypoxia exposure, the concentration of sCP in the organ bath was about sixfold higher than at the start of the exposure (P < 0.05, one-way ANOVA for repeated measurements, followed by Dunnett's multiple comparison test). When BDM was introduced into the bath, the ventricle still secreted sCP but the hypoxic response was smaller than in the experiments without BDM. In the trout heart ventricle, there is a hypoxia-sensitive component in the release mechanism of sCP which is independent of contraction.

  2. Beyond Correlation in the Detection of Climate Change Impacts: Testing a Mechanistic Hypothesis for Climatic Influence on Sockeye Salmon (Oncorhynchus nerka) Productivity.

    PubMed

    Tillotson, Michael D; Quinn, Thomas P

    2016-01-01

    Detecting the biological impacts of climate change is a current focus of ecological research and has important applications in conservation and resource management. Owing to a lack of suitable control systems, measuring correlations between time series of biological attributes and hypothesized environmental covariates is a common method for detecting such impacts. These correlative approaches are particularly common in studies of exploited fish species because rich biological time-series data are often available. However, the utility of species-environment relationships for identifying or predicting biological responses to climate change has been questioned because strong correlations often deteriorate as new data are collected. Specifically stating and critically evaluating the mechanistic relationship(s) linking an environmental driver to a biological response may help to address this problem. Using nearly 60 years of data on sockeye salmon from the Kvichak River, Alaska we tested a mechanistic hypothesis linking water temperatures experienced during freshwater rearing to population productivity by modeling a series of intermediate, deterministic relationships and evaluating temporal trends in biological and environmental time-series. We found that warming waters during freshwater rearing have profoundly altered patterns of growth and life history in this population complex yet there has been no significant correlation between water temperature and metrics of productivity commonly used in fisheries management. These findings demonstrate that pairing correlative approaches with careful consideration of the mechanistic links between populations and their environments can help to both avoid spurious correlations and identify biologically important, but not statistically significant relationships, and ultimately producing more robust conclusions about the biological impacts of climate change. PMID:27123845

  3. Identification and expression analysis of two interleukin-23α (p19) isoforms, in rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar.

    PubMed

    Jiang, Yousheng; Husain, Mansourah; Qi, Zhitao; Bird, Steve; Wang, Tiehui

    2015-08-01

    Interleukin (IL)-23 is a heterodimeric IL-12 family cytokine composed of a p19 α-chain, linked to a p40 β-chain that is shared with IL-12. IL-23 is distinguished functionally from IL-12 by its ability to induce the production of IL-17, and differentiation of Th17 cells in mammals. Three isoforms of p40 (p40a, p40b and p40c) have been found in some 3R teleosts. Salmonids also possess three p40 isoforms (p40b1, p40b2 and p40c) although p40a is missing, and two copies (paralogues) of p40b are present that have presumably been retained following the 4R duplication in this fish lineage. Teleost p19 has been discovered recently in zebrafish, but to date there is limited information on expression and modulation of this molecule. In this report we have cloned two p19 paralogues (p19a and p19b) in salmonids, suggesting that a salmonid can possess six potential IL-23 isoforms. Whilst Atlantic salmon has two active p19 genes, the rainbow trout p19b gene may have been pseudogenized. The salmonid p19 translations share moderate identities (22.8-29.9%) to zebrafish and mammalian p19 molecules, but their identity was supported by structural features, a conserved 4 exon/3 intron gene organisation, and phylogenetic tree analysis. The active salmonid p19 genes are highly expressed in blood and gonad. Bacterial (Yersinia ruckeri) and viral infection in rainbow trout induces the expression of p19a, suggesting pathogen-specific induction of IL-23 isoforms. Trout p19a expression was also induced by PAMPs (poly IC and peptidoglycan) and the proinflammatory cytokine IL-1β in primary head kidney macrophages. These data may indicate diverse functional roles of trout IL-23 isoforms in regulating the immune response in fish.

  4. Beyond Correlation in the Detection of Climate Change Impacts: Testing a Mechanistic Hypothesis for Climatic Influence on Sockeye Salmon (Oncorhynchus nerka) Productivity

    PubMed Central

    Tillotson, Michael D.; Quinn, Thomas P.

    2016-01-01

    Detecting the biological impacts of climate change is a current focus of ecological research and has important applications in conservation and resource management. Owing to a lack of suitable control systems, measuring correlations between time series of biological attributes and hypothesized environmental covariates is a common method for detecting such impacts. These correlative approaches are particularly common in studies of exploited fish species because rich biological time-series data are often available. However, the utility of species-environment relationships for identifying or predicting biological responses to climate change has been questioned because strong correlations often deteriorate as new data are collected. Specifically stating and critically evaluating the mechanistic relationship(s) linking an environmental driver to a biological response may help to address this problem. Using nearly 60 years of data on sockeye salmon from the Kvichak River, Alaska we tested a mechanistic hypothesis linking water temperatures experienced during freshwater rearing to population productivity by modeling a series of intermediate, deterministic relationships and evaluating temporal trends in biological and environmental time-series. We found that warming waters during freshwater rearing have profoundly altered patterns of growth and life history in this population complex yet there has been no significant correlation between water temperature and metrics of productivity commonly used in fisheries management. These findings demonstrate that pairing correlative approaches with careful consideration of the mechanistic links between populations and their environments can help to both avoid spurious correlations and identify biologically important, but not statistically significant relationships, and ultimately producing more robust conclusions about the biological impacts of climate change. PMID:27123845

  5. Beyond Correlation in the Detection of Climate Change Impacts: Testing a Mechanistic Hypothesis for Climatic Influence on Sockeye Salmon (Oncorhynchus nerka) Productivity.

    PubMed

    Tillotson, Michael D; Quinn, Thomas P

    2016-01-01

    Detecting the biological impacts of climate change is a current focus of ecological research and has important applications in conservation and resource management. Owing to a lack of suitable control systems, measuring correlations between time series of biological attributes and hypothesized environmental covariates is a common method for detecting such impacts. These correlative approaches are particularly common in studies of exploited fish species because rich biological time-series data are often available. However, the utility of species-environment relationships for identifying or predicting biological responses to climate change has been questioned because strong correlations often deteriorate as new data are collected. Specifically stating and critically evaluating the mechanistic relationship(s) linking an environmental driver to a biological response may help to address this problem. Using nearly 60 years of data on sockeye salmon from the Kvichak River, Alaska we tested a mechanistic hypothesis linking water temperatures experienced during freshwater rearing to population productivity by modeling a series of intermediate, deterministic relationships and evaluating temporal trends in biological and environmental time-series. We found that warming waters during freshwater rearing have profoundly altered patterns of growth and life history in this population complex yet there has been no significant correlation between water temperature and metrics of productivity commonly used in fisheries management. These findings demonstrate that pairing correlative approaches with careful consideration of the mechanistic links between populations and their environments can help to both avoid spurious correlations and identify biologically important, but not statistically significant relationships, and ultimately producing more robust conclusions about the biological impacts of climate change.

  6. Application of Diversity Indices to Quantify Early Life-History Diversity for Chinook Salmon

    SciTech Connect

    Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Teel, David

    2014-03-01

    We developed an index of early life history diversity (ELHD) for Pacific salmon (Oncorhynchus spp.) Early life history diversity is the variation in morphological and behavioral traits expressed within and among populations by individual juvenile salmon during their downstream migration. A standard quantitative method does not exist for this prominent concept in salmon biology.

  7. Salmon returns and consumer fitness: growth and energy storage in stream-dwelling salmonids increases with spawning salmon abundance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined how biomass of marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and nitrogen stable isotope ratios (d15N) of stream-dwelling fishes. We sampled coho salmon (Oncorhynchus kisutch) parr and juvenile Dolly Varden (Salvelinus malma) d...

  8. Does salmon brain produce insulin?

    PubMed

    Plisetskaya, E M; Bondareva, V M; Duan, C; Duguay, S J

    1993-07-01

    To address the question whether fish brain can produce insulin, pink salmon (Oncorhynchus gorbusha) brains were extracted and processed according to the procedure developed for purification of pancreatic insulin (Rusakov and Bondareva, 1979). Biological and immunological activity of the resulting material was evaluated respectively by a cartilage sulfation assay and by radioimmunoassay homologous for salmon insulin. Preparations from salmon brain stimulated the [35S]sulfate uptake into salmon branchial cartilage with a potency comparable to pure mammalian or salmon insulins but lower than that of mammalian insulin-like growth factor (IGF-I). In contrast, only trace amounts of radioimmunoreactive insulin could be detected by homologous radioimmunoassay. To determine whether insulin mRNA was present in salmon brain, primers specific for salmon proinsulin and salmon prepro-IGF-I were designed to amplify corresponding cDNA regions by reverse transcriptase-PCR. Insulin mRNA was found only in the endocrine pancreas (Brockmann body) while IGF-I mRNA was detected in the brain, liver, and the Brockmann body. Our results suggest that in fish pancreatic-type insulin is most likely produced only in the endocrine pancreas and then transported to the brain through blood/cerebrospinal fluid system. However, it does not exclude a possibility that some yet unknown insulin-like substances may be expressed in the neural system of ectotherm vertebrates.

  9. Etiology of sockeye salmon "virus" disease

    USGS Publications Warehouse

    1959-01-01

    Violent epizootics among hatchery reared sockeye salmon fingerLings ( Oncorhynchus nerka) caused by a filterable agent have occurred. In 1954, one source of this infectious, filterable agent was found to be adult sockeye viscera used in the diet for the fingerlings. The results of observations on an epizootic in 1958 indicate that the infection may be transmitted to fingerlings from a water supply to which adult sockeye salmon have access.

  10. Predictability of multispecies competitive interactions in three populations of Atlantic salmon Salmo salar.

    PubMed

    Houde, A L S; Wilson, C C; Neff, B D

    2015-04-01

    Juvenile Atlantic salmon Salmo salar from three allopatric populations (LaHave, Sebago and Saint-Jean) were placed into artificial streams with combinations of four non-native salmonids: brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, Chinook salmon Oncorhynchus tshawytscha and coho salmon Oncorhynchus kisutch. Non-additive effects, as evidenced by lower performance than predicted from weighted summed two-species competition trials, were detected for S. salar fork length (LF ) and mass, but not for survival, condition factor or riffle use. These data support emerging theory on niche overlap and species richness as factors that can lead to non-additive competition effects. PMID:25753912

  11. Predictability of multispecies competitive interactions in three populations of Atlantic salmon Salmo salar.

    PubMed

    Houde, A L S; Wilson, C C; Neff, B D

    2015-04-01

    Juvenile Atlantic salmon Salmo salar from three allopatric populations (LaHave, Sebago and Saint-Jean) were placed into artificial streams with combinations of four non-native salmonids: brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, Chinook salmon Oncorhynchus tshawytscha and coho salmon Oncorhynchus kisutch. Non-additive effects, as evidenced by lower performance than predicted from weighted summed two-species competition trials, were detected for S. salar fork length (LF ) and mass, but not for survival, condition factor or riffle use. These data support emerging theory on niche overlap and species richness as factors that can lead to non-additive competition effects.

  12. Interspecific habitat associations of juvenile salmonids in Lake Ontario tributaries: implications for Atlantic salmon restoration

    USGS Publications Warehouse

    Johnson, James H.; Chalupnicki, Marc A.

    2014-01-01

    Diel variation in habitat use of subyearling Chinook salmon (Oncorhynchus tshawytscha), subyearling coho salmon (O. kisutch), yearling steelhead (O. mykiss), and yearling Atlantic salmon (Salmo salar) was examined during the spring in two tributaries of Lake Ontario. A total of 1318 habitat observations were made on juvenile salmonids including 367 on steelhead, 351 on Chinook salmon, 333 on Atlantic salmon, and 261 on coho salmon. Steelhead exhibited the most diel variation in habitat use and Chinook the least. Juvenile salmonids were generally associated with more cover and larger substrate during the day in both streams. Interspecific differences in habitat use in both streams occurred with Atlantic salmon (fast velocities) and coho salmon (pools) using the least similar habitat. Chinook salmon and Atlantic salmon used similar habitat in both streams. These findings should help guide future management actions specific to habitat protection and restoration of Atlantic salmon in Lake Ontario tributaries.

  13. Aniakchak sockeye salmon investigations

    USGS Publications Warehouse

    Hamon, Troy R.; Pavey, Scott A.; Miller, Joe L.; Nielsen, Jennifer L.

    2005-01-01

    Aniakchak National Monument and Preserve provides unusual and dramatic landscapes shaped by numerous volcanic eruptions, a massive flood, enormous landslides, and ongoing geological change. The focal point of the monument is Aniakchak Caldera, a restless volcano that embodies the instability of the Alaska Peninsula. This geological instability creates a dynamic and challenging environment for the biological occupants of Aniakchak and unparalleled opportunities for scientists to measure the adaptability of organisms and ecosystems to change. The sockeye salmon (Oncorhynchus nerka) is one member of the Aniakchak ecosystem that has managed to adapt to geologic upheaval and is now thriving in the park. Aside from just surviving in the harsh environment, these salmon are also noteworthy for providing essential marinederived nutrients to plants and animals and as a source of food for historic and present day people in the region.

  14. 76 FR 72384 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Gulf of Alaska Pollock Fishery... Alaska (GOA) for Chinook salmon (Oncorhynchus tshawytscha). NMFS would close the directed pollock fishery... salmon in the Central and Western GOA pollock fisheries until an observer is provided the opportunity...

  15. Habitat Suitability Index Models: Coho salmon

    USGS Publications Warehouse

    McMahon, Thomas E.

    1983-01-01

    The coho salmon (Oncorhynchus kisutch) is native to the northern Pacific Ocean, spawning and rearing in streams from Monterey Bay, California, to Point Hope, Alaska, and southward along the Asiatic coast to Japan. Its center of abundance in North America is from Oregon to Alaska (Briggs 1953; Godfrey 1965; Hart 1973; Scott and Crossman 1973). Coho salmon have been successfully introduced into the Great Lakes and reservoirs and lakes throughout the United States to provide put-and-grow sport fishing (Scott and Crossman 1973; Wigglesworth and Rawson 1974). No subspecies of coho salmon have been described (Godfrey 1965).

  16. Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.

    2016-01-01

    Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the Salmon River during May and June prior to out-migration. Over the 4 years examined (2009–2012), annual consumption of Chinook Salmon parr by hatchery-released yearling steelhead O. mykiss and Coho Salmon O. kisutch ranged from 1.5 to 3.3 million and from 0.4 to 2.1 million, respectively. In 2009, Fallfish Semotilus corporalis were estimated to consume 2.9 million Chinook Salmon parr. Predation was higher in May, when the average TL of Chinook Salmon parr was 44.5 mm, than in June. Fallfish were also important predators of naturally reproduced steelhead subyearlings, consuming an estimated 800,000 steelhead in 2009. Hatchery-released yearling salmonids consumed 13.8–15.3% of the Chinook Salmon parr that were estimated to be present in the Salmon River during 2010–2012. Earlier releases of hatchery salmonid yearlings could reduce the riverine consumption of Chinook Salmon parr by facilitating the out-migration of yearlings prior to Chinook Salmon emergence.

  17. Sneaker Males Affect Fighter Male Body Size and Sexual Size Dimorphism in Salmon.

    PubMed

    Weir, Laura K; Kindsvater, Holly K; Young, Kyle A; Reynolds, John D

    2016-08-01

    Large male body size is typically favored by directional sexual selection through competition for mates. However, alternative male life-history phenotypes, such as "sneakers," should decrease the strength of sexual selection acting on body size of large "fighter" males. We tested this prediction with salmon species; in southern populations, where sneakers are common, fighter males should be smaller than in northern populations, where sneakers are rare, leading to geographical clines in sexual size dimorphism (SSD). Consistent with our prediction, fighter male body size and SSD (fighter male∶female size) increase with latitude in species with sneaker males (Atlantic salmon Salmo salar and masu salmon Oncorhynchus masou) but not in species without sneakers (chum salmon Oncorhynchus keta and pink salmon Oncorhynchus gorbuscha). This is the first evidence that sneaker males affect SSD across populations and species, and it suggests that alternative male mating strategies may shape the evolution of body size. PMID:27420790

  18. Sneaker Males Affect Fighter Male Body Size and Sexual Size Dimorphism in Salmon.

    PubMed

    Weir, Laura K; Kindsvater, Holly K; Young, Kyle A; Reynolds, John D

    2016-08-01

    Large male body size is typically favored by directional sexual selection through competition for mates. However, alternative male life-history phenotypes, such as "sneakers," should decrease the strength of sexual selection acting on body size of large "fighter" males. We tested this prediction with salmon species; in southern populations, where sneakers are common, fighter males should be smaller than in northern populations, where sneakers are rare, leading to geographical clines in sexual size dimorphism (SSD). Consistent with our prediction, fighter male body size and SSD (fighter male∶female size) increase with latitude in species with sneaker males (Atlantic salmon Salmo salar and masu salmon Oncorhynchus masou) but not in species without sneakers (chum salmon Oncorhynchus keta and pink salmon Oncorhynchus gorbuscha). This is the first evidence that sneaker males affect SSD across populations and species, and it suggests that alternative male mating strategies may shape the evolution of body size.

  19. [Genetic Differentiation of Sockeye Salmon Oncorhynchus nerka from Kamchatka River Basin and the Lake-River Systems of the West Coast of the Bering Sea as Inferred from Data on Single Nucleotide Polymorphism].

    PubMed

    Khrustaleva, A M; Klovach, N V; Vedischeva, E V; Seeb, J E

    2015-10-01

    The variability of 45 single nucleotide polymorphism loci (SNP) was studied in sockeye salmon from the Kamchatka River basin and four lake-river systems of the west coast of the Bering Sea. Based on the genetic differentiation estimates for the largest sockeye salmon populations of Eastern Kamchatka and Chukotka, the examined samples were combined into two regional groups represented by the population of the Kamchatka River drainage, which included numerous local subpopulations and seasonal races, and the northern population grouping from the rivers of Olutorsko-Navarinsky raion, wherein the sockeye salmon from Maynypilginskaya Lake-River system was relatively isolated. Considerable divergence was observed between the island (Sarannoe Lake, Bering Island) and continental populations. Genetic heterogeneity was revealed and groups of early- and late-maturing individuals were isolated in the sample of late-run sockeye salmon from Kamchatka River. In Apuka River, subdivision of the spawning run into two genetically distinct spatial and temporal groupings was also observed. The results suggest that the differentiation of sockeye salmon samples by single nucleotide substitution frequencies was largely due to differences in the direction and strength of local selection at some loci in the population complexes and intrapopulation groupings from the examined river basins of Eastern Kamchatka, Chukotka, and Commander Islands. PMID:27169229

  20. Vertical distribution of juvenile chum salmon, Oncorhynchus keta, in relation to a thermal discharge into Port Moody Arm, Burrard Inlet, British Columbia. Canadian technical report of fisheries and aquatic sciences Number 2235

    SciTech Connect

    Birtwell, I.K.

    1998-12-31

    This is one of a series of reports that describe results of field and laboratory studies on the effect of heated sea water on juvenile chum salmon. The studies were initiated in response to potential increases in the thermal discharge from BC Hydro`s Burrard Generating Station into the marine waters of Port Moody Arm, Burrard Inlet. The report presents results of the second of two 1997 studies, in which preference/avoidance cages in Port Moody Arm were used to examine the vertical distribution of chum salmon at a reference location and at sites 70, 250, and 1,200 metres from the heated cooling water discharge. The results were related to the ambient aquatic conditions to reveal differences or similarities in the vertical distribution of salmon with proximity to discharge location, and to identify variables that accounted for these changes.

  1. Influence of potentially lethal temperature and food on the behavior of juvenile chum salmon, Oncorhynchus keta, under simulated marine conditions. Canadian data report of fisheries and aquatic sciences Number 1040

    SciTech Connect

    Korstrom, J.S.

    1998-12-31

    This is one of a series of reports that describe results of field and laboratory studies on the effect of heated sea water on juvenile chum salmon. The studies were initiated in response to potential increases in the thermal discharge from BC Hydro`s Burrard Generating Station into the marine waters of Port Moody Arm, Burrard Inlet. The report presents results of the first of two 1997 studies, in which the behaviour of chum salmon in response to heated sea water was investigated in the laboratory using a water column simulator that mimicked conditions the fish may encounter in Port Moody Arm. The behaviour of the salmon was examined under controlled conditions during a changing thermal regime and under thermally stratified conditions. The response of the fish to food, their swimming, and school positions were quantified in relation to experimental conditions.

  2. Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.

    SciTech Connect

    Senn, Harry G.

    1984-09-01

    The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

  3. Salmon Patch

    MedlinePlus

    ... the head. Salmon patches are different from port-wine stains (discussed as a separate topic) in that ... difference between a salmon patch and a port-wine stain. In the past, port-wine stains and ...

  4. Salmon testes meal as a functional feed additive in fish meal and plant-protein based diets for rainbow trout(Oncorhynchus mykiss walbaum)and nile tilapia(Oreochromis niloticus L.) fry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report that salmon testes meal (TM) produced from Alaskan seafood processing byproducts is a potential protein source for aquafeed formulations. A series of feeding trials was conducted using three different fish species; including Nile tilapia, rainbow trout, and white sturgeon at their early gr...

  5. Cessation of a salmon decline with control of parasites.

    PubMed

    Peacock, Stephanie J; Krkosek, Martin; Proboszcz, Stan; Orr, Craig; Lewis, Mark A

    2013-04-01

    The resilience of coastal social-ecological systems may depend on adaptive responses to aquaculture disease outbreaks that can threaten wild and farm fish. A nine-year study of parasitic sea lice (Lepeophtheirus salmonis) and pink salmon (Oncorhynchus gorbuscha) from Pacific Canada indicates that adaptive changes in parasite management on salmon farms have yielded positive conservation outcomes. After four years of sea lice epizootics and wild salmon population decline, parasiticide application on salmon farms was adapted to the timing of wild salmon migrations. Winter treatment of farm fish with parasiticides, prior to the out-migration of wild juvenile salmon, has reduced epizootics of wild salmon without significantly increasing the annual number of treatments. Levels of parasites on wild juvenile salmon significantly influence the growth rate of affected salmon populations, suggesting that these changes in management have had positive outcomes for wild salmon populations. These adaptive changes have not occurred through formal adaptive management, but rather, through multi-stakeholder processes arising from a contentious scientific and public debate. Despite the apparent success of parasite control on salmon farms in the study region, there remain concerns about the long-term sustainability of this approach because of the unknown ecological effects of parasticides and the potential for parasite resistance to chemical treatments.

  6. Time-Delayed Subsidies: Interspecies Population Effects in Salmon

    PubMed Central

    Nelson, Michelle C.; Reynolds, John D.

    2014-01-01

    Cross-boundary nutrient inputs can enhance and sustain populations of organisms in nutrient-poor recipient ecosystems. For example, Pacific salmon (Oncorhynchus spp.) can deliver large amounts of marine-derived nutrients to freshwater ecosystems through their eggs, excretion, or carcasses. This has led to the question of whether nutrients from one generation of salmon can benefit juvenile salmon from subsequent generations. In a study of 12 streams on the central coast of British Columbia, we found that the abundance of juvenile coho salmon was most closely correlated with the abundance of adult pink salmon from previous years. There was a secondary role for adult chum salmon and watershed size, followed by other physical characteristics of streams. Most of the coho sampled emerged in the spring, and had little to no direct contact with spawning salmon nutrients at the time of sampling in the summer and fall. A combination of techniques suggest that subsidies from spawning salmon can have a strong, positive, time-delayed influence on the productivity of salmon-bearing streams through indirect effects from previous spawning events. This is the first study on the impacts of nutrients from naturally-occurring spawning salmon on juvenile population abundance of other salmon species. PMID:24911974

  7. Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; Elliott, Robert F.; Schmidt, Larry J.; DeSorcie, Timothy J.; Hesselberg, Robert J.; Quintal, Richard T.; Begnoche, Linda J.; Bouchard, Patrick M.; Holey, Mark E.

    1998-01-01

    Most of the polychlorinated biphenyl (PCB) body burden accumulated by coho salmon (Oncorhynchus kisutch) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both coho salmon and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan coho salmon retain PCBs from their food. Our estimate was the most reliable estimate to date because (a) the coho salmon and prey fish sampled during our study were sampled in spring, summer, and fall from various locations throughout the lake, (b) detailed measurements were made on the PCB concentrations of both coho salmon and prey fish over wide ranges in fish size, and (c) coho salmon diet was analyzed in detail from April through November over a wide range of salmon size from numerous locations throughout the lake. We estimated that coho salmon from Lake Michigan retain 50% of the PCBs that are contained within their food.

  8. Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey

    SciTech Connect

    Madenjian, C.P.; Schmidt, L.J.; Desorcie, T.J.; Hesselberg, R.J.; Quintal, R.T.; Begnoche, L.J.; Elliott, R.F.; Bouchard, P.M.; Holey, M.E.

    1998-10-15

    Most of the polychlorinated biphenyl (PCB) body burden accumulated by coho salmon (Oncorhynchus kisutch) from the Laurentian Great Lakes is from their food. The authors used diet information, PCB determinations in both coho salmon and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan coho salmon retain PCBs from their food. The estimate was the most reliable estimate to date because (a) the coho salmon and prey fish sampled during the study were sampled in spring, summer, and fall from various locations throughout the lake, (b) detailed measurements were made on the PCB concentrations of both coho salmon and prey fish over wide ranges in fish size, and (c) coho salmon diet was analyzed in detail from April through November over a wide range of salmon size from numerous locations throughout the lake. The authors estimated that coho salmon from Lake Michigan retain 50%$ of the PCBs that are contained within their food.

  9. White-spot disease of salmon fry

    USGS Publications Warehouse

    Mazuranich, J.J.; Nielson, W.E.

    1959-01-01

     White-spot disease, sometimes referred to as coagulated-yolk disease, has been associated with excessive mortalities occurring among the fry and early fingerling stages of the fall chinook salmon (Oncorhynchus tshawytacha) at the U.S. Fish-Cultural Stations at Carson, Cook, Underwood, and Willard, Washington. This disease of eggs and fry should not be confused with the "white-spot" infection that is caused in fingerlings by members of the protozoan genus Ichthyophthirius.

  10. History of salmon in the Great Lakes, 1850-1970

    USGS Publications Warehouse

    Parsons, John W.

    1973-01-01

    This history of the salmon in the Great Lakes describes the decline and extinction of the Atlantic salmon (Salmo salar) in Lake Ontario in the 1800's; the failure to establish, by salmon culture, permanent or sizable populations of Atlantic or Pacific salmon in any of the Great Lakes in 1867-1965; and the success of the plantings of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytsha) in the Great Lakes, in 1966-70 -- particularly in Lake Michigan. Despite plantings of 5 million fry and fingerlings from Lake Ontario stocks in 1866-84, the native Atlantic salmon in Lake Ontario became extinct in the late 1800's primarily because tributaries in which they spawned were blocked by mill dams. Plantings of 13 million chinook salmon and landlocked and anadromous forms of Atlantic salmon in Lake Ontario and the other Great Lakes in 1873-1947 failed completely. The first species to develop a self-sustaining population was the pink salmon (O. gorbuscha), which was planted in Lake Superior in 1956; however, it has not become abundant. A salmon fishery finally was established when 15 million coho salmon and 6 million chinook salmon were planted as smolt in the Great Lakes in 1966-70. In 1970, for example, 576,000 coho salmon (12% of those planted in 1969) were caught by anglers in Lake Michigan. Most weighed 5 to 10 pounds (2.3-4.5 kg). Sport fishing for salmon was fair in Lakes Superior and Huron, and poor in Lakes Erie and Ontario. By 1970, natural reproduction of coho, chinook, pink, and kokanee (O. nerka) salmon had occurred in some tributaries of one or more of the upper three Great Lakes. It is expected, however, that the sport fishery will continue to be supported almost entirely by planted fish.

  11. Chlorinated hydrocarbons in the young of Lake Michigan coho salmon

    USGS Publications Warehouse

    Willford, W.A.; Sills, J.B.; Whealdon, E.W.

    1969-01-01

    Three thousand eyed coho salmon (Oncorhynchus kisutch) eggs from Lake Michigan stock were sent by the Department of Natural Resources to the Fish Control Laboratory, La Crosse, Wis., on January 15, 1969, for use in evaluating candidate fish-cnotrol chemicals.

  12. Predation by fallfish (Semotilus corporalis) on Pacific salmon eggs in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, J.H.; Nack, C.C.; Chalupnicki, M.A.

    2009-01-01

    Fallfish (Semotilus corporalis) are the largest native cyprinid in the northeastern United States and are the most abundant native species in the Salmon River, New York. The Salmon River is a high-quality spawning and nursery river for Pacific salmon (Oncorhynchus spp.) migrating from Lake Ontario. Because of the large number of Pacific salmon spawning in the river in the fall extensive redd superimposition occurs resulting in salmonid eggs being available on the substrate. We examined the fall diet of 647 fallfish in 2007 and 2008 to determine the extent of predation on Pacific salmon eggs. The contribution of eggs in the diet significantly increased once fallfish attained a size of 100 mm total length. The largest size category of fallfish examined (≥150 mm) had the highest proportion (86.1%) of salmon eggs in their diet. The contribution of Zooplankton and chironomids in the diet of fallfish decreased with fish size. Except for the two largest groups of fallfish examined (i.e., 100–149 mm and ≥150 mm) diet overlap among size groups was low. The high contribution in the diet during the fall and high caloric value of Pacific salmon eggs could increase growth and survival of this species in the Salmon River.

  13. A virus disease of sockeye salmon: Interim report

    USGS Publications Warehouse

    Watson, S.W.; Guenther, R.W.; Rucker, R.R.

    1954-01-01

    Since 1951 a disease, usually occurring in late spring or early summer, has caused severe losses in 3- to 12-month-old fingerling sockeye salmon in hatcheries in the State of Washington. The disease is characterized by an explosive outbreak, mortality usually 80 percent or greater, and a residual spinal deformity in a small percentage of the surviving fish, and its specificity for the one species of salmon, Oncorhynchus nerka. (The anadromous strain of this species is commonly known as sockeye, blueback, or red salmon, while the fresh-water strain is called kokanee or silver trout.) The etiological agent is believed to be a virus.

  14. Evaluations of alternative methods for monitoring and estimating responses of salmon productivity in the North Pacific to future climatic change and other processes: A simulation study

    EPA Science Inventory

    Estimation of the relative influence of climate change, compared to other human activities, on dynamics of Pacific salmon (Oncorhynchus spp.) populations can help management agencies take appropriate management actions. We used empirically based simulation modelling of 48 sockeye...

  15. Homing in Pacific salmon: mechanisms and ecological basis

    PubMed

    Dittman; Quinn

    1996-01-01

    Pacific salmon (Oncorhynchus spp.) are famous for their homing migrations from oceanic feeding grounds to their natal river to spawn. During these migrations, salmon travel through diverse habitats (e.g. oceans, lakes, rivers), each offering distinct orientation clues and, perhaps, requiring distinct sensory capabilities for navigation. Despite these challenges, homing is generally precise and this philopatry has resulted in reproductively isolated spawning populations with specialized adaptations for their natal habitat. This paper reviews the mechanisms underlying all aspects of salmon homing but emphasizes the final, freshwater phase governed by olfactory recognition of homestream water. Prior to their seaward migration, juvenile salmon learn (imprint on) odors associated with their natal site and later, as adults, use these odor memories for homing. Our understanding of this imprinting process is derived primarily from studies using artificial odorants and hatchery-reared salmon. Recent findings suggest, however, that such studies may underestimate the complexity of the imprinting process in nature.

  16. Observational data on the effects of infection by the copepod Salmincola californiensis on the short- and long-term viability of juvenile Chinook salmon (Oncorhynchus tshawytscha) implanted with telemetry tags

    USGS Publications Warehouse

    Beeman, John W.; Hansen, Amy C.; Sprando, Jamie M.

    2015-01-01

    Infection with Salmincola californiensis is common in juvenile Chinook salmon in western USA reservoirs and may affect the viability of fish used in studies of telemetered animals. Our limited assessment suggests infection by Salmincola californiensis affects the short-term morality of tagged fish and may affect long-term viability of tagged fish after release; however, the intensity of infection in the sample population did not represent the source population due to the observational nature of the data. We suggest these results warrant further study into the effects of infection bySalmincola californiensis on the results obtained through active telemetry and perhaps other methods requiring handling of infected fish.

  17. Using image analysis to predict the weight of Alaskan salmon of different species.

    PubMed

    Balaban, Murat O; Unal Sengör, Gülgün F; Gil Soriano, Mario; Guillén Ruiz, Elena

    2010-04-01

    After harvesting, salmon is sorted by species, size, and quality. This is generally manually done by operators. Automation would bring repeatability, objectivity, and record-keeping capabilities to these tasks. Machine vision (MV) and image analysis have been used in sorting many agricultural products. Four salmon species were tested: pink (Oncorhynchus gorbuscha), red (Oncorhynchus nerka), silver (Oncorhynchus kisutch), and chum (Oncorhynchus keta). A total of 60 whole fish from each species were first weighed, then placed in a light box to take their picture. Weight compared with view area as well as length and width correlations were developed. In addition the effect of "hump" development (see text) of pink salmon on this correlation was investigated. It was possible to predict the weight of a salmon by view area, regardless of species, and regardless of the development of a hump for pinks. Within pink salmon there was a small but insignificant difference between predictive equations for the weight of "regular" fish and "humpy" fish. Machine vision can accurately predict the weight of whole salmon for sorting.

  18. Development and validation of a quantitative PCR to detect Parvicapsula minibicornis and comparison to histologically ranked infection of juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), from the Klamath River, USA

    USGS Publications Warehouse

    True, K.; Purcell, M.K.; Foott, J.S.

    2009-01-01

    Parvicapsula minibicornis is a myxosporean parasite that is associated with disease in Pacific salmon during their freshwater life history phase. This study reports the development of a quantitative (real-time) polymerase chain reaction (QPCR) to detect P. minibicornis DNA. The QPCR assay targets the 18S ribosomal subunit gene. A plasmid DNA control was developed to calibrate cycle threshold (CT) score to plasmid molecular equivalent (PME) units, a measure of gene copy number. Assay validation revealed that the QPCR was sensitive and able to detect 50 ag of plasmid DNA, which was equivalent to 12.5 PME. The QPCR assay could detect single P. minibicornis actinospores well above assay sensitivity, indicating a single spore contains at least 100 times the 18S DNA copies required for detection. The QPCR assay was repeatable and highly specific; no detectable amplification was observed using DNA from related myxozoan parasites. The method was validated using kidney tissues from 218 juvenile Chinook salmon sampled during the emigration period of March to July 2005 from the Klamath River. The QPCR assay was compared with histological examination. The QPCR assay detected P. minibicornis infection in 88.1% of the fish sampled, while histological examination detected infection in 71.1% of the fish sampled. Good concordance was found between the methods as 80% of the samples were in agreement. The majority of the disconcordant fish were positive by QPCR, with low levels of P. minibicornis DNA, but negative by histology. The majority of the fish rated histologically as having subclinical or clinical infections had high QPCR levels. The results of this study demonstrate that QPCR is a sensitive quantitative tool for evaluating P. minibicornis infection in fish health monitoring studies. ?? 2008 Blackwell Publishing Ltd.

  19. Comparative diets of subyearling Atlantic salmon and subyearling coho salmon in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.; Ringler, Neil H.

    2016-01-01

    Restoration of Atlantic salmon (Salmo salar) in Lake Ontario could potentially be negatively affected by the presence of non-native salmonids that are naturalized in the basin. Coho salmon (Oncorhynchus kisutch) have been spawning successfully in Lake Ontario tributaries for over 40 years and their juveniles will reside in streams with juvenile Atlantic salmon for one year. This study sought to examine interspecific diet associations between these species, and to compare diets to the composition of the benthos and drift in three Lake Ontario tributaries. Aquatic insects, mainly ephemeropterans and chironomids were the major prey consumed by subyearling Atlantic salmon whereas terrestrial invertebrates made up only 3.7% of the diet. Ephemeropterans and chironomids were the primary aquatic taxa consumed by subyearling coho salmon but, as a group, terrestrial invertebrates (41.8%) were the major prey. In sympatry, Atlantic salmon fed more actively from the benthos whereas the diet of coho salmon was more similar to the drift. The different feeding pattern of each species resulted in low interspecific diet similarity. There is likely little competition between these species for food in Lake Ontario tributaries as juveniles.

  20. Early human use of anadromous salmon in North America at 11,500 y ago.

    PubMed

    Halffman, Carrin M; Potter, Ben A; McKinney, Holly J; Finney, Bruce P; Rodrigues, Antonia T; Yang, Dongya Y; Kemp, Brian M

    2015-10-01

    Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America. PMID:26392548

  1. Early human use of anadromous salmon in North America at 11,500 y ago.

    PubMed

    Halffman, Carrin M; Potter, Ben A; McKinney, Holly J; Finney, Bruce P; Rodrigues, Antonia T; Yang, Dongya Y; Kemp, Brian M

    2015-10-01

    Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America.

  2. Early human use of anadromous salmon in North America at 11,500 y ago

    PubMed Central

    Halffman, Carrin M.; Potter, Ben A.; McKinney, Holly J.; Finney, Bruce P.; Rodrigues, Antonia T.; Yang, Dongya Y.; Kemp, Brian M.

    2015-01-01

    Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America. PMID:26392548

  3. Physicochemical characteristics of the hyporheic zone affect redd site selection of chum salmon and fall chinook salmon in the Columbia River

    SciTech Connect

    Geist, David R. ); Hanrahan, Timothy P. ); Arntzen, Evan V. ); McMichael, Geoffrey A. ); Murray, Christopher J. ); Chien, Yi-Ju )

    2002-11-01

    Chum salmon Oncorhynchus keta and fall chinook salmon O. tshawytscha spawned at different locations in the vicinity of Ives Island, Washington, a side channel to the Columbia River downstream of Bonneville Dam. We hypothesized that measurements of water depth, substrate size, and water velocity alone would not explain the separation in spawning areas and began a 2-year investigation of physicochemical characteristics of the hyporheic zone. We found that chum salmon spawned in upwelling water that was significantly warmer than the surrounding river water. In contrast, fall chinook salmon constructed redds at downwelling sites where there was no difference in temperature between the river and its bed. Understanding the specific features that are important for chum salmon and fall chinook salmon redd site selection at Ives Island will be useful to resource managers attempting to maximize available spawning habitat for these species within the constraints imposed by other water resource needs.

  4. Estuarine Ecology of Juvenile Salmon in Western Alaska: a Review

    USGS Publications Warehouse

    Zimmerman, Christian E.; Hillgruber, Nicola

    2009-01-01

    In the late 1990s and early 2000s, large declines in numbers of chum salmon Oncorhynchus keta and Chinook salmon O. tshawytscha returning to the Arctic-YukonKuskokwim (AYK) region (Alaska, USA) illuminated the need for an improved understanding of the variables controlling salmon abundance at all life stages. In addressing questions about salmon abundance, large gaps in our knowledge of basic salmon life history and the critical early marine life stage were revealed. In this paper, results from studies conducted on the estuarine ecology of juvenile salmon in western Alaska are summarized and compared, emphasizing timing and distribution during outmigration, environmental conditions, age and growth, feeding, and energy content of salmon smolts. In western Alaska, water temperature dramatically changes with season, ranging from 0°C after ice melt in late spring/early summer to 19°C in July. Juvenile salmon were found in AYK estuaries from early May until August or September, but to date no information is available on their residence duration or survival probability. Chum salmon were the most abundant juvenile salmon reported, ranging in percent catch from <0.1% to 4.7% and most research effort has focused on this species. Abundances of Chinook salmon, sockeye salmon O. nerka, and pink salmon O. gorbuscha varied among estuaries, while coho salmon O. kisutch juveniles were consistently rare, never amounting to more than 0.8% of the catch. Dietary composition of juvenile salmon was highly variable and a shift was commonly reported from epibenthic and neustonic prey in lower salinity water to pelagic prey in higher salinity water. Gaps in the knowledge of AYK salmon estuarine ecology are still evident. For example, data on outmigration patterns and residence timing and duration, rearing conditions and their effect on diet, growth, and survival are often completely lacking or available only for few selected years and sites. Filling gaps in knowledge concerning salmon

  5. Spring Outmigration of Wild and Hatchery Chinook Salmon and Steelhead Trout Smolts from the Imnaha River; 1994 Annual Report.

    SciTech Connect

    Ashe, Becky L.; Miller, Alan C.; Kucera, Paul A.

    1995-01-01

    In 1994, the Nez Perce Tribe began a smolt monitoring study on the Imnaha River in cooperation with the Fish Passage Center (FPC). A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from March 1 to June 15, 1994. We PIT tagged and released 956 wild chinook salmon, 661 hatchery chinook salmon, 1,432 wild steelhead trout and 2,029 hatchery steelhead trout. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 62.2% for wild chinook salmon, 45.2% for hatchery chinook salmon, 51.3% for wild steelhead trout, and 34.3% for hatchery steelhead trout.

  6. Dietary calcein marking of brook trout, Atlantic salmon, yellow perch, and coho salmon scales

    USGS Publications Warehouse

    Honeyfield, D.C.; Ostrowski, C.S.; Fletcher, J.W.; Mohler, J.W.

    2006-01-01

    Brook trout Salvelinus fontinalis, Atlantic salmon Salmo salar, coho salmon Oncorhynchus kisutch, and yellow perch Perca flavescens fed calcein for 5 d showed characteristic calcein scale marks 7-10 d postmarking. In fish fed 0.75 or 1.25 g of calcein per kilogram of feed, the percentage of fish that exhibited a calcein mark was 100% in brook trout, 93-98% in Atlantic salmon, 60% in yellow perch, and 0% in coho salmon. However, when coho salmon were fed 5.25 g calcein/kg feed, 100% marking was observed 7-10 d postmarking. Brook trout were successfully marked twice with distinct bands when fed calcein 5 months apart. Brook trout scale pixel luminosity increased as dietary calcein increased in experiment 2. For the second calcein mark, scale pixel luminosity from brook trout fed 1.25 g calcein/kg feed was numerically higher (P < 0.08) than scales from fish fed 0.75 g calcein/kg feed. Mean pixel luminosity of calcein-marked Atlantic salmon scales was 57.7 for fish fed 0.75 g calcein/kg feed and 55.2 for fish fed 1.25 g calcein/kg feed. Although feed acceptance presented a problem in yellow perch, these experiments provide evidence that dietary calcein is a viable tool for marking fish for stock identification. ?? Copyright by the American Fisheries Society 2006.

  7. Genetic Analysis of Oncorhynchus Nerka : 1991 Annual Progress Report.

    SciTech Connect

    Brannon, E.L.; Setter, A.L.; Welsh, T.L.; Rocklage, S.J.

    1992-01-01

    The 1990 project to develop DNA assessment techniques for the purpose of determining relationships among populations of Oncorhynchus nerka demonstrated differences that had potential for such application. The work was continued in 1991 with specific application of the techniques to develop DNA probes that could be used in separating populations of 0. nerka associated with the lakes in the upper Salmon River, principally those in Redfish Lake. Research included sockeye-kokanee life history studies that might add supporting evidence for assessing the degree of difference or similarity among populations in the lake systems. This report summarizes the annual activities under the work plan.

  8. Costs of climate change: Economic value of Yakima River salmon

    SciTech Connect

    Anderson, D.M.; Shankle, S.A.; Scott, M.J.; Neitzel, D.A.; Chatters, J.C.

    1992-07-01

    This work resulted from a continuing multidisciplinary analysis of species preservation and global change. The paper explores the economic cost of a potential regional warming as it affects one Pacific Northwest natural resource, the spring chinook salmon (Oncorhynchus tshcawytscha). Climate change and planned habitat improvements impact the production and economic value of soling chinook salmon of the Yakima River tributary of the Columbia River in eastern Washington. The paper presents a derivation of the total economic value of a chinook salmon, which includes the summation of the existence, commercial, recreational, and capital values of the fish. When currently available commercial, recreational, existence, and capital values for chinook salmon were applied to estimated population changes, the estimated change in the economic value per fish associated with reduction of one fish run proved significant.

  9. Effects of Marine Mammals on Columbia River Salmon Listed under the Endangered Species Act : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 3 of 11.

    SciTech Connect

    Park, Donn L.

    1993-06-01

    Most research on the Columbia and Snake Rivers in recent years has been directed to downstream migrant salmon (Oncorhynchus spp.) losses at dams. Comparatively little attentions has been given to adult losses. Recently an estimated 378,4000 adult salmon and steelhead (O. mykiss) were unaccounted-for from Bonneville Dam to terminal areas upstream. It is now apparent that some of this loss was due to delayed mortality from wounded by marine mammals. This report reviews the recent literature to define predatory effects of marine mammals on Columbia River salmon.

  10. Chinook salmon foraging patterns in a changing Lake Michigan

    USGS Publications Warehouse

    Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Claramunt, Randall M.

    2013-01-01

    Since Pacific salmon stocking began in Lake Michigan, managers have attempted to maintain salmon abundance at high levels within what can be sustained by available prey fishes, primarily Alewife Alosa pseudoharengus. Chinook Salmon Oncorhynchus tshawytscha are the primary apex predators in pelagic Lake Michigan and patterns in their prey selection (by species and size) may strongly influence pelagic prey fish communities in any given year. In 1994–1996, there were larger Alewives, relatively more abundant alternative prey species, fewer Chinook Salmon, and fewer invasive species in Lake Michigan than in 2009–2010. The years 2009–2010 were instead characterized by smaller, leaner Alewives, fewer alternative prey species, higher abundance of Chinook Salmon, a firmly established nonnative benthic community, and reduced abundance of Diporeia, an important food of Lake Michigan prey fish. We characterized Chinook Salmon diets, prey species selectivity, and prey size selectivity between 1994–1996 and 2009–2010 time periods. In 1994–1996, Alewife as prey represented a smaller percentage of Chinook Salmon diets than in 2009–2010, when alewife comprised over 90% of Chinook Salmon diets, possibly due to declines in alternative prey fish populations. The size of Alewives eaten by Chinook Salmon also decreased between these two time periods. For the largest Chinook Salmon in 2009–2010, the average size of Alewife prey was nearly 50 mm total length shorter than in 1994–1996. We suggest that changes in the Lake Michigan food web, such as the decline in Diporeia, may have contributed to the relatively low abundance of large Alewives during the late 2000s by heightening the effect of predation from top predators like Chinook Salmon, which have retained a preference for Alewife and now forage with greater frequency on smaller Alewives.

  11. Foraging and growth potential of juvenile Chinook Salmon after tidal restoration of a large river delta

    USGS Publications Warehouse

    David, Aaron T.; Ellings, Christopher; Woo, Isa; Simenstad, Charles A.; Takekawa, John Y.; Turner, Kelley L.; Smith, Ashley L.; Takekawa, Jean E.

    2014-01-01

    We evaluated whether restoring tidal flow to previously diked estuarine wetlands also restores foraging and growth opportunities for juvenile Chinook Salmon Oncorhynchus tshawytscha. Several studies have assessed the value of restored tidal wetlands for juvenile Pacific salmon Oncorhynchus spp., but few have used integrative measures of salmon performance, such as habitat-specific growth potential, to evaluate restoration. Our study took place in the Nisqually River delta, Washington, where recent dike removals restored tidal flow to 364 ha of marsh—the largest tidal marsh restoration project in the northwestern contiguous United States. We sampled fish assemblages, water temperatures, and juvenile Chinook Salmon diet composition and consumption rates in two restored and two reference tidal channels during a 3-year period after restoration; these data were used as inputs to a bioenergetics model to compare Chinook Salmon foraging performance and growth potential between the restored and reference channels. We found that foraging performance and growth potential of juvenile Chinook Salmon were similar between restored and reference tidal channels. However, Chinook Salmon densities were significantly lower in the restored channels than in the reference channels, and growth potential was more variable in the restored channels due to their more variable and warmer (2°C) water temperatures. These results indicate that some—but not all—ecosystem attributes that are important for juvenile Pacific salmon can recover rapidly after large-scale tidal marsh restoration.

  12. Salmon's Laws.

    ERIC Educational Resources Information Center

    Shannon, Thomas A.

    1994-01-01

    Presents Paul Salmon's old-fashioned, common-sense guidelines for success in practical school administration. The maxims advise on problem ownership; the value of selective neglect; the importance of empowerment, enthusiasm, and effective communication; and the need for positive reinforcement, cultivation of support, and good relations with media,…

  13. Titre distribution patterns of infectious haematopoietic necrosis virus in ovarian fluids of hatchery and feral salmon populations

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.; Jenes, C.K.

    1983-01-01

    Infectious haematopoietic mecrosis virus (IHNV) is enzootic in virtually all populations of sockeye salmon, Oncorhynchus nerka (Walbaum), and in populations of chinook salmon, O. 1shawytscha (Walbaum), of the Sacramento River drainage in California. This disease is an obstacle in hatcheries using brood stocks from these populations. However, naturally spawning sockeye salmon are highly successful and are the most important commercially fished salmon species in the United States. Most of the commercial landings of sockeye salmon are of feral fish originating in Alaska. The success of natural populations of salmon in which IHNV is enzootic, and the recurrent outbreaks of the disease in hatchery fish, led us to compare IHNW prevalence rates in hatchery and feral salmon populations.

  14. Response of ecosystem metabolism to low densities of spawning Chinook salmon

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, James R.; Watson, Grace A.

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to <10% of their historical abundance, with subsequent declines of marine derived nutrients once provided by large salmon runs. We explored whether low densities (<0.001 spawners/m2) of naturally spawning Chinook Salmon (Oncorhynchus tshawytscha) can affect ecosystem metabolism. We measured gross primary production (GPP) and ecosystem respiration (ER) continuously before, during, and after salmon spawning. We compared downstream reaches with low densities of spawning salmon to upstream reaches with fewer or no spawners in 3 mid-sized (4th-order) rivers in northern Washington. In addition, we measured chemical, physical, and biological factors that may be important in controlling rates of GPP and ER. We observed that low densities of spawning salmon can increase GPP by 46% during spawning, but values quickly return to those observed before spawning. No difference in ER was observed between up- and downstream reaches. Based on our results, salmon density, temperature, and the proximity to salmon redds were the most important factors controlling rates of GPP, whereas temperature was most important for ER. These results suggest that even at low spawning densities, salmon can stimulate basal resources that may propagate up the food web. Understanding how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.

  15. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    SciTech Connect

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  16. Lake Roosevelt Fisheries Monitoring Program; Artificial Imprinting of Lake Roosevelt Kokanee Salmon (Oncorhynchus Nerka) with Synthetic Chemicals: Measurement of Thyroxine Content as an Indicator of the Sensitive Period for Imprinting to Olfactory Cues; 1992 Supplement Report.

    SciTech Connect

    Scholz, Allan T.; White, Ronald J.; Tilson, Mary Beth

    1993-09-01

    In 1991, we initiated studies to determine the critical period for thyroxine-induced olfactory imprinting in kokanee salmon. In our preliminary investigation we found that thyroxine [T{sub 4}] levels of Lake Whatcom stock, 1990 year class, kokanee were relatively high in eggs and alevins as compared to post-swimup fry, and peaked at hatch and swimup. Here we report on follow-up studies conducted in 1992 designed to determine if our initial results could be replicated. Additionally, in 1992, we initiated experiments to determine if kokanee could be imprinted to synthetic chemicals--morpholine and phenethyl alcohol--at different life stages. In 1991, whole body thyroxine content [T{sub 4}] was measured in 460 Lake Whatcom stock kokanee and 480 Lake Pend Orielle (Cabinet Gorge) stock kokanee to indicate the critical period for imprinting. Lots of 20 kokanee eggs, alevins and fry from both stocks, reared at the Spokane Tribal hatchery, were collected at weekly intervals from November 1991 to August 1992 and assayed for T{sub 4} content by radioimmunoassay. T{sub 4} levels were monitored in Lake Whatcom stock, 1991 year class fish, from eyed egg (33 days post-fertilization) to fry (248 days post-fertilization) stages. T{sub 4} concentration ({+-} SEM) in eggs was 6.7 {+-} 1.3 rig/g body weight. T{sub 4} peaked on the day of hatch at 13.1 {+-} 2.5 ng/g body weight, then declined to 10.3 {+-} 1.1 ng/g body weight in recently post-hatch alevins. T{sub 4} peaked again at 22.1 {+-} 5.2 ng/g body weight during swimup, then steadily decreased to about 1.0 ng/g body weight in 176-248 day old fry. T{sub 4} levels were monitored in Lake Pend Orielle stock, 1991 year class, fish from the day of fertilization (day 0) to 225 days post-fertilization. T{sub 4} content of eggs was 9.5 {+-} 1.7 ng/g body weight and peaked on the day of hatch (day 53 post-fertilization) at 24.2 {+-} 4.5 ng/g body weight. After declining to 13.0 {+-} 2.9 ng/g body weight on day 81 post-fertilization, T

  17. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  18. Exxon Valdez oil spill: State/federal natural resource damage assessment final report. Effects of pink salmon (oncorhynchus gorbuscha) escapement level on egg retention, preemergent fry, and adult returns to the kodiak and chignik management areas caused by the Exxon Valdez oil spill. Fish/shellfish study numbers 7b and 8b. Final report

    SciTech Connect

    1993-12-01

    As a result of the 1989 Exxon Valdez oil spill, commercial salmon fishing in and around the Kodiak and Chignik areas was severely restricted throughout the 1989 season. Consequently, pink salmon escapements for these areas greatly exceeded targeted escapement objectives. Investigations were conducted within the Kodiak and Chignik Management Areas during 1989 and 1990 to determine if negative impacts on future odd-year brood line pink salmon production occurred as a result of overescapement in 1989.

  19. Clock polymorphism in Pacific salmon: evidence for variable selection along a latitudinal gradient.

    PubMed

    O'Malley, Kathleen G; Ford, Michael J; Hard, Jeffrey J

    2010-12-22

    Seasonal timing of life-history events is often under strong natural selection. The Clock gene is a central component of an endogenous circadian clock that senses changes in photoperiod (day length) and mediates seasonal behaviours. Among Pacific salmonids (Oncorhynchus spp.), seasonal timing of migration and breeding is influenced by photoperiod. To expand a study of 42 North American Chinook salmon (Oncorhynchus tshawytscha) populations, we tested whether duplicated Clock genes contribute to population differences in reproductive timing. Specifically, we examined geographical variation along a similar latitudinal gradient in the polyglutamine domain (PolyQ) of OtsClock1a and OtsClock1b among 53 populations of three species: chum (Oncorhynchus keta), coho (Oncorhynchus kisutch) and pink salmon (Oncorhynchus gorbuscha). We found evidence for variable selection on OtsClock1b that corresponds to latitudinal variation in reproductive timing among these species. We evaluated the contribution of day length and a freshwater migration index to OtsClock1b PolyQ domain variation using regression trees and found that day length at spawning explains much of the variation in OtsClock1b allele frequency among chum and Chinook, but not coho and pink salmon populations. Our findings suggest that OtsClock1b mediates seasonal adaptation and influences geographical variation in reproductive timing in some of these highly migratory species.

  20. VARIATION IN JUVENILE COHO SALMON SUMMER ABUNDANCE: HIERARCHICAL ANALYSIS OF HABITAT EFFECTS

    EPA Science Inventory

    Varying habitat conditions found across a stream network during the summer months may limit the abundance of salmonids such as coho (Oncorhynchus kisutch). We examined the abundance of juvenile coho salmon across a stream network in an Oregon coast range basin from 2002 through ...

  1. Modeling stream network-scale variation in coho salmon overwinter survival and smolt size

    EPA Science Inventory

    We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over ...

  2. INFLUENCE OF SUMMER TEMPERATURE SPATIAL VARIABILITY ON DISTRIBUTION AND CONDITION OF JUVENILE COHO SALMON

    EPA Science Inventory

    abstract

    Temperature during the summer months can influence the distribution, abundance and physiology of stream salmonids such as coho salmon (Oncorhynchus kisutch). Effects can be direct, via physiological responses, as well as indirect, via limited food resources, alter...

  3. OVER-WINTER JUVENILE COHO SALMON GROWTH AND SURVIVAL IN A COASTAL OREGON STREAM NETWORK

    EPA Science Inventory

    Winter habitat has the potential to be a limiting factor for the production and condition of coho salmon (Oncorhynchus kisutch) smolts, but little is known about how the variation of habitat throughout whole stream networks influences coho smolts. Over a four year period (2002 - ...

  4. Safe pre-release disease treatment with formalin for fall chinook salmon smolts

    USGS Publications Warehouse

    Smith, S.D.; Gould, R.W.; Zaugg, W.S.; Harrell, L.W.; Mahnken, C.V.W.

    1987-01-01

    Standard formalin treatment (167 μL/L for 1 h) applied to presmolts and smolts of fall chinook salmon (Oncorhynchus tshawytscha) 80, 62, 52, 38, 24, and 10 d prior to seawater exposure did not affect freshwater growth or survival during a 20-d period in seawater. There was no consistent effect of treatment on gill Na+, K+ -ATPase activity.

  5. Susceptibility of progeny from crosses among three stocks of coho salmon to infection by Ceratomyxa shasta

    USGS Publications Warehouse

    Hemmingsen, A.R.; McIntyre, J.D.; Fryer, J.L.

    1986-01-01

    Crossbred coho salmon Oncorhynchus kisutch were produced from all possible crosses among three stocks. The relative susceptibility of the progeny to infection by the myxosporean parasite Ceratomyxa shasta was determined by exposure of juvenile fish to Willamette River water that contained the infective stage of the parasite. Susceptibility of coho salmon native to the Columbia River basin to the disease ceratomyxosis was relatively low whereas that of coho salmon from remote locations was relatively high. Susceptibility of crossbred progeny nearly always was intermediate between the susceptibilities of fish from the parental stocks.

  6. Recovery and management options for spring/summer chinook salmon in the Columbia River basin.

    PubMed

    Kareiva, P; Marvier, M; McClure, M

    2000-11-01

    Construction of four dams on the lower Snake River (in northwestern United States) between 1961 and 1975 altered salmon spawning habitat, elevated smolt and adult migration mortality, and contributed to severe declines of Snake River salmon populations. By applying a matrix model to long-term population data, we found that (i) dam passage improvements have dramatically mitigated direct mortality associated with dams; (ii) even if main stem survival were elevated to 100%, Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) would probably continue to decline toward extinction; and (iii) modest reductions in first-year mortality or estuarine mortality would reverse current population declines. PMID:11062128

  7. Recovery and management options for spring/summer chinook salmon in the Columbia River basin.

    PubMed

    Kareiva, P; Marvier, M; McClure, M

    2000-11-01

    Construction of four dams on the lower Snake River (in northwestern United States) between 1961 and 1975 altered salmon spawning habitat, elevated smolt and adult migration mortality, and contributed to severe declines of Snake River salmon populations. By applying a matrix model to long-term population data, we found that (i) dam passage improvements have dramatically mitigated direct mortality associated with dams; (ii) even if main stem survival were elevated to 100%, Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) would probably continue to decline toward extinction; and (iii) modest reductions in first-year mortality or estuarine mortality would reverse current population declines.

  8. Smolt Monitoring Program, Part II, Volume II, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1985 Annual Report.

    SciTech Connect

    Fish Passage Center

    1986-02-01

    Volume I of this report describes the results of travel time monitoring and other migrational characteristics of yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri). This volume presents the freeze brand data used in the analysis of travel time for Lower Granite, Rock Island, McNary, and John Day dams. Brand recoveries for Lower Monumental dam also are presented. Summary of data collection procedures and explanation of data listings are presented in conjunction with the mark recapture data.

  9. Echo characteristics of two salmon species

    NASA Astrophysics Data System (ADS)

    Nealson, Patrick A.; Horne, John K.; Burwen, Debby L.

    2005-04-01

    The Alaska Department of Fish and Game relies on split-beam hydroacoustic techniques to estimate Chinook salmon (Oncorhynchus tshawytscha) returns to the Kenai River. Chinook counts are periodically confounded by large numbers of smaller sockeye salmon (O. nerka). Echo target-strength has been used to distinguish fish length classes, but was too variable to separate Kenai River chinook and sockeye distributions. To evaluate the efficacy of alternate echo metrics, controlled acoustic measurements of tethered chinook and sockeye salmon were collected at 200 kHz. Echo returns were digitally sampled at 48 kHz. A suite of descriptive metrics were collected from a series of 1,000 echoes per fish. Measurements of echo width were least variable at the -3 dB power point. Initial results show echo elongation and ping-to-ping variability in echo envelope width were significantly greater for chinook than for sockeye salmon. Chinook were also observed to return multiple discrete peaks from a single broadcast echo. These characteristics were attributed to the physical width of chinook exceeding half of the broadcast echo pulse width at certain orientations. Echo phase variability, correlation coefficient and fractal dimension distributions did not demonstrate significant discriminatory power between the two species. [Work supported by ADF&G, ONR.

  10. Captive Rearing Initiative for Salmon River Chinook Salmon, 1998-1999 Progress Report.

    SciTech Connect

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  11. Captive Rearing Initiative for Salmon River Chinook Salmon, 1999 Progress Report.

    SciTech Connect

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  12. Discovering Alaska's Salmon: A Children's Activity Book.

    ERIC Educational Resources Information Center

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  13. Biotic disturbance and benthic community dynamics in salmon-bearing streams.

    PubMed

    Moore, Jonathan W; Schindler, Daniel E

    2008-03-01

    1. Organisms can impact ecosystems via multiple pathways, often with positive and negative impacts on inhabitants. Understanding the context dependency of these types of impacts remains challenging. For example, organisms may perform different functions at different densities. 2. Anadromous salmon accumulate > 99% of their lifetime growth in marine ecosystems, and then return to spawn, often at high densities, in relatively confined freshwaters. While previous research has focused on how salmon nutrients can fertilize benthic communities, we examined how an ecosystem engineer, sockeye salmon Oncorhynchus nerka, influences seasonal dynamics of stream benthic communities through their nest-digging activities in south-western Alaska, USA. Benthic invertebrate and algal abundance were quantified every 7-14 days during the open water seasons of 10 streams in riffle and run habitats across multiple years, leading to 25 different stream-year combinations that spanned a large gradient of salmon density. 3. In streams with few or no salmon, benthic algal and insect biomass were fairly constant throughout the season. However, in streams with more than 0.1 salmon m(-2), algal and insect biomass decreased by an average of 75-85% during salmon spawning. Algal biomass recovered quickly following salmon disturbance, occasionally reaching pre-salmon biomass. In contrast, in streams with more than 0.1 salmon m(-2), aquatic insect populations did not recover to pre-salmon levels within the same season. We observed no positive impacts of salmon on algae or insects via fertilization from carcass nutrients. 4. Salmon, when their populations exceed thresholds in spawning density, are an important component of stream disturbance regimes and influence seasonal dynamics of benthic communities. Human activities that drive salmon densities below threshold densities, as has likely happened in many streams, will lead to altered seasonal dynamics of stream communities. Human activities that

  14. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; ,; Gillikin, Daniel; ,

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  15. Predation of Karluk River sockeye salmon by coho salmon and char

    USGS Publications Warehouse

    McIntyre, J.D.; Reisenbichler, R.R.; Emlen, J.M.; Wilmot, R.L.; Finn, J.E.

    1988-01-01

    The number of sockeye salmon, Oncorhynchus nerka, in Alaska's Karluk River (Fig. 1) declined from millions to thousands during the early part of the present century. Rounsefell (1958) discussed alternative explanations for the decline including a general loss offertility ofthe system as the number of salmon carcasses declined, competition, overfishing, subtle changes in climate, and predation; he concluded that the combined effect of predation and fishing was the most probable explanation. Later, Van Cleave and Bevan (1973) suggested that the weir constructed in the river each year to facilitate counting the fish as they entered the system was the most probable cause ofthe decline. Itprevented free movement of both adults and juveniles in the river. All of these hypotheses remain as potential explanations for the decline

  16. Influence of breeding habitat on bear predation and age at maturity and sexual dimorphism of sockeye salmon populations

    USGS Publications Warehouse

    Quinn, Thomas P; Wetzel, Lisa A.; Bishop, Susan; Overberg, Kristi; Rogers, Donald E.

    2001-01-01

    Age structure and morphology differ among Pacific salmon (Oncorhynchus spp.) populations. Sexual selection and reproductive capacity (fecundity and egg size) generally favor large (old), deep-bodied fish. We hypothesized that natural selection from physical access to spawning grounds and size-biased predation by bears, Ursus spp., opposes such large, deep-bodied salmon. Accordingly, size and shape of salmon should vary predictably among spawning habitats. We tested this hypothesis by measuring the age composition and body depth of sockeye salmon, Oncorhynchus nerka, and the intensity of predation in a range of breeding habitats in southwestern Alaska. Stream width was positively correlated with age at maturity and negatively correlated with predation level. However, salmon spawning on lake beaches were not consistently old, indicating that different factors affect age in riverine- and beach-spawning populations. Body depths of male and female salmon were positively correlated with water depth across all sites, as predicted. However, the mouths of some streams were so shallow that they might select against large or deep-bodied salmon, even in the absence of bear predation. Taken together, the results indicated that habitat has direct and indirect effects (via predation) on life history and morphology of mature salmon.

  17. Glochidiosis of salmonid fishes. IV. Humoral and tissue responses of coho and chinook salmon to experimental infection with Margaritefera Margaritifera (L. ) (Pelecypoda: Margaritanidae)

    SciTech Connect

    Meyers, T.R.; Millemann, R.E.; Fustish, C.A.

    1980-01-01

    Coho salmon (Oncorhynchus kisutch) are more resistant than chinook salmon (O. tshawytscha) to experimental infection with the glochidia of the freshwater mussel Margaritifera margaritifera. Histological sections of gills from coho salmon 16 hr postinfection (p.i.) showed that parasite encystment either did not occur or had progressed incompletely, which accounted for the loss of many glochidia from the gills. The remaining encysted glochidia were sloughed within 2 days (p.i.) by a well-developed hyperplasia. On chinook salmon, the parasites developed normally with no sloughing or hyperplasia. Analysis of blood samples taken from coho salmon at intervals during the infection showed significant increases in hematocrit, hemoglobin, the mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and leukocyte numbers when compared with control fish. In infected chinook salmon only the hematocrit, erythrocyte numbers, and MCV increased while the MCHC decreased. Total plasma protein increased in coho salmon but decreased in chinook salmon during infection. Glochidial antibodies were demonstrated in the blood plasma of coho and chinook salmon 8 to 12 wk p.i. Fewer glochidia attached to the excised gills of coho salmon than to the gills of chinook salmon. Also, the in vitro survival time of parasites in mucus and plasma from coho salmon was less than in the same chinook salmon fluids.

  18. Size selectivity of predation by brown bears depends on the density of their sockeye salmon prey.

    PubMed

    Cunningham, Curry J; Ruggerone, Gregory T; Quinn, Thomas P

    2013-05-01

    Can variation in prey density drive changes in the intensity or direction of selective predation in natural systems? Despite ample evidence of density-dependent selection, the influence of prey density on predatory selection patterns has seldom been investigated empirically. We used 20 years of field data on brown bears (Ursus arctos) foraging on sockeye salmon (Oncorhynchus nerka) in Alaska, to test the hypothesis that salmon density affects the strength of size-selective predation. Measurements from 41,240 individual salmon were used to calculate variance-standardized selection differentials describing the direction and magnitude of selection. Across the time series, the intensity of predatory selection was inversely correlated with salmon density; greater selection for smaller salmon occurred at low salmon densities as bears' tendency to kill larger-than-average salmon was magnified. This novel connection between density dependence and selective predation runs contrary to some aspects of optimal foraging theory and differs from many observations of density-dependent selection because (1) the direction of selection remains constant while its magnitude changes as a function of density and (2) stronger selection is observed at low abundance. These findings indicate that sockeye salmon may be subject to fishery-induced size selection from both direct mechanisms and latent effects of altered predatory selection patterns on the spawning grounds, resulting from reduced salmon abundance. PMID:23594549

  19. Diel behavior of rearing fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Skalicky, Joseph J.

    2010-01-01

    In fisheries science, habitat use is often inferred when fish are sampled or observed in a particular location. Physical habitat is typically measured where fish are found, and thus deemed important to habitat use. Although less common, a more informative approach is to measure or observe fish behavior within given habitats to more thoroughly assess their use of those locations. While this approach better reflects how fish use habitat, fish behavior can be difficult to quantify, particularly at night. For example, Tiffan and others (2002, 2006) were able to quantify habitat availability and characteristics that were important for rearing juvenile fall Chinook Salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The authors, however, could only speculate as to how juvenile salmon use habitat and respond to changes in water level fluctuations. Conversely, in this study we provide data on the diel activities of rearing juvenile wild fall Chinook Salmon which provides a better understanding of how fish “use” these rearing habitats. Diel behavior patterns are important because fish in the Hanford Reach are often stranded on shorelines when the water level rapidly recedes because of hydroelectric power generation at upriver dams (Nugent and others 2002; Anglin and others 2006). We hypothesize that juvenile salmon are at greater risk of stranding at night because they are less active and occupy habitat differently than during the day. We used underwater videography to collect behavioral information during the day and night to determine if juvenile fall Chinook Salmon are more susceptible to stranding when water level fluctuations occur at night.

  20. A comparison of Oregon pellet and fish-meat diets for administration of sulfamethazine to Chinook salmon

    USGS Publications Warehouse

    Amend, D.F.; Fryer, J.L.; Pilcher, K.S.

    1967-01-01

    The absorption of sulfamethazine by yearling spring chinook salmon (Oncorhynchus tshawytscha) was compared when administered in the Oregon Pellet and a fish-meat diet. The pelleted diet delivered the drug to the fish approximately twice as efficiently as the fish-meat diet. Dosage levels are recommended for both diets, and the efficacy of administering drugs in fish feed is discussed.

  1. SALMON 2100 PROJECT

    EPA Science Inventory

    Twenty eight salmon scientists and policy experts have joined forces in an innovative project to identify ways that, if adopted, likely would restore and sustain wild salmon runs in California, Oregon, Washington, Idaho, and southern British Columbia.

  2. Calcitonin Salmon Injection

    MedlinePlus

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to ...

  3. Nutrient fluxes and the recent collapse of coastal California salmon populations

    USGS Publications Warehouse

    Moore, Jonathan W.; Hayes, Sean A.; Duffy, Walter; Gallagher, Sean; Michel, Cyril J.; Wright, David

    2011-01-01

    Migratory salmon move nutrients both in and out of fresh waters during the different parts of their life cycle. We used a mass-balance approach to quantify recent changes in phosphorus (P) fluxes in six coastal California, USA, watersheds that have recently experienced dramatic decreases in salmon populations. As adults, semelparous Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon imported 8.3 and 10.4 times more P from the ocean, respectively, than they exported as smolts, while iteroparous steelhead (i.e., sea-run rainbow trout, Oncorhynchus mykiss) imported only 1.6 times more than they exported as kelts and smolts. Semelparous species whose life histories led them to import more nutrients were also the species whose populations decreased the most dramatically in California in recent years. In addition, the relationship between import and export was nonlinear, with export being proportionally more important at lower levels of import. This pattern was driven by two density-dependent processes — smolts were larger and disproportionately more abundant at lower spawner abundances. In fact, in four of our six streams we found evidence that salmon can drive net export of P at low abundance, evidence for the reversal of the "conveyor belt" of nutrients.

  4. Smolt Monitoring Program, Volume I, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1986 Annual Report.

    SciTech Connect

    Fish Passage Center

    1987-02-01

    This report presents the results of post-seasonal analyses including timing and relative magnitude of the outmigration, travel time for marked hatchery releases, and survival in mid-Columbia and lower Snake River index reaches. Travel time of marked yearling and sub-yearling chinook salmon (Oncorhynchus tsawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri) is measured between specific sampling points in the system. Marked groups usually represent major hatchery production stocks. Survival estimates are computed for specific spring chinook and steelhead marked groups. Arrival time and duration of outmigration of the chinook, sockeye, coho (Oncorhynchus kisutch) and steelhead runs are reported at key sampling points. Hatchery and brand release information for 1986 is also listed.

  5. Carnobacterium maltaromaticum infections in feral Oncorhynchus spp. (Family Salmonidae) in Michigan.

    PubMed

    Loch, Thomas P; Kumar, Rakesh; Xu, Wei; Faisal, Mohamed

    2011-10-01

    Members of the genus Oncorhynchus were introduced from the Pacific Northwest to the Laurentian Great Lakes basin and now constitute one of its most commercially and ecologically valuable fisheries. Recently, infections by a group of Gram-positive atypical lactobacilli belonging to the genus Carnobacterium have been detected in feral and captive Oncorhynchus spp. broodstock, some of which were associated with mortalities. Out of 1564 rainbow and steelhead trout (O. mykiss), coho salmon (O. kisutch), and Chinook salmon (O. tshawytscha) that were bacteriologically examined, 57 Carnobacterium spp. isolates were recovered from the kidneys, spleen, swimbladder, and/or external ulcerations of 51 infected fish. Phenotypic and biochemical characterization, as well as partial 16S rDNA sequencing and phylogenetic analyses of 30 representative isolates identified 29 as Carnobacterium maltaromaticum and 1 as C. divergens, though some phenotypic and genotypic heterogeneity was observed. Infections with C. maltaromaticum were associated with signitures typical of pseudokidney disease, but on occasion were also observed in fish displaying the gross and histopathological changes characteristic of nephrocalcinosis. While C. maltaromaticum infections were found to be widespread in both feral and farmed spawning populations of Oncorhynchus spp. residing within the Great Lakes basin, infection prevalence varied significantly according to fish species and strain, gender, and across time, but not by sampling location according to logistic regression analysis. The findings of this study further underscore the presence of phenotypic variations among Carnobacterium maltaromaticum strains that necessitate genotypic analysis to achieve definitive identification.

  6. Effects of introduced fishes on wild juvenile coho salmon in three shallow pacific northwest lakes

    USGS Publications Warehouse

    Bonar, Scott A.; Bolding, B.D.; Divens, M.; Meyer, W.

    2005-01-01

    Declines in Pacific salmon Oncorhynchus spp. have been blamed on hydropower, overfishing, ocean conditions, and land use practices; however, less is known about the impacts of introduced fish. Most of the hundreds of lakes and ponds in the Pacific Northwest contain introduced fishes, and many of these water bodies are also important for salmon production, especially of coho salmon O. kisutch. Over 2 years, we examined the predation impacts of 10 common introduced fishes (brown bullhead Ameiurus nebulosus, black crappie Pomoxis nigro-maculatus, bluegill Lepomis macrochirus, golden shiner Notemigonus crysoleucas, green sunfish L. cyanellus, largemouth bass Micropterus salmoides, pumpkinseed L. gibbosus, rainbow trout O. mykiss, warmouth L. gulosus, and yellow perch Perca flavescens) and two native fishes (cutthroat trout O. clarkii and prickly sculpin Cottus asper) on wild juvenile coho salmon in three shallow Pacific Northwest lakes, all located in different watersheds. Of these species, largemouth bass were responsible for an average of 98% of the predation on coho salmon in all lakes, but the total impact to each run varied among lakes and years. Very few coho salmon were eaten by black crappies, brown bullheads, cutthroat trout, prickly sculpin, or yellow perch, whereas other species were not observed to eat coho salmon. Juvenile coho salmon growth in all lakes was higher than in nearby streams. Therefore, food competition between coho salmon and introduced fishes in lakes was probably not limiting coho salmon populations. Largemouth bass are widespread and are present in 85% of lowland warmwater public-access lakes in Washington (n = 421), 84% of those in Oregon (n = 179), and 74% of those in the eight northwesternmost counties in California (n = 19). Future research would help to identify the impact of largemouth bass predation across the region and prioritize lakes where impacts are most severe. Nevertheless, attempts to transplant or increase largemouth bass

  7. It's a Salmon's Life!

    ERIC Educational Resources Information Center

    French, M. Jenice; Skochdopole, Laura Downey

    1998-01-01

    Describes an integrated science unit to help preservice teachers gain confidence in their abilities to learn and teach science. The teachers role played being salmon as they learned about the salmon's life cycle and the difficulties salmon encounter. The unit introduced the use of investigative activities that begin with questions and end with…

  8. Transcription expression of immune-related genes from Caligus rogercresseyi evidences host-dependent patterns on Atlantic and coho salmon.

    PubMed

    Vera-Bizama, Fredy; Valenzuela-Muñoz, Valentina; Gonçalves, Ana Teresa; Marambio, Jorge Pino; Hawes, Christopher; Wadsworth, Simon; Gallardo-Escárate, Cristian

    2015-12-01

    The transcriptomic response of the sea louse Caligus rogercresseyi during the infestation on Atlantic salmon (Salmo salar) and coho salmon (Oncorhynchus kisutch) was evaluated using 27 genes related to immune response, antioxidant system and secretome. Results showed early responses of TLR/IMD signaling pathway in sea lice infesting Atlantic salmon. Overall, genes associated with oxidative stress responses were upregulated in both host species. This pattern suggests that reactive oxygen species emitted by the host as a response to the infestation, could modulate the sea louse antioxidant system. Secretome-related transcripts evidenced upregulation of trypsins and serpins, mainly associated to Atlantic salmon than coho salmon. Interestingly, cathepsins and trypsin2 were downregulated at 7 days post-infection (dpi) in coho salmon. The principal component analysis revealed an inverse time-dependent pattern based on the different responses of C. rogercresseyi infecting both salmon species. Here, Atlantic salmon strongly modulates the transcriptome responses at earlier infection stages; meanwhile coho salmon reveals a less marked modulation, increasing the transcription activity during the infection process. This study evidences transcriptome differences between two salmon host species and provides pivotal knowledge towards elaborating future control strategies. PMID:26492996

  9. Association between geomorphic attributes of watersheds, water temperature, and salmon spawn timing in Alaskan streams

    NASA Astrophysics Data System (ADS)

    Lisi, Peter J.; Schindler, Daniel E.; Bentley, Kale T.; Pess, George R.

    2013-03-01

    Intraspecific variation in the seasonal reproductive timing of Pacific salmon (Oncorhynchus sp.) has important implications for the resilience of salmon and for organisms in freshwater and terrestrial communities that depend on salmon resources. Stream temperature has well known associations with salmon spawn timing but how stream and watershed geomorphology relates to the variation in salmon spawn timing is less understood. We used multivariate statistics applied to five environmental variables to compare conditions across 36 watersheds in the Wood River basin in southwest Alaska. We found that the environmental conditions in the first two axes of a principal components analysis (PCA) explained 76% of the variation in summer temperature among streams and 45% of the variation in spawn timing of sockeye salmon. The average habitat characteristics of streams that characterized three spawn timing groups of sockeye salmon were significantly distinct from one another. Sites supporting early spawning populations tend to have steeper and smaller watersheds, while late spawning populations occur in streams draining large, lower gradient watersheds with lakes in the drainage network. Finally, we show that stream temperature and spawn timing among streams have little spatial correlation across the landscape, thereby producing a fine-scale mosaic of spawn timing across the river basin. These results demonstrate that geomorphology and hydrology interact to produce a heterogeneous thermal template for natural selection to influence salmon spawn timing across river basins.

  10. Resident fishes display elevated organic pollutants in salmon spawning streams of the great lakes.

    PubMed

    Janetski, David J; Chaloner, Dominic T; Moerke, Ashley H; Rediske, Richard R; O'Keefe, James P; Lamberti, Gary A

    2012-08-01

    Pacific salmon (Oncorhynchus spp.) can transport bioaccumulated organic pollutants to stream ecosystems where they spawn and die. We quantified PCBs, DDE, and PBDEs in resident fishes from 13 Great Lakes tributaries to assess biotransport of pollutants associated with introduced Pacific salmon. Resident fishes sampled from salmon spawning reaches had higher mean pollutant concentrations than those from upstream reaches lacking salmon (93.5 and 4.1 μg x kg(-1) [PCB], 24.0 and 3.1 μg x kg(-1) [DDE], 8.5 and 1.0 μg x kg(-1) [PBDE], respectively), but differences varied substantially among lake basins. In Lake Michigan tributaries, PCB concentrations in resident fishes from salmon reaches were over four times higher than those from salmon reaches in Lake Huron and over 30 times higher than those from Lake Superior. Moreover, resident fish pollutant concentrations were better explained by pollutant inputs from salmon (μg x m(-2); R(2) = 0.76 [PCB], 0.64 [DDE], 0.64 [PBDE]) than by land development/agriculture, watershed area, resident fish species, body length, or lipid content. These results suggest that pollutant dispersal to stream ecosystems via biotransport is an often overlooked consequence of salmon stocking and historical food web contamination in the Great Lakes. Our findings have implications for Great Lakes management, including dam removal and wildlife conservation.

  11. Wild Steelhead Studies, Salmon and Clearwater Rivers, 1994 Annual Report.

    SciTech Connect

    Holubetz, Terry B; Leth, Brian D.

    1997-05-01

    To enumerate chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss adult escapements, weirs were operated in Marsh, Chamberlain, West Fork Chamberlain, and Running creeks. Beginning in late July 1994, a juvenile trap was installed in Running Creek to estimate juvenile outmigrants. Plans have been completed to install a weir in Rush Creek to enumerate steelhead adult escapement beginning in spring 1995. Design and agreements are being developed for Johnson Creek and Captain John Creek. Data collected in 1993 and 1994 indicate that spring chinook salmon and group-B steelhead populations and truly nearing extinction levels. For example, no adult salmon or steelhead were passed above the West Fork Chamberlain Creek weir in 1984, and only 6 steelhead and 16 chinook salmon were passed into the important spawning area on upper Marsh Creek. Group-A steelhead are considerably below desirable production levels, but in much better status than group-B stocks. Production of both group-A and group-B steelhead is being limited by low spawning escapements. Studies have not been initiated on wild summer chinook salmon stocks.

  12. Intensive Evaluation and Monitoring of Chinook Salmon and Steelhead Trout Production, Crooked River and Upper Salmon River Sites, 1992 Annual Report.

    SciTech Connect

    Kiefer, Russell B.; Lockhart, Jerald N.

    1994-12-01

    The purpose of this intensive monitoring project is to determine the number of returning chinook salmon Oncorhynchus tshawytscha and steelhead trout 0. mykiss adults necessary to achieve optimal smolt production, and develop mitigation accounting based on increases in smolt production. Two locations in Idaho are being intensively studied to meet these objectives. Information from this research will be applied to parr monitoring streams statewide to develop escapement objectives and determine success of habitat enhancement projects.

  13. Spring Outmigration of Wild and Hatchery Chinook Salmon and Steelhead Trout Smolts from the Imnaha River, Oregon; 1996 Annual Report.

    SciTech Connect

    Blenden, Michael L.; Rocklage, Stephen J.; Kucera, Paul A.

    1997-04-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wild chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts.

  14. Research and Recovery of Snake River Sockeye Salmon, 1995-1996 Annual Progress Report.

    SciTech Connect

    Kline, Paul A.

    1997-04-01

    On November 20, 1991, the National Marine Fisheries Services listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and the Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. The first planning of hatchery-produced juvenile sockeye salmon from a captive broodstock occurred in 1994 with the release of 14,119 fish to Redfish Lake. Two release strategies were used with four broodstock lineages represented. In 1995, 95,411 hatchery-produced juvenile sockeye salmon were planted to Stanley Basin waters, including the release of additional broodstock lineage groups and release strategies in Redfish Lake, a yearling smolt release to Redfish Lake Creek, and a direct release to Pettit Lake.

  15. Benzocaine as a fish anesthetic: efficacy and safety for spawning-phase salmon

    USGS Publications Warehouse

    Gilderhus, P.A.

    1990-01-01

    The anesthetic benzocaine was tested for efficacy and safety for spawning-phase chinook salmon (Oncorhynchus tshawytscha) and Atlantic salmon (Salmo salar) at federal fish hatcheries. Tests were conducted in the existing hatchery water supplies (soft water; temperatures, 10–13 °C. Crystalline benzocaine was dissolved in ethanol (1 g/30 mL), and aliquots of that stock solution were added to the water in test tanks. Benzocaine concentrations of 25–30 mg/L anesthetized most fish in less than 3.5 min, and most fish recovered in less than 10 min after 15 min of exposure. Safety margins were narrow; both species tolerated 30 mg/L for about 20 min, but 25 min of exposure caused deaths. For 15 min exposures, concentrations of 35 mg/L for chinook salmon and 40 mg/L for Atlantic salmon were lethal.

  16. Sexual maturation in kokanee Oncorhynchus nerka

    USGS Publications Warehouse

    Patterson, S.D.; Scarnecchia, D.L.; Congleton, J.L.

    2008-01-01

    We used observational and experimental approaches to obtain information on factors affecting the timing of maturation of kokanee Oncorhynchus nerka, a semelparous, landlocked salmon. Gonadal staging criteria were developed and applied to three kokanee populations in Idaho lakes and reservoirs. Testes were classified into three stages: immature (stage one, S1), maturing (S2), and mature (S3). Ovaries were classified into eight stages: immature (S1-S3), transitional (stage S4), maturing (S5-S7), and mature (S8). Males entered the maturing stage (S2) in February through April of the spawning year. Females entered maturing stage (S5) as early as July of the year before the spawning year, and as late as March of the spawning year. Three hatchery experiments demonstrated that attainment of a larger body size 10 to 16 months before spawning increased the likelihood of initiation of maturation in both sexes. No gonads in a state of regression were observed. A gonadosomatic index above 0.1 by early July was a good indicator of a maturing male, and a gonadosomatic index above 1.0 by early July was a good indicator of a maturing female. Instantaneous growth rates were not good predictors of maturation, but attaining a size threshold of 18 to 19 cm in the fall was a good predictor of maturation the following year. This improved knowledge of kokanee maturation will permit more effectively management of the species for age, growth and size at maturity as well as for contributions to fisheries. ?? 2008 by the Northwest Scientific Association. All rights reserved.

  17. Performance of salmon fishery portfolios across western North America

    PubMed Central

    Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C

    2014-01-01

    Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally

  18. Salmon redd identification using environmental DNA (eDNA)

    USGS Publications Warehouse

    Pilliod, David S.; Laramie, Matthew B.

    2016-06-10

    IntroductionThe purpose of this project was to develop a technique to use environmental DNA (eDNA) to distinguish between redds made by Chinook salmon (Oncorhynchus tshawytscha) and redds made by Coho salmon (O. kisutch) and to distinguish utilized redds from test/abandoned redds or scours that have the appearance of redds. The project had two phases:Phase 1. Develop, test, and optimize a molecular assay for detecting and identifying Coho salmon DNA and differentiating it from Chinook salmon DNA.Phase 2. Demonstrate the efficacy of the technique.Collect and preserve water samples from the interstitial spaces of 10 known redds (as identified by expert observers) of each species and 10 gravel patches that do not include a redd of either species.Collect control samples from the water column adjacent to each redd to establish background eDNA levels.Analyze the samples using the developed molecular assays for Coho salmon (phase I) and Chinook salmon (Laramie and others, 2015).Evaluate whether samples collected from Chinook and Coho redds have significantly higher levels of eDNA of the respective species than background levels (that is, from gravel, water column).Evaluate whether samples collected from the interstitial spaces of gravel patches that are not redds are similar to background eDNA levels.The Sandy River is a large tributary of the Columbia River. The Sandy River meets the Columbia River approximately 23 km upstream of Portland, Oregon. The Sandy River Basin provides overlapping spawning habitat for both Chinook and Coho salmon.Samples provided by Portland Water Bureau for analysis were collected from the Bull Run River, Sixes Creek, Still Creek, Arrah Wanna Side Channel, and Side Channel 18.

  19. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  20. Salmon redd identification using environmental DNA (eDNA)

    USGS Publications Warehouse

    Pilliod, David S.; Laramie, Matthew B.

    2016-01-01

    IntroductionThe purpose of this project was to develop a technique to use environmental DNA (eDNA) to distinguish between redds made by Chinook salmon (Oncorhynchus tshawytscha) and redds made by Coho salmon (O. kisutch) and to distinguish utilized redds from test/abandoned redds or scours that have the appearance of redds. The project had two phases:Phase 1. Develop, test, and optimize a molecular assay for detecting and identifying Coho salmon DNA and differentiating it from Chinook salmon DNA.Phase 2. Demonstrate the efficacy of the technique.Collect and preserve water samples from the interstitial spaces of 10 known redds (as identified by expert observers) of each species and 10 gravel patches that do not include a redd of either species.Collect control samples from the water column adjacent to each redd to establish background eDNA levels.Analyze the samples using the developed molecular assays for Coho salmon (phase I) and Chinook salmon (Laramie and others, 2015).Evaluate whether samples collected from Chinook and Coho redds have significantly higher levels of eDNA of the respective species than background levels (that is, from gravel, water column).Evaluate whether samples collected from the interstitial spaces of gravel patches that are not redds are similar to background eDNA levels.The Sandy River is a large tributary of the Columbia River. The Sandy River meets the Columbia River approximately 23 km upstream of Portland, Oregon. The Sandy River Basin provides overlapping spawning habitat for both Chinook and Coho salmon.Samples provided by Portland Water Bureau for analysis were collected from the Bull Run River, Sixes Creek, Still Creek, Arrah Wanna Side Channel, and Side Channel 18.

  1. Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America.

    PubMed

    Malick, Michael J; Cox, Sean P

    2016-01-01

    Sockeye salmon (Oncorhynchus nerka) stocks throughout the southern part of their North American range have experienced declines in productivity over the past two decades. In this study, we tested the hypothesis that pink (O. gorbuscha) and chum (O. keta) salmon stocks have also experienced recent declines in productivity by investigating temporal and spatial trends in productivity of 99 wild North American pink and chum salmon stocks. We used a combination of population dynamics and time series models to quantify individual stock trends as well as common temporal trends in pink and chum salmon productivity across local, regional, and continental spatial scales. Our results indicated widespread declines in productivity of wild chum salmon stocks throughout Washington (WA) and British Columbia (BC) with 81% of stocks showing recent declines in productivity, although the exact form of the trends varied among regions. For pink salmon, the majority of stocks in WA and BC (65%) did not have strong temporal trends in productivity; however, all stocks that did have trends in productivity showed declining productivity since at least brood year 1996. We found weaker evidence of widespread declines in productivity for Alaska pink and chum salmon, with some regions and stocks showing declines in productivity (e.g., Kodiak chum salmon stocks) and others showing increases (e.g., Alaska Peninsula pink salmon stocks). We also found strong positive covariation between stock productivity series at the regional spatial scale for both pink and chum salmon, along with evidence that this regional-scale positive covariation has become stronger since the early 1990s in WA and BC. In general, our results suggest that common processes operating at the regional or multi-regional spatial scales drive productivity of pink and chum salmon stocks in western North America and that the effects of these process on productivity may change over time. PMID:26760510

  2. Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America

    PubMed Central

    Malick, Michael J.; Cox, Sean P.

    2016-01-01

    Sockeye salmon (Oncorhynchus nerka) stocks throughout the southern part of their North American range have experienced declines in productivity over the past two decades. In this study, we tested the hypothesis that pink (O. gorbuscha) and chum (O. keta) salmon stocks have also experienced recent declines in productivity by investigating temporal and spatial trends in productivity of 99 wild North American pink and chum salmon stocks. We used a combination of population dynamics and time series models to quantify individual stock trends as well as common temporal trends in pink and chum salmon productivity across local, regional, and continental spatial scales. Our results indicated widespread declines in productivity of wild chum salmon stocks throughout Washington (WA) and British Columbia (BC) with 81% of stocks showing recent declines in productivity, although the exact form of the trends varied among regions. For pink salmon, the majority of stocks in WA and BC (65%) did not have strong temporal trends in productivity; however, all stocks that did have trends in productivity showed declining productivity since at least brood year 1996. We found weaker evidence of widespread declines in productivity for Alaska pink and chum salmon, with some regions and stocks showing declines in productivity (e.g., Kodiak chum salmon stocks) and others showing increases (e.g., Alaska Peninsula pink salmon stocks). We also found strong positive covariation between stock productivity series at the regional spatial scale for both pink and chum salmon, along with evidence that this regional-scale positive covariation has become stronger since the early 1990s in WA and BC. In general, our results suggest that common processes operating at the regional or multi-regional spatial scales drive productivity of pink and chum salmon stocks in western North America and that the effects of these process on productivity may change over time. PMID:26760510

  3. Snake River Sockeye Salmon Habitat and Limnological Research; 2004 Annual Report.

    SciTech Connect

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-06-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU); The Tribe's long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through their Integrated Fish and Wildlife Program. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2004 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit Lake; (3) reduce the number of mature kokanee salmon spawning in Fishhook Creek; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye salmon and kokanee salmon population surveys; (7) evaluate potential competition and predation between

  4. Sequential tests for infectious hematopoietic necrosis virus in individuals and populations of sockeye salmon

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.

    1986-01-01

    The incidence and titer distribution of infectious hematopoietic necrosis virus in cavity fluid from spent female sockeye salmon (Oncorhynchus nerka) varied little when fish from a naturally spawning population were sampled three times on alternate days. However, when prespawning female sockeye salmon from a second population were individually tagged, penned, and sampled daily, the incidence and proportion of fish with high virus titer rose over a 6-d period. In 10 instances, consecutive cavity fluid samples from the same fish reverted from virus-positive to virus-negative. We suggest that spent fish should be sampled when accurate and quantitative data on the incidence and level of the virus are required.

  5. A Literature Review, Bibliographic Listing, and Organization of Selected References Relative to Pacific salmon (Oncorhynchus spp.) and Abiotic and Biotic Attributes of the Columbia River Estuary and Adjacent Marine and Riverine Environs for Various Historical Periods : Measure 7.1A of the Northwest Power Planning Council`s 1994 Fish and Wildlife Program : Report 4 of 4, Final Report.

    SciTech Connect

    Costello, Ronald J.

    1996-05-01

    This report contains the results of a literature review on the carrying capacity of Pacific salmon in the Columbia River Basin. The objective of the review was to find the information gaps relative to the determinants of salmon carrying capacity in the Columbia River Basin. The review was one activity designed to answer questions asked in Measure 7.1A of the Councils Fish and Wildlife Program. Based, in part, on the information learned during the literature review and the other work accomplished during this study the Pacific Northwest National Laboratory (PNNL) state concluded that the approach inherent in 7.1A will not increase understanding of ecology, carrying capacity, or limiting factors that influence salmon under current conditions. To increase understanding of ecology, carring capacity, and limiting factors, it is necessary to deal with the complexity of the sustained performance of salmon in the Columbia River Basin. The PNNL team suggests that the regions evaluated carrying capacity from more than one view point. The PNNL team recommends that the region use the contextualistic view for evaluating capacity.

  6. Congener Patterns of Persistent Organic Pollutants Establish the Extent of Contaminant Biotransport by Pacific Salmon in the Great Lakes.

    PubMed

    Gerig, Brandon S; Chaloner, Dominic T; Janetski, David J; Rediske, Richard R; O'Keefe, James P; Moerke, Ashley H; Lamberti, Gary A

    2016-01-19

    In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.

  7. Effects of salmon-derived nutrients and habitat characteristics on population densities of stream-resident sculpins.

    PubMed

    Swain, Noel R; Reynolds, John D

    2015-01-01

    Movement of nutrients across ecosystem boundaries can have important effects on food webs and population dynamics. An example from the North Pacific Rim is the connection between productive marine ecosystems and freshwaters driven by annual spawning migrations of Pacific salmon (Oncorhynchus spp). While a growing body of research has highlighted the importance of both pulsed nutrient subsidies and disturbance by spawning salmon, their effects on population densities of vertebrate consumers have rarely been tested, especially across streams spanning a wide range of natural variation in salmon densities and habitat characteristics. We studied resident freshwater prickly (Cottus asper), and coastrange sculpins (C. aleuticus) in coastal salmon spawning streams to test whether their population densities are affected by spawning densities of pink and chum salmon (O. gorbuscha and O. keta), as well as habitat characteristics. Coastrange sculpins occurred in the highest densities in streams with high densities of spawning pink and chum salmon. They also were more dense in streams with high pH, large watersheds, less area covered by pools, and lower gradients. In contrast, prickly sculpin densities were higher in streams with more large wood and pools, and less canopy cover, but their densities were not correlated with salmon. These results for coastrange sculpins provide evidence of a numerical population response by freshwater fish to increased availability of salmon subsidies in streams. These results demonstrate complex and context-dependent relationships between spawning Pacific salmon and coastal ecosystems and can inform an ecosystem-based approach to their management and conservation.

  8. Effects of Salmon-Derived Nutrients and Habitat Characteristics on Population Densities of Stream-Resident Sculpins

    PubMed Central

    Swain, Noel R.; Reynolds, John D.

    2015-01-01

    Movement of nutrients across ecosystem boundaries can have important effects on food webs and population dynamics. An example from the North Pacific Rim is the connection between productive marine ecosystems and freshwaters driven by annual spawning migrations of Pacific salmon (Oncorhynchus spp). While a growing body of research has highlighted the importance of both pulsed nutrient subsidies and disturbance by spawning salmon, their effects on population densities of vertebrate consumers have rarely been tested, especially across streams spanning a wide range of natural variation in salmon densities and habitat characteristics. We studied resident freshwater prickly (Cottus asper), and coastrange sculpins (C. aleuticus) in coastal salmon spawning streams to test whether their population densities are affected by spawning densities of pink and chum salmon (O. gorbuscha and O. keta), as well as habitat characteristics. Coastrange sculpins occurred in the highest densities in streams with high densities of spawning pink and chum salmon. They also were more dense in streams with high pH, large watersheds, less area covered by pools, and lower gradients. In contrast, prickly sculpin densities were higher in streams with more large wood and pools, and less canopy cover, but their densities were not correlated with salmon. These results for coastrange sculpins provide evidence of a numerical population response by freshwater fish to increased availability of salmon subsidies in streams. These results demonstrate complex and context-dependent relationships between spawning Pacific salmon and coastal ecosystems and can inform an ecosystem-based approach to their management and conservation. PMID:26030145

  9. Physicochemical Characteristics of the Hyporheic Zone Affect Redd Site Selection of Chum and Fall Chinook Salmon, Columbia River.

    SciTech Connect

    Geist, David R.

    2001-10-01

    Chum salmon (Oncorhynchus keta) may historically have been the most abundant species of Columbia River salmon, contributing as much as 50% of the total biomass of all salmon in the Pacific Ocean prior to the 1940's (Neave 1961). By the 1950's, however, run sizes to the Columbia River dropped dramatically and in 1999 the National Marine Fisheries Service (NMFS) listed Columbia River chum salmon as threatened under the Endangered Species Act (ESA; NMFS 1999). Habitat degradation, water diversions, harvest, and artificial propagation are the major human-induced factors that have contributed to the species decline (NMFS 1998). Columbia River chum salmon spawn exclusively in the lower river below Bonneville Dam, including an area near Ives Island. The Ives Island chum salmon are part of the Columbia River evolutionary significant unit (ESU) for this species, and are included in the ESA listing. In addition to chum salmon, fall chinook salmon (O. tshawytscha) also spawn at Ives Island. Spawning surveys conducted at Ives Island over the last several years show that chum and fall chinook salmon spawned in clusters in different locations (US Fish and Wildlife Service and Washington Department of Fish and Wildlife, unpublished data). The presence of redd clusters suggested that fish were selecting specific habitat features within the study area (Geist and Dauble 1998). Understanding the specific features of these spawning areas is needed to quantify the amount of habitat available to each species so that minimum flows can be set to protect fish and maintain high quality habitat.

  10. Parasite burdens in experimental families of coho salmon.

    USGS Publications Warehouse

    Yasutake, W.T.; McIntyre, J.D.; Hemmingsen, A.R.

    1986-01-01

    We examined the possibility that parasites affect survival rates of anadromous hatchery coho salmon Oncorhynchus kisutch during their period in the wild. Survival was estimated from the rates at which adults returned to the hatchery. The frequency of infection of heart tissue by metacercariae of Nanophyetus sp. was higher in individuals from families with relatively high survival. Various degrees of parasitic and bacterial infection were observed in all groups. We frequently saw extensive infection and tissue reaction to trophozoites of Ceratomyxa sp. (probably C. shasta) in the apparent absence of spores, suggesting that the clinical method now used to determine the presence of Ceratomyxa infection needs to be reassessed.

  11. Salmon Supplementation Studies in Idaho Rivers, 1999-2000 Progress Report.

    SciTech Connect

    Kohler, Andy; Taki, Doug; Teton, Angelo

    2001-11-01

    As part of the Idaho Supplementation Studies, fisheries crews from the Shoshone-Bannock Tribes have been snorkeling tributaries of the Salmon River to estimate chinook salmon (Oncorhynchus tshawytscha) parr abundance; conducting surveys of spawning adult chinook salmon to determine the number of redds constructed and collect carcass information; operating a rotary screw trap on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag emigrating juvenile chinook salmon; and collecting and PIT-tagging juvenile chinook salmon on tributaries of the Salmon River. The Tribes work in the following six tributaries of the Salmon River: Bear Valley Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork Salmon River. Snorkeling was used to obtain parr population estimates for ISS streams from 1992 to 1997. However, using the relatively vigorous methods described in the ISS experimental design to estimate summer chinook parr populations, results on a project-wide basis showed extraordinarily large confidence intervals and coefficients of variation. ISS cooperators modified their sampling design over a few years to reduce the variation around parr population estimates without success. Consequently, in 1998 snorkeling to obtain parr population estimates was discontinued and only General Parr Monitoring (GPM) sites are snorkeled. The number of redds observed in SBT-ISS streams has continued to decline as determined by five year cycles. Relatively weak strongholds continue to occur in the South Fork Salmon River and Bear Valley Creek. A rotary screw trap was operated on the West Fork Yankee Fork during the spring and fall of 1999 and the spring of 2000 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997 and 1999 (fall only) to 2000. Significant supplementation treatments have occurred in the South

  12. Studies of certain sulfonamide drugs for use in juvenile chinook salmon

    USGS Publications Warehouse

    Amend, D.F.; Fryer, J.L.; Pilcher, K.S.

    1969-01-01

    In the work described in this paper, the efficacies of sulfisoxazole and sulfadimethoxine were compared to the efficacy of sulfamethazine. Experiments were designed to determine the rate of intestinal absorption, the rate of elimination from the blood, the effect on growth, and the toxicity of each drug in juvenile chinook salmon (Oncorhynchus tshawytscha). The comparative bacteriostatic activity against two common fish pathogens was also determined for each drug. 

  13. Habitat Suitability Index Models and Instream Flow Suitability Curves: Chum Salmon

    USGS Publications Warehouse

    Hale, Stephen S.; McMahon, Thomas E.; Nelson, Patrick C.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model and instream flow suitability curves for the chum salmon (Oncorhynchus keta). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  14. Habitat Suitability Index Models and Instream Flow Suitability Curves: Pink salmon

    USGS Publications Warehouse

    Raleigh, Robert F.; Nelson, Patrick C.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model and instream flow suitability curves for the pink salmon (Oncorhynchus gorbuscha). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  15. Habitat Suitability Index Models and Instream Flow Suitability Curves: Chum salmon

    USGS Publications Warehouse

    Hale, Stephen S.; McMahon, Thomas E.; Nelson, Patrick C.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model and instream flow suitability curves for the chum salmon (Oncorhynchus keta). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  16. Relative yield of two transferrin phenotypes in coho salmon

    USGS Publications Warehouse

    McIntyre, John D.; Johnson, A. Kenneth

    1977-01-01

    Experimental groups of coho salmon (Oncorhynchus kisutch) of transferring types AA and AC were compared to determine relative growth and survival before release, yields from the fishery, and returns of fish to the hatchery as 2- and 3-yr-olds. In the hatchery, growth was faster and survival higher in the AA than in the AC types. However, yields of AA and AC types were equal, although the yield of AC types as 3-yr-olds was greater than that of AA types because more of the AA males matured in 2 years. We concluded that it would be futile to attempt to increase the yield of coho salmon by maximizing the frequency of biochemical phenotypes that display only a temporary advantage over other types.

  17. Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington

    NASA Astrophysics Data System (ADS)

    Smith, Gerald R.; Montgomery, David R.; Peterson, N. Phil; Crowley, Bruce

    2007-09-01

    An assemblage of fossil sockeye salmon was discovered in Pleistocene lake sediments along the South Fork Skokomish River, Olympic Peninsula, Washington. The fossils were abundant near the head of a former glacial lake at 115 m elevation. Large adult salmon are concentrated in a sequence of death assemblages that include individuals with enlarged breeding teeth and worn caudal fins indicating migration, nest digging, and spawning prior to death. The specimens were 4 yr old and 45-70 cm in total length, similar in size to modern sockeye salmon, not landlocked kokanee. The fossils possess most of the characteristics of sockeye salmon, Oncorhynchus nerka, but with several minor traits suggestive of pink salmon, O. gorbuscha. This suggests the degree of divergence of these species at about 1 million yr ago, when geological evidence indicates the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advance of the Puget lobe ice sheet. Surficial geology and topography record a complicated history of glacial damming and river diversion that implies incision of the modern gorge of the South Fork Skokomish River after deposition of the fossil-bearing sediments.

  18. Interactions between brown bears and chum salmon at McNeil River, Alaska

    USGS Publications Warehouse

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2013-01-01

    Predation on returning runs of adult salmon (Oncorhynchus spp.) can have a large influence on their spawning success. At McNeil River State Game Sanctuary (MRSGS), Alaska, brown bears (Ursus arctos) congregate in high numbers annually along the lower McNeil River to prey upon returning adult chum salmon (O. keta). Low chum salmon escapements into McNeil River since the late 1990s have been proposed as a potential factor contributing to concurrent declines in bear numbers. The objective of this study was to determine the extent of bear predation on chum salmon in McNeil River, especially on pre-spawning fish, and use those data to adjust the escapement goal for the river. In 2005 and 2006, 105 chum salmon were radiotagged at the river mouth and tracked to determine cause and location of death. Below the falls, predators consumed 99% of tagged fish, killing 59% of them before they spawned. Subsequently, the escapement goal was nearly doubled to account for this pre-spawning mortality and to ensure enough salmon to sustain both predators and prey. This approach to integrated fish and wildlife management at MRSGS can serve as a model for other systems where current salmon escapement goals may not account for pre-spawning mortality.

  19. Redfish Lake Sockeye Salmon Captive Broodstock Rearing and Research, 1994 Annual Report.

    SciTech Connect

    Flagg, Thomas A.

    1996-03-01

    The National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center, in cooperation with the Idaho Department of Fish and Game (IDFG) and the Bonneville Power Administration, has established captive broodstocks to aid recovery of Snake River sockeye salmon (Oncorhynchus nerka) listed as endangered under the US Endangered Species Act (ESA). Captive broodstock programs are emerging as an important component of restoration efforts for ESA-listed salmon populations. Captive broodstock programs are a form of artificial propagation. However, they differ from standard hatchery techniques in one important respect: fish are cultured in captivity for the entire life cycle. The high fecundity of Pacific salmon, coupled with their potentially high survival in protective culture, affords an opportunity for captive broodstocks to produce large numbers of juveniles in a single generation for supplementation of natural populations. The captive broodstocks discussed in this report were intended to protect the last known remnants of this stock: sockeye salmon that return to Redfish Lake in the Sawtooth Basin of Idaho at the headwaters of the Salmon River. This report addresses NMFS research from January to December 1994 on the Redfish Lake sockeye salmon captive broodstock program and summarizes results since the beginning of the study in 1991. Spawn from NMFS Redfish Lake sockeye salmon captive broodstocks is being returned to Idaho to aid recovery efforts for the species.

  20. Habitat selection influences sex distribution, morphology, tissue biochemistry, and parasite load of juvenile coho salmon in the West Fork Smith River, Oregon

    EPA Science Inventory

    Given the strong influence of water temperature on salmonid physiology and behavior, in the summers of 2004 and 2005 we studied juvenile male and female coho salmon Oncorhynchus kisutch in two reaches of Oregon’s West Fork Smith River with different thermal profiles. Our goals we...

  1. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    SciTech Connect

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  2. Mu