Science.gov

Sample records for salmon oncorhynchus tschawytscha

  1. Shedding of Renibacterium salmoninarum by infected chinook salmon Oncorhynchus tschawytscha

    USGS Publications Warehouse

    McKibben, C.L.; Pascho, R.J.

    1999-01-01

    Laboratory studies of the transmission and pathogenesis of Renibacterium salmoninarum may describe more accurately what is occurring in the natural environment if test fish are infected by waterborne R. salmoninarum shed from infected fish. To quantify bacterial shedding by chinook salmon Oncorhynchus tschawytscha at 13??C in freshwater, groups of fish were injected intraperitoneally with R. salmoninarum at either 1.3 x 106 colony forming units (CFU) fish-1 (high-dose injection group) or 1.5 x 103 CFU fish-1 (low-dose injection group). R. salmoninarum infection levels were measured in the exposed fish by the enzyme-linked immunosorbent assay (BKD-ELISA). At regular intervals for 30 d, the numbers of R. salmoninarum shed by the injected fish were calculated on the basis of testing water samples by the membrane filtration-fluorescent antibody test (MF-FAT) and bacteriological culture. Mean BKD-ELISA optical densities (ODs) for fish in the low-dose injection group were not different from those of control fish [p > 0.05), and no R. salmoninarum were detected in water samples taken up to 30 d after injection of fish in the low-dose group. By 12 d after injection a proportion of the fish from the high-dose infection group had high (BKD-ELISA OD ??? 1.000) to severe (BKD-ELISA OD ??? 2.000) R. salmoninarum infection levels, and bacteria were detected in the water by both tests. However, measurable levels of R. salmoninarum were not consistently detected in the water until a proportion of the fish maintained high to severe infection levels for an additional 8 d. The concentrations of R salmoninarum in the water samples ranged from undetectable up to 994 cells ml-1 on the basis of the MF-FAT, and up to 1850 CFU ml-1 on the basis of bacteriological culture. The results suggest that chinook salmon infected with R. salmoninarum by injection of approximately 1 x 106 CFU fish-1 can be used as the source of infection in cohabitation challenges beginning 20 darter injection.

  2. Quantitative interlake comparison of thyroid pathology in Great Lakes coho (Oncorhynchus kisutch) and chinook (Oncorhynchus tschawytscha) salmon

    SciTech Connect

    Moccia, R.D.; Leatherland, J.F.; Sonstegard, R.A.

    1981-06-01

    Coho salmon (Oncorhynchus kisutch) and chinook salmon (Oncorhynchus tshawytscha) from Lakes Ontario, Michigan, Erie, or Huron were found to suffer epizootics of thyroid hyperplasia and goiters which appeared to have an environmental etiology. There were 13-fold differences in goiter prevalence within the Great Lakes, and the differences in goiter frequency were correlated with the degree of thyroid hyperplasia. A means of assessing the degree of thyroid hyperplasia (thyroid index) is described, and the derived index was used to facilitate statistical interlake and interspecies comparisons. Despite the hyperplastic (or goitered) condition in all prespawning or spawning Great Lakes salmon, serum thyroid hormone levels were generally higher than in prespawning coho salmon from the Fraser River, British Columbia, indicating that the Great Lakes fish were not necessarily hypothyroid. The hyperplastic lesions appear to undergo progressive changes: (a) large follicles, partly colloid depleted, surrounded by cuboidal epithelial cells; (b) small follicles, largely colloid depleted, surrounded by columnar epithelial cells (in this form, the follicles commonly assume a trabeculate arrangement); (c) ''microfollicles'' with greatly enlarged columnar epithelial cells encompassing very small follicles; (d) apparently afollicular lesions with little or no colloid in evidence. There was some evidence of benign invasiveness, although the lesions generally resembled simple hyperplastic parenchymatous goiters seen in humans.

  3. Identification of the sex chromosome pair in chum salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha).

    PubMed

    Phillips, R B; DeKoning, J; Morasch, M R; Park, L K; Devlin, R H

    2007-01-01

    Fluorescence in situ hybridization (FISH) using a probe to the male-specific GH-Y (growth hormone pseudogene) was used to identify the Y chromosome in the karyotypes of chum salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha). The sex chromosome pair is a small acrocentric chromosome pair in chum salmon and the smallest metacentric chromosome pair in pink salmon. Both of these chromosome pairs are morphologically different from the sex chromosome pairs in chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch). The 5S rRNA genes are on multiple chromosome pairs including the sex chromosome pair in chum salmon, but at the centromeres of two autosomal metacentric pairs in pink salmon. The sex chromosome pairs and the chromosomal locations of the 5S rDNA appear to be different in all five of the North American Pacific salmon species and rainbow trout. The implications of these results for evolution of sex chromosomes in salmonids are discussed.

  4. Juvenile salmon and steelhead occupancy of stream pools treated and not treated with restoration structures, Entiat River, Washington

    Treesearch

    Karl M. Polivka; E. Ashley Steel; Jenni L. Novak; Bror Jonsson

    2015-01-01

    We observed habitat occupancy by juvenile Chinook salmon (Oncorhynchus tschawytscha) and steelhead trout (Oncorhynchus mykiss) at in-stream habitat restoration structures constructed in the Entiat River, Washington, USA. In 2009–2013, fish abundance measurements during rearing (July–October) showed high temporal variability in...

  5. Teratological hermaphroditism in the chum salmon Oncorhynchus keta (Walbaum)

    USGS Publications Warehouse

    Uzmann, J.R.; Hesselholt, M.N.

    1957-01-01

    The anomalous condition of hermaphroditism appears to be no less rare in fish than in other normally dioecious animals. Previous records of bisexuality' in the Pacific salmons, Oncorhynchus spp., are few in number despite the intensive study accorded this group. Rutter (1902) reported the condition in two king salmon (O. tshawytscha); Crawford (1927) reported the condition in a silver salmon (O. kisutch); and Gibbs (1956) described a bisexual steelhead trout (Salmo gairdneri) and briefly noted another instance of hermaphroditism in the king salmon. We wish to record an example of this anomaly in the chum salmon (O. keta).

  6. Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Chernyak, Sergei M.; Rediske, Richard R.; O'Keefe, James P.

    2004-01-01

    We evaluated the Wisconsin bioenergetics model for chinook salmon (Oncorhynchus tshawytscha) in both the laboratory and the field. Chinook salmon in laboratory tanks were fed alewife (Alosa pseudoharengus), the predominant food of chinook salmon in Lake Michigan. Food consumption and growth by chinook salmon during the experiment were measured. To estimate the efficiency with which chinook salmon retain polychlorinated biphenyls (PCBs) from their food in the laboratory, PCB concentrations of the alewife and of the chinook salmon at both the beginning and end of the experiment were determined. Based on our laboratory evaluation, the bioenergetics model was furnishing unbiased estimates of food consumption by chinook salmon. Additionally, from the laboratory experiment, we calculated that chinook salmon retained 75% of the PCBs contained within their food. In an earlier study, assimilation rate of PCBs to chinook salmon from their food in Lake Michigan was estimated at 53%, thereby suggesting that the model was substantially overestimating food consumption by chinook salmon in Lake Michigan. However, we concluded that field performance of the model could not be accurately assessed because PCB assimilation efficiency is dependent on feeding rate, and feeding rate of chinook salmon was likely much lower in our laboratory tanks than in Lake Michigan.

  7. Stabilizing Oils from Smoked Pink Salmon (Oncorhynchus gorbuscha)

    USDA-ARS?s Scientific Manuscript database

    Smoking of meats and fish is one of the earliest preservation technologies developed by humans. In this study, the smoking process was evaluated as a method for reducing oxidation of Pink Salmon (Oncorhynchus gorbuscha) oils and also maintaining the quality of oil in aged fish prior to oil extractio...

  8. Design and Analysis of Salmonid Tagging Studies in the Columbia Basin, Volume VIII; New Model for Estimating Survival Probabilities and Residualization from a Release-Recapture Study of Fall Chinook Salmon Smolts in the Snake River, 1995 Technical Report.

    SciTech Connect

    Lowther, Alan B.; Skalski, John R.

    1997-09-01

    Standard release-recapture analysis using Cormack-Jolly-Seber (CJS) models to estimate survival probabilities between hydroelectric facilities for Snake River fall chinook salmon (Oncorhynchus tschawytscha) ignore the possibility of individual fish residualizing and completing their migration in the year following tagging.

  9. Physiological consequences of the salmon louse (Lepeophtheirus salmonis) on juvenile pink salmon (Oncorhynchus gorbuscha): implications for wild salmon ecology and management, and for salmon aquaculture.

    PubMed

    Brauner, C J; Sackville, M; Gallagher, Z; Tang, S; Nendick, L; Farrell, A P

    2012-06-19

    Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.

  10. Physiological consequences of the salmon louse (Lepeophtheirus salmonis) on juvenile pink salmon (Oncorhynchus gorbuscha): implications for wild salmon ecology and management, and for salmon aquaculture

    PubMed Central

    Brauner, C. J.; Sackville, M.; Gallagher, Z.; Tang, S.; Nendick, L.; Farrell, A. P.

    2012-01-01

    Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how ‘no effect’ thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations. PMID:22566682

  11. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon (Oncorhynchus kisutch). 226.210... Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho...

  12. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon (Oncorhynchus kisutch). 226.210... Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho...

  13. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon (Oncorhynchus kisutch). 226.210... Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho...

  14. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon (Oncorhynchus kisutch). 226.210... Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho...

  15. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon (Oncorhynchus kisutch). 226.210... Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho...

  16. Hybrids between chum Oncorhynchus keta and pink Oncorhynchus gorbuscha salmon: age, growth and morphology and effects on salmon production.

    PubMed

    Zhivotovsky, L A; Tochilina, T G; Shaikhaev, E G; Pogodin, V P; Malinina, T V; Gharrett, A J

    2016-10-01

    Mature hybrids between chum salmon Oncorhynchus keta and pink salmon Oncorhynchus gorbuscha, which were identified by an intermediate colour pattern, were caught at the Kurilsky Hatchery, Iturup Island, Russia. Most of them were female and 3 years old (a partial freshwater year and 2 marine years), which is intermediate between the ages of maturity of the parental species. The hybrids exceed both parental species in the rate of growth, are large in size and robust and might successfully compete for mating in the wild or be chosen for artificial reproduction. The ratio of the scale length over width, R, is oblate (R < 1), whereas scales of the parental species are prolate (R > 1). From scale analyses, the c.v. in body size of hybrid females at the second marine year is twice that of O. keta, which suggests developmental instability in the hybrid. A dynamic model predicted that continuing hybridization at a low rate does not produce a substantial hybrid load due to selection against advanced-generation hybrids and backcrosses. A high hybridization rate, however, may be an additional risk for genetic management and should be taken into account in programmes of artificial reproduction of Pacific salmon Oncorhynchus spp., although such hybrids might have commercial use in confined production systems.

  17. Sexual difference in PCB concentrations of coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Madenjian, Charles P.; Schrank, Candy S.; Begnoche, Linda J.; Elliott, Robert F.; Quintal, Richard T.

    2010-01-01

    We determined polychlorinated biphenyl (PCB) concentrations in 35 female coho salmon (Oncorhynchus kisutch) and 60 male coho salmon caught in Lake Michigan (Michigan and Wisconsin, United States) during the fall of 1994 and 1995. In addition, we determined PCB concentrations in the skin-on fillets of 26 female and 19 male Lake Michigan coho salmon caught during the fall of 2004 and 2006. All coho salmon were age-2 fish. These fish were caught prior to spawning, and therefore release of eggs could not account for sexual differences in PCB concentrations because female coho salmon spawn only once during their lifetime. To investigate whether gross growth efficiency (GGE) differed between the sexes, we applied bioenergetics modeling. Results showed that, on average, males were 19% higher in PCB concentration than females, based on the 1994–1995 dataset. Similarly, males averaged a 20% higher PCB concentration in their skin-on fillets compared with females. According to the bioenergetics modeling results, GGE of adult females was less than 1% higher than adult male GGE. Thus, bioenergetics modeling could not explain the 20% higher PCB concentration exhibited by the males. Nonetheless, a sexual difference in GGE remained a plausible explanation for the sexual difference in PCB concentrations.

  18. Chum salmon Oncorhynchus keta respond to moonlight during homeward migrations.

    PubMed

    Hasegawa, E I

    2012-07-01

    The swimming depth of chum salmon Oncorhynchus keta equipped with archival tags was investigated off the Pacific Ocean coast of Hokkaido and North Honshu, Japan. As shown from movements of the fish with disc tags, O. keta swam at shallower depths during the full-moon phase than in the other phases and their swimming speed during this phase was faster compared to other phases. In addition, the circadian rhythm suggests a biological clock. These observations are all consistent with the view that O. keta make use of moonlight in order to navigate at night-time during homeward migration.

  19. Proteomic Analysis of Chinook Salmon (Oncorhynchus tshawytscha) Ovarian Fluid

    PubMed Central

    Johnson, Sheri L.; Villarroel, Marsha; Rosengrave, Patrice; Carne, Alan; Kleffmann, Torsten; Lokman, P. Mark; Gemmell, Neil J.

    2014-01-01

    The ovarian, or coelomic, fluid that is released with the egg mass of many fishes is increasingly found to play an important role in several biological processes crucial for reproductive success. These include maintenance of oocyte fertility and developmental competence, prolonging of sperm motility, and enhancing sperm swimming speed. Here we examined if and how the proteome of chinook salmon (Oncorhynchus tshawytscha) ovarian fluid varied among females and then sought to examine the composition of this fluid. Ovarian fluid in chinook salmon was analyzed using 1D SDS PAGE and LC-MS/MS tryptic digest screened against Mascot and Sequest databases. We found marked differences in the number and concentrations of proteins in salmon ovarian fluid across different females. A total of 174 proteins were identified in ovarian fluid, 47 of which were represented by six or more peptides, belonging to one of six Gene Ontology pathways. The response to chemical stimulus and response to hypoxia pathways were best represented, accounting for 26 of the 174 proteins. The current data set provides a resource that furthers our understanding of those factors that influence successful egg production and fertilisation in salmonids and other species. PMID:25089903

  20. Proteomic analysis of chinook salmon (Oncorhynchus tshawytscha) ovarian fluid.

    PubMed

    Johnson, Sheri L; Villarroel, Marsha; Rosengrave, Patrice; Carne, Alan; Kleffmann, Torsten; Lokman, P Mark; Gemmell, Neil J

    2014-01-01

    The ovarian, or coelomic, fluid that is released with the egg mass of many fishes is increasingly found to play an important role in several biological processes crucial for reproductive success. These include maintenance of oocyte fertility and developmental competence, prolonging of sperm motility, and enhancing sperm swimming speed. Here we examined if and how the proteome of chinook salmon (Oncorhynchus tshawytscha) ovarian fluid varied among females and then sought to examine the composition of this fluid. Ovarian fluid in chinook salmon was analyzed using 1D SDS PAGE and LC-MS/MS tryptic digest screened against Mascot and Sequest databases. We found marked differences in the number and concentrations of proteins in salmon ovarian fluid across different females. A total of 174 proteins were identified in ovarian fluid, 47 of which were represented by six or more peptides, belonging to one of six Gene Ontology pathways. The response to chemical stimulus and response to hypoxia pathways were best represented, accounting for 26 of the 174 proteins. The current data set provides a resource that furthers our understanding of those factors that influence successful egg production and fertilisation in salmonids and other species.

  1. Population viability of the Snake River chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Emlen, John M.

    1995-01-01

    In the presence of historical data, population viability models of intermediate complexity can be parameterized and utilized to project the consequences of various management actions for endangered species. A general stochastic population dynamics model with density feedback, age structure, and autocorrelated environmental fluctuations was constructed and parameterized for best fit over 36 years of spring chinook salmon (Oncorhynchus tshawytscha) redd count data in five Idaho index streams. Simulations indicate that persistence of the Snake River spring chinook salmon population depends primarily on density-independent mortality. Improvement of rearing habitat, predator control, reduced fishing pressure, and improved dam passage all would alleviate density-independent mortality. The current value of the Ricker α should provide for a continuation of the status quo. A recovery of the population to 1957–1961 levels within 100 years would require an approximately 75% increase in survival and (or) fecundity. Manipulations of the Ricker β are likely to have little or no effect on persistence versus extinction, but considerable influence on population size.

  2. Multigenerational outbreeding effects in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Lehnert, Sarah J; Love, Oliver P; Pitcher, Trevor E; Higgs, Dennis M; Heath, Daniel D

    2014-08-01

    Outbreeding, mating between genetically divergent individuals, may result in negative fitness consequences for offspring via outbreeding depression. Outbreeding effects are of notable concern in salmonid research as outbreeding can have major implications for salmon aquaculture and conservation management. We therefore quantified outbreeding effects in two generations (F1 hybrids and F2 backcrossed hybrids) of Chinook salmon (Oncorhynchus tshawytscha) derived from captively-reared purebred lines that had been selectively bred for differential performance based on disease resistance and growth rate. Parental lines were crossed in 2009 to create purebred and reciprocal hybrid crosses (n = 53 families), and in 2010 parental and hybrid crosses were crossed to create purebred and backcrossed hybrid crosses (n = 66 families). Although we found significant genetic divergence between the parental lines (FST = 0.130), reciprocal F1 hybrids showed no evidence of outbreeding depression (hybrid breakdown) or favorable heterosis for weight, length, condition or survival. The F2 backcrossed hybrids showed no outbreeding depression for a suite of fitness related traits measured from egg to sexually mature adult life stages. Our study contributes to the current knowledge of outbreeding effects in salmonids and supports the need for more research to better comprehend the mechanisms driving outbreeding depression.

  3. Density-dependence at sea for coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Emlen, J.M.; Reisenbichler, R.R.; McGie, A.M.; Nickelson, T.E.

    1990-01-01

    The success of expanded salmon hatchery programs will depend strongly on the degree of density-induced diminishing returns per smolt released. Several authors have addressed the question of density-dependent mortality at sea in coho salmon (Oncorhynchus kisutch), but have come to conflicting conclusions. We believe there are compelling reasons to reinvestigate the data, and have done so for public hatchery fish, using a variety of approaches. The results provide evidence that survival of these public hatchery fish is negatively affected, directly by the number of public hatchery smolts and indirectly by the number of private hatchery smolts. These results are weak, statistically, and should be considered primarily as a caution to those who, on the basis of other published work, believe that density-dependence does not exist. The results reported here also re-emphasize the often overlooked point that inferences drawn from data are strongly biased by investigators' views of how the systems of interest work and by the statistical assumptions they make preparatory to the analysis of those data.

  4. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  5. Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Pavey, Scott A.; Nielsen, Jennifer L.; Hamon, Troy R.

    2010-01-01

    Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (~500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000–15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.

  6. Physiological mechanisms of imprinting and homing migration in Pacific salmon Oncorhynchus spp.

    PubMed

    Ueda, H

    2012-07-01

    After several years of feeding at sea, salmonids have an amazing ability to migrate long distances from the open ocean to their natal stream to spawn. Three different research approaches from behavioural to molecular biological studies have been used to elucidate the physiological mechanisms underpinning salmonid imprinting and homing migration. The study was based on four anadromous Pacific salmon Oncorhynchus spp., pink salmon Oncorhynchus gorbuscha, chum salmon Oncorhynchus keta, sockeye salmon Oncorhynchus nerka and masu salmon Oncorhynchus masou, migrating from the North Pacific Ocean to the coast of Hokkaido, Japan, as well as lacustrine O. nerka and O. masou in Lake Toya, Hokkaido, where the lake serves as the model oceanic system. Behavioural studies using biotelemetry techniques showed swimming profiles from the Bering Sea to the coast of Hokkaido in O. keta as well as homing behaviours of lacustrine O. nerka and O. masou in Lake Toya. Endocrinological studies on hormone profiles in the brain-pituitary-gonad axis of O. keta, and lacustrine O. nerka identified the hormonal changes during homing migration. Neurophysiological studies revealed crucial roles of olfactory functions on imprinting and homing during downstream and upstream migration, respectively. These findings are discussed in relation to the physiological mechanisms of imprinting and homing migration in anadromous and lacustrine salmonids. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  7. 50 CFR 226.211 - Critical habitat for Seven Evolutionarily Significant Units (ESUs) of Salmon (Oncorhynchus spp...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Significant Units (ESUs) of Salmon (Oncorhynchus spp.) in California. 226.211 Section 226.211 Wildlife and... Significant Units (ESUs) of Salmon (Oncorhynchus spp.) in California. Critical habitat is designated in the... Obispo; (4) Camp Roberts; and (5) Mare Island Army Reserve Center. (f) California Coastal Chinook...

  8. 50 CFR 226.211 - Critical habitat for Seven Evolutionarily Significant Units (ESUs) of Salmon (Oncorhynchus spp...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Significant Units (ESUs) of Salmon (Oncorhynchus spp.) in California. 226.211 Section 226.211 Wildlife and... Significant Units (ESUs) of Salmon (Oncorhynchus spp.) in California. Critical habitat is designated in the... Obispo; (4) Camp Roberts; and (5) Mare Island Army Reserve Center. (f) California Coastal Chinook...

  9. 50 CFR 226.211 - Critical habitat for Seven Evolutionarily Significant Units (ESUs) of Salmon (Oncorhynchus spp...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Significant Units (ESUs) of Salmon (Oncorhynchus spp.) in California. 226.211 Section 226.211 Wildlife and... Significant Units (ESUs) of Salmon (Oncorhynchus spp.) in California. Critical habitat is designated in the... Obispo; (4) Camp Roberts; and (5) Mare Island Army Reserve Center. (f) California Coastal Chinook...

  10. 50 CFR 226.211 - Critical habitat for Seven Evolutionarily Significant Units (ESUs) of Salmon (Oncorhynchus spp...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Significant Units (ESUs) of Salmon (Oncorhynchus spp.) in California. 226.211 Section 226.211 Wildlife and... Significant Units (ESUs) of Salmon (Oncorhynchus spp.) in California. Critical habitat is designated in the... Obispo; (4) Camp Roberts; and (5) Mare Island Army Reserve Center. (f) California Coastal Chinook...

  11. 50 CFR 226.211 - Critical habitat for Seven Evolutionarily Significant Units (ESUs) of Salmon (Oncorhynchus spp...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Significant Units (ESUs) of Salmon (Oncorhynchus spp.) in California. 226.211 Section 226.211 Wildlife and... Significant Units (ESUs) of Salmon (Oncorhynchus spp.) in California. Critical habitat is designated in the... Obispo; (4) Camp Roberts; and (5) Mare Island Army Reserve Center. (f) California Coastal Chinook...

  12. Water velocity influences prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss irideus)

    Treesearch

    John J. Piccolo; Nicholas F. Hughes; Mason D. Bryant

    2008-01-01

    We examined the effects of water velocity on prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (sea-run rainbow trout,Oncorhynchus mykiss irideus) in laboratory experiments. We used repeated-measures analysis of variance to test the effects of velocity, species, and the velocity x species interaction on prey capture...

  13. Detection and identification of Diphyllobothrium nihonkaiense plerocercoids from wild Pacific salmon (Oncorhynchus spp.) in Japan.

    PubMed

    Suzuki, J; Murata, R; Sadamasu, K; Araki, J

    2010-12-01

    We investigated the risk of diphyllobothriasis from ingestion of wild Pacific salmon in Japan by surveying Diphyllobothrium plerocercoids in 182 salmon samples obtained from Japan. The plerocercoids were not detected in chum salmon (Oncorhynchus keta) (0/26), called Akizake in Japan, caught between September and November. However, the detection rate of plerocercoids in chum salmon, called Tokishirazu in Japan, caught between early April and June, was 51.1% (24/47) with an average of two plerocercoid larvae per fish. The detection rates of cherry salmon (Oncorhynchus masou) and pink salmon (Oncorhynchus gorbuscha) were 12.2% (10/82) and 18.5% (5/27), respectively, and the average number of plerocercoids per fish was 0.45 (37 larvae/82 fishes) and 0.22 larvae (6 larvae/27 fishes), respectively. Plerocercoids isolated from O. keta and O. masou were identified as Diphyllobothrium nihonkaiense on the basis of molecular analysis of the cox1 and nad3 genes. Moreover, four tapeworms (three from O. keta and one from O. masou) were obtained by infecting golden hamsters with plerocercoids. The morphological features of these tapeworms were similar to those of D. nihonkaiense isolated from humans. Therefore, we think that O. keta and not O. masou is the most important source of plerocercoid infections in Japan.

  14. Renal excretion in coho salmon (Oncorhynchus kisutch) after acute exposure to 3-trifluoromethyl-4-nitrophenol

    USGS Publications Warehouse

    Hunn, J.B.; Allen, J.L.

    1975-01-01

    COHO SALMON (ONCORHYNCHUS KISUTCH) EXPOSED TO AN ACUTE, SUBLETHAL CONCENTRATION OF 3-TRIFLUOROMETHLY 1-4 NITROPHENOL (TFM) EXHIBITED AN INCREASED OUTPUT OF URINE WHEN COMPARED WITH CONTROLS, BUT THE URINARY EXCRETION OF NA, K, CA, MG AND C1 WAS NOT AFFECTED. ABOUT 35 TIMES MORE CONJUGATED TFM THAN FREE TFM WAS EXCRETED DURING THE 24-HOUR STUDY PERIOD.

  15. Evaluating probability sampling strategies for estimating redd counts: an example with Chinook salmon (Oncorhynchus tshawytscha)

    Treesearch

    Jean-Yves Courbois; Stephen L. Katz; Daniel J. Isaak; E. Ashley Steel; Russell F. Thurow; A. Michelle Wargo Rub; Tony Olsen; Chris E. Jordan

    2008-01-01

    Precise, unbiased estimates of population size are an essential tool for fisheries management. For a wide variety of salmonid fishes, redd counts from a sample of reaches are commonly used to monitor annual trends in abundance. Using a 9-year time series of georeferenced censuses of Chinook salmon (Oncorhynchus tshawytscha) redds from central Idaho,...

  16. Landscape characteristics and coho salmon (Oncorhynchus kisutch) distributions: explaining abundance versus occupancy

    Treesearch

    E.A. Steel; D.W. Jensen; K.M. Burnett; K. Christiansen; J.C. Firman; B.E. Feist; K.J. Anlauf; D.P. Larsen

    2012-01-01

    Distribution of fishes, both occupancy and abundance, is often correlated with landscape-scale characteristics (e.g., geology, climate, and human disturbance). Understanding these relationships is essential for effective conservation of depressed populations. We used landscape characteristics to explain the distribution of coho salmon (Oncorhynchus kisutch...

  17. Heritability of tolerance for infectious hematopoietic necrosis in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    McIntyre, John D.; Amend, Donald F.

    1978-01-01

    A hierarchical breeding design was used to demonstrate the heritability of tolerance for infectious hematopoietic necrosis (IHN) in sockeye salmon. Oncorhynchus nerka. Heritability was about 30%, indicating that artificial selection may increase the number of fish that can tolerate the disease.

  18. Comparative diets of subyearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, J.H.

    2007-01-01

    Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) have established naturalized populations throughout the Great Lakes. Young-of-year of these species occur sympatrically for about one month in Lake Ontario tributaries. This study examined the diets of subyearling Chinook salmon and steelhead relative to available food in the Salmon River, New York. Terrestrial invertebrates and trichopterans were the major prey of Chinook salmon, whereas steelhead fed primarily on baetid nymphs and chironomid larvae. Diet overlap was low (0.45) between the species. The diet of Chinook was closely associated to the composition of the drift (0.88). Steelhead diet drew equally from the drift and benthos during the first year of the study, but more closely matched the benthos during the second year. Differences in prey selection, perhaps associated with differences in fish size, in addition to apparent differences in feeding mode (drift versus benthic), likely reduce competitive interactions between these species.

  19. Genetic stock identification of immature chum salmon ( Oncorhynchus keta) in the western Bering Sea, 2004

    NASA Astrophysics Data System (ADS)

    Kang, Minho; Kim, Suam; Low, Loh-Lee

    2016-03-01

    Genetic stock identification studies have been widely applied to Pacific salmon species to estimate stock composition of complex mixed-stock fisheries. In a September-October 2004 survey, 739 chum salmon ( Oncorhynchus keta) specimens were collected from 23 stations in the western Bering Sea. We determined the genetic stock composition of immature chum salmon based on the previous mitochondria DNA baseline. Each regional estimate was computed based on the conditional maximum likelihood method using 1,000 bootstrap resampling and then pooled to the major regional groups: Korea - Japan - Primorie (KJP) / Russia (RU) / Northwest Alaska (NWA) / Alaska Peninsula - Southcentral Alaska - Southeast Alaska - British Columbia - Washington (ONA). The stock composition of immature chum salmon in the western Bering Sea was a mix of 0.424 KJP, 0.421 RU, 0.116 NWA, and 0.039 ONA stocks. During the study period, the contribution of Asian chum salmon stocks gradually changed from RU to KJP stock. In addition, North American populations from NWA and ONA were small but present near the vicinity of the Russian coast and the Commander Islands, suggesting that the study areas in the western Bering Sea were an important migration route for Pacific chum salmon originating both from Asia and North America during the months of September and October. These results make it possible to better understand the chum salmon stock composition of the mixed-stock fisheries in the western Bering Sea and the stock-specific distribution pattern of chum salmon on the high-seas.

  20. Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha)

    PubMed Central

    Bett, Nolan N.; Hinch, Scott G.; Dittman, Andrew H.; Yun, Sang-Seon

    2016-01-01

    Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST. PMID:27827382

  1. Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha).

    PubMed

    Bett, Nolan N; Hinch, Scott G; Dittman, Andrew H; Yun, Sang-Seon

    2016-11-09

    Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST.

  2. Stabilizing Smoked Salmon (Oncorhynchus gorbuscha) Tissue after Extraction of Oil

    USDA-ARS?s Scientific Manuscript database

    Alaska salmon oils are rich in n-3 polyunsaturated fatty acids and are prized by the food and pharmaceutical industries. However, the tissue that remains after oil extraction does not have an established market. Discarded salmon tissues were preserved using a combination of smoke-processing and acid...

  3. [CATALITICAL PROPERTIES OF LIVER MONOAMINE OXIDASE IN THE CHUM SALMON ONCORHYNCHUS KETA].

    PubMed

    Basova, I N; Basova, N E; Yagodina, O V

    2015-01-01

    The substrate and inhibitory specificity of mitochondrial monoamine oxidase (MAO) in the liver of males of the summer form of the chum salmon Oncorhynchus keta was studied. As to the spectrum of deaminated substrates, the hepatic MAO of the chum salmon is similar to MAO of most terrestrial mammals, for eight classical MAO substrates similarity in their substrate characteristics were found. Analysis of the antimonoamine oxidase activity of two derivaties of 2-propinilamine, five derivatives of acridine as well as of pyronine G revealed significant qualitative and quantitative differences as compared to the hepatic enzyme of tuna and whitefish. The compounds tested manifested themselves as irreversible inhibitors of chum salmon's hepatic MAO possessing various efficacy, but lacking the selectivity of action as dependent on the deaminated substrate. The obtained data on the substrate and inhibitory analysis provide an indirect evidence for the presence of a single molecular form of MAO in the chum salmon liver.

  4. Single nucleotide polymorphisms in chum salmon (Oncorhynchus keta) mitochondrial DNA derived from restriction site haplotype information.

    PubMed

    Garvin, M R; Saitoh, K; Churikov, D Y; Brykov, V A; Gharrett, A J

    2010-07-01

    Single nucleotide polymorphisms (SNPs) are useful genetic markers for the management and conservation of commercially important species such as salmon. Informative markers can be derived from data obtained for other purposes. We used restriction endonuclease data from earlier work to identify potentially useful restriction sites in chum salmon (Oncorhynchus keta). With the aid of a newly generated complete mitochondrial DNA sequence (accession number AP010773), we identified the SNP responsible for each restriction site variant, designed rapid genotyping assays, and surveyed the SNPs in more than 400 individuals. The restriction site analysis and the SNP genotyping assays were almost perfectly concordant. Some reasons for the non-concordance were identified and discussed.

  5. Recent physical connections may explain weak genetic structure in western Alaskan chum salmon (Oncorhynchus keta) populations.

    PubMed

    Garvin, Michael R; Kondzela, Christine M; Martin, Patrick C; Finney, Bruce; Guyon, Jeffrey; Templin, William D; Decovich, Nick; Gilk-Baumer, Sara; Gharrett, Anthony J

    2013-07-01

    Low genetic divergence at neutral loci among populations is often the result of high levels of contemporary gene flow. Western Alaskan summer-run chum salmon (Oncorhynchus keta) populations demonstrate weak genetic structure, but invoking contemporary gene flow as the basis for the low divergence is problematic because salmon home to their natal streams and some of the populations are thousands of kilometers apart. We used genotypes from microsatellite and single nucleotide polymorphism loci to investigate alternative explanations for the current genetic structure of chum salmon populations from western Alaska. We also estimated current levels of gene flow among Kuskokwim River populations. Our results suggest that weak genetic structure is best explained by physical connections that occurred after the Holocene Thermal Maximum among the Yukon, Kuskokwim, and Nushagak drainages that allowed gene flow to occur among now distant populations.

  6. Recent physical connections may explain weak genetic structure in western Alaskan chum salmon (Oncorhynchus keta) populations

    PubMed Central

    Garvin, Michael R; Kondzela, Christine M; Martin, Patrick C; Finney, Bruce; Guyon, Jeffrey; Templin, William D; DeCovich, Nick; Gilk-Baumer, Sara; Gharrett, Anthony J

    2013-01-01

    Low genetic divergence at neutral loci among populations is often the result of high levels of contemporary gene flow. Western Alaskan summer-run chum salmon (Oncorhynchus keta) populations demonstrate weak genetic structure, but invoking contemporary gene flow as the basis for the low divergence is problematic because salmon home to their natal streams and some of the populations are thousands of kilometers apart. We used genotypes from microsatellite and single nucleotide polymorphism loci to investigate alternative explanations for the current genetic structure of chum salmon populations from western Alaska. We also estimated current levels of gene flow among Kuskokwim River populations. Our results suggest that weak genetic structure is best explained by physical connections that occurred after the Holocene Thermal Maximum among the Yukon, Kuskokwim, and Nushagak drainages that allowed gene flow to occur among now distant populations. PMID:23919176

  7. The stress of Formalin treatments in rainbow trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Wedemeyer, Gary

    1971-01-01

    Changes in gill function, acid–base balance and pituitary activation occurring during standard 200 ppm formalin treatments of juvenile rainbow trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch) were compared. Plasma Cl−, Ca++, total CO2, and interrenal vitamin C in the trout declined continuously and in proportion to the exposure time, but the salmon were able to maintain these metabolic parameters at approximately initial levels. Blood pH and alkaline reserve regulation of the salmon was also less affected by formalin treatments, especially during prolonged exposures. The oxygen consumption of both species was depressed, but substantially more so in the trout than could be accounted for by decreased ventilation rates. Little frank hemolysis occurred in either species, but there was a significant bilirubinemia in the trout.

  8. Isolation and structural characterization of glycosaminoglycans from heads of red salmon (Oncorhynchus nerka)

    PubMed Central

    Zhang, Fuming; Xie, Jin; Linhardt, Robert J.

    2015-01-01

    Glycosaminoglycans (GAGs) are linear, highly negatively charged polysaccharides. They are ubiquitous molecules exhibiting a wide range of biological functions with numerous applications in pharmaceutical, cosmetic, and nutraceutical industrials. The commercial fish-processing industry generates large quantities of solid waste, which can represent a potential resource for GAG production. In this study, we used a three-step recovery and purification scheme for isolation of GAGs from the heads of red salmon (Oncorhynchus nerka). The GAGs recovery yield was 6 to 7 mg from 1 gram of salmon head powder. The recovered GAGs were structurally analyzed with polyacrylamide gel electrophoresis and by disaccharide composition analysis with reversed-phase ion-pair high-performance liquid chromatography. The analyses showed the major composition of the GAGs in red salmon head were chondroitin sulfate C and E. PMID:26918243

  9. Antisomatostatin-induced growth acceleration in chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Mayer, I; McLean, E; Kieffer, T J; Souza, L M; Donaldson, E M

    1994-10-01

    Since somatostatin (SRIF) inhibits the release of growth hormone (GH), its immunoneutralization may provide an alternative to GH therapy as a means of enhancing somatic growth in fish. The present study examined the feasibility of accelerating growth in juvenile chinook salmon by means of antiSRIF administration. Yearling salmon of Nicola River stock (BC, Canada) were injected intraperitoneally every 5 days, for a total of 40 days, with either SRIF (1 μg g-1 body wt.), antiSRIF (SOMA-10, 1 μg g(-1)), recombinant bovine GH (rbGH, 2.5 μg g(-1)), recombinant porcine GH (rpGH, 2.5 μg g(-1)) or saline (controls). No significant differences were observed in length, weight or final condition factor (k) between the SRIF-treated and control fish over the experimental period. However, the fish treated with the antiSRIF were significantly (p ≤ 0.05) longer and heavier than the control salmon after 25 and 30 days respectively. Furthermore, antiSRIF treatment caused a lowering in k when compared to the control salmon. Fish injected with rbGH or rpGH were significantly longer and heavier than all other groups (p ≤ 0.05), after only 5 days. GH treated groups also returned higher k when compared against all other treatments (p ≤ 0.05). No differences were observed in growth between the two rGH treatments over the experimental period.

  10. Linking marine and freshwater growth in western Alaska Chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.; Agler, B.A.

    2009-01-01

    The hypothesis that growth in Pacific salmon Oncorhynchus spp. is dependent on previous growth was tested using annual scale growth measurements of wild Chinook salmon Oncorhynchus tshawytscha returning to the Yukon and Kuskokwim Rivers, Alaska, from 1964 to 2004. First-year marine growth in individual O. tshawytscha was significantly correlated with growth in fresh water. Furthermore, growth during each of 3 or 4 years at sea was related to growth during the previous year. The magnitude of the growth response to the previous year's growth was greater when mean year-class growth during the previous year was relatively low. Length (eye to tail fork, LETF) of adult O. tshawytscha was correlated with cumulative scale growth after the first year at sea. Adult LETF was also weakly correlated with scale growth that occurred during freshwater residence 4 to 5 years earlier, indicating the importance of growth in fresh water. Positive growth response to previous growth in O. tshawytscha was probably related to piscivorous diet and foraging benefits of large body size. Faster growth among O. tshawytscha year classes that initially grew slowly may reflect high mortality in slow growing fish and subsequent compensatory growth in survivors. Oncorhynchus tshawytscha in this study exhibited complex growth patterns showing a positive relationship with previous growth and a possible compensatory response to environmental factors affecting growth of the age class.

  11. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2004-2005 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Duff, Cameron; Friesen, Thomas A.

    2006-02-01

    Pacific salmon Oncorhynchus spp. populations have declined over the last century due to a variety of human impacts. Chum salmon O. keta populations in the Columbia River have remained severely depressed for the past several decades, while upriver bright (URB) fall Chinook salmon O. tschawytscha populations have maintained relatively healthy levels. For the past seven years we have collected data on adult spawning and juvenile emergence and outmigration of URB fall Chinook and chum salmon populations in the Ives and Pierce islands complex below Bonneville Dam. In 2004, we estimated 1,733 fall Chinook salmon and 336 chum salmon spawned in our study area. Fall Chinook salmon spawning peaked 19 November with 337 redds and chum salmon spawning peaked 3 December with 148 redds. Biological characteristics continue to suggest chum salmon in our study area are similar to nearby stocks in Hardy and Hamilton creeks, and Chinook salmon we observe are similar to upriver bright stocks. Temperature data indicated that 2004 brood URB fall Chinook salmon emergence began on 6 January and ended 27 May 2005, with peak emergence occurring 12 March. Chum salmon emergence began 4 February and continued through 2 May 2005, with peak emergence occurring on 21 March. Between 13 January and 28 June, we sampled 28,984 juvenile Chinook salmon and 1,909 juvenile chum salmon. We also released 32,642 fin-marked and coded-wire tagged juvenile fall Chinook salmon to assess survival. The peak catch of juvenile fall Chinook salmon occurred on 18 April. Our results suggested that the majority of fall Chinook salmon outmigrate during late May and early June, at 70-80 mm fork length (FL). The peak catch of juvenile chum salmon occurred 25 March. Juvenile chum salmon appeared to outmigrate at 40-55 mm FL. Outmigration of chum salmon peaked in March but extended into April and May.

  12. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  13. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Dolan, Brian P; Fisher, Kathleen M; Colvin, Michael E; Benda, Susan E; Peterson, James T; Kent, Michael L; Schreck, Carl B

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Isolation and characterization of Edwardsiella tarda from fall chinook salmon (Oncorhynchus tshawytscha).

    PubMed Central

    Amandi, A; Hiu, S F; Rohovec, J S; Fryer, J L

    1982-01-01

    A new bacterial pathogen of chinook salmon (oncorhynchus tshawytscha) was isolated from fish in Oregon's Rogue River. The bacteria are biochemically and serologically related to strains of Edwardsiella tarda. Initially isolated from chinook salmon, the bacteria were also pathogenic for steelhead and rainbow trout (Salmo gairdneri), and channel catfish (Ictalurus punctatus). The 50% lethal doses for chinook salmon, steelhead trout, and channel catfish injected intraperitoneally and maintained in 18 degrees C water were 4.1 x 10(6), 5.6 x 10(6), and 4.0 x 10(5) respectively. When chinook salmon and rainbow trout were injected intraperitoneally and held in 12 degrees C water, the mean lethal doses were 6.4 x 10(7) and 1.7 x 10(6), respectively. The invasiveness of the organism was low in steelhead trout exposed to the bacteria by the waterborne route. The optimum growth temperature of the bacteria in brain heart infusion broth was approximately 35 degrees C. The guanine plus cytosine content of DNA obtained from E. tarda isolated from salmon was 59 mol%. PMID:7103490

  15. Vulnerability to predation and physiological stress responses of experimentally descaled juvenile Chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Gadomski, Dena M.; Mesa, Matthew G.; Olson, Todd M.

    1994-01-01

    Juvenile salmonids,Oncorhynchus spp., commonly encounter conditions (e.g., during hatchery release and dam passage) that result in damage to the skin, scale, and slime complex. We conducted laboratory experiments to determine if descaling of juvenile chinook salmon,O. tshawytscha, increased their vulnerability to predation, and to assess the physiological stress responses elicited by descaling. Salmon were experimentally descaled on either 10% or 20% of their total body area. When offered equal numbers of control and descaled juvenile chinook salmon, northern squawfish,Ptychocheilus oregonensis, did not consume significantly more of either prey type (48–60% of consumed prey were descaled). Juvenile chinook salmon descaled on 10% of their body area did show significant physiological stress responses, however. Mean concentrations of plasma cortisol peaked 1 h after descaling, and returned to control levels by 12 h. Plasma glucose peaked 3 h post-treatment and remained elevated for 24 h. Plasma lactate increased immediately following treatment and returned to undisturbed control levels by 3 h. The osmoregulatory response of plasma potassium was highly variable, but plasma sodium decreased immediately and remained low for 24 h. The observed physiological responses suggest that descaling of juvenile chinook salmon could result in decreased resistance to disease and other stressors encountered in the field, possibly leading to reduced performance capacity and lowered survival.

  16. Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis.

    PubMed

    Sutherland, Ben J G; Koczka, Kim W; Yasuike, Motoshige; Jantzen, Stuart G; Yazawa, Ryosuke; Koop, Ben F; Jones, Simon R M

    2014-03-15

    Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection. In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon. Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance

  17. Post-release behavior and movement patterns of Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) after capture using alternative commercial fish gear, lower Columbia River, Washington and Oregon, 2013

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Evans, Scott D.; Hansen, Gabriel S.; Rondorf, Dennis W.

    2014-01-01

    In 2011 and 2012, WDFW conducted post-release mortality studies of steelhead (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) that were captured using beach or purse seines. These studies were comprised of two groups of fish tagged with passive integrated transponder tags (PIT tags): (1) treatment fish that were captured by one of the gear types 9–25 river kilometers (rkm) downstream of Bonneville Dam (rkm 234); and (2) control fish that were captured at the Adult Fish Facility near the Washington shore fish ladder at Bonneville Dam, and then transported and released 8 rkm downstream of the Bonneville Dam. Fish were confirmed to have survived if they moved upstream and were detected on PIT-tag antennas at or upstream of Bonneville Dam, were recovered at hatcheries or at the dam, or were captured by commercial or sport fishers. Post-release survival estimates were higher for steelhead (89–98 percent) than for Chinook salmon and coho salmon (50–90 percent; Washington Department of Fish and Wildlife, unpub. data, 2014). However, some Chinook salmon and coho salmon return to hatcheries, or spawn in the mainstem Columbia River and in tributaries downstream of Bonneville Dam. The proportion of Chinook salmon and coho salmon in the treatment group that were destined for areas downstream of Bonneville Dam likely was higher than in the control group because the control fish were collected as they were attempting to pass the dam. If this assertion was true, mortality would have been overestimated in these studies, so WDFW developed a study plan to determine the post-release movements and intended location of Chinook salmon and coho salmon collected with beach and purse seines in the lower Columbia River.

  18. Global Assessment of Extinction Risk to Populations of Sockeye Salmon Oncorhynchus nerka

    PubMed Central

    Rand, Peter S.; Goslin, Matthew; Gross, Mart R.; Irvine, James R.; Augerot, Xanthippe; McHugh, Peter A.; Bugaev, Victor F.

    2012-01-01

    Background Concern about the decline of wild salmon has attracted the attention of the International Union for the Conservation of Nature (IUCN). The IUCN applies quantitative criteria to assess risk of extinction and publishes its results on the Red List of Threatened Species. However, the focus is on the species level and thus may fail to show the risk to populations. The IUCN has adapted their criteria to apply to populations but there exist few examples of this type of assessment. We assessed the status of sockeye salmon Oncorhynchus nerka as a model for application of the IUCN population-level assessments and to provide the first global assessment of the status of an anadromous Pacific salmon. Methods/Principal Findings We found from demographic data that the sockeye salmon species is not presently at risk of extinction. We identified 98 independent populations with varying levels of risk within the species' range. Of these, 5 (5%) are already extinct. We analyzed the risk for 62 out of 93 extant populations (67%) and found that 17 of these (27%) are at risk of extinction. The greatest number and concentration of extinct and threatened populations is in the southern part of the North American range, primarily due to overfishing, freshwater habitat loss, dams, hatcheries, and changing ocean conditions. Conclusions/Significance Although sockeye salmon are not at risk at the species-level, about one-third of the populations that we analyzed are at risk or already extinct. Without an understanding of risk to biodiversity at the level of populations, the biodiversity loss in salmon would be greatly underrepresented on the Red List. We urge government, conservation organizations, scientists and the public to recognize this limitation of the Red List. We also urge recognition that about one-third of sockeye salmon global population diversity is at risk of extinction or already extinct. PMID:22511930

  19. Diet, feeding patterns, and prey selection of subyearling Atlantic salmon (Salmo salar) and subyearling chinook salmon (Oncorhynchus tshawytscha) in a tributary of Lake Ontario

    USGS Publications Warehouse

    Johnson, J. H.; Nash, K. J.; Chiavelli, R. A.; DiRado, J. A.; Mackey, G. E.; Knight, J. R.; Diaz, A. R.

    2017-01-01

    Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi-national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.

  20. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    USGS Publications Warehouse

    Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.

    2015-01-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.

  1. Ontogeny of the stress response in chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Feist, G.; Schreck, C.B.

    2001-01-01

    Whole body concentrations of cortisol were determined via radioimmunoassay in chinook salmon, Onchorynchus tshawytscha, during early development in both stressed and non-stressed fish to determine when the corticosteroidogenic stress response first appeared. Progeny from both pooled and individual females were examined to determine if differences existed in offspring from different females. Levels of cortisol were low in eyed eggs, increased at hatch, decreased 2 weeks later and then remained constant thereafter. Differences in cortisol between stressed and control fish were found 1 week after hatch and persisted for the remainder of the study. The magnitude of the stress response, or relative amount of cortisol produced, generally increased from the time when it was first detected, but a decrease in the ability to elicit cortisol was seen 4 weeks after hatching. Cortisol content of separate progeny from two individual females showed a similar pattern to that seen in pooled eggs. Our results indicate that chinook salmon are capable of producing cortisol following a stressful event approximately 1 week after the time of hatching. The decrease in endogenous cortisol content seen 2 weeks after hatching, and the decrease in the magnitude of the stress response seen 4 weeks after hatching may be comparable to developmental events documented in mammals where corticosteroid synthesis is inhibited to neutralize possible detrimental effects of these hormones during critical periods of development.

  2. Open-jaw syndrome in chinook salmon (Oncorhynchus tshawytscha) at a hatchery

    USGS Publications Warehouse

    Crouch, Dennis E.; Yasutake, William T.; Rucker, Robert R.

    1973-01-01

    Nearly 0.5% of the yearling spring chinook salmon (Oncorhynchus tshawytscha) at a national fish hatchery were observed with mouth agape, the condition occurring in two of 16 ponds. X-radiographs and histological preparations indicated that the articular bone of the lower jaw was malformed and dislocated dorsal and posterior to its normal point of attachment. The bone appeared to be embedded in the mandibular muscle and surrounded by an extensive fibrous tissue network. Genetic aberration, environmental interaction, and teratogenic substances are discussed as possible causes of the anomaly.

  3. The behavioural homing response of adult chum salmon Oncorhynchus keta to amino-acid profiles.

    PubMed

    Chen, E Y; Leonard, J B K; Ueda, H

    2016-11-21

    Adult chum salmon Oncorhynchus keta homing behaviour in a two-choice test tank (Y-maze) was monitored using a passive integrated transponder (PIT)-tag system in response to river-specific dissolved free amino-acid (DFAA) profiles and revealed that the majority of O. keta showed a preference for artificial natal-stream water and tended to stay in this maze arm for a longer period; natal-stream water was chosen over a nearby tributary's water, but not when the O. keta were presented with a non-tributary water. The results demonstrate the ability of O. keta to discriminate artificial stream waters containing natural levels of DFAA.

  4. Viral erythrocytic necrosis: Some physiological consequences of infection in chum salmon (Oncorhynchus keta)

    USGS Publications Warehouse

    MacMillan, John R.; Mulcahy, Daniel M.; Landolt, Marsha L.

    1980-01-01

    Erythroid cells in chum salmon (Oncorhynchus keta) susceptible to infection with erythrocytic necrosis virus (ENV) were examined by light and electron microscopy. Cells of stages II, III, IV, V, and VI contained complete eyrthrocytic necrosis virions in the cytoplasm. Viruses closely resembling ENV were also detected in the nuclei of some erythroblasts. Some secondary consequences of ENV infection were a threefold greater mortality rate from vibriosis, a significantly decreased tolerance to oxygen depletion, and a decreased ability to regulate serum sodium and potassium in saltwater.

  5. Histopathology of yearling sockeye salmon (Oncorhynchus nerka) infected with infectious hematopoietic necrosis (IHN)

    USGS Publications Warehouse

    1979-01-01

    Infectious hematopoietic necrosis (IHN) is generally believed to be a virus disease of very young salmonids. In recent years there have been increasing numbers of unpublished reports that this disease has been occurring uncharacteristically in fish as old as 7-14 months. Sockeye salmon (Oncorhynchus nerka) of this age the histological changes were not severe. Intestinal tract granular cells thought to be pathognomic in young fish were conspicuously absent. Kidney imprints showed necrobiotic bodies however, and subtle changes were observed in the spleen and kidney hematopoietic tissue.

  6. Atmospheric depression-mediated water temperature changes affect the vertical movement of chum salmon Oncorhynchus keta.

    PubMed

    Kitagawa, Takashi; Hyodo, Susumu; Sato, Katsufumi

    2016-08-01

    The Sanriku coastal area, Japan, is one of the southern-most natural spawning regions of chum salmon Oncorhynchus keta. Here, we report their behavioral response to changes in ambient temperature after the passage of an atmospheric depression during the early spawning season. Before the passage, all electrically tagged fish moved vertically for several hours to depths below the shallow thermocline at >100 m. However, during the atmospheric depression, the salmon shortened the duration of their vertical movements and spent most time at the surface. The water column was homogenous at <150 m deep except for the surface. The descending behavior may have been discontinued because the cooler water below the thermocline was no longer in a thermally defined layer, due to strong vertical mixing by high wave action. Instead, they likely spent time within the cooler water temperatures at the surface of bays to minimize metabolic energy cost during migration.

  7. Experimental hexamitiasis in juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdner)

    USGS Publications Warehouse

    1965-01-01

    An exogenous strain of cultured Hexamita salmonis (Moore) was employed to induce trophic hexamitiasis in otherwise disease-free juveniles of coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri). Mortality and growth were the parameters used to detect the effects of hexamitiasis on the two species. Two levels of each of the three experimental factors under study, Hexamita infection, species of fish, and density of fish, were arranged in a three-way factorial design. Replicate lots involved a total of 1,440 fish held under controlled laboratory conditions.Comparisons of growth and mortality indicate that infection with H. salmonis over a period of 8 weeks is innocuous to coho salmon. Steelhead trout suffered a low, but statistically significant mortality which subsided after the sixth week; growth rate was not affected.

  8. Application of laser ablation ICPMS to trace the environmental history of chum salmon Oncorhynchus keta.

    PubMed

    Arai, Takaomi; Hirata, Takafumi; Takagi, Yasuaki

    2007-02-01

    Trace element levels in otoliths of chum salmon Oncorhynchus keta were examined by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). A close linear relationship in the Sr:Ca ratios between EPMA (X-ray analysis with an electron microprobe) and LA-ICPMS analyses was found (p<0.0001), suggesting that the latter technique could be used to separate the marine and freshwater life phases. Mg:Ca, Cr:Ca, Zn:Ca and Ba:Ca ratios in either the core region or the oceanic growth zone of the otoliths varied among sites. These differences suggest that elemental compositions may reflect environmental variability among spawning (breeding) or habitat sites. Thus, those element ratios demonstrate the potential to be used to distinguish between fish spawning (breeding) sites and habitats for this species of salmon.

  9. Heteropolymorphism of mitochondrial NADH dehydrogenase subunit 3 gene for the population analysis of chum salmon, Oncorhynchus keta.

    PubMed

    Yoon, M; Choi, Y S; Jin, H J; Sohn, Y C; Lee, S K; Jin, D H

    2008-07-01

    Mitochondrial DNAs (mtDNAs) has been frequently used as genetic markers for the population genetic studies. In this study we used chum salmon (Oncorhynchus keta) from Korea, Japan andAmerica, and compared their mitochondrial NADH dehydrogenase subunit 3 (ND3) genes by DNA sequence analysis. Sequence variation was studied in the ND3 among total 11 individuals from three populations. The ND3 gene was amplified by PCR targeting parts of cytochrome oxidase III gene (COIII) and NADH dehydrogenase subunit 4L gene (ND4L). ND3 gene sequence, encoded 752 bps, presented some genetic variation in the chum salmon populations. The observed nucleotide variations inferred the distinct genetic differentiation of American salmons from Korean and Japanese chum salmons. Six sites of single nucleotide polymorphism (SNP) were explored in the ND3 locus. Denaturing gradient gel electrophoresis analysis also showed a clear heterogenous band in American salmons compared to Asian salmons.

  10. Genetic variation in chinook, Oncorhynchus tshawytscha, and coho, O. Kisutchsalmon from the north coast of Washington

    USGS Publications Warehouse

    Reisenbichler, R.R.; Phelps, S.R.

    1987-01-01

    We used starch-gel electrophoresis to genetically characterize the populations of chinook salmon, Oncorhynchus tshawytscha, and coho salmon, O. kisutch, in the major drainages of the north coast of Washington (the Quillayute, Uoh, Queets, and Quinault Rivers). Of 55 loci examined for electrophoretically detectable variation. 6 were polymorphic (frequency of the common allele was less than 0.95) in chinook salmon and 3 in coho salmon. Statistical tests of interdrainage and intradrainage variation for coho salmon were tenuous because most of the fish examined were from a single year class so that we could not account for variation among year classes. Nevertheless, these tests suggested that distinct stocks ofcoho salmon exist within drainages. and that variation was not significantly greater among drainages than within drainages. Interdrainage variation for wild chinook salmon was not significant. The data suggested that summer chinook salmon were electrophoretically different from fall chinook salmon, and the hatchery populations of chinook salmon were distinct from wild fish. A hatchery population developed primarily from north coast fish was electrophoretically more similar to wild chinook salmon than were the others.

  11. p,p'-DDE depresses the immune competence of chinook salmon (Oncorhynchus tshawytscha) leukocytes

    USGS Publications Warehouse

    Misumi, Ichiro; Vella, Anthony T.; Leong, Jo-Ann C.; Nakanishi, Teruyuki; Schreck, Carl B.

    2005-01-01

    p,p′-DDE, the main metabolite of DDT, is still detected in aquatic environments throughout the world. Here, the effects and mechanisms by which p,p′-DDE exposure might affect the immune system of chinook salmon (Oncorhynchus tshawytscha) was studied. Isolated salmon splenic and pronephric leukocytes were incubated with different concentrations of p,p′-DDE, and cell viability, induction of apoptosis, and mitogenic responses were measured by flow cytometry and Alamar Blue assay. p,p′-DDE significantly reduced cell viability and proliferation and increased apoptosis. The effect of p,p′-DDE on pronephric leukocytes was more severe than on splenic leukocytes, likely because pronephric leukocytes had a higher proportion of granulocytes, cells that appear more sensitive to p,p′-DDE. The effect of p,p′-DDE on leukocytes appeared to vary between developmental stages or seasonal differences. The mitogenic response of leukocytes of chinook salmon exposed to p,p′-DDE in vivo exhibited a biphasic dose–response relationship. Only leukocytes isolated from salmon treated with 59 ppm p,p′-DDE had a significantly lower percentage of Ig+ blasting cells than controls, although the response was biphasic. These results support the theory that exposure to chemical contaminants could lead to an increase in disease susceptibility and mortality of fish due to immune suppression.

  12. Identification of a new calcitonin gene in the salmon Oncorhynchus gorbuscha.

    PubMed Central

    Jansz, H; Martial, K; Zandberg, J; Milhaud, G; Benson, A A; Julienne, A; Moukhtar, M S; Cressent, M

    1996-01-01

    Three isoforms of calcitonin (CT) exist in salmonids. Isohormones I and II are expressed in the pink salmon Oncorhynchus gorbuscha. We report here the existence in this species of a CT gene and of its transcripts, which encode for a fourth isohormone, the salmon CT (sCT) IV. This new CT gene was identified by PCR from genomic DNA and by sequencing the amplified DNA. The expression of this CT gene was established in ultimobranchial body and brain, by reverse transcription-PCR, hybridization and sequencing. The sCT IV gene, like the sCT I gene, is a complex transcription unit, containing exons encoding for a CT as a calcitonin gene-related peptide (CGRP) molecule. The predicted peptide, sCT IV, has a greater homology with the eel CT and the sCT II than with the sCT I. Alignment of the sCT IV with other fish and chicken CT showed amino acid modifications in similar positions as those found during evolution. The predicted salmon CGRP IV peptide is highly homologous to the known CGRP molecules in other species, confirming the high conservation of the molecule during evolution. This identification of a new salmon CT gene is interesting both for the therapeutic potential represented by the new molecules encoded by this gene and for phylogenetic studies. Images Fig. 2 Fig. 3 Fig. 4 PMID:8901583

  13. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska

    USGS Publications Warehouse

    Lang, D.W.; Reeves, G.H.; Hall, J.D.; Wipfli, M.S.

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchus kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from ponds that did not receive spawners and also with fish from ponds that were artificially enriched with salmon carcasses and eggs. The response to spawning salmon was variable. In some ponds, fall-spawning salmon increased growth rates and improved the condition of juvenile coho salmon. The enrichment with salmon carcasses and eggs significantly increased growth rates of fish in nonspawning ponds. However, there was little evidence that the short-term growth benefits observed in the fall led to greater overwinter growth or survival to outmigration when compared with fish from the nonspawning ponds. One potential reason for this result may be that nutrients from spawning salmon are widely distributed across the delta because of hydrologic connectivity and hyporheic flows. The relationship among spawning salmon, overwinter growth, and smolt production on the Copper River Delta does not appear to be limited entirely to a simple positive feedback loop. ?? 2006 NRC.

  14. Validation of a freshwater Otolith microstructure pattern for Nisqually Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2011-01-01

    The Nisqually Fall Chinook salmon (Oncorhynchus tshawytscha) population is one of 27 stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem has taken place to assist in recovery of the stock since estuary habitat is a critical transition zone for juvenile fall Chinook salmon. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith microstructure analysis was selected as a tool to examine Chinook salmon life history, growth and residence in the Nisqually River estuary. The purpose of the current study is to incorporate microstructural analysis from the otoliths of juvenile Nisqually Chinook salmon collected at the downstream migrant trap within true freshwater (FW) habitat of the Nisqually River. The results from this analysis confirmed the previously documented Nisqually-specific FW microstructure pattern and revealed a Nisqually-specific microstructure pattern early in development (“developmental pattern”). No inter-annual variation in the microstructure pattern was visually observed when compared to samples from previous years. Furthermore, the Nisqually-specific “developmental pattern” and the FW microstructure pattern used in combination during analysis will allow us to recognize and separate with further confidence future unmarked Chinook salmon otolith collections into Nisqually-origin (natural or unmarked hatchery) and non-Nisqually origin categories. Freshwater mean increment width, growth rate and residence time were also calculated.

  15. Pesticides and PCBs in Pacific salmon (Oncorhynchus tshawytscha and O. kisutch) from Puget Sound, Washington

    SciTech Connect

    O`Neill, S.M.; West, J.E.

    1995-12-31

    The Washington Department of Fish and Wildlife initiated a long-term study to monitor levels of contaminants in two species of Pacific salmon (Oncorhynchus tshawytscha and O. kisutch) and other marine fishes of Puget Sound. The study is one component of the Puget Sound Ambient Monitoring Program (PSAMP), a multi-agency effort to assess the environmental health of Puget Sound. Here the authors summarize results from their ongoing study of O. tshawytscha and O. kisutch. Samples of muscle tissue were collected for chemical analyses from adult salmon that were purchased from licensed fish buyers or treaty tribal fisherman. From 1992 through 1994, both salmon species were sampled at seven fishing areas in marine waters and river mouths of Puget Sound. 4,4-DDE and 4,4-DDD, metabolites of the pesticide DDT, and polychlorinated biphenyls (PCBS) were consistently detected in both species and were consistently higher in O. tshawytscha. Low to moderate concentrations of DDT metabolites (3 to 59 ug/kg wet weight) were detected in the salmon samples but were seldom detected in other fish species sampled by PSAMP. Total PCBs concentrations (Arochlor 1254 + 1260) ranged from 10 to 211 ug/kg wet weight in 0. tshawytscha, with many samples containing PCBs concentrations similar to those detected in benthic flatfish, (Pleuronectes vetulus), sampled from urbanized embayments. A stepwise linear regression model was used to identify parameters correlated with accumulation of PCBs and DDT metabolites in salmon. In addition to species differences, factors such as fish age, percent lipids and sampling location may affect the accumulation of these contaminants. Results of this study are contrasted with contaminant levels previously reported for Canadian and Alaskan Pacific salmon. Possible sources of contaminants are outlined.

  16. Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Araneda, Cristian; Díaz, Nelson F.; Gomez, Gilda; López, María Eugenia; Iturra, Patricia

    2012-01-01

    Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map. PMID:22888302

  17. Landscape-level model to predict spawning habitat for Lower Columbia River fall Chinook salmon (Oncorhynchus tshawytscha)

    Treesearch

    D. Shallin Busch; Mindi Sheer; Kelly Burnett; Paul McElhany; Tom. Cooney

    2013-01-01

    We developed an intrinsic potential (IP) model to estimate the potential of streams to provide habitat for spawning fall Chinook salmon (Oncorhynchus tshawytscha) in the Lower Columbia River evolutionarily significant unit. This evolutionarily significant unit is a threatened species, and both fish abundance and distribution are reduced from...

  18. Temporal variation in synchrony among chinook salmon (Oncorhynchus tshawytscha) redd counts from a wilderness area in central Idaho

    Treesearch

    D. J. Isaak; R. F. Thurow; B. E. Rieman; J. B. Dunham

    2003-01-01

    Metapopulation dynamics have emerged as a key consideration in conservation planning for salmonid fishes. Implicit to many models of spatially structured populations is a degree of synchrony, or correlation, among populations. We used a spatially and temporally extensive database of chinook salmon (Oncorhynchus tshawytscha) redd counts from a wilderness area in central...

  19. Preliminary examination of oxidative stress in juvenile spring Chinook salmon (Oncorhynchus tshawytscha) of wild origin sampled from transport barges

    USDA-ARS?s Scientific Manuscript database

    Migrating juvenile wild Chinook salmon (Oncorhynchus tshawytscha), collected and loaded onto transport barges at Lower Granite Dam on the Snake River, were sampled from barges at John Day Dam, 348 km downstream, at five-day intervals beginning late April and ending late May. An increase in lipid per...

  20. Linking oceanic food webs to coastal production and growth rates of Pacific salmon ( Oncorhynchus spp.), using models on three scales

    NASA Astrophysics Data System (ADS)

    Aydin, Kerim Y.; McFarlane, Gordon A.; King, Jacquelynne R.; Megrey, Bernard A.; Myers, Katherine W.

    2005-03-01

    Three independent modeling methods—a nutrient-phytoplankton-zooplankton (NPZ) model (NEMURO), a food web model (Ecopath/Ecosim), and a bioenergetics model for pink salmon ( Oncorhynchus gorbuscha)—were linked to examine the relationship between seasonal zooplankton dynamics and annual food web productive potential for Pacific salmon feeding and growing in the Alaskan subarctic gyre ecosystem. The linked approach shows the importance of seasonal and ontogenetic prey switching for zooplanktivorous pink salmon, and illustrates the critical role played by lipid-rich forage species, especially the gonatid squid Berryteuthis anonychus, in connecting zooplankton to upper trophic level production in the subarctic North Pacific. The results highlight the need to uncover natural mechanisms responsible for accelerated late winter and early spring growth of salmon, especially with respect to climate change and zooplankton bloom timing. Our results indicate that the best match between modeled and observed high-seas pink salmon growth requires the inclusion of two factors into bioenergetics models: (1) decreasing energetic foraging costs for salmon as zooplankton are concentrated by the spring shallowing of pelagic mixed-layer depth and (2) the ontogenetic switch of salmon diets from zooplankton to squid. Finally, we varied the timing and input levels of coastal salmon production to examine effects of density-dependent coastal processes on ocean feeding; coastal processes that place relatively minor limitations on salmon growth may delay the seasonal timing of ontogenetic diet shifts and thus have a magnified effect on overall salmon growth rates.

  1. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, Daniel J.; Wipfli, Mark S.; Stricker, Craig A.; Heintz, Ron A.; Rinella, Matthew J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  2. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, D.J.; Wipfli, M.S.; Stricker, C.A.; Heintz, R.A.; Rinella, M.J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  3. Directional selection by fisheries and the timing of sockeye salmon (Oncorhynchus nerka) migrations.

    PubMed

    Quinn, Thomas P; Hodgson, Sayre; Flynn, Lucy; Hilborn, Ray; Rogers, Donald E

    2007-04-01

    The timing of migration from feeding to breeding areas is a critical link between the growth and survival of adult animals, their reproduction, and the fitness of their progeny. Commercial fisheries often catch a large fraction of the migrants (e.g., salmon), and exploitation rates can vary systematically over the fishing season. We examined daily records of sockeye salmon (Oncorhynchus nerka) in the Egegik and Ugashik management districts in Bristol Bay, Alaska (USA), for evidence of such temporally selective fishing. In recent years, the early migrants have experienced lower fishing rates than later migrants, especially in the Egegik district, and the median migration date of the fish escaping the fisheries has been getting progressively earlier in both districts. Moreover, the overall runs (catch and escapement) in the Egegik district and, to a lesser extent the Ugashik district, have been getting earlier, as predicted in response to the selection on timing. The trends in timing were not correlated with sea surface temperature in the region of the North Pacific Ocean where the salmon tend to concentrate, but the trends in the two districts were correlated with each other, indicating that there may be some common environmental influence in addition to the effect of selection. Despite the selection, both groups of salmon have remained productive. We hypothesize that this resilience may result from representation of all component populations among the early and late migrants, so that the fisheries have not eliminated entire populations, and from density-dependent processes that may have helped maintain the productivity of these salmon populations.

  4. Effects of anesthesia and surgery on Ucrit performance and MO₂ in chum salmon, Oncorhynchus keta.

    PubMed

    Hayashida, Kazufumi; Nii, Hisaya; Tsuji, Takatoshi; Miyoshi, Koji; Hamamoto, Satoshi; Ueda, Hiroshi

    2013-08-01

    Telemetry is a useful technique for elucidating salmon behavior, but the recovery periods before fish can be safely released after the attachment of telemetry devices have not yet been established. Reported recovery times vary widely, from 2 h to 13 days. We examined how anesthesia and surgery to attach external electromyogram (EMG) transmitters affected chum salmon (Oncorhynchus keta) recovery based on three physiological parameters. Fish subjected to anesthesia plus EMG transmitter attachment (EMG group), anesthesia only (AO group), and no handling (control) were placed in a swim tunnel. Critical swimming speed (Ucrit), oxygen consumption (MO₂), and muscle activity (EMG values) were assessed 0, 1, 6, 12, 24, and 30 h after treatment. The MO₂ in the EMG and AO groups was higher than in the control group 1 h after treatment, but did not differ significantly from the control in all subsequent trials (from 6 to 30 h after treatment). Values for Ucrit and EMG were not significantly different from the control group in any of the trials conducted 1-30 h after treatment. We concluded that chum salmon had regained their normal swimming ability by 6 h after treatment and could be safely released into the natural environment.

  5. Occurrence and identification of Anisakis spp. (Nematoda: Anisakidae) isolated from chum salmon (Oncorhynchus keta) in Korea.

    PubMed

    Setyobudi, Eko; Jeon, Chan-Hyeok; Lee, Cheul-Ho; Seong, Ki-Baik; Kim, Jeong-Ho

    2011-03-01

    The prevalence of infection and the identification of anisakid larvae in chum salmon (Oncorhynchus keta) from the Namdae River, the east coast of Korea, were investigated. In total, 8,358 larvae were collected from 120 fish samples (male = 58 fish, female = 62 fish) in 2008. Fish samples were collected during October and November 2008. All the chum salmon samples (120/120, 100%) caught were infected with anisakid larvae with a high intensity (69.65 ± 48.58 larvae/host). They were mostly found in muscles (98.00%). Based on the morphological and the molecular analysis of PCR-RFLP and sequencing of mitochondrial DNA cox2 gene markers, these nematodes were identified as Anisakis simplex (sensu stricto) third-stage larvae. This is the first report on the molecular identification of anisakid worms from salmonid fishes in Korea. The high occurrence of anisakid worms in chum salmon may pose considerable food safety problems if they were consumed as raw or undercooked, although their commercial value is relatively lower than other salmonid species.

  6. [A search for null alleles at the microsatellite locus of chum salmon (Oncorhynchus keta Walbaum)].

    PubMed

    Kordicheva, S Iu; Rubtsova, G A; Shitova, M V; Shaĭkhaev, G O; Afanas'ev, K I; Zhivotovskiĭ, L A

    2010-08-01

    Population studies with the use of microsatellite markers face a problem of null alleles, i.e., the absence of a PCR product, caused by the mutations in the microsatellite flanking regions, which serve as the sites of primer hybridization. In this case, the microsatellite primer associated with such mutation is not amplified, leading to false homozygosity in heterozygous individuals. This, in turn, results in biased population genetic estimates, including the excess of homozygotes at microsatellite loci. Analysis of the population structure of a Pacific salmon species, chum salmon (Oncorhynchus keta Walbaum), revealed the presence of null alleles at the Oke3 microsatellite locus in the population samples, in which an excess of homozygotes was observed. The analysis was performed using different combinations of modified primers chosen to match the Oke3 locus. The use of these primers enabled identification of true heterozygotes among those individuals, which were previously diagnosed as homozygotes with the use of standard primers. Removal of null alleles eliminated the excess homozygotes in the chum salmon samples described. In addition to the exclusion of false homozygosity, the use of modified primers makes it possible to introduce polymorphic primer variants associated with certain microsatellite alleles into population studies.

  7. Impacts of multispecies parasitism on juvenile coho salmon (Oncorhynchus kisutch) in Oregon

    USGS Publications Warehouse

    Ferguson, Jayde A.; Romer, Jeremy; Sifneos, Jean C.; Madsen, Lisa; Schreck, Carl B.; Glynn, Michael; Kent, Michael L.

    2011-01-01

    We are studying the impacts of parasites on threatened stocks of Oregon coastal coho salmon (Oncorhynchus kisutch). In our previous studies, we have found high infections of digeneans and myxozoans in coho salmon parr from the lower main stem of West Fork Smith River (WFSR), Oregon. In contrast parr from tributaries of this river, and outmigrating smolts, harbor considerably less parasites. Thus, we have hypothesized that heavy parasite burdens in parr from this river are associated with poor overwintering survival. The objective of the current study was to ascertain the possible effects these parasites have on smolt fitness. We captured parr from the lower main stem and tributaries of WFSR and held them in the laboratory to evaluate performance endpoints of smolts with varying degrees of infection by three digeneans (Nanophyetus salmincola, Apophallus sp., and neascus) and one myxozoan (Myxobolus insidiosus). The parameters we assessed were weight, fork length, growth, swimming stamina, and gill Na+,K+-ATPase activity. We repeated our study on the subsequent year class and with hatchery reared coho salmon experimentally infected with N. salmincola. The most significant associations between parasites and these performance or fitness endpoints were observed in the heavily infected groups from both years. We found that all parasite species, except neascus, were negatively associated with fish fitness. This was corroborated for N. salmincola causing reduced growth with our experimental infection study. Parasites were most negatively associated with growth and size, and these parameters likely influenced the secondary findings with swimming stamina and ATPase activity levels.

  8. In situ biomonitoring of PAH-contaminated sediments using juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Barbee, Gary C; Barich, John; Duncan, Bruce; Bickham, John W; Matson, Cole W; Hintze, Christopher J; Autenrieth, Robin L; Zhou, Guo-Dong; McDonald, Thomas J; Cizmas, Leslie; Norton, Dale; Donnelly, Kirby C

    2008-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous marine and freshwater sediment contaminants. Extensive data exist to confirm that PAHs are toxic to aquatic receptors. However, limited information is available regarding the bioavailability and genotoxicity of sediment PAHs to aquatic organisms. This study investigated an integrated biomonitoring approach using chemical analyses and biomarkers to characterize the bioavailability and genotoxicity of a complex PAH mixture in freshwater lake sediments associated with a former manufactured gas plant (MGP). Sediment PAH genotoxicity was assessed by flow cytometry (FCM), DNA adduct (32)P-postlabeling, and erythrocyte micronuclei in juvenile coho salmon (Oncorhynchus kisutch) caged in the water column. Significant PAH-induced genotoxicity was observed with FCM and (32)P-postlabeling, but not with erythrocyte micronuclei. Chromosome damage in peripheral blood and hepatic DNA adducts correlated with sediment, but not water column PAH concentrations. Total hepatic DNA adducts in salmon caged nearest the former MGP facility was 39+/-6.5 (RALx10(9)), while salmon caged in a reference lake had 28+/-2.3 total hepatic DNA adducts per 10(9) nucleotides. These results indicate that in situ biomonitoring using biomarkers and caged fish can be a sensitive indicator of genotoxic PAHs in sediments.

  9. Characterization and application of a quantitative DNA marker that discriminates sex in Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clifton, D.R.; Rodriguez, R.J.

    1997-01-01

    A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.

  10. Primary structure of myosin heavy chain from fast skeletal muscle of Chum salmon Oncorhynchus keta.

    PubMed

    Iwami, Yuki; Ojima, Takao; Inoue, Akira; Nishita, Kiyoyoshi

    2002-10-01

    The nucleotide sequence of the cDNA encoding myosin heavy chain of chum salmon Oncorhynchus keta fast skeletal muscle was determined. The sequence consists of 5,994 bp, including 5,814 bp of translated region deducing an amino acid sequence of 1,937 residues. The deduced sequence showed 79% homology to that of rabbit fast skeletal myosin and 84-87% homology to those of fast skeletal myosins from walleye pollack, white croaker and carp. The putative binding-sites for ATP, actin and regulatory light-chains in the subfragment-1 region of the salmon myosin showed high homology with the fish myosins (78-100% homology). However, the Loop-1 and Loop-2 showed considerably low homology (31-60%). On the other hand, the deduced sequences of subfragment-2 (533 residues) and light meromyosin (564 residues) showed 88-93% homology to the corresponding regions of the fish myosins. It becomes obvious that several specific residues of the rabbit LMM are substituted to Gly in the salmon LMM as well as the other fish LMMs. This may be involved in the structural instability of the fish myosin tail region.

  11. Characterization and application of a quantitative DNA marker that discriminates sex in chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clifton, D.R.; Rodriguez, R.J.

    1997-01-01

    A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.

  12. An integrated linkage map reveals candidate genes underlying adaptive variation in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    McKinney, G J; Seeb, L W; Larson, W A; Gomez-Uchida, D; Limborg, M T; Brieuc, M S O; Everett, M V; Naish, K A; Waples, R K; Seeb, J E

    2016-05-01

    Salmonids are an important cultural and ecological resource exhibiting near worldwide distribution between their native and introduced range. Previous research has generated linkage maps and genomic resources for several species as well as genome assemblies for two species. We first leveraged improvements in mapping and genotyping methods to create a dense linkage map for Chinook salmon Oncorhynchus tshawytscha by assembling family data from different sources. We successfully mapped 14 620 SNP loci including 2336 paralogs in subtelomeric regions. This improved map was then used as a foundation to integrate genomic resources for gene annotation and population genomic analyses. We anchored a total of 286 scaffolds from the Atlantic salmon genome to the linkage map to provide a framework for the placement 11 728 Chinook salmon ESTs. Previously identified thermotolerance QTL were found to colocalize with several candidate genes including HSP70, a gene known to be involved in thermal response, as well as its inhibitor. Multiple regions of the genome with elevated divergence between populations were also identified, and annotation of ESTs in these regions identified candidate genes for fitness related traits such as stress response, growth and behaviour. Collectively, these results demonstrate the utility of combining genomic resources with linkage maps to enhance evolutionary inferences.

  13. Changes in Size and Age of Chinook Salmon Oncorhynchus tshawytscha Returning to Alaska

    PubMed Central

    Lewis, Bert; Grant, W. Stewart; Brenner, Richard E.; Hamazaki, Toshihide

    2015-01-01

    The average sizes of Pacific salmon have declined in some areas in the Northeast Pacific over the past few decades, but the extent and geographic distribution of these declines in Alaska is uncertain. Here, we used regression analyses to quantify decadal trends in length and age at maturity in ten datasets from commercial harvests, weirs, and spawner abundance surveys of Chinook salmon Oncorhynchus tshawytscha throughout Alaska. We found that on average these fish have become smaller over the past 30 years (~6 generations), because of a decline in the predominant age at maturity and because of a decrease in age-specific length. The proportion of older and larger 4-ocean age fish in the population declined significantly (P < 0.05) in all stocks examined by return year or brood year. Our analyses also indicated that the age-specific lengths of 4-ocean fish (9 of 10 stocks) and of 3-ocean fish (5 of 10 stocks) have declined significantly (P < 0.05). Size-selective harvest may be driving earlier maturation and declines in size, but the evidence is not conclusive, and additional factors, such as ocean conditions or competitive interactions with other species of salmon, may also be responsible. Regardless of the cause, these wide-spread phenotypic shifts influence fecundity and population abundance, and ultimately may put populations and associated fisheries at risk of decline. PMID:26090990

  14. Parasites and hepatic lesions among pink salmon, Oncorhynchus gorbuscha (Walbaum), during early seawater residence.

    PubMed

    Saksida, S M; Marty, G D; Jones, S R M; Manchester, H A; Diamond, C L; Bidulka, J; St-Hilaire, S

    2012-02-01

    Juvenile pink salmon, Oncorhynchus gorbuscha (Walbaum), in the Broughton Archipelago region of western Canada were surveyed over 2 years for sea lice (Lepeophtheirus salmonis and Caligus clemensi), gross and microscopic lesions and evidence of infections with viruses and bacteria. The 1071 fish examined had an approximate ocean residence time no longer than 3 months. A high prevalence of degenerative liver lesions, renal myxosporean parasites and a low prevalence of skin lesions and sea lice were observed. No indications of viral or bacterial diseases were detected in either year. The monthly prevalence of sea lice in 2007 (18-51%) was higher than in 2008 (1-26%), and the infestation density exceeded the lethal threshold in only two fish. Degenerative hepatic lesions and renal myxosporean parasites occurred in approximately 40% of the pink salmon examined in June of both years, and the peak monthly prevalence of hepatocellular hydropic degeneration was greater in 2007 (32%, in May) than in 2008 (12%, in June). Logistic regression analysis found skin lesions and hepatocellular hydropic degeneration significantly associated with sea lice. Most parasites and lesions occurred during both years, but the prevalence was often higher in 2007. Fish weight was 35% less in June 2007 than in June 2008, but condition factor was not different. Further research is required to monitor inter-annual variations and aetiology of the liver lesions and to assess their potential role on pink salmon survival.

  15. Costs of living for juvenile Chinook salmon (Oncorhynchus tshawytscha) in an increasingly warming and invaded world

    USGS Publications Warehouse

    Kuehne, Lauren M.; Olden, Julian D.; Duda, Jeffrey J.

    2012-01-01

    Rapid environmental change in freshwater ecosystems has created a need to understand the interactive effects of multiple stressors, with temperature and invasive predators identified as key threats to imperiled fish species. We tested the separate and interactive effects of water temperature and predation by non-native smallmouth bass (Micropterus dolomieu) on the lethal (mortality) and sublethal (behavior, physiology, and growth) effects for juvenile Chinook salmon (Oncorhynchus tshawytscha) in seminatural stream channel experiments. Over 48 h trials, there was no difference in direct predation with warmer temperatures, but significant interactive effects on sublethal responses of juvenile salmon. Warmer temperatures resulted in significantly stronger and more variable antipredator responses (surface shoaling and swimming activity), while physiological indicators (plasma glucose, plasma cortisol) suggested suppression of physiological mechanisms in response to the combined stressors. These patterns corresponded with additive negative growth in predation, temperature, and combined treatments. Our results suggest that chronic increases in temperature may not increase direct predation over short periods, but can result in significant sublethal costs with negative implications for long-term development, disease resistance, and subsequent size-selective mortality of Pacific salmon.

  16. Monitoring of viruses in chum salmon (Oncorhynchus keta) migrating to Korea.

    PubMed

    Jeon, C-H; Kim, S-R; Kim, W-S; Lee, C-H; Seong, K-B; Lee, C-S; Oh, M-J; Kim, J-H

    2011-06-01

    It is important to investigate the prevalence of salmonid pathogens because they can affect the amount of release of salmonid fry and the migration rate of adult salmonids. In this study, routine surveys were conducted for investigating virus distribution in migrating chum salmon spawners (Oncorhynchus keta) and their offsprings at the Namdae River, Yangyang, Korea, during 2006-2008. Anterior kidneys were removed from chum salmon spawner individuals, homogenized with minimal essential medium, and centrifuged to make supernatants for conducting RT-PCR. Five offspring were pooled to for conducting RT-PCR. Infectious pancreatic necrosis virus (IPNV), infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) were the target viruses for monitoring. In 2006, only spawners were investigated, and 27.5% of fish (22/80) were found to be IHNV-positive by nested PCR. In 2007, 65.6% of pooled fry (21/32) were IHNV-positive, and 9.4% (3/32) were IPNV-positive by one-step PCR. When nested PCR was conducted, 84.4% (27/32) were IHNV-positive, and 28.1% (9/32) were IPNV-positive. However, only 1.3% of spawners (1/80) were IHNV-positive by nested PCR. In 2008, 25% (8/32) of pooled fry were IHNV-positive by one-step PCR, but 59.4% (19/32) were IHNV-positive and 12.5% (4/32) were IPNV-positive by nested PCR. All of the samples tested were VHSV-negative. Although all viruses detected in this study were from chum salmon, phylogenetic analysis showed that they possibly originated from rainbow trout or clustered with the rainbow trout isolates. More extensive long-term studies are needed to clarify the origins of these viruses and their potential effects on chum salmon migration in Korea.

  17. Evolution of chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process.

    PubMed

    Quinn, T P; Kinnison, M T; Unwin, M J

    2001-01-01

    Chinook salmon, Oncorhynchus tshawytscha, from the Sacramento River, California, USA were introduced to New Zealand between 1901 and 1907, and colonized most of their present-day range within about 10 years. The New Zealand populations now vary in phenotypic traits typically used to differentiate salmon populations within their natural range: growth in freshwater and at sea, age at maturity, dates of return to fresh water and reproduction, morphology, and reproductive allocation. This paper reviews a large research program designed to determine the relative contributions of phenotypic plasticity and genetic adaptation to this variation, in an effort to understand the processes underlying the natural evolution of new populations. We found strong evidence of trait divergence between populations within at most 30 generations, particularly in freshwater growth rate, date of return, and reproductive output, with plausible adaptive bases for these differences. Importantly, we also demonstrated not only a genetic basis for post-release survival but higher survival, and hence fitness, of a population released from its established site compared to another population released from the same site. We conclude that divergence of salmon in different rivers probably resulted initially from phenotypic plasticity (e.g., habitat-specific growth rates, and effects of upriver migration on ovarian investment). Philopatry (homing to natal streams) combined with rapid evolution of distinct breeding periods to restrict gene flow, facilitating divergence in other traits. We also suggest that in addition to genetic divergence resulting from random founder effects, divergence may also arise during the very early stages of colonization when the original colonists are a non-random, pre-adapted subset of the source population. This 'favored founders effect' immediately improves the fitness of the new population. Overall, this research reveals the complex interplay of environmental and genetic

  18. Water balance trumps ion balance for early marine survival of juvenile pink salmon (Oncorhynchus gorbuscha).

    PubMed

    Sackville, M; Wilson, J M; Farrell, A P; Brauner, C J

    2012-08-01

    Smolting salmonids typically require weeks to months of physiological preparation in freshwater (FW) before entering seawater (SW). Remarkably, pink salmon (Oncorhynchus gorbuscha) enter SW directly following yolk absorption and gravel emergence at a size of 0.2 g. To survive this exceptional SW migration, pink salmon were hypothesized to develop hypo-osmoregulatory abilities prior to yolk absorption and emergence. To test this, alevins (pre-yolk absorption) and fry (post-yolk absorption) were transferred from FW in darkness to SW under simulated natural photoperiod (SNP). Ionoregulatory status was assessed at 0, 1 and 5 days post-transfer. SW alevins showed no evidence of hypo-osmoregulation, marked by significant water loss and no increase in gill Na⁺/K⁺-ATPase (NKA) activity or Na⁺:K⁺:2Cl⁻ cotransporter (NKCC) immunoreactive (IR) cell frequency. Conversely, fry maintained water balance, upregulated gill NKA activity by 50 %, increased the NKA α1b/α1a mRNA expression ratio by sixfold and increased NKCC IR cell frequency. We also provide the first evidence of photoperiod-triggered smoltification in pink salmon, as fry exposed to SNP in FW exhibited preparatory changes in gill NKA activity and α1 subunit expression similar to fry exposed to SNP in SW. Interestingly, fry incurred larger increases in whole body Na⁺ than alevins following both SW and FW + SNP exposure (40 and 20 % in fry vs. 0 % in alevins). The ability to incur and tolerate large ion loads may underlie a novel mechanism for maintaining water balance in SW prior to completing hypo-osmoregulatory development. We propose that pink salmon represent a new form of anadromy termed "precocious anadromy".

  19. Swimming speeds and buoyancy compensation of migrating adult chum salmon Oncorhynchus keta revealed by speed/depth/acceleration data logger.

    PubMed

    Tanaka, H; Takagi, Y; Naito, Y

    2001-11-01

    Although the homing migration of Pacific salmon is well documented, the swimming behaviour of the returning salmon has been poorly described, principally as a result of the difficulties encountered in monitoring salmon behaviour in the sea. The present study describes the use of a recently developed electronic data logger to obtain simultaneous recordings of the swimming speed, depth, fin-beating activity and body angle of free-ranging chum salmon Oncorhynchus keta during their homing migration in coastal waters. Chum salmon migrated horizontally at speeds of 1.5-3.0 km h(-1). The gross horizontal distance salmon moved during total recording periods were 1.24- to 19.0-fold greater than the net distance from the release site to the retrieval points. It is suggested that homing salmon did not drift passively but swam actively to the spawning grounds. Salmon preferred the surface water, but also made frequent vertical migrations. The travelled depth of each salmon ranged from 0.36 to 0.64 km per hour. Salmon descended at faster rates and steeper angles than they ascended. Both tailbeat frequency and tail thrust were higher during the ascent than the descent phase. These results suggest that chum salmon spent more energy during the ascent than the descent phase. Profiles of descent rate assumed an arched shape with respect to a change in hydrostatic pressure, while ascent rate increased with decreasing depth. High tailbeat frequencies were found during the course of ascent, which suggests that the salmon did not regulate the volume of air in the swim bladder during short-term vertical migrations.

  20. Stress of formalin treatment in juvenile spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri)

    USGS Publications Warehouse

    Wedemeyer, Gary; Yasutake, W.T.

    1973-01-01

    The physiological stress of 200 ppm formalin treatments at 10 C is more severe in the juvenile steelhead trout (Salmo gairdneri) than in the spring chinook salmon (Oncorhynchus tshawytscha). In the steelhead, a marked hypochloremia follows a 1-hr treatment and recovery requires about 24 hr. During longer treatments, hypercholesterolemia together with reduced regulatory precision, hypercortisolemia, alkaline reserve depletion, and hypocapnia unaccompanied by a fall in blood pH occur — suggestive of compensated respiratory alkalosis. In the spring chinook, hypochloremia and reduced plasma cholesterol regulatory precision are the significant treatment side effects but recovery requires only a few hours.Formalin treatments also cause epithelial separation, hypertrophy, and necrosis in the gills of both fishes but again, consistent with the physiological dysfunctions, these are more severe in the steelhead.

  1. Family size and effective population size in a hatchery stock of coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Simon, R.C.; McIntyre, J.D.; Hemmingsen, A.R.

    1986-01-01

    Means and variances of family size measured in five year-classes of wire-tagged coho salmon (Oncorhynchus kisutch) were linearly related. Population effective size was calculated by using estimated means and variances of family size in a 25-yr data set. Although numbers of age 3 adults returning to the hatchery appeared to be large enough to avoid inbreeding problems (the 25-yr mean exceeded 4500), the numbers actually contributing to the hatchery production may be too low. Several strategies are proposed to correct the problem perceived. Argument is given to support the contention that the problem of effective size is fairly general and is not confined to the present study population.

  2. Assessing smoltification of juvenile spring Chinook salmon Oncorhynchus tshawytscha using changes in body morphology

    USGS Publications Warehouse

    Beeman, J.W.; Rondorf, D.W.; Tilson, M.E.

    1994-01-01

    A morphometric measure of smoltification of juvenile spring chinook salmon (Oncorhynchus tshawytscha) was developed and evaluated. Fish were collected from hatcheries in Washington and Idaho prior to release and at McNary Dam on the Columbia River during their downstream migration. Distances between 15 anatomical landmarks were digitized from photographs of each fish resulting in 34 morphometric characters for analysis. The canonical variate calculated from a discriminant function based on several principal components was evaluated as a measure of smoltification. The canonical variate was significantly correlated with gill Na+–K+ ATPase activity, a commonly used measure of smoltification. Measuring the morphometric characters and calculating the canonical variate is a relatively simple procedure and can be performed with little harm to the fish. This method of smoltification assessment may be ideally suited to studies in which sacrificing fish is not possible, such as those involving threatened or endangered species, or when access to a laboratory for sample analysis is not available.

  3. Immunization of sockeye salmon (Oncorhynchus nerka) against vibriosis using the hyperosmotic infiltration technique

    USGS Publications Warehouse

    Croy, Thomas R.; Amend, Donald F.

    1977-01-01

    Various procedures of hyperosmotic infiltration (HI) and intraperitoneal injection were used to vaccinate sockeye salmon (Oncorhynchus nerka) with killed Vibrio anguillarum. Excellent protection was evident against experimentally induced vibriosis in the groups immunized by HI with 10 × Hanks' balanced salt solution (HBSS), 1 × HBSS with 8.0% NaCl and 5.3% NaCl, as well as in the injected groups. Comparisons were made among the various immunization methods by vaccinating fish with ten-fold serial dilutions of bacterin, then challenging them by the water contact method after 6 or 9 weeks. Protection was somewhat better with 10 × HBSS than with 5.3% NaCl, and 1 × HBSS containing 8.0% NaCl was markedly superior to the vaccination of fish without hyperosmotic treatment. Agglutinin titers did not exceed 1 : 8 in any group.

  4. Nutritional factors in the biochemical pathology of Corynebacterial kidney disease in the coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Wedemeyer, Gary A.; Ross, A.J.

    1973-01-01

    The influence of diet ingredient on the morbidity and biochemical pathogenesis of corynebacterial kidney disease was investigated using juvenile coho salmon (Oncorhynchus kisutch) fed the Abernathy dry ration made up with either corn gluten or cottonseed meal (isoprotein, isocaloric substitution). Evaluation of incidence of infection, pituitary activation and aspects of carbohydrate metabolism, acid-base balance, renal function, and hematopoietic activity showed that the actual disease incidence was about the same for both diets but the nonspecific stress of infection was more severe in fish fed the corn gluten.Discriminant function calculations combining four physiological parameters gave a probability of 0.86 for successfully diagnosing infected fish on the basis of these blood chemistry tests.

  5. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    SciTech Connect

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and

  6. Breeding site selection by coho salmon (Oncorhynchus kisutch) in relation to large wood additions and factors that influence reproductive success

    USGS Publications Warehouse

    Clark, Steven M.; Dunham, Jason B.; McEnroe, Jeffery R.; Lightcap, Scott W.

    2014-01-01

    The fitness of female Pacific salmon (Oncorhynchus spp.) with respect to breeding behavior can be partitioned into at least four fitness components: survival to reproduction, competition for breeding sites, success of egg incubation, and suitability of the local environment near breeding sites for early rearing of juveniles. We evaluated the relative influences of habitat features linked to these fitness components with respect to selection of breeding sites by coho salmon (Oncorhynchus kisutch). We also evaluated associations between breeding site selection and additions of large wood, as the latter were introduced into the study system as a means of restoring habitat conditions to benefit coho salmon. We used a model selection approach to organize specific habitat features into groupings reflecting fitness components and influences of large wood. Results of this work suggest that female coho salmon likely select breeding sites based on a wide range of habitat features linked to all four hypothesized fitness components. More specifically, model parameter estimates indicated that breeding site selection was most strongly influenced by proximity to pool-tail crests and deeper water (mean and maximum depths). Linkages between large wood and breeding site selection were less clear. Overall, our findings suggest that breeding site selection by coho salmon is influenced by a suite of fitness components in addition to the egg incubation environment, which has been the emphasis of much work in the past.

  7. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytcha) within a Snake River watershed

    Treesearch

    Helen Neville; Daniel Isaak; Russell Thurow; Jason Dunham; Bruce Rieman

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate...

  8. [Differentiation of chum salmon Oncorhynchus keta Walbaum populations as revealed with microsatellite and allozyme markers: a comparison].

    PubMed

    Rubtsoba, G A; Afanas'ev, K I; Malinina, T V; Shitova, M V; Rakitskaia, T A; Prokhorovskaia, V D; Zhivotovskiĭ, L A

    2008-07-01

    The character and extent of population differentiation in chum salmon Oncorhynchus keta from Sakhalin and Iturup were comparatively studied with 10 microsatellite and 12 allozyme markers. It was demonstrated with the example of allozyme polymorphism at the EstD locus that the effect of an individual locus with one major allele is capable of distorting the total picture of population differentiation. Multiallelic microsatellites were more efficient in revealing the genetic structure of chum salmon populations at the levels of differences between regional populations and between the stocks of individual rivers of the same region.

  9. Self-sustaining populations, population sinks or aggregates of strays: chum (Oncorhynchus keta) and Chinook salmon (Oncorhynchus tshawytscha) in the Wood River system, Alaska.

    PubMed

    Lin, Jocelyn E; Hilborn, Ray; Quinn, Thomas P; Hauser, Lorenz

    2011-12-01

    Small populations can provide insights into ecological and evolutionary aspects of species distributions over space and time. In the Wood River system in Alaska, USA, small aggregates of Chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) spawn in an area dominated by sockeye salmon (O. nerka). Our objective was to determine whether these Chinook and chum salmon are reproductively isolated, self-sustaining populations, population sinks that produce returning adults but receive immigration, or strays from other systems that do not produce returning adults. DNA samples collected from adult chum salmon from 16 streams and Chinook salmon from four streams in the Wood River system over 3 years were compared to samples from large populations in the nearby Nushagak River system, a likely source of strays. For both species, microsatellite markers indicated no significant genetic differentiation between the two systems. Simulations of microsatellite data in a large source and a smaller sink population suggested that considerable immigration would be required to counteract the diverging effects of genetic drift and produce genetic distances as small as those observed, considering the small census sizes of the two species in the Wood River system. Thus, the Wood River system likely receives substantial immigration from neighbouring watersheds, such as the Nushagak River system, which supports highly productive runs. Although no data on population productivity in the Wood River system exist, our results suggest source-sink dynamics for the two species, a finding relevant to other systems where salmonid population sizes are limited by habitat factors.

  10. Linkage mapping with paralogs exposes regions of residual tetrasomic inheritance in chum salmon (Oncorhynchus keta).

    PubMed

    Waples, R K; Seeb, L W; Seeb, J E

    2016-01-01

    Gene sequence similarity due to shared ancestry after a duplication event, that is paralogy, complicates the assessment of genetic variation, as sequences originating from paralogs can be difficult to distinguish. These confounded sequences are often removed prior to further analyses, leaving the underlying loci uncharacterized. Salmonids have only partially rediploidized subsequent to a whole-genome duplication; residual tetrasomic inheritance has been observed in males. We present a maximum-likelihood-based method to resolve confounded paralogous loci by observing the segregation of alleles in gynogenetic haploid offspring and demonstrate its effectiveness by constructing two linkage maps for chum salmon (Oncorhynchus keta), with and without these newly resolved loci. We find that the resolved paralogous loci are not randomly distributed across the genome. A majority are clustered in expanded subtelomeric regions of 14 linkage groups, suggesting a significant fraction of the chum salmon genome may be missed by the exclusion of paralogous loci. Transposable elements have been proposed as drivers of genome evolution and, in salmonids, may have an important role in the rediploidization process by driving differentiation between homeologous chromosomes. Consistent with that hypothesis, we find a reduced fraction of transposable element annotations among paralogous loci, and these loci predominately occur in the genomic regions that lag in the rediploidization process.

  11. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow

    PubMed Central

    O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A

    2013-01-01

    Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing. PMID:24478800

  12. Genetic population structure of chinook salmon, oncorhynchus tshawytscha, in the Pacific Northwest

    SciTech Connect

    Utter, F.; Milner, G.; Teel, D. ); Stahl, G. )

    1989-04-01

    Variation at 25 polymorphic protein coding loci was examined for 86 populations of chinook salmon, Oncorhynchus tshawytscha, ranging from the Babine River Columbia to the Sacramento River in California. Substantial differences in allele frequencies identified patterns of genetic variability over the geographic range of the study. Nine major genetically defined regions were formulated. Populations sampled within a region tended to be genetically distinct from each other although they exhibited the general patterns of variability that defined the region. Within a region there was little distinction among populations returning to spawn at different times. The persistence of these geographic patterns in the face of natural opportunities for introgression, and sometimes massive transplantations, suggests that genetically adapted groups within regions have resisted large-scale introgression from other regions. Repopulation of deglaciated areas in the Fraser River, Georgia Strait, and Puget Sound apparently occurred from multiple sources; most likely sources included Columbia River populations and northern refuges rather than from the large coastal group of populations. Patterns of genetic distribution of chinook salmon differed from those of other anadromous salmonids studied within this region. A conservative policy for stock transfers was suggested based on distinct genetic differences observed both between and within regions.

  13. Correlated contemporary evolution of life history traits in New Zealand Chinook salmon, Oncorhynchus tshawytscha

    PubMed Central

    Kinnison, M T; Quinn, T P; Unwin, M J

    2011-01-01

    Size at age and age at maturity are important life history traits, affecting individual fitness and population demography. In salmon and other organisms, size and growth rate are commonly considered cues for maturation and thus age at maturity may or may not evolve independently of these features. Recent concerns surrounding the potential phenotypic and demographic responses of populations facing anthropogenic disturbances, such as climate change and harvest, place a premium on understanding the evolutionary genetic basis for evolution in size at age and age at maturity. In this study, we present the findings from a set of common-garden rearing experiments that empirically assess the heritable basis of phenotypic divergence in size at age and age at maturity in Chinook salmon (Oncorhynchus tshawytscha) populations introduced to New Zealand. We found consistent evidence of heritable differences among populations in both size at age and age at maturity, often corresponding to patterns observed in the wild. Populations diverged in size and growth profiles, even when accounting for eventual age at maturation. By contrast, most, but not all, cases of divergence in age at maturity were driven by the differences in size or growth rate rather than differences in the threshold relationship linking growth rate and probability of maturation. These findings help us understand how life histories may evolve through trait interactions in populations exposed to natural and anthropogenic disturbances, and how we might best detect such evolution. PMID:21224875

  14. Coho Salmon (Oncorhynchus kisutch) Prefer and Are Less Aggressive in Darker Environments

    PubMed Central

    Gaffney, Leigh P.; Franks, Becca; Weary, Daniel M.; von Keyserlingk, Marina A. G.

    2016-01-01

    Fish are capable of excellent vision and can be profoundly influenced by the visual properties of their environment. Ambient colours have been found to affect growth, survival, aggression and reproduction, but the effect of background darkness (i.e., the darkness vs. lightness of the background) on preference and aggression has not been evaluated systematically. One-hundred Coho salmon (Oncorhynchus kisutch), a species that is increasing in popularity in aquaculture, were randomly assigned to 10 tanks. Using a Latin-square design, every tank was bisected to allow fish in each tank to choose between all the following colour choices (8 choices in total): black vs. white, light grey, dark grey, and a mixed dark grey/black pattern, as well as industry-standard blue vs. white, light grey, dark grey, and black. Fish showed a strong preference for black backgrounds over all other options (p < 0.01). Across tests, preference strength increased with background darkness (p < 0.0001). Moreover, having darker backgrounds in the environment resulted in less aggressive behaviour throughout the tank (p < 0.0001). These results provide the first evidence that darker tanks are preferred by and decrease aggression in salmonids, which points to the welfare benefits of housing farmed salmon in enclosures containing dark backgrounds. PMID:27028731

  15. Pathogenesis of infectious hematopoietic necrosis virus in adult sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Mulcahy, D.M.; Burke, J.; Pascho, R.J.; Jenes, C.K.

    1982-01-01

    The concentration of infectious hematopoietic necrosis (IHN) virus was determined in eight organs and two body fluids from each of 60 adult sockeye salmon (Oncorhynchus nerka). Included in the sample were 4 males and 56 prespawning, spawning, or spent female fish. All fish were infected, and virus was present in nearly all organs. There was an overall tendency for the mean concentration to increase in many of the organs over time as the fish progressed in ripeness. In prespawning females, IHN virus could be detected in all organs and in ovarian fluid but not in serum; the incidences were highest in the gills, spleen, and pyloric ceca, and the titers were highest in the pyloric ceca and liver. Incidences of infection in the organs were higher in spawning than in prespawning females and higher still in spent females in which the incidence of virus was 100% in all organs except brains (78%) and sera (67%). Virus concentrations in organs or fluids ranged from 5 to 4.0 × 109 plaque-forming units per millilitre. In males, the highest incidences of virus were found in gills, pyloric ceca, and liver. The gills were the only organ in which the virus concentration in males exceeded that of females.Key words: infectious hematopoietic necrosis, IHN, fish virus, viral pathogenesis, sockeye salmon

  16. Hormonal control of hepatic glycogen metabolism in food-deprived, continuously swimming coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    Vijayan, M.M.; Maule, A.G.; Schreck, C.B.; Moon, T.W.

    1993-01-01

    The plasma cortisol concentration and liver cytosolic glucocorticoid receptor activities of continuously swimming, food-deprived coho salmon (Oncorhynchus kisutch) did not differ from those of resting, fed fish. Plasma glucose concentration was significantly higher in the exercising, starved fish, but there were no significant differences in either hepatic glycogen concentration or hepatic activities of glycogen phosphorylase, glycogen synthase, pyruvate kinase, or lactate dehydrogenase between the two groups. Total glucose production by hepatocytes did not differ significantly between the two groups; glycogen breakdown accounted for all the glucose produced in the resting, fed fish whereas it explained only 59% of the glucose production in the exercised animals. Epinephrine and glucagon stimulation of glucose production by hepatocytes was decreased in the exercised fish without significantly affecting hepatocyte glycogen breakdown in either group. Insulin prevented glycogen breakdown and enhanced glycogen deposition in exercised fish. The results indicate that food-deprived, continuously swimming coho salmon conserve glycogen by decreasing the responsiveness of hepatocytes to catabolic hormones and by increasing the responsiveness to insulin (anabolic hormone).

  17. Correlated contemporary evolution of life history traits in New Zealand Chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Kinnison, M T; Quinn, T P; Unwin, M J

    2011-03-01

    Size at age and age at maturity are important life history traits, affecting individual fitness and population demography. In salmon and other organisms, size and growth rate are commonly considered cues for maturation and thus age at maturity may or may not evolve independently of these features. Recent concerns surrounding the potential phenotypic and demographic responses of populations facing anthropogenic disturbances, such as climate change and harvest, place a premium on understanding the evolutionary genetic basis for evolution in size at age and age at maturity. In this study, we present the findings from a set of common-garden rearing experiments that empirically assess the heritable basis of phenotypic divergence in size at age and age at maturity in Chinook salmon (Oncorhynchus tshawytscha) populations introduced to New Zealand. We found consistent evidence of heritable differences among populations in both size at age and age at maturity, often corresponding to patterns observed in the wild. Populations diverged in size and growth profiles, even when accounting for eventual age at maturation. By contrast, most, but not all, cases of divergence in age at maturity were driven by the differences in size or growth rate rather than differences in the threshold relationship linking growth rate and probability of maturation. These findings help us understand how life histories may evolve through trait interactions in populations exposed to natural and anthropogenic disturbances, and how we might best detect such evolution.

  18. Epizootiology and histopathology of Parvicapsula sp. in coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    Yasutake, William T.; Elliott, Diane G.

    2003-01-01

    The epizootiology and histopathology of the myxosporean Parvicapsula sp. was studied during monthly health surveys of 4 groups of coho salmon Oncorhynchus kisutch at a commercial farm in Puget Sound, Washington, USA, from 1984 to 1986. No Parvicapsula sp. was detected in histological samples taken from juvenile fish in fresh water, but the parasite was detected in fish from all groups 2 to 8 mo after transfer to seawater net pens. Groups placed in seawater net pens in November and December had a higher prevalence of infection, and a longer period of continuous detected infection, than those introduced into net pens in May. For the groups transferred to seawater in November and December, the highest infection prevalence (45 to 90%) was detected during the following March and April. Among 13 tissues examined histologically, only the pseudobranch and kidney were positive for Parvicapsula sp., with 26 (62%) of 42 positive fish showing infections only in the pseudobranch, 5 (12%) showing infections only in the kidney, and 11 (26%) showing infections in both organs. Both the pseudobranch and kidney were apparent primary infection sites, but pseudobranch infections appeared to persist longer in a population. Pseudobranch infections were frequently heavy and associated with extensive inflammation and necrosis of filament and lamellar tissues. The kidney had been the only infection site reported for Parvicapsula sp. in previous studies of coho salmon.

  19. Epizootiology and histopathology of Parvicapsula sp. in coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    Yasutake, William T.; Elliott, Diane G.

    2003-01-01

    The epizootiology and histopathology of the myxosporean Parvicapsula sp. was studied during monthly health surveys of 4 groups of coho salmon Oncorhynchus kisutch at a commercial farm in Puget Sound, Washington, USA, from 1984 to 1986. No Parvicapsula sp. was detected in histological samples taken from juvenile fish in fresh water, but the parasite was detected in fish from all groups 2 to 8 mo after transfer to seawater net pens. Groups placed in seawater net pens in November and December had a higher prevalence of infection, and a longer period of continuous detected infection, than those introduced into net pens in May. For the groups transferred to seawater in November and December, the highest infection prevalence (45 to 90%) was detected during the following March and April. Among 13 tissues examined histologically, only the pseudobranch and kidney were positive for Parvicapsula sp., with 26 (62%) of 42 positive fish showing infections only in the pseudobranch, 5 (12%) showing infections only in the kidney, and 11 (26%) showing infections in both organs. Both the pseudobranch and kidney were apparent primary infection sites, but pseudobranch infections appeared to persist longer in a population. Pseudobranch infections were frequently heavy and associated with extensive inflammation and necrosis of filament and lamellar tissues. The kidney had been the only infection site reported for Parvicapsula sp. in previous studies of coho salmon.

  20. Miltpain, new cysteine proteinase from the milt of chum salmon, Oncorhynchus keta.

    PubMed

    Kawabata, C; Ichishima, E

    1997-07-01

    A new cysteine proteinase, salmon miltpain, was isolated and purified from the milt of chum salmon (Oncorhynchus keta). Native molecular mass was estimated as 67,000 by gel filtration column chromatography (Shodex WS2003) and 22,300 by SDS-polyacrylamide gel electrophoresis. Isoelectoric point was determined to be 3.9 by isoelectric focusing. The first 15 amino acid residues in the N-terminal region were LPSFLY-AEMVGYNIL. The cysteine proteinase, which had a pH optimum of 6.0 for Z-Arg-Arg-MCA hydrolysis, required a thiol-reducing reagent for activation and was inhibited by E-64, iodacetamide, CA-074 Me, TLCK, TPCK and ZPCK. The cysteine proteinase exhibited unique substrate specificity toward paired basic residues such as Lys-Arg, Arg-Arg at the subsites of P2-P1 and had a K(m) of 16.3 microM and kcat of 20.3 s-1 with Z-Arg-Arg-MCA as substrate and a K(m) of 52.9 microM and kcat of 1.79 s-1 with Z-Phe-Arg-MCA. This proteinase was found to considerably hydrolyze basic proteins such as histone, salmine and clupaine but not milk casein.

  1. Experiment of Critical Swimming Speed of Fingerling Masu Salmon (Oncorhynchus masou masou) Using River Water

    NASA Astrophysics Data System (ADS)

    Izumi, Mattashi; Kato, Koh

    The authors conducted a field swimming experiment using cultured masu salmon (Oncorhynchus masou masou) fingerlings in order to study their critical swimming speed during their release into the river in the Iwaki River diversion weir. The experimental equipment was a small, rectangular cross-section channel, which was installed in a local riverbed at the fishway. The experiment was conducted using an average cross-sectional water flow velocity of 17 to 92 cm·s-1, and using masu salmon fingerlings from 4.8 to 7.1 cm in the length. River water temperature was between 13.7 and 20.6 °C. The critical swimming speed measured over 60 minutes was between 16 and 41 cm·s-1 and a positive correlation was found between the critical swimming speed and body length. The critical swimming speed measured by body length (BL) was 3.5 to 6.9 times (that is, the distance travelled per second based on body length), and the mean critical swimming speed was 5.5 (with a standard deviation of 1.1). Results showed that water temperature differences in the experiment had no significant effect on the critical swimming speed measured over 60 minutes.

  2. Using broad landscape level features to predict redd densities of steelhead trout (Oncorhynchus mykiss) and Chinook Salmon (Oncorhynchus tshawytscha) in the Methow River watershed, Washington

    USGS Publications Warehouse

    Romine, Jason G.; Perry, Russell W.; Connolly, Patrick J.

    2013-01-01

    We used broad-scale landscape feature variables to model redd densities of spring Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Methow River watershed. Redd densities were estimated from redd counts conducted from 2005 to 2007 and 2009 for steelhead trout and 2005 to 2009 for spring Chinook salmon. These densities were modeled using generalized linear mixed models. Variables examined included primary and secondary geology type, habitat type, flow type, sinuosity, and slope of stream channel. In addition, we included spring effect and hatchery effect variables to account for high densities of redds near known springs and hatchery outflows. Variables were associated with National Hydrography Database reach designations for modeling redd densities within each reach. Reaches were assigned a dominant habitat type, geology, mean slope, and sinuosity. The best fit model for spring Chinook salmon included sinuosity, critical slope, habitat type, flow type, and hatchery effect. Flow type, slope, and habitat type variables accounted for most of the variation in the data. The best fit model for steelhead trout included year, habitat type, flow type, hatchery effect, and spring effect. The spring effect, flow type, and hatchery effect variables explained most of the variation in the data. Our models illustrate how broad-scale landscape features may be used to predict spawning habitat over large areas where fine-scale data may be lacking.

  3. Real-time PCR for quantification of viable Renibacterium salmoninarum in chum salmon Oncorhynchus keta.

    PubMed

    Suzuki, Kunio; Sakai, D K

    2007-03-13

    Quantification of msa gene mRNA of Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD), was investigated using reverse transcription followed by real-time PCR assay on R. salmoninarum in culture, and in experimentally challenged chum salmon Oncorhynchus keta fry kidney tissues (total of 70 samples) after intraperitoneal (i.p.) injection and bath infection. Correlations of msa gene mRNA concentrations with culturable cell concentrations (as colony forming units [CFU]), determined by drop-plate culture method on selective kidney disease medium (SKDM) agar through a 12 wk incubation time, and msa gene DNA concentrations by real-time PCR assay were examined. Furthermore, ovarian fluid samples from wild chum salmon adults with no clinical signs of disease were collected from 8 rivers and from clinically infected kokanee 0. nerka and masu salmon O. masou that were reared in 1 and 2 hatcheries, respectively (total of 414 samples). All samples were examined by nested PCR assay. Then, positive samples were examined by real-time PCR assays for mRNA and DNA; mRNA was detectable at 8 log units (5.0 x 101 to 5.0 x 10(9) copies p11(-1)) with high correlation (R2 = 0.999). The mRNA concentration correlated with CFU in kidney tissue from fish infected by i.p. injection (R2 = 0.924), by bath infection (R2 = 0.502) and in culture (R2 = 0.888). R. salmoninarum was detected and quantified by real-time PCR assay for mRNA in ovarian fluid samples in both subclinically infected chum salmon adults and clinically infected kokanee and masu salmon adults; detection rates ranged from 0 to 44.4% and concentrations ranged from 9.7 x 10(2) to 5.6 x 10(5) copies pl(-1). These results indicate that real-time PCR assay for the mRNA is a rapid, sensitive and reliable method to detect and quantify the viability of R. salmoninarum in kidney and ovarian fluid samples of salmonid fishes with both clinical and subclinical infection of the pathogen.

  4. Comparison of organotin accumulation in the masu salmon Oncorhynchus masou accompanying migratory histories

    NASA Astrophysics Data System (ADS)

    Ohji, Madoka; Arai, Takaomi; Miyazaki, Nobuyuki

    2007-05-01

    In order to examine the accumulation pattern of organotin compounds (OTs) accompanying the migration pattern in diadromous fish, tributyltin (TBT) and triphenyltin (TPT) compounds and their derivatives were determined in the liver, muscle, gill, and ovary tissues of both sea-run and freshwater-resident masu salmon, which are of the same species, Oncorhynchus masou. Their migratory histories were estimated using strontium (Sr) and calcium (Ca) analysis in the otolith. A significant difference in the mean Sr:Ca ratio from the core to the edge of the otolith was found between sea-run and freshwater-resident masu salmon. The TBT concentration in the liver was significantly higher than that in the other tissues in both sea-run and freshwater-resident fishes. In sea-run masu salmon, the TBT concentrations in all tissues except for the ovary were significantly higher than in those of freshwater-resident individuals. In the sea-run type, the percentage of TBT was higher than that of the freshwater-resident type. The TPT concentration in the liver of the sea-run type was also significantly higher than that in the other tissues, while that in the gill of the freshwater-resident type was significantly higher than that in the other tissues except for the ovary. The TPT concentrations found in the liver and muscle of the sea-run type were significantly higher than those in the freshwater-resident type, whereas the values of the gill in the sea-run type were significantly lower than those in the freshwater-resident fish examined. The percentage of TPT in the sea-run type was higher than that of the freshwater-resident type. These results suggest that the sea-run O. masou has a higher ecological risk of TBT and TPT exposure than the freshwater-residents during their life history.

  5. Examining the relationships between egg cortisol and oxidative stress in developing wild sockeye salmon (Oncorhynchus nerka).

    PubMed

    Taylor, Jessica J; Sopinka, Natalie M; Wilson, Samantha M; Hinch, Scott G; Patterson, David A; Cooke, Steven J; Willmore, William G

    2016-10-01

    Maternally-derived hormones in oocytes, such as glucocorticoids (GCs), play a crucial role in embryo development in oviparous taxa. In fishes, maternal stressor exposure increases circulating and egg cortisol levels, the primary GC in fishes, as well as induces oxidative stress. Elevated egg cortisol levels modify offspring traits but whether maternal oxidative stress correlates with circulating and egg cortisol levels, and whether maternal/egg cortisol levels correlate with offspring oxidative stress have yet to be determined. The objective of this study was to examine the relationships among maternal and egg cortisol, and maternal and offspring oxidative stress to provide insight into the potential intergenerational effects of stressor exposure in sockeye salmon (Oncorhynchus nerka). Antioxidant concentration and oxidative stress were measured in maternal tissues (plasma, brain, heart and liver) as well as offspring developmental stages (pre-fertilization, 24h post-fertilization, eyed, and hatch), and were compared to both naturally-occurring and experimentally-elevated (via cortisol egg bath) levels of cortisol in eggs. Oxygen radical absorptive capacity of tissues from maternal sockeye salmon was measured spectrophotometrically and was not correlated with maternal or egg cortisol concentrations. Also, naturally-occurring and experimentally-elevated cortisol levels in eggs (to mimic maternal stress) did not affect oxidative stress or antioxidant capacity of the offspring. We conclude that the metrics of maternal stress examined in sockeye salmon (i.e., maternal/egg cortisol, maternal oxidative stress) are independent of each other, and that egg cortisol content does not influence offspring oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Some physiological aspects of sublethal heat stress in the juvenile steelhead trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Wedemeyer, Gary

    1973-01-01

    A rapid (3 min) but sublethal temperature increase from 10 to 20 imposed a greater stress on juvenile coho salmon (Oncorhynchus kisutch) than on juvenile steelhead trout (Salmo gairdneri). Both species suffered hyperglycemia, hypocholesterolemia, increased blood hemoglobin, and decreased blood sugar regulatory precision, but the steelhead recovered more quickly. Acid–base equilibrium was essentially unaffected, and only the coho suffered any significant interrenal vitamin C depletion. Vitamin C normalization required about 24 hr.

  7. The effect of adrenaline on the temperature dependency of cardiac action potentials in pink salmon Oncorhynchus gorbuscha.

    PubMed

    Ballesta, S; Hanson, L M; Farrell, A P

    2012-04-01

    Using sharp electrode impalement, action potentials recorded from atrial and ventricular tissue of pink salmon Oncorhynchus gorbuscha generally decreased in duration with increasing test temperature (6, 10, 16 and 20° C). Stimulation of the tissue using 500 nM adrenaline had no significant effect on the duration of the atrial action potential at any test temperature but lengthened the ventricular action potential by ~17%.

  8. Susceptibility of captive adult winter-run Chinook salmon Oncorhynchus tshawytscha to waterborne exposures with infectious hematopoietic necrosis virus (IHNV).

    PubMed

    Arkush, K D; Mendonca, H L; McBride, A M; Hedrick, R P

    2004-06-11

    Sexually mature female Chinook salmon Oncorhynchus tshawytscha with no prior history of exposure to infectious hematopoietic necrosis virus (IHNV) were susceptible to experimental infection induced by additions of virus to the water. The resulting infections resembled those observed among naturally infected hatchery and wild populations of Chinook salmon. Virus was detected as early as 4 d post-exposure (p.e.) and subsequently in all virus-exposed fish that died or that were examined at 14 d p.e. when the study was terminated. The greatest concentrations of virus, up to 10(8) plaque-forming units (pfu) ml(-1), were found in the ovarian fluid at 13 to 14 d p.e., but the virus was also found in high concentrations in the gill, kidney/spleen and plasma. In contrast, the virus was not recovered from unexposed control adult salmon that died or were sampled at the end of the study. Despite detecting concentrations of IHNV in excess of 10(7) pfu g(-1) of tissue, no specific microscopic lesions were found in IHNV-exposed compared to unexposed control salmon. The results of this initial study suggest that virus in the spawning environment, either from adult salmon or other sources, may contribute to its rapid spread among adult Chinook salmon, thereby considerably increasing the prevalence of IHNV infection in both wild and hatchery populations of adult Chinook salmon.

  9. Evidence for competitive dominance of Pink salmon (Oncorhynchus gorbuscha) over other Salmonids in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.

    2004-01-01

    Relatively little is known about fish species interactions in offshore areas of the world's oceans because adequate experimental controls are typically unavailable in such vast areas. However, pink salmon (Oncorhynchus gorbuscha) are numerous and have an alternating-year pattern of abundance that provides a natural experimental control to test for interspecific competition in the North Pacific Ocean and Bering Sea. Since a number of studies have recently examined pink salmon interactions with other salmon, we reviewed them in an effort to describe patterns of interaction over broad regions of the ocean. Research consistently indicated that pink salmon significantly altered prey abundance of other salmon species (e.g., zooplankton, squid), leading to altered diet, reduced total prey consumption and growth, delayed maturation, and reduced survival, depending on species and locale. Reduced survival was observed in chum salmon (O. keta) and Chinook salmon (O. tshawytscha) originating from Puget Sound and in Bristol Bay sockeye salmon (O. nerka). Growth of pink salmon was not measurably affected by other salmon species, but their growth was sometimes inversely related to their own abundance. In all marine studies, pink salmon affected other species through exploitation of prey resources rather than interference. Interspecific competition was observed in nearshore and offshore waters of the North Pacific Ocean and Bering Sea, and one study documented competition between species originating from different continents. Climate change had variable effects on competition. In the North Pacific Ocean, competition was observed before and after the ocean regime shift in 1977 that significantly altered abundances of many marine species, whereas a study in the Pacific Northwest reported a shift from predation- to competition-based mortality in response to the 1982/1983 El Nino. Key traits of pink salmon that influenced competition with other salmonids included great abundance, high

  10. Predation on juvenile pacific salmon oncorhynchus spp. in downstream migrant traps in prairie creek, california

    USGS Publications Warehouse

    Duffy, W.G.; Bjorkstedt, E.P.; Ellings, C.S.

    2011-01-01

    Downstream migrant traps are a widely applied fishery management tool for sampling anadromous Pacific salmon Oncorhynchus spp. and steelhead O. mykiss smolts along theWest Coast of North America and elsewhere, yet predation on juvenile salmonids in traps has not been studied quantitatively.We assessed the frequency of occurrence and abundance of juvenile salmonids in the stomachs of coastal cutthroat trout O. clarkii clarkii, coho salmon O. kisutch, steelhead, and prickly sculpin Cottus asper (>70 mm fork length) captured in traps and in nearby stream habitats. All four predator species took juvenile salmonids with much greater frequency in traps than in stream habitats. Among free-swimming predators, only coastal cutthroat trout were observed with salmonid fry in their stomachs, but they took fewer salmonid prey and appeared to rely more heavily on insect prey than did coastal cutthroat trout captured in traps. Predators consumed up to 25% of the available prey over a broad range of prey abundances. Over the course of the study, predators consumed 2.5% of all salmonid fry captured in traps, but this fraction ranged from less than 1% to more than 10% in any given year. The number of prey taken in traps increased with predator length and with prey abundance in traps, and predation in traps peaked during the period of most intense downstream migration by salmon fry. In contrast, live-box design and trap location had little or no effect on the total number of prey taken by individual predators.We estimated that the predation mortality of juvenile salmon increased by 0.5-1.0% due to in-trap predation (i.e., a 9-10% relative increase over natural predation rates). We found no evidence that predators selected for prey on the basis of species. These results should motivate additional research on methods that reduce or eliminate predation in trap live-boxes and protocols for efficiently measuring predation associated with the trapping of downstream migrants. ?? American

  11. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Farag, Aïda M; May, Thomas; Marty, Gary D; Easton, Michael; Harper, David D; Little, Edward E; Cleveland, Laverne

    2006-03-10

    This study was designed to determine fish health impairment of Chinook salmon (Oncorhynchus tshawytscha) exposed to chromium. Juvenile Chinook salmon were exposed to aqueous chromium concentrations (0-266 microgl(-1)) that have been documented in porewater from bottom sediments and in well waters near salmon spawning areas in the Columbia River in the northwestern United States. After Chinook salmon parr were exposed to 24 and 54 microg Crl(-1) for 105 days, neither growth nor survival of parr was affected. On day 105, concentrations were increased from 24 to 120 microg Crl(-1) and from 54 to 266 microg Crl(-1) until the end of the experiment on day 134. Weight of parr was decreased in the 24/120 microg Crl(-1) treatment, and survival was decreased in the 54/266 microg Crl(-1) treatment. Fish health was significantly impaired in both the 24/120 and 54/266 microg Crl(-1) treatments. The kidney is the target organ during chromium exposures through the water column. The kidneys of fish exposed to the greatest concentrations of chromium had gross and microscopic lesions (e.g. necrosis of cells lining kidney tububules) and products of lipid peroxidation were elevated. These changes were associated with elevated concentrations of chromium in the kidney, and reduced growth and survival. Also, variations in DNA in the blood were associated with pathological changes in the kidney and spleen. These changes suggest that chromium accumulates and enters the lipid peroxidation pathway where fatty acid damage and DNA damage (expressed as chromosome changes) occur to cause cell death and tissue damage. While most of the physiological malfunctions occurred following parr exposures to concentrations > or =120 microg Crl(-1), nuclear DNA damage followed exposures to 24 microg Crl(-1), which was the smallest concentration tested. The abnormalities measured during this study are particularly important because they are associated with impaired growth and reduced survival at

  12. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Farag, A.M.; May, T.; Marty, G.D.; Easton, M.; Harper, D.D.; Little, E.E.; Cleveland, L.

    2006-01-01

    This study was designed to determine fish health impairment of Chinook salmon (Oncorhynchus tshawytscha) exposed to chromium. Juvenile Chinook salmon were exposed to aqueous chromium concentrations (0–266 μg l−1) that have been documented in porewater from bottom sediments and in well waters near salmon spawning areas in the Columbia River in the northwestern United States. After Chinook salmon parr were exposed to 24 and 54 μg Cr l−1 for 105 days, neither growth nor survival of parr was affected. On day 105, concentrations were increased from 24 to 120 μg Cr l−1and from 54 to 266 μg Cr l−1 until the end of the experiment on day 134. Weight of parr was decreased in the 24/120 μg Cr l−1 treatment, and survival was decreased in the 54/266 μg Cr l−1 treatment. Fish health was significantly impaired in both the 24/120 and 54/266 μg Cr l−1 treatments. The kidney is the target organ during chromium exposures through the water column. The kidneys of fish exposed to the greatest concentrations of chromium had gross and microscopic lesions (e.g. necrosis of cells lining kidney tububules) and products of lipid peroxidation were elevated. These changes were associated with elevated concentrations of chromium in the kidney, and reduced growth and survival. Also, variations in DNA in the blood were associated with pathological changes in the kidney and spleen. These changes suggest that chromium accumulates and enters the lipid peroxidation pathway where fatty acid damage and DNA damage (expressed as chromosome changes) occur to cause cell death and tissue damage. While most of the physiological malfunctions occurred following parr exposures to concentrations ≥120 μg Cr l−1, nuclear DNA damage followed exposures to 24 μg Cr l−1, which was the smallest concentration tested. The abnormalities measured during this study are particularly important because they are associated with impaired growth and reduced survival at

  13. Does CO2 enhance short-term storage success of Chinook salmon (Oncorhynchus tshawytscha) milt?

    PubMed

    Bencic, D C; Ingermann, R L; Cloud, J G

    2001-07-01

    Successful short-term storage of salmonid milt depends on numerous factors, including temperature, fluid volume, and gaseous environment, with storage at low temperatures under an atmosphere of 100% O2 being the most common method. Salmonid sperm maintained in a storage environment with elevated carbon dioxide (CO2) levels, such as the approximately 4% CO2 in exhaled air, are not motile when activated. While these modest levels of CO2 inhibit sperm motility, the effect is reversible within hours after exposure to a CO2-free oxygenated environment. Therefore, the effect of CO2 (as a component gas in the storage environment) on chinook salmon (Oncorhynchus tshawytscha) sperm motility and viability was examined. The hypothesis of the current investigation was that CO2-exposure with subsequent CO2 removal would be beneficial during short-term chinook salmon milt storage. Milt samples were collected from mature (adult) and precocious (jack) male chinook salmon and stored under various CO2 and O2 levels at 3 to 4 degrees C for up to 14 days. Milt samples were then removed from the incubation environments and maintained under CO2-free humidified air with continuous mixing for 4 h at 10 degrees C before analysis of motility. The resultant motility of samples incubated under 3.5% or less CO2 was not different than controls during the 14 d incubation period; motility of samples stored under higher CO2 tensions were significantly lower. The motility of samples incubated under 3.5% CO2 reached the maximum recovered motility after 2 h exposure to CO2-free humidified air, while the motility of sperm incubated under 13.4% CO2 levels recovered no motility even after 6 h exposure to CO2-free humidified air. The motility of samples incubated under normoxia was significantly greater than that of samples incubated under hyperoxia (approximately 90% O2) at both 7 and 14 d, regardless of the CO2 level. Sperm viability was relatively unaltered by any of the incubation conditions examined

  14. Multi-tissue transcriptome profiles for coho salmon (Oncorhynchus kisutch), a species undergoing rediploidization following whole-genome duplication.

    PubMed

    Kim, Jin-Hyoung; Leong, Jong S; Koop, Ben F; Devlin, Robert H

    2016-02-01

    Salmonids are an important family of fish both from economic and basic research perspectives, and have been subjected to extensive research at whole-animal and molecular levels. Most research to date has been conducted on Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), but more recently other salmonids have become a focus of study due to their interesting life histories and because of their potential for use in commercial aquaculture. However, molecular biology and genetic analyses for these emerging species are currently hampered due to the lack of extensive genomic resources. To overcome some of these limitations, we have constructed a 43,228 sequence transcriptome from 13 tissues from coho salmon, Oncorhynchus kisutch using de novo transcriptome assembly methods. The transcriptome profiling analysis has provided data distinguishing allelic variation from paralogues that arose during the recent whole-genome duplication event in this family, thus allowing simplified analysis of gene-specific expression. Additionally, 1599 novel coho sequences have been identified through comparison with transcriptomes from two other salmonids species (Atlantic salmon and rainbow trout), and with northern pike. The transcriptome presented here will be useful for genomic analysis of coho salmon and other closely related salmonid species. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  15. Differences in neurobehavioral responses of chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper and cobalt: Behavioral avoidance

    SciTech Connect

    Hansen, J.A.; Marr, J.C.A.; Lipton, J.; Cacela, D.; Bergman, H.L.

    1999-09-01

    Behavioral avoidance of copper (Cu), cobalt (Co), and a Cu and Co mixture in soft water differed greatly between rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha). Chinook salmon avoided at least 0.7 {micro}g Cu/L, 24 {micro}g Co/L, and the mixture of 1.0 {micro}g Cu/L and 0.9 {micro}g Co/L, whereas rainbow trout avoided at least 1.6 {micro}g Cu/L, 180 {micro}g Co/L, and the mixture of 2.6 {micro}g Cu/L and 2.4 {micro}g Co/L. Chinook salmon were also more sensitive to the toxic effects of Cu in that they failed to avoid {ge}44 {micro}g Cu/L, whereas rainbow trout failed to avoid {ge}180 {micro}g Cu/L. Furthermore, following acclimation to 2 {micro}g Cu/L, rainbow trout avoided 4 {micro}g Cu/L and preferred clean water, but chinook salmon failed to avoid any Cu concentrations and did not prefer clean water. The failure to avoid high concentrations of metals by both species suggests that the sensory mechanism responsible for avoidance responses was impaired. Exposure to Cu concentrations that were not avoided could result in lethality from prolonged Cu exposure or in impairment of sensory-dependent behaviors that are essential for survival and reproduction.

  16. Persistent organic pollutants in chinook salmon (Oncorhynchus tshawytscha): implications for resident killer whales of British Columbia and adjacent waters.

    PubMed

    Cullon, Donna L; Yunker, Mark B; Alleyne, Carl; Dangerfield, Neil J; O'Neill, Sandra; Whiticar, Michael J; Ross, Peter S

    2009-01-01

    We measured persistent organic pollutant (POP) concentrations in chinook salmon (Oncorhynchus tshawytscha) in order to characterize dietary exposure in the highly contaminated, salmon-eating northeastern Pacific resident killer whales. We estimate that 97 to 99% of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dichlorodiphenyltrichloroethane (DDT), and hexachlorocyclohexane (HCH) in returning adult chinook were acquired during their time at sea. Highest POP concentrations (including PCBs, PCDDs, PCDFs, and DDT) and lowest lipids were observed in the more southerly chinook sampled. While feeding by salmon as they enter some more POP-contaminated near-shore environments inevitably contribute to their contamination, relationships observed between POP patterns and both lipid content and delta13C also suggest a migration-related metabolism and loss of the less-chlorinated PCB congeners. This has implications for killer whales, with the more PCB-contaminated salmon stocks in the south partly explaining the 4.0 to 6.6 times higher estimated daily intake for sigmaPCBs in southern resident killer whales compared to northern residents. We hypothesize that the lower lipid content of southerly chinook stocks may cause southern resident killer whales to increase their salmon consumption by as much as 50%, which would further increase their exposure to POPs.

  17. The Olfactory Transcriptome and Progression of Sexual Maturation in Homing Chum Salmon Oncorhynchus keta.

    PubMed

    Palstra, Arjan P; Fukaya, Kosuke; Chiba, Hiroaki; Dirks, Ron P; Planas, Josep V; Ueda, Hiroshi

    2015-01-01

    Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation.

  18. Migratory Patterns of Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-flowing River Basin

    USGS Publications Warehouse

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  19. The Olfactory Transcriptome and Progression of Sexual Maturation in Homing Chum Salmon Oncorhynchus keta

    PubMed Central

    Palstra, Arjan P.; Fukaya, Kosuke; Chiba, Hiroaki; Dirks, Ron P.; Planas, Josep V.; Ueda, Hiroshi

    2015-01-01

    Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation. PMID:26397372

  20. Behavioral tactics of male sockeye salmon (Oncorhynchus nerka) under varying operating sex ratios

    USGS Publications Warehouse

    Quinn, Thomas P; Adkison, Milo D.; Ward, Michael B.

    1996-01-01

    Previous studies have demonstrated several reproductive-behavior patterns in male salmon, including competitive and sneaking tactics, the formation of hierarchies, and non-hierarchical aggregations around ripe females. Through behavioral observations at varying spatial and temporal scales, we examined the hypothesis that operational sex ratio (OSR) determines male sockeye salmon (Oncorhynchus nerka) distribution and breeding tactics. Patterns of male distribution and behavior varied over both coarse and fine scales, associated with apparent shifts in reproductive opportunities, the physical characteristics of the breeding sites, and the deterioration of the fish as they approached death. Females spawned completely within a few days of arriving on the spawning grounds, whereas males courted the available ripe females from the date of their arrival on the spawning ground until their death. This difference in reproductive lifespans tended to elevate late-season OSRs but was partially counterbalanced by male departures and the arrival of other ripe females. The proportion of males able to dominate access to ripe females decreased and the number of large courting groups increased over the course of the season, apparently related to both increasing OSR and the deteriorating physical condition of males. However, great variation in OSR was observed within the spawning sites on a given day. OSRs were generally higher in shallow than in deep water, perhaps because larger females or more desirable breeding sites were concentrated in shallow water. The aggregations of males courting females were not stable (i.e. many arrivals and departures took place) and male aggression varied with group size. Aggression was most frequent at low OSRs and in groups of intermediate size (2–4 males per female), and much less frequent in larger groups, consistent with the needs of maximizing reproductive opportunities while minimizing unproductive energy expenditure. These results indicate

  1. Genomic signatures among Oncorhynchus nerka ecotypes to inform conservation and management of endangered Sockeye Salmon.

    PubMed

    Nichols, Krista M; Kozfkay, Christine C; Narum, Shawn R

    2016-12-01

    Conservation of life history variation is an important consideration for many species with trade-offs in migratory characteristics. Many salmonid species exhibit both resident and migratory strategies that capitalize on benefits in freshwater and marine environments. In this study, we investigated genomic signatures for migratory life history in collections of resident and anadromous Oncorhynchus nerka (Kokanee and Sockeye Salmon, respectively) from two lake systems, using ~2,600 SNPs from restriction-site-associated DNA sequencing (RAD-seq). Differing demographic histories were evident in the two systems where one pair was significantly differentiated (Redfish Lake, FST = 0.091 [95% confidence interval: 0.087 to 0.095]) but the other pair was not (Alturas Lake, FST = -0.007 [-0.008 to -0.006]). Outlier and association analyses identified several candidate markers in each population pair, but there was limited evidence for parallel signatures of genomic variation associated with migration. Despite lack of evidence for consistent markers associated with migratory life history in this species, candidate markers were mapped to functional genes and provide evidence for adaptive genetic variation within each lake system. Life history variation has been maintained in these nearly extirpated populations of O. nerka, and conservation efforts to preserve this diversity are important for long-term resiliency of this species.

  2. Some blood chemistry values for the juvenile coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Wedemeyer, Gary; Chatterton, K.

    1971-01-01

    Overlapping Gaussian distribution curves were resolved into normal ranges for 1800 clinical test values obtained from caudal arterial blood or plasma of more than 1000 juvenile coho salmon (Oncorhynchus kisutch) held under defined conditions of diet and temperature. Estimated normal blood chemistry ranges were bicarbonate, 9.5–12.6 mEq/liter; blood urea nitrogen (BUN), 0.9–3.4 mg/100 ml; chloride, 122–136 mEq/liter; cholesterol, 88–262 mg/100 ml;pCO2, 2.6–6.1 mm Hg (10 C); glucose, 41–135 mg/100 ml; hematocrit, 32.5–52.5%; hemoglobin, 6.5–9.9 g/100 ml; total protein, 1.4–4.3 g/100 ml; blood pH (10 C), 7.51–7.83. The calculated range of normal acid–base balance vs. water temperature is also presented.

  3. Recovery of Barotrauma Injuries in Chinook Salmon, Oncorhynchus tshawytscha from Exposure to Pile Driving Sound

    PubMed Central

    Casper, Brandon M.; Popper, Arthur N.; Matthews, Frazer; Carlson, Thomas J.; Halvorsen, Michele B.

    2012-01-01

    Juvenile Chinook salmon, Oncorhynchus tshawytscha, were exposed to simulated high intensity pile driving signals to evaluate their ability to recover from barotrauma injuries. Fish were exposed to one of two cumulative sound exposure levels for 960 pile strikes (217 or 210 dB re 1 µPa2·s SELcum; single strike sound exposure levels of 187 or 180 dB re 1 µPa2⋅s SELss respectively). This was followed by an immediate assessment of injuries, or assessment 2, 5, or 10 days post-exposure. There were no observed mortalities from the pile driving sound exposure. Fish exposed to 217 dB re 1 µPa2·s SELcum displayed evidence of healing from injuries as post-exposure time increased. Fish exposed to 210 dB re 1 µPa2·s SELcum sustained minimal injuries that were not significantly different from control fish at days 0, 2, and 10. The exposure to 210 dB re 1 µPa2·s SELcum replicated the findings in a previous study that defined this level as the threshold for onset of injury. Furthermore, these data support the hypothesis that one or two Mild injuries resulting from pile driving exposure are unlikely to affect the survival of the exposed animals, at least in a laboratory environment. PMID:22745794

  4. Tactic-specific benefits of polyandry in Chinook salmon Oncorhynchus tshawytscha.

    PubMed

    Lewis, J A; Pitcher, T E

    2017-04-01

    This study examined whether polyandrous female Chinook salmon Oncorhynchus tshawytscha obtain benefits compared with monandrous females through an increase in hatching success. Both of the alternative reproductive tactics present in male O. tshawytscha (large hooknoses and small, precocious jacks) were used, such that eggs were either fertilized by a single male (from each tactic) or multiple males (using two males from the same or different tactics). The results show that fertilized eggs from the polyandrous treatments had a significantly higher hatching success than those from the monandrous treatments. It is also shown that sperm speed was positively related with offspring hatching success. Finally, there were tactic-specific effects on the benefits females received. The inclusion of jacks in any cross resulted in offspring with higher hatching success, with the cross that involved a male from each tactic providing offspring with the highest hatching success than any other cross. This study has important implications for the evolution of multiple mating and why it is so prevalent across taxa, while also providing knowledge on the evolution of mating systems, specifically those with alternative reproductive tactics. © 2016 The Fisheries Society of the British Isles.

  5. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Larson, Wesley A; Seeb, Lisa W; Everett, Meredith V; Waples, Ryan K; Templin, William D; Seeb, James E

    2014-03-01

    Recent advances in population genomics have made it possible to detect previously unidentified structure, obtain more accurate estimates of demographic parameters, and explore adaptive divergence, potentially revolutionizing the way genetic data are used to manage wild populations. Here, we identified 10 944 single-nucleotide polymorphisms using restriction-site-associated DNA (RAD) sequencing to explore population structure, demography, and adaptive divergence in five populations of Chinook salmon (Oncorhynchus tshawytscha) from western Alaska. Patterns of population structure were similar to those of past studies, but our ability to assign individuals back to their region of origin was greatly improved (>90% accuracy for all populations). We also calculated effective size with and without removing physically linked loci identified from a linkage map, a novel method for nonmodel organisms. Estimates of effective size were generally above 1000 and were biased downward when physically linked loci were not removed. Outlier tests based on genetic differentiation identified 733 loci and three genomic regions under putative selection. These markers and genomic regions are excellent candidates for future research and can be used to create high-resolution panels for genetic monitoring and population assignment. This work demonstrates the utility of genomic data to inform conservation in highly exploited species with shallow population structure.

  6. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha)

    PubMed Central

    Larson, Wesley A; Seeb, Lisa W; Everett, Meredith V; Waples, Ryan K; Templin, William D; Seeb, James E

    2014-01-01

    Recent advances in population genomics have made it possible to detect previously unidentified structure, obtain more accurate estimates of demographic parameters, and explore adaptive divergence, potentially revolutionizing the way genetic data are used to manage wild populations. Here, we identified 10 944 single-nucleotide polymorphisms using restriction-site-associated DNA (RAD) sequencing to explore population structure, demography, and adaptive divergence in five populations of Chinook salmon (Oncorhynchus tshawytscha) from western Alaska. Patterns of population structure were similar to those of past studies, but our ability to assign individuals back to their region of origin was greatly improved (>90% accuracy for all populations). We also calculated effective size with and without removing physically linked loci identified from a linkage map, a novel method for nonmodel organisms. Estimates of effective size were generally above 1000 and were biased downward when physically linked loci were not removed. Outlier tests based on genetic differentiation identified 733 loci and three genomic regions under putative selection. These markers and genomic regions are excellent candidates for future research and can be used to create high-resolution panels for genetic monitoring and population assignment. This work demonstrates the utility of genomic data to inform conservation in highly exploited species with shallow population structure. PMID:24665338

  7. Revisiting evolutionary dead ends in sockeye salmon ( Oncorhynchus nerka) life history

    USGS Publications Warehouse

    Pavey, S.A.; Hamon, T.R.; Nielsen, J.L.

    2007-01-01

    This study challenges recent hypotheses about sockeye salmon (Oncorhynchus nerka) colonization based on life history and broadens the pathways that investigators should consider when studying sockeye colonization of novel habitats. Most sockeye populations exhibit lake-type life histories. Riverine populations are thought to be more likely to stray from their natal stream to spawn and therefore colonize new habitat. We examined genetic relationships among five geographically proximate sockeye populations from the Aniakchak region of the Alaska Peninsula, Alaska. Specifically, we sought to determine if the genetic population structure was consistent with the hypothesis that a riverine population colonized a recently available upriver volcanic caldera lake, and whether recent volcanism led to genetic bottlenecks in these sockeye populations. Heterozygosity and allelic richness were not higher in the riverine population. Patterns of genetic divergence suggested that the geographically proximate riverine sockeye population did not colonize the lake; the caldera populations were more genetically divergent from the downstream riverine population (FST  =  0.047) than a lake-type population in a different drainage (FST  =  0.018). Our results did not suggest the presence of genetic bottlenecks in the caldera populations.

  8. Ionoregulatory changes in different populations of maturing sockeye salmon Oncorhynchus nerka during ocean and river migration.

    PubMed

    Shrimpton, J M; Patterson, D A; Richards, J G; Cooke, S J; Schulte, P M; Hinch, S G; Farrell, A P

    2005-11-01

    We present the first data on changes in ionoregulatory physiology of maturing, migratory adult sockeye salmon Oncorhynchus nerka. Fraser River sockeye were intercepted in the ocean as far away as the Queen Charlotte Islands (approximately 850 km from the Fraser River) and during freshwater migration to the spawning grounds; for some populations this was a distance of over 700 km. Sockeye migrating in seawater toward the mouth of the Fraser River and upriver to spawning grounds showed a decline in gill Na+,K+-ATPase activity. As a result, gill Na+,K+-ATPase activity of fish arriving at the spawning grounds was significantly lower than values obtained from fish captured before entry into freshwater. Plasma osmolality and chloride levels also showed significant decreases from seawater values during the freshwater migration to spawning areas. Movement from seawater to freshwater increased mRNA expression of a freshwater-specific Na+,K+-ATPase isoform (alpha1a) while having no effect on the seawater-specific isoform (alpha1b). In addition, gill Na+,K+-ATPase activity generally increased in active spawners compared with unspawned fish on the spawning grounds and this was associated with a marked increase in Na+,K+-ATPase alpha1b mRNA. Increases in gill Na+,K+-ATPase activities observed in spawners suggests that the fish may be attempting to compensate for the osmotic perturbation associated with the decline in plasma chloride concentration and osmolality.

  9. Incubation temperature, developmental biology, and the divergence of sockeye salmon (Oncorhynchus nerka) within Lake Washington

    USGS Publications Warehouse

    Hendry, A.P.; Hensleigh, J.E.; Reisenbichler, R.R.

    1998-01-01

    Sockeye salmon (Oncorhynchus nerka) introduced into Lake Washington in the 1930s and 1940s now spawn at several different sites and over a period of more than 3 months. To test for evolutionary divergence within this derived lineage, embryos that would have incubated in different habitats (Cedar River or Pleasure Point Beach) or at different times (October, November, or December in the Cedar River) were reared in the laboratory at 5, 9, and 12.5??C. Some developmental variation mirrored predictions of adaptive divergence: (i) survival at 12.5??C was highest for embryos most likely to experience such temperatures in the wild (Early Cedar), (ii) development rate was fastest for progeny of late spawners (Late Cedar), and (iii) yolk conversion efficiency was matched to natural incubation temperatures. These patterns likely had a genetic basis because they were observed in a common environment and could not be attributed to differences in egg size. The absolute magnitude of divergence in development rates was moderate (Late Cedar embryos emerged only 6 days earlier at 9??C) and some predictions regarding development rates were not supported. Nonetheless our results provide evidence of adaptive divergence in only 9-14 generations.

  10. The utilization of a Pacific salmon Oncorhynchus nerka subsidy by three populations of charr Salvelinus spp.

    PubMed

    Denton, K P; Rich, H B; Moore, J W; Quinn, T P

    2010-09-01

    The L(F) -at-age trajectories differentiated two populations of Dolly Varden charr Salvelinus malma and a population of Arctic charr Salvelinus alpinus from the eastern end of Iliamna Lake, Alaska. Salvelinus malma from the Pedro Bay ponds were the smallest for a given age, followed by Salvelinus alpinus from the lake, and S. malma from the Iliamna River were much larger. The utilization of a large sockeye salmon Oncorhynchus nerka subsidy by the three Salvelinus spp. populations was then investigated by comparing diet data and mixing model (MixSIR) outputs based on carbon and nitrogen stable isotopes. Stomach contents indicated that both S. malma populations fed on O. nerka products, especially eggs and larval Diptera that had scavenged O. nerka carcasses, whereas S. alpinus fed on a variety of prey items such as three-spined sticklebacks Gasterosteus aculeatus and snails. Stable-isotope analysis corroborated the diet data; the two S. malma populations incorporated more O. nerka-derived nutrients into their tissues than did S. alpinus from the lake, although all populations showed substantial utilization of O. nerka-derived resources. Salvelinus alpinus also seemed to be much more omnivorous, as shown by stable-isotope mixing models, than the S. malma populations. The dramatic differences in growth rate between the two S. malma populations, despite similar trophic patterns, indicate that other important genetic or environmental factors affect their life history, including proximate temperature controls and ultimate predation pressures.

  11. Thermal regime, predation danger and the early marine exit of sockeye salmon Oncorhynchus nerka.

    PubMed

    Katinic, P J; Patterson, D A; Ydenberg, R C

    2015-01-01

    Marine exit timing of sockeye salmon Oncorhynchus nerka populations on the Haida Gwaii Archipelago, British Columbia, Canada, is described, with specific focus on Copper Creek. Marine exit in Copper Creek occurs > 130 days prior to spawning, one of the longest adult freshwater residence periods recorded for any O. nerka population. Copper Creek presents an easy upstream migration, with mild water temperatures (7 to 14°  C), short distance (13·1 km) and low elevation gain (41 m) to the lake where fish hold prior to spawning. An energetic model estimates that <1% of the initial energy reserve is required for upstream migration, compared with 62% for lake holding and 38% for reproductive development. Historical records suggest that it is unlikely that water temperature in any of the O.nerka streams in Haida Gwaii has ever exceeded the presumed temperature threshold (19° C) for early marine exit. Although it is not impossible that the thermal tolerance of Copper Creek O.nerka is very low, the data presented here appear inconsistent with thermal avoidance as an explanation for the early marine exit timing in Copper Creek and in three other populations on the archipelago with early marine exit.

  12. Immersion vaccination of sockeye salmon (Oncorhynchus nerka) with two pathogenic strains of Vibrio anguillarum

    USGS Publications Warehouse

    Gould, R.W.; Antipa, R.; Amend, D.F.

    1979-01-01

    Sockeye salmon (Oncorhynchus nerka) were immersion-vaccinated in suspensions containing 5 × 107, 5 × 106, 5 × 105, or 5 × 104 bacteria/mL of bivalent or monovalent, formalin-killedVibrio anguillarum, Types I and II. The fish were split into two lots and held for 54 d. At that time one lot was challenged with living, virulent V. anguillarum, Type I, and one with living, virulent V.anguillarum, Type II. Immunization with bivalent bacterin effectively protected the fish from vibriosis, but monovalent vaccine was effective only against the homologous challenge. Immunization with the highest concentration of Type I monovalent bacterin resulted in 0% Type I and 58% Type II challenge mortality. Immunization with the highest concentration of Type II monovalent bacterin resulted in 41% Type I and 0% Type II challenge mortality. Immunization with the highest concentration of bivalent Type I/Type II bacterin resulted in 2% mortality in both challenges. Protective bacterins were effective at concentrations down to 5 × 105 bacteria/mL.Key words: immersion vaccination, bivalent vaccines, Vibrio anguillarum, vibriosis.

  13. Immersion vaccination of sockeye salmon (Oncorhynchus kisutch) with two pathogenic strains of Vibrio anguillarum

    USGS Publications Warehouse

    Gould, R.W.; Antipa, R.; Amend, D.F.

    1979-01-01

    Sockeye salmon (Oncorhynchus nerka) were immersion-vaccinated in suspensions containing 5 × 107, 5 × 106, 5 × 105, or 5 × 104 bacteria/mL of bivalent or monovalent, formalin-killed Vibrio anguillarum, Types I and II. The fish were split into two lots and held for 54 d. At that time one lot was challenged with living, virulent V. anguillarum, Type I, and one with living, virulent V. anguillarum, Type II. Immunization with bivalent bacterin effectively protected the fish from vibriosis, but monovalent vaccine was effective only against the homologous challenge. Immunization with the highest concentration of Type I monovalent bacterin resulted in 0% Type I and 58% Type II challenge mortality. Immunization with the highest concentration of Type II monovalent bacterin resulted in 41% Type I and 0% Type II challenge mortality. Immunization with the highest concentration of bivalent Type I/Type II bacterin resulted in 2% mortality in both challenges. Protective bacterins were effective at concentrations down to 5 × 105 bacteria/mL. Key words: immersion vaccination, bivalent vaccines, Vibrio anguillarum, vibriosis.

  14. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha in the Willamette River, Oregon, USA

    USGS Publications Warehouse

    Billman, E.J.; Whitman, L.D.; Schroeder, R.K.; Sharpe, C.S.; Noakes, David L. G.; Schreck, Carl B.

    2014-01-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  15. Loma salmonae (Protozoa: Microspora) infections in seawater reared coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    Kent, M.L.; Elliott, D.G.; Groff, J.M.; Hedrick, R.P.

    1989-01-01

    Loma salmonae (Putz et al., 1965) infections were observed in five groups of coho salmon, Oncorhynchus kisutch, reared in seawater net-pens in Washington State, U.S.A. in 1984–1986. Ultrastructural characteristics, size of spores, tissues and host infected, and geographical location identified the microsporidium as Loma salmonae. Preserved spores measured 4.4×2.3 (4–5.6×2–2.4) μm and exhibited 14–17 turns of the polar filament. Infections were evident in the gills of some fish before seawater entry, but few parasites were observed and they caused little tissue damage. Infections observed in fish after transfer to seawater were associated with significant pathological changes in the gills. A mixed inflammatory infiltrate was associated with ruptured microsporidian xenomas within the vessels and interstitium of the primary lamellae. Microsporidian spores were dispersed throughout the lesions and were often seen inside phagocytes. The parasite was also observed in the heart, spleen, kidney and pseudobranchs; however, the inflammatory lesions were common only in the heart.Monthly examination of fish after transfer to seawater showed peak prevalences (33–65%) of gill infections during the summer. Although moribund fish were often infected with other pathogens, the high prevalence of L. salmonae infections and the severity of the lesions it caused, suggested that this parasite significantly contributed to the recurrent summer mortalities observed at this net-pen site.

  16. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Alcorn, S.W.; Murray, A.L.; Pascho, R.J.

    2002-01-01

    To determine if the defences of sockeye salmon (Oncorhynchus nerka) raised in captivity are affected by the rearing temperature or their life-cycle stage, various indices of the humoral and cellular immune functions were measured in fish reared at either 8 or 12??C for their entire life-cycle. Measures of humoral immunity included the commonly used haematological parameters, as well as measurements of complement, and lysozyme activity. Cellular assays quantified the ability of macrophages from the anterior kidney to phagocytise Staphylococcus aureus cells, or the activities of certain bactericidal systems of those cells. The T-dependent antibody response to a recombinant 57 kDa protein of Renibacterium salmoninarum was used to quantify the specific immune response. Fish were sampled during the spring and fall of their second, third and fourth years, corresponding to a period that began just before smolting and ended at sexual maturation. Fish reared at 8??C tended to have a greater percentage of phagocytic kidney macrophages during the first 2 years of sampling than the fish reared at 12??C. During the last half of the study the complement activity of the fish reared at 8??C was greater than that of the 12??C fish. Conversely, a greater proportion of the blood leucocytes were lymphocytes in fish reared at 12??C compared to the fish reared at 8??C. Fish reared at 12??C also produced a greater antibody response than those reared at 8??C. Results suggested that the immune apparatus of sockeye salmon reared at 8??C relied more heavily on the non-specific immune response, while the specific immune response was used to a greater extent when the fish were reared at 12??C. Although a seasonal effect was not detected in any of the indices measured, varying effects were observed in some measurements during sexual maturation of fish in both temperature groups. At that time there were dramatic decreases in complement activity and lymphocyte numbers. This study was unique in

  17. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka).

    PubMed

    Alcorn, Stewart W; Murra, Anthony L; Pascho, Ronald J

    2002-04-01

    To determine if the defences of sockeye salmon (Oncorhynchus nerka) raised in captivity are affected by the rearing temperature or their life-cycle stage, various indices of the humoral and cellular immune functions were measured in fish reared at either 8 or 12 degrees C for their entire life-cycle. Measures of humoral immunity included the commonly used haematological parameters, as well as measurements of complement, and lysozyme activity. Cellular assays quantified the ability of macrophages from the anterior kidney to phagocytise Staphylococcus aureus cells, or the activities of certain bactericidal systems of those cells. The T-dependent antibody response to a recombinant 57 kDa protein of Renibacterium salmoninarum was used to quantify the specific immune response. Fish were sampled during the spring and fall of their second, third and fourth years, corresponding to a period that began just before smolting and ended at sexual maturation. Fish reared at 8 degrees C tended to have a greater percentage of phagocytic kidney macrophages during the first 2 years of sampling than the fish reared at 12 degrees C. During the last half of the study the complement activity of the fish reared at 8 degrees C was greater than that of the 12 degrees C fish. Conversely, a greater proportion of the blood leucocytes were lymphocytes in fish reared at 12 degrees C compared to the fish reared at 8 degrees C. Fish reared at 12 degrees C also produced a greater antibody response than those reared at 8 degrees C. Results suggested that the immune apparatus of sockeye salmon reared at 8 degrees C relied more heavily on the non-specific immune response, while the specific immune response was used to a greater extent when the fish were reared at 12 degrees C. Although a seasonal effect was not detected in any of the indices measured, varying effects were observed in some measurements during sexual maturation of fish in both temperature groups. At that time there were dramatic

  18. Oil spill impact on Pacific salmon (g. Oncorhynchus) of northwestern Sakhalin (Tengi River Basin as a pattern)

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexander N.; Tarasov, Nikolay N.; Pusankov, Konstantin L.; Ivanova, Lubov V.; Pusankova, Ekaterina N.

    2001-01-01

    Northern Sakhalin is a region of the intensive oil and gas transportation by oil-pipe lines. In July 2, 1997, the oil spill has happened at the oil-pipe line 'Okha-Komsomolsk-on- Amur.' Oil pollution spread over the basin of Tengi Rive (Amur estuary). The Tengi River is a spawning area for endemic and important commercial fish. There is a reserve on the river. Genus Oncorhynchus (pink and chum salmon) prevail in ichthyofauna. A satellite data analysis (NOAA-12, NOAA-14) was a success to accurate the oil distribution over the Amur estuary. As a result of the accident, more than 120 t of oil have been spilled. 26.3 km of the river area, more than 60 km of the Amur estuary coast and about 850 km2 of its water area were polluted. In the basin of Tengi River about 58000 m2 of spawning area were lost. The main damage (89%) was caused to the fry feeding near the coast. The loss of fish production has constituted about 1800 t. By species the damage was as follows: 53% -- pink salmon, 29% -- chum salmon, 11% -- masu salmon and 7% -- coho salmon.

  19. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Pacific Southwest). Chinook salmon. [Oncorhynchus tshawytscha

    SciTech Connect

    Allen, M.A.; Hassler, T.J.

    1986-04-01

    The chinook salmon (Oncorhynchus tshawytscha) is a valuable sport and commercial fish species and accounted for over 69% of the salmon caught off the California coast from 1971 through 1983. Chinook salmon runs in the Sacramento River, the major producer of chinook salmon in California, are devided into fall, late fall, winter, and spring runs. Other coatal rivers have fall and spring runs of chinook or only a fall run. After hatching, the sac-fry live in the gravel for a month or longer before they emerge as fry. Some fry migrate immediately to saltwater, other remain 2 to 12 months in freshwater before migrating. They remain in the ocean from 1 to 7 years; most females mature and return to freshwater to spawn after 2 to 4 years at sea. Some males return to spawn after only 1 year in the ocean, but most return after 2 to 4 years. All chinook salmon die after they reenter freshwater, whether they spawn or not.

  20. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    SciTech Connect

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon.

  1. Early marine growth in relation to marine-stage survival rates for Alaska sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Farley, Edward V.; Murphy, J.M.; Adkison, Milo D.; Eisner, Lisa B.; Helle, J.H.; Moss, J.H.; Nielsen, Jennifer L.

    2007-01-01

    We tested the hypothesis that larger juvenile sockeye salmon (Oncorhynchus nerka) in Bristol Bay, Alaska, have higher marine-stage survival rates than smaller juvenile salmon. We used scales from returning adults (33 years of data) and trawl samples of juveniles (n= 3572) collected along the eastern Bering Sea shelf during August through September 2000−02. The size of juvenile sockeye salmon mirrored indices of their marine-stage survival rate (e.g., smaller fish had lower indices of marine-stage survival rate). However, there was no relationship between the size of sockeye salmon after their first year at sea, as estimated from archived scales, and brood-year survival size was relatively uniform over the time series, possibly indicating size-selective mortality on smaller individuals during their marine residence. Variation in size, relative abundance, and marine-stage survival rate of juvenile sockeye salmon is likely related to ocean conditions affecting their early marine migratory pathways along the eastern Bering Sea shelf.

  2. Seasonal marine growth of Bristol Bay sockeye salmon (Oncorhynchus nerka) in relation to competition with Asian pink salmon (O. gorbuscho) and the 1977 ocean regime shift

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Farley, Ed; Nielsen, Jennifer L.; Hagen, Peter

    2005-01-01

    Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each growth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2. smolts was significantly higher than age-1 smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10-18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean regime shift. During 1977-2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955-1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977-2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.

  3. Distribution, size, and interannual, seasonal and diel food habits of northern Gulf of Alaska juvenile pink salmon, Oncorhynchus gorbuscha

    NASA Astrophysics Data System (ADS)

    Armstrong, Janet L.; Boldt, Jennifer L.; Cross, Alison D.; Moss, Jamal H.; Davis, Nancy D.; Myers, Katherine W.; Walker, Robert V.; Beauchamp, David A.; Haldorson, Lewis J.

    2005-01-01

    An integral part of assessing the northern Gulf of Alaska (GOA) ecosystem is the analysis of the food habits and feeding patterns of abundant zooplanktivorous fish. Juvenile pink salmon Oncorhynchus gorbuscha are highly abundant zooplanktivores, and support valuable commercial fisheries as adults. We document variability in pink salmon distribution and size from summer to early fall, and present major trends in their food habits by summarizing interannual (August 1999-2001), seasonal (July-October 2001) and diel (August 2000, and July-September 2001) feeding patterns based on analysis of stomach contents of juvenile pink salmon collected along the Seward Line (GOA) and in Prince William Sound (PWS), Alaska. Diets of juvenile pink salmon were more diverse in 2001 compared to either 1999 or 2000. Small pteropods ( Limacina helicina) composed the majority (>60%) of prey consumed in 1999 and 2000; whereas large copepods, euphausiids, and small pteropods composed the majority of prey in 2001. As juvenile pink salmon increased in size, they consumed increasingly larger prey from August to October 2001 in the GOA. The diet of GOA juvenile pink salmon was different and more diverse than the diet of fish caught in PWS. The dominant prey in PWS during July-October was hyperiid amphipods, whereas the primary prey in the GOA were larvaceans and euphausiids in July, then copepods plus small pteropods, amphipods, euphausiids, larval crabs, and shrimp in August. In September and October, diets in both PWS and GOA included high percentages of larger prey items, including fish, euphausiids, and large pteropods ( Clio pyramidata). Diel comparisons of stomach contents showed pink salmon fed during daylight hours with stomach fullness increasing from dawn to a maximum fullness 8-12 h after sunrise, and declining thereafter. We hypothesize that juvenile pink salmon in the northern GOA consumed distinct and varied prey from the suite of zooplankton available during summer months, July

  4. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawytscha) Near Ives and Pierce Island of the Columbia River, 2000.

    SciTech Connect

    Mueller, Robert P.

    2001-10-01

    Fall chinook salmon (Oncorhynchus tshawytscha), thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas included gravel beds on the Washington side of the river near Hamilton Creek and Ives Island. The size of this population from 1994 to 1996 was estimated at 1,800 to 5,200 fish (Hymer 1997), and 554 fish in 1998 (Van der Naald et al. 1999). These estimates were based on carcass surveys and visual observation of redds by boat near the shoreline. Pacific Northwest National Laboratory (PNNL) conducted underwater video surveys in the fall of 1999 and 2000 to determine the extent of the fall chinook salmon spawning and to estimate the number of redds occurring in deeper water. Estimates of redds occurring in water depths exceeding 2.2 m at 143,000 cubic feet per second (kcfs) were 499 in 1999 (Mueller and Dauble 1999) and 567 redds >2.2 m at 127 kcfs in 2000 (this study). The majority of the redds found were confined near the main river channel adjacent to Pierce Island. Chum salmon (O. keta) also have been documented using the mouth of Hamilton Creek and portions of Hamilton Slough for spawning. The majority of chum salmon were found to spawn in shallow water at the mouth of Hamilton Creek adjacent to Ives Island. Estimates of the natural chum salmon spawning population for 1998 were 226 (Van der Naald et al. 1999). Chum salmon spawning near Ives Island are part of the Columbia River evolutionary significant unit (ESU), and are included in the Endangered Species Act of 1973 (ESA) listing in March 1999. Our main objective of this study was to locate deep water spawning locations of fall chinook salmon in the main Columbia River channel and to collect additional data on physical habitat parameters at spawning sites. The secondary objective was to map any chum salmon redds located in the deep sections of

  5. Competition between Asian pink salmon (Oncorhynchus gorbuscha) and Alaskan sockeye salmon (O. nerka) in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Zimmermann, M.; Myers, K.W.; Nielsen, J.L.; Rogers, D.E.

    2003-01-01

    The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd-numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd-year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977-97 indicated that smolts entering the ocean during even-numbered years and interacting with abundant odd-year pink salmon during the following year experienced 26% (age-2 smolt) to 45% (age-1 smolt) lower survival compared with smolts migrating during odd-numbered years. Adult sockeye salmon returning to Bristol Bay from even-year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd-year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.

  6. Application of single nucleotide polymorphism markers to chum salmon Oncorhynchus keta: discovery, genotyping and linkage phase resolution.

    PubMed

    Garvin, M R; Gharrett, A J

    2010-12-01

    This study describes (1) the application of new methods to the discovery of informative single nucleotide polymorphism (SNP) markers in chum salmon Oncorhynchus keta, (2) a method to resolve the linkage phase of closely linked SNPs and (3) a method to inexpensively genotype them. Finally, it demonstrates that these SNPs provide information that discriminates among O. keta populations from different geographical regions of the northern Pacific Ocean. These informative markers can be used in conjunction with mixed-stock analysis to learn about the spatial and temporal marine distributions of O. keta and the factors that influence the distributions.

  7. Temperature seasonality during fry out-migration influences the survival of hatchery-reared chum salmon Oncorhynchus keta.

    PubMed

    Morita, K; Nakashima, A

    2015-10-01

    Among years, fry-to-adult survival of hatchery-reared chum salmon Oncorhynchus keta was positively correlated with the length (in days) of the fry out-migration period with temperatures suitable for migration. Furthermore, survival decreased with increasing difference in mean temperature between May and June. Thus, prolonged out-migration periods increased the probability of survival from fry to adult, lending support to the hypothesis that long migration periods decrease the risk of mortality (bet-hedging), and increase the probability of migration when environmental conditions in fresh water and the ocean are suitable (match-mismatch).

  8. Behaviour of growth hormone transgenic coho salmon Oncorhynchus kisutch in marine mesocosms assessed by acoustic tag telemetry.

    PubMed

    Hollo, T; Watson, B M; Johnston, S V; Devlin, R H

    2017-02-05

    Underwater acoustic tag telemetry was used to assess behavioural differences between juvenile wild-type (i.e. non-transgenic, NT) and growth hormone (GH) transgenic (T) coho salmon Oncorhynchus kisutch in a contained simulated ocean environment. T O. kisutch were found across days to maintain higher baseline swimming speeds than NT O. kisutch and differences in response to feeding were detected between T and NT genotypes. This is the first study to assess behaviour of GH transgenic salmonids in a marine environment and has relevance for assessing whether behavioural effects of GH overexpression seen in freshwater environments can be extrapolated to oceanic phases of the life cycle.

  9. Antibody-producing cells correlated to body weight in juvenile chinook salmon (Oncorhynchus tshawytscha) acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, C.B.; Maule, A.G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21?? C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures. ?? 2001 Academic Press.

  10. Antibody-producting cells correlated with body weight in juvenile Chinook salmon Oncorhynchus tshawytscha acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, Carl B.; Maule, Alec G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21° C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures.

  11. Behavioural response of juvenile Chinook salmon Oncorhynchus tshawytscha during a sudden temperature increase and implications for survival

    SciTech Connect

    Bellgraph, Brian J.; McMichael, Geoffrey A.; Mueller, Robert P.; Monroe, Jennifer L.

    2010-01-01

    The behaviours of juvenile Chinook salmon Oncorhynchus tshawytscha were evaluated during a temperature increase from 8.8 to 23.2°C, which was designed to simulate unique thermal conditions present in a hydroelectric reservoir. The percent of fish with an active swimming behaviour increased from 26 to 93 % and mean opercular beat rates increased from 76 to 159 beats per minute between basal and maximum temperatures. Fish equilibrium did not change significantly throughout the experiment and relatively little mortality (12 %) occurred. Thermal stress is likely incurred by juvenile salmon experiencing a temperature change of this magnitude; however, stress induced in this study was primarily sublethal. Behavioural changes accompanying thermal stress (e.g., erratic swimming) may increase predation potential in the wild despite being sublethal during laboratory experiments.

  12. Fasting and diet content affect stress-induced changes in plasma glucose and cortisol in Juvenile chinook salmon. [Oncorhynchus tshawytscha

    SciTech Connect

    Barton, B.A.; Schreck, C.B. ); Fowler, L.G. )

    1988-01-01

    Juvenile chinook salmon (Oncorhynchus tshawytscha) reared on low-, medium-, or high-lipid diets for 18 weeks were either kept on their respective diets or fasted for 20 d; then they were subjected to a 30-s handling stress or to handling plus continuous confinement. In fish that were handled but not confined, poststress hyperglycemia was greatest in fed fish that received the high-lipid diet and was generally lower in fasted than in fed fish. Plasma cortisol elevations in response to handling or handling plus confinement stress were not appreciably affected by diet type or fasting. The result indicated that prior feeding regimes and the types of diet fed should be considered when one is interpreting the magnitude of hyperglycemic stress responses in juvenile chinook salmon.

  13. Relative virulence of three isolates of Piscirickettsia salmonis for coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    House, M.L.; Bartholomew, J.L.; Winton, J.R.; Fryer, J.L.

    1999-01-01

    Piscirickettsia salmonis was first recognized as the cause of mortality among pen-reared coho salmon Oncorhynchus kisutch in Chile. Since the initial isolation of this intracellular Gram-negative bacterium in 1989, similar organisms have been described from several areas of the world, but the associated outbreaks were not reported to be as serious as those that occurred in Chile. To determine if this was due to differences in virulence among isolates of P. salmonis, we conducted an experiment comparing isolates from Chile, British Columbia, Canada, and Norway (LF-89, ATL-4-91 and NOR-92, respectively). For each of the isolates, 3 replicates of 30 coho salmon were injected intraperitoneally with each of 3 concentrations of the bacterium. Negative control fish were injected with MEM-10. Mortalities were collected daily for 41 d post-injection. Piscirickettsiosis was observed in fish injected with each of the 3 isolates, and for each isolate, cumulative mortality was directly related to the concentration of bacterial cells administered. The LF-89 isolate was the most virulent, with losses reaching 97% in the 3 replicates injected with 105.0 TCID50, 91% in the replicates injected with 104.0 TCID50, and 57% in the fish injected with 103.0 TCID50. The ATL-4-91 isolate caused losses of 92% in the 3 replicates injected with 105.0 TCID50, 76% in the fish injected with 104.0 TCID50, and 32% in those injected with 103.0 TCID50. The NOR-92 isolate was the least virulent, causing 41% mortality in the replicates injected with 104.6 TCID50. At 41 d post-injection, 6% of the fish injected with 103.6 TCID50 NOR-92 had died. Mortality was only 2% in the fish injected with 102.6 TCID50 NOR-92, which was the same as the negative control group. Because the group injected with the highest concentration (104.6 TCID50) of NOR-92 was still experiencing mortality at 41 d, it was held for an additional 46 d. At 87 d post-injection, the cumulative mortality in this group had reached 70

  14. Behavioural thermoregulation by subyearling fall (autumn) Chinook salmon oncorhynchus tshawytscha in a reservoir

    USGS Publications Warehouse

    Tiffan, K.F.; Kock, T.J.; Connor, W.P.; Steinhorst, R.K.; Rondorf, D.W.

    2009-01-01

    This study investigated behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir on the Snake River, Washington, U.S.A. During the summer, temperatures in the reservoir varied from 23?? C on the surface to 11?? C at 14 m depth. Subyearlings implanted with temperature-sensing radio transmitters were released at the surface at temperatures >20?? C during three blocks of time in summer 2004. Vertical profiles were taken to measure temperature and depth use as the fish moved downstream over an average of 5??6-7??2 h and 6??0-13??8 km. The majority of the subyearlings maintained average body temperatures that differed from average vertical profile temperatures during most of the time they were tracked. The mean proportion of the time subyearlings tracked within the 16-20?? C temperature range was larger than the proportion of time this range was available, which confirmed temperature selection opposed to random use. The subyearlings selected a depth and temperature combination that allowed them to increase their exposure to temperatures of 16-20?? C when temperatures 20?? C were available at lower and higher positions in the water column. A portion of the subyearlings that selected a temperature c. 17??0?? C during the day, moved into warmer water at night coincident with an increase in downstream movement rate. Though subyearlings used temperatures outside of the 16-20?? C range part of the time, behavioural thermoregulation probably reduced the effects of intermittent exposure to suboptimal temperatures. By doing so, it might enhance growth opportunity and life-history diversity in the population of subyearlings studied.

  15. Behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir.

    PubMed

    Tiffan, K F; Kock, T J; Connor, W P; Steinhorst, R K; Rondorf, D W

    2009-05-01

    This study investigated behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir on the Snake River, Washington, U.S.A. During the summer, temperatures in the reservoir varied from 23 degrees C on the surface to 11 degrees C at 14 m depth. Subyearlings implanted with temperature-sensing radio transmitters were released at the surface at temperatures >20 degrees C during three blocks of time in summer 2004. Vertical profiles were taken to measure temperature and depth use as the fish moved downstream over an average of 5.6-7.2 h and 6.0-13.8 km. The majority of the subyearlings maintained average body temperatures that differed from average vertical profile temperatures during most of the time they were tracked. The mean proportion of the time subyearlings tracked within the 16-20 degrees C temperature range was larger than the proportion of time this range was available, which confirmed temperature selection opposed to random use. The subyearlings selected a depth and temperature combination that allowed them to increase their exposure to temperatures of 16-20 degrees C when temperatures <16 and >20 degrees C were available at lower and higher positions in the water column. A portion of the subyearlings that selected a temperature c. 17.0 degrees C during the day, moved into warmer water at night coincident with an increase in downstream movement rate. Though subyearlings used temperatures outside of the 16-20 degrees C range part of the time, behavioural thermoregulation probably reduced the effects of intermittent exposure to suboptimal temperatures. By doing so, it might enhance growth opportunity and life-history diversity in the population of subyearlings studied.

  16. Effects of exogenous thyroid hormones on visual pigment composition in coho salmon (Oncorhynchus kisutch).

    PubMed

    Temple, Shelby E; Ramsden, Samuel D; Haimberger, Theodore J; Veldhoen, Kathy M; Veldhoen, Nik J; Carter, Nicolette L; Roth, Wolff-Michael; Hawryshyn, Craig W

    2008-07-01

    The role of exogenous thyroid hormone on visual pigment content of rod and cone photoreceptors was investigated in coho salmon (Oncorhynchus kisutch). Coho vary the ratio of vitamin A1- and A2-based visual pigments in their eyes. This variability potentially alters spectral sensitivity and thermal stability of the visual pigments. We tested whether the direction of shift in the vitamin A1/A2 ratio, resulting from application of exogenous thyroid hormone, varied in fish of different ages and held under different environmental conditions. Changes in the vitamin A1/A2 visual pigment ratio were estimated by measuring the change in maximum absorbance (lambda max) of rods using microspectrophotometry (MSP). Exogenous thyroid hormone resulted in a long-wavelength shift in rod, middle-wavelength-sensitive (MWS) and long-wavelength-sensitive (LWS) cone photoreceptors. Rod and LWS cone lambda max values increased, consistent with an increase in vitamin A2. MWS cone lambda max values increased more than predicted for a change in the vitamin A1/A2 ratio. To account for this shift, we tested for the expression of multiple RH2 opsin subtypes. We isolated and sequenced a novel RH2 opsin subtype, which had 48 amino acid differences from the previously sequenced coho RH2 opsin. A substitution of glutamate for glutamine at position 122 could partially account for the greater than predicted shift in MWS cone lambda max values. Our findings fit the hypothesis that a variable vitamin A1/A2 ratio provides seasonality in spectral tuning and/or improved thermal stability of visual pigments in the face of seasonal environmental changes, and that multiple RH2 opsin subtypes can provide flexibility in spectral tuning associated with migration-metamorphic events.

  17. Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper: Neurophysiological and histological effects on the olfactory system

    SciTech Connect

    Hansen, J.A.; Rose, J.D.; Jenkins, R.A.; Gerow, K.G.; Bergman, H.L.

    1999-09-01

    Olfactory epithelial structure and olfactory bulb neurophysiological responses were measured in chinook salmon and rainbow trout in response to 25 to 300 {micro}g copper (Cu)/L. Using confocal laser scanning microscopy, the number of olfactory receptors was significantly reduced in chinook salmon exposed to {ge}50 {micro}g Cu/L and in rainbow trout exposed to {ge}200 {micro}g cu/L for 1 h. The number of receptors was significantly reduced in both species following exposure to 25 {micro}g Cu/L for 4 h. Transmission electron microscopy of olfactory epithelial tissue indicated that the loss of receptors was from cellular necrosis. Olfactory bulk electroencephalogram (EEG) responses to 10{sup {minus}3} M L-serine were initially reduced by all Cu concentrations but were virtually eliminated in chinook salmon exposed to {ge}50 {micro}g Cu/L and in rainbow trout exposed to {ge}200 {micro}g Cu/L within 1 h of exposure. Following Cu exposure, EEG response recovery rates were slower in fish exposed to higher Cu concentrations. The higher sensitivity of the chinook salmon olfactory system to Cu-induced histological damage and neurophysiological impairment parallels the relative species sensitivity observed in behavioral avoidance experiments. This difference in species sensitivity may reduce the survival and reproductive potential of chinook salmon compared with that of rainbow trout in Cu-contaminated waters.

  18. Interaction of growth hormone overexpression and nutritional status on pituitary gland clock gene expression in coho salmon, Oncorhynchus kisutch.

    PubMed

    Kim, Jin-Hyoung; White, Samantha L; Devlin, Robert H

    2015-02-01

    Clock genes are involved in generating a circadian rhythm that is integrated with the metabolic state of an organism and information from the environment. Growth hormone (GH) transgenic coho salmon, Oncorhynchus kisutch, show a large increase in growth rate, but also attenuated seasonal growth modulations, modified timing of physiological transformations (e.g. smoltification) and disruptions in pituitary gene expression compared with wild-type salmon. In several fishes, circadian rhythm gene expression has been found to oscillate in the suprachiasmatic nucleus of the hypothalamus, as well as in multiple peripheral tissues, but this control system has not been examined in the pituitary gland nor has the effect of transgenic growth modification been examined. Thus, the daily expression of 10 core clock genes has been examined in pituitary glands of GH transgenic (T) and wild-type coho salmon (NT) entrained on a regular photocycle (12L: 12D) and provided either with scheduled feeding or had food withheld for 60 h. Most clock genes in both genotypes showed oscillating patterns of mRNA levels with light and dark cycles. However, T showed different amplitudes and patterns of expression compared with wild salmon, both in fed and starved conditions. The results from this study indicate that constitutive expression of GH is associated with changes in clock gene regulation, which may play a role in the disrupted behavioural and physiological phenotypes observed in growth-modified transgenic strains.

  19. Kinetic properties of three isoforms of trypsin isolated from the pyloric caeca of chum salmon (Oncorhynchus keta).

    PubMed

    Toyota, Eiko; Iyaguchi, Daisuke; Sekizaki, Haruo; Itoh, Kunihiko; Tanizawa, Kazutaka

    2007-09-01

    Three isoforms of anionic chum salmon trypsin (ST-1, ST-2, and ST-3) were purified from the pyloric caeca of chum salmon (Oncorhynchus keta). The molecular weights of the three isoforms were about 24 kDa as determined by SDS-PAGE. The isoelectric points of ST-1, ST-2, and ST-3 were 5.8, 5.4, and 5.6, respectively. The apparent K(m) values of two isoforms (ST-1 and ST-2) for BAPA (benzoyl-L-arginine-p-nitroanilide) hydrolysis at 5, 15, 25 and 35 degrees C were slightly higher than that of the main isoform ST-3, depending on temperature. The turnover numbers, k(cat), of ST-1 and ST-2 were about twice as high as that of ST-3. Consequently, the catalytic efficiencies (k(cat)/K(m)) of ST-1 and ST-2 were more efficient than ST-3. There were marked differences in both apparent K(m) and k(cat) values of three anionic chum salmon trypsins as compared to bovine cationic trypsin. K(m) values of all chum salmon trypsins were approximately 10 times lower than those of bovine trypsin, depending on the temperature. The k(cat) values of all chum salmon trypsins were about 2- to 5-fold higher than those of bovine trypsin; therefore, the catalytic efficiencies (k(cat)/K(m)) of chum salmon trypsin were 20- to 40-fold more efficient than those of bovine trypsin. On the other hand, k(cat)/K(m) values of ST-1 for TAME (tosyl-L-arginine methyl ester) hydrolysis were lower than those of bovine trypsin, whereas k(cat)/K(m) values of ST-2 and ST-3 were comparable to those of bovine trypsin, depending on the temperature.

  20. Comparative analysis of innate immune responses to Streptococcus phocae strains in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Salazar, Soraya; Oliver, Cristian; Yáñez, Alejandro J; Avendaño-Herrera, Ruben

    2016-04-01

    Streptococcus phocae subsp. salmonis is a Gram-positive bacterium that causes mortality only in Atlantic salmon (Salmo salar) farmed in Chile, even when this species is co-cultured with rainbow trout (Oncorhynchus mykiss). This susceptibility could be determined by innate immune response components and their responses to bacterial infection. This fish pathogen shares subspecies status with Streptococcus phocae subsp. phocae isolated from seals. The present study compared innate immune system mechanisms in Atlantic salmon and rainbow trout when challenged with different S. phocae, including two isolates from Atlantic salmon (LM-08-Sp and LM-13-Sp) and two from seal (ATCC 51973(T) and P23). Streptococcus phocae growth was evaluated in the mucus and serum of both species, with rainbow trout samples evidencing inhibitory effects. Lysozyme activity supported this observation, with significantly higher (p < 0.01) expression in rainbow trout serum and mucus as compared to Atlantic salmon. No differences were found in phagocytic capacity between fish species when stimulated with ATCC 51973(T) and P23. Against all S. phocae strains, rainbow trout and Atlantic salmon showed up to two-fold increased bactericidal activity, and rainbow trout demonstrated up to three-fold greater reactive oxygen species production in macrophages. In conclusion, the non-specific humoral and cellular barriers of Atlantic salmon were immunologically insufficient against S. phocae subsp. salmonis, thereby facilitating streptococcosis. Moreover, the more robust response of rainbow trout to S. phocae could not be attributed to any specific component of the innate immune system, but was rather the consequence of a combined response by the evaluated components.

  1. Linkages between life history type and migration pathways in freshwater and marine environments for Chinook salmon, Oncorhynchus tshawytscha

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi; Quinn, Thomas P.

    2012-05-01

    Chinook salmon, Oncorhynchus tshawytscha, are commonly categorized as ocean-type (migrating to the ocean in their first year of life) or stream-type (migrating after a full year in freshwater). These two forms have been hypothesized to display different ocean migration pathways; the former are hypothesized to migrate primarily on the continental shelf whereas the latter are hypothesized to migrate off the shelf to the open ocean. These differences in migration patterns have important implications for management, as fishing mortality rates are strongly influenced by ocean migration. Ocean-type Chinook salmon predominate in coastal rivers in the southern part of the species' range, whereas stream-type predominate in the interior and northerly rivers. This latitudinal gradient has confounded previous efforts to test the hypothesis regarding ocean migration pathways. To address this problem, we used a pair-wise design based on coded wire tagging data to compare the marine distributions of stream- and ocean-type Chinook salmon from a suite of rivers producing both forms. Both forms of Chinook salmon from the lower Columbia River, Oregon coast, lower Fraser River, and northern British Columbia rivers followed similar migration paths, contradicting the hypothesis. In contrast, recoveries of tagged Chinook salmon from the upper Columbia River, Snake River, and the upper Fraser River revealed migration patterns consistent with the hypothesis. These findings have important implications for our understanding of these life history types, and also for the conservation and management of declining, threatened, or endangered stream-type Chinook salmon populations in the US and Canada.

  2. Network-scale spatial and temporal variation in Chinook salmon (Oncorhynchus tshawytscha) redd distributions: patterns inferred from spatially continuous replicate surveys

    Treesearch

    Daniel J. Isaak; Russell F. Thurow

    2006-01-01

    Spatially continuous sampling designs, when temporally replicated, provide analytical flexibility and are unmatched in their ability to provide a dynamic system view. We have compiled such a data set by georeferencing the network-scale distribution of Chinook salmon (Oncorhynchus tshawytscha) redds across a large wilderness basin (7330 km2) in...

  3. Assessing the suitability of a partial water reuse system for rearing juvenile Chinook salmon Oncorhynchus tshawytscha for stocking in Washington State

    USDA-ARS?s Scientific Manuscript database

    Health and welfare of juvenile Chinook salmon Oncorhynchus tshawytsha reared in a pilot circular tank-based partial water reuse system in Washington State were evaluated in comparison to fish from the same spawn reared in a flow-through raceway, in order to assess the suitability of using water reus...

  4. Antigen-binding cells in the peripheral blood of sockeye salmon, Oncorhynchus nerka Walbaum, induced by immersion or intraperitoneal injection of Vibrio languilarum bacterin

    USGS Publications Warehouse

    1981-01-01

    We used an immunocytoadherence assay to monitor the response of antigen-binding cells (ABC) in the peripheral blood of sockeye salmon, Oncorhynchus nerka, after immersion in, or intraperitoneal injection of, Vibrio anguillarum LS 1–74 bacterin. Both methods initiated an elevated ABC response in less than one day; this response persisted one week longer in the injected than in the immersed fish.

  5. Testing of male sockeye salmon (Oncorhynchus nerka) and steelhead trout (Salmo gairdneri) for infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.; Batts, W.N.

    1987-01-01

    Infectious hematopoietic necrosis (IHN) virus has been isolated only rarely from whole milt samples of male sockeye salmon (Oncorhynchus nerka). In 3 yr of testing, virus incidences in males ranged from 0 to 13% when milt was sampled but were 60–100% with spleen or kidney. When IHN virus was isolated from sockeye salmon milt at titers less than 3.00 log10 plaque-forming units (pfu)/mL, the level of virus in the kidney or spleen exceeded 7.00 log10 pfu/g. Higher rates of IHN virus isolation from kidney or spleen than from milt were also generally found in steelhead trout (Salmo gairdneri), although the differences were less pronounced than in sockeye salmon. Furthermore, virus was sometimes isolated from steelhead trout milt when the level of virus in kidney or spleen samples was very low, and was recovered from some milt samples when none was isolated from the corresponding spleen sample. When male salmonids are tested for IHN virus, kidney or spleen samples are superior to whole milt, but milt should be included for critical examinations.

  6. Effects of Renibacterium salmoninarum on olfactory organs of Chinook salmon (Oncorhynchus tshawytscha) marked with coded wire tags

    USGS Publications Warehouse

    Elliott, Diane G.; Conway, Carla M.; Bruno, D.W.; Elliott, D.G.; Nowak, B.

    2014-01-01

    Bacterial kidney disease (BKD) caused by Renibacterium salmoninarum can cause significant morbidity and mortality in Chinook salmon (Oncorhynchus tshawytscha), particularly in Chinook salmon of the stream (spring) life history type, which migrate to sea as yearlings rather than subyearlings. R. salmoninarum can be transmitted vertically from the female parent to the progeny in association with the egg, as well as horizontally from fish to fish. This study was conducted as part of a research project to investigate whether the prevalence and intensity of R. salmoninarum infections in adult spring Chinook salmon could affect the survival and pathogen prevalence and intensity in their progeny (Pascho et al., 1991, 1993; Elliott et al., 1995). Fish from two brood years (1988 and 1989) were reared at Dworshak National Fish Hatchery (Idaho, USA) for about 1-1/2 years, released as yearling smolts, and allowed to migrate to the Pacific Ocean for maturation. The majority of progeny fish were marked with coded wire tags (CWTs) about 4 months before they were released from the hatchery so that adult returns could be monitored. The CWTs were implanted in the snouts of the fish by an experienced team of fish markers using automated wire-tagging machines. The intended placement site was the cartilage, skeletal muscle or loose connective tissue of the snout.

  7. Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha) from Diverse Genetic Stocks and a Large Spatial Extent

    PubMed Central

    Scheuerell, Mark D.; Simenstad, Charles A.; Bottom, Daniel L.

    2016-01-01

    Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010–2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity. PMID:27695094

  8. Transportation of chinook salmon, Oncorhynchus tshawytscha, and steelhead, Salmo gairdneri, smolts in the Columbia River and effects on adult returns

    SciTech Connect

    Ebel, W.J.

    1980-04-01

    Chinook salmon, Oncorhynchus tshawytscha, and steelhead, Salmo gairdneri, were captured at Little Goose Dam in the Snake River during their seaward migration and transported 400 km downstream to the lower Columbia River below Bonneville Dam. Their survival was increased from 1.1 to 15 times as compared with control fish which passed by seven mainstem low-level dams and reservoirs. Variations in survival were mainly dependent on species and environmental conditions in the river during the period fish were transported. The homing ability of the adult fish was not significantly diminished; less than 0.2% of strays occurred among adult returns from groups transported. Transportation did not affect ocean age or size of returning adult steelhead, but ocean age of returning adult chinook salmon may have been affected. Steelhead returned to Little Goose Dam at a substantially higher rate (1.4 to 2.7%) than chinook salmon (0.1 to 0.8%) from groups transported. The timing of adult returns of both species to Little Goose Dam was not related to the time of capture and downstream release of smolts.

  9. Sublethal and acute toxicity of the ethylene glycol butyl ether ester formulation of triclopyr to juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Johansen, J A; Geen, G H

    1990-01-01

    The toxicity of Garlon4, the ethylene glycol butyl ether ester formulation of the herbicide tryclopyr, to juvenile coho salmon (Oncorhynchus kisutch) was investigated at several lethal and sublethal concentrations. Fish behavior, random activity and oxygen uptake were monitored. Coho salmon exhibited three distinct responses related to concentration and duration of exposure: (1) at concentrations greater than 0.56 mg/L fish were initially lethargic, then regressed to a highly distressed condition characterized by elevated oxygen uptake and finally death, (2) at 0.32-0.43 mg/L fish were lethargic throughout the exposure period with reduced oxygen uptake, and (3) at concentrations less than or equal to 0.10 mg/L fish were hypersensitive to stimuli, exhibiting elevated activity and oxygen uptake levels during photoperiod transitions. Whole body residue analysis showed that uptake of the ester and subsequent hydrolysis to the acid form in the fish was rapid, with significant accumulation of the acid in the tissues. This suggests that some threshold tissue concentrations were associated with the observed results. For juvenile coho salmon the 96-hr LC50 of Garlon4 was 0.84 mg/L.

  10. New subtype of salmonid alphavirus (SAV), Togaviridae, from Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss in Norway.

    PubMed

    Hodneland, K; Bratland, A; Christie, K E; Endresen, C; Nylund, A

    2005-09-05

    In Europe, 2 closely related alphaviruses (Togaviridae) are regarded as the causative agents of sleeping disease (SD) and salmon pancreas disease (SPD): SD virus (SDV) has been isolated from rainbow trout Oncorhynchus mykiss in France and the UK, while SPD virus (SPDV) has been isolated from salmon Salmo salar in Ireland and the UK. Farmed salmonids in western Norway also suffer from a disease called pancreas disease (PD), and this disease is also believed to be caused by an alphavirus. However, this virus has not yet been characterised at the molecular level. We have cultured a Norwegian salmonid alphavirus from moribund fishes diagnosed with cardiac myopathy syndrome (CMS) and fishes diagnosed with PD. The virus has also been found in salmon suffering from haemorrhagic smolt syndrome in the fresh water phase. The genomic organisation of the Norwegian salmonid alphavirus is identical to that in SPDV and SDV, and the nucleotide sequence similarity to the other 2 alphaviruses is 91.6 and 92.9%, respectively. Based on the pathological changes, host species and the nucleotide sequence, we suggest naming this virus Norwegian salmonid alphavirus (NSAV). Together with SPDV and SDV it constitutes a third subtype of salmonid alphavirus (SAV) species within the genus Alphavirus, family Togaviridae.

  11. Purification and properties of digestive lipases from Chinook salmon (Oncorhynchus tshawytscha) and New Zealand hoki (Macruronus novaezelandiae).

    PubMed

    Kurtovic, Ivan; Marshall, Susan N; Zhao, Xin; Simpson, Benjamin K

    2010-12-01

    Lipases were purified from delipidated pyloric ceca powder of two New Zealand-sourced fish, Chinook salmon (Oncorhynchus tshawytscha) and hoki (Macruronus novaezelandiae), by fractional precipitation with polyethylene glycol 1000, followed by affinity chromatography using cholate-Affi-Gel 102, and gel filtration on Sephacryl S-300 HR. For the first time, in-polyacrylamide gel activity of purified fish lipases against 4-methylumbelliferyl butyrate has been demonstrated. Calcium ions and sodium cholate were absolutely necessary both for lipase stability in the gel and for optimum activity against caprate and palmitate esters of p-nitrophenol. A single protein band was present in native polyacrylamide gels for both salmon and hoki final enzyme preparations. Under denaturing conditions, electrophoretic analysis revealed two bands of 79.6 and 54.9 kDa for salmon lipase. It is proposed that these bands correspond to an uncleaved and a final form of the enzyme. One band of 44.6 kDa was seen for hoki lipase. pI values of 5.8±0.1 and 5.7±0.1 were obtained for the two salmon lipase forms. The hoki lipase had a pI of 5.8±0.1. Both lipases had the highest activity at 35°C, were thermally labile, had a pH optimum of 8-8.5, and were more acid stable compared to other fish lipases studied to date. Both enzymes were inhibited by the organophosphate paraoxon. Chinook salmon and hoki lipases showed good stability in several water-immiscible solvents. The enzymes had very similar amino acid composition to mammalian carboxyl ester lipases and one other fish digestive lipase. The salmon enzyme was an overall better catalyst based on its higher turnover number (3.7±0.3 vs. 0.71±0.05 s(-1) for the hoki enzyme) and lower activation energy (2.0±0.4 vs. 7.6±0.8 kcal/mol for the hoki enzyme) for the hydrolysis of p-nitrophenyl caprate. The salmon and hoki enzymes are homologous with mammalian carboxyl ester lipases.

  12. Infectious haematopoietic necrosis virus genogroup-specific virulence mechanisms in sockeye salmon, Oncorhynchus nerka (Walbaum), from Redfish Lake, Idaho.

    PubMed

    Purcell, M K; Garver, K A; Conway, C; Elliott, D G; Kurath, G

    2009-07-01

    Characterization of infectious haematopoietic necrosis virus (IHNV) field isolates from North America has established three main genogroups (U, M and L) that differ in host-specific virulence. In sockeye salmon, Oncorhynchus nerka, the U genogroup is highly virulent, whereas the M genogroup is nearly non-pathogenic. In this study, we sought to characterize the virus-host dynamics that contribute to genogroup-specific virulence in a captive stock of sockeye salmon from Redfish Lake in Idaho. Juvenile sockeye salmon were challenged by immersion and injection with either a representative U or M viral strain and sampled periodically until 14 days post-infection (p.i.). Fish challenged with each strain had positive viral titre by day 3, regardless of challenge route, but the fish exposed to the M genogroup virus had significantly lower virus titres than fish exposed to the U genogroup virus. Gene expression analysis by quantitative reverse transcriptase PCR was used to simultaneously assess viral load and host interferon (IFN) response in the anterior kidney. Viral load was significantly higher in the U-challenged fish relative to M-challenged fish. Both viruses induced expression of the IFN-stimulated genes (ISGs), but expression was usually significantly lower in the M-challenged group, particularly at later time points (7 and 14 days p.i.). However, ISG expression was comparable with 3 days post-immersion challenge despite a significant difference in viral load. Our data indicated that the M genogroup virus entered the host, replicated and spread in the sockeye salmon tissues, but to a lesser extent than the U genogroup. Both virus types induced a host IFN response, but the high virulence strain (U) continued to replicate in the presence of this response, whereas the low virulence strain (M) was cleared below detectable levels. We hypothesize that high virulence is associated with early in vivo replication allowing the virus to achieve a threshold level, which the

  13. Exceptional aerobic scope and cardiovascular performance of pink salmon (Oncorhynchus gorbuscha) may underlie resilience in a warming climate.

    PubMed

    Clark, Timothy D; Jeffries, Kenneth M; Hinch, Scott G; Farrell, Anthony P

    2011-09-15

    Little is known of the physiological mechanisms underlying the effects of climate change on animals, yet it is clear that some species appear more resilient than others. As pink salmon (Oncorhynchus gorbuscha) in British Columbia, Canada, have flourished in the current era of climate warming in contrast to other Pacific salmonids in the same watershed, this study investigated whether the continuing success of pink salmon may be linked with exceptional cardiorespiratory adaptations and thermal tolerance of adult fish during their spawning migration. Sex-specific differences existed in minimum and maximum oxygen consumption rates (M(O2,min) and M(O2,max), respectively) across the temperature range of 8 to 28°C, reflected in a higher aerobic scope (M(O2,max)-M(O2,min)) for males. Nevertheless, the aerobic scope of both sexes was optimal at 21°C (T(opt)) and was elevated across the entire temperature range in comparison with other Pacific salmonids. As T(opt) for aerobic scope of this pink salmon population is higher than in other Pacific salmonids, and historic river temperature data reveal that this population rarely encounters temperatures exceeding T(opt), these findings offer a physiological explanation for the continuing success of this species throughout the current climate-warming period. Despite this, declining cardiac output was evident above 17°C, and maximum attainable swimming speed was impaired above ∼23°C, suggesting negative implications under prolonged thermal exposure. While forecasted summer river temperatures over the next century are likely to negatively impact all Pacific salmonids, we suggest that the cardiorespiratory capacity of pink salmon may confer a selective advantage over other species.

  14. Mortality due to infectious hematopoietic necrosis of sockeye salmon (Oncorhynchus nerka) fry in streamside egg incubation boxes

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.; Jenes, C.K.

    1983-01-01

    Infectious hematopoietic necrosis virus caused mortality of sockeye salmon (Oncorhynchus nerka) in streamside egg incubation boxes. Virus was not detectable in eggs or alevins; its first isolation coincided with the appearance of dead fish in a trap on the outflow from the box. Mortality due to the virus did not occur in every egg box studied. However, when fry from the boxes were held in the laboratory, epizootics began as much as 3 wk later, with total mortality exceeding 90%. More than 96% of the dead fry had titers exceeding 105 plaque-forming units per gram. The peak incidence of virus in fry migrating in the river coincided with the arrival of hatchery-produced fry, although some fry believed to have been produced by natural spawning were also infected.Englis

  15. Ecological relationship between freshwater sculpins (Genus cottus) and beach-spawning sockeye salmon (Oncorhynchus nerka) in Iliamna Lake, Alaska

    USGS Publications Warehouse

    Foote, C.J.; Brown, G.S.

    1998-01-01

    The interaction between two sculpin species, Cottus cognatus and Cottus aleuticus, and island beach spawning sockeye salmon (Oncorhynchus nerka) was examined in Iliamna Lake, Alaska. We conclude that sculpins actively move to specific spawning beaches and that the initiation of their movements precedes the start of spawning. Sculpin predation on sockeye eggs is positively dependent on sculpin size and on the state of the eggs (fresh versus water hardened), with the largest sculpins able to consume nearly 50 fresh eggs at a single feeding and 130 over a 7-day period. The number of sculpins in sockeye nests is greatest at the beginning of the spawning run, lowest in the middle, and high again at the end, with peak numbers of over 100 sculpins per nest (1 m2). We discuss the results in terms of energy flow of marine-derived nutrients into an oligotrophic system and in terms of the coevolution of sockeye spawning behavior and the predatory behavior of sculpins.

  16. Evidence That GABA Mediates Dopaminergic and Serotonergic Pathways Associated with Locomotor Activity in Juvenile Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clements, S.; Schreck, C.B.

    2004-01-01

    The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems-gamma-amino-n-butyric acid (GABA), dopamine, and serotonin-as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAAagonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4???,4??? -difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.

  17. Appearance and quantification of infectious hematopoietic necrosis virus in female sockeye salmon (Oncorhynchus nerka) during their spawning migration

    USGS Publications Warehouse

    Mulcahy, D.; Jenes, C.K.; Pascho, R.J.

    1984-01-01

    The incidence and amount of infectious hematopoietic necrosis (IHN) virus was determined in 10 organs and body fluids from each of 100 female sockeye salmon(Oncorhynchus nerka) before, during, and after their spawning migration into freshwater. Virus was found in high concentrations only in fish sampled during and after spawning. Infection rates increased from nil to 100 percent within 2 weeks. In spawning fish, incidences of IHN virus were high in all organs and fluids except brain and serum, and the highest concentrations were in the pyloric caeca and lower gut. Immediately before spawning, IHN virus was found most frequently in the gills, less frequently in the pyloric caeca and spleen, and rarely in other organs.

  18. Influence of water temperature on gill sodium, potassium-stimulated ATPase activity in juvenile coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Zaugg, W.S.; McLain, L. R.

    1976-01-01

    1. Gill sodium, potassium-stimulated ATPase activity was determined from December to July in gills of yearling coho salmon (Oncorhynchus kisutch) maintained at four temperatures, 6, 10, 15 and 20°C.2. Compared to fish held at 6°C, elevation in ATPase activity and the associated parr-smolt transformation were accelerated in fish at 10 and 15°C whereas animals at 20°C experienced at best only a transitory elevation in activity.3. Fish transferred from one temperature to another developed ATPase activities characteristic of fish residing at temperatures to which they were transferred.4. Cold water (6°C) tended to preserve the elevated ATPase activity while higher temperatures (10 and 15°C) caused decreases after an initial accelerated increase.

  19. Some physiological consequences of handling stress in the juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri)

    USGS Publications Warehouse

    Wedemeyer, Gary

    1972-01-01

    The stress of handling juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri) in soft water and in water with added salts was evaluated using blood and tissue chemistry fluctuations as indices of metabolic and endocrine function. Changes in plasma glucose, chloride, calcium, and cholesterol levels indicated that significant osmoregulatory and metabolic dysfunctions can occur and persist for about 24 hr after handling in soft water. Pituitary activation, as judged by lack of interrenal ascorbate depletion, did not occur. Increasing the ambient NaCl and Ca++ levels to about 100 milliosmols and 75–120 ppm, respectively, partially or completely alleviated the hyperglycemia and hypochloremia indicating that the stress of handling had been reduced.

  20. Preliminary examination of oxidative stress in juvenile spring Chinook salmon Oncorhynchus tshawytscha of wild origin sampled from transport barges.

    PubMed

    Welker, T L; Congleton, J L

    2009-11-01

    Migrating juvenile wild Chinook salmon Oncorhynchus tshawytscha, collected and loaded onto transport barges at Lower Granite Dam on the Snake River, were sampled from barges at John Day Dam, 348 km downstream, at 5 day intervals beginning in late April and ending in late May. An increase in lipid peroxidation and decrease in vitamin E in liver were observed from early to late in the barge transportation season. These changes seemed unrelated to changes in plasma cortisol or corresponding glucose levels, which declined from early to late in the season, or the concentration of n-3 highly unsaturated fatty acid (HUFA) concentrations in tissue but may be related to water temperature, which increased during the transport season, or other changes associated with the parr-smolt transformation.

  1. Residues of DDT in lake trout (Salvelinus namaycush) and coho salmon (Oncorhynchus kisutch) from the Great Lakes

    USGS Publications Warehouse

    Reinert, Robert E.; Bergman, Harold L.

    1974-01-01

    Concentrations of DDT residues were higher in lake trout (Salvelinus namaycush) from southern Lake Michigan in 1966–70 (average 18.1 ppm in fish 558–684 mm long) than in lake trout of the same size-class from Lake Superior in 1968–69 (4.4 ppm), and higher in adult coho salmon (Oncorhynchus kisutch) from Lake Michigan in 1968–71 (averages for different year-classes, 9.9–14.0 ppm) than in those from Lake Erie in 1969 (2.2 ppm). Residues were significantly higher in lake trout from southern Lake Michigan than in those from the northern part of the lake. In lakes Michigan and Superior, the levels increased with length of fish and percentage oil. In Lake Michigan coho salmon, the residues remained nearly stable (2–4 ppm) from September of the 1st yr of lake residence through May or early June of the 2nd yr, but increased three to four times in the next 3 mo. Residues in Lake Erie coho salmon did not increase during this period, which preceded the spawning season. Although the concentrations of total residues in whole, maturing Lake Michigan coho salmon remained unchanged from August 1968 until near the end of the spawning season in January 1969, the residues were redistributed in the tissues of the spawning-run fish; concentrations in the loin and brain were markedly higher in January than in August. This relocation of DDT residues accompanied a marked decrease in the percentage of oil in the fish, from 13.2 in August to 2.8 in January. Concentrations of residues were relatively high in eggs of both lake trout (4.6 ppm) and coho salmon (7.4–10.2 ppm) from Lake Michigan. The percentage composition of the residues (p,p′DDE, o,p′/DDT, p,p′DDT, and p,p′DDT) did not differ significantly with life stage, size, age, or locality, or date of collection of lake trout or coho salmon.

  2. Mortality and kidney histopathology of chinook salmon Oncorhynchus tshawytscha exposed to virulent and attenuated Renibacterium salmoninarum strains

    USGS Publications Warehouse

    O'Farrell, C. L.; Elliott, D.G.; Landolt, M.L.

    2000-01-01

    An isolate of Renibacterium salmoninarum (strain MT 239) exhibiting reduced virulence in rainbow trout Oncorhynchus mykiss was tested for its ability to cause bacterial kidney disease (BKD) in chinook salmon Oncorhynchus tshawytscha, a salmonid species more susceptible to BKD. Juvenile chinook salmon were exposed to either 33209, the American Type Culture Collection type strain of R. salmoninarum, or to MT 239, by an intraperitoneal injection of 1 ?? 103 or 1 ?? 106 bacteria fish-1, or by a 24 h immersion in 1 ?? 105 or 1 ?? 107 bacteria ml-1. For 22 wk fish were held in 12??C water and monitored for mortality. Fish were sampled periodically for histological examination of kidney tissues. In contrast to fish exposed to the high dose of strain 33209 by either injection or immersion, none of the fish exposed to strain MT 239 by either route exhibited gross clinical signs or histopathological changes indicative of BKD. However, the MT 239 strain was detected by the direct fluorescent antibody technique in 4 fish that died up to 11 wk after the injection challenge and in 5 fish that died up to 20 wk after the immersion challenge. Viable MT 239 was isolated in culture from 3 fish that died up to 13 wk after the immersion challenge. Total mortality in groups injected with the high dose of strain MT 239 (12%) was also significantly lower (p < 0.05) than mortality in groups injected with strain 33209 (73%). These data indicate that the attenuated virulence observed with MT 239 in rainbow trout also occurs in a salmonid species highly susceptible to BKD. The reasons for the attenuated virulence of MT 239 were not determined but may be related to the reduced levels of the putative virulence protein p57 associated with this strain.

  3. Mortality and kidney histopathology of Chinook salmon Oncorhynchus tshawytscha exposed to virulent and attenuated Renibacterium salmoninarum strains

    USGS Publications Warehouse

    O'Farrell, Caroline L.; Elliott, Diane G.; Landolt, Marsha L.

    2001-01-01

    An isolate of Renibacterium salmoninarum (strain MT 239) exhibiting reduced virulence in rainbow trout Oncorhynchus mykiss was tested for its ability to cause bacterial kidney disease (BKD) in chinook salmon Oncorhynchus tshawytscha, a salmonid species more susceptible to BKD. Juvenile chinook salmon were exposed to either 33209, the American Type Culture Collection type strain of R. salmoninarum, or to MT 239, by an intraperitoneal injection of 1 x 10(3) or 1 x 10(6) bacteria fish(-1), or by a 24 h immersion in 1 x 10(5) or 1 x 10(7) bacteria ml(-1). For 22 wk fish were held in 12 degrees C water and monitored for mortality. Fish were sampled periodically for histological examination of kidney tissues. In contrast to fish exposed to the high dose of strain 33209 by either injection or immersion, none of the fish exposed to strain MT 239 by either route exhibited gross clinical signs or histopathological changes indicative of BKD. However, the MT 239 strain was detected by the direct fluorescent antibody technique in 4 fish that died up to 11 wk after the injection challenge and in 5 fish that died up to 20 wk after the immersion challenge. Viable MT 239 was isolated in culture from 3 fish that died up to 13 wk after the immersion challenge. Total mortality in groups injected with the high dose of strain MT 239 (12%) was also significantly lower (p < 0.05) than mortality in groups injected with strain 33209 (73 %). These data indicate that the attenuated virulence observed with MT 239 in rainbow trout also occurs in a salmonid species highly susceptible to BKD. The reasons for the attenuated virulence of MT 239 were not determined but may be related to the reduced levels of the putative virulence protein p57 associated with this strain.

  4. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    USGS Publications Warehouse

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  5. Using remotely sensed imagery and GIS to monitor and research salmon spawning: A case study of the Hanford Reach fall chinook (Oncorhynchus Tshawytscha)

    SciTech Connect

    RH Visser

    2000-03-16

    The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., the Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities.

  6. Plasma cortisol and sex steroid levels in Great Lakes coho salmon (Oncorhynchus kisutch Walbaum) in relation to fecundity and egg survival.

    PubMed

    Morrison, P F; Leatherland, J F; Sonstegard, R A

    1985-01-01

    Plasma 11-ketotestosterone and cortisol levels in spawning male and female coho salmon (Oncorhynchus kisutch Walbaum) collected from a Lake Erie (Pennsylvania) stock were significantly lower (P less than 0.01) than in stocks of coho salmon at a comparable stage of sexual development collected from Lakes Ontario (two stocks) or Michigan. Plasma testosterone levels in female coho salmon from Lake Erie were significantly lower (P less than 0.01) than in females from Lake Ontario or Lake Michigan stocks. There were no significant differences in plasma testosterone levels in the males, or 17 beta-estradiol levels in male or female salmon of the four stocks sampled from the three study lakes. This apparent dysfunction in androgen and cortisol secretion in the Lake Erie stock is correlated with and may account for the low fecundity and poor expression of secondary sexual characteristics in that stock.

  7. Physical and nutritional properties of baby food containing added red salmon oil (Oncorhynchus nerka) and microencapsulated red salmon oil

    USDA-ARS?s Scientific Manuscript database

    Unpurified red salmon oil (UPSO) was purified (PSO) using chitosan. Both unpurified and purified oils were evaluated for peroxide value (PV), free fatty acids (FFA), fatty acid methyl esters (FAME), moisture, and color. An emulsion system containing PSO (EPSO) was prepared: system was analyzed for c...

  8. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    SciTech Connect

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.

  9. Pituitary thyrotropin and gonadotropin of coho salmon (Oncorhynchus kisutch): separation by chromatofocusing.

    PubMed

    Swanson, P; Dickhoff, W W; Gorbman, A

    1987-02-01

    Thyrotropin (TSH) and gonadotropin (GTH) were isolated from adult female coho salmon pituitary glands. After final extraction in acidic alcohol and precipitation in 85% ethanol, proteins were fractionated using gel filtration chromatography and chromatofocusing. Homologous bioassay systems were used to monitor bioactivity during the purification procedures. TSH activity was measured in vivo in coho salmon parr. GTH (steroidogenic) activity was determined in vitro using cultures of adult coho salmon ovarian follicles. Using these procedures, TSH and GTH activities were separated. TSH activity eluted as one major peak at pH 6.3 whereas GTH activity eluted as five major peaks at pH's 5.4, 5.0, 4.7, 4.3, and after 1.0 M NaCl on chromatofocusing. Molecular weights of the TSH and GTHs were estimated by gel filtration chromatography as 35 and 40 kDa, respectively. Like other vertebrate TSHs and gonadotropins, the coho salmon TSH and GTHs appeared to consist of two subunits. Coho salmon TSH and bovine TSH (bTSH) were equipotent in the TSH bioassay. The five coho salmon GTHs exhibited similar potencies in stimulating ovarian estradiol synthesis in vitro. Further biochemical analysis and tests for other gonadotropic activities are warranted to determine if these five GTHs are isoforms of one GTH or if they can be distinguished functionally in other GTH bioassays. Sufficient quantities of coho salmon TSH were isolated in this study for future studies of the hypothalamic-pituitary-thyroid axis in fish.

  10. A time-lapse photography method for monitoring salmon (Oncorhynchus spp.) passage and abundance in streams

    PubMed Central

    Leacock, William B.; Eby, Lisa A.; Stanford, Jack A.

    2016-01-01

    Accurately estimating population sizes is often a critical component of fisheries research and management. Although there is a growing appreciation of the importance of small-scale salmon population dynamics to the stability of salmon stock-complexes, our understanding of these populations is constrained by a lack of efficient and cost-effective monitoring tools for streams. Weirs are expensive, labor intensive, and can disrupt natural fish movements. While conventional video systems avoid some of these shortcomings, they are expensive and require excessive amounts of labor to review footage for data collection. Here, we present a novel method for quantifying salmon in small streams (<15 m wide, <1 m deep) that uses both time-lapse photography and video in a model-based double sampling scheme. This method produces an escapement estimate nearly as accurate as a video-only approach, but with substantially less labor, money, and effort. It requires servicing only every 14 days, detects salmon 24 h/day, is inexpensive, and produces escapement estimates with confidence intervals. In addition to escapement estimation, we present a method for estimating in-stream salmon abundance across time, data needed by researchers interested in predator--prey interactions or nutrient subsidies. We combined daily salmon passage estimates with stream specific estimates of daily mortality developed using previously published data. To demonstrate proof of concept for these methods, we present results from two streams in southwest Kodiak Island, Alaska in which high densities of sockeye salmon spawn. PMID:27326378

  11. Effects of oil-contaminated prey on the feeding, growth, and related energetics on pink salmon, Oncorhynchus gorbuscha Walbaum, fry

    SciTech Connect

    Schwartz, J.P.

    1984-01-01

    Pink salmon, Oncorhynchus gorbuscha Walbaum, fry were exposed to oil contaminated prey (OCP) in a series of experiments to determine the effect of oil exposure via the diet on the ability of pink fry to survive. Brine shrimp, Artemia salina, nauplii were contaminated with petroleum hydrocarbons by exposure to the water-soluble fraction (WSF) of Cook Inlet crude oil and fed to the fish. Feeding rates were measured for 10 days using OCP and for 5 days using uncontaminated prey (post-exposure period). In a separate experiment, fry growth was measured over a 50 day period. In another experiment, fry oxygen consumption, food absorption and utilization, and ammonia excretion was measured to determine the effects of OCP on fry metabolic activity. Results indicate that exposure to OCP can reduce fry growth primarily by reducing food intake, but additional nutrition is lost from the non-absorption of ingested food. Reductions in growth could decrease fry survival, and thereby reduce the number of returning adult pink salmon.

  12. Sockeye salmon (Oncorhynchus nerka) return after an absence of nearly 90 years: A case of reversion to anadromy

    USGS Publications Warehouse

    Godbout, L.; Wood, C.C.; Withler, R.E.; Latham, S.; Nelson, R.J.; Wetzel, L.; Barnett-Johnson, R.; Grove, M.J.; Schmitt, A.K.; McKeegan, K.D.

    2011-01-01

    We document the recent reappearance of anadromous sockeye salmon (Oncorhynchus nerka) that were thought to have been extirpated by the construction of hydroelectric dams on the Coquitlam and Alouette rivers in British Columbia, Canada, in 1914 and 1927, respectively. Unexpected downstream migrations of juveniles during experimental water releases into both rivers in 2005 and 2006 preceded upstream return migrations of adults in 2007 and 2008. Genetic (microsatellite and mitochondrial DNA) markers and stable isotope (??34S and 87Sr/86Sr) patterns in otoliths confirm that both the juvenile downstream migrants and adult upstream migrants were progeny of nonanadromous sockeye salmon (kokanee) that inhabit Coquitlam and Alouette reservoirs. Low genetic diversity and evidence of genetic bottlenecks suggest that the kokanee populations in both reservoirs originated from relatively few anadromous individuals that residualized after downstream migration was largely prevented by the construction of dams. Once given an opportunity for upstream and downstream migration, both populations appear capable of reverting to a successful anadromous form, even after 25 generations.

  13. The effects of disease-induced juvenile mortality on the transient and asymptotic population dynamics of Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Fujiwara, Masami; Mohr, Michael S; Greenberg, Aaron

    2014-01-01

    The effects of an increased disease mortality rate on the transient and asymptotic dynamics of Chinook salmon (Oncorhynchus tshawytscha) were investigated. Disease-induced mortality of juvenile salmon has become a serious concern in recent years. However, the overall effects of disease mortality on the asymptotic and transient dynamics of adult spawning abundance are still largely unknown. We explored various scenarios with regard to the density-dependent process, the distribution of survivorship over the juvenile phase, the disease mortality rate, and the infusion of stray hatchery fish. Our results suggest that the sensitivity to the disease mortality rate of the equilibrium adult spawning abundance and resilience (asymptotic return rate toward this equilibrium following a small perturbation) varied widely and differently depending on the scenario. The resilience and coefficient of variation of adult spawning abundance following a large perturbation were consistent with each other under the scenarios investigated. We conclude that the increase in disease mortality likely has an effect on fishery yield under a fluctuating environment, not only because the mean equilibrium adult spawning abundance has likely been reduced, but also because the resilience has likely decreased and the variance in adult spawning abundance has likely increased. We also infer the importance of incorporating finer-scale spatiotemporal information into population models and demonstrate a means for doing so within a matrix population modeling framework.

  14. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon.

    PubMed

    Garver, Kyle A; LaPatra, Scott E; Kurath, Gael

    2005-04-06

    The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 pg doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish.

  15. The influence of hydrology and waterway distance on population structure of Chinook salmon Oncorhynchus tshawytscha in a large river.

    PubMed

    Olsen, J B; Beacham, T D; Wetklo, M; Seeb, L W; Smith, C T; Flannery, B G; Wenburg, J K

    2010-04-01

    Adult Chinook salmon Oncorhynchus tshawytscha navigate in river systems using olfactory cues that may be influenced by hydrologic factors such as flow and the number, size and spatial distribution of tributaries. Thus, river hydrology may influence both homing success and the level of straying (gene flow), which in turn influences population structure. In this study, two methods of multivariate analysis were used to examine the extent to which four indicators of hydrology and waterway distance explained population structure of O. tshawytscha in the Yukon River. A partial Mantel test showed that the indicators of hydrology were positively associated with broad-scale (Yukon basin) population structure, when controlling for the influence of waterway distance. Multivariate multiple regression showed that waterway distance, supplemented with the number and flow of major drainage basins, explained more variation in broad-scale population structure than any single indicator. At an intermediate spatial scale, indicators of hydrology did not appear to influence population structure after accounting for waterway distance. These results suggest that habitat changes in the Yukon River, which alter hydrology, may influence the basin-wide pattern of population structure in O. tshawytscha. Further research is warranted on the role of hydrology in concert with waterway distance in influencing population structure in Pacific salmon.

  16. Rapid growth in the early marine period improves the marine survival of Chinook salmon (Oncorhynchus tshawytscha) in Puget Sound, Washington

    USGS Publications Warehouse

    Duffy, Elisabeth J.; Beauchamp, David A.

    2011-01-01

    We examined the effect of early marine entry timing and body size on the marine (smolt-to-adult) survival of Puget Sound Chinook salmon (Oncorhynchus tshawytscha). We used data from coded wire tag release groups of hatchery Chinook salmon to test whether hatchery release date, release size, and size in offshore waters in July and September influenced marine survival. Marine survival was most strongly related to the average body size in July, with larger sizes associated with higher survivals. This relationship was consistent over multiple years (1997–2002), suggesting that mortality after July is strongly size-dependent. Release size and date only slightly improved this relationship, whereas size in September showed little relationship to marine survival. Specifically, fish that experienced the highest marine survivals were released before 25 May and were larger than 17 g (or 120 mm fork length) by July. Our findings highlight the importance of local conditions in Puget Sound (Washington, USA) during the spring and summer, and suggest that declines in marine survival since the 1980s may have been caused by reductions in the quality of feeding and growing conditions during early marine life.

  17. Rapid growth in the early marine period improves the marine survival of Chinook salmon (Oncorhynchus tshawytscha) in Puget Sound, Washington

    USGS Publications Warehouse

    Duffy, E.J.; Beauchamp, D.A.

    2011-01-01

    We examined the effect of early marine entry timing and body size on the marine (smolt-to-adult) survival of Puget Sound Chinook salmon (Oncorhynchus tshawytscha). We used data from coded wire tag release groups of hatchery Chinook salmon to test whether hatchery release date, release size, and size in offshore waters in July and September influenced marine survival. Marine survival was most strongly related to the average body size in July, with larger sizes associated with higher survivals. This relationship was consistent over multiple years (1997-2002), suggesting that mortality after July is strongly size-dependent. Release size and date only slightly improved this relationship, whereas size in September showed little relationship to marine survival. Specifically, fish that experienced the highest marine survivals were released before 25 May and were larger than 17 g (or 120 mm fork length) by July. Our findings highlight the importance of local conditions in Puget Sound (Washington, USA) during the spring and summer, and suggest that declines in marine survival since the 1980s may have been caused by reductions in the quality of feeding and growing conditions during early marine life.

  18. Evaluation of fast green FCF dye for non-lethal detection of integumental injuries in juvenile chinook salmon oncorhynchus tshawytscha

    USGS Publications Warehouse

    Elliott, D.G.; Conway, C.M.; Applegate, L.M.J.

    2009-01-01

    A rapid staining procedure for detection of recent skin and fin injuries was tested in juvenile Chinook salmon Oncorhynchus tshawytscha. Immersion of anesthetized fish for 1 min in aerated aqueous solutions of the synthetic food dye fast green FCF (Food Green 3) at concentrations of 0.1 to 0.5% produced consistent and visible staining of integumental injuries. A 0.1% fast green concentration was satisfactory for visual evaluation of injuries, whereas a 0.5% concentration was preferable for digital photography. A rinsing procedure comprised of two 30 s rinses in fresh water was most effective for removal of excess stain after exposure of fish. Survival studies in fresh water and seawater and histopathological analyses indicated that short exposures to aqueous solutions of fast green were non-toxic to juvenile Chinook salmon. In comparisons of the gross and microscopic appearance of fish exposed to fast green at various times after injury, the dye was observed only in areas of the body where epidermal disruption was present as determined by scanning electron microscopy. No dye was observed in areas where epidermal integrity had been restored. Further comparisons showed that fast green exposure produced more consistent and intense staining of skin injury sites than a previously published procedure using trypan blue. Because of its relatively low cost, ease of use and the rapid and specific staining of integumental injuries, fast green may find widespread application in fish health and surface injury evaluations. ?? Inter-Research 2009.

  19. Organization of glomerular territories in the olfactory bulb of post-embryonic wild chinook salmon Oncorhynchus tshawytscha.

    PubMed

    Ochs, Cory L; Suntres, Tina; Zygowska, Alexandra; Pitcher, Trevor; Zielinski, Barbara S

    2017-04-01

    The post-embryonic odor imprinting paradigm suggests Chinook salmon (Oncorhynchus tshawytscha) acquire memory to stream-specific amino acid olfactory odors prior to emergence as fry. Because effects of olfactory experience on development can be examined by mapping olfactory sensory neurons extending into distinct territories of glomerular neuropil in the olfactory bulb, glomerular patterning from early yolk-sac larva to fry was documented in wild salmonids, a temporal scale not yet thoroughly explored. Labeling olfactory sensory neurons with anti-keyhole limpet hemocyanin (anti-KLH) revealed seven spatially conserved glomerular territories visible at hatch and well established by the late yolk-sac larva developmental stage. Because of the responsiveness of microvillous olfactory sensory neurons to amino acids, corresponding glomeruli in the lateral bulbar region were mapped using anti-calretinin. The dorsolateral territory, distinct glomeruli of the lateral glomerular territory and the ventromedial glomeruli were immunoreactive to both KLH and calretinin. This study offers a morphological description of glomerular patterning in post-embryonic stages in wild Chinook salmon, a temporal window previously shown to be significant for olfactory imprinting. J. Morphol. 278:464-474, 2017. © 2017 Wiley Periodicals, Inc.

  20. Effects of surgically and gastrically implanted radio transmitters on swimming performance and predator avoidance of juvenile chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Adams, N.S.; Rondorf, D.W.; Evans, S.D.; Kelly, J.E.; Perry, R.W.

    1998-01-01

    Radiotelemetry data are often used to make inferences about an entire study population; therefore, the transmitter attachment method should be the one that least affects the study animal. Juvenile chinook salmon (Oncorhynchus tshawytscha) <120 mm in fork length (FL) with either gastrically or surgically implanted transmitters had significantly lower critical swimming speeds than control fish 1 and 19-23 days after tagging. For fish >120 mm FL, fish with gastric implants swam as well as controls 1 day but not 19-23 days after tagging. In contrast, fish with surgical implants swam as well as controls 19-23 days but not 1 day after tagging. During predation trials, fish with gastric or surgical implants were eaten by smallmouth bass (Micropterus dolomieu) in significantly greater numbers than controls. We do not recommend implanting transmitters (representing 4.6-10.4% of the fish's body weight) in fish <120 mm FL. Furthermore, surgical implants (representing 2.2-5.6% of the fish's body weight) may be the preferred method for biotelemetry studies of juvenile chinook salmon >120 mm FL.

  1. Genetic effects of ELISA-based segregation for control of bacterial kidney disease in Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Hard, J.J.; Elliott, D.G.; Pascho, R.J.; Chase, D.M.; Park, L.K.; Winton, J.R.; Campton, D.E.

    2006-01-01

    We evaluated genetic variation in ability of Chinook salmon (Oncorhynchus tshawytscha) to resist two bacterial pathogens: Renibacterium salmoninarum, the agent of bacterial kidney disease (BKD), and Listonella anguillarum, an agent of vibriosis. After measuring R. salmoninarum antigen in 499 adults by enzyme-linked immunosorbent assay (ELISA), we mated each of 12 males with high or low antigen levels to two females with low to moderate levels and exposed subsets of their progeny to each pathogen separately. We found no correlation between R. salmoninarum antigen level in parents and survival of their progeny following pathogen exposure. We estimated high heritability for resistance to R. salmoninarum (survival h2 = 0.890 ?? 0.256 (mean ?? standard error)) independent of parental antigen level, but low heritability for resistance to L. anguillarum (h2 = 0.128 ?? 0.078). The genetic correlation between these survivals (rA = -0.204 ?? 0.309) was near zero. The genetic and phenotypic correlations between survival and antigen levels among surviving progeny exposed to R. salmoninarum were both negative (rA = -0.716 ?? 0.140; rP = -0.378 ?? 0.041), indicating that variation in antigen level is linked to survival. These results suggest that selective culling of female broodstock with high antigen titers, which is effective in controlling BKD in salmon hatcheries, will not affect resistance of their progeny. ?? 2006 NRC.

  2. The Effects of Disease-Induced Juvenile Mortality on the Transient and Asymptotic Population Dynamics of Chinook Salmon (Oncorhynchus tshawytscha)

    PubMed Central

    Fujiwara, Masami; Mohr, Michael S.; Greenberg, Aaron

    2014-01-01

    The effects of an increased disease mortality rate on the transient and asymptotic dynamics of Chinook salmon (Oncorhynchus tshawytscha) were investigated. Disease-induced mortality of juvenile salmon has become a serious concern in recent years. However, the overall effects of disease mortality on the asymptotic and transient dynamics of adult spawning abundance are still largely unknown. We explored various scenarios with regard to the density-dependent process, the distribution of survivorship over the juvenile phase, the disease mortality rate, and the infusion of stray hatchery fish. Our results suggest that the sensitivity to the disease mortality rate of the equilibrium adult spawning abundance and resilience (asymptotic return rate toward this equilibrium following a small perturbation) varied widely and differently depending on the scenario. The resilience and coefficient of variation of adult spawning abundance following a large perturbation were consistent with each other under the scenarios investigated. We conclude that the increase in disease mortality likely has an effect on fishery yield under a fluctuating environment, not only because the mean equilibrium adult spawning abundance has likely been reduced, but also because the resilience has likely decreased and the variance in adult spawning abundance has likely increased. We also infer the importance of incorporating finer-scale spatiotemporal information into population models and demonstrate a means for doing so within a matrix population modeling framework. PMID:24427310

  3. Effects of disturbance on contribution of energy sources to growth of juvenile chinook salmon (Oncorhynchus tshawytscha) in boreal streams

    USGS Publications Warehouse

    Perry, R.W.; Bradford, M.J.; Grout, J.A.

    2003-01-01

    We used stable isotopes of carbon in a growth-dependent tissue-turnover model to quantify the relative contribution of autochthonous and terrestrial energy sources to juvenile chinook salmon (Oncorhynchus tshawytscha) in five small boreal streams tributary to the upper Yukon River. We used a tissue-turnover model because fish did not grow enough to come into isotopic equilibrium with their diet. In two streams, autochthonous energy sources contributed 23 and 41% to the growth of juvenile salmon. In the other three, fish growth was largely due to terrestrial (i.e., allochthonous) energy sources. This low contribution of autochthonous energy appeared to be related to stream-specific disturbances: a recent forest fire impacted two of the streams and the third was affected by a large midsummer spate during the study. These disturbances reduced the relative abundance of herbivorous macroinvertebrates, the contribution of autochthonous material to other invertebrates, and ultimately, the energy flow between stream algae and fish. Our findings suggest that disturbances to streams can be an important mechanism affecting transfer of primary energy sources to higher trophic levels.

  4. Effect of salinity changes on olfactory memory-related genes and hormones in adult chum salmon Oncorhynchus keta.

    PubMed

    Kim, Na Na; Choi, Young Jae; Lim, Sang-Gu; Jeong, Minhwan; Jin, Deuk-Hee; Choi, Cheol Young

    2015-09-01

    Studies of memory formation have recently concentrated on the possible role of N-methyl-d-aspartate receptors (NRs). We examined changes in the expression of three NRs (NR1, NR2B, and NR2C), olfactory receptor (OR), and adrenocorticotropic hormone (ACTH) in chum salmon Oncorhynchus keta using quantitative polymerase chain reaction (QPCR) during salinity change (seawater→50% seawater→freshwater). NRs were significantly detected in the diencephalon and telencephalon and OR was significantly detected in the olfactory epithelium. The expression of NRs, OR, and ACTH increased after the transition to freshwater. We also determined that treatment with MK-801, an antagonist of NRs, decreased NRs in telencephalon cells. In addition, a reduction in salinity was associated with increased levels of dopamine, ACTH, and cortisol (in vivo). Reductions in salinity evidently caused NRs and OR to increase the expression of cortisol and dopamine. We concluded that memory capacity and olfactory imprinting of salmon is related to the salinity of the environment during the migration to spawning sites. Furthermore, salinity affects the memory/imprinting and olfactory abilities, and cortisol and dopamine is also related with olfactory-related memories during migration.

  5. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon

    USGS Publications Warehouse

    Garver, K.A.; LaPatra, S.E.; Kurath, G.

    2005-01-01

    The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 ??g doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish. ?? Inter-Research 2005.

  6. Effects of seawater transfer and fasting on the endocrine and biochemical growth indices in juvenile chum salmon (Oncorhynchus keta).

    PubMed

    Taniyama, Natsumi; Kaneko, Nobuto; Inatani, Yu; Miyakoshi, Yasuyuki; Shimizu, Munetaka

    2016-09-15

    Insulin-like growth factor (IGF)-I, IGF-binding protein (IGFBP)-1 and RNA/DNA ratio are endocrine and biochemical parameters used as growth indices in fish, however, they are subjected to environmental modulation. Chum salmon (Oncorhynchus keta) migrate from freshwater (FW) to seawater (SW) at fry/juvenile stage weighing around 1g and suffer growth-dependent mortality during the early phase of their marine life. In order to reveal environmental modulation of the IGF/IGFBP system and establish a reliable growth index for juvenile chum salmon, we examined effects of SW transfer and fasting on IGF-I, IGFBP-1 and RNA/DNA ratio, and correlated them to individual growth rate. Among serum IGF-I, liver and muscle igf-1, igfbp-1a, igfbp-1b and RNA/DNA ratio examined, muscle RNA/DNA ratio and muscle igfbp-1a responded to SW transfer. Serum IGF-I, liver igf-1 and liver RNA/DNA ratio were sensitive to nutritional change by being reduced in 1week in both FW and SW while muscle igf-1 was reduced 2weeks after fasting. In contrast, igfbp-1a in both tissues was increased by 2weeks of fasting and igfbp-1b in the liver of SW fish was increased in 1week. These results suggest that the sensitivity of igf-1 and igfbp-1s to fasting differs between tissues and subtypes, respectively. When chum salmon juveniles in SW were marked and subjected to feeding or fasting, serum IGF-I showed the highest correlation with individual growth rate. Liver igfbp-1a and -1b, and muscle igf-1 exhibited moderate correlation coefficients with growth rate. These results show that serum IGF-I is superior to the other parameters as a growth index in juvenile chum salmon in term of its stability to salinity change, high sensitivity to fasting and strong relationship with growth rate. On the one hand, when collecting blood from chum salmon fry/juveniles is not practical, measuring liver igfbp-1a and -1b, or/and muscle igf-1 is an alternative. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  8. Echolocation signals of free-ranging killer whales (Orcinus orca) and modeling of foraging for chinook salmon (Oncorhynchus tshawytscha)

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.; Ford, John K. B.; Horne, John K.; Allman, Kelly A. Newman

    2004-02-01

    Fish-eating ``resident''-type killer whales (Orcinus orca) that frequent the coastal waters off northeastern Vancouver Island, Canada have a strong preference for chinook salmon (Oncorhynchus tshawytscha). The whales in this region often forage along steep cliffs that extend into the water, echolocating their prey. Echolocation signals of resident killer whales were measured with a four-hydrophone symmetrical star array and the signals were simultaneously digitized at a sample rate of 500 kHz using a lunch-box PC. A portable VCR recorded the images from an underwater camera located adjacent to the array center. Only signals emanating from close to the beam axis (1185 total) were chosen for a detailed analysis. Killer whales project very broadband echolocation signals (Q equal 0.9 to 1.4) that tend to have bimodal frequency structure. Ninety-seven percent of the signals had center frequencies between 45 and 80 kHz with bandwidths between 35 and 50 kHz. The peak-to-peak source level of the echolocation signals decreased as a function of the one-way transmission loss to the array. Source levels varied between 195 and 224 dB re:1 μPa. Using a model of target strength for chinook salmon, the echo levels from the echolocation signals are estimated for different horizontal ranges between a whale and a salmon. At a horizontal range of 100 m, the echo level should exceed an Orcinus hearing threshold at 50 kHz by over 29 dB and should be greater than sea state 4 noise by at least 9 dB. In moderately heavy rain conditions, the detection range will be reduced substantially and the echo level at a horizontal range of 40 m would be close to the level of the rain noise.

  9. Geo-Referenced, Abundance Calibrated Ocean Distribution of Chinook Salmon (Oncorhynchus tshawytscha) Stocks across the West Coast of North America

    PubMed Central

    Bellinger, M. Renee; Banks, Michael A.; Bates, Sarah J.; Crandall, Eric D.; Garza, John Carlos; Sylvia, Gil; Lawson, Peter W.

    2015-01-01

    Understanding seasonal migration and localized persistence of populations is critical for effective species harvest and conservation management. Pacific salmon (genus Oncorhynchus) forecasting models predict stock composition, abundance, and distribution during annual assessments of proposed fisheries impacts. Most models, however, fail to account for the influence of biophysical factors on year-to-year fluctuations in migratory distributions and stock-specific survival. In this study, the ocean distribution and relative abundance of Chinook salmon (O. tshawytscha) stocks encountered in the California Current large marine ecosystem, U.S.A were inferred using catch-per-unit effort (CPUE) fisheries and genetic stock identification data. In contrast to stock distributions estimated through coded-wire-tag recoveries (typically limited to hatchery salmon), stock-specific CPUE provides information for both wild and hatchery fish. Furthermore, in contrast to stock composition results, the stock-specific CPUE metric is independent of other stocks and is easily interpreted over multiple temporal or spatial scales. Tests for correlations between stock-specific CPUE and stock composition estimates revealed these measures diverged once proportional contributions of locally rare stocks were excluded from data sets. A novel aspect of this study was collection of data both in areas closed to commercial fisheries and during normal, open commercial fisheries. Because fishing fleet efficiency influences catch rates, we tested whether CPUE differed between closed area (non-retention) and open area (retention) data sets. A weak effect was indicated for some, but not all, analyzed cases. Novel visualizations produced from stock-specific CPUE-based ocean abundance facilitates consideration of how highly refined, spatial and genetic information could be incorporated in ocean fisheries management systems and for investigations of biogeographic factors that influence migratory

  10. Geo-Referenced, Abundance Calibrated Ocean Distribution of Chinook Salmon (Oncorhynchus tshawytscha) Stocks across the West Coast of North America.

    PubMed

    Bellinger, M Renee; Banks, Michael A; Bates, Sarah J; Crandall, Eric D; Garza, John Carlos; Sylvia, Gil; Lawson, Peter W

    2015-01-01

    Understanding seasonal migration and localized persistence of populations is critical for effective species harvest and conservation management. Pacific salmon (genus Oncorhynchus) forecasting models predict stock composition, abundance, and distribution during annual assessments of proposed fisheries impacts. Most models, however, fail to account for the influence of biophysical factors on year-to-year fluctuations in migratory distributions and stock-specific survival. In this study, the ocean distribution and relative abundance of Chinook salmon (O. tshawytscha) stocks encountered in the California Current large marine ecosystem, U.S.A were inferred using catch-per-unit effort (CPUE) fisheries and genetic stock identification data. In contrast to stock distributions estimated through coded-wire-tag recoveries (typically limited to hatchery salmon), stock-specific CPUE provides information for both wild and hatchery fish. Furthermore, in contrast to stock composition results, the stock-specific CPUE metric is independent of other stocks and is easily interpreted over multiple temporal or spatial scales. Tests for correlations between stock-specific CPUE and stock composition estimates revealed these measures diverged once proportional contributions of locally rare stocks were excluded from data sets. A novel aspect of this study was collection of data both in areas closed to commercial fisheries and during normal, open commercial fisheries. Because fishing fleet efficiency influences catch rates, we tested whether CPUE differed between closed area (non-retention) and open area (retention) data sets. A weak effect was indicated for some, but not all, analyzed cases. Novel visualizations produced from stock-specific CPUE-based ocean abundance facilitates consideration of how highly refined, spatial and genetic information could be incorporated in ocean fisheries management systems and for investigations of biogeographic factors that influence migratory

  11. Echolocation signals of free-ranging killer whales (Orcinus orca) and modeling of foraging for chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Au, Whitlow W L; Ford, John K B; Horne, John K; Allman, Kelly A Newman

    2004-02-01

    Fish-eating "resident"-type killer whales (Orcinus orca) that frequent the coastal waters off northeastern Vancouver Island, Canada have a strong preference for chinook salmon (Oncorhynchus tshawytscha). The whales in this region often forage along steep cliffs that extend into the water, echolocating their prey. Echolocation signals of resident killer whales were measured with a four-hydrophone symmetrical star array and the signals were simultaneously digitized at a sample rate of 500 kHz using a lunch-box PC. A portable VCR recorded the images from an underwater camera located adjacent to the array center. Only signals emanating from close to the beam axis (1185 total) were chosen for a detailed analysis. Killer whales project very broadband echolocation signals (Q equal 0.9 to 1.4) that tend to have bimodal frequency structure. Ninety-seven percent of the signals had center frequencies between 45 and 80 kHz with bandwidths between 35 and 50 kHz. The peak-to-peak source level of the echolocation signals decreased as a function of the one-way transmission loss to the array. Source levels varied between 195 and 224 dB re: 1 microPa. Using a model of target strength for chinook salmon, the echo levels from the echolocation signals are estimated for different horizontal ranges between a whale and a salmon. At a horizontal range of 100 m, the echo level should exceed an Orcinus hearing threshold at 50 kHz by over 29 dB and should be greater than sea state 4 noise by at least 9 dB. In moderately heavy rain conditions, the detection range will be reduced substantially and the echo level at a horizontal range of 40 m would be close to the level of the rain noise.

  12. Survey of parasites in threatened stocks of coho salmon (Oncorhynchus kisutch) in Oregon by examination of wet tissues and histology.

    PubMed

    Ferguson, Jayde A; St-Hilaire, Sophie; Peterson, Tracy S; Rodnick, Kenneth J; Kent, Michael L

    2011-12-01

    We are conducting studies on the impacts of parasites on Oregon coastal coho salmon (Oncorhynchus kistuch). An essential first step is documenting the geographic distribution of infections, which may be accomplished by using different methods for parasite detection. Thus, the objectives of the current study were to (1) identify parasite species infecting these stocks of coho salmon and document their prevalence, density, and geographic distribution; (2) assess the pathology of these infections; and (3) for the first time, determine the sensitivity and specificity of histology for detecting parasites compared with examining wet preparations for muscle and gill infections. We examined 576 fry, parr, and smolt coho salmon in total by histology. The muscle and gills of 219 of these fish also were examined by wet preparation. Fish were collected from 10 different locations in 2006-2007. We identified 21 different species of parasites in these fish. Some parasites, such as Nanophyetus salmincola and Myxobolus insidiosus, were common across all fish life stages from most basins. Other parasites, such as Apophallus sp., were more common in underyearling fish than smolts and had a more restricted geographic distribution. Additional parasites commonly observed were as follows: Sanguinicola sp., Trichodina truttae , Epistylis sp., Capriniana piscium, and unidentified metacercariae in gills; Myxobolus sp. in brain; Myxidium salvelini and Chloromyxum majori in kidney; Pseudocapillaria salvelini and adult digenean spp. in the intestine. Only a few parasites, such as the unidentified gill metacercariae, elicted overt pathologic changes. Histology had generally poor sensitivity for detecting parasites; however, it had relatively good specificity. We recommend using both methods for studies or monitoring programs requiring a comprehensive assessment of parasite identification, enumeration, and parasite-related pathology.

  13. Pink salmon ( Oncorhynchus gorbuscha) marine survival rates reflect early marine carbon source dependency

    NASA Astrophysics Data System (ADS)

    Kline, Thomas C., Jr.; Boldt, Jennifer L.; Farley, Edward V., Jr.; Haldorson, Lewis J.; Helle, John H.

    2008-05-01

    Marine survival rate (the number of adult salmon returning divided by the number of salmon fry released) of pink salmon runs propagated by Prince William Sound, Alaska (PWS) salmon hatcheries is highly variable resulting in large year-to-year run size variation, which ranged from ∼20 to ∼50 million during 1998-2004. Marine survival rate was hypothesized to be determined during their early marine life stage, a time period corresponding to the first growing season after entering the marine environment while they are still in coastal waters. Based on the predictable relationships of 13C/ 12C ratios in food webs and the existence of regional 13C/ 12C gradients in organic carbon, 13C/ 12C ratios of early marine pink salmon were measured to test whether marine survival rate was related to food web processes. Year-to-year variation in marine survival rate was inversely correlated to 13C/ 12C ratios of early marine pink salmon, but with differences among hatcheries. The weakest relationship was for pink salmon from the hatchery without historic co-variation of marine survival rate with other PWS hatcheries or wild stocks. Year-to-year variation in 13C/ 12C ratio of early marine stage pink salmon in combination with regional spatial gradients of 13C/ 12C ratio measured in zooplankton suggested that marine survival was driven by carbon subsidies of oceanic origin (i.e., oceanic zooplankton). The 2001 pink salmon cohort had 13C/ 12C ratios that were very similar to those found for PWS carbon, i.e., when oceanic subsidies were inferred to be nil, and had the lowest marine survival rate (2.6%). Conversely, the 2002 cohort had the highest marine survival (9.7%) and the lowest mean 13C/ 12C ratio. These isotope patterns are consistent with hypotheses that oceanic zooplankton subsidies benefit salmon as food subsidies, or as alternate prey for salmon predators. Oceanic subsidies are manifestations of significant exchange of material between PWS and the Gulf of Alaska. Given

  14. Evidence of Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus Tshawytscha) : Spawning Near Ives and Pierce Island of the Columbia River, 1999.

    SciTech Connect

    Mueller, Robert P.; Dauble, Dennis D.

    2000-04-01

    Fall chinook salmon Oncorhynchus tshawytscha, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives island. Limited spawning ground surveys were conducted in the area around Ives and Pierce Islands during 1994-1997 and based on these surveys it was believed that fall chinook salmon successfully spawned in this area. The size of this population from 1994 to 1996 was estimated at 1,800 to 5,200 fish (Hymer 1997). Recently, chum salmon were also documented spawning downstream of Bonneville Dam. Chum salmon O. kisutch were listed as threatened under the Endangered Species Act (ESA) in March, 1999. There are several ongoing investigations to define the physical habitat characteristics associated with fall chinook and chum salmon spawning areas downstream of Bonneville Dam. A major concern is to determine what flows (i.e. surface elevations) are necessary to ensure their long-term survival. Our objective was to locate deepwater spawning locations in the main Columbia River channel and to collect additional data on physical habitat parameters at the site. This objective is consistent with the high priority that the Northwest Power Planning Council's Independent Advisory Board and the salmon managers have placed on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin.

  15. Journey of the Oncorhynchus: A Story of the Pacific Northwest Salmon.

    SciTech Connect

    United States. Bonneville Power Administration.

    1994-06-01

    This report tells the story of the Pacific Northwest salmon in words that children can understand. The life cycle of chinook salmon is depicted through pictures and elementary language from the egg to juvenile fish in fresh water, to maturing fish in the ocean, and the adults migrating back up to spawning grounds in the Columbia River. This can be very useful in the education of children.

  16. Alaska pink salmon (Oncorhynchus gorbuscha) spoilage and ethanol incidence in the canned product.

    PubMed

    Chantarachoti, Jiraporn; Oliveira, Alexandra C M; Himelbloom, Brian H; Crapo, Charles A; McLachlan, David G

    2007-04-04

    Ethanol was quantified in canned salmon produced from whole fish showing different stages of decomposition due to storage at 1 and 14 degrees C for up to 3 and 16 days, respectively. Ethanol incidence in the canned salmon was correlated to results from skin aerobic plate counts and sensory evaluations of the whole fish and with sensory evaluations of the canned product. Panelists rejected whole salmon after 3 and 12 days of storage at 14 and 1 degrees C, respectively. Skin aerobic plate counts reached 4.8 log CFU/cm2 when fish were rejected, regardless of storage temperature. Panelists rejected canned salmon produced with fish stored for a maximum of 2 and 16 days at 14 and 1 degrees C, respectively. Ethanol concentrations in the cans produced with fish stored at 14 degrees C correlated well with sensory evaluation results; however, ethanol concentrations in the cans produced with salmon stored at 1 degrees C did not agree with sensory results. A correlation could not be established between ethanol concentration in the canned product and microbial content of whole salmon.

  17. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    SciTech Connect

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxin and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via ..beta..-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents.

  18. Infectious haematopoietic necrosis virus genogroup-specific virulence mechanisms in sockeye salmon, Oncorhynchus nerka (Walbaum), from Redfish Lake, Idaho

    USGS Publications Warehouse

    Purcell, M.K.; Garver, K.A.; Conway, C.; Elliott, D.G.; Kurath, G.

    2009-01-01

    Characterization of infectious haematopoietic necrosis virus (IHNV) field isolates from North America has established three main genogroups (U, M and L) that differ in host-specific virulence. In sockeye salmon, Oncorhynchus nerka, the U genogroup is highly virulent, whereas the M genogroup is nearly non-pathogenic. In this study, we sought to characterize the virus-host dynamics that contribute to genogroup-specific virulence in a captive stock of sockeye salmon from Redfish Lake in Idaho. Juvenile sockeye salmon were challenged by immersion and injection with either a representative U or M viral strain and sampled periodically until 14 days post-infection (p.i.). Fish challenged with each strain had positive viral titre by day 3, regardless of challenge route, but the fish exposed to the M genogroup virus had significantly lower virus titres than fish exposed to the U genogroup virus. Gene expression analysis by quantitative reverse transcriptase PCR was used to simultaneously assess viral load and host interferon (IFN) response in the anterior kidney. Viral load was significantly higher in the U-challenged fish relative to M-challenged fish. Both viruses induced expression of the IFN-stimulated genes (ISGs), but expression was usually significantly lower in the M-challenged group, particularly at later time points (7 and 14 days p.i.). However, ISG expression was comparable with 3 days post-immersion challenge despite a significant difference in viral load. Our data indicated that the M genogroup virus entered the host, replicated and spread in the sockeye salmon tissues, but to a lesser extent than the U genogroup. Both virus types induced a host IFN response, but the high virulence strain (U) continued to replicate in the presence of this response, whereas the low virulence strain (M) was cleared below detectable levels. We hypothesize that high virulence is associated with early in vivo replication allowing the virus to achieve a threshold level, which the

  19. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytscha) within a Snake River watershed

    USGS Publications Warehouse

    Neville, Helen; Issacs, Frank B.; Thurow, Russel; Dunham, J.B.; Rieman, B.

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.

  20. Spatio-temporal covariability in coho salmon ( Oncorhynchus kisutch) survival, from California to southeast Alaska

    NASA Astrophysics Data System (ADS)

    Teo, Steven L. H.; Botsford, Louis W.; Hastings, Alan

    2009-12-01

    One of the motivations of the GLOBEC Northeast Pacific program is to understand the apparent inverse relationship between the increase in salmon catches in the Gulf of Alaska and concurrent declines in the California Current System (CCS). We therefore used coded wire tag (CWT) data to examine the spatial and temporal patterns of covariability in the survival of hatchery coho salmon along the coast from California to southeast Alaska between release years 1980 and 2004. There is substantial covariability in coho salmon survival between neighboring regions along the coast, and there is clear evidence for increased covariability within two main groups - a northern and southern group. The dividing line between the groups lies approximately at the north end of Vancouver Island. However, CWT survivals do not support inverse covariability in hatchery coho salmon survival between southeast Alaska and the CCS over this 25 year time span. Instead, the hatchery coho survival in southeast Alaska is relatively uncorrelated with coho survival in the California Current System on inter-annual time scales. The 50% correlation and e-folding scales (distances at which magnitude of correlations decreases to 50% and e -1 (32.8%), respectively) of pairwise correlations between individual hatcheries were 150 and 217 km, which are smaller than that reported for sockeye, pink, and chum salmon. The 50% correlation scale of coho salmon is also substantially smaller than those reported for upwelling indices and sea surface temperature. There are also periods of 5-10 years with high covariability between adjacent regions on the scale of hundreds of km, which may be of biological and physical significance.

  1. Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark, Alaska

    USGS Publications Warehouse

    Ramstad, K.M.; Woody, C.A.; Sage, G.K.; Allendorf, F.W.

    2004-01-01

    Bottlenecks can have lasting effects on genetic population structure that obscure patterns of contemporary gene flow and drift. Sockeye salmon are vulnerable to bottleneck effects because they are a highly structured species with excellent colonizing abilities and often occupy geologically young habitats. We describe genetic divergence among and genetic variation within spawning populations of sockeye salmon throughout the Lake Clark area of Alaska. Fin tissue was collected from sockeye salmon representing 15 spawning populations of Lake Clark, Six-mile Lake, and Lake Iliamna. Allele frequencies differed significantly at 11 microsatellite loci in 96 of 105 pairwise population comparisons. Pairwise estimates of FST ranged from zero to 0.089. Six-mile Lake and Lake Clark populations have historically been grouped together for management purposes and are geographically proximate. However, Six-mile Lake populations are genetically similar to Lake Iliamna populations and are divergent from Lake Clark populations. The reduced allelic diversity and strong divergence of Lake Clark populations relative to Six-mile Lake and Lake Iliamna populations suggest a bottleneck associated with the colonization of Lake Clark by sockeye salmon. Geographic distance and spawning habitat differences apparently do not contribute to isolation and divergence among populations. However, temporal isolation based on spawning time and founder effects associated with ongoing glacial retreat and colonization of new spawning habitats contribute to the genetic population structure of Lake Clark sock-eye salmon. Nonequilibrium conditions and the strong influence of genetic drift caution against using estimates of divergence to estimate gene flow among populations of Lake Clark sockeye salmon.

  2. Thiamine content of eggs and lengths of coho salmon (Oncorhynchus kisutch) in relation to abundance of alewife (Alosa pseudoharengus) in eastern Lake ontario, 2003 to 2006

    USGS Publications Warehouse

    Ketola, H.G.; Rinchard, J.; O'Gorman, R.; Begnoche, L.J.; Bishop, D.L.; Greulich, A.W.

    2009-01-01

    Early mortality syndrome in fry of Great Lakes salmonines is linked to reduced levels of thiamine in eggs, which reflects maternal consumption of forage fishes such as alewife (Alosa pseudoharengus) that contain thiaminase, an enzyme that destroys thiamine. We assessed annual variations in abundance and condition of alewives and thiamine status of coho salmon (Oncorhynchus kisutch) in Lake Ontario. We analyzed total thiamine in eggs of 20 coho salmon collected annually between 2003 and 2006 at the Salmon River Hatchery on the Salmon River, New York. Alewife abundance was assessed annually in southern and eastern Lake Ontario with bottom trawls during late April and early May. Mean thiamine concentration in eggs varied annually, with those collected in 2003 (2.5 nmol/g) being significantly higher than those collected in 2004 to 2006 (1.5 to 1.7 nmol/g). Although we did not test survival of fry, if reported threshold levels of thiamine for preventing mortality of Lake Michigan coho salmon fry apply, then many or most Lake Ontario coho salmon produced fry were likely to incur thiamine-deficiency mortality, especially during years 2004 to 2006. Comparison to indices of annual abundance of alewife in Lake Ontario with thiamine concentration in coho salmon eggs failed to show any significant correlations (P > 0.05). However, total length of female spawning coho salmon was positively correlated (P < 0.05) with increasing condition and estimated energy content of adult alewives in the previous spring. These results suggest that growth of coho salmon in Lake Ontario was first limited by energy intake, whereas the amount of thiamine provided by alewives was sufficient for growth (in length) but not for producing thiamine-adequate eggs.

  3. The Expression of Leptin, Estrogen Receptors, and Vitellogenin mRNAs in Migrating Female Chum Salmon, Oncorhynchus keta: The Effects of Hypo-osmotic Environmental Changes.

    PubMed

    Choi, Young Jae; Kim, Na Na; Shin, Hyun Suk; Choi, Cheol Young

    2014-04-01

    Leptin plays an important role in energy homeostasis and reproductive function in fish, especially in reproduction. Migrating fish, such as salmonoids, are affected by external environmental factors, and salinity changes are a particularly important influence on spawning migrations. The aim of this study was to test whether changes in salinity affect the expression of leptin, estrogen receptors (ERs), and vitellogenin (VTG) in chum salmon (Oncorhynchus keta). The expression and activity of leptin, the expression of ERs and VTG, and the levels of estradiol-17β and cortisol increased after the fish were transferred to FW, demonstrating that changes in salinity stimulate the HPG axis in migrating female chum salmon. These findings reveal details about the role of elevated leptin levels and sex steroid hormones in stimulating sexual maturation and reproduction in response to salinity changes in chum salmon.

  4. Effect of treatment of chum salmon Oncorhynchus keta (Walbaum) eggs with 1,3;1,6-β-D-glucans on their development and susceptibility to Saprolegnia infection.

    PubMed

    Kiseleva, M; Balabanova, L; Elyakova, L; Rasskazov, V; Zvyagintseva, T

    2014-01-01

    The effects of six 1,3;1,6-β-D-glucooligo- and polysaccharides with different structures (ranging from 1 to 10 kDa in molecular mass and containing 10-25% of β-1,6-linked glucose residues) from brown algae, Saccharina cichorioides, on development of the chum salmon, Oncorhynchus keta (Walbaum), were evaluated. Exposure of chum salmon eggs to 1,3;1,6-β-D-glucans with a molecular mass of more than 2 kDa increased the survival of embryos and juveniles and their resistance to Saprolegnia infection by up to 2.5-fold, leading to a weight gain in juveniles of 40-55% compared with The control chum salmons. The 1,3;1,6-β-D-glucans with molecular mass of 6-8 kDa and used at a at concentration of 0.5 mg mL(-1) rendered the best stimulative effect.

  5. Contaminant exposure and associated biological effects in juvenile chinook salmon (oncorhynchus tshawytscha) from urban and nonurban estuaries of puget sound. Technical memo

    SciTech Connect

    Varanasi, U.; Casillas, E.; Arkoosh, M.R.; Hom, T.; Misitano, D.A.

    1993-04-01

    The report presents and interprets the results of chemical, biochemical, and biological studies on juvenile chinook salmon (Oncorhynchus tshawytscha) outmigrating from urban and nonurban estuaries of Puget Sound, Washington. These studies were conducted between 1989 and 1991. The objective of these studies was to determine the degree of chemical exposure to juvenile chinook salmon as they migrate through urban-associated compared to nonurban estuaries and to evaluate the effects of chemical contaminant exposure on these animals. The chemical indicators of contaminant exposure include levels of hepatic polychlorinated biphenyls (PCBs) and biliary levels of fluorescent aromatic compounds (FACs), which are semiquantitative measures of exposure to aromatic hydrocarbons (AHs). Stomach contents of juvenile salmon were also analyzed for selected AHs and chlorinated hydrocarbons (CHs) to assess the importance of diet as a possible route of uptake of xenobiotics from polluted estuaries.

  6. Toxic effects in C57B1/6 and DBA/2 mice following consumption of halogenated aromatic hydrocarbon-contaminated Great Lakes coho salmon (Oncorhynchus kisutch Walbaum).

    PubMed Central

    Cleland, G B; Leatherland, J F; Sonstegard, R A

    1987-01-01

    Diets containing coho salmon (Oncorhynchus kisutch Walbaum) from the Pacific Ocean or from Lakes Erie, Michigan, and Ontario [containing a gradation from low to high of halogenated aromatic hydrocarbons, (HAHs)] were fed to C57B1/6 and DBA/2 mice. Following a 4-month dietary exposure to Lake Ontario salmon, both strains of mice demonstrated hepatomegaly. The ethoxyresorufin-O-deethylase (ERR) enzyme levels were elevated in livers of C57B1/6 mice fed diets of salmon from all of the Great Lakes studied, with exceptionally high levels detected in C57B1/6 mice fed Lake Ontario salmon. Induction of ERR enzyme levels was detected in DBA/2 mice only following dietary exposure to Lake Ontario salmon. Serum levels of L-thyroxine (T4) and triiodo-L-thryonine (T3) were suppressed in C57B1/6 mice following consumption of Lake Ontario coho salmon, but T3 and T4 levels remained unchanged in DBA/2 mice. In general, pathobiological effects correlated with both dietary HAH exposure level and Ah receptor status. PMID:3691436

  7. An immune-complex glomerulonephritis of Chinook salmon, Oncorhynchus tshawytscha (Walbaum).

    PubMed

    Lumsden, J S; Russell, S; Huber, P; Wybourne, B A; Ostland, V E; Minamikawa, M; Ferguson, H W

    2008-12-01

    Chinook salmon from New Zealand were shown to have a generalized membranous glomerulonephritis that was most severe in large fish. Marked thickening of the glomerular basement membrane was the most consistent lesion, with the presence of an electron-dense deposit beneath the capillary endothelium.Severely affected glomeruli also had expansion of the mesangium and loss of capillaries,synechiae of the visceral and parietal epithelium and mild fibrosis of Bowmans capsule. Chinook salmon from British Columbia, Canada with bacterial kidney disease caused by Renibacterium salmoninarum had similar histological lesions. They also had thickened glomerular basement membranes that were recognized by rabbit antiserum to rainbow trout immunoglobulin. This was true only when frozen sections of kidney were used and not formalin-fixed tissue. An attempt to experimentally produce a glomerulopathy in rainbow trout by repeated immunization with killed R. salmoninarum was not successful. Case records from the Fish Pathology Laboratory at the University of Guelph over a 10-year period revealed that a range of species were diagnosed with glomerulopathies similar to those seen in Chinook salmon. The majority of these cases were determined to have chronic inflammatory disease. This report has identified the presence of immunoglobulin within thickened basement membranes of Chinook salmon with glomerulonephritis and supports the existence of type III hypersensitivity in fish.

  8. Effects of atrazine and chlorothalonil on the reproductive success, development, and growth of early life stage sockeye salmon (Oncorhynchus nerka).

    PubMed

    Du Gas, Lindsay M; Ross, Peter S; Walker, Janessa; Marlatt, Vicki L; Kennedy, Christopher J

    2017-05-01

    The effects of 2 currently used commercial pesticide formulations on Pacific sockeye salmon (Oncorhynchus nerka), from fertilization to emergence, were evaluated in a gravel-bed flume incubator that simulated a natural streambed. Embryos were exposed to atrazine at 25 µg/L (low atrazine) or atrazine at 250 µg/L (high atrazine) active ingredient (a.i.), and chlorothalonil at 0.5 µg/L (low chlorothalonil) or chlorothalonil at 5 µg/L a.i. (high chlorothalonil) and examined for effects on developmental success and timing, as well as physical and biochemical growth parameters. Survival to hatch was reduced in the high chlorothalonil group (55% compared with 83% in controls), accompanied by a 24% increase in finfold deformity incidence. Reduced alevin condition factor (2.9-5.4%) at emergence and elevated triglyceride levels were seen in chlorothalonil-exposed fish. Atrazine exposure caused premature hatch (average high atrazine time to 50% hatch [H50] = 100 d postfertilization [dpf]), and chlorothalonil exposure caused delayed hatch (high chlorothalonil H50 = 108 dpf; controls H50 = 102 dpf). All treatments caused premature emergence (average time to 50% emergence [E50]: control E50 = 181 dpf, low chlorothalonil E50 = 175 dpf, high chlorothalonil E50 = 174 dpf, high atrazine E50 = 175 dpf, low atrazine E50 = 174 dpf), highlighting the importance of using a gravel-bed incubator to examine this subtle, but critical endpoint. These alterations indicate that atrazine and chlorothalonil could affect survival of early life stages of sockeye salmon in the wild. Environ Toxicol Chem 2017;36:1354-1364. © 2017 SETAC. © 2017 SETAC.

  9. Coho salmon Oncorhynchus kisutch strain differences in disease resistance and non-specific immunity, following immersion challenges with Vibrio anguillarum

    USGS Publications Warehouse

    Balfry, Shannon K.; Maule, Alec G.; Iwama, George K.

    2001-01-01

    Two strains of freshwater-reared coho salmon Oncorhynchus kisutch were compared for differences in the activity of selected non-specific immune factors before and after lethal and non-lethal immersion challenges with the marine bacterial pathogen Vibrio anguillarum (Vang). Two disease challenge experiments were performed. The first experimental challenge resulted in no mortality; however, significant strain and challenge treatment effects were detected at Day 16 post-challenge. Strain differences in plasma lysozyme activity were found in pre-challenge samples. The second challenge experiment compared the same strains of coho salmon following immersion challenges in different doses of Vang. The fish were sampled at Days 0, 2, 7, and 18 post-challenge and mortality, plasma lysozyme, and anterior kidney phagocyte respiratory burst activity were compared. There were significant strain differences in mortality in the high dose group. The more disease-resistant strain was found to have higher levels of plasma lysozyme and anterior kidney phagocyte respiratory burst activity. These strain differences were detected at various times in the lethal (high dose) and non-lethal challenge groups. There was a clear relationship between the enhanced survival of the more disease-resistant strain and a more sustained, elevated non-specific immune response following the experimental disease challenges. The results of this study suggest that the basis for strain differences in innate disease resistance is related to the ability of the fish to respond quickly to the initial infection and to maintain the response until the infection is quelled.

  10. Gamete-associated flavobacteria of the oviparous Chinook salmon (Oncorhynchus tshawytscha) in lakes Michigan and Huron, North America.

    PubMed

    Loch, Thomas P; Faisal, Mohamed

    2016-07-01

    Flavobacterial diseases, caused by multiple members of the Family Flavobacteriaceae, elicit serious losses in wild and farmed fish around the world. Flavobacteria are known to be transmitted horizontally; however, vertical transmission has been suspected but proven only for one fish-pathogenic flavobacterial species (e.g., Flavobacterium psychrophilum). Herein, we report on the isolation and molecular identification of multiple Flavobacterium and Chryseobacterium taxa from the ovarian fluid and eggs of feral Great Lakes Chinook salmon (Oncorhynchus tshawytscha). Identified egg- and ovarian fluid-associated flavobacteria were either well-known flavobacterial fish pathogens (e.g., F. psychrophilum and F. columnare), most similar to emerging fish-associated flavobacteria (e.g., F. spartansii, F. tructae, F. piscis, C. piscium, C. scophthalmum), or were distinct from all other described Chryseobacterium and Flavobacterium spp., as determined by phylogenetic analyses using neighbor-joining, Bayesian, and Maximum Likelihood methodologies. The gamete-associated flavobacteria fell into three groups (e.g., those that were recovered from the ovarian fluid but not eggs; those that were recovered from the ovarian fluid and eggs; and those that were recovered from eggs but not ovarian fluid), a portion of which were recovered from eggs that were surface disinfected with iodophor at the commonly used dose and duration for egg disinfection. Some gamete-associated flavobacteria were also found in renal, splenic, and neurological tissues. Systemic polymicrobial infections comprised of F. psychrophilum and F. columnare were also detected at nearly an 11% prevalence. This study highlights the potential role that sexual products of female Great Lakes Chinook salmon may play in the transmission of fish-associated flavobacteria.

  11. Migratory Patterns of Wild Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-Flowing River Basin.

    PubMed

    Eiler, John H; Evans, Allison N; Schreck, Carl B

    2014-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002-2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28-40 km d-1) compared to upper basin stocks (52-62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between "hares" (faster fish becoming slower) and "tortoises" (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation exhibited among

  12. Migratory Patterns of Wild Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-Flowing River Basin

    PubMed Central

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  13. Additive and non-additive genetic components of the jack male life history in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Forest, Adriana R; Semeniuk, Christina A D; Heath, Daniel D; Pitcher, Trevor E

    2016-08-01

    Chinook salmon, Oncorhynchus tshawytscha, exhibit alternative reproductive tactics (ARTs) where males exist in two phenotypes: large "hooknose" males and smaller "jacks" that reach sexual maturity after only 1 year in seawater. The mechanisms that determine "jacking rate"-the rate at which males precociously sexually mature-are known to involve both genetics and differential growth rates, where individuals that become jacks exhibit higher growth earlier in life. The additive genetic components have been studied and it is known that jack sires produce significantly more jack offspring than hooknose sires, and vice versa. The current study was the first to investigate both additive and non-additive genetic components underlying jacking through the use of a full-factorial breeding design using all hooknose sires. The effect of dams and sires descendant from a marker-assisted broodstock program that identified "high performance" and "low performance" lines using growth- and survival-related gene markers was also studied. Finally, the relative growth of jack, hooknose, and female offspring was examined. No significant dam, sire, or interaction effects were observed in this study, and the maternal, additive, and non-additive components underlying jacking were small. Differences in jacking rates in this study were determined by dam performance line, where dams that originated from the low performance line produced significantly more jacks. Jack offspring in this study had a significantly larger body size than both hooknose males and females starting 1 year post-fertilization. This study provides novel information regarding the genetic architecture underlying ARTs in Chinook salmon that could have implications for the aquaculture industry, where jacks are not favoured due to their small body size and poor flesh quality.

  14. Partial migration in introduced wild chinook salmon (Oncorhynchus tshawytscha) of southern Chile

    NASA Astrophysics Data System (ADS)

    Araya, Miguel; Niklitschek, Edwin J.; Secor, Dave H.; Piccoli, Philip M.

    2014-08-01

    Partial migration, the incidence of opposing migration behaviors within the same population, has been a key factor in the invasive ecology of Pacific salmon within South America. Here, we examined such life-cycle variation in of an introduced chinook salmon population in the Aysén watershed, one of the largest fjord systems in NW Patagonia. The chinook salmon is the most successful invasive salmonid species in Patagonia and has recently colonized numerous Patagonian watersheds of the Pacific and Atlantic Oceans. Using analyses of fish scales and otolith strontium:calcium ratios, our results suggest the presence of two distinct ecotypes in the chinook population, an ocean type and a stream type, in a 3:2 ratio. The distribution of back-calculated length at the time of emigration from river to marine habitats showed a mode of 14 cm for the ocean ecotype and 30 cm for the stream ecotype. River residence time for the ocean ecotype ranged from 1 to 10 months, while that of the stream ecotype varied between 14 and 20 months. Returning adults reproduced in riverine habitats between August and March, but reproduction by the stream ecotype was limited to the period between October and February. Our results show that exotic chinook salmon populations established in NW Patagonia present a diversity of life-history strategies, which seems to be as large as the ones exhibited by the species in its native distribution range and in other invaded ecosystems. Chinook salmon have successfully invaded most major rivers in Patagonia, placing priority on science and conservation related to their ecological impact.

  15. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2002-2003 Annual Report.

    SciTech Connect

    Mueller, Robert

    2003-09-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (>1 m) downstream of Bonneville Dam in the fall of 2002. This report documents the number and extent of chinook salmon spawning near Ives and Pierce Islands of the Columbia River, and is the fourth in a series of reports prepared since 1999. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds located in the deeper sections near below Hamilton Creek. There was a significant increase in the number of fall chinook salmon redds found in the locations surveyed during the 2002 surveys when compared to previous surveys by Pacific Northwest National Laboratory. A total of 192 redds were found in two general locations adjacent to Pierce Island (river km 228.5) encompassing an area of approximately 9.31 ha. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 15, 2002. An estimated 1,768 fall chinook salmon redds at water depths exceeding {approx}1.m ({approx} 125 kcfs) were documented in 2002. This estimate is the expanded number based on the number of redds found within the pre-defined survey area. Fall chinook salmon redds were found at water depths from 0.9 to 8.5 m and were constructed in gravel to large cobble ranging in size from 4.83 to 13.4 cm in diameter. No chum salmon redds were found in areas surveyed during 2002, although several carcasses were found at the mouth of Woodward Creek and in the deeper sections below Hamilton Creek.

  16. Antioxidant effect of a marine oligopeptide preparation from chum salmon (Oncorhynchus keta) by enzymatic hydrolysis in radiation injured mice.

    PubMed

    Yang, Ruiyue; Wang, Junbo; Liu, Zhigang; Pei, Xinrong; Han, Xiaolong; Li, Yong

    2011-01-01

    Marine oligopeptide preparation (MOP) obtained from Chum Salmon (Oncorhynchus keta) by the method of enzymatic hydrolysis, has been found to possess a radioprotective property through stimulation of the radiation-induced immunosuppression. The current study aimed to further investigate the free radicals scavenging and antioxidant effects of MOP in radiation injured mice. Female ICR mice (6-8 weeks old) were randomly divided into 5 groups, i.e., blank control, irradiation control and MOP (0.225, 0.450 and 1.350 g/kg body weight) plus an irradiation-treated group. The result revealed that MOP significantly increased the white blood cell counts after irradiation, and lessened the radiation-induced oxidative damage. These effects may be caused by augmentation of the activities of antioxidant enzymes, such as SOD and GSH-Px, reduction of the lipid peroxidation (MDA level) in liver, and protection against radiation-induced apoptosis. Therefore, we propose that MOP be used as an ideal antioxidant to alleviate radiation-induced oxidation damage in cancer patients.

  17. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity

    PubMed Central

    Lavado, Ramon; Bammler, Theo K.; Gallagher, Evan P.; Stapleton, Patricia L.; Beyer, Richard P.; Farin, Federico M.; Hardiman, Gary; Schlenk, Daniel

    2015-01-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors. PMID:26260986

  18. Complete mitochondrial genome of the hybridized fish (Oncorhynchus mykiss ♀ × Atlantic salmon ♂).

    PubMed

    Wang, Fenghua; He, Enpeng; Li, Yanhong; Cai, Xiaodi; Ma, Wen

    2016-11-01

    In this study, 16 sets of primers were used to amplify contiguous, overlapping segments of the complete mitochondrial DNA (mtDNA) of the hybridized fish (Oncorhynchus mykiss ♀ × Atlantic salmon ♂) in order to characterize and compare their mitochondrial genomes. The total length of the mitochondrial genome is 16,658 bp and deposited in the GenBank with accession numbers KP218514. The organization of the mitochondrial genomes contained 37 genes (13 protein-coding genes, two ribosomal RNA, and 22 transfer RNAs) and a major non-coding control region which was similar to those reported mitochondrial genomes. Most genes were encoded on the H-strand, except for the ND6 and eight tRNA genes, encoding on the L-strand. Similarity and divergence analysis also showed that hybrid offspring were genetically closer to mother parent than father parent. These results indicate that, despite hybridization, the mitochondrial genomes of these hybrids remain maternally inherited.

  19. Acute toxicity of fire-retardant and foam-suppressant chemicals to early life stages of chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Buhl, Kevin J.; Hamilton, Steven J.

    1998-01-01

    Laboratorys studies were conducted to determine the acute toxicity of three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F), and two fire-suppressant foams (Phos-Chek WD-881 and Ansul Silv-Ex) to early life stages of chinook salmon, Oncorhynchus tshawytscha, in hard and soft water. Regardless of water type, swim-up fry and juveniles (60 and 90 d posthatch) exhibited similar sensitivities to each chemical and these life stages were more sensitive than eyed eggs. Foam suppressants were more toxic to each life stage than the fire retardants in both water types. The descending rank order of toxicity for these chemicals tested with swim-up fry and juveniles (range of 96-h median lethal concentrations [LC50s]) was Phos-Chek WD-881 (7–13 mg/L) > Ansul Silv-Ex (11–22 mg/L) > Phos-Chek D75-F (218–305 mg/L) > Fire-Trol GTS-R (218–412 mg/L) > Fire-Trol LCG-R (685–1,195 mg/L). Water type had a minor effect on the toxicity of these chemicals. Comparison of acute toxicity values with recommended application concentrations indicates that accidental inputs of these chemicals into stream environments would require substantial dilution (237- to 1,429-fold) to reach concentrations equivalent to their 96-h LC50s.

  20. Growth-Enhanced Transgenic Coho Salmon (Oncorhynchus kisutch) Strains Have Varied Success in Simulated Streams: Implications for Risk Assessment.

    PubMed

    Leggatt, Rosalind A; Sundström, L Fredrik; Woodward, Krista; Devlin, Robert H

    2017-01-01

    Growth hormone (GH) transgenic fish have accelerated growth and could improve production efficiency in aquaculture. However, concern exists regarding potential environmental risks of GH transgenic fish should they escape rearing facilities. While environmental effects have been examined in some GH transgenic models, there is a lack of information on whether effects differ among different constructs or strains of transgenic fish. We compared growth and survival of wild-type coho salmon (Oncorhynchus kisutch) fry, a fast-growing GH transgenic strain containing a metallothionein promoter (TMT), and three lines/strains containing a reportedly weaker histone-3 promoter (TH3) in hatchery conditions and semi-natural stream tanks with varying levels of natural food and predators. Rank order of genotype size and survival differed with varying environmental conditions, both within and among experiments. Despite accelerated growth in hatchery conditions, TMT fry gained little or no growth enhancement in stream conditions, had enhanced survival when food was limiting, and inconsistent survival under other conditions. Rank growth was inconsistent in TH3 strains, with one strain having highest, and two strains having the lowest growth in stream conditions, although all TH3 strains had consistently poor survival. These studies demonstrate the importance of determining risk estimates for each unique transgenic model independent of other models.

  1. Predator avoidance ability of juvenile chinook salmon (Oncorhynchus tshawytscha) subjected to sublethal exposures of gas-supersaturated water

    USGS Publications Warehouse

    Mesa, M.G.; Warren, J.J.

    1997-01-01

    To assess the effects of gas bubble trauma (GBT) on the predator avoidance ability of juvenile chinook salmon (Oncorhynchus tshawytscha), we created groups of fish that differed in prevalence and severity of gas emboli in their lateral lines, fins, and gills by exposing them to 112% total dissolved gas (TDG) for 13 days, 120% TDG for 8 h, or 130% TDG for 3.5 h. We subjected exposed and unexposed control fish simultaneously to predation by northern squawfish (Ptychocheilus oregonensis) in water of normal gas saturation in 6, 18, and 10 tests using prey exposed to 112, 120, and 130% TDG, respectively. Only fish exposed to 130% TDG showed a significant increase in vulnerability to predation. The signs of GBT exhibited by fish sampled just prior to predator exposure were generally more severe in fish exposed to 130% TDG, which had the most extensive occlusion of the lateral line and gill filaments with gas emboli. Fish exposed to 112% TDG had the most severe signs of GBT in the fins. Our results suggest that fish showing GBT signs similar to those of our fish exposed to 130% TDG, regardless of their precise exposure history, may be more vulnerable to predation.

  2. Effect of the antioxidants composition in diet on the sensory and physical properties of frozen farmed Coho salmon (Oncorhynchus kisutch).

    PubMed

    Rodríguez, Alicia; Latorre, Mónica; Gajardo, Mónica; Bunger, Andrea; Munizaga, Alejandro; López, Luis; Aubourg, Santiago P

    2015-04-01

    Great attention has been paid to the antioxidants present in farmed fish feeds, with the replacement of synthetic antioxidants by natural ones being a main objective. In the present study, Coho salmon (Oncorhynchus kisutch) was fed a conventional diet that was enriched with different kinds of antioxidants: synthetic antioxidants (butylated-hydroxy toluene and ethoxyquin; diet I), a tocopherols-rich mixture (diet II) and a tocopherols-rosemary extract mixture (diet III). A comparative study of the sensory and physical changes observed in the corresponding frozen products was undertaken. After 18 months at -18 °C, fish previously fed on diet I showed higher putrid and rancid odours and rancid taste scores, while lower mean typical odour and taste values were attained. Dripping and expressible moisture values obtained for diet II-fish were lower when compared with their counterparts belonging to the diet I; additionally, microstructure analysis revealed that Z-lines integration was better preserved in fish corresponding to diets II and III. Diet II has been recognised as being the most profitable to be employed to maintain the sensory and physical properties of the frozen product when long-term storage is considered. Further research is to be continued to optimise the natural antioxidants profile. © 2014 Society of Chemical Industry.

  3. Growth-Enhanced Transgenic Coho Salmon (Oncorhynchus kisutch) Strains Have Varied Success in Simulated Streams: Implications for Risk Assessment

    PubMed Central

    Sundström, L. Fredrik; Woodward, Krista; Devlin, Robert H.

    2017-01-01

    Growth hormone (GH) transgenic fish have accelerated growth and could improve production efficiency in aquaculture. However, concern exists regarding potential environmental risks of GH transgenic fish should they escape rearing facilities. While environmental effects have been examined in some GH transgenic models, there is a lack of information on whether effects differ among different constructs or strains of transgenic fish. We compared growth and survival of wild-type coho salmon (Oncorhynchus kisutch) fry, a fast-growing GH transgenic strain containing a metallothionein promoter (TMT), and three lines/strains containing a reportedly weaker histone-3 promoter (TH3) in hatchery conditions and semi-natural stream tanks with varying levels of natural food and predators. Rank order of genotype size and survival differed with varying environmental conditions, both within and among experiments. Despite accelerated growth in hatchery conditions, TMT fry gained little or no growth enhancement in stream conditions, had enhanced survival when food was limiting, and inconsistent survival under other conditions. Rank growth was inconsistent in TH3 strains, with one strain having highest, and two strains having the lowest growth in stream conditions, although all TH3 strains had consistently poor survival. These studies demonstrate the importance of determining risk estimates for each unique transgenic model independent of other models. PMID:28068416

  4. Differences in Ichthyophonus prevalence and infection severity between upper Yukon River and Tanana River chinook salmon, Oncorhynchus tshawytscha (Walbaum), stocks

    USGS Publications Warehouse

    Kocan, R.; Hershberger, P.

    2006-01-01

    Two genetically distinct populations of chinook salmon, Oncorhynchus tshawytscha (Walbaum), were simultaneously sampled at the confluence of the Yukon and Tanana rivers in 2003. Upper Yukon-Canadian fish had significantly higher infection prevalence as well as more severe infections (higher parasite density in heart tissue) than the lower Yukon-Tanana River fish. Both populations had migrated the same distance from the mouth of the Yukon River at the time of sampling but had significantly different distances remaining to swim before reaching their respective spawning grounds. Multiple working hypotheses are proposed to explain the differences between the two stocks: (1) the two genetically distinct populations have different inherent resistance to infection, (2) genetically influenced differences in feeding behaviour resulted in temporal and/or spatial differences in exposure, (3) physiological differences resulting from different degrees of sexual maturity influenced the course of disease, and (4) the most severely infected Tanana River fish either died en route or fatigued and were unable to complete their migration to the Tanana River, thus leaving a population of apparently healthier fish. ?? 2006 Blackwell Publishing Ltd.

  5. Comparisons of spawning areas and times for two runs of chinook salmon (Oncorhynchus tshawytscha) in the Kenai River, Alaska

    USGS Publications Warehouse

    Burger, C.V.; Wilmot, R.L.; Wangaard, D.B.

    1985-01-01

    From 1979 to 1982,188 chinook salmon (Oncorhynchus tshawytscha) were tagged with radio transmitters to locate spawning areas in the glacial Kenai River, southcentral Alaska. Results confirmed that an early run entered the river in May and June and spawned in tributaries, and a late run entered the river from late June through August and spawned in the main stem. Spawning peaked during August in tributaries influenced by lakes, but during July in other tributaries. Lakes may have increased fall and winter temperatures of downstream waters, enabling successful reproduction for later spawning fish within these tributaries. This hypothesis assumes that hatching and emergence can be completed in a shorter time in lake-influenced waters. The time of upstream migration and spawning (mid- to late August) of the late run is unique among chinook stocks in Cook Inlet. This behavior may have developed only because two large lakes (Kenai and Skilak) directly influence the main-stem Kenai River. If run timing is genetically controlled, and if the various components of the two runs are isolated stocks that have adapted to predictable stream temperatures, there are implications for stock transplantation programs and for any activities of man that alter stream temperatures.

  6. Effect of dietary vitamin E level on growth, tissue lipid peroxidation, and erythrocyte fragility of transgenic coho salmon, Oncorhynchus kisutch.

    PubMed

    Huang, Chen-Huei; Higgs, David A; Balfry, Shannon K; Devlin, Robert H

    2004-10-01

    This study was conducted to investigate the effect of dietary vitamin E concentration on growth performance, iron-catalyzed lipid peroxidation in liver and muscle tissue, and erythrocyte fragility of transgenic growth hormone coho salmon (Oncorhynchus kisutch). Fish were fed one of four isoenergetic and isonitrogenous experimental diets that contained either 11, 29, 50, or 105 IU of vitamin E/kg. Following the 10-week feeding trial, no significant (P>0.05) diet-related differences were detected in growth, whole body proximate composition or erythrocyte fragility. The vitamin E contents of liver and muscle, however, were affected by the dietary treatment. Fish fed diets containing > or =50 IU of vitamin E/kg had significantly increased vitamin E concentrations in their tissues. Iron-catalyzed lipid peroxidation of liver and muscle tissue of fish fed elevated dietary vitamin E (> or =50 IU vitamin E/kg diet) was significantly lower (P<0.05) than that noted for fish fed the diet containing no supplemental vitamin E. The results indicated that changes in tissue lipid peroxidation measurements precede clinical signs of sub-optimal vitamin E intake.

  7. Vulnerability to predation and physiological stress responses in juvenile chinook salmon (Oncorhynchus tshawytscha) experimentally infected with Renibacterium salmoninarum

    USGS Publications Warehouse

    Mesa, M.G.; Poe, T.P.; Maule, A.G.; Schreck, C.B.

    1998-01-01

    We experimentally infected juvenile chinook salmon (Oncorhynchus tshawytscha) with Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease (BKD), to examine the vulnerability to predation of fish with differing levels of Rs infection and assess physiological change during progression of the disease. Immersion challenges conducted during 1992 and 1994 produced fish with either a low to moderate (1992) or high (1994) infection level of Rs during the 14-week postchallenge rearing period. When equal numbers of treatment and unchallenged control fish were subjected to predation by either northern squaw fish (Ptychocheilus oregonensis) or smallmouth bass (Micropterus dolomieui), Rs-challenged fish were eaten in significantly greater numbers than controls by nearly two to one. In 1994, we also sampled fish every 2 weeks after the challenge to determine some stressful effects of Rs infection. During disease progression in fish, plasma cortisol and lactate increased significantly whereas glucose decreased significantly. Our results indicate the role that BKD may play in predator-prey interactions, thus ascribing some ecological significance to this disease beyond that of direct pathogen-related mortality. In addition, the physiological changes observed in our fish during the chronic progression of BKD indicate that this disease is stressful, particularly during the later stages.

  8. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations

    PubMed Central

    2011-01-01

    Background Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. Results For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. Conclusions First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent

  9. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos.

    PubMed

    Wheelock, Craig E; Eder, Kai J; Werner, Inge; Huang, Huazhang; Jones, Paul D; Brammell, Benjamin F; Elskus, Adria A; Hammock, Bruce D

    2005-08-30

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 microg/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 microg/l), but not a low dose (1.2 microg/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were approximately 30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases

  10. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    PubMed Central

    Wheelock, Craig E.; Eder, Kai J.; Werner, Inge; Huang, Huazhang; Jones, Paul D.; Brammell, Benjamin F.; Elskus, Adria A.; Hammock, Bruce D.

    2006-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 μg/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 μg/l), but not a low dose (1.2 μg/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ∼30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  11. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    USGS Publications Warehouse

    Wheelock, C.E.; Eder, K.J.; Werner, I.; Huang, H.; Jones, P.D.; Brammell, B.F.; Elskus, A.A.; Hammock, B.D.

    2005-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 ??g/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 ??g/l), but not a low dose (1.2 ??g/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ???30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  12. Yersinia ruckeri Isolates Recovered from Diseased Atlantic Salmon (Salmo salar) in Scotland Are More Diverse than Those from Rainbow Trout (Oncorhynchus mykiss) and Represent Distinct Subpopulations

    PubMed Central

    Ormsby, Michael J.; Caws, Thomas; Burchmore, Richard; Wallis, Tim; Verner-Jeffreys, David W.

    2016-01-01

    ABSTRACT Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is known about the relationship of the isolates associated with these two species. Phenotypic approaches were used to characterize 109 Y. ruckeri isolates recovered over a 14-year period from infected Atlantic salmon in Scotland; 26 isolates from infected rainbow trout were also characterized. Biotyping, serotyping, and comparison of outer membrane protein profiles identified 19 Y. ruckeri clones associated with Atlantic salmon but only five associated with rainbow trout; none of the Atlantic salmon clones occurred in rainbow trout and vice versa. These findings suggest that distinct subpopulations of Y. ruckeri are associated with each species. A new O serotype (designated O8) was identified in 56 biotype 1 Atlantic salmon isolates and was the most common serotype identified from 2006 to 2011 and in 2014, suggesting an increased prevalence during the time period sampled. Rainbow trout isolates were represented almost exclusively by the same biotype 2, serotype O1 clone that has been responsible for the majority of ERM outbreaks in this species within the United Kingdom since the 1980s. However, the identification of two biotype 2, serotype O8 isolates in rainbow trout suggests that vaccines containing serotypes O1 and O8 should be evaluated in both rainbow trout and Atlantic salmon for application in Scotland. IMPORTANCE Vaccination plays an important role in protecting Atlantic salmon against the bacterial pathogen Yersinia ruckeri, but, in recent years, there has been an increasing incidence of vaccine breakdown in salmon. This is largely because current vaccines are aimed at

  13. Yersinia ruckeri Isolates Recovered from Diseased Atlantic Salmon (Salmo salar) in Scotland Are More Diverse than Those from Rainbow Trout (Oncorhynchus mykiss) and Represent Distinct Subpopulations.

    PubMed

    Ormsby, Michael J; Caws, Thomas; Burchmore, Richard; Wallis, Tim; Verner-Jeffreys, David W; Davies, Robert L

    2016-10-01

    Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is known about the relationship of the isolates associated with these two species. Phenotypic approaches were used to characterize 109 Y. ruckeri isolates recovered over a 14-year period from infected Atlantic salmon in Scotland; 26 isolates from infected rainbow trout were also characterized. Biotyping, serotyping, and comparison of outer membrane protein profiles identified 19 Y. ruckeri clones associated with Atlantic salmon but only five associated with rainbow trout; none of the Atlantic salmon clones occurred in rainbow trout and vice versa These findings suggest that distinct subpopulations of Y. ruckeri are associated with each species. A new O serotype (designated O8) was identified in 56 biotype 1 Atlantic salmon isolates and was the most common serotype identified from 2006 to 2011 and in 2014, suggesting an increased prevalence during the time period sampled. Rainbow trout isolates were represented almost exclusively by the same biotype 2, serotype O1 clone that has been responsible for the majority of ERM outbreaks in this species within the United Kingdom since the 1980s. However, the identification of two biotype 2, serotype O8 isolates in rainbow trout suggests that vaccines containing serotypes O1 and O8 should be evaluated in both rainbow trout and Atlantic salmon for application in Scotland. Vaccination plays an important role in protecting Atlantic salmon against the bacterial pathogen Yersinia ruckeri, but, in recent years, there has been an increasing incidence of vaccine breakdown in salmon. This is largely because current vaccines are aimed at rainbow trout and are

  14. [The variation in chum salmon Oncorhynchus keta (Walbaum) mitochondrial DNA and its connection with the paleogeographic events in the Northwest Pacific].

    PubMed

    Poliakova, N E; Semina, A V; Brykov, V A

    2006-10-01

    The results of examining mtDNA variation in populations of chum salmon Oncorhynchus keta from the rivers of the basins of the seas of Japan and Okhotsk and in the chum salmon seasonal races of the Amur River are presented. A significant level of polymorphism between the majority of the populations studied was detected. The groups of chum salmon from the Japan and Okhotsk Seas displayed the most pronounced differences. Analysis of genetic variation demonstrated that periodic paleontologic and climatic changes in the past of this region were the most probable factor that caused the divergence of these populations. The advances and retreats of glaciers and the accompanying regressions and transgressions of the ocean level caused isolation of chum salmon in the refugia belonging hypothetically to the paleo-Suifun and paleo-Amur regions. These population groups diverged presumably 350-450 thousand years ago. Differences between the seasonal races of the Amur chum salmon are insignificant, and their emergence dates back to the period of the last Wisconsin glaciation. Probably, the main isolation factor now is the genetically determined time of spawning.

  15. Discovery and characterization of single nucleotide polymorphisms in Chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Clemento, A J; Abadía-Cardoso, A; Starks, H A; Garza, J C

    2011-03-01

    Molecular population genetics of non-model organisms has been dominated by the use of microsatellite loci over the last two decades. The availability of extensive genomic resources for many species is contributing to a transition to the use of single nucleotide polymorphisms (SNPs) for the study of many natural populations. Here we describe the discovery of a large number of SNPs in Chinook salmon, one of the world's most important fishery species, through large-scale Sanger sequencing of expressed sequence tag (EST) regions. More than 3 Mb of sequence was collected in a survey of variation in almost 132 kb of unique genic regions, from 225 separate ESTs, in a diverse ascertainment panel of 24 salmon. This survey yielded 117 TaqMan (5' nuclease) assays, almost all from separate ESTs, which were validated in population samples from five major stocks of salmon from the three largest basins on the Pacific coast of the contiguous United States: the Sacramento, Klamath and Columbia Rivers. The proportion of these loci that was variable in each of these stocks ranged from 86.3% to 90.6% and the mean minor allele frequency ranged from 0.194 to 0.236. There was substantial differentiation between populations with these markers, with a mean F(ST) estimate of 0.107, and values for individual loci ranging from 0 to 0.592. This substantial polymorphism and population-specific differentiation indicates that these markers will be broadly useful, including for both pedigree reconstruction and genetic stock identification applications. © 2011 Blackwell Publishing Ltd.

  16. Concurrent natural and sexual selection in wild male sockeye salmon, Oncorhynchus nerka.

    PubMed

    Hamon, Troy R; Foote, Chris J

    2005-05-01

    Concurrent natural and sexual selection have been inferred from laboratory and comparative studies in a number of taxa, but are rarely measured in natural populations. Because the interaction of these two general categories of selection may be complex when they occur simultaneously, empirical evidence from natural populations would help us to understand this interaction and probably give us greater insight into each separate episode as well. In male sockeye salmon, sexual selection for larger body size has been indicated in both deep and shallow water habitats. However, in shallow habitats male sockeye are generally smaller and less deep-bodied than in deep habitats, a difference that has been ascribed to natural selection. We measured concurrent natural and sexual selection in two years on breeding male sockeye salmon with respect to body size, body shape, and time of arrival to the breeding grounds. Natural selection was variable in effect and sexual selection was variable in intensity in these two years. The patterns of selection also appear to be interdependent; areas where predation on spawning adults is not intense have yielded different patterns of sexual selection than those measured here. It appears that some of the body shape differences in sockeye salmon associated with different spawning habitats, which were previously attributed to selective mortality, may be a result of different patterns of sexual selection in the different habitats. Total selection resulting from the combination of both natural and sexual selection was less intense than either natural or sexual selection in most cases. Measurement of concurrent selection episodes in nature may help us to understand whether the pattern of differential sexual selection is common, and whether observed patterns of habitat-related differentiation may be due to differences in sexual selection.

  17. Forensic identification of severely degraded Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) tissues.

    PubMed

    Dalvin, Sussie; Glover, Kevin A; Sørvik, Anne Ge; Seliussen, Bjørghild B; Taggart, John B

    2010-11-03

    Aquaculture is a globally important and rapidly growing industry. It contributes positively to the economy and sustainability of coastal communities, but it is not without regulatory challenges. These challenges are diverse, and may include identification of fish discarded in an illegal manner, biological discharge from fish ensilage tanks, and partially destroyed or processed tissues. Robust genetic tools are required by management authorities to address these challenges. In this paper, we describe nine species-specific primer sets amplifying very short DNA fragments within the mitochondrial DNA cytochrome c oxidase (COI) gene, which were designed to permit diagnostic identification of degraded DNA from two of the most commonly farmed salmonids in Europe and North America. Of the nine designed primer sets, six were found to be species-specific (four Atlantic salmon, two rainbow trout), whereas the remaining three sets (two Atlantic salmon, one rainbow trout) also amplified a product from other, closely related, salmonid DNA templates. Screening of DNA templates from 11 other non-salmonid native fish species did not produce PCR products with any of the primer sets. Specific tests confirmed the ability of these markers to identify Atlantic salmon and rainbow trout tissues in treated food products, chemically treated ensilage waste and fillets left to degrade in saltwater for up to 31 days at 15°C. Importantly, these markers provided diagnostic identification in cases where other genetic methods failed because of degraded DNA quality. Results from this study demonstrate that amplification of very short DNA fragments using species-specific primers represents a robust and versatile method to create cheap and efficient genetic tests that can be implemented in a range of forensic applications. These markers will provide fishery, aquaculture and food regulatory authorities with a method to investigate and enforce regulations within these industries.

  18. Forensic identification of severely degraded Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) tissues

    PubMed Central

    2010-01-01

    Background Aquaculture is a globally important and rapidly growing industry. It contributes positively to the economy and sustainability of coastal communities, but it is not without regulatory challenges. These challenges are diverse, and may include identification of fish discarded in an illegal manner, biological discharge from fish ensilage tanks, and partially destroyed or processed tissues. Robust genetic tools are required by management authorities to address these challenges. In this paper, we describe nine species-specific primer sets amplifying very short DNA fragments within the mitochondrial DNA cytochrome c oxidase (COI) gene, which were designed to permit diagnostic identification of degraded DNA from two of the most commonly farmed salmonids in Europe and North America. Results Of the nine designed primer sets, six were found to be species-specific (four Atlantic salmon, two rainbow trout), whereas the remaining three sets (two Atlantic salmon, one rainbow trout) also amplified a product from other, closely related, salmonid DNA templates. Screening of DNA templates from 11 other non-salmonid native fish species did not produce PCR products with any of the primer sets. Specific tests confirmed the ability of these markers to identify Atlantic salmon and rainbow trout tissues in treated food products, chemically treated ensilage waste and fillets left to degrade in saltwater for up to 31 days at 15°C. Importantly, these markers provided diagnostic identification in cases where other genetic methods failed because of degraded DNA quality. Conclusions Results from this study demonstrate that amplification of very short DNA fragments using species-specific primers represents a robust and versatile method to create cheap and efficient genetic tests that can be implemented in a range of forensic applications. These markers will provide fishery, aquaculture and food regulatory authorities with a method to investigate and enforce regulations within these

  19. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus Tshawytscha) : Spawning Near Ives and Pierce Island of the Columbia River, 2001 Annual Report.

    SciTech Connect

    Mueller, Robert P.

    2002-10-01

    Pacific Northwest National Laboratory initiated studies to identify potential fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat and assess the extent of spawning in deep water (>1 m) downstream of Bonneville Dam in the fall of 1999. This report provides results from 2001, the third year of our effort. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the area. The secondary objective was to map any chum salmon redds located in the deeper sections near Hamilton Slough. River flows during the spawning surveys in 2001 were lower than in 1999 and 2000. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 9, 2001. The location of the spawning area was similar to that of 1999 and 2000. One difference was the majority of redds were found in deeper water (>1.5 m) and closer to the shoreline adjacent to Pierce Island. Because of the low river flows during the fall of 2001, only a handful of redds were found using the boat-deployed video system within Hamilton Slough. No chum salmon (O. keta) redds were found in areas surveyed during 2000. (Note: surveys were limited to deeper sections of Hamilton Slough and near the main river channel.) An estimated 717 fall chinook salmon redds at water depths exceeding 1.5 m ({approx} 125 kcfs) were documented in 2001. These estimates are expanded from the number of redds found within a predefined survey area. Fall chinook salmon redds were found at water depths from 1.5-4.6 m and were located in a general area of {approx} 4.9 ha. Fall chinook salmon redds were constructed in gravels ranging from 3.2-13.4 cm in diameter and water velocities of 0.29-0.70 m/s.

  20. Mortality of experimentally descaled smolts of coho salmon (Oncorhynchus kisutch) in fresh and salt water

    USGS Publications Warehouse

    Bouck, Gerald R.; Smith, Stanley D.

    1979-01-01

    Removal of slime from 25% of the body caused no deaths among smolts of coho salmon in fresh water or in seawater (28‰). Removal of slime and scales from the same percentage of body area caused no deaths in fresh water, but 75% mortality within 10 days in seawater. The 10-day median tolerance limit was 10% scale removal immediately before the smolts entered seawater. Mortality was highest when the scales were removed from the area of the rib cage. Recovery of smolts in fresh water from a loss of scales that would be lethal in seawater occurred rapidly; 90% of the fish regained tolerance to seawater within 1 day.

  1. Effects of temperature on Renibacterium salmoninarum infection and transmission potential in Chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Purcell, Maureen K.; McKibben, Constance L.; Pearman-Gillman, Schuyler; Elliott, Diane G.; Winton, James R.

    2016-01-01

    Renibacterium salmoninarum is a significant pathogen of salmonids and the causative agent of bacterial kidney disease (BKD). Water temperature affects the replication rate of pathogens and the function of the fish immune system to influence the progression of disease. In addition, rapid shifts in temperature may serve as stressors that reduce host resistance. This study evaluated the effect of shifts in water temperature on established R. salmoninarum infections. We challenged Chinook salmon with R. salmoninarum at 12°C for 2 weeks and then divided the fish into three temperature groups (8, 12 and 15°C). Fish in the 8°C group had significantly higher R. salmoninarum-specific mortality, kidney R. salmoninarum loads and bacterial shedding rates relative to the fish held at 12 or 15°C. There was a trend towards suppressed bacterial load and shedding in the 15°C group, but the results were not significant. Bacterial load was a significant predictor of shedding for the 8 and 12°C groups but not for the 15°C group. Overall, our results showed little effect of temperature stress on the progress of infection, but do support the conclusion that cooler water temperatures contribute to infection progression and increased transmission potential in Chinook salmon infected with R. salmoninarum.

  2. In situ biomonitoring of caged, juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Lower Duwamish Waterway

    PubMed Central

    Kelley, Matthew; Gillespie, Annika; Zhou, Guo-Dong; Zhang, Shu; Meador, James P.; Duncan, Bruce; Donnelly, Kirby; McDonald, Thomas

    2011-01-01

    Contaminated sediments may have wide-ranging impacts on human and ecological health. A series of in situ caged exposure studies using juvenile Chinook salmon was conducted in the Lower Duwamish Waterway (LDW). Chemical analysis of sediment, water, and fish tissue were completed. Additionally, in 2004, DNA adducts in hepatic and gill tissues were measured. Gills contained significantly higher DNA adducts at stations B2 and B4, prompting further analysis of gills in 2006 and 2007. Fluorescent aromatic compounds (FACs) in bile, and CYP1A1 in hepatic tissue were also measured during the 2006 and 2007, respectively. FACs in field-caged fish were comparable or significantly higher than wild-caught fish LDW fish and significantly higher than lab fish after only 8–10 days, demonstrating the equivalency of exposure to that of migrating salmon. Furthermore, selected biomarkers appear to be capable of detecting spikes in contamination between sampling years, emphasizing the need for multiple year data collection. PMID:21906759

  3. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.

    SciTech Connect

    Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

    2002-08-30

    This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of passing

  4. Growth and physiological responses to surgical and gastric radio transmitter implantation techniques in subyearling chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Martinelli, T.L.; Hansel, H.C.; Shively, R.S.

    1998-01-01

    We examined the effects of surgical and gastric transmitter implantation techniques on the growth, general physiology and behavior of 230 subyearling chinook salmon (Oncorhynchus tshawytscha, Walbaum) (100 mm-154 mm fork length). The transmitter weighed 1.3 g in air (0.9 g in water) and comprised, on average, 6% of the body weight of the fish (in air). Individuals were randomly assigned to an experimental group (control, surgical or gastric) and a sampling period (day 5 or day 21). Relative growth rate was expressed as% body weight gained/day. General condition was assessed by necropsy. Physiological response variables included hematocrit, leucocrit and plasma protein concentration. The mean relative growth rates of control, surgical and gastric fish were not significantly different at day 5. By day 21, the gastric group had a significantly lower relative growth rate (1.3%) as compared to the surgical group (1.8%) and the control group (1.9%) (P = 0.0001). Mean hematocrit values were significantly lower in the surgical (41.8%) and gastric (42.2%) groups as compared to controls (47.3%) at day 5 (P = 0.01), but all were within normal range for salmonids. No significant differences in hematocrit values were detected at day 21. Leucocrit values for all groups were ??? 1% in 99% of the fish. Both tagged groups had significantly lower mean plasma protein levels as compared to controls at day 5 (P = 0.001) and day 21 (P = 0.0001). At day 21 the gastric group (64.4 g 100 m1-1) had significantly lower mean plasma protein levels than the surgical group (68.8 g 100 ml-1) (P = 0.0001). Necropsies showed decreasing condition of gastrically tagged fish over time, and increasing condition of surgical fish. Paired releases of surgically and gastrically implanted yearling chinook salmon in the lower Columbia River in spring, 1996 revealed few significant differences in migration behavior through two reservoirs. We conclude that gastrically implanted fish show decreased growth and

  5. Unusual aerobic performance at high temperatures in juvenile Chinook salmon, Oncorhynchus tshawytscha

    PubMed Central

    Poletto, Jamilynn B.; Cocherell, Dennis E.; Baird, Sarah E.; Nguyen, Trinh X.; Cabrera-Stagno, Valentina; Farrell, Anthony P.; Fangue, Nann A.

    2017-01-01

    Understanding how the current warming trends affect fish populations is crucial for effective conservation and management. To help define suitable thermal habitat for juvenile Chinook salmon, the thermal performance of juvenile Chinook salmon acclimated to either 15 or 19°C was tested across a range of environmentally relevant acute temperature changes (from 12 to 26°C). Swim tunnel respirometers were used to measure routine oxygen uptake as a measure of routine metabolic rate (RMR) and oxygen uptake when swimming maximally as a measure of maximal metabolic rate (MMR) at each test temperature. We estimated absolute aerobic scope (AAS = MMR − RMR), the capacity to supply oxygen beyond routine needs, as well as factorial aerobic scope (FAS = MMR/RMR). All fish swam at a test temperature of 23°C regardless of acclimation temperature, but some mortality occurred at 25°C during MMR measurements. Overall, RMR and MMR increased with acute warming, but aerobic capacity was unaffected by test temperatures up to 23°C in both acclimation groups. The mean AAS for fish acclimated and tested at 15°C (7.06 ± 1.76 mg O2 kg−1 h−1) was similar to that measured for fish acclimated and tested at 19°C (8.80 ± 1.42 mg O2 kg−1 h−1). Over the entire acute test temperature range, while MMR and AAS were similar for the two acclimation groups, RMR was significantly lower and FAS consequently higher at the lower test temperatures for the fish acclimated at 19°C. Thus, this stock of juvenile Chinook salmon shows an impressive aerobic capacity when acutely warmed to temperatures close to their upper thermal tolerance limit, regardless of the acclimation temperature. These results are compared with those for other salmonids, and the implications of our findings for informing management actions are discussed. PMID:28078086

  6. Effects of cadmium on olfactory mediated behaviors and molecular biomarkers in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Williams, Chase R.; Gallagher, Evan P.

    2013-01-01

    The olfactory system of salmonids is sensitive to the adverse effects of metals such as copper and cadmium. In the current study, we analyzed olfactory-mediated alarm responses, epithelial injury and recovery, and a suite of olfactory molecular biomarkers encoding genes critical in maintaining olfactory function in juvenile coho salmon receiving acute exposures to cadmium (Cd). The molecular biomarkers analyzed included four G-protein coupled receptors (GPCRs) representing the two major classes of odorant receptors (salmon olfactory receptor sorb and vomeronasal receptors svra, svrb, and gpr27), as well as markers of neurite outgrowth (nrn1) and antioxidant responses to metals, including heme oxygenase 1 (hmox1), and peroxiredoxin 1 (prdx1). Coho received acute (8–168 hr) exposures to 3.7 ppb and 347 ppb Cd, and a subset of fish was analyzed following a 16-day depuration. Coho exposed to 347 ppb Cd over 48 hrs exhibited a reduction in freeze responses, and an extensive loss of olfaction accompanied by histological injury to the olfactory epithelium. The olfactory injury in coho exposed to 347 ppb Cd was accompanied at the gene level by significant decreases in expression of the olfactory GPCRs and increased expression of hmox1. Persistent behavioral deficits, histological injury and altered expression of a subset of olfactory biomarkers were still evident in Cd-exposed coho following a 16-day depuration in clean water. Exposure to 3.7 ppb Cd also resulted in reduced freeze responses and histological changes to the olfactory epithelium within 48 hrs of Cd exposure, although the extent of olfactory injury was less severe than observed for fish in the high dose Cd group. Furthermore adverse behavioral effects were present in some coho receiving the low dose of Cd following a 16-day depuration. In summary, acute exposures to environmental levels of Cd can cause olfactory injury in coho salmon that may persist following depuration. Mechanism-based biomarkers of

  7. Effects of cadmium on olfactory mediated behaviors and molecular biomarkers in coho salmon (Oncorhynchus kisutch).

    PubMed

    Williams, Chase R; Gallagher, Evan P

    2013-09-15

    The olfactory system of salmonids is sensitive to the adverse effects of metals such as copper and cadmium. In the current study, we analyzed olfactory-mediated alarm responses, epithelial injury and recovery, and a suite of olfactory molecular biomarkers encoding genes critical in maintaining olfactory function in juvenile coho salmon receiving acute exposures to cadmium (Cd). The molecular biomarkers analyzed included four G-protein coupled receptors (GPCRs) representing the two major classes of odorant receptors (salmon olfactory receptor sorb and vomeronasal receptors svra, svrb, and gpr27), as well as markers of neurite outgrowth (nrn1) and antioxidant responses to metals, including heme oxygenase 1 (hmox1), and peroxiredoxin 1 (prdx1). Coho received acute (8-168 h) exposures to 3.7 ppb and 347 ppb Cd, and a subset of fish was analyzed following a 16-day depuration. Coho exposed to 347 ppb Cd over 48 h exhibited a reduction in freeze responses, and an extensive loss of olfaction accompanied by histological injury to the olfactory epithelium. The olfactory injury in coho exposed to 347 ppb Cd was accompanied at the gene level by significant decreases in expression of the olfactory GPCRs and increased expression of hmox1. Persistent behavioral deficits, histological injury and altered expression of a subset of olfactory biomarkers were still evident in Cd-exposed coho following a 16-day depuration in clean water. Exposure to 3.7 ppb Cd also resulted in reduced freeze responses and histological changes to the olfactory epithelium within 48 h of Cd exposure, although the extent of olfactory injury was less severe than observed for fish in the high dose Cd group. Furthermore adverse behavioral effects were present in some coho receiving the low dose of Cd following a 16-day depuration. In summary, acute exposures to environmental levels of Cd can cause olfactory injury in coho salmon that may persist following depuration. Mechanism-based biomarkers of oxidative

  8. A cohabitation challenge to compare the efficacies of vaccines for bacterial kidney disease (BKD) in chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Alcorn, S.; Murray, A.L.; Pascho, R.J.; Varney, J.

    2005-01-01

    The relative efficacies of 1 commercial and 5 experimental vaccines for bacterial kidney disease (BKD) were compared through a cohabitation waterborne challenge. Groups of juvenile chinook salmon Oncorhynchus tshawytscha were vaccinated with one of the following: (1) killed Renibacterium salmoninarum ATCC 33209 (Rs 33209) cells; (2) killed Rs 33209 cells which had been heated to 37??C for 48 h, a process that destroys the p57 protein; (3) killed R. salmoninarum MT239 (Rs MT239) cells; (4) heated Rs MT239 cells; (5) a recombinant version of the p57 protein (r-p57) emulsified in Freund's incomplete adjuvant (FIA); (6) the commercial BKD vaccine Renogen; (7) phosphate-buffered saline (PBS) emulsified with an equal volume of FIA; or (8) PBS alone. Following injection, each fish was marked with a subcutaneous fluorescent latex tag denoting its treatment group and the vaccinated fish were combined into sham and disease challenge tanks. Two weeks after these fish were vaccinated, separate groups of fish were injected with either PBS or live R. salmoninarum GL64 and were placed inside coated-wire mesh cylinders (liveboxes) in the sham and disease challenge tanks, respectively. Mortalities in both tanks were recorded for 285 d. Any mortalities among the livebox fish were replaced with an appropriate cohort (infected with R. salmoninarum or healthy) fish. None of the bacterins evaluated in this study induced protective immunity against the R. salmoninarum shed from the infected livebox fish. The percentage survival within the test groups in the R. salmoninarum challenge tank ranged from 59% (heated Rs MT239 bacterin) to 81 % (PBS emulsified with FIA). There were no differences in the percentage survival among the PBS-, PBS/FIA-, r-p57-and Renogen-injected groups. There also were no differences in survival among the bacterin groups, regardless of whether the bacterial cells had been heated or left untreated prior to injection. ?? Inter-Research 2005.

  9. Effect of daily oscillation in temperature and increased suspended sediment on growth and smolting in juvenile chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Shrimpton, J.M.; Zydlewski, J.D.; Heath, J.W.

    2007-01-01

    We examined the effect of temperature oscillation and increased suspended sediment concentration on growth and smolting in juvenile ocean-type chinook salmon (Oncorhynchus tshawytscha). Fish were ponded on February 26; each treatment group had three replicates of 250 fish. Mean temperatures for the entire experiment were 12.3????C for all tanks with a total of 1348 and 1341 degree days for the constant temperature and oscillating temperature tanks, respectively. Daily fluctuation in temperature averaged 7.5????C in the variable temperature groups and less than 1????C for the constant temperature group. Starting on April 5, bentonite clay was added each day to tanks as a pulse event to achieve a suspended sediment concentration of 200??mg l- 1; clay cleared from the tanks within approximately 8??h. Fish were sampled at approximately two??week intervals from ponding until mid-June. On the last sample date, June 12, a single gill arch was removed and fixed for histological examination of gill morphology. By early May, significant differences were seen in size between the groups; control > temperature = sediment > (temperature ?? sediment). This relationship was consistent throughout the experiment except for the last sample date when the temperature group had a mean weight significantly greater than the sediment group. Gill Na+,K+-ATPase activity was not affected by daily temperature oscillations, but groups subjected to increased suspended sediment had significantly lower enzyme activities compared to controls. Mean cell size for gill chloride cells did not differ between groups. Plasma cortisol increased significantly during the spring, but there were no significant differences between groups. ?? 2007 Elsevier B.V. All rights reserved.

  10. A cohabitation challenge to compare the efficacies of vaccines for bacterial kidney disease (BKD) in chinook salmon Oncorhynchus tshawytscha.

    PubMed

    Alcorn, Stewart; Murray, Anthony L; Pascho, Ronald J; Varney, Jed

    2005-02-28

    The relative efficacies of 1 commercial and 5 experimental vaccines for bacterial kidney disease (BKD) were compared through a cohabitation waterborne challenge. Groups of juvenile chinook salmon Oncorhynchus tshawytscha were vaccinated with one of the following: (1) killed Renibacterium salmoninarum ATCC 33209 (Rs 33209) cells; (2) killed Rs 33209 cells which had been heated to 37 degrees C for 48 h, a process that destroys the p57 protein; (3) killed R. salmoninarum MT239 (Rs MT239) cells; (4) heated Rs MT239 cells; (5) a recombinant version of the p57 protein (r-p57) emulsified in Freund's incomplete adjuvant (FIA); (6) the commercial BKD vaccine Renogen; (7) phosphate-buffered saline (PBS) emulsified with an equal volume of FIA; or (8) PBS alone. Following injection, each fish was marked with a subcutaneous fluorescent latex tag denoting its treatment group and the vaccinated fish were combined into sham and disease challenge tanks. Two weeks after these fish were vaccinated, separate groups of fish were injected with either PBS or live R. salmoninarum GL64 and were placed inside coated-wire mesh cylinders (liveboxes) in the sham and disease challenge tanks, respectively. Mortalities in both tanks were recorded for 285 d. Any mortalities among the livebox fish were replaced with an appropriate cohort (infected with R. salmoninarum or healthy) fish. None of the bacterins evaluated in this study induced protective immunity against the R. salmoninarum shed from the infected livebox fish. The percentage survival within the test groups in the R. salmoninarum challenge tank ranged from 59% (heated Rs MT239 bacterin) to 81% (PBS emulsified with FIA). There were no differences in the percentage survival among the PBS-, PBS/FIA-, r-p57- and Renogen-injected groups. There also were no differences in survival among the bacterin groups, regardless of whether the bacterial cells had been heated or left untreated prior to injection.

  11. Testing of candidate non-lethal sampling methods for detection of Renibacterium salmoninarum in juvenile Chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Elliott, Diane G.; McKibben, Constance L.; Conway, Carla M.; Purcell, Maureen K.; Chase, Dorothy M.; Applegate, Lynn M.

    2015-01-01

    Non-lethal pathogen testing can be a useful tool for fish disease research and management. Our research objectives were to determine if (1) fin clips, gill snips, surface mucus scrapings, blood draws, or kidney biopsies could be obtained non-lethally from 3 to 15 g Chinook salmon Oncorhynchus tshawytscha, (2) non-lethal samples could accurately discriminate between fish exposed to the bacterial kidney disease agent Renibacterium salmoninarum and non-exposed fish, and (3) non-lethal samples could serve as proxies for lethal kidney samples to assess infection intensity. Blood draws and kidney biopsies caused ≥5% post-sampling mortality (Objective 1) and may be appropriate only for larger fish, but the other sample types were non-lethal. Sampling was performed over 21 wk following R. salmoninarum immersion challenge of fish from 2 stocks (Objectives 2 and 3), and nested PCR (nPCR) and real-time quantitative PCR (qPCR) results from candidate non-lethal samples were compared with kidney tissue analysis by nPCR, qPCR, bacteriological culture, enzyme-linked immunosorbent assay (ELISA), fluorescent antibody test (FAT) and histopathology/immunohistochemistry. R. salmoninarum was detected by PCR in >50% of fin, gill, and mucus samples from challenged fish. Mucus qPCR was the only non-lethal assay exhibiting both diagnostic sensitivity and specificity estimates >90% for distinguishing between R. salmoninarum-exposed and non-exposed fish and was the best candidate for use as an alternative to lethal kidney sample testing. Mucus qPCR R. salmoninarum quantity estimates reflected changes in kidney bacterial load estimates, as evidenced by significant positive correlations with kidney R. salmoninaruminfection intensity scores at all sample times and in both fish stocks, and were not significantly impacted by environmentalR. salmoninarum concentrations.

  12. A latitudinal cline in the Chinook salmon (Oncorhynchus tshawytscha) Clock gene: evidence for selection on PolyQ length variants

    PubMed Central

    O'Malley, Kathleen G; Banks, Michael A

    2008-01-01

    A critical seasonal event for anadromous Chinook salmon (Oncorhynchus tshawytscha) is the time at which adults migrate from the ocean to breed in freshwater. We investigated whether allelic variation at the circadian rhythm genes, OtsClock1a and OtsClock1b, underlies genetic control of migration timing among 42 populations in North America. We identified eight length variants of the functionally important polyglutamine repeat motif (PolyQ) of OtsClock1b while OtsClock1a PolyQ was highly conserved. We found evidence of a latitudinal cline in average allele length and frequency of the two most common OtsClock1b alleles. The shorter 335 bp allele increases in frequency with decreasing latitude while the longer 359 bp allele increases in frequency at higher latitudes. Comparison to 13 microsatellite loci showed that 335 and 359 bp deviate significantly from neutral expectations. Furthermore, a hierarchical gene diversity analysis based on OtsClock1b PolyQ variation revealed that run timing explains 40.9 per cent of the overall genetic variance among populations. By contrast, an analysis based on 13 microsatellite loci showed that run timing explains only 13.2 per cent of the overall genetic variance. Our findings suggest that length polymorphisms in OtsClock1b PolyQ may be maintained by selection and reflect an adaptation to ecological factors correlated with latitude, such as the seasonally changing day length. PMID:18713722

  13. Genetic Analysis of Snake River Sockeye Salmon (Oncorhynchus Nerka), 2003 Technical Report.

    SciTech Connect

    Faler, Joyce; Powell, Madison

    2003-12-01

    A total of 1720 Oncorhynchus nerka tissue samples from 40 populations were characterized using mitochondrial DNA RFLPs (Restriction Fragment Length Polymorphisms). Analysis of anadromous sockeye populations indicated the historical presence of four major maternal lineages. Thirty-five composite mitochondrial haplotypes were observed from the 40 populations of O. nerka sampled throughout the Pacific Northwest. Six of these composite haplotypes ranged in frequency from 7-26% overall and were commonly observed in most populations. The six haplotypes together comprised 90% of the sampled O. nerka. An average of 4.6 composite haplotypes were observed per population. Genetic markers used were satisfactory in separating Redfish Lake anadromous sockeye, residual sockeye and outmigrants from the sympatric kokanee population that spawns in the Fishhook Creek tributary. Outmigrants appear to be primarily composed of progeny from resident residual sockeye, and captively-reared progeny of the captive broodstock program. Thus, residual sockeye may be considered a suitable source of genetic variation to maintain genetic diversity among captive broodstocks of anadromous sockeye. Fishhook Creek kokanee are genetically diverse and during spawning, are temporally and spatially isolated from the residual sockeye population. Eleven composite haplotypes were observed in the kokanee population. The unusually high number of haplotypes is most likely a consequence of periodic stocking of Redfish Lake with kokanee from other sources. Genetic data from Redfish Lake creel samples taken during 1996-1999 putatively indicate the incidental take of a listed resident sockeye.

  14. Deposition Form and Bioaccessibility of Keto-carotenoids from Mamey Sapote (Pouteria sapota), Red Bell Pepper (Capsicum annuum), and Sockeye Salmon (Oncorhynchus nerka) Filet.

    PubMed

    Chacón-Ordóñez, Tania; Esquivel, Patricia; Jiménez, Víctor M; Carle, Reinhold; Schweiggert, Ralf M

    2016-03-09

    The ultrastructure and carotenoid-bearing structures of mamey sapote (Pouteria sapota) chromoplasts were elucidated using light and transmission electron microscopy and compared to carotenoid deposition forms in red bell pepper (Capsicum annuum) and sockeye salmon (Oncorhynchus nerka). Globular-tubular chromoplasts of sapote contained numerous lipid globules and tubules embodying unique provitamin A keto-carotenoids in a lipid-dissolved and presumably liquid-crystalline form, respectively. Bioaccessibility of sapotexanthin and cryptocapsin was compared to that of structurally related keto-carotenoids from red bell pepper and salmon. Capsanthin from bell pepper was the most bioaccessible pigment, followed by sapotexanthin and cryptocapsin esters from mamey sapote. In contrast, astaxanthin from salmon was the least bioaccessible keto-carotenoid. Thermal treatment and fat addition consistently enhanced bioaccessibility, except for astaxanthin from naturally lipid-rich salmon, which remained unaffected. Although the provitamin A keto-carotenoids from sapote were highly bioaccessible, their qualitative and quantitative in vivo bioavailability and their conversion to vitamin A remains to be confirmed.

  15. The potential for chromium to affect the fertilization process of Chinook salmon (Oncorhynchus tshawytscha) in the Hanford reach of the Columbia River, Washington, USA.

    PubMed

    Farag, A M; Harper, D D; Cleveland, L; Brumbaugh, W G; Little, E E

    2006-05-01

    The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 microg Cr l(-1). The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 microg Cr l(-1). Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 microg Cr l(-1). Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 microg Cr l(-1). Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 mug Cr l(-1) is most likely protective of Chinook salmon fertilization.

  16. The potential for chromium to affect the fertilization process of Chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, Washington, USA

    USGS Publications Warehouse

    Farag, A.M.; Harper, D.D.; Cleveland, L.; Brumbaugh, W.G.; Little, E.E.

    2006-01-01

    The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 μg Cr l−1. The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 μg Cr l−1. Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 μg Cr l−1. Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 μg Cr l−1. Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 μg Cr l−1 is most likely protective of Chinook salmon fertilization.

  17. Bioenergetic model estimates of interannual and spatial patterns in consumption demand and growth potential of juvenile pink salmon (Oncorhynchus gorbuscha) in the Gulf of Alaska

    USGS Publications Warehouse

    Moss, J.H.; Beauchamp, D.A.; Cross, A.D.; Farley, E.V.; Murphy, J.M.; Helle, J.H.; Walker, R.V.; Myers, K.W.

    2009-01-01

    A bioenergetic model of juvenile pink salmon (Oncorhynchus gorbuscha) was used to estimate daily prey consumption and growth potential of four ocean habitats in the Gulf of Alaska during 2001 and 2002. Growth potential was not significantly higher in 2002 than in 2001 at an alpha level of 0.05 (P=0.073). Average differences in growth potential across habitats were minimal (slope habitat=0.844 g d-1, shelf habitat=0.806 g d-1, offshore habitat=0.820 g d-1, and nearshore habitat=0.703 g d-1) and not significantly different (P=0.630). Consumption demand differed significantly between hatchery and wild stocks (P=0.035) when examined within year due to the interaction between hatchery verses wild origin and year. However, the overall effect of origin across years was not significant (P=0.705) due to similar total amounts of prey consumed by all juvenile pink salmon in both study years. We anticipated that years in which ocean survival was high would have had high growth potential, but this relationship did not prove to be true. Therefore, modeled growth potential may not be useful as a tool for forecasting survival of Prince William Sound hatchery pink salmon stocks. Significant differences in consumption demand and a two-fold difference in nearshore abundance during 2001 of hatchery and wild pink salmon confirmed the existence of strong and variable interannual competition and the importance of the nearshore region as being a potential competitive bottleneck.

  18. Brain acetylcholinesterase activity in shiner perch (Cymatogaster aggregata) and juvenile chinook salmon (Oncorhynchus tshawytscha) after application of carbaryl to control burrowing shrimp within Willapa Bay, Washington.

    PubMed

    Troiano, Alexandra T; King, Kerensa A; Grue, Christian E; Grassley, James M; Ekblad, Cathy J

    2013-11-01

    Carbaryl has been applied in Willapa Bay, Washington, for five decades to control burrowing shrimp (Neotrypaea californiensis and Upogebia pugettensis) on commercial oyster (Crassostrea gigas) beds. Concerns about effects on nontarget species, including fishes, have led to restrictions in use despite a lack of data on in situ exposure. We measured brain acetylcholinesterase (AChE) activity in adult Shiner perch (Cymatogaster aggregata) and juvenile Chinook salmon (Oncorhynchus tshawytscha) after operational applications. We hypothesized that exposure in Shiner perch would be greater than in juvenile Chinook salmon because of their greater site fidelity and benthic foraging. However, Shiner perch exhibited no statistically significant AChE inhibition. Enzyme activity was statistically decreased (≤14 %) in juvenile Chinook salmon after a second spray event; however, inhibition was less than that associated with overt effects and was similar to controls by 48 h after the spray. Diet analyses confirmed that Shiner perch were primarily feeding on benthic invertebrates and that juvenile Chinook salmon were feeding primarily within the water column. Composition of Shiner perch diets and amount of food consumed varied little among channels and time periods; however, Shiner perch on beds consumed more food 6 h after application than those at other time points and locations. There were no consistent differences in the diets of juvenile Chinook salmon within channels among time periods. Results suggest (1) that carbaryl applications pose little hazard to fish in the bay having habitat and dietary preferences similar to those of Shiner perch and juvenile Chinook salmon and (2) that quantification of direct exposure in the field is essential to adequately assess risk.

  19. Morphological changes in the retina in Pacific ocean salmon Oncorhynchus masou fry in response to neutralization of the geomagnetic field in conditions of normal illumination.

    PubMed

    Maksimovich, A A; Kondrashev, S L; Gnyubkina, V P

    2008-10-01

    The studies reported here provide the first demonstration that retinal responses in both the fry of the migratory salmon trout Oncorhynchus masou and the dwarf form of this species changed in conditions of experimental neutralization of the geomagnetic field (GMF); migratory salmon trout fry and dwarves showed different changes. The responses of different types of retinal photoreceptor in migratory salmon trout fry to neutralization of the GMF differed: while rods and double cones perceived neutralization of the GMF as the onset of darkness (the scotopic reaction), single (generally blue-sensitive) cones responded to neutralization of the GMF both as presentation of blue light or (very rarely) ultraviolet irradiation. The retina of dwarf male salmon trout responded to neutralization of the GMF with a double response: rods showed a light (photopic) response, while double (red/green-sensitive) cones produced dark (scotopic) responses. Single (blue-sensitive) cones responded to neutralization of the GMF as bright blue light. Thus, the morphological picture of the retina in dwarf male salmon trout in these experimental conditions corresponds to the perception of blue light. The initial conditions were different--normal diffuse daylight with a brightness of about 7.5 Lx. It is likely that neutralization of the magnetic field had no effect on rods, while double, red-green, cones responded as to darkness, i.e., the fish did not perceive red or green light in the visible spectrum, but perceived only blue and, possibly, ultraviolet light by means of central blue-sensitive and accessory cones. Thus, these experiments demonstrated that in conditions of normal daylight illumination, retinal photoreceptors in salmon fry respond to changes in the earth's magnetic field, i.e., objectively function as magnetoreceptors.

  20. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska.

    Treesearch

    Dirk W. Lang; Gordon H. Reeves; James D. Hall; Mark S. Wipfli

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchrcs kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from...

  1. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawytscha) near Ives and Pierce Island of the Columbia River, 2004-2005 Annual Report.

    SciTech Connect

    Mueller, Robert

    2005-10-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (greater than 1 m) downstream of Bonneville Dam in fall 2004. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce Islands of the Columbia River and is the sixth in a series of reports prepared since 1999. The main objectives of this study were to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The primary search area was adjacent to the upper portion of Pierce Island, and the secondary search zone was downstream of this area near the lower portion of Pierce Island. A secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections downstream of Hamilton Creek (slough zone search area). Fall Chinook salmon redd numbers were down slightly from the record number found during 2003. The number of fall Chinook redds found in the Ives-Pierce Island complex (river km 228.5) during 2004 was 293, which does not include the number of shallow water redds found by visual observation by boat by the Oregon Department of Fish and Wildlife. The redds encompassed an area of 14.6 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 16, 2004. An expanded redd count based on percentage video coverage in the primary and secondary search zones was 3,198 fall Chinook salmon redds at water depths exceeding approximately 1.0 m (approximately 125 kcfs) with an estimated spawning population of 10,800. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging in size from 7

  2. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2003-2004 Annual Report.

    SciTech Connect

    Mueller, Robert

    2004-10-01

    Pacific Northwest National Laboratory conducted video-based boat surveys in fall 2003 to identify spawning areas for fall Chinook salmon (Oncorhynchus tshawytscha) in deep water (>1 m) downstream of Bonneville Dam. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce islands of the Columbia River, and is the fifth in a series of reports prepared since 1999. The primary objective of this study was to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections near below Hamilton Creek. Results from the 2003 study show a continuing trend upward in the number of fall Chinook salmon redds found within the survey zones. The number of fall Chinook redds found in the Ives Pierce Island complex (river km 228.5) has increased by a factor of five since the surveys began in 1999. The total number of redds found during 2003 was 336, which compares to 192 in 2002, 43 in 2001, 76 in 2000, and 64 in 1999. The redds encompassed an area of 13.7 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 24, 2003. An expanded redd count based on percentage of video coverage in the primary and secondary search zones was 3,218 fall Chinook salmon redds in water exceeding 1 m deep and flowing at about 125 kcfs. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging from 7.6 to 15.2 cm in diameter. Two chum salmon redds were found in a small location downstream from Hamilton Creek in water depths of approximately 1 m. No salmon redds were found in other areas searched, including near

  3. Freshwater movement patterns by juvenile Pacific salmon Oncorhynchus spp. before they migrate to the ocean: Oh the places you'll go!

    PubMed

    Shrimpton, J M; Warren, K D; Todd, N L; McRae, C J; Glova, G J; Telmer, K H; Clarke, A D

    2014-10-01

    Juvenile movement patterns for coho salmon Oncorhynchus kisutch and Chinook salmon Oncorhynchus tshawytscha from two large interior rivers of British Columbia, Canada, were examined. Otoliths from post-spawned fishes were collected on spawning grounds and elemental signatures were determined through transects from sectioned otoliths using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Large variations in otolith elemental signatures were found during the freshwater life stage indicative of movement downstream to rivers and tributaries that differed in elemental signature. This study highlights that downstream movements occur before migration to the ocean during the parr-smolt transformation. Extensive downstream movements of parr appear to be a successful life-history strategy based on variations observed in the otolith elemental signatures of spawners. Movements downstream in parr and the remarkable homing ability of adults also suggest that imprinting to natal streams must occur prior to the parr-smolt transformation. © 2014 The Fisheries Society of the British Isles.

  4. Effect of halotolerant starter microorganisms on chemical characteristics of fermented chum salmon (Oncorhynchus keta) sauce.

    PubMed

    Yoshikawa, Shuji; Kurihara, Hideyuki; Kawai, Yuji; Yamazaki, Koji; Tanaka, Akira; Nishikiori, Takafumi; Ohta, Tomoki

    2010-05-26

    Chum salmon sauce mash was inoculated with barley koji (barley steamed and molded with Aspergillus oryzae ) and halotolerant microorganisms (HTMs), Zygosaccharomyces rouxii , Candida versatilis , and Tetragenococcus halophilus , in nine different combinations under non-aseptic conditions similar to the industrial fish sauce production and fermented at 35 +/- 2.5 degrees C for 84 days. The changes in the chemical components, color, and sensory properties during fermentation were investigated. Free amino acid content was increased, and the browning of fish sauce was enhanced by the usage of barley koji during fermentation. The halotolerant yeast (HTY) produced ethanol and repressed the browning by consumption of reducing sugar. Inoculated Z. rouxii in the fish sauce mash produced 2-phenylethanol (2-PE) and 4-hydoxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF), and C. versatilis in the fish sauce mash produced 4-ethylguaiacol (4-EG), known as characteristic flavor compounds in soy sauce, adding soy-sauce-like flavor to the fish sauce. Thus, inoculation of HTMs and barley koji was effective for conferring the soy-sauce-like flavor and increasing free amino acid and ethanol contents in fish sauce product.

  5. Sneaker "jack" males outcompete dominant "hooknose" males under sperm competition in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Young, Brent; Conti, David V; Dean, Matthew D

    2013-12-01

    In a variety of taxa, males deploy alternative reproductive tactics to secure fertilizations. In many species, small "sneaker" males attempt to steal fertilizations while avoiding encounters with larger, more aggressive, dominant males. Sneaker males usually face a number of disadvantages, including reduced access to females and the higher likelihood that upon ejaculation, their sperm face competition from other males. Nevertheless, sneaker males represent an evolutionarily stable strategy under a wide range of conditions. Game theory suggests that sneaker males compensate for these disadvantages by investing disproportionately in spermatogenesis, by producing more sperm per unit body mass (the "fair raffle") and/or by producing higher quality sperm (the "loaded raffle"). Here, we test these models by competing sperm from sneaker "jack" males against sperm from dominant "hooknose" males in Chinook salmon. Using two complementary approaches, we reject the fair raffle in favor of the loaded raffle and estimate that jack males were ∼1.35 times as likely as hooknose males to fertilize eggs under controlled competitive conditions. Interestingly, the direction and magnitude of this skew in paternity shifted according to individual female egg donors, suggesting cryptic female choice could moderate the outcomes of sperm competition in this externally fertilizing species.

  6. Differential expression of the pro-inflammatory cytokines IL-1beta-1, TNFalpha-1 and IL-8 in vaccinated pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon juveniles.

    PubMed

    Fast, M D; Johnson, S C; Jones, S R M

    2007-04-01

    Laboratory-reared pink and chum salmon juveniles (approximately 2g) received an intraperitoneal injection with a commercial, unadjuvanted Aeromonas salmonicida bacterin or sterile saline. Relative to elongation factor-1A, expression levels of genes encoding the proinflammatory cytokines interleukin-1beta-1 (IL-1beta), tumour necrosis factor-alpha-1 (TNFalpha) and interleukin-8 (IL-8) in pools of kidney and liver were examined 6- and 24-h after injection. Expression of IL-1beta was significantly elevated in pink and chum salmon by 6-h, and declined in pink salmon but not in chum salmon by 24-h. Similarly, expression of TNFalpha was significantly elevated in both species at 6h and only in chum salmon after 24-h. Expression of IL-8 was significantly elevated in both species at 6- and 24-h after injection. Expression of the three proinflammatory cytokine genes differed between salmon species both in the timing and magnitude of their expression. The significance of these differences with respect to immune function in these fish requires further research.

  7. Effects of salinity acclimation on the expression and activity of Phase I enzymes (CYP450 and FMOs) in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Lavado, Ramon; Aparicio-Fabre, Rosaura; Schlenk, Daniel

    2013-01-01

    Phase I biotransformation enzymes are critically important in the disposition of xenobiotics within biota and are regulated by multiple environmental cues, particularly in anadromous fish species. Given the importance of these enzyme systems in xenobiotic/endogenous chemical bioactivation and detoxification, the current study was designed to better characterize the expression of Phase I biotransformation enzymes in coho salmon (Oncorhynchus kisutch) and the effects of salinity acclimation on those enzymes. Livers, gills and olfactory tissues were collected from coho salmon (Oncorhynchus kisutch) after they had undergone acclimation from freshwater to various salinity regimes of seawater (8, 16 and 32 g/L). Using immunoblot techniques coupled with testosterone hydroxylase catalytic activities, 4 orthologs of cytochrome P450 (CYP1A, CYP2K1, CYP2M1 and CYP3A27) were measured in each tissue. Also the expression of 2 transcripts of flavin-containing monooxygenases (FMO A and B) and associated activities were measured. With the exception of CYP1A, which was down-regulated in liver, protein expression of the other 3 enzymes was induced at higher salinity, with the greatest increase observed in CYP2M1 from olfactory tissues. In liver and gills, 6 - and 16 -hydroxylation of testosterone was also significantly increased after hypersaline acclimation. Similarly, FMO A was up-regulated in all 3 tissues in a salinity-dependent pattern, whereas FMO B mRNA was down-regulated. FMO-catalyzed benzydamine N-oxygenase and methyl p-tolyl sulfoxidation were significantly induced in liver and gills by hypersalinity, but was either unchanged or not detected in olfactory tissues. These data demonstrate thatenvironmental conditions may significantly alter the toxicity of environmental chemicals in salmon during freshwater/saltwater acclimation. PMID:23925894

  8. Controls on the entrainment of juvenile Chinook Salmon (Oncorhynchus tshawytscha) into large water diversions and estimates of population-level loss.

    PubMed

    Zeug, Steven C; Cavallo, Bradley J

    2014-01-01

    Diversion of freshwater can cause significant changes in hydrologic dynamics and this can have negative consequences for fish populations. Additionally, fishes can be directly entrained into diversion infrastructure (e.g. canals, reservoirs, pumps) where they may become lost to the population. However, the effect of diversion losses on fish population dynamics remains unclear. We used 15 years of release and recovery data from coded-wire-tagged juvenile Chinook Salmon (Oncorhynchus tshawytscha) to model the physical, hydrological and biological predictors of salvage at two large water diversions in the San Francisco Estuary. Additionally, entrainment rates were combined with estimates of mortality during migration to quantify the proportion of total mortality that could be attributed to diversions. Statistical modeling revealed a strong positive relationship between diversion rate and fish entrainment at both diversions and all release locations. Other significant relationships were specific to the rivers where the fish were released, and the specific diversion facility. Although significant relationships were identified in statistical models, entrainment loss and the mean contribution of entrainment to total migration mortality were low. The greatest entrainment mortality occurred for fish released along routes that passed closest to the diversions and certain runs of Chinook Salmon released in the Sacramento River suffered greater mortality but only at the highest diversion rates observed during the study. These results suggest losses at diversions should be put into a population context in order to best inform effective management of Chinook Salmon populations.

  9. Controls on the Entrainment of Juvenile Chinook Salmon (Oncorhynchus tshawytscha) into Large Water Diversions and Estimates of Population-Level Loss

    PubMed Central

    Zeug, Steven C.; Cavallo, Bradley J.

    2014-01-01

    Diversion of freshwater can cause significant changes in hydrologic dynamics and this can have negative consequences for fish populations. Additionally, fishes can be directly entrained into diversion infrastructure (e.g. canals, reservoirs, pumps) where they may become lost to the population. However, the effect of diversion losses on fish population dynamics remains unclear. We used 15 years of release and recovery data from coded-wire-tagged juvenile Chinook Salmon (Oncorhynchus tshawytscha) to model the physical, hydrological and biological predictors of salvage at two large water diversions in the San Francisco Estuary. Additionally, entrainment rates were combined with estimates of mortality during migration to quantify the proportion of total mortality that could be attributed to diversions. Statistical modeling revealed a strong positive relationship between diversion rate and fish entrainment at both diversions and all release locations. Other significant relationships were specific to the rivers where the fish were released, and the specific diversion facility. Although significant relationships were identified in statistical models, entrainment loss and the mean contribution of entrainment to total migration mortality were low. The greatest entrainment mortality occurred for fish released along routes that passed closest to the diversions and certain runs of Chinook Salmon released in the Sacramento River suffered greater mortality but only at the highest diversion rates observed during the study. These results suggest losses at diversions should be put into a population context in order to best inform effective management of Chinook Salmon populations. PMID:25019205

  10. Building an ecosystem model using mismatched and fragmented data: A probabilistic network of early marine survival for coho salmon Oncorhynchus kisutch in the Strait of Georgia

    NASA Astrophysics Data System (ADS)

    Andres Araujo, H.; Holt, Carrie; Curtis, Janelle M. R.; Perry, R. I.; Irvine, James R.; Michielsens, Catherine G. J.

    2013-08-01

    We evaluated the effects of biophysical conditions and hatchery production on the early marine survival of coho salmon Oncorhynchus kisutch in the Strait of Georgia, British Columbia, Canada. Due to a paucity of balanced multivariate ecosystem data, we developed a probabilistic network that integrated physical and ecological data and information from literature, expert opinion, oceanographic models, and in situ observations. This approach allowed us to evaluate alternate hypotheses about drivers of early marine survival while accounting for uncertainties in relationships among variables. Probabilistic networks allow users to explore multiple environmental settings and evaluate the consequences of management decisions under current and projected future states. We found that the zooplankton biomass anomaly, calanoid copepod biomass, and herring biomass were the best indicators of early marine survival. It also appears that concentrating hatchery supplementation during periods of negative PDO and ENSO (Pacific Decadal and El Niño Southern Oscillation respectively), indicative of generally favorable ocean conditions for salmon, tends to increase survival of hatchery coho salmon while minimizing negative impacts on the survival of wild juveniles. Scientists and managers can benefit from the approach presented here by exploring multiple scenarios, providing a basis for open and repeatable ecosystem-based risk assessments when data are limited.

  11. Uptake and selective partitioning of dietary lipids to ovarian and muscle tissue of maturing female coho salmon, Oncorhynchus kisutch, during secondary oocyte growth.

    PubMed

    Johnson, Ronald B; Kroeger, Eric L; Reichert, William L; Carter, Cameron S; Rust, Michael B

    2017-06-01

    Female coho salmon, Oncorhynchus kisutch, were fed one of two experimental feeds containing lipids with markedly different stable (13)C isotope signatures during the late cortical alveolus, lipid droplet, and vitellogenesis stages of secondary oocyte growth. Ovarian and muscle lipids fatty acid concentrations were significantly affected by treatment during all three stages of development. Stable (13)C isotope analyses confirmed that dietary lipids were incorporated into both ovarian and muscle lipids during all three stages and revealed that ovarian lipids were more affected than muscle lipids during vitellogenesis. Arachidonic acid (ARA) was incorporated into ovarian lipids at the highest rate of all fatty acids examined with the greatest uptake observed during the cortical alveolus and lipid droplet stages of development. Docosahexaenoic acid (DHA) was incorporated into ovarian lipids at the next highest rate with the greatest uptake observed during the lipid droplet stage of development. The presence of an ovary specific, fatty acid transfer mechanism is proposed. Results from this study demonstrate the ability to greatly alter the fatty acid composition of ovarian lipids through a dietary change during secondary oocyte growth and may be of great interest to producers of farmed salmon and salmon broodstock programs. Published by Elsevier Inc.

  12. An estimate of chinook salmon (Oncorhynchus tshawytscha) spawning habitat and redd capacity upstream of a migration barrier in the upper Columbia River

    SciTech Connect

    Hanrahan, Timothy P.; Dauble, Dennis D.; Geist, David R.

    2004-02-01

    Chief Joseph Dam on the Columbia River is the upstream terminus for anadromous fish, due to its lack of fish passage facilities. Management agencies are currently evaluating the feasibility of reintroducing anadromous fish upriver of Chief Joseph Dam. We evaluated the physical characteristics of potential fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat in the upper section of Chief Joseph Reservoir. The objective of this study was to estimate the quantity and location of potential spawning habitat, and secondly to determine the redd capacity of the area based on spawning habitat characteristics. We used a geomorphic approach to first identify specific segments with the highest potential for spawning. The suitability of these segments for spawning was then estimated through the use of empirical physical data and modeled hydraulic data. We estimated 5% (48.7 ha) of the study area contains potentially suitable fall chinook salmon spawning habitat. Potential spawning habitat is primarily limited by water too deep and secondly by water velocities too low, the combination of which results in 20% (9.6 ha) of the potential spawning habitat being characterized as high quality. Estimates of redd capacity within potential spawning habitat range from 207? 1599 redds, based on proportional use of potential habitat and varying amounts of channelbed used by spawning salmon. The results of our study provide fisheries managers significant insight into one component of the complex issue of reintroducing anadromous fish to the Columbia River upstream of Chief Joseph Dam.

  13. Effects of dry brining, liquid smoking and high-pressure treatment on the physical properties of aquacultured King salmon (Oncorhynchus tshawytscha) during refrigerated storage.

    PubMed

    Kong, Kelvin Jia Wey; Alçiçek, Zayde; Balaban, Murat O

    2015-03-15

    Aquacultured King salmon (Oncorhynchus tshawytscha) pieces were dry brined with a salt/brown sugar mix, dipped in liquid smoke for 3 min, vacuum packed, high hydrostatic pressure (HHP) treated at 600 or 200 MPa for 5 min and stored at 4 °C for up to 40 days. The surface redness (average a*) of the samples increased after dry brining, then decreased after liquid smoke treatment. HHP did not change the outside color of liquid-smoked samples. However, the inside color changed depending on pressure. HHP-treated control samples without dry brining and liquid smoking changed to a pale pink color. HHP at 600 MPa resulted in a significant increase in hardness. Compared with fresh samples, dry-brined samples had reduced water activity, while samples dipped in liquid smoke had lower pH values. Dry brining and liquid smoking protect the outside color of salmon against changes caused by HHP. The increase in hardness may counteract the softening of the smoked salmon tissue over time. © 2014 Society of Chemical Industry.

  14. Variation in mitochondrial DNA and allozymes discriminates early and late forms of Chinook salmon Oncorhynchus tshawytscha in the Kenai and Kasilof Rivers, AK

    USGS Publications Warehouse

    Adams, Noah S.; Spearman, William J.; Burger, Carl V.; Currens, Kenneth P.; Schreck, Carl B.; Li, Hiram W.

    1994-01-01

    Genetic differences between early and late forms of Alaskan chinook salmon (Oncorhynchus tshawytscha) were identified using two genetic approaches: mitochondrial DNA (mtDNA) analysis, and protein electrophoresis. Study populations consisted of early and late runs in each of the Kenai and Kasilof rivers in Alaska, and a population from the Minam River, Oregon. Two segments of mtDNA were amplified using the polymerase chain reaction (PCR) and digested with 14–16 restriction enzymes. Results showed that early runs were genetically similar to each other but different from the late runs. The late runs were different from each other based on the frequency of the common haplotypes. Frequency differences in shared haplotypes together with the presence of a unique haplotype separated the Minam River stock from those in Alaska. In the protein analysis, each population was examined at 30 allozyme loci. Based on 14 polymorphic loci, Minam River salmon were genetically distinct from the Alaskan populations. Within the Alaskan populations, early runs were most similar to each other but different from the late runs; the late runs were also genetically most similar to each other. Both mtDNA and allozyme analysis suggest that chinook salmon may segregate into genetically different early and late forms within a drainage.

  15. Genetic Structure of Chum Salmon (Oncorhynchus Keta) Populations in the Lower Columbia River: Are Chum Salmon in Cascade Tributaries Remnant Populations?

    SciTech Connect

    Small, Maureen P.; Pichahchy, A.E.; Von Bargen, J.F.; Young, S.F.

    2004-09-01

    Prior to the 1950's, the lower Columbia River drainage supported a run of over a million chum salmon composed of at least 16 populations. By the late 1950's, over-fishing and habitat destruction had decreased the run to as little as a few hundred fish. With the exception of Grays River in the coastal region of the Columbia River and an aggregation of chum salmon spawning in creeks and the mainstem near Bonneville Dam in the Columbia Gorge region, most populations were considered extinct. However, over the years, WDFW biologists detected chum salmon spawning in tributaries originating in the Cascade Range: the Cowlitz, Lewis, and Washougal rivers. Further, chum salmon in the Cowlitz River appeared to have summer and fall run-timings. To assess whether Cascade spawners were strays from Grays River and Gorge regions or remnants of former populations, chum salmon from the Coastal, Cascade and Gorge regions were characterized genetically at 17 microsatellite loci. With the exception of Washougal River chum salmon, which grouped strongly with the Gorge genetic group, significant heterogeneity in genotype distributions were detected between regions and genotype distributions overlapped among collections within regions. In a neighbor-joining consensus tree, regional groups occupied branches with over 77% bootstrap support. In assignment tests, over 63% of individuals were correctly assigned back to region of origin although an average of 29% assigned to river of origin. Genetic distinction of Cascade region chum salmon was similar to distinction of Coastal and Gorge chum salmon and the Cascade region chum salmon had twice the number of private regional alleles. Further, the Cowlitz River supports the only summer chum salmon run in the Columbia River drainage. We propose that chum salmon in the Cascade region are remnants of original populations. We attribute the strong divergence between regional groups to diverse ecological conditions in each region, which promoted

  16. Variability in scale growth rates of chum salmon ( Oncorhynchus keta) in relation to climate changes in the late 1980s

    NASA Astrophysics Data System (ADS)

    Seo, Hyunju; Kim, Suam; Seong, Kibeik; Kang, Sukyung

    2006-02-01

    Fish scales were used to investigate the interannual variability in chum salmon growth rates at specific ages in relation to climatic/environmental changes during the 1980s-1990s. Scales were obtained from adult salmon returning to the east coast of Korea between 1984 and 1998. Assuming proportionality between scale size increments and fish length, distances between scale annuli were regarded as the growth conditions in different habitat areas with respect to the life stages of chum salmon. In estuarine and coastal areas, growth rates of fingerling salmon were higher in the 1990s than in the 1980s. Zooplankton abundance off the east coast of Korea increased after the late 1980s, which may have provided favorable growth conditions for young salmon in the 1990s. Growth of juvenile chum salmon during the first summer (Okhotsk Sea) was relatively stable, and neither SST nor zooplankton biomass fluctuated significantly during the study period. However, in the Bering Sea, salmon growth rates between age-2 and age-4 (i.e. ocean-phase immature salmon) were higher in the 1980s than in the 1990s. Variability in salmon growth in the Bering Sea was correlated to zooplankton biomass. These results suggest that the climate regime shift of 1988/1989 in the subarctic North Pacific affected salmon growth mediated by changes of zooplankton biomass, revealing a bottom-up process.

  17. Differential modulation of resistance biomarkers in skin of juvenile and mature pink salmon, Oncorhynchus gorbuscha by the salmon louse, Lepeophtheirus salmonis.

    PubMed

    Braden, Laura M; Barker, Duane E; Koop, Ben F; Jones, Simon R M

    2015-11-01

    Juvenile pink salmon larger than 0.7 g reject the sea louse, Lepeophtheirus salmonis, and are considered resistant to the infection. Robust innate defense responses in the skin contribute to the observed resistance. In contrast adult pink salmon captured at sea or shortly before spawning carry large numbers of the parasite, suggesting inability to control the infection. The purpose of this research is to better understand these apparently contradictory conclusions by comparing a suite of genetic and cellular markers of resistance to L. salmonis in the skin of juvenile and mature pink salmon. The expression of major histocompatibility factor II, C-reactive protein, interleukin-1β, interleukin-8 and cyclooxygenase-2 was down-regulated in mature but not juvenile pink salmon. Similarly, skin at the site of parasite attachment in juvenile salmon was highly populated with MHIIβ(+) and IL-1β(+) cells that were either absent, or at reduced levels at similar sites in mature salmon. In addition, mucocyte density was relatively low in the skin of mature salmon, irrespective of louse infection. In juveniles, the higher mucocyte density decreased following louse attachment. We show that in mature pink salmon, genetic and histological responses in skin are depressed and speculate that salmonid defense against L. salmonis is modulated by maturation.

  18. RNAseq analysis of fast skeletal muscle in restriction-fed transgenic coho salmon (Oncorhynchus kisutch): an experimental model uncoupling the growth hormone and nutritional signals regulating growth.

    PubMed

    Garcia de la Serrana, Daniel; Devlin, Robert H; Johnston, Ian A

    2015-07-31

    Coho salmon (Oncorhynchus kisutch) transgenic for growth hormone (Gh) express Gh in multiple tissues which results in increased appetite and continuous high growth with satiation feeding. Restricting Gh-transgenics to the same lower ration (TR) as wild-type fish (WT) results in similar growth, but with the recruitment of fewer, larger diameter, muscle skeletal fibres to reach a given body size. In order to better understand the genetic mechanisms behind these different patterns of muscle growth and to investigate how the decoupling of Gh and nutritional signals affects gene regulation we used RNA-seq to compare the fast skeletal muscle transcriptome in TR and WT coho salmon. Illumina sequencing of individually barcoded libraries from 6 WT and 6 TR coho salmon yielded 704,550,985 paired end reads which were used to construct 323,115 contigs containing 19,093 unique genes of which >10,000 contained >90 % of the coding sequence. Transcripts coding for 31 genes required for myoblast fusion were identified with 22 significantly downregulated in TR relative to WT fish, including 10 (vaspa, cdh15, graf1, crk, crkl, dock1, trio, plekho1a, cdc42a and dock5) associated with signaling through the cell surface protein cadherin. Nineteen out of 44 (43 %) translation initiation factors and 14 of 47 (30 %) protein chaperones were upregulated in TR relative to WT fish. TR coho salmon showed increased growth hormone transcripts and gene expression associated with protein synthesis and folding than WT fish even though net rates of protein accretion were similar. The uncoupling of Gh and amino acid signals likely results in additional costs of transcription associated with protein turnover in TR fish. The predicted reduction in the ionic costs of homeostasis in TR fish associated with increased fibre size were shown to involve multiple pathways regulating myotube fusion, particularly cadherin signaling.

  19. Assignment of Chinook Salmon (Oncorhynchus tshawytscha) Linkage Groups to Specific Chromosomes Reveals a Karyotype with Multiple Rearrangements of the Chromosome Arms of Rainbow Trout (Oncorhynchus mykiss)

    PubMed Central

    Phillips, Ruth B.; Park, Linda K.; Naish, Kerry A.

    2013-01-01

    The Chinook salmon genetic linkage groups have been assigned to specific chromosomes using fluorescence in situ hybridization with bacterial artificial chromosome probes containing genetic markers mapped to each linkage group in Chinook salmon and rainbow trout. Comparison of the Chinook salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout as expected. In almost every case, the markers were found at approximately the same location on the chromosome arm in each species, suggesting conservation of marker order on the chromosome arms of the two species in most cases. Although theoretically a few centric fissions could convert the karyotype of rainbow trout (2N = 58–64) into that of Chinook salmon (2N = 68) or vice versa, our data suggest that chromosome arms underwent multiple centric fissions and subsequent new centric fusions to form the current karyotypes. The morphology of only approximately one-third of the chromosome pairs have been conserved between the two species. PMID:24170739

  20. Assignment of Chinook salmon (Oncorhynchus tshawytscha) linkage groups to specific chromosomes reveals a karyotype with multiple rearrangements of the chromosome arms of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Phillips, Ruth B; Park, Linda K; Naish, Kerry A

    2013-12-09

    The Chinook salmon genetic linkage groups have been assigned to specific chromosomes using fluorescence in situ hybridization with bacterial artificial chromosome probes containing genetic markers mapped to each linkage group in Chinook salmon and rainbow trout. Comparison of the Chinook salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout as expected. In almost every case, the markers were found at approximately the same location on the chromosome arm in each species, suggesting conservation of marker order on the chromosome arms of the two species in most cases. Although theoretically a few centric fissions could convert the karyotype of rainbow trout (2N = 58-64) into that of Chinook salmon (2N = 68) or vice versa, our data suggest that chromosome arms underwent multiple centric fissions and subsequent new centric fusions to form the current karyotypes. The morphology of only approximately one-third of the chromosome pairs have been conserved between the two species.

  1. Alternative models of climatic effects on sockeye salmon (Oncorhynchus nerka) productivity in Bristol Bay, Alaska, and the Fraser River, British Columbia

    USGS Publications Warehouse

    Adkison, M.; Peterman, R.; Lapointe, M.; Gillis, D.; Korman, J.

    1996-01-01

    We compare alternative models of sockeye salmon (Oncorhynchus nerka) productivity (returns per spawner) using more than 30 years of catch and escapement data for Bristol Bay, Alaska, and the Fraser River, British Columbia. The models examined include several alternative forms of models that incorporate climatic influences as well as models not based on climate. For most stocks, a stationary stock-recruitment relationship explains very little of the interannual variation in productivity. In Bristol Bay, productivity co-varies among stocks and appears to be strongly related to fluctuations in climate. The best model for Bristol Bay sockeye involved a change in the 1970s in the parameters of the Ricker stock-recruitment curve; the stocks generally became more productive. In contrast, none of the models of Fraser River stocks that we examined explained much of the variability in their productivity.

  2. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river.

    PubMed

    Furey, N B; Hinch, S G; Lotto, A G; Beauchamp, D A

    2015-01-01

    Stomach contents were collected and analysed from 22 bull trout Salvelinus confluentus at the edge of the Chilko Lake and Chilko River in British Columbia, Canada, during spring outmigration of sockeye salmon Oncorhynchus nerka smolts. Twenty of the 22 (>90%) stomachs contained prey items, virtually all identifiable prey items were outmigrant O. nerka smolts and stomach contents represented a large portion (0·0-12·6%) of estimated S. confluentus mass. The results demonstrate nearly exclusive and intense feeding by S. confluentus on outmigrant smolts, and support recent telemetry observations of high disappearance rates of O. nerka smolts leaving large natural lake systems prior to entering high-order unregulated river systems.

  3. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river

    USGS Publications Warehouse

    Furey, Nathan B.; Hinch, Scott G.; Lotto, A.G.; Beauchamp, David A.

    2015-01-01

    Stomach contents were collected and analysed from 22 bull trout Salvelinus confluentus at the edge of the Chilko Lake and Chilko River in British Columbia, Canada, during spring outmigration of sockeye salmon Oncorhynchus nerka smolts. Twenty of the 22 (>90%) stomachs contained prey items, virtually all identifiable prey items were outmigrant O. nerka smolts and stomach contents represented a large portion (0·0–12·6%) of estimated S. confluentus mass. The results demonstrate nearly exclusive and intense feeding by S. confluentus on outmigrant smolts, and support recent telemetry observations of high disappearance rates of O. nerka smolts leaving large natural lake systems prior to entering high-order unregulated river systems.

  4. Changes in salmon (Oncorhynchus keta) flesh quality following ultra-high pressure treatment and 30 d of chilled storage.

    PubMed

    Park, Dae-Hun; Jung, Jong-Gi; Jung, Bo-Ram; Kim, Gyeyeop; Lee, Honggyun; Kim, Hyeon-A; Bang, Mi-Ae

    2015-01-01

    The approximately 1.5 million tons of salmon traded in 31 countries in 2008 provides clear evidence that salmon is a popular food source throughout the world. There are many methods for the preservation of salmon flesh, such as vacuum-packaging, smoking, and freezing. Ultra-high pressure (UHP) does not require heat, preserves the quality of salmon flesh, and allows for an increase in the chilled storage period. In this study, the quality of salmon flesh was assessed after exposure to UHP (200, 400, or 600 MPa compared with no UHP) and 30 d of storage at 4 °C. Salmon flesh quality analyses included the degree of changes in the interspacing of muscle bundles, color, texture profiles (hardness, chewiness, cohesiveness, and elasticity), and microbial growth. The use of UHP (>400 MPa) improved the color, hardness, and chewiness of the flesh. Study results suggested that the application of UHP (≥400 MPa) may be useful in preserving salmon flesh, and could be used by the salmon aquaculture and distribution industries.

  5. Central administration of growth hormone-releasing hormone triggers downstream movement and schooling behavior of chum salmon (Oncorhynchus keta) fry in an artificial stream.

    PubMed

    Ojima, Daisuke; Iwata, Munehico

    2009-03-01

    Anadromous salmonids migrate downstream to the ocean (downstream migration). The neuroendocrine mechanism of triggering the onset of downstream migration is not well known. We investigated the effects of 14 chemicals, including neuropeptides, pineal hormones, neurotransmitters, and neuromodulators (growth hormone-releasing hormone: GHRH, thyrotropin-releasing hormone, corticotropin-releasing hormone: CRH, gonadotropin-releasing hormone, melatonin, N-acetyl serotonin, serotonin, beta-endorphin, enkephalin, dopamine, norepinephrine, epinephrine, acetylcholine, and histamine) on the onset of downstream migration in chum salmon (Oncorhynchus keta) fry. We defined downstream migration as a downstream movement (negative rheotaxis) with schooling behavior and counted the number of downstream movements and school size in experimental circulation tanks. An intracerebroventricular injection of GHRH, CRH, melatonin, N-acetyl serotonin, or serotonin stimulated the number of downstream movements. However, GHRH was the only chemical that also stimulated an increase in schooling behavior. These results suggest that CRH, melatonin, N-acetyl serotonin, and serotonin are involved in the stimulation of downstream movement in chum salmon, while GHRH stimulates both downstream movement and schooling behavior.

  6. Isolation of infectious hematopoietic necrosis virus from a leech (Piscicola salmositica) and a copepod (Salmincola sp.), ectoparasites of sockeye salmon Oncorhynchus nerka

    USGS Publications Warehouse

    Mulcahy, D.; Klaybor, D.; Batts, W.N.

    1990-01-01

    ectious hematopoietic necrosis (IHN) virus was isolated from freshwater leeches Piscicola salmositica and copepods Salmincola sp. removed from the gills of spawning sockeye salmon Oncorhynchus nerka. This is the first report of the isolation of IHN virus from an animal other than salmonid fishes. High levels of IHN virus were also found in leeches taken from the bottom gravel of the spawning area. The prevalence of IHN virus in samples of individual leeches was as high as 100 "/o and the virus was isolated from 95 % of pooled samples of copepods. The highest level of virus was 8.7 X lo5 pfu (plaque forming units) g-' in the copepod and 1.5 X 10"fu g-' in the leech. The level of virus in leeches removed from fish gills was sometimes higher than the level of virus in the gill tissue itself. Virus persisted for at least 16 d in leeches held in the laboratory without feeding. Transmission of IHN virus by leeches probably increases the infection rate of spawning sockeye salmon.

  7. Physiological response of juvenile coho salmon (Oncorhynchus kisutch) and rainbow trout (Salmo gairdneri) to handling and crowding stress in intensive fish culture

    USGS Publications Warehouse

    Wedemeyer, Gary A.

    1976-01-01

    Moving 4–5-in. coho salmon (Oncorhynchus kisutch) held in soft (20 ppm CaCO3) water from the relatively light loading density of 0.5 lb/ft3 to 1, 2, or 4 lb/ft3 (density index, DI = 0.1, 0.2, 0.4, 0.8) caused significant stress as indicated by loss of feeding behavior, but only minimal physiological disturbances, as indicated by lack of hyperglycemia or hypochloremia. However, moving them to 6 or 12 lb/ft3 (DI = 1.2, 2.4) caused significant physiological stress which required at least a week for recovery. Smolting coho salmon were physiologically stressed by population densities of 1 lb/ft3 or more and a subclinical corynebacterial kidney infection was activated. Rainbow trout (Salmo gairdneri) (4–5 in.) were physiologically stressed when moved and held at 1 lb/ft3 or more but retained normal feeding behavior. This indicates that handling and crowding stress will be minimized in softwater areas if densities in fish distribution trucks or in ponds or raceways during disease treatments are held to 0.1–0.5 lb/gal.

  8. Membrane filtration – Fluorescent antibody staining procedure for detecting and quantifying Renibacterium salmoninarum in coelomic fluid of Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Elliott, D.G.; Barila, T.Y.

    1987-01-01

    We developed a rapid method for detecting and quantifying the pathogen Renibacterium salmoninarum in coelomic fluid of spring chinook salmon (Oncorhynchus tshawytscha) by concentrating the bacteria on 0.2-μm polycarbonate filters and staining them with specific fluorescein-labeled antibody. Centrifugation of samples and resuspension of the sedimented material in phosphate-buffered saline containing Triton X-100 increased the ease of filtration. Background fluorescence was reduced by counterstaining filters with Eriochrome black T. Postfiltration staining, rinsing, and counterstaining were done in the syringe-mounted filter holders, reducing handling of the filters and possible loss of bacteria. The number of bacteria detected by the filtration – fluorescent antibody technique in a broth culture of R. salmoninarum ranged from 6.7 × 107to7.6 × 107/mL and was slightly higher than that determined by plate count (9.6 × 106/mL). Increasing the sample dilution or decreasing the number of microscope fields examined generally increased the variability of filter counts of R. salmoninarum. Using the filtration – fluorescent antibody technique, we detected the bacterium in the coelomic fluid of 85% of spawning female spring chinook salmon sampled from a hatchery population.

  9. Long-term changes in the fine-scale population structure of coho salmon populations (Oncorhynchus kisutch) subject to extensive supportive breeding.

    PubMed

    Eldridge, W H; Myers, J M; Naish, K A

    2009-10-01

    The long-term viability of a metapopulation depends partly on the gene flow among sub-populations. Management approaches such as translocations and supportive breeding between closely related populations may affect gene flow and overall structure, and therefore viability. Here, we examined temporal changes in the fine-scale population structure of coho salmon (Oncorhynchus kisutch) by comparing archived (1938) and modern (2001-2005) populations in six rivers within a single conservation unit (Puget Sound, Washington) sampled before and after an extended period of between-river transfers and releases of millions of cultured salmon. Genotype frequencies at eight microsatellite loci showed that current populations descended from historical Puget Sound populations, but populations in different rivers that exchanged fish for hatchery propagation share more of their ancestry recently than they did historically. Historically, populations in different rivers were isolated by geographic distance, but that relationship is no longer significant. Allelic richness among all populations declined significantly, suggesting that genetic drift has increased because of a population bottleneck. Populations in different rivers and within the same river have become more diverged, providing further evidence for a widespread bottleneck. Previously, we observed that genetic distance significantly decreased with the number of fish exchanged; however, some populations apparently resisted introgression. Altered gene flow and lost diversity may affect the complexity, and therefore resiliency of sub-populations within a conservation unit. Plans for artificial culture need to maintain existing genetic diversity and avoid disrupting the fine-scale structure by using local populations for parents whenever possible.

  10. Suitability criteria analyzed at the spatial scale of redd clusters improved estimates of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat use in the Hanford Reach, Columbia River

    SciTech Connect

    Geist, David R. ); Jones, Julia; Murray, Christopher J. ); Dauble, Dennis D. )

    1999-12-01

    We improved our predictions of fall chinook salmon (Oncorhynchus tshawytscha) habitat use by analyzing spawning habitat at the spatial scale of redd clusters. Spatial point pattern analyses indicated that redd clusters in the Hanford Reach, Columbia River, were consistent in their location from 1994 to 1995. Redd densities were 16.1 and 8.9 redds?ha-1 in 1994 and 1995, respectively, and individual redds within clusters were usually less than 30 m apart. Pattern analysis also showed strong evidence that redds were uniformly distributed within the clusters where inter-redd distances ranged from 2 to 5 m. Redd clusters were found to occur predominantly where water velocity was between 1.4 to 2 m?s-1, water depth was 2 to 4 m, and lateral slope of the riverbed was less than 4%. This habitat use represented a narrower range of use than previously reported for adult fall chinook salmon. Logistic regression analysis determined that water velocity and lateral slope were the most significant predictors of redd cluster location over a range of river discharges. Over-estimates of available spawning habitat lead to non-achievable goals for protecting and restoring critical salmonid habitat. Better predictions of spawning habitat may be possible if cluster-specific characteristics are used.

  11. Details of Retropositional Genome Dynamics That Provide a Rationale for a Generic Division: The Distinct Branching of All the Pacific Salmon and Trout (Oncorhynchus) from the Atlantic Salmon and Trout (Salmo)

    PubMed Central

    Murata, S.; Takasaki, N.; Saitoh, M.; Tachida, H.; Okada, N.

    1996-01-01

    Salmonid species contain numerous short interspersed repetitive elements (SINEs), known collectively as the HpaI family, in their genomes. Amplification and successive integration of individual SINEs into the genomes have occurred during the evolution of salmonids. We reported previously a strategy for determining the phylogenetic relationships among the Pacific salmonids in which these SINEs were used as temporal landmarks of evolution. Here, we provide evidence for extensive genomic rearrangements that involved retropositions and deletions in a common ancestor of all the Pacific salmon and trout. Our results provide genetic support for the recent phylogenetic reassignment of steelhead and related species from the genus Salmo to the genus Oncorhynchus. Several other informative loci identified by insertions of HpaI SINEs have been isolated, and previously proposed branching orders of the Oncorhynchus species have been confirmed. The authenticity of our phylogenetic tree is supported both by the isolation of more than two informative loci per branching point and by the congruence of all our data, which suggest that the period between succesive speciations was sufficiently long for each SINE that had been amplified in the original species to become fixed in all individuals of that species. PMID:8849897

  12. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    SciTech Connect

    Patton, Gregory W.; Dauble, Dennis D.; Chamness, Michele A.; Abernethy, Cary S.; McKinstry, Craig A.

    2001-07-10

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs.

  13. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    SciTech Connect

    Patton, Gregory W; Dauble, Dennis D; Chamness, Mickie A; Abernethy, Cary S; McKinstry, Craig A

    2001-07-10

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs.

  14. Estimating juvenile Chinook salmon (Oncorhynchus tshawytscha) abundance from beach seine data collected in the Sacramento–San Joaquin Delta and San Francisco Bay, California

    USGS Publications Warehouse

    Perry, Russell W.; Kirsch, Joseph E.; Hendrix, A. Noble

    2016-06-17

    Resource managers rely on abundance or density metrics derived from beach seine surveys to make vital decisions that affect fish population dynamics and assemblage structure. However, abundance and density metrics may be biased by imperfect capture and lack of geographic closure during sampling. Currently, there is considerable uncertainty about the capture efficiency of juvenile Chinook salmon (Oncorhynchus tshawytscha) by beach seines. Heterogeneity in capture can occur through unrealistic assumptions of closure and from variation in the probability of capture caused by environmental conditions. We evaluated the assumptions of closure and the influence of environmental conditions on capture efficiency and abundance estimates of Chinook salmon from beach seining within the Sacramento–San Joaquin Delta and the San Francisco Bay. Beach seine capture efficiency was measured using a stratified random sampling design combined with open and closed replicate depletion sampling. A total of 56 samples were collected during the spring of 2014. To assess variability in capture probability and the absolute abundance of juvenile Chinook salmon, beach seine capture efficiency data were fitted to the paired depletion design using modified N-mixture models. These models allowed us to explicitly test the closure assumption and estimate environmental effects on the probability of capture. We determined that our updated method allowing for lack of closure between depletion samples drastically outperformed traditional data analysis that assumes closure among replicate samples. The best-fit model (lowest-valued Akaike Information Criterion model) included the probability of fish being available for capture (relaxed closure assumption), capture probability modeled as a function of water velocity and percent coverage of fine sediment, and abundance modeled as a function of sample area, temperature, and water velocity. Given that beach seining is a ubiquitous sampling technique for

  15. Sensitivity and specificity of histology for diagnoses of four common pathogens and detection of nontarget pathogens in adult Chinook salmon (Oncorhynchus tshawytscha) in fresh water.

    PubMed

    Kent, Michael L; Benda, Susan; St-Hilaire, Sophie; Schreck, Carl B

    2013-05-01

    Histology is often underutilized in aquatic animal disease screening and diagnostics. The agreement between histological classifications of infection and results using diagnostic testing from the American Fisheries Society's Blue Book was conducted with 4 common salmon pathogens: Aeromonas salmonicida, Renibacterium salmoninarum, Ceratomyxa shasta, and Nanophyetus salmincola. Adult Chinook salmon (Oncorhynchus tshawytscha) in Oregon were evaluated, and agreement between tests was calculated. Live and dead (both pre- and postspawning) salmon were collected from the Willamette River, Oregon, its tributaries, the Willamette Hatchery, and after holding in cool, pathogen-free water during maturation at Oregon State University. Sensitivity and specificity of histology compared to Blue Book methods for all fish, live fish only, and dead (pre- and postspawned combined) fish only were, respectively, as follows: A. salmonicida (n = 105): specificity 87.5%, 87.5%, 87.5% and sensitivity 38.6%, 14.8%, 60.0%; R. salmoninarum (n = 111): specificity 91.9%, 85.7%, 97.7% and sensitivity 16.0%, 7.1%, 27.2%; C. shasta (n = 136): specificity 56.0%, 63.3%, 28.6% and sensitivity 83.3%, 86.2%, 71.4%; N. salmincola (n = 228): specificity 68.2%, 66.7%, not possible to calculate for dead fish and sensitivity 83.5%, 80.5%, 87.3%. The specificity was good for bacterial pathogens. This was not the case for C. shasta, likely due to detection of presporogenic forms only by histology. Sensitivity of histology for bacterial pathogens was low with the exception of dead fish with A. salmonicida. Kappa analysis for agreement between Blue Book and histology methods was poor to moderate. However, histological observations revealed the presence of other pathogens that would not be detected by other methods.

  16. Transgene constructs in coho salmon (Oncorhynchus kisutch) are repeated in a head-to-tail fashion and can be integrated adjacent to horizontally-transmitted parasite DNA.

    PubMed

    Uh, Mitchell; Khattra, Jaswinder; Devlin, Robert H

    2006-12-01

    Currently, little information is available regarding the molecular organization of integrated transgenes in genetically-engineered fish. We performed a detailed structural analysis of an inserted transgene in one strain (M77) of transgenic coho salmon (Oncorhynchus kisutch) containing a salmon growth hormone gene construct (OnMTGH1). Microinjected DNA was found to have inserted into a single site in the coho salmon genome, and was organized with four complete internal copies and two partial terminal copies of the OnMTGH1 construct. All construct copies were organized in a direct-tandem (head-to-tail) repeat fashion in strain M77 and five additional strains (one also possessed a second recombinant junction fragment). For strain M77, the junctions between the transgene insert and the insertion point within the wild-type genome were cloned from strain-specific cosmid libraries and sequenced, revealing that the transgene insertion was accompanied by a deletion of 587 bp of wild-type DNA as well as a small insertion (19 bp) of unknown DNA upstream and a 14 bp direct- tandem duplication of sequence downstream. Upstream and downstream wild-type DNA sequence contained several repetitive sequence elements based on Southern blot analysis and homology to repetitive sequences in GenBank. In the downstream flank, a pseudogene sequence was also identified which has high homology to the CA membrane protein gene from Schistosoma japonicum, a parasite closely related to Sanguinicola sp. parasites which infect salmonids. Whether the presence of an inserted transgene and the presence of potentially horizontally-transmitted DNA are indicative of a genomic region with a predisposition for insertion of foreign DNA requires further study. The information derived from this transgene structure provides information useful for comparison to other transgenic organisms and for determination of the mechanism of transgene integration in lower vertebrates.

  17. Effects of plant protein blends on growth performance of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar)

    USDA-ARS?s Scientific Manuscript database

    Plant protein levels in aquafeeds are increasing in response to the high cost and limited availability of fishmeal for production of animal feeds. The purpose of this study was to evaluate the effects of plant protein blends on growth and feed utilization of rainbow trout (Oncorhynchus mykiss) and t...

  18. Comparative mapping between Coho Salmon (Oncorhynchus kisutch) and three other salmonids suggests a role for chromosomal rearrangements in the retention of duplicated regions following a whole genome duplication event.

    PubMed

    Kodama, Miyako; Brieuc, Marine S O; Devlin, Robert H; Hard, Jeffrey J; Naish, Kerry A

    2014-07-21

    Whole genome duplication has been implicated in evolutionary innovation and rapid diversification. In salmonid fishes, however, whole genome duplication significantly pre-dates major transitions across the family, and re-diploidization has been a gradual process between genomes that have remained essentially collinear. Nevertheless, pairs of duplicated chromosome arms have diverged at different rates from each other, suggesting that the retention of duplicated regions through occasional pairing between homeologous chromosomes may have played an evolutionary role across species pairs. Extensive chromosomal arm rearrangements have been a key mechanism involved in re-dipliodization of the salmonid genome; therefore, we investigated their influence on degree of differentiation between homeologs across salmon species. We derived a linkage map for coho salmon and performed comparative mapping across syntenic arms within the genus Oncorhynchus, and with the genus Salmo, to determine the phylogenetic relationship between chromosome arrangements and the retention of undifferentiated duplicated regions. A 6596.7 cM female coho salmon map, comprising 30 linkage groups with 7415 and 1266 nonduplicated and duplicated loci, respectively, revealed uneven distribution of duplicated loci along and between chromosome arms. These duplicated regions were conserved across syntenic arms across Oncorhynchus species and were identified in metacentric chromosomes likely formed ancestrally to the divergence of Oncorhynchus from Salmo. These findings support previous studies in which observed pairings involved at least one metacentric chromosome. Re-diploidization in salmon may have been prevented or retarded by the formation of metacentric chromosomes after the whole genome duplication event and may explain lineage-specific innovations in salmon species if functional genes are found in these regions. Copyright © 2014 Kodama et al.

  19. Emigration of Natural and Hatchery Naco x (Chinook salmon; Oncorhynchus tshawytscha) and Heeyey (Steelhead; Oncorhynchus mykiss) Smolts from the Imnaha River, Oregon from 5 October 2006 to 21 June 2007, Annual Report 2007.

    SciTech Connect

    Michaels, Brian; Espinosa, Neal

    2009-02-18

    This report summarizes the Nez Perce Tribe (NPT) Department of Fisheries Resources Management (DFRM) results for the Lower Snake River Compensation Plan (LSRCP) Hatchery Evaluation studies and the Imnaha River Smolt Monitoring Program (SMP) for the 2007 smolt migration from the Imnaha River, Oregon. These studies are closely coordinated and provide information about juvenile natural and hatchery spring/summer Naco x (Chinook Salmon; Oncorhynchus tshawytscha) and Heeyey (steelhead; O. mykiss) biological characteristics, emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam (MCD) on the Columbia River. These studies provide information on listed Naco x (Chinook salmon) and Heeyey (steelhead) for the Federal Columbia River Power System (FCRPS) Biological Opinion (NMFS 2000). The Lower Snake River Compensation Plan program's goal is to maintain a hatchery production program of 490,000 Naco x (Chinook salmon) and 330,000 Heeyey (steelhead) for annual release in the Imnaha River (Carmichael et al. 1998, Whitesel et al. 1998). These hatchery releases occur to compensate for fish losses due to the construction and operation of the four lower Snake River hydroelectric facilities. One of the aspects of the LSRCP hatchery evaluation studies in the Imnaha River is to determine natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolt performance, emigration characteristics and survival (Kucera and Blenden 1998). A long term monitoring effort was established to document smolt emigrant timing and post release survival within the Imnaha River, estimate smolt survival downstream to McNary Dam, compare natural and hatchery smolt performance, and collect smolt-to-adult return information. This project collects information for, and is part of, a larger effort entitled Smolt Monitoring by Federal and Non-Federal Agencies (BPA Project No. 198712700). This larger project provides data on movement of smolts out of major drainages

  20. Spawning and abundance of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, 1948--1988

    SciTech Connect

    Dauble, D.D.; Watson, D.G.

    1990-03-01

    The Hanford Reach of the Columbia River provides the only major spawning habitat for the upriver bright (URB) race of fall chinook salmon in the mainstem Columbia River. Hanford Site biologists have conducted aerial surveys of spawning salmon in the Hanford Reach since 1948. This report summarizes data on fall chinook salmon spawning in the Hanford Reach and presents a discussion of factors that may affect population trends. Most data are limited to fisheries agency reports and other working documents. Fisheries management practices in the Columbia River system have changed rapidly over the last decade, particularly under requirements of the Pacific Northwest Power Planning and Conservation Act of 1980. New information has been generated and included in this report. 75 refs., 17 figs., 11 tabs.

  1. The effect of climate change on the growth of Japanese chum salmon ( Oncorhynchus keta) using a bioenergetics model coupled with a three-dimensional lower trophic ecosystem model (NEMURO)

    NASA Astrophysics Data System (ADS)

    Kishi, Michio J.; Kaeriyama, Masahide; Ueno, Hiromichi; Kamezawa, Yasuko

    2010-07-01

    From the 1970s to 1990s, a reduction in the body size of Japanese chum salmon (Oncorhynchus keta) was observed. To investigate this body size reduction in the North Pacific, we developed a bioenergetics model for chum salmon coupled with the results from a lower trophic ecosystem model embedded into a three-dimensional global model. In the bioenergetics model, respiration and consumption terms are assumed to be functions of water temperature and prey zooplankton density, which are the determining factors of the reduction of body size. The model reproduced the body size of the 1972 and 1991 year classes of chum salmon. The reproduced body size of the 1972 year class was larger than that of 1991 year class, and this result agrees with observations from the Bering Sea. Our model also reproduced the body size trend from l970 to 2000. The prey density, especially in the eastern North Pacific, had a greater influence on the change of body size than did the SST. This suggests that the size reduction of Japanese chum salmon in the 1990s was partly affected by changes in prey zooplankton density. In the context of the global warming scenario, we discuss changes in the migration route of chum salmon and predict that the population of Japanese chum salmon experience significant declines over this century.

  2. Oral administration of skin gelatin isolated from Chum salmon (Oncorhynchus keta) enhances wound healing in diabetic rats.

    PubMed

    Zhang, Zhaofeng; Zhao, Ming; Wang, Junbo; Ding, Ye; Dai, Xiaoqian; Li, Yong

    2011-01-01

    Care for diabetic wounds remains a significant clinical problem. The present study was aimed at investigating the effect of skin gelatin from Chum Salmon on defective wound repair in the skin of diabetic rats. Full-thickness excisional skin wounds were made in 48 rats, of which 32 were diabetes. The diabetic rats were orally treated daily for 14 days with skin gelatin from Chum Salmon (2 g/kg) or its vehicle. Sixteen non-diabetic control rats received the same amount of water as vehicle-treated non-diabetic rats. Rats were killed to assess the rate of wound closure, microvessel density (MVD), vascular endothelial growth factor (VEGF), hydroxyproline (HP) contents in wound tissues and nitrate in plasma and wound tissue at 7 and 14 days after wounding. Skin gelatin-treated diabetic rats showed a better wound closure, increased MVD, VEGF, hydroxyproline and NO contents and a reduced extent of inflammatory response. All parameters were significant (P < 0.05) in comparison to vehicle-treated diabetic group. In light of our finding that skin gelatin of Chum Salmon promotes skin wound repair in diabetic rats, we propose that oral administration of Chum Salmon skin gelatin might be a beneficial method for treating wound disorders associated with diabetes.

  3. Oral Administration of Skin Gelatin Isolated from Chum Salmon (Oncorhynchus keta) Enhances Wound Healing in Diabetic Rats

    PubMed Central

    Zhang, Zhaofeng; Zhao, Ming; Wang, Junbo; Ding, Ye; Dai, Xiaoqian; Li, Yong

    2011-01-01

    Care for diabetic wounds remains a significant clinical problem. The present study was aimed at investigating the effect of skin gelatin from Chum Salmon on defective wound repair in the skin of diabetic rats. Full-thickness excisional skin wounds were made in 48 rats, of which 32 were diabetes. The diabetic rats were orally treated daily for 14 days with skin gelatin from Chum Salmon (2 g/kg) or its vehicle. Sixteen non-diabetic control rats received the same amount of water as vehicle-treated non-diabetic rats. Rats were killed to assess the rate of wound closure, microvessel density (MVD), vascular endothelial growth factor (VEGF), hydroxyproline (HP) contents in wound tissues and nitrate in plasma and wound tissue at 7 and 14 days after wounding. Skin gelatin-treated diabetic rats showed a better wound closure, increased MVD, VEGF, hyproxyproline and NO contents and a reduced extent of inflammatory response. All parameters were significant (P < 0.05) in comparison to vehicle-treated diabetic group. In light of our finding that skin gelatin of Chum Salmon promotes skin wound repair in diabetic rats, we propose that oral administration of Chum Salmon skin gelatin might be a beneficial method for treating wound disorders associated with diabetes. PMID:21673883

  4. Impact of forest management on coho salmon (Oncorhynchus kisutch) populations of the Clearwater River, Washington: A project summary

    Treesearch

    C. J. Cederholm; L. M. Reid

    1987-01-01

    Abstract - In 1972, declining coho salmon production and visible forestry impacts on coho habitats prompted the initiation of an ongoing fisheries research project in the Clearwater River basin of the Olympic Peninsula. Heavy fishery catches have resulted in a general under-seeding of the basin, as demonstrated by stocking experiments and inventories of potential...

  5. Putative Diphyllobothrium nihonkaiense acquired from a Pacific salmon (Oncorhynchus keta) eaten in France; genomic identification and case report.

    PubMed

    Yera, Hélène; Estran, Christelle; Delaunay, Pascal; Gari-Toussaint, Martine; Dupouy-Camet, Jean; Marty, Pierre

    2006-03-01

    We report here a likely case of Diphyllobothrium nihonkaiense contracted in France through the consumption of a Pacific salmon imported from Canada. The species diagnosis was made by molecular analysis of two mitochondrial genes (COI & ND3). This case is rather unusual in that D. nihonkaiense has never been reported along the Pacific coast of North America.

  6. Plasma insulin-like growth factor-I concentrations in yearling chinook salmon (Oncorhynchus tshawytscha) migrating from the Snake River Basin, USA

    USGS Publications Warehouse

    Congleton, J.L.; Biga, P.R.; Peterson, B.C.

    2003-01-01

    During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week spring migration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility, yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses of migrating fish either did not increase during the migration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations in migrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability of migrating smolts to maintain relatively elevated IGF-I levels despite restricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance. ?? 2004 Kluwer Academic Publishers.

  7. Uptake and clearance of exogenous estradiol-17β and testosterone during the early development of coho salmon (Oncorhynchus kisutch), including eggs, alevins and fry.

    PubMed

    Piferrer, F; Donaldson, E M

    1994-07-01

    The uptake and clearance of estradiol-17β (E2) and testosterone (T) were examined during the initial stages of development of coho salmon (Oncorhynchus kisutch), including eyed-eggs, newly hatched alevins and first feeding fry. Radiolabeled steroids were administered through the water in tracer amounts with or without their nonradioactive form at 400 μg l(-1). Regardless of developmental stage, saturation levels were invariably attained earlier for T than for E2, thus resulting in a higher incorporation of E2. However, both steroids had similar clearance patterns. Uptake and clearance was clearly stage-dependent, being fastest in fry, intermediate in alevins and slowest in eggs. Furthermore, combined uptake and clearance patterns showed that exposure to steroid was also higher for E2 than for T and stage-dependent, but always markedly highest in alevins. Subsequently, based on the observed elimination of the estrogen, a double immersion in E2 at 400 μg 1(-1), administered 2 days apart to maximize exposure during the alevin stage, was assayed for its effect on sex reversal and found to induce the production of 100% females. We suggest that the yolk, which is present in substantial amounts during the initial stages of development in salmonids, can retain the exogenously administered liposoluble steroids, thus providing developing embryos with an extended supply of, and exposure to, these steroids well after the treatment is finished. Together, these findings help to explain the previously observed high effectiveness of sex steroids administered during early development in regulating gonadal differentiation in salmonids, the higher effectiveness of E2 compared to T, and clarify the localization of the most sensitive period to the action of exogenous steroids at the alevin stage in the coho salmon.

  8. Sexual selection for genetic compatibility: the role of the major histocompatibility complex on cryptic female choice in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Gessner, C; Nakagawa, S; Zavodna, M; Gemmell, N J

    2017-05-01

    Cryptic female choice (CFC), a form of sexual selection during or post mating, describes processes of differential sperm utilization by females to bias fertilization outcomes towards certain males. In Chinook salmon (Oncorhynchus tshawytscha) the ovarian fluid surrounding the ova of a given female differently enhances the sperm velocity of males. Sperm velocity is a key ejaculate trait that determines fertilization success in externally fertilizing fishes, thus the differential effect on sperm velocity might bias male fertilization outcomes and represent a mechanism of CFC. Once sperm reach the oocyte, CFC could potentially be further facilitated by sperm-egg interactions, which are well understood in externally fertilizing marine invertebrates. Here, we explored the potential genetic basis of both possible mechanisms of CFC by examining whether the genotypic combinations of mates (amino-acid divergence, number of shared alleles) at the major histocompatibility complex (MHC) class I and II explain the variation in sperm velocity and/or male fertilization success that is not explained by sperm velocity, which might indicate MHC-based sperm-egg interactions. We recorded sperm velocity in ovarian fluid, employed paired-male fertilization trials and evaluated the fertilization success of each male using microsatellite-based paternity assignment. We showed that relative sperm velocity was positively correlated with fertilization success, confirming that the differential effect on sperm velocity may be a mechanism of CFC in Chinook salmon. The variation in sperm velocity was independent of MHC class I and II. However, the MHC class II divergence of mates explained fertilization success, indicating that this locus might influence sperm-egg interactions.

  9. Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams. Final Report 1992.

    SciTech Connect

    Underwood, Keith D.

    1995-01-01

    The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed.

  10. Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams : 1991 Annual Report.

    SciTech Connect

    Martin, Steven W.

    1992-07-01

    Bull trout (Salvelinus confluentus) are native to many tributaries of the Snake River in southeast Washington. The Washington Department of Wildlife (WDW) and the American Fisheries Society (AFS) have identified bull trout as a species of special concern which means that they may become threatened or endangered by relatively, minor disturbances to their habitat. Steelhead trout/rainbow trout (Oncorhynchus mykiss) and spring chinook salmon (O.tshawytscha) are also native to several tributaries of the Snake river in southeast Washington. These species of migratory fishes are depressed, partially due to the construction of several dams on the lower Snake river. In response to decreased run size, large hatchery program were initiated to produce juvenile steelhead and salmon to supplement repressed tributary stocks, a practice known as supplementation. There is a concern that supplementing streams with artificially high numbers of steelhead and salmon may have an impact on resident bull trout in these streams. Historically, these three species of fish existed together in large numbers, however, the amount of high-quality habitat necessary for reproduction and rearing has been severely reduced in recent years, as compared to historic amounts. The findings of the first year of a two year study aimed at identifying species interactions in southeast Washington streams are presented in this report. Data was collected to assess population dynamics; habitat utilization and preference, feeding habits, fish movement and migration, age, condition, growth, and the spawning requirements of bull trout in each of four streams. A comparison of the indices was then made between the study streams to determine if bull trout differ in the presence of the putative competitor species. Bull trout populations were highest in the Tucannon River (supplemented stream), followed by Mill Creek (unsupplemented stream). Young of the year bull trout utilized riffle and cascade habitat the most in all

  11. Evaluation of rapid and sensitive reverse transcription loop-mediated isothermal amplification method for detecting infectious pancreatic necrosis virus in chum salmon (Oncorhynchus keta).

    PubMed

    Suebsing, Rungkarn; Oh, Myung-Joo; Kim, Jeong-Ho

    2011-07-01

    Reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed for detecting Infectious pancreatic necrosis virus (IPNV) in chum salmon (Oncorhynchus keta) in Korea. The RT-LAMP is a novel approach of nucleic acid gene amplification with high specificity, sensitivity, and rapidity under isothermal conditions. Based on the VP2/NS gene sequence of VR-299 and Jasper strains, a set of 6 IPNV-specific primers was designed to recognize 8 diverse sequences of the IPNV RNA. The assay was successfully optimized to detect IPNV at 65°C in 30 min. The detection limit was 0.075 tissue culture infectious dose infecting 50% of inoculated cultures per milliliter (TCID(50)/ml) from IPNV-infected rainbow trout gonad (RTG)-2 cells, whereas nested reverse transcription polymerase chain reaction (nRT-PCR) had a sensitivity of 7.5 TCID(50)/ml. Using RT-LAMP assay, field samples were analyzed and the results compared with those of nRT-PCR assay. Two hundred and sixty-six out of 659 (40.4%) samples were IPNV-positive by RT-LAMP, whereas 182 of 659 samples (27.6%) were IPNV-positive by nRT-PCR. The results indicate that RT-LAMP can be a useful tool for early field diagnosis of IPNV.

  12. Marine collagen peptides prepared from chum salmon (Oncorhynchus keta) skin extend the life span and inhibit spontaneous tumor incidence in Sprague-Dawley Rats.

    PubMed

    Liang, Jiang; Pei, Xin-Rong; Wang, Nan; Zhang, Zhao-Feng; Wang, Jun-Bo; Li, Yong

    2010-08-01

    To observe the effects of marine collagen peptides (MCPs) prepared from chum salmon (Oncorhynchus keta) skin on life span and spontaneous tumor incidence, Sprague-Dawley rats were fed diets supplemented with MCP at concentrations of 0%, 2.25%, 4.5%, and 9% (wt/wt) from the age of 4 weeks until natural death. There were 40 rats in each group (male:female ratio = 1:1). The results showed that the MCP did not significantly influence body weight or food consumption of rats of either sex throughout the life span; it did dose-dependently inhibit the age-related decrease in the activities of antioxidant enzymes and the age-related increase in the levels of lipid peroxidation product in both sexes. MCP notably increased the mean life span, the life span of the last 30% of the survivors, and the maximal life span; it decreased overall spontaneous tumor incidence of both sexes with significance in the 4.5% and 9% MCP-treated male groups and 9% MCP-treated female group. Compared to the control group, the incidence of death from tumors was decreased in MCP groups in comparison with the control group of both sexes. Therefore, we concluded that MCPs dose-dependently increase life span and decrease spontaneous tumor incidence in Sprague-Dawley rats. Moreover, the antioxidative property of MCPs may be responsible for the increased life span and protection against tumor development.

  13. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha that express different migratory phenotypes in the Willamette River, Oregon, U.S.A.

    PubMed

    Billman, E J; Whitman, L D; Schroeder, R K; Sharpe, C S; Noakes, D L G; Schreck, C B

    2014-10-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  14. Monitoring of the in-river migration of smolts from two groups of spring chinook salmon, Oncorhynchus tshawytscha (Walbaum), with different profiles of Renibacterium salmoninarum infection

    USGS Publications Warehouse

    Pascho, R.J.; Elliott, D.G.; Achord, S.

    1993-01-01

    Broodstock segregation based on the measurement of maternal Renibacterium salmoninarum infection levels by the enzyme-linked immunosorbent assay (ELISA) and the membrane filtration-fluorescent antibody technique (MF-FAT) was previously shown to affect the prevalence and levels of bacterial kidney disease (BKD) in progeny of chinook salmon, Oncorhynchus tshawytscha (Walbaum), during hatchery rearing. Subgroups of fish from that study were marked with passive integrated transponder (PIT) tags, and monitored by PIT-tag detectors during the first 342km of their migration to the Pacific Ocean. Differences in the recovery of tagged fish were significant (P≤ 0·01) at each detection point and became more pronounced as the fish moved downstream. Cumulative recoveries of fish from the low-BKD group and the high-BKD group, respectively, were 31% and 28% after 116km, 44% and 37% after 176km, and 51% and 42% after 342km. There were no apparent differences in the migration timing of the two groups to the first detection point. The data suggested that in-river survival was higher in the progeny group from parents that had low R. salmoninarum infection levels or tested negative for R. salmoninarum (low-BKD group) than in the group female parents with high infection levels (high-BKD group).

  15. Prevalence and levels of Renibacterium salmoninarum in spring-summer Chinook salmon (Oncorhynchus tshawytscha) smolts at dams on the Columbia and Snake Rivers.

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.; Jackson, L.M.; Mathews, G.M.; Harmon, J.R.

    1997-01-01

    We evaluated Renibaeterium salmoninarum infection in smolts of hatchery and wild spring-summer Chinook salmon Oncorhynchus tshawytscha sampled during most of the outmigration at Little Goose (1988) and Lower Granite dams (1988–1991) on the Snake River and at Priest Rapids and McNary dams on the Columbia River (1988–1990). We sampled 860–2,178 fish per dam each year. Homogenates of kidney–spleen tissue from all fish were tested for the presence of R. salmoninarum antigens by the enzyme-linked immunosorbent assay (ELISA), and homogenates from 10% of the fish were examined by the fluorescent antibody technique (FAT). Although only 1–11% of fish sampled at a given dam during any l year exhibited lesions characteristic of bacterial kidney disease, 86–100% of the fish tested positive for R. salmoninarum antigen by ELISA, whereas 4–17% of the fish tested positive by the FAT. During most years, a majority (68–87%) of fish testing positive by the ELISA had low R. salmoninarum antigen levels, but in 1989, 53% of positive fish from Lower Granite Dam and 52% from McNary Dam showed medium-to-high antigen levels. For most years, the highest mean antigen levels were measured in fish sampled after 75% of the total out-migrants had passed a given dam. When the largest numbers of fish were being collected for bypass or downriver transportation, mean antigen levels were relatively low.

  16. Assessing possible thermal rearing restrictions for juvenile coho salmon (Oncorhynchus kisutch) through thermal infrared imaging and in-stream monitoring, Redwood Creek, California

    USGS Publications Warehouse

    Madej, M.A.; Currens, C.; Ozaki, V.; Yee, J.; Anderson, D.G.

    2006-01-01

    We quantified patterns in stream temperature in a northern coastal California river using thermal infrared (TIR) imaging and in-stream monitoring and related temperature patterns to the historical and present distributions of juvenile coho salmon (Oncorhynchus kisutch). In Redwood Creek, California, water temperature increased from the headwaters to about 60 km downstream, then gradually decreased over the next 40 km as the river approaches the Pacific Ocean. Despite the lack of fish migration barriers, juvenile coho are currently only observed in the downstream-most 20 km, whereas historically they were found in 90 km of river channel. Maximum daily temperatures and duration of elevated stream temperatures were not significantly different in the headwater and downstream reaches but were significantly higher in the 50 km long intervening reach, where maximum weekly maximum temperatures ranged from 23 to 27??C. An increase in stream temperatures in the middle basin during the last three decades as a result of channel aggradation, widening, and the removal of large riparian conifers may play an important role in restricting juvenile coho to one-fifth of their historical range. ?? 2006 NRC.

  17. Rearing in natural and recovering tidal wetlands enhances growth and life-history diversity of Columbia Estuary tributary coho salmon Oncorhynchus kisutch population.

    PubMed

    Craig, B E; Simenstad, C A; Bottom, D L

    2014-07-01

    This study provides evidence of the importance of tributary tidal wetlands to local coho salmon Oncorhynchus kisutch populations and life-history diversity. Subyearling and, to a lesser extent, yearling O. kisutch life histories utilized various estuary habitats within the Grays River, a tidal freshwater tributary of the Columbia River estuary, including restoring emergent wetlands and natural forested wetlands. Migration timing data, size distributions, estuary residence and scale patterns suggest a predominance of subyearling migrant life histories, including several that involve extended periods of estuary rearing. Estuarine-rearing subyearling O. kisutch exhibited the greatest overall growth rates; the highest growth rates were seen in fish that utilized restoring emergent wetlands. These results contrast with studies conducted in the main-stem Columbia River estuary, which captured few O. kisutch, of which nearly all were hatchery-origin yearling smolts. Restoration and preservation of peripheral and tributary wetland habitats, such as those in the Grays River, could play an important role in the recovery of natural O. kisutch populations in the Columbia River and elsewhere.

  18. Infection of gill and kidney of Fraser River sockeye salmon, Oncorhynchus nerka (Walbaum), by Parvicapsula minibicornis and its effect on host physiology.

    PubMed

    Bradford, M J; Lovy, J; Patterson, D A

    2010-09-01

    Adult sockeye salmon, Oncorhynchus nerka (Walbaum), migrating upstream in the Fraser River, British Columbia, are exposed to the myxozoan parasite Parvicapsula minibicornis when they enter the river from the ocean. Infections are initially localized in the kidney but have recently been associated with branchitis in one population. Adult fish from five locations in the watershed were sampled to determine whether branchitis was widespread. P. minibicornis infections in kidney glomeruli were prevalent in all samples except for a sample of fish that had just entered the Fraser River from the ocean. For fish captured in spawning streams, parasites were observed in the renal tubules and gill, and branchitis was observed in 70% of fish. Plasma osmolality was negatively correlated with the number of parasites in the kidney tubules, which we hypothesize to be caused by the breach of glomerular membranes as the parasite leaves the fish. Plasma lactate values increased with increasing levels of pathology in gills. These findings support the hypothesis that P. minibicornis impacts the physiology of migrating fish, which may in turn affect the likelihood that adults will be able to migrate and spawn successfully.

  19. Reproductive energy expenditure and changes in body morphology for a population of Chinook salmon Oncorhynchus tshawytscha with a long distance migration.

    PubMed

    Bowerman, T E; Pinson-Dumm, A; Peery, C A; Caudill, C C

    2017-02-16

    Energetic demands of a long freshwater migration, extended holding period, gamete development and spawning were evaluated for a population of stream-type Chinook salmon Oncorhynchus tshawytscha. Female and male somatic mass decreased by 24 and 21%, respectively, during migration and by an additional 18 and 12% during holding. Between freshwater entry and death after spawning, females allocated 14% of initial somatic energy towards gonad development and 78% for metabolism (46, 25 and 7% during migration, holding and spawning, respectively). Males used only 2% of initial somatic energy for gonad development and 80% on metabolic costs, as well as an increase in snout length (41, 28 and 11% during migration, holding and spawning, respectively). Individually marked O. tshawytscha took between 27 and 53 days to migrate 920 km. Those with slower travel times through the dammed section of the migration corridor arrived at spawning grounds with less muscle energy than faster migrants. Although energy depletion did not appear to be the proximate cause of death in most pre-spawn mortalities, average final post-spawning somatic energy densities were low at 3·6 kJ g(-1) in females and 4·1 kJ g(-1) in males, consistent with the concept of a minimum energy threshold required to sustain life in semelparous salmonids.

  20. Physiological, energetic and behavioural correlates of successful fishway passage of adult sockeye salmon Oncorhynchus nerka in the Seton River, British Columbia.

    PubMed

    Pon, L B; Hinch, S G; Cooke, S J; Patterson, D A; Farrell, A P

    2009-04-01

    Electromyogram (EMG) radio telemetry was used in conjunction with physiological biopsy to relate prior physiological condition and subsequent swimming energetics and behaviours to passage success of 13 wild adult sockeye salmon Oncorhynchus nerka at a vertical-slot fishway on the Seton River, British Columbia. At the time of capture, plasma lactate, glucose and cortisol levels indicated that fish were not exhibiting unusually high levels of physiological stress. Very few differences existed between successful and unsuccessful fish in body size, initial plasma physiology and energy state and mean swim speed and energy use during passage. Generally, fish did not employ burst swimming during successful or failed attempts at passage, indicating that failure was probably not related to metabolic acidosis. Plasma Na(+) concentration was significantly lower in unsuccessful fish (P < 0.05), which is suggestive of a depressed ionic state or a possible stress component, although values in all fish were within an expected range for migrant adult O. nerka. Nevertheless, six of 13 fish failed to reascend the fishway and remained in the tailrace of the dam for more than a day on average before moving downstream and away from the dam. During this time, fish were observed actively seeking a means of passage, suggesting that there may have been other, undetermined causes of passage failure.

  1. Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1H NMR metabolomics.

    PubMed

    Viant, Mark R; Pincetich, Christopher A; Tjeerdema, Ronald S

    2006-05-25

    Pesticide pulses in the Sacramento River, California, originate from storm-water discharges and non-point source aquatic pollution that can last from a few days to weeks. The Sacramento River and its tributaries have historically supported the majority of California's Chinook salmon (Oncorhynchus tshawytscha) spawning grounds. Three pesticides currently used in the Sacramento Valley-- dinoseb, diazinon, and esfenvalerate-- were chosen to model the exposure of salmon embryos to storm-water discharges. Static-renewal (96 h) exposures to eyed eggs and alevins resulted in both toxicity and significant changes in metabolism assessed in whole-embryo extracts by (1)H nuclear magnetic resonance (NMR) spectroscopy based metabolomics and HPLC with UV detection (HPLC-UV). The 96-h LC(50) values of eyed eggs and alevins exposed to dinoseb were 335 and 70.6 ppb, respectively, and the corresponding values for diazinon were 545 and 29.5 ppm for eyed eggs and alevins, respectively. The 96-h LC(50) of eyed eggs exposed to esfenvalerate could not be determined due to lack of mortality at the highest exposure concentration, but in alevins was 16.7 ppb. All esfenvalerate exposed alevins developed some degree of lordosis or myoskeletal abnormality and did not respond to stimulus or exhibit normal swimming behavior. ATP concentrations measured by HPLC-UV decreased significantly in eyed eggs due to 250 ppb dinoseb and 10 and 100 ppb esfenvalerate (p < 0.05). Phosphocreatine, as measured by HPLC-UV, decreased significantly in eyed eggs due to 250 ppb dinoseb, 10 and 100 ppb esfenvalerate, and 100 ppm diazinon (p < 0.05). Principal components analyses of (1)H NMR metabolite fingerprints of eyed egg and alevin extracts revealed both dose-dependent and mechanism of action-specific metabolic effects induced by the pesticides. Furthermore, NMR based metabolomics proved to be more sensitive than HPLC-UV in identifying significant changes in sublethal metabolism of pesticide exposed alevins. In

  2. [Extension of a set of microsatellite markers for more precise identification of chum salmon (Oncorhynchus keta Walbaum)].

    PubMed

    Afanas'ev, P K; Rubtsova, G A; Shitova, M V; Shaĭkhaev, E G; Zhivotovskiĭ, L A

    2011-11-01

    A set often microsatellite loci enabling fairly accurate identification of the chum salmon individuals from geographically distant groups was designed at the Laboratory of Genetic Identification, Vavilov Institute of General Genetics, Russian Academy of Sciences. However, identification of the individuals from closely located basins performed using these loci was not sufficiently precise. The present study was focused on the improvement of the resolution of the method through increasing the number microsatellite loci used. In this study, typing of additional microsatellite loci of chum salmon and evaluation of the change of the degree of identification with the increase of the number ofmicrosatellite loci used is described. It was shown that the identification accuracy permanently increased with the increase of the number of microsatellite markers used.

  3. Virulence and persistence of rough and smooth forms of Aeromonas salmonicida inoculated into coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Anderson, Douglas P.

    1972-01-01

    Virulent isolates of Aeromonas salmonicida showed a majority of smooth colonies, while the attenuated isolates displayed mostly rough colonies. A lesion occurred at the site of inoculation when one of the rough forms was inoculated into yearling coho salmon, but few mortalities were recorded even though the rough forms were readily recovered from both the lesion and the kidney. The fish inoculated with the same dosage of smooth forms all died within 96 hr of inoculation.

  4. Guidelines for monitoring and adaptively managing restoration of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) on the Elwha River

    USGS Publications Warehouse

    Peters, R.J.; Duda, J.J.; Pess, G.R.; Zimmerman, M.; Crain, P.; Hughes, Z.; Wilson, A.; Liermann, M.C.; Morley, S.A.; McMillan, J.; Denton, K.; Warheit, K.

    2014-01-01

    The restoration of the migration route to spawning and rearing habitats upstream of the former Glines Canyon Dam represents a great opportunity for salmon on the Olympic Peninsula. By removing two aging structures, it will be possible for all 5 species of salmon and steelhead to return to wild stretches of the Elwha River and major floodplain habitat characterized by multiple channels, as well as significant portions of numerous tributaries. Measuring the progress of restoration, from the perspective of both salmon populations and the ecosystem upon which they depend, is a great test for a collaborative team of scientists. The normally challenging conditions of working in a steep gradient, high velocity wilderness river are exacerbated by the release of millions of cubic yards of sediment that had accumulated in the reservoirs. After the first two years of the dam decommissioning process, this release has changed the ecology of the river, estuary, and nearshore habitats downstream of the dams. Our goal in developing the guidelines described is to provide a roadmap for tracking what hopefully will become a successful outcome. If successfully implemented, this information should prove useful as others begin planning for the removal, alteration, or reconstruction of dams throughout North America and elsewhere, an inevitable outcome of an aging dam infrastructure.

  5. Lipid oxidation is inhibited by isoeugenol exposure in chinook Salmon (Oncorhynchus Tshawytscha) fillets during storage at 15 degrees C.

    PubMed

    Tuckey, Nicholas P L; Forster, Malcolm E; Gieseg, Steven P

    2009-01-01

    The method of harvest for farmed fish and the postharvest tissue metabolism can have a significant effect on the quality and storage stability of the resulting fillets. We have examined the effects of rested harvesting and isoeugenol exposure on tissue oxidation and the loss of tissue antioxidants in fillets of chinook salmon (Oncorhyncus tshawytscha) during storage at a normal metabolic temperature of 15 degrees C. Isoeugenol is a lipid soluble phenolic antioxidant used as an anesthetic in the aquaculture industry (AQUI-S). Fillets from salmon harvested in rested and exhausted physiological states with and without isoeugenol were prepared and stored in air at 15 degrees C for 96 h. Exposure to isoeugenol resulted in significantly decreased late-stage lipid peroxidation (TBARS) levels in the fillets during storage regardless of the harvest method. Protein carbonyl concentrations increased 73% in the fillets during storage (from 406 to 703 nmol/g wet weight) and were not affected by the harvest method. Fillet vitamin C concentrations decreased 92% (from 49 to 4 nmol/g wet weight) but were also not affected by the harvest method. Although significant late-stage lipid oxidation was observed with exhausted harvesting, no significant vitamin E loss was observed in any of the fillets during storage. Our results show that rested harvesting of chinook salmon does not affect their oxidative stability immediately postharvest and that isoeugenol can function as an antioxidant in fish fillets as it prevented late-stage lipid oxidation.

  6. Behavior and movements of adult spring Chinook salmon (Oncorhynchus tshawytscha) in the Chehalis River Basin, southwestern Washington, 2015

    USGS Publications Warehouse

    Liedtke, Theresa L.; Zimmerman, Mara S.; Tomka, Ryan G.; Holt, Curt; Jennings, Lyle

    2016-09-14

    Recent interest in flood control and restoration strategies in the Chehalis River Basin has increased the need to understand the current status and ecology of spring Chinook salmon. Based on the extended period between freshwater entry and spawn timing, spring Chinook salmon have the longest exposure of all adult Chinook salmon life histories to the low-flow and high water temperature conditions that typically occur during summer. About 100 adult spring Chinook salmon were found dead in the Chehalis River in July and August 2009. Adult Chinook salmon are known to hold in cool-water refugia during warm summer months, but the extent to which spring Chinook salmon might use thermal refugia in the Chehalis River is unknown. The movements and temperature exposures of adult spring Chinook salmon following their return to the Chehalis River were investigated using radiotelemetry and transmitters equipped with temperature sensors, combined with water temperature monitoring throughout the basin. A total of 23 spring Chinook salmon were radio-tagged between April and early July 2015; 11 were captured and released in the main-stem Chehalis River, and 12 were captured and released in the South Fork Newaukum River. Tagged fish were monitored with a combination of fixed-site monitoring locations and regular mobile tracking, from freshwater entry through the spawning period.Water temperature and flow conditions in the main-stem Chehalis River during 2015 were atypical compared to historical averages. Mean monthly water temperatures between March and July 2015 were higher than any decade since 1960 and mean daily flows were 30–70 percent of the flows in previous years. Overall, 96 percent of the tagged fish were detected, with a mean of 62 d in the detection history of tagged fish. Of the 11 fish released in the main-stem Chehalis River, six fish (55 percent) moved upstream, either shortly after release (2–7 d, 50 percent), or following a short delay (12–18 d, 50 percent

  7. Bioaccumulation of polychlorinated biphenyls in juvenile chinook salmon (Oncorhynchus tshawytscha) outmigrating through a contaminated urban estuary: dynamics and application.

    PubMed

    Meador, James P; Ylitalo, Gina M; Sommers, Frank C; Boyd, Daryle T

    2010-01-01

    A field study was conducted to examine bioaccumulation of polychlorinated biphenyls (PCBs) for hatchery-raised and naturally reared (wild) ocean-type juvenile chinook salmon outmigrating through the Lower Duwamish Waterway (LDW), a contaminated urban estuary in Seattle, WA, USA. These results show differences in bioaccumulation of PCBs over time and space in this estuary, which may also occur for any contaminant that is distributed heterogeneously in this system. Highly mobile, outmigrating salmon accumulated approximately 3-5 times more PCBs on the east side of the LDW than fish on the west side, which is supported by an almost identical difference in mean sediment concentrations. The tPCB concentration data suggest that for most of the spring and early summer, juvenile chinook were likely segregated between the east and west side of the LDW, but may have crossed the channel later in the year as larger fish. Additionally, we used biota-sediment accumulation factors to assess the relative degree of bioaccumulation and explore these factors as potential metrics for predicting adverse sediment concentrations. These results highlight the importance of time and space in sampling design for a highly mobile species in a heterogeneous estuary.

  8. Sequence features and phylogenetic analysis of the stress protein Hsp90α in chinook salmon Oncorhynchus tshawytscha, a poikilothermic vertebrate

    USGS Publications Warehouse

    Palmisano, Aldo N.; Winton, James R.; Dickhoff, Walton W.

    1999-01-01

    We cloned and sequenced a chinook salmon Hsp90 cDNA; sequence analysis shows it to be Hsp90??. Phylogenetic analysis supports the hypothesis that ?? and ?? paralogs of Hsp90 arose as a result of a gene duplication event and that they diverged early in the evolution of vertebrates, before tetrapods separated from the teleost lineage. Among several differences distinguishing poikilothermic Hsp90?? sequences from their bird and mammal orthologs, the teleost versions specifically lack a characteristic QTQDQP phosphorylation site near the N-terminus. We used the cDNA to develop an RNA (Northern) blot to quantify cellular Hsp90 mRNA levels. Chinook salmon embryonic (CHSE-214) cells responded to heat shock with a rapid rise in Hsp90 mRNA through 4 h, followed by a gradual decline over the next 20 h. Hsp90 mRNA level may be useful as a stress indicator, especially in a laboratory setting or in response to acute heat stress.

  9. Efficiency of the inbreeding coefficient f and other estimators in detecting null alleles, as revealed by empirical data of locus oke3 across 65 populations of chum salmon Oncorhynchus keta.

    PubMed

    Zhivotovsky, L A; Kordicheva, S Yu; Shaikhaev, E G; Rubtsova, G A; Afanasiev, K I; Shitova, M V; Fuller, S A; Shaikhaev, G O; Gharrett, A J

    2015-01-01

    A survey of 65 populations of chum salmon Oncorhynchus keta across the species range revealed homozygote excess (947 homozygotes in 2954 fish) at a polymerase chain reaction (PCR)-based simple sequence repeat (SSR) locus oke3 with multiple alleles, whereas re-designed PCR primers indicated that 328 of these homozygotes were actually heterozygotes. Statistically significant high positive values of inbreeding coefficients, f, in multiple populations appeared to be a reliable predictor of null alleles. Based on these data, three methods were checked for their ability to estimate null-allele frequencies.

  10. A test for the relative strength of maternal and stock effects in spring Chinook salmon (Oncorhynchus tshawytscha) from two different hatcheries (Study site: Warm Springs Hatchery; Stocks: Warm Springs Hatchery and Carson Hatchery; Year class: 1993): Chapter 10

    USGS Publications Warehouse

    Wetzel, Lisa A.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Stenberg, Karl D.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    An experiment was undertaken to determine the relative strength of maternal and stock effects in Chinook salmon (Oncorhynchus tshawytscha) reared in a common environment, as a companion study to our investigation of hatchery and wild Chinook salmon. Pure-strain and reciprocal crosses were made between two hatchery stocks (Carson and Warm Springs National Fish Hatcheries). The offspring were reared together in one of the hatcheries to the smolt stage, and then were transferred to a seawater rearing facility (USGS-Marrowstone Field Station). Differences in survival, growth and disease prevalence were assessed. Fish with Carson parentage grew to greater size at the hatchery and in seawater than the pure-strain Warm Springs fish, but showed higher mortality at introduction to seawater. The analyses of maternal and stock effects were inconclusive, but the theoretical responses to different combinations of maternal and stock effects may be useful in interpreting stock comparison studies.

  11. Brood stock segregation for the control of bacterial kidney disease can affect mortality of progeny chinook salmon (Oncorhynchus tshawytscha) in seawater

    USGS Publications Warehouse

    Elliott, Diane G.; Pascho, Ronald J.; Palmisano, Aldo N.

    1995-01-01

    Segregation of spring chinook salmon (Oncorhynchus tshawytscha) brood stock based on the measurement of maternal Renibacterium salmoninarum infection levels by the enzyme-linked immunosorbent assay (ELISA) and the fluorescent antibody technique (FAT) was previously shown to affect the prevalence and levels of bacterial kidney disease (BKD) in progeny fish during hatchery rearing. Smolts from that study were subjected to standardized fish health and condition evaluation procedures 2 weeks before the conclusion of hatchery rearing and release of the fish for migration to the Pacific Ocean. The results suggested that the general health of the smolts in the progeny group from parents that had low R. salmoninarum infection levels or tested negative for R. salmoninarum (low-BKD group) was better than that of the smolts in the progeny group from female parents with high R. salmoninarum infection levels (high-BKD group). Testing by the ELISA showed that the overall severity of R. salmoninarum infection also was lower in the smolts from the low-BKD group. Subgroups of smolts from the study were acclimated to tanks of seawater for extended holding. After a 22-day acclimation period and 98 days in full-strength (29 ppt salinity) seawater, total mortality was 12% in the low-BKD group and 44% in the high-BKD group. All of the mortality in the low-BKD group and 85% of the mortality in the high-BKD group occurred after the fish were transferred to full-strength seawater. Testing of kidney tissues from all dead fish by the FAT revealed that 85% of the fish that died in the high-BKD group had high R. salmoninarum numbers, indicating that BKD was the cause of death. In contrast, none of the fish that died in the low-BKD group had detectable numbers of R. salmoninarum. We concluded that brood stock segregation by use of the ELISA and the FAT can affect mortality and the R. salmoninarum status of progeny chinook salmon for as long as 21 months after hatching, even after the fish have

  12. Brood stock segregation for the control of bacterial kidney disease can affect mortality of progeny chinook salmon (Oncorhynchus tshawytscha) in seawater

    USGS Publications Warehouse

    Elliott, Diane G.; Pascho, Ronald J.; Palmisano, Aldo N.

    1995-01-01

    Segregation of spring chinook salmon (Oncorhynchus tshawytscha) brood stock based on the measurement of maternal Renibacterium salmoninarum infection levels by the enzyme-linked immunosorbent assay (ELISA) and the fluorescent antibody technique (FAT) was previously shown to affect the prevalence and levels of bacterial kidney disease (BKD) in progeny fish during hatchery rearing. Smolts from that study were subjected to standardized fish health and condition evaluation procedures 2 weeks before the conclusion of hatchery rearing and release of the fish for migration to the Pacific Ocean. The results suggested that the general health of the smolts in the progeny group from parents that had low R. salmoninarum infection levels or tested negative for R. salmoninarum (low-BKD group) was better than that of the smolts in the progeny group from female parents with high R. salmoninarum infection levels (high-BKD group). Testing by the ELISA showed that the overall severity of R. salmoninarum infection also was lower in the smolts from the low-BKD group. Subgroups of smolts from the study were acclimated to tanks of seawater for extended holding. After a 22-day acclimation period and 98 days in full-strength (29 ppt salinity) seawater, total mortality was 12% in the low-BKD group and 44% in the high-BKD group. All of the mortality in the low-BKD group and 85% of the mortality in the high-BKD group occurred after the fish were transferred to full-strength seawater. Testing of kidney tissues from all dead fish by the FAT revealed that 85% of the fish that died in the high-BKD group had high R. salmoninarum numbers, indicating that BKD was the cause of death. In contrast, none of the fish that died in the low-BKD group had detectable numbers of R. salmoninarum. We concluded that brood stock segregation by use of the ELISA and the FAT can affect mortality and the R. salmoninarum status of progeny chinook salmon for as long as 21 months after hatching, even after the fish have

  13. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus tshawytscha) in the Klickitat River, Washington

    SciTech Connect

    Brown, Richard S.; Geist, David R.

    2002-07-01

    This report describes a field study by PNNL for Bonneville Power Administration in fall 2001 to study the migration and energy use of adult fall chinook salmon traveling up the Klickitat River to spawn. The salmon were tagged with surgically implanted electromyogram transmitters or gastrically implanted coded transmitters. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted to pass three waterfalls on the lower Klickitat and as they traversed free-flowing stretches between and below the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat, 40% passed the first falls, 36% passed the second falls, and 20% reached Lyle Falls but were unable to leap over. Mean swimming speeds ranged from as low as 52.6 cm/sec between falls to as high as 158.1 cm/sec at falls passage. Fish exhibited a higher percentage of occurrences of burst swimming while passing the falls than while between falls (58.9% versus 1.7%). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (52.3-236.2 kcals versus 0.3-1.1 kcals). Male-female and day-night differences in falls passage success were noted. PNNL also examined energy costs and swimming speeds for fish released above Lyle Falls as they migrated to upstream spawning areas. This journey averaged 15.93 days at a mean rate of 2.36 km/day to travel a mean maximum of 37.6 km upstream at a total energy cost of approx 4,492 kcals (32% anaerobic/68% aerobic). When the salmon have expended the estimated 968 kcals needed to get through Bonneville Dam and the three falls on the Lower Klickitat, plus this 4,492 kcals to reach the spawning grounds, they are left with approximately 8 to 12% (480 to 742 kcals) of their energy reserves for spawning. A delay of 4 to 7 days along the lower Klickitat River could deplete their remaining energy reserves (at a rate of about 103 kcals/day), resulting in death before spawning would occur.

  14. Population Viability of the Snake River Chinook Salmon (Oncorhynchus Tshawytscha) : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 11 of 11.

    SciTech Connect

    Emlen, John Merritt

    1993-06-01

    A stochastic simulation model of spring chinook population dynamics was parameterized using 36 years of redd count data from five index streams on the middle fork of the Salmon River in Idaho. Two versions of the model, one in which spawning age structure was presumed to follow an evolutionarily stable strategy and another in which spawning age structure was constrained to observed values were examined. The models were then used to generate 1000 statistically representative population projections over the next 100 years to assess risk of extinction and prospects for stock rebuilding. Current levels of production and mortality appear to suffice for maintaining the status quo, virtually assuring persistence over the next 100 years, barring catastophes, but providing no hope for rebuilding. A doubling of the current population level over the next 100 years can be expected to follow an increase in {alpha} (density independent mortality or fry production) of 5 to 25%, but rebuilding to the population levels prevailing in the 1950`s will require an increase in {alpha} of at least 37%.

  15. A perspective on physiological studies supporting the provision of scientific advice for the management of Fraser River sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    Patterson, David A.; Cooke, Steven J.; Hinch, Scott G.; Robinson, Kendra A.; Young, Nathan; Farrell, Anthony P.; Miller, Kristina M.

    2016-01-01

    The inability of physiologists to effect change in fisheries management has been the source of frustration for many decades. Close collaboration between fisheries managers and researchers has afforded our interdisciplinary team an unusual opportunity to evaluate the emerging impact that physiology can have in providing relevant and credible scientific advice to assist in management decisions. We categorize the quality of scientific advice given to management into five levels based on the type of scientific activity and resulting advice (notions, observations, descriptions, predictions and prescriptions). We argue that, ideally, both managers and researchers have concomitant but separate responsibilities for increasing the level of scientific advice provided. The responsibility of managers involves clear communication of management objectives to researchers, including exact descriptions of knowledge needs and researchable problems. The role of the researcher is to provide scientific advice based on the current state of scientific information and the level of integration with management. The examples of scientific advice discussed herein relate to physiological research on the impact of high discharge and water temperature, pathogens, sex and fisheries interactions on in-river migration success of adult Fraser River sockeye salmon (Oncorhynchus nerka) and the increased understanding and quality of scientific advice that emerges. We submit that success in increasing the quality of scientific advice is a function of political motivation linked to funding, legal clarity in management objectives, collaborative structures in government and academia, personal relationships, access to interdisciplinary experts and scientific peer acceptance. The major challenges with advancing scientific advice include uncertainty in results, lack of integration with management needs and institutional caution in adopting new research. We hope that conservation physiologists can learn from

  16. Effects of selenium dietary enhancement on hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), when compared with wild coho: hepatic enzymes and seawater adaptation evaluated.

    USGS Publications Warehouse

    Felton, S.P.; Landolt, M.L.; Grace, R.; Palmisano, A.N.

    1996-01-01

    Hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), were fed elevated levels of selenium (as Na2SeO3) to raise eviscerated body burdens to the level measured in wild counterparts. The goal was to find a dietary concentration that would achieve the desired effect without causing damage to growth and normal development. To measure some indices of health, the detoxifying enzymes chosen were hepatic glutathione peroxidase (GSH-Px) and hepatic superoxide dismutase (SOD). Eviscerated body selenium (Se) concentration, GSH-Px and SOD levels were measured during and at the end of the 9 month freshwater feeding trial. Selenium retention and enzyme activity were also measured during 6 months’residence in sea water (SW). Selenium supplements were added to a commercial ration to give final concentrations of 1.1, 8.6, 11.1, 13.6 μg g-1 Se in the four respective diets. The results indicated that a dietary concentration of 8.6 μg g-1selenium was capable of inducing eviscerated body burdens similar to those found in wild fish. The elevated selenium levels persisted throughout the freshwater (FW) rearing phase, but declined when the fish were fed an unsupplemented ration upon SW entry. Superoxide dismutase levels did not increase above control levels. Glutathione peroxidase levels increased in fish fed the supplemented diets. GSH-Px activity declined in the higher supplemented dietary groups when all groups were reduced to the control group level of 1.1 μg g-1. Cumulative mortality in SW was 20% in fish fed either the 1.1 or the 8.6 μg g-1 Se diets. The 8.6 μg g-1 Se supplemented diets did produce healthy coho, comparable to their wild counterparts.

  17. Comparison of two fluorescent antibody techniques (FATS) for detection and quantification of Renibacterium salmoninarum in coelomic fluid of spawning chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Elliott, D.G.; McKibben, C.L.

    1997-01-01

    Two versions of the fluorescent antibody technique (FAT) were compared for detection and quantification of Renibacterium salmoninarum in coelomic fluid samples from naturally infected spawning chinook salmon Oncorhynchus tshawytscha. For the membrane filtration-FAT (MF-FAT), trypsin-treated samples were passed through 0.2 ??m polycarbonate filters to concentrate bacteria for direct enumeration by immunofluorescence microscopy. For the smear-FAT (S-FAT), samples were centrifuged at 8800 x g for 10 min and the pelleted material was smeared on slides for immunofluorescence staining Detected prevalences of Renibacterium salmoninarum were 1.8 to 3.4 times higher by the MF-FAT than by the S-FAT: differences were significant at p ??? 0.0002. The S-FAT consistently detected R. salmoninarum only in samples with calculated bacterial concentrations ??? 2.4 x 103 cells ml-1 by MF-FAT testing. Increasing the area examined on a filter or slide from 50 to 100 microscope fields at 1000x magnification resulted in the detection of a maximum of 4% additional positive samples by the MF-FAT and 7% additional positive samples by the S-FAT. In individual samples for which bacterial counts were obtained by both the MF-FAT and the S-FAT, the counts averaged from 47 times (??30 SD) to 175 times (??165 SD) higher by the MF-FAT. Centrifugation of samples at 10000 x g for 10 min resulted in a 4-fold increase in mean bacterial counts by the S-FAT compared with a 10-min centrifugation at 2000 x g, but the highest calculated bacterial concentration obtained by S-FAT testing was more than 6-fold lower than that obtained for the same sample by MF-FAT testing. Because of its greater sensitivity, the MF-FAT is preferable to the S-FAT for use in critical situations requiring the detection of low numbers of R. salmoninarum.

  18. Evaluation of seasonal and daily changes of plasma thyroxine and cortisol levels in wild masu salmon Oncorhynchus masou, sampled by a Japanese fishing method.

    PubMed

    Munakata, A; Miura, G; Matsuda, H

    2014-10-01

    A new fish sampling method was developed using a Japanese bait fishing rod (8-9 m carbon rod and a nylon line with a small fine wire single hook), which is considered to catch wild salmonid juveniles with low sampling stress. Using this method, seasonal and daily changes of plasma thyroxine (T4 ) and cortisol levels were examined in wild parr, pre-smolts and smolts of masu salmon Oncorhynchus masou in contiguous locations in a coastal river (Kesen River; 44 km) in northern Honshu Island, Japan, overlapping the period of smoltification and seaward migration from August to March. Plasma T4 and cortisol were low in 0+ and 1+ year parr caught in August and September. In March, some yearling (1+ year) fish, which were judged as pre-smolts, and smolts appeared mainly in mid and lower reaches, while parr (0+ and 1+ year parr) continued to appear in the upper and mid reaches. In March, 1+ year pre-smolts and smolts showed high plasma T4 levels while the levels of 1+ year parr were low. During March 2008-2010, plasma T4 levels of 1+ year pre-smolts and smolts had high levels from early to mid-March, whereas plasma cortisol levels of 1+ year smolts were low in early March and increased towards mid-March. Based on these data, plasma cortisol increases probably occur following the increases of plasma T4 levels to lead the 1+ year O. masou to the completion of smoltification and initiation of seaward migration. © 2014 The Fisheries Society of the British Isles.

  19. Migration and rearing histories of chinook salmon (Oncorhynchus tshawytscha) determined by ion microprobe Sr isotope and Sr/Ca transects of otoliths

    USGS Publications Warehouse

    Bacon, C.R.; Weber, P.K.; Larsen, K.A.; Reisenbichler, R.; Fitzpatrick, J.A.; Wooden, J.L.

    2004-01-01

    Strontium isotope and Sr/Ca ratios measured in situ by ion microprobe along radial transects of otoliths of juvenile chinook salmon (Oncorhynchus tshawytscha) vary between watersheds with contrasting geology. Otoliths from ocean-type chinook from Skagit River estuary, Washington, had prehatch regions with 87Sr/86Sr ratios of ???0.709, suggesting a maternally inherited marine signature, extensive fresh water growth zones with 87Sr/86Sr ratios similar to those of the Skagit River at ???0.705, and marine-like 87Sr/86Sr ratios near their edges. Otoliths from stream-type chinook from central Idaho had prehatch 87Sr/86Sr ratios ???0.711, indicating that a maternal marine Sr isotopic signature is not preserved after the ???1000- to 1400-km migration from the Pacific Ocean. 87Sr/86Sr ratios in the outer portions of otoliths from these Idaho juveniles were similar to those of their respective streams (???0.708-0.722). For Skagit juveniles, fresh water growth was marked by small decreases in otolith Sr/Ca, with increases in Sr/Ca corresponding to increases in 87Sr/86Sr with migration into salt water. Otoliths of Idaho fish had Sr/Ca radial variation patterns that record seasonal fluctuation in ambient water Sr/Ca ratios. The ion microprobe's ability to measure both 87Sr/86Sr and Sr/Ca ratios of otoliths at high spatial resolution in situ provides a new tool for studies of fish rearing and migration. ?? 2004 NRC Canada.

  20. DNA and allozyme markers provide concordant estimates of population differentiation: Analyses of U.S. and Canadian populations of Yukon River fall-run chum salmon (Oncorhynchus keta)

    USGS Publications Warehouse

    Scribner, Kim T.; Crane, Penelope A.; Spearman, William J.; Seeb, Lisa W.

    1998-01-01

    Although the number of genetic markers available for fisheries research has steadily increased in recent years, there is limited information on their relative utility. In this study, we compared the performance of different "classes" of genetic markers (mitochondrial DNA (mtDNA), nuclear DNA (nDNA), and allozymes) in terms of estimating levels and partitioning of genetic variation and of the relative accuracy and precision in estimating population allocations to mixed-stock fisheries. Individuals from eight populations of fall-run chum salmon (Oncorhynchus keta) from the Yukon River in Alaska and Canada were assayed at 25 loci. Significant differences in mitochondrial haplotype and nuclear allele frequencies were observed among five drainages. Populations from the U.S.-Canada border region were not clearly distinguishable based on multilocus allele frequencies. Although estimates of total genetic diversities were higher for the DNA loci (Ht = 0.592 and h = 0.647 for nDNA and mtDNA, respectively) compared with protein allozymes (Ht = 0.250), estimates of the extent of population differentiation were highly concordant across marker classes (mean theta = 0.010, 0.011, and 0.016 for allozymes, nDNA, and mtDNA, respectively). Simulations of mixed-stock fisheries composed of varying contributions of U.S. and Canadian populations revealed a consistent bias for overallocation of Canadian stocks when expected Canadian contributions varied from 0 to 40%, due primarily to misallocations among genetically similar border populations. No single marker class is superior for differentiating populations of this species at the spatial scale examined.

  1. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2002 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam in 2002. This was the seventh year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 479,358 yearlings released from the Fall Chinook Acclimation Project facilities exceeded the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,545 PIT tagged yearlings from Pittsburg Landing, 7,482 from Big Canyon and 2,487 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium to high with 43-62% of fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 146.7 mm (146.2-147.2 mm) at Captain John Rapids to 164.8 mm (163.5-166.1 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.14 at Pittsburg Landing and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 88.6% (86.0-91.1%) for Pittsburg Landing to 97.0% (92.4-101.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 54.3% (50.2-58.3%) for Big Canyon to 70.5% (65.4-75.5%) for Pittsburg Landing. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 8.1 river kilometers per

  2. Oral administration of marine collagen peptides prepared from chum salmon (Oncorhynchus keta) improves wound healing following cesarean section in rats

    PubMed Central

    Wang, Junbo; Xu, Meihong; Liang, Rui; Zhao, Ming; Zhang, Zhaofeng; Li, Yong

    2015-01-01

    Background The goal of the present study was to investigate the wound-healing potential of marine collagen peptides (MCPs) from chum salmon skin administered to rats following cesarean section (CS). Methods Ninety-six pregnant Sprague-Dawley rats were randomly divided into four groups: a vehicle group and three MCP groups. After CS, rats were intragastrically given MCPs at doses of 0, 0.13, 0.38, 1.15 g/kg*bw, respectively. On postoperative days 7, 14, and 21, the uterine bursting pressure, skin tensile strength, hydroxyproline (Hyp) concentrations, and histological and immunohistochemical characteristics of the scar tissue were examined. Results In the MCP groups, the skin tensile strength, uterine bursting pressure, and Hyp were significantly higher than those in the vehicle group at all three time points (p<0.05). The formation of capillary, fibroblast, and collagen fiber, the expression of platelet-endothelial cell adhesion molecule-1, basic fibroblast growth factor, and transforming growth factor beta-1 were increased in the MCP groups (p<0.05). Conclusion MCPs could accelerate the process of wounding healing in rats after CS. PMID:25976613

  3. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Pacific Northwest). Coho salmon. [Oncorhynchus kisutch

    SciTech Connect

    Laufle, J.C.; Pauley, G.B.; Shepard, M.F.

    1986-04-01

    The coho is anadromous, swimming upstream from the ocean in fall to spawn. The fry hatch in the spring and outmigrate 1 to 2 years later. They usually spend two growing seasons at sea. They require clear, cold, well-oxygenated (<4 mg/l) stream water (1 m/sec) for spawning and rearing, with a gravel substrate, adequate cover, and a food supply of insects, crustaceans, and fishes for the young. All populations of coho salmon are limited by the amount of suitable rearing area available. They are sought after in both sport and commercial fisheries, and are very sensitive, especially the early life stages in streams, to such human-made impacts as siltation, pollution, removal of cover, and barriers to migration. Current management objectives of the State of Washington are toward MSH (maximum susstained harvest), with the treaty Indian tribes under the Boldt Decision (United States vs State of Washington) having a legal right to 50% of the catchable allocation.

  4. Homozygous and heterozygous GH transgenesis alters fatty acid composition and content in the liver of Amago salmon (Oncorhynchus masou ishikawae)

    PubMed Central

    Sugiyama, Manabu; Takenaga, Fumio; Kitani, Yoichiro; Yamamoto, Goshi; Okamoto, Hiroyuki; Masaoka, Tetsuji; Araki, Kazuo; Nagoya, Hiroyuki; Mori, Tsukasa

    2012-01-01

    Summary Growth hormone (GH) transgenic Amago (Oncorhynchus masou ishikawae), containing the sockeye GH1 gene fused with metallothionein-B promoter from the same species, were generated and the physiological condition through lipid metabolism compared among homozygous (Tg/Tg) and heterozygous GH transgenic (Tg/+) Amago and the wild type control (+/+). Previously, we have reported that the adipose tissue was generally smaller in GH transgenic fish compared to the control, and that the Δ-6 fatty acyl desaturase gene was down-regulated in the Tg/+ fish. However, fatty acid (FA) compositions have not been measured previously in these fish. In this study we compared the FAs composition and content in the liver using gas chromatography. Eleven kinds of FA were detected. The composition of saturated and monounsaturated fatty acids (SFA and MUFA) such as myristic acid (14:0), palmitoleic acid (16:1n-7), and cis-vaccenic acid (cis-18:1n-7) was significantly (P<0.05) decreased in GH transgenic Amago. On the other hand, the composition of polyunsaturated fatty acids (PUFAs) such as linoleic acid (18:2n-6), arachidonic acid (20:4n-6), and docosapentaenoic acid (22:5n-3) was significantly (P<0.05) increased. Levels of serum glucose and triacylglycerol were significantly (P<0.05) decreased in the GH transgenics compared with +/+ fish. Furthermore, 3′-tag digital gene expression profiling was performed using liver tissues from Tg/Tg and +/+ fish, and showed that Mid1 interacting protein 1 (Mid1ip1), which is an important factor to activate Acetyl-CoA carboxylase (ACC), was down-regulated in Tg/Tg fish, while genes involved in FA catabolism were up-regulated, including long-chain-fatty-acid–CoA ligase 1 (ACSL1) and acyl-coenzyme A oxidase 3 (ACOX3). These data suggest that liver tissue from GH transgenic Amago showed starvation by alteration in glucose and lipid metabolism due to GH overexpression. The decrease of serum glucose suppressed Mid1ip1, and caused a decrease of de

  5. Historical growth of Bristol Bay and Yukon River, Alaska chum salmon (Oncorhynchus keta) in relation to climate and inter- and intraspecific competition

    NASA Astrophysics Data System (ADS)

    Agler, Beverly A.; Ruggerone, Gregory T.; Wilson, Lorna I.; Mueter, Franz J.

    2013-10-01

    We examined Bristol Bay and Yukon River adult chum salmon scales to determine whether climate variability, such as changes in sea surface temperature and climate indices, and high pink and Asian chum salmon abundance reduced chum salmon growth. Annual marine growth increments for 1965-2006 were estimated from scale growth measurements and were modeled as a function of potential explanatory variables using a generalized least squares regression approach. First-year growth of salmon originating from Bristol Bay and the Yukon River showed increased growth in association with higher regional ocean temperatures and was negatively affected by wind mixing and ice cover. Third-year growth was lower when Asian chum salmon were more abundant. Contrary to our hypothesis, warmer large-scale sea surface temperatures in the Gulf of Alaska were also associated with reduced third-year growth. Negative effects of high abundances of Russian pink salmon on third-year growth provided some evidence for interspecific interactions, but the effects were smaller than the effects of Asian chum salmon abundance and Gulf of Alaska sea surface temperature. Although the relative effects of Asian chum salmon and sea surface temperature on the growth of Yukon and Bristol Bay chum salmon were difficult to untangle, we found consistent evidence that high abundances of Asian chum salmon contributed to a reduction in the growth of western Alaska chum salmon.

  6. Dead fish swimming: a review of research on the early migration and high premature mortality in adult Fraser River sockeye salmon Oncorhynchus nerka.

    PubMed

    Hinch, S G; Cooke, S J; Farrell, A P; Miller, K M; Lapointe, M; Patterson, D A

    2012-07-01

    Adult sockeye salmon Oncorhynchus nerka destined for the Fraser River, British Columbia are some of the most economically important populations but changes in the timing of their homeward migration have led to management challenges and conservation concerns. After a directed migration from the open ocean to the coast, this group historically would mill just off shore for 3-6 weeks prior to migrating up the Fraser River. This milling behaviour changed abruptly in 1995 and thereafter, decreasing to only a few days in some years (termed early migration), with dramatic consequences that have necessitated risk-averse management strategies. Early migrating fish consistently suffer extremely high mortality (exceeding 90% in some years) during freshwater migration and on spawning grounds prior to spawning. This synthesis examines multidisciplinary, collaborative research aimed at understanding what triggers early migration, why it results in high mortality, and how fisheries managers can utilize these scientific results. Tissue analyses from thousands of O. nerka captured along their migration trajectory from ocean to spawning grounds, including hundreds that were tracked with biotelemetry, have revealed that early migrants are more reproductively advanced and ill-prepared for osmoregulatory transition upon their entry into fresh water. Gene array profiles indicate that many early migrants are also immunocompromised and stressed, carrying a genomic profile consistent with a viral infection. The causes of these physiological changes are still under investigation. Early migration brings O. nerka into the river when it is 3-6° C warmer than historical norms, which for some late-run populations approaches or exceeds their critical maxima leading to the collapse of metabolic and cardiac scope, and mortality. As peak spawning dates have not changed, the surviving early migrants tend to mill in warm lakes near to spawning areas. These results in the accumulation of many more

  7. Physiological Benefits of Being Small in a Changing World: Responses of Coho Salmon (Oncorhynchus kisutch) to an Acute Thermal Challenge and a Simulated Capture Event

    PubMed Central

    Clark, Timothy D.; Donaldson, Michael R.; Pieperhoff, Sebastian; Drenner, S. Matthew; Lotto, Andrew; Cooke, Steven J.; Hinch, Scott G.; Patterson, David A.; Farrell, Anthony P.

    2012-01-01

    Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20°C at 3°C h−1) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males (‘jacks’). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7°C was size-specific, with jacks regaining resting levels of metabolism at 9.3±0.5 h post-exercise in comparison with 12.3±0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20±0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b∼1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater ‘oxygen debt’ that took longer to pay back at the size-independent peak metabolic rate of ∼6 mg min−1 kg−1. Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non

  8. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 1999 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1999. This was the fourth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 453,117 yearlings released from the Fall Chinook Acclimation Project facilities not only slightly exceeded the 450,000 fish quota, but a second release of 76,386 yearlings (hereafter called Surplus) were acclimated at the Big Canyon facility and released about two weeks after the primary releases. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 9,941 PIT tagged yearlings from Pittsburg Landing, 9,583 from Big Canyon, 2,511 Big Canyon Surplus and 2,494 from Captain John Rapids. The Washington Department of Fish and Wildlife released 983 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low and did not appear to increase after transport to the acclimation facilities. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Pittsburg Landing and Lyons Ferry Hatchery and relatively high at Big Canyon and Captain John Rapids. Mean fork lengths (95% confidence interval) of the release groups ranged from 147.4 mm (146.7-148.1 mm) at Captain John Rapids to 163.7 mm (163.3-164.1 mm) at Pittsburg Landing. Mean condition factors ranged from 1.04 at

  9. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2000 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2000. This was the fifth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 397,339 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,477 PIT tagged yearlings from Pittsburg Landing, 7,421 from Big Canyon and 2,488 from Captain John Rapids. The Washington Department of Fish and Wildlife released 980 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 157.7 mm (157.3-158.1 mm) at Big Canyon to 172.9 mm (172.2-173.6 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Captain John Rapids and Lyons Ferry Hatchery to 1.12 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.0% (84.7-89.4%) for Pittsburg Landing to 95.2% (91.5-98.9%) for Captain John Rapids. Estimated survival from release to

  10. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2004 Annual Report.

    SciTech Connect

    Rocklage, Stephen J. Nez Perce Tribe, Department of Fisheries Resource Management, Lapawi, ID)

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2004. This was the ninth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 414,452 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 4,983 PIT tagged yearlings from Pittsburg Landing, 4,984 from Big Canyon and 4,982 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered low with 53-94% rating not detected to low. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 154.6 mm (154.0-155.2 mm) at Pittsburg Landing to 163.0 mm (162.6-163.4 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.16 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.7% (72.9-76.5%) for Big Canyon to 88.1% (85.7-90.6%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 45.3% (39.2-51.5%) for Pittsburg Landing to 52.1% (42.9-61.2%) for Big Canyon. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.5 river kilometers per day (rkm/d) for Captain John Rapids to 12.8 rkm/d for Pittsburg Landing. Median migration

  11. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2001 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2001. This was the sixth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 318,932 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,503 PIT tagged yearlings from Pittsburg Landing, 7,499 from Big Canyon and 2,518 from Captain John Rapids. The Washington Department of Fish and Wildlife released 991 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 155.4 mm (154.7-156.1 mm) at Captain John Rapids to 171.6 mm (170.7-172.5 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.02 at Lyons Ferry Hatchery to 1.16 at Big Canyon and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.4% (73.2-75.5%) for Big Canyon to 85.2% (83.5-87.0%) for Captain John Rapids. Estimated survival from release

  12. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2003 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for Captain

  13. Changes in hepatic gene expression related to innate immunity, growth and iron metabolism in GH-transgenic amago salmon (Oncorhynchus masou) by cDNA subtraction and microarray analysis, and serum lysozyme activity.

    PubMed

    Mori, Tsukasa; Hiraka, Ikuei; Kurata, Youichi; Kawachi, Hiroko; Mano, Nobuhiro; Devlin, Robert H; Nagoya, Hiroyuki; Araki, Kazuo

    2007-03-01

    Growth hormone (GH) transgenic amago salmon (Oncorhynchus masou) were generated with a construct containing the sockeye salmon GH1 gene fused to the metallothionein-B (MT-B) promoter from the same species. This transgene directed significant growth enhancement with transgenic fish reaching approximately four to five times greater weight than control salmon in F(2) and F(3) generations. This drastic growth enhancement by GH transgene is well known in fish species compared with mammals, however, such fish can show morphological abnormalities and physiological disorders like other GH transgenic animals. GH is known to have many acute effects, but currently there are no data describing the chronic effects of over-expression of GH on various hepatic genes in GH transgenic fish. Hepatic gene expression is anticipated to play very important roles in many physiological functions and growth performance of transgenic and control salmon. To examine these effects, we performed subtractive hybridization (using cDNA generated from liver RNA) in both directions to identify genes both increased and decreased in transgenic salmon relative to controls (576 clones were isolated and sequenced in total). Heme oxygenase, vitelline envelope protein, Acyl-coA binding protein, NADH dehydrogenase, mannose binding lectin-associated serine protease, hemopexin-like protein, leucyte-derived chemotaxin2 (LECT2), and many other genes were obtained in higher clone frequencies suggesting enhanced expression. In contrast, complement C3-1, lectin, rabin, alcohol dehydrogenase, Tc1-like transposase, Delta6-desaturase, and pentraxin genes were obtained in lower frequencies. Microarray analysis was also performed to obtain quantitative expression data for these subtracted cDNA clones. Analysis of fish across seasons was also conducted using both F(2) and F(3) salmon. Results of the microarray data essentially corresponded with those of the subtraction data when both F(2) and F(3) fish were completely

  14. Relative resistance of Pacific salmon to infectious salmon anaemia virus

    USGS Publications Warehouse

    Rolland, J.B.; Winton, J.R.

    2003-01-01

    Infectious salmon anaemia (ISA) is a major disease of Atlantic salmon, Salmo salar, caused by an orthomyxovirus (ISAV). Increases in global aqua culture and the international movement of fish made it important to determine if Pacific salmon are at risk. Steelhead trout, Oncorhynchus mykiss, and chum, O. keta, Chinook, O. tshawytscha, coho, O. kisutch, and Atlantic salmon were injected intraperitoneally with a high, medium, or low dose of a Norwegian strain of ISAV. In a second challenge, the same species, except chum salmon, were injected with a high dose of either a Canadian or the Norwegian strain. Average cumulative mortality of Atlantic salmon in trial 1 was 12% in the high dose group, 20% in the medium dose group and 16% in the low dose group. The average cumulative mortality of Atlantic salmon in trial 2 was 98%. No signs typical of ISA and no ISAV-related mortality occurred among any of the groups of Oncorhynchus spp. in either experiment, although ISAV was reisolated from some fish sampled at intervals post-challenge. The results indicate that while Oncorhynchus spp. are quite resistant to ISAV relative to Atlantic salmon, the potential for ISAV to adapt to Oncorhynchus spp. should not be ignored.

  15. The abundance and distribution of Lepeophtheirus salmonis (Copepoda: Caligidae) on pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon in coastal British Columbia.

    PubMed

    Jones, Simon R M; Hargreaves, N Brent

    2007-12-01

    In total, 23,750 specimens of the salmon louse, Lepeophtheirus salmonis, were collected from 3,907 juvenile pink and 3,941 chum salmon caught within the Broughton Archipelago during a 2-yr survey. The prevalence on pink salmon was significantly higher than on chum salmon in 2004 (62.3% and 58.6%, respectively) and in 2005 (26.4% and 23.1%, respectively). The mean abundance on chum salmon was significantly higher than on pink salmon in 2004 (7.0 +/- 0.3 and 2.8 +/- 0.2, respectively), whereas in 2005 the mean abundance did not differ between species (0.6 +/- 0.1 and 0.5 +/- 0.0, respectively). The mean intensity on chum salmon was significantly higher than on pink salmon in 2004 (12.0 +/- 0.4 and 4.5 +/- 0.2, respectively) and in 2005 (2.5 +/- 0.2 and 1.7 +/- 0.1, respectively). The prevalence, intensity, and abundance of L. salmonis were significantly higher on salmon belonging to both host species in 2004 compared with 2005. In both years, a majority of pink and chum salmon had 2 or fewer lice. In general, a decline in abundance of L. salmonis over the 3 collection periods in each year coincided with an increased percentage of motile developmental stages. The abundance was lowest on fish collected from zones in which the seawater surface salinity was also lowest. Seawater surface temperature was higher and salinity was lower in 2004 compared with 2005. The spatial and temporal trends in the abundance of L. salmonis in relation to host size, infestation rates, and seawater salinity and temperature, evident in both years, must be considered in future studies assessing the role of farmed salmon in the epizootiology of this parasite on juvenile salmon in this area.

  16. Mortality, Transmitter Retention, Growth, and Wound Healing in Juvenile Salmon Injected with Micro Acoustic Transmitters

    SciTech Connect

    Liss, Stephanie A.; Brown, Richard S.; Deters, Katherine A.; Walker, Ricardo W.; Deng, Z. Daniel; Eppard, M. Brad; Townsend, Richard L.; Seaburg, Adam G.

    2016-07-28

    A cylindrical acoustic transmitter (AT; 0.2 g) has been developed for injection into the peritoneum of fish. Laboratory studies can provide tagging guidelines to minimize the effect of implantation techniques and transmitter burden (relative weight of the transmitter to the weight of the fish) in fish before a transmitter is used in field studies. The goal of this study was to examine response variables (mortality, transmitter expulsion, growth, wound area) of juvenile Chinook Salmon (Oncorhynchus tschawytscha; 65–104 mm fork length [FL]) injected with an AT along a wide range of sizes that could lead to a guideline for minimizing tagging effects. The overarching goal was to determine a minimum size threshold for fish that can be injected, while minimizing adverse transmitter effects. Juveniles (n = 700) were separated into four treatments: (1) acoustic transmitter injection (AT), (2) AT and a passive integrated transponder tag injection (AT+PIT), (3) visual implant elastomer injection (Marked control), and (4) unmarked (Unmarked control). Fish were evaluated weekly for four weeks, and again at the end of the study (60 d post-tagging). Fish injected with an AT or an AT+PIT experienced greater mortality than Marked controls. By 60 d post-tagging, transmitter expulsion was 44% for AT fish and 20% for AT+PIT fish. Fish injected with an AT or an AT+PIT grew (FL and weight gain) significantly less than Marked controls, and no minimum size thresholds were detected. Finally, initial size (FL) significantly affected wound area in AT and AT+PIT fish. A size threshold was only identified on Day 7 (85.1 mm) for AT+PIT fish, indicating that wound areas in fish < 85.1 mm were larger than wound areas of fish > 85.1 mm. This research suggests that injecting juveniles with an AT or an AT+PIT had a greater effect on smaller fish than larger fish.

  17. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.

    SciTech Connect

    Kucera, Paul A.

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical

  18. Effects of dehulling, steam-cooking and microwave-irradiation on digestive value of white lupin (Lupinus albus) seed meal for rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar).

    PubMed

    Saez, Patricio; Borquez, Aliro; Dantagnan, Patricio; Hernández, Adrián

    2015-01-01

    A digestibility trial was conducted to assess the effect of dehulling, steam-cooking and microwave-irradiation on the apparent digestibility of nutrients in white lupin (Lupinus albus) seed meal when fed to rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Six ingredients, whole lupin seed meal (LSM), dehulled LSM, dehulled LSM steam-cooked for 15 or 45 min (SC15 and SC45, respectively) and LSM microwave-irradiated at 375 or 750 W (MW375 and MW750, respectively), were evaluated for digestibility of dry matter, crude protein (CP), lipids, nitrogen-free extractives (NFE) and gross energy (GE). The diet-substitution approach was used (70% reference diet + 30% test ingredient). Faeces from each tank were collected using a settlement column. Dehulled LSM showed higher levels of proximate components (except for NFE and crude fibre), GE and phosphorus in comparison to whole LSM. Furthermore, SC15, SC45, MW375 and MW750 showed slight variations of chemical composition in comparison to dehulled LSM. Results from the digestibility trial indicated that dehulled LSM, SC15, SC45 and MW375 are suitable processing methods for the improvement of nutrients' apparent digestibility coefficient (ADC) in whole LSM. MW750 showed a lower ADC of nutrients (except for CP and lipids for rainbow trout) in comparison with MW350 for rainbow trout and Atlantic salmon, suggesting a heat damage of the ingredient when microwave-irradiation exceeded 350 W.

  19. Movement and Injury Rates for Three Life Stages of Spring Chinook Salmon Oncorhynchus Tshawytscha : A Comparison of Submerged Orifices and an Overflow Weir for Fish Bypass in a Modular Rotary Drum Fish Screen : Annual Report 1995.

    SciTech Connect

    Abernethy, C. Scott; Neitzel, Duane A.; Mavros, William V.

    1996-03-01

    The Pacific Northwest National Laboratory (PNNL) evaluated the effectiveness of 6-in. and 2-in. submerged orifices, and an overflow weir for fish bypass at a rotary drum fish screening facility. A modular drum screen built by the Washington Department of Fish and Wildlife (WDFW) was installed at PNNL`s Aquatic Ecology research laboratory in Richland, Washington. Fry, subyearlings, and smolts of spring chinook salmon (Oncorhynchus tshawyacha) were introduced into the test system, and their movement and injury rates were monitored. A total of 33 tests (100 fish per test) that lasted from 24 to 48 hr were completed from 1994 through 1995. Passage rate depended on both fish size and bypass configuration. For fry/fingerling spring chinook salmon, there was no difference in passage rate through the three bypass configurations (2-in. orifice, 6-in. orifice, or overflow weir). Subyearlings moved sooner when the 6-in. orifice was used, with more than 50% exiting through the fish bypass in the first 8 hr. Smolts exited quickly and preferred the 6-in. orifice, with over 90% of the smolts exiting through the bypass in less than 2 hr. Passage was slightly slower when a weir was used, with 90% of the smolts exiting in about 4 hr. When the 2-in. orifice was used in the bypass, 90% of the smolts did not exit until after 8 hr. In addition, about 7% of the smolts failed to migrate from the forebay within 24 hr, indicating that smolts were significantly delayed when the 2-in. orifice was used. Few significant injuries were detected for any of the life stages. However, light descaling occurred on about 15% of chinook salmon smolts passing through the 2-in. orifice. Although a single passage through the orifice did not appear to cause significant scale loss or other damage, passing through several screening facilities with 2-in. orifices could cause cumulative injuries.

  20. [Polymorphism of the cytochrome b gene fragment of mitochondrial DNA of chum salmon Oncorhynchus keta (Walbaum) from the Ola River (northern coast of the Sea of Okhotsk)].

    PubMed

    Bachevskaia, L T; Pereverzeva, V V

    2010-01-01

    Sequencing of 395 bp long fragments of cytochrome b gene occupying the 15396-15790 bp positions of mtDNA, the data on the structure and variability of the studied region in chum salmon from the Ola River (northern coast of the Sea of Okhtosk) were obtained for the first time. Nine haplotype variants and four protein modifications were obtained. The medial net was built reflecting the variability and phylogenetic relationships of haplotypes in the gene pool of the studied population of the chum salmon from the Ola River. Comparative analysis of the published and original data showed that the Ola chum salmon differs from the Canadian salmon ninth genotypically (in structure of cytochrome b gene) and in the amino acid sequence of the studied site of the enzyme.

  1. Resistance of different stocks and transferrin genotypes of coho salmon, Oncorhynchus kisutch, and steelhead trout, Salmo gairdneri, to bacterial kidney disease and vibriosis

    USGS Publications Warehouse

    Winter , Gary W.; Schreck, Carl B.; McIntyre, John D.

    1979-01-01

    Juvenile coho salmon and steelhead trout ofdifferentstocks and three transferrin genotypes(AA, AC, and CCl, all reared in identical or similar environments, were experimentally infected with Corynebacterium sp., the causative agent ofbacterial kidney disease, or with Vibrio anguillarum, the causative agent of vibriosis. Mortality due to the pathogens was compared among stocks within a species and among transferrin genotypes within a stock to determine whetherthere was a geneticbasis for resistance to disease. Differences in resistance to bacterial kidney disease among coho salmon stocks had a genetic basis. Stock susceptibility to vibriosis was strongly influenced by environmental factors. Coho salmon orsteelhead trout of one stock may be resistant to one disease but susceptible to another. The importance of transferrin genotype of coho salmon in resistance to bacterial kidney disease was stock specific; in stocks that showed differential resistance of genotypes, the AA was the most susceptible. No differencesin resistance to vibriosis were observed among transferrin genotypes.

  2. A statistical analysis of the distribution of a larval nematode (Anisakis sp.) in the musculature of chum salmon (Oncorhynchus keta - Walbaum)

    USGS Publications Warehouse

    Novotny, A.J.

    1960-01-01

    The one factor which probably contributes the greatest effect on distributional patterns of Anisakis within chum salmon musculature is the total intensity of infection (or population density of Anisakis) in each fish.

  3. A comparison of implantation methods for large PIT tags or injectable acoustic transmitters in juvenile Chinook salmon

    SciTech Connect

    Cook, Katrina V.; Brown, Richard S.; Deng, Zhiqun; Klett, Ryan S.; Li, Huidong; Seaburg, Adam; Eppard, M. B.

    2014-04-15

    The miniaturization of acoustic transmitters may allow greater flexibility in terms of the size and species of fish available to tag. New downsized injectable acoustic tags similar in shape to passive integrated transponder tags can be rapidly injected rather than surgically implanted through a sutured incision, as is current practice. Before wide-scale field use of these injectable transmitters, standard protocols to ensure the most effective and least damaging methods of implantation must be developed. Three implantation methods were tested in various sizes of juvenile Chinook salmon Oncorhynchus tschawytscha. Methods included a needle bevel-down injection, a needle bevel-up injection with a 90-degree rotation, and tag implantation through an unsutured incision. Tagged fish were compared to untagged control groups. Weight and wound area were measured at tagging and every week for 3 weeks; holding tanks were checked daily for mortalities and tag losses. No differences among treatments were found in growth, tag loss, or survival, but wound area was significantly reduced among incision-treated fish. The bevel-up injection had the worst results in terms of tag loss and wound area and also had high mortality. Implantation through an incision resulted in the lowest tag loss but the highest mortality. Fish from the bevel-down treatment group had the least mortality; wound areas also were smaller than the bevel-up treatment group. Cumulatively, the data suggest that the unsutured incision and bevel-down injection methods were the most effective; the drawbacks of both methods are described in detail. However, we further recommend larger and longer studies to find more robust thresholds for tagging size that include more sensitive measures.

  4. Historical occurrence of coho salmon (Oncorhynchus kisutch) in streams of the Santa Cruz Mountain region of California: response to an Endangered Species Act petition to delist coho salmon south of San Francisco Bay

    Treesearch

    Brian C. Spence; Walter G. Duffy; John Carlos Garza; Bret Harvey; Susan M. Sogard; Laurie A. Weitkamp; Thomas H. Williams; David A. Boughton

    2011-01-01

    In November 2003, the National Marine Fisheries Service received a petition from Homer T. McCrary to redefine the southern extent of the Central California Coast Coho Salmon Evolutionarily Significant Unit (CCC Coho Salmon ESU) to exclude populations that spawn in coastal watersheds south of the entrance to San Francisco Bay (i.e., the Golden Gate). The petitioner’s...

  5. 50 CFR 226.212 - Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington, Oregon and Idaho. 226.212... 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington... following ESUs in the following states and counties: ESU State—Counties (1) Puget Sound chinook salmon...

  6. 50 CFR 226.212 - Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington, Oregon and Idaho. 226.212... 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington... following ESUs in the following states and counties: ESU State—Counties (1) Puget Sound chinook salmon...

  7. 50 CFR 226.212 - Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington, Oregon and Idaho. 226.212... 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington... following ESUs in the following states and counties: ESU State—Counties (1) Puget Sound chinook salmon...

  8. 50 CFR 226.212 - Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington, Oregon and Idaho. 226.212... 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington... following ESUs in the following states and counties: ESU State—Counties (1) Puget Sound chinook salmon...

  9. 50 CFR 226.212 - Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington, Oregon and Idaho. 226.212... 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington... following ESUs in the following states and counties: ESU State—Counties (1) Puget Sound chinook salmon...

  10. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    SciTech Connect

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  11. Life history reconstruction of modern and fossil sockeye salmon ( Oncorhynchus nerka) by oxygen isotopic analysis of otoliths, vertebrae, and teeth: Implication for paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Zazzo, A.; Smith, G. R.; Patterson, W. P.; Dufour, E.

    2006-09-01

    We evaluate the use of oxygen isotope values of biogenic apatite for tracking freshwater to marine migration in modern and fossil Pacific sockeye salmon. Oxygen isotope analyses of otoliths, vertebrae, and teeth of three anadromous modern sockeye salmon from Alaska establish a basis for the interpretation of fossil vertebrae and tooth apatite from Pleistocene sockeye salmon of the Skokomish River Valley, Washington. High resolution δ18O profiles in salmon otoliths provide, at a monthly resolution, a detailed record of individual history including continental rearing, migration to sea, seasonal variation in sea surface temperatures during marine life, and spawning migration before capture. Pacific salmon teeth are constantly renewed with the last set of teeth forming under the influence of freshwater. Therefore, they do not allow inference concerning sea-run versus landlocked life history in fossil salmon. Salmon vertebrae are also ambiguous indicators of life history regarding fresh versus marine water because centra are minimally ossified in the freshwater stages of life and the outermost layer of vertebral bone might be resorbed to provide nutrients during the non-feeding phase of the spawning migration. Therefore, δ18O values of accretionary growth rings in sea-run salmon vertebrae are dominated by the marine signal only if they are not diagenetically altered in freshwater deposits. In Pleistocene sockeye reported here, neither the teeth nor vertebral apatite present clear marine δ18O values due to the combined effects of tooth replacement and diagenetic alteration of bone and dentine. δ18O(PO 4) values of fossil vertebrae are intermediate between δ18O(PO 4) values of enamel and basal tooth dentin. Assuming a similar rate of isotope exchange of vertebrae and dentine with freshwater during diagenesis, these results are interpreted to reflect formation of the teeth under the influence of freshwater, and formation of the vertebrae under the influence of

  12. [Patterns of genetic diversity in population complexes of Pacific chum salmon Oncorhynchus keta Walbaum, from Asia and Northern America, inferred from allozyme polymorphism data].

    PubMed

    Savin, V A; Varnavskaia, N V; Shaporev, R A

    2009-06-01

    Based on the data of Russian and foreign researchers, a database, consisting of 100 allozyme-coding loci examined in 288 chum salmon populations from Asia and Northern America, was constructed. Using G-test, genetic heterogeneity of Asian population samples of chum salmon was evaluated. Correlations between the frequencies of major alleles and geographic latitude of the mouths of native rivers were estimated. Using the methods of Nei and Cavalli-Sforza and Edwards, for different local chum salmon stock groups the genetic distances at the number of polymorphic enzyme loci were determined. Analysis of these distances made it possible to evaluate the patterns of genetic diversity in regional population groups from the Russian Far East, Japan, and North America. The proportions of genetic variation at each hierarchical level, identified in accordance with the geographical positions of the populations, were estimated through partitioning of variation in Asian populations into within and between-population components. It was demonstrated that intraspecific genetic structure of chum salmon corresponded geographic subdivision into regional population groups.

  13. Contrasting Patterns of Juvenile Chinook Salmon (Oncorhynchus tshawytscha) Growth, Diet, and Prey Densities in Off-channel and Main Channel Habitats on the Sacramento River.

    NASA Astrophysics Data System (ADS)

    Limm, M. P.; Marchetti, M. P.; Power, M. E.

    2005-05-01

    Few studies have quantified juvenile salmon growth in or between different habitats or evaluated the mechanisms by which salmon growth and survival might be enhanced. We used otolith microstructure to compare daily relative growth rates among main channel areas, off-channel ponds, and non-natal seasonal tributaries of the Sacramento River in 2001 and 2002. To examine possible mechanisms leading to growth differences, prey availability, prey preference, and stomach fullness were estimated at each site. Stable isotope ratios (δ13C and δ15N) in salmon tissue and their predominant prey were measured in 2002. We observed wider daily increment widths, higher prey densities, and warmer temperatures in off-channel ponds and non-natal seasonal tributaries in both 2001 and 2002. Off-channel pond salmon and chironomidae pupae had significantly different δ13C and δ15N than those captured in the main channel and non-natal seasonal tributaries. In 2001, all habitats had higher temperatures, wider daily increment widths, higher prey densities, and higher stomach fullness than in 2002. Our findings suggest warmer temperatures and abundant prey in off-channel habitats lead to higher growth rates. Increased access to off-channel habitats during wetter years may account for the stronger year classes and higher survival rates reported in other studies.

  14. Effects of Flow on the Migratory Behavior and Survival of Juvenile Fall and Summer Chinook Salmon in John Day Reservoir : Annual Report 1985. [Oncorhynchus Tshawytscha

    SciTech Connect

    Miller, David R.; Giorgi, Albert E.

    1985-12-01

    As part of a study to define the effects of instream flows on the passage time, migration behavior, and survival of phi age chinook salmon migrating through John Day Reservoir from June through August juvenile fish were tagged and released below McNary Dam in 1981. This report discusses adult returns through 1984. (ACR)

  15. Assessing the impact of swimming exercise and the relative susceptibility of rainbow trout oncorhynchus mykiss (walbaum) and atlantic salmon salmo salar L. following injection challenge with weissella ceti

    USDA-ARS?s Scientific Manuscript database

    All-female rainbow trout and mixed-sex Atlantic salmon (approximately 200 g and 120 g initial weight, respectively) were maintained in small circular tanks in a flow-through system under study conditions for a period of five months. The four tank populations consisted of rainbow trout exposed to ei...

  16. Genomic arrangement of salinity tolerance QTLs in salmonids: A comparative analysis of Atlantic salmon (Salmo salar) with Arctic charr (Salvelinus alpinus) and rainbow trout (Oncorhynchus mykiss)

    PubMed Central

    2012-01-01

    Background Quantitative trait locus (QTL) studies show that variation in salinity tolerance in Arctic charr and rainbow trout has a genetic basis, even though both these species have low to moderate salinity tolerance capacities. QTL were observed to localize to homologous linkage group segments within putative chromosomal regions possessing multiple candidate genes. We compared salinity tolerance QTL in rainbow trout and Arctic charr to those detected in a higher salinity tolerant species, Atlantic salmon. The highly derived karyotype of Atlantic salmon allows for the assessment of whether disparity in salinity tolerance in salmonids is associated with differences in genetic architecture. To facilitate these comparisons, we examined the genomic synteny patterns of key candidate genes in the other model teleost fishes that have experienced three whole-genome duplication (3R) events which preceded a fourth (4R) whole genome duplication event common to all salmonid species. Results Nine linkage groups contained chromosome-wide significant QTL (AS-2, -4p, -4q, -5, -9, -12p, -12q, -14q -17q, -22, and −23), while a single genome-wide significant QTL was located on AS-4q. Salmonid genomes shared the greatest marker homology with the genome of three-spined stickleback. All linkage group arms in Atlantic salmon were syntenic with at least one stickleback chromosome, while 18 arms had multiple affinities. Arm fusions in Atlantic salmon were often between multiple regions bearing salinity tolerance QTL. Nine linkage groups in Arctic charr and six linkage group arms in rainbow trout currently have no synteny alignments with stickleback chromosomes, while eight rainbow trout linkage group arms were syntenic with multiple stickleback chromosomes. Rearrangements in the stickleback lineage involving fusions of ancestral arm segments could account for the 21 chromosome pairs observed in the stickleback karyotype. Conclusions Salinity tolerance in salmonids from three genera is

  17. Assignment of Atlantic salmon (Salmo salar) linkage groups to specific chromosomes: conservation of large syntenic blocks corresponding to whole chromosome arms in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Phillips, Ruth B; Keatley, Kimberly A; Morasch, Matthew R; Ventura, Abigail B; Lubieniecki, Krzysztof P; Koop, Ben F; Danzmann, Roy G; Davidson, William S

    2009-08-18

    Most teleost species, especially freshwater groups such as the Esocidae which are the closest relatives of salmonids, have a karyotype comprising 25 pairs of acrocentric chromosomes and 48-52 chromosome arms. After the common ancestor of salmonids underwent a whole genome duplication, its karyotype would have 100 chromosome arms, and this is reflected in the modal range of 96-104 seen in extant salmonids (e.g., rainbow trout). The Atlantic salmon is an exception among the salmonids as it has 72-74 chromosome arms and its karyotype includes 12 pairs of large acrocentric chromosomes, which appear to be the result of tandem fusions. The purpose of this study was to integrate the Atlantic salmon's linkage map and karyotype and to compare the chromosome map with that of rainbow trout. The Atlantic salmon genetic linkage groups were assigned to specific chromosomes in the European subspecies using fluorescence in situ hybridization with BAC probes containing genetic markers mapped to each linkage group. The genetic linkage groups were larger for metacentric chromosomes compared to acrocentric chromosomes of similar size. Comparison of the Atlantic salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout. It had been suggested that some of the large acrocentric chromosomes in Atlantic salmon are the result of tandem fusions, and that the small blocks of repetitive DNA in the middle of the arms represent the sites of chromosome fusions. The finding that the chromosomal regions on either side of the blocks of repetitive DNA within the larger acrocentric chromosomes correspond to different rainbow trout chromosome arms provides support for this hypothesis.

  18. Alteration of thyroid hormone concentrations in juvenile Chinook salmon (Oncorhynchus tshawytscha) exposed to polybrominated diphenyl ethers, BDE-47 and BDE-99.

    PubMed

    Arkoosh, Mary R; Van Gaest, Ahna L; Strickland, Stacy A; Hutchinson, Greg P; Krupkin, Alex B; Dietrich, Joseph P

    2017-03-01

    Polybrominated diphenyl ethers (PBDEs) have been used as flame-retardants in consumer products and are currently detected in salmon globally. The two most predominant PBDE congeners found in salmon are BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) and BDE-99 (2,2',4,4',5-pentabromodiphenyl ether). In the present study, groups of juvenile Pacific Chinook salmon were fed five environmentally relevant concentrations of either BDE-47 (0.3-552 ng total PBDEs/g food), BDE-99 (0.3-580 ng total PBDEs/g food), or nearly equal mixtures of both congeners (0.7-690 ng total PBDEs/g food) for 39-40 days. The concentrations of circulating total thyroid hormones, thyroxine (T4) and 3,5,3'-triiodothyronine (T3), were measured using a hormone-specific time-resolved fluoroimmunoassay to determine if PBDE exposure disrupts the hypothalamic-pituitary-thyroid endocrine axis. The concentrations of both circulating T4 and T3 were altered in juvenile salmon by dietary uptake of BDE-99. Exposure to BDE-47 did not alter either T3 or T4 circulating hormone concentrations. However, exposure to a mixture of BDE-47 and BDE-99 reduced T3 in fish with lower concentrations of total whole body PBDEs than with either congener alone at equivalent PBDE whole body concentrations. Accordingly, the disruption of PBDEs on circulating thyroid hormone concentrations has the potential to impact a number of critical functions in juvenile salmon including growth, parr-smolt transformation, and immunological processes.

  19. Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.

    SciTech Connect

    Backman, Thomas; Sprague, Sherman; Bretz, Justin

    2009-06-10

    The Nez Perce Tribal Hatchery (NPTH) program has the following goals (BPA, et al., 1997): (1) Protect, mitigate, and enhance Clearwater Subbasin anadromous fish resources; (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater Subbasin; (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project initiation; (4) Sustain long-term fitness and genetic integrity of targeted fish populations; (5) Keep ecological and genetic impacts to non-target populations within acceptable limits; and (6) Promote Nez Perce Tribal management of Nez Perce Tribal Hatchery Facilities and production areas within Nez Perce Treaty lands. The NPTH program was designed to rear and release 1.4 million fall and 625,000 spring Chinook salmon. Construction of the central incubation and rearing facility NPTH and spring Chinook salmon acclimation facilities were completed in 2003 and the first full term NPTH releases occurred in 2004 (Brood Year 03). Monitoring and evaluation plans (Steward, 1996; Hesse and Cramer, 2000) were established to determine whether the Nez Perce Tribal Hatchery program is achieving its stated goals. The monitoring and evaluation action plan identifies the need for annual data collection and annual reporting. In addition, recurring 5-year program reviews will evaluate emerging trends and aid in the determination of the effectiveness of the NPTH program with recommendations to improve the program's implementation. This report covers the Migratory Year (MY) 2007 period of the NPTH Monitoring & Evaluation (M&E) program. There are three NPTH spring Chinook salmon treatment streams: Lolo Creek, Newsome Creek, and Meadow Creek. In 2007, Lolo Creek received 140,284 Brood Year (BY) 2006 acclimated pre-smolts at an average weight of 34.9 grams per fish, Newsome Creek received 77,317 BY 2006 acclimated pre-smolts at an average of 24.9 grams

  20. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    USGS Publications Warehouse

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  1. Therapeutic and prophylactic effects of isometamidium chloride (Samorin) against the hemoflagellate Cryptobia salmositica in chinook salmon (Oncorhynchus tshawytscha) and the effects of the drug on uninfected rainbow trout (O. mykiss).

    PubMed

    Ardelli, B F; Woo, P T

    2001-01-01

    A series of compounds (triphenylmethanes, thiazines, xanthenes, benzidines, phenanthridiniums, napthalamines, and diamidines) were screened for in vitro toxicity against Cryptobia salmositica. Isometamidium chloride (Samorin) was cryptobiacidal at low concentrations and was examined for therapeutic and prophylactic activities against C. salmositica in chinook salmon (Oncorhynchus tshawytscha). An intramuscular dose (1.0 mg/kg) of Samorin 3 weeks post-infection significantly reduced the parasitemia in adult chinook. A higher dose (2.5 mg/kg) eliminated the infection in 30% of adult fish and parasitemias were significantly reduced in the remaining infected fish. Juvenile chinook treated with 1.0 mg Samorin/kg at 2-3 weeks post-infection survived, while 100% of untreated control fish died from cryptobiosis. The high dose (2.5 mg/kg) was lethal to small fish (98.93 +/- 12.09 g) and 50% died within 24 h of treatment, while all large fish (168.38 +/- 13.87 g) survived. Samorin (1.0 mg/kg) did not affect growth, food consumption, complement, or hematocrit values in uninfected rainbow trout (O. mykiss).

  2. Brood stock segregation of spring chinook salmon Oncorhynchus tshawytscha by use of the enzyme-linked immunosorbent assay (ELISA) and the fluorescent antibody technique (FAT) affects the prevalence and levels of Renibacterium salmoninarum infection in progeny

    USGS Publications Warehouse

    Pascho, Ronald J.; Elliott, Diane G.; Streufert, Jonathan M.

    1991-01-01

    A study of the effect of maternal Renibacterium salmoninarum infection levels on the prevalence and levels of bacterial kidney disease (BKD) in progeny fish was conducted at a production salmon hatchery. A total of 302 mating pairs of spring chinook salmon Oncorhynchus tshawytscha was screened in August 1988 for R. salmoninarum by an enzyme-linked immunosorbent assay (ELISA). On the basis of ELISA testing of kidney tissues from all fish and the testing of ovarian fluid samples from a subsample of the females by a direct membrane filtration fluorescent antibody technique (MF-FAT), selected egg lots were segregated into 2 groups of 30 egg lots or about 135 000 eggs each. One group contained egg lots from male and female parents that had low R. salmoninarum infection levels or tested negative for R. salmoninarum (low-BKD group), and the other group contained egg lots from female parents with relatively high R. salmoninarum infection levels and male parents with various infection levels (high-BKD group). The progeny groups were maintained in separate rearing units supplied with untreated river water, and were monitored for R. salmoninarum by the ELISA until they were released from the hatchery in April 1990. Total mortality of the juvenile fish was higher (p = 0.0001) in the high-BKD group (20%) than in the low-BKD group (10 %). Mortality in the high-BKD group was highest after the fish were moved from nursery tanks to raceways, and clinical BKD became evident in this group. During the 11 mo of raceway rearing, mortality in the high-BKD group was 17 % compared with 5 % for the low-BKD group. An ELISA analysis of smolts just before release showed an R. salmoninarum infection rate of 85 % in the high-BKD group and 62 % in the low-BKD group. Of the positive fish, 98 % in the low-BKD group and 55 % in the high-BKD group had low infection levels, whereas 36 % in the high-BKD group and only 1 % in the low-BKD group had high infection levels. The results of this research

  3. Cloning and characterization of the N-methyl-D-aspartate receptor subunit NR1 gene from chum salmon, Oncorhynchus keta (Walbaum, 1792).

    PubMed

    Yu, Jeong-Nam; Ham, Seung Hyub; Lee, Seung Il; Jin, Hyung-Joo; Ueda, Hiroshi; Jin, Deuk-Hee

    2014-01-01

    Here, we report the information about molecular and expression characterization of NR1 gene in chum salmon for the first time. The complete NR1 subunit showed a large open-reading frame of 2844 bp in the total length of 3193 bp, and this cDNA contained a coding region encoding 948 amino acids and a stop codon. The organization of the NR1 subunit of chum salmon were similar of most other fishes, except C' terminal. The expression of NR1 subunit was to show higher in the natal river near to the hatchery than near to the coast. We expect that the information reported herein may facilitate further investigations on the relationship between memory factors of natal rivers and homing mechanisms in Salmonidae.

  4. Free and protein-bound insulin-like growth factor-I (IGF-I) and IGF-binding proteins in plasma of coho salmon, Oncorhynchus kisutch.

    PubMed

    Shimizu, M; Swanson, P; Dickhoff, W W

    1999-09-01

    Total and free insulin-like growth factor-I (IGF-I) levels were quantified in plasma from growth hormone (GH)-treated and fasted coho salmon. Total IGF-I was measured by radioimmunoassay after acid-ethanol extraction and free IGF-I was separated from protein-bound IGF-I using ultrafiltration by centrifugation. Total and free IGF-I increased in plasma after GH treatment and decreased after fasting. The level of free IGF-I, however, was maintained at approximately 0.3% in both experiments. Unsaturated binding activity in plasma for IGF-I was assessed by incubation with (125)I-recombinant salmon IGF-I ((125)I-sIGF-I). Although there was no difference in binding activity between GH-treated and control fish, fasted fish showed higher binding activity than did fed fish, suggesting induction of unsaturated binding protein by fasting. IGF-binding protein (IGFBP) bands were observed in plasma of coho salmon by Western ligand blotting using (125)I-sIGF-I. A low-molecular-weight (22 kDa) band was clear in fasted fish but not detectable in fed fish. The IGFBP band, which has molecular weight similar to that of human IGFBP-3 (41 kDa), was more intense in GH-treated fish than in controls. The molecular distribution of IGF-I in plasma was examined by gel filtration under neutral conditions. Most IGF-I was eluted around 40 kDa. This result suggests that the major form of bound IGF-I in the circulation of coho salmon may be in a 40-kDa binary complex rather than in a 150-kDa ternary complex, as in mammals.

  5. Influence of dietary calcium, phosphorus, zinc and sodium phytate level on cataract incidence, growth and histopathology in juvenile chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Richardson, N L; Higgs, D A; Beames, R M; McBride, J R

    1985-05-01

    To determine the influence of wide variations in dietary levels of calcium, zinc and phytic acid (as sodium phytate) on growth and cataract incidence, juvenile chinook salmon held at 10-11 degrees C were fed daily to satiation for 105 d one of nine purified diets containing one of three levels (grams/kilogram) of calcium (averaged 4.8, 17.7, 50.2), zinc (averaged 0.05, 0.15, 0.39) and phytic acid (1.62, 6.46, 25.8). Diets were formulated to have a calcium-phosphorus ratio of close to unity when considering phosphorus sources other than sodium phytate. High dietary phytic acid concentration (25.8 g/kg) depressed chinook salmon growth, food and protein conversion [protein efficiency ratio (PER)] and thyroid function, increased mortality, promoted cataract formation (zinc at 0.05 g/kg) and induced anomalies in pyloric cecal structure. Calcium at 51 g/kg (or phosphorus) exacerbated the effects of high dietary phytate and low dietary zinc on cataract incidence. Moreover, high dietary levels of calcium (48-51 g/kg) coupled with phosphorus significantly impaired the growth and appetite of low phytic acid (1.62 g/kg) groups and led to nephrocalcinosis in low and high phytic acid groups. Plasma zinc levels were directly related to dietary zinc concentration and inversely related to dietary phytic acid level. Calcium (51 g/kg) and/or phosphorus reduced zinc bioavailability when the diet concurrently contained 0.05 g zinc and 25.8 g of phytic acid per kilogram. It is concluded that zinc is essential for normal eye development in juvenile chinook salmon. Further, zinc deficiency could not be induced in chinook salmon fed diets with high ratios of calcium (or phosphorus) to zinc alone. This required the simultaneous presence of a strong mineral (zinc)-binding agent.

  6. [The genetic structure of chum salmon (Oncorhynchus keta Walbaum) populations inferred from the nucleotide variation of the mitochondrial DNA cytochrome b gene].

    PubMed

    Bachevskaia, L T; Pereverzeva, V A; Malinina, T V

    2011-11-01

    The nucleotide sequences of a fragment of the mitochondrial DNA cytochrome b gene were determined in 12 chum salmon populations from the Russian Far East. The level of genetic diversity in the chum salmon populations from the Iturup Island, northern coast of the Sea of Okhotsk, and Anadyr' River was found to be higher than in the populations from Kamchatka and Sakhalin, which may be related to the history of their origin and dispersal. The proportions of intrapopulation genetic variability (F(ct)) and interpopulation genetic variability within the groups (F(sc)) account for 90.87 and 0.9%, respectively, and the intergroup component (F(st)) comprises 8.23%. The predominance of one haplotype, B1, which is common for all populations studied, and a low share of intergroup variability suggest the beginning of colonization by the species of the given region from a common source (group of founders) and a relatively recent time of divergence of the chum salmon populations from the region examined.

  7. Molecular cloning, tissue expression and regulation of liver X receptor (LXR) transcription factors of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Cruz-Garcia, L; Minghetti, M; Navarro, I; Tocher, D R

    2009-05-01

    Fish are important sources of high quality protein, essential minerals such as iodine and selenium, vitamins including A, D and E, and omega-3 fatty acids in the human diet. With declining fisheries worldwide, farmed fish constitute an ever-increasing proportion of fish in the food basket. Sustainable development of aquaculture dictates that diets will have to contain increasing levels of plant products that are devoid of cholesterol, but contain phytosterols that are known to have physiological effects in mammals. Liver X receptors (LXR) are transcription factors whose activity is modulated by sterols, with activation inducing cholesterol catabolism and de novo fatty acid biosynthesis in liver. Transcriptomic analysis has shown that substitution of fish meal and oil with plant products induces genes of cholesterol and fatty acid metabolism in salmonids. Here we report the cloning of LXR cDNAs from two species of salmonid fish that are important in aquaculture. The full-length cDNA (mRNA) of LXR obtained from salmon was shown to be 3766 bp, which included a 5'-untranslated region (UTR) of 412 bp and a 3'-UTR of 1960 bp and an open reading frame (ORF) of 1394 bp, which specified a protein of 462 amino acids. The trout LXR full-length cDNA was 2056 bp, including 5'- and 3'-UTRs of 219 and 547 bp, respectively, and an ORF of 1290 bp, which specified a protein of 427 amino acids. The protein sequences included characteristic features of mammalian LXRs, including the DNA binding (DBD), containing P-box, ligand binding (LBD) and activation function-2 (AF-2) domains, D-box, D (hinge) region, and eight cysteines that belong to the two zinc fingers. Phylogenetic analysis clustered the salmonid LXRs together, more closely with zebrafish and more distantly from medaka and stickleback. A pair-wise comparison among vertebrate LXR sequences showed the amino acid sequence predicted by the salmon LXR ORF showed greatest identity to that of trout 97%, and 97%, 87% and 81% identity

  8. Relationship of farm salmon, sea lice, and wild salmon populations.

    PubMed

    Marty, Gary D; Saksida, Sonja M; Quinn, Terrance J

    2010-12-28

    Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10-20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon--proposed through coordinated fallowing or closed containment--will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability.

  9. Geochemical signatures in fin rays provide a nonlethal method to distinguish the natal rearing streams of endangered juvenile Chinook Salmon Oncorhynchus tshawytscha in the Wenatchee River, Washington

    SciTech Connect

    Linley, Timothy J.; Krogstad, Eirik J.; Nims, Megan K.; Langshaw, Russell B.

    2016-09-01

    Rebuilding fish populations that have undergone a major decline is a challenging task that can be made more complicated when estimates of abundance obtained from physical tags are biased or imprecise. Abundance estimates based on natural tags where each fish in the population is marked can help address these problems, but generally requires that the samples be obtained in a nonlethal manner. We evaluated the potential of using geochemical signatures in fin rays as a nonlethal method to determine the natal tributaries of endangered juvenile spring Chinook Salmon in the Wenatchee River, Washington. Archived samples of anal fin clips collected from yearling smolt in 2009, 2010 and 2011 were analyzed for Ba/Ca, Mn/Ba, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr by inductively coupled plasma mass spectrometry. Water samples collected from these same streams in 2012 were also quantified for geochemical composition. Fin ray and water Ba/Ca, Sr/Ca, and 87Sr/86Sr were highly correlated despite the samples having been collected in different years. Fin ray Ba/Ca, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr ratios differed significantly among the natal streams, but also among years within streams. A linear discriminant model that included Ba/Ca, Mg/Ca, Sr/Ca, and 87Sr/86Sr correctly classified 95% of the salmon to their natal stream. Our results suggest that fin ray geochemistry may provide an effective, nonlethal method to identify mixtures of Wenatchee River spring Chinook Salmon for recovery efforts when these involve the capture of juvenile fish to estimate population abundance.

  10. The pituitary-thyroid axis during the parr-smolt transformation of Coho salmon, Oncorhynchus kisutch: quantification of TSH β mRNA, TSH, and thyroid hormones.

    PubMed

    Larsen, Donald A; Swanson, Penny; Dickhoff, Walton W

    2011-05-01

    The objective of this investigation was to quantify pituitary thyroid stimulating hormone (TSH) β mRNA, pituitary and plasma TSH and plasma thyroid hormone levels during the parr-smolt transformation of Coho salmon that occurs in spring from February to May. The status of the pituitary-thyroid axis was assessed using an RNase protection assay for pituitary TSH β mRNA and radioimmunoassays for salmon pituitary and plasma TSH and thyroid hormones. TSH β mRNA was highest during late winter (February) (4.9 pg/μg DNA) and gradually declined during spring (2.3 pg/μg DNA). In contrast, pituitary and plasma TSH levels showed a small, but statistically non-significant change during smoltification. Despite minimal change in plasma TSH levels, characteristically large increases in plasma T4 (January-3.3 ng/ml to April-10.2 ng/ml) and significant, but modest increases in plasma T3 (February-2.4 ng/ml to April-5.8 ng/ml) were observed. Regression analysis showed a significant positive relationship between plasma T4 and T3 and negative relationship between plasma T3 and pituitary TSH β mRNA. However, all other relations were not significant. These data suggest a significant role for peripheral regulation (i.e. T4-T3 conversion, change in tissue sensitivity, hormone degradation rate) as well as evidence of central regulation via negative feedback at the level of the pituitary gland in regulation of thyroid activity in salmon. Furthermore, the increased thyroid sensitivity to TSH (shown previously), in the face of relatively constant plasma TSH levels, may be the major factor responsible for the increased thyroid activity observed during smoltification.

  11. Development of a Method to Produce Freeze-Dried Cubes from 3 Pacific Salmon Species

    USDA-ARS?s Scientific Manuscript database

    Freeze-dried boneless skinless cubes of pink (Oncorhynchus gorbuscha), sockeye (Oncorhynchus nerka), and chum (Oncorhynchus keta) salmon were prepared and physical properties evaluated. To minimize freeze-drying time, the kinetics of dehydration and processing yields were investigated. The physical ...

  12. Relationship of farm salmon, sea lice, and wild salmon populations

    PubMed Central

    Marty, Gary D.; Saksida, Sonja M.; Quinn, Terrance J.

    2010-01-01

    Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10–20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon—proposed through coordinated fallowing or closed containment—will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability. PMID:21149706

  13. The effects of thyroxine or a GnRH analogue on thyroid hormone deiodination in the olfactory epithelium and retina of rainbow trout, Oncorhynchus mykiss, and sockeye salmon, Oncorhynchus nerka.

    PubMed

    Plate, E M; Adams, B A; Allison, W T; Martens, G; Hawryshyn, C W; Eales, J G

    2002-06-01

    Using low (0.5nM) substrate levels we determined the activities of thyroxine (T4) outer-ring deiodination (ORD), T4 inner-ring deiodination (T4IRD) and 3,5,3(')-triiodothyronine (T3) IRD activities in the olfactory epithelium (OLF) and retina (RET) of laboratory-held immature 1-year-old rainbow trout and immature 2.5-year-old sockeye salmon. In both species all three deiodination activities were detected in OLF and RET. For OLF, no particular pathway predominated and activities were similar to those of brain. For RET, T3IRD activity was greater than T4ORD activity and in sockeye RET T3IRD activity exceeded that of liver. Trout immersion for 6 weeks in 100ppm T4 increased plasma T4 levels 3-fold and plasma T3 levels by 50% and caused the anticipated autoregulatory responses in brain and liver deiodination ( downward arrow T4ORD, upward arrow T4IRD, and upward arrow T3IRD); OLF deiodination and RET T4ORD activity were unaltered but RET T4IRD and T3IRD activities increased dramatically. Two injections of a GnRH analogue (20 microgkg(-1)) into sockeye increased plasma T3 levels but not T4 levels and decreased RET T4IRD and T3IRD activities without changing liver, brain, or OLF deiodination. We conclude that in salmonids the main TH deiodination pathways occur in OLF but show no regulation by T4 or GnRH. In contrast, T3IRD activity predominates in RET and can be regulated by T4 and GnRH, suggesting that for RET plasma may be the major T3 source. These findings have implications for thyroidal regulation of sensory functions during salmonid diadromous migrations.

  14. Effect of dietary α-tocopherol + ascorbic acid, selenium, and iron on oxidative stress in sub-yearling Chinook salmon (Oncorhynchus tshawytscha Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2009-01-01

    A three-variable central composite design coupled with surface-response analysis was used to examine the effects of dietary ??-tocopherol + ascorbic acid (TOCAA), selenium (Se), and iron (Fe) on indices of oxidative stress in juvenile spring Chinook salmon. Each dietary factor was tested at five levels for a total of fifteen dietary combinations (diets). Oxidative damage in liver and kidney (lipid peroxidation, protein carbonyls) and erythrocytes (erythrocyte resistance to peroxidative lysis, ERPL) was determined after feeding experimental diets for 16 (early December) and 28 (early March) weeks. Only TOCAA influenced oxidative stress in this study, with most measures of oxidative damage decreasing (liver lipid peroxidation in December and March; ERPL in December; liver protein carbonyl in March) with increasing levels of TOCAA. We also observed a TOCAA-stimulated increase in susceptibility of erythrocytes to peroxidative lysis in March at the highest levels of TOCAA. The data suggest that under most circumstances a progressive decrease in oxidative stress occurs as dietary TOCAA increases, but higher TOCAA concentrations can stimulate oxidative damage in some situations. Higher levels of TOCAA in the diet were required in March than in December to achieve comparable levels of protection against oxidative damage, which may have been due to physiological changes associated with the parr-smolt transformation. Erythrocytes appeared to be more sensitive to variation in dietary levels of TOCAA than liver and kidney tissues. Using the March ERPL assay results as a baseline, a TOCAA level of approximately 350-600 mg/kg diet would provide adequate protection against lipid peroxidation under most circumstances in juvenile Chinook salmon. ?? 2008 The Authors.

  15. Effect of dietary alpha-tocopherol + ascorbic acid, selenium, and iron on oxidative stress in sub-yearling Chinook salmon (Oncorhynchus tshawytscha Walbaum).

    PubMed

    Welker, T L; Congleton, J L

    2009-02-01

    A three-variable central composite design coupled with surface-response analysis was used to examine the effects of dietary alpha-tocopherol + ascorbic acid (TOCAA), selenium (Se), and iron (Fe) on indices of oxidative stress in juvenile spring Chinook salmon. Each dietary factor was tested at five levels for a total of fifteen dietary combinations (diets). Oxidative damage in liver and kidney (lipid peroxidation, protein carbonyls) and erythrocytes (erythrocyte resistance to peroxidative lysis, ERPL) was determined after feeding experimental diets for 16 (early December) and 28 (early March) weeks. Only TOCAA influenced oxidative stress in this study, with most measures of oxidative damage decreasing (liver lipid peroxidation in December and March; ERPL in December; liver protein carbonyl in March) with increasing levels of TOCAA. We also observed a TOCAA-stimulated increase in susceptibility of erythrocytes to peroxidative lysis in March at the highest levels of TOCAA. The data suggest that under most circumstances a progressive decrease in oxidative stress occurs as dietary TOCAA increases, but higher TOCAA concentrations can stimulate oxidative damage in some situations. Higher levels of TOCAA in the diet were required in March than in December to achieve comparable levels of protection against oxidative damage, which may have been due to physiological changes associated with the parr-smolt transformation. Erythrocytes appeared to be more sensitive to variation in dietary levels of TOCAA than liver and kidney tissues. Using the March ERPL assay results as a baseline, a TOCAA level of approximately 350-600 mg/kg diet would provide adequate protection against lipid peroxidation under most circumstances in juvenile Chinook salmon.

  16. On signals of phase transitions in salmon population dynamics

    PubMed Central

    Krkošek, Martin; Drake, John M.

    2014-01-01

    Critical slowing down (CSD) reflects the decline in resilience of equilibria near a bifurcation and may reveal early warning signals (EWS) of ecological phase transitions. We studied CSD in the recruitment dynamics of 120 stocks of three Pacific salmon (Oncorhynchus spp.) species in relation to critical transitions in fishery models. Pink salmon (Oncorhynchus gorbuscha) exhibited increased variability and autocorrelation in populations that had a growth parameter, r, close to zero, consistent with EWS of extinction. However, models and data for sockeye salmon (Oncorhynchus nerka) indicate that portfolio effects from heterogeneity in age-at-maturity may obscure EWS. Chum salmon (Oncorhynchus keta) show intermediate results. The data do not reveal EWS of Ricker-type bifurcations that cause oscillations and chaos at high r. These results not only provide empirical support for CSD in some ecological systems, but also indicate that portfolio effects of age structure may conceal EWS of some critical transitions. PMID:24759855

  17. Habitat use by subyearling Chinook and coho salmon in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.

    2014-01-01

    The habitat use of subyearling Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) was examined in three tributaries of Lake Ontario. A total of 1781 habitat observations were made on Chinook salmon (698) and coho salmon (1083). During both spring and fall, subyearling coho salmon used pool habitat with abundant cover. During spring, principal component analysis revealed that water depth was the most important variable governing subyearling Chinook salmon habitat use. Substrate materials used by Chinook salmon in the spring and coho salmon in the fall were significantly smaller than were present on average within the study reaches. When the two species occurred sympatrically during spring they exhibited similar habitat selection. Although the habitat used by coho salmon in Lake Ontario tributaries was consistent with observations of habitat use in their native range, higher water velocities were less important to Chinook salmon than has previously been reported.

  18. Quantitative genetic and translocation experiments reveal genotype-by-environment effects on juvenile life-history traits in two populations of Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Evans, M L; Neff, B D; Heath, D D

    2010-04-01

    Understanding the genetic architecture of phenotypic plasticity is required to assess how populations might respond to heterogeneous or changing environments. Although several studies have examined population-level patterns in environmental heterogeneity and plasticity, few studies have examined individual-level variation in plasticity. Here, we use the North Carolina II breeding design and translocation experiments between two populations of Chinook salmon to detail the genetic architecture and plasticity of offspring survival and growth. We followed the survival of 50,800 offspring through the larval stage and used parentage analysis to examine survival and growth through freshwater rearing. In one population, we found that additive genetic, nonadditive genetic and maternal effects explained 25%, 34% and 55% of the variance in larvae survival, respectively. In the second population, these effects explained 0%, 24% and 61% of the variance in larvae survival. In contrast, fry survival was regulated primarily by additive genetic effects, which indicates a shift from maternal to genetic effects as development proceeds. Fry growth also showed strong additive genetic effects. Translocations between populations revealed that offspring survival and growth varied between environments, the degree of which differed among families. These results indicate genetic differences among individuals in their degree of plasticity and consequently their ability to respond to environmental variation.

  19. Effects of various feed supplements containing fish protein hydrolysate or fish processing by-products on the innate immune functions of juvenile coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Murray, A.L.; Pascho, R.J.; Alcorn, S.W.; Fairgrieve, W.T.; Shearer, K.D.; Roley, D.

    2003-01-01

    Immunomodulators administered to fish in the diet have been shown in some cases to enhance innate immune defense mechanisms. Recent studies have suggested that polypeptide fractions found in fish protein hydrolysates may stimulate factors in fish important for disease resistance. For the current study, groups of coho salmon were reared on practical feeds that contained either fish meal (Control diet), fish meal supplemented with cooked fish by-products, or fish meal supplemented with hydrolyzed fish protein alone, or with hydrolyzed fish protein and processed fish bones. For each diet group, three replicate tanks of fish were fed the experimental diets for 6 weeks. Morphometric measurements, and serologic and cellular assays were used to evaluate the general health and immunocompetence of fish in the various feed groups. Whereas the experimental diets had no effect on the morphometric and cellular measurements, fish fed cooked by-products had increased leucocrit levels and lower hematocrit levels than fish from the other feed groups. Innate cellular responses were increased in all feed groups after feeding the four experimental diets compared with pre-feed results. Subgroups of fish from each diet group were also challenged with Vibrio anguillarum (ca. 7.71 ?? 105 bacteria ml-1) at 15??C by immersion. No differences were found in survival among the various feed groups.

  20. Effect of dietary vitamin E and selenium on growth, survival and the prevalence of Renibacterium salmoninarum infection in chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Thorarinsson, Ragnar; Landolt, Marsha L.; Elliott, Diane G.; Pascho, Ronald J.; Hardy, Ronald W.

    1994-01-01

    Groups of juvenile spring chinook salmon naturally infected with Renibacterium salmoninarum, the causative agent of bacterial kidney disease, were fed diets containing different levels of vitamin E and selenium for 214 days in fresh water and 110 days in seawater. The fish were fed vitamin E at concentrations of either 53±3 mg (designated e) or 299±9 mg (designated E) α-tocopheryl acetate equivalence/kg dry diet in combination with sodium selenite to give selenium concentrations of either 0.038±0.008 mg (designated s) or 2.49±0.15 mg (designated S)/kg dry diet. No mortality occurred in the group fed the diet, whereas mortality was 3% in the groups fed the and diets, and 31% in the group fed the diet. At the end of the experiment, weight gain and hematocrit values were significantly greater in those fish fed the E diets compared with those fed the e diets, whereas the hepato-somatic index was significantly higher in fish fed the e diets. Glutathione peroxidase activity in blood plasma was significantly higher in fish fed the S diets compared with those fed the s diets. No definite effect of dietary vitamin E and selenium on the prevalence and severity of natural R. salmoninarum infections was demonstrated.

  1. Effect of dietary vitamin E and selenium on growth, survival and the prevalence of Renibacterium salmoninarum infection in chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Thorarinsson, Ragnar; Landolt, Marsha L.; Elliott, Diane G.; Pascho, Ronald J.; Hardy, Ronald W.

    1994-01-01

    Groups of juvenile spring chinook salmon naturally infected with Renibacterium salmoninarum, the causative agent of bacterial kidney disease, were fed diets containing different levels of vitamin E and selenium for 214 days in fresh water and 110 days in seawater. The fish were fed vitamin E at concentrations of either 53±3 mg (designated e) or 299±9 mg (designated E) α-tocopheryl acetate equivalence/kg dry diet in combination with sodium selenite to give selenium concentrations of either 0.038±0.008 mg (designated s) or 2.49±0.15 mg (designated S)/kg dry diet. No mortality occurred in the group fed the SE diet, whereas mortality was 3% in the groups fed the sE and Se diets, and 31% in the group fed the se diet. At the end of the experiment, weight gain and hematocrit values were significantly greater in those fish fed the E diets compared with those fed the e diets, whereas the hepato-somatic index was significantly higher in fish fed the e diets. Glutathione peroxidase activity in blood plasma was significantly higher in fish fed the S diets compared with those fed the sdiets. No definite effect of dietary vitamin E and selenium on the prevalence and severity of natural R. salmoninarum infections was demonstrated.

  2. Movement of Fall Chinook Salmon Fry Oncorhynchus Tshawytscha : A Comparison of Approach Angles for Fish Bypass in a Modular Rotary Drum Fish Screen.

    SciTech Connect

    Neitzel, D.A.; Blanton, S.L.; Abernethy, C. Scott; Daly, D.S.

    1996-08-01

    The Pacific Northwest National Laboratory (PNNL) performed tests to determine whether a significant difference in fish passage existed between a 6-ft screening facility built perpendicularly to canal flow and an identical screening facility with the screen mounted at a 45-degree angle to the approach channel. A modular drum screen built by the Washington Department of Fish and Wildlife was installed at PNNL`s Aquatic Ecology research laboratory in Richland, Washington. Fall chinook salmon fry were introduced into the test system, and their movements were monitored. A total of 14 tests (400 fish per test) that lasted 20 hours were completed during April and May, 1996. There was no significant difference in fish passage rate through the two approach configurations. Attraction flow to the bypass across the face of the screen was more evident for the angled approach, although this did not appear to play a significant role in attracting fish to the bypass. Approach velocities at the face of the screen did not exceed the 0.4 fps criteria for either approach configuration and posed not threat to fish. No fish passed over, around, or through the drum screen during any test.

  3. Seasonal cycle in vitamin A1/A2-based visual pigment composition during the life history of coho salmon (Oncorhynchus kisutch).

    PubMed

    Temple, S E; Plate, E M; Ramsden, S; Haimberger, T J; Roth, W-M; Hawryshyn, C W

    2006-03-01

    Microspectrophotometry of rod photoreceptors was used to follow variations in visual pigment vitamin A1/A2 ratio at various life history stages in coho salmon. Coho parr shifted their A1/A2 ratio seasonally with A2 increasing during winter and decreasing in summer. The cyclical pattern was statistically examined by a least-squares cosine model, fit to the 12-month data sets collected from different populations. A1/A2 ratio varied with temperature and day length. In 1+ (>12 month old) parr the A2 to A1 shift in spring coincided with smoltification, a metamorphic transition preceding seaward migration in salmonids. The coincidence of the shift from A2 to A1 with both the spring increase in temperature and day length, and with the timing of seaward migration presented a challenge for interpretation. Our data show a shift in A1/A2 ratio correlated with season, in both 0+ (<12 months old) coho parr that remained in fresh water for another year and in oceanic juvenile coho. These findings support the hypothesis that the A1/A2 pigment pair system in coho is an adaptation to seasonal variations in environmental variables rather than to a change associated with migration or metamorphosis.

  4. Beyond Correlation in the Detection of Climate Change Impacts: Testing a Mechanistic Hypothesis for Climatic Influence on Sockeye Salmon (Oncorhynchus nerka) Productivity.

    PubMed

    Tillotson, Michael D; Quinn, Thomas P

    2016-01-01

    Detecting the biological impacts of climate change is a current focus of ecological research and has important applications in conservation and resource management. Owing to a lack of suitable control systems, measuring correlations between time series of biological attributes and hypothesized environmental covariates is a common method for detecting such impacts. These correlative approaches are particularly common in studies of exploited fish species because rich biological time-series data are often available. However, the utility of species-environment relationships for identifying or predicting biological responses to climate change has been questioned because strong correlations often deteriorate as new data are collected. Specifically stating and critically evaluating the mechanistic relationship(s) linking an environmental driver to a biological response may help to address this problem. Using nearly 60 years of data on sockeye salmon from the Kvichak River, Alaska we tested a mechanistic hypothesis linking water temperatures experienced during freshwater rearing to population productivity by modeling a series of intermediate, deterministic relationships and evaluating temporal trends in biological and environmental time-series. We found that warming waters during freshwater rearing have profoundly altered patterns of growth and life history in this population complex yet there has been no significant correlation between water temperature and metrics of productivity commonly used in fisheries management. These findings demonstrate that pairing correlative approaches with careful consideration of the mechanistic links between populations and their environments can help to both avoid spurious correlations and identify biologically important, but not statistically significant relationships, and ultimately producing more robust conclusions about the biological impacts of climate change.

  5. Identification and expression analysis of two interleukin-23α (p19) isoforms, in rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar.

    PubMed

    Jiang, Yousheng; Husain, Mansourah; Qi, Zhitao; Bird, Steve; Wang, Tiehui

    2015-08-01

    Interleukin (IL)-23 is a heterodimeric IL-12 family cytokine composed of a p19 α-chain, linked to a p40 β-chain that is shared with IL-12. IL-23 is distinguished functionally from IL-12 by its ability to induce the production of IL-17, and differentiation of Th17 cells in mammals. Three isoforms of p40 (p40a, p40b and p40c) have been found in some 3R teleosts. Salmonids also possess three p40 isoforms (p40b1, p40b2 and p40c) although p40a is missing, and two copies (paralogues) of p40b are present that have presumably been retained following the 4R duplication in this fish lineage. Teleost p19 has been discovered recently in zebrafish, but to date there is limited information on expression and modulation of this molecule. In this report we have cloned two p19 paralogues (p19a and p19b) in salmonids, suggesting that a salmonid can possess six potential IL-23 isoforms. Whilst Atlantic salmon has two active p19 genes, the rainbow trout p19b gene may have been pseudogenized. The salmonid p19 translations share moderate identities (22.8-29.9%) to zebrafish and mammalian p19 molecules, but their identity was supported by structural features, a conserved 4 exon/3 intron gene organisation, and phylogenetic tree analysis. The active salmonid p19 genes are highly expressed in blood and gonad. Bacterial (Yersinia ruckeri) and viral infection in rainbow trout induces the expression of p19a, suggesting pathogen-specific induction of IL-23 isoforms. Trout p19a expression was also induced by PAMPs (poly IC and peptidoglycan) and the proinflammatory cytokine IL-1β in primary head kidney macrophages. These data may indicate diverse functional roles of trout IL-23 isoforms in regulating the immune response in fish.

  6. Gas bubble disease: mortalities of coho salmon, Oncorhynchus kisutch, in water with constant total gas pressure and different oxygen-nitrogen ratios

    USGS Publications Warehouse

    Rucker, R.R.

    1975-01-01

    A review of the literature regarding gas-bubble disease can be found in a recent publication by Rucker (1972); one by the National Academy of Science (Anonymous in press); and an unpublished report by Weitkamp and Katz (1973)." Most discussions on gas-bubble disease have dealt with the inert gas, nitrogen-oxygen was given a secondary role. It is important to know the relationship of nitrogen and oxygen when we are concerned with the total gas pressure in water. Where water becomes aerated at dams or falls, oxygen and nitrogen are usually about equally saturated, however, many of the samples analyzed from the Columbia River indicate that nitrogen is often about 7% higher than oxygen when expressed as a percentage. When oxygen is removed from water by metabolic and chemical action, or when oxygen is added to the water by photosynthesis, there is a definite change in the ratio of oxygen and the inert gases (mainly nitrogen with some argon, etc.). This present study shows the effect of varying the oxygen and nitrogen ratio in water on fingerling coho salmon, Oncorh.llnchllS kislltch, while maintaining a constant total gas pressure. The primary purpose of these experiments was to determine differences in lethality of various gas ratios of oxygen and nitrogen at a constant total gas pressure of 119%. I also wished to determine whether there was a difference in susceptibility between sizes and stocks of juvenile coho. Also to be examined was the effect of reducing the oJl:ygen while holding the nitrogen constant.

  7. Investigations into the development of the pituitary gland-thyroid tissue axis and distribution of tissue thyroid hormone content in embryonic coho salmon (Oncorhynchus kisutch) from Lake Ontario.

    PubMed

    Leatherland, J F; Barrett, S B

    1993-08-01

    Total organism content of L-thyroxine (T4) and triiodo-L-thyronine (T3) were measured in the early developmental stages of a stock of Lake Ontario coho salmon from the egg to the yolk absorption stage. Whole organism T4 levels were constant between the egg and pre-hatch embryo stages, but fell progressively during yolk absorption. T3 levels were low from egg to eye-pigment appearance, but then increased prior to hatch and fell again during the post-hatch yolk absorption period.When expressed as ng/tissue, T4 content of the body compartment rose progressively between days 67 and 87 post-fertilization, whilst T4 content of the yolk compartment fell progressively during the same period; the pattern was not evident for tissue T3 content. When expressed as ng/g dry weight of tissue, the inverse relationship was found for T4, and T3 content of the body and yolk compartments decreased progressively and increased progressively, respectively during the same period, suggesting that thyroid hormones were selectively retained in the yolk compartment.Intensely "immunostained" (using anti-human β-TSH antibody) thyrotropic cells were present in small numbers in the pars distalis of the embryonic pituitary at the eye-pigment appearance stage, and the numbers increased markedly until the pre-hatch period.Administration of either bovine thyrotropic hormone (bTSH) or ovine growth hormone (oGH) had no effect on thyroid hormone content of larvae challenged during the yolk absorption period, suggesting that the thyroid tissue was not responsive to exogenous bTSH challenge at this time, and that oGH-sensitive 5'-monodeiodination was either not present or at levels that were too low to cause an elevation in total T3 content, or that the substrate levels were insufficient to permit a measureable increase in whole body T3 content.

  8. Beyond Correlation in the Detection of Climate Change Impacts: Testing a Mechanistic Hypothesis for Climatic Influence on Sockeye Salmon (Oncorhynchus nerka) Productivity

    PubMed Central

    Tillotson, Michael D.; Quinn, Thomas P.

    2016-01-01

    Detecting the biological impacts of climate change is a current focus of ecological research and has important applications in conservation and resource management. Owing to a lack of suitable control systems, measuring correlations between time series of biological attributes and hypothesized environmental covariates is a common method for detecting such impacts. These correlative approaches are particularly common in studies of exploited fish species because rich biological time-series data are often available. However, the utility of species-environment relationships for identifying or predicting biological responses to climate change has been questioned because strong correlations often deteriorate as new data are collected. Specifically stating and critically evaluating the mechanistic relationship(s) linking an environmental driver to a biological response may help to address this problem. Using nearly 60 years of data on sockeye salmon from the Kvichak River, Alaska we tested a mechanistic hypothesis linking water temperatures experienced during freshwater rearing to population productivity by modeling a series of intermediate, deterministic relationships and evaluating temporal trends in biological and environmental time-series. We found that warming waters during freshwater rearing have profoundly altered patterns of growth and life history in this population complex yet there has been no significant correlation between water temperature and metrics of productivity commonly used in fisheries management. These findings demonstrate that pairing correlative approaches with careful consideration of the mechanistic links between populations and their environments can help to both avoid spurious correlations and identify biologically important, but not statistically significant relationships, and ultimately producing more robust conclusions about the biological impacts of climate change. PMID:27123845

  9. Application of Diversity Indices to Quantify Early Life-History Diversity for Chinook Salmon

    SciTech Connect

    Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Teel, David

    2014-03-01

    We developed an index of early life history diversity (ELHD) for Pacific salmon (Oncorhynchus spp.) Early life history diversity is the variation in morphological and behavioral traits expressed within and among populations by individual juvenile salmon during their downstream migration. A standard quantitative method does not exist for this prominent concept in salmon biology.

  10. 76 FR 35755 - Listing Endangered and Threatened Species: Threatened Status for the Oregon Coast Coho Salmon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Species: Threatened Status for the Oregon Coast Coho Salmon Evolutionarily Significant Unit AGENCY...) of coho salmon (Oncorhynchus kisutch) under the Endangered Species Act (ESA). This listing... INFORMATION: We first proposed to list the OC coho salmon ESU as threatened under the ESA in 1995 (60 FR...

  11. Scour of chinook salmon redds on suction dredge tailings

    Treesearch

    Bret C. Harvey; Thomas E. Lisle

    1999-01-01

    Abstract - We measured scour of the redds of chinook salmon Oncorhynchus tshawytscha on dredge tailings and natural substrates in three tributaries of the Klamath River, California. We measured maximum scour with scour chains and net scour by surveying before and after high winter flows. Scour of chinook salmon redds located on dredge tailings exceeded scour of redds...

  12. Diphyllobothrium nihonkaiense Tapeworm Larvae in Salmon from North America

    PubMed Central

    Oros, Mikuláš; Ferguson, Jayde; Scholz, Tomáš

    2017-01-01

    Diphyllobothriosis is reemerging because of global importation and increased popularity of eating raw fish. We detected Diphyllobothrium nihonkaiense plerocercoids in the musculature of wild pink salmon (Oncorhynchus gorbuscha) from Alaska, USA. Therefore, salmon from the American and Asian Pacific coasts and elsewhere pose potential dangers for persons who eat these fish raw. PMID:28098540

  13. Diphyllobothrium nihonkaiense Tapeworm Larvae in Salmon from North America.

    PubMed

    Kuchta, Roman; Oros, Mikuláš; Ferguson, Jayde; Scholz, Tomáš

    2017-02-01

    Diphyllobothriosis is reemerging because of global importation and increased popularity of eating raw fish. We detected Diphyllobothrium nihonkaiense plerocercoids in the musculature of wild pink salmon (Oncorhynchus gorbuscha) from Alaska, USA. Therefore, salmon from the American and Asian Pacific coasts and elsewhere pose potential dangers for persons who eat these fish raw.

  14. Salmon returns and consumer fitness: growth and energy storage in stream-dwelling salmonids increases with spawning salmon abundance

    USDA-ARS?s Scientific Manuscript database

    We examined how biomass of marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and nitrogen stable isotope ratios (d15N) of stream-dwelling fishes. We sampled coho salmon (Oncorhynchus kisutch) parr and juvenile Dolly Varden (Salvelinus malma) d...

  15. Etiology of sockeye salmon "virus" disease

    USGS Publications Warehouse

    1959-01-01

    Violent epizootics among hatchery reared sockeye salmon fingerLings ( Oncorhynchus nerka) caused by a filterable agent have occurred. In 1954, one source of this infectious, filterable agent was found to be adult sockeye viscera used in the diet for the fingerlings. The results of observations on an epizootic in 1958 indicate that the infection may be transmitted to fingerlings from a water supply to which adult sockeye salmon have access.

  16. Predictability of multispecies competitive interactions in three populations of Atlantic salmon Salmo salar.

    PubMed

    Houde, A L S; Wilson, C C; Neff, B D

    2015-04-01

    Juvenile Atlantic salmon Salmo salar from three allopatric populations (LaHave, Sebago and Saint-Jean) were placed into artificial streams with combinations of four non-native salmonids: brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, Chinook salmon Oncorhynchus tshawytscha and coho salmon Oncorhynchus kisutch. Non-additive effects, as evidenced by lower performance than predicted from weighted summed two-species competition trials, were detected for S. salar fork length (LF ) and mass, but not for survival, condition factor or riffle use. These data support emerging theory on niche overlap and species richness as factors that can lead to non-additive competition effects.

  17. Interspecific habitat associations of juvenile salmonids in Lake Ontario tributaries: implications for Atlantic salmon restoration

    USGS Publications Warehouse

    Johnson, James H.; Chalupnicki, Marc A.

    2014-01-01

    Diel variation in habitat use of subyearling Chinook salmon (Oncorhynchus tshawytscha), subyearling coho salmon (O. kisutch), yearling steelhead (O. mykiss), and yearling Atlantic salmon (Salmo salar) was examined during the spring in two tributaries of Lake Ontario. A total of 1318 habitat observations were made on juvenile salmonids including 367 on steelhead, 351 on Chinook salmon, 333 on Atlantic salmon, and 261 on coho salmon. Steelhead exhibited the most diel variation in habitat use and Chinook the least. Juvenile salmonids were generally associated with more cover and larger substrate during the day in both streams. Interspecific differences in habitat use in both streams occurred with Atlantic salmon (fast velocities) and coho salmon (pools) using the least similar habitat. Chinook salmon and Atlantic salmon used similar habitat in both streams. These findings should help guide future management actions specific to habitat protection and restoration of Atlantic salmon in Lake Ontario tributaries.

  18. Aniakchak sockeye salmon investigations

    USGS Publications Warehouse

    Hamon, Troy R.; Pavey, Scott A.; Miller, Joe L.; Nielsen, Jennifer L.

    2005-01-01

    Aniakchak National Monument and Preserve provides unusual and dramatic landscapes shaped by numerous volcanic eruptions, a massive flood, enormous landslides, and ongoing geological change. The focal point of the monument is Aniakchak Caldera, a restless volcano that embodies the instability of the Alaska Peninsula. This geological instability creates a dynamic and challenging environment for the biological occupants of Aniakchak and unparalleled opportunities for scientists to measure the adaptability of organisms and ecosystems to change. The sockeye salmon (Oncorhynchus nerka) is one member of the Aniakchak ecosystem that has managed to adapt to geologic upheaval and is now thriving in the park. Aside from just surviving in the harsh environment, these salmon are also noteworthy for providing essential marinederived nutrients to plants and animals and as a source of food for historic and present day people in the region.

  19. 76 FR 6383 - Endangered and Threatened Species; 12-Month Finding on a Petition To Delist Coho Salmon South of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... Species; 12-Month Finding on a Petition To Delist Coho Salmon South of San Francisco Bay AGENCY: National... Service (NMFS), are issuing a 12-month finding on a petition to delist coho salmon (Oncorhynchus kisutch.... Coho salmon populations in this region are currently listed under the ESA as part of the...

  20. 77 FR 42629 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Gulf of Alaska... Chinook salmon (Oncorhynchus tshawytscha), which would cause NMFS to close the directed pollock fishery in... also requires retention of salmon by all vessels in the Central and Western GOA pollock fisheries...

  1. 76 FR 62375 - Endangered and Threatened Species; 90-Day Finding on Petitions To Delist Coho Salmon Under the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... Finding on Petitions To Delist Coho Salmon Under the Endangered Species Act AGENCY: National Marine... coho salmon (Oncorhynchus kisutch) under the Endangered Species Act (ESA). We find that the petitions... Gierak requesting that we delist coho salmon under the ESA. We also received two similar petitions...

  2. 76 FR 20302 - Listing Endangered and Threatened Species; 90-Day Finding on a Petition To List Chinook Salmon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... and Threatened Species; 90-Day Finding on a Petition To List Chinook Salmon AGENCY: National Marine... a petition to list the Chinook salmon (Oncorhynchus tshawytscha) in the Upper Klamath and Trinity... actions may be warranted. We will conduct a status review of the Chinook salmon in the Upper Klamath...

  3. Salmon influences on dissolved organic matter in a coastal temperate brown-water stream: an application of fluorescence spectroscopy.

    Treesearch

    E. Hood; J. Fellman; R.T. Edwards

    2007-01-01

    The annual return of spawning Pacific salmon (genus Oncorhynchus) can have a dramatic effect on the nutrient budgets of recipient freshwater ecosystems. We examined how spawning salmon affect streamwater concentrations of inorganic nitrogen and phosphorus and dissolved organic carbon (DOC) in Peterson Creek, a salmon stream in southeast Alaska. In...

  4. Habitat Suitability Index Models: Coho salmon

    USGS Publications Warehouse

    McMahon, Thomas E.

    1983-01-01

    The coho salmon (Oncorhynchus kisutch) is native to the northern Pacific Ocean, spawning and rearing in streams from Monterey Bay, California, to Point Hope, Alaska, and southward along the Asiatic coast to Japan. Its center of abundance in North America is from Oregon to Alaska (Briggs 1953; Godfrey 1965; Hart 1973; Scott and Crossman 1973). Coho salmon have been successfully introduced into the Great Lakes and reservoirs and lakes throughout the United States to provide put-and-grow sport fishing (Scott and Crossman 1973; Wigglesworth and Rawson 1974). No subspecies of coho salmon have been described (Godfrey 1965).

  5. Winter food habits of coastal juvenile steelhead and coho salmon in Pudding Creek, northern California

    Treesearch

    Heather Anne Pert

    1993-01-01

    The objectives of this study were to determine winter food sources, availability, and preferences for coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss) in Pudding Creek, California. The majority of research on overwintering strategies of salmonids on the West Coast has been done in cooler, northern climates studying primarily the role of habitat...

  6. Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.

    2016-01-01

    Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the