Contamination of salmon fillets and processing plants with spoilage bacteria.
Møretrø, Trond; Moen, Birgitte; Heir, Even; Hansen, Anlaug Å; Langsrud, Solveig
2016-11-21
The processing environment of salmon processing plants represents a potential major source of bacteria causing spoilage of fresh salmon. In this study, we have identified major contamination routes of important spoilage associated species within the genera Pseudomonas, Shewanella and Photobacterium in pre-rigor processing of salmon. Bacterial counts and culture-independent 16S rRNA gene analysis on salmon fillet from seven processing plants showed higher levels of Pseudomonas spp. and Shewanella spp. in industrially processed fillets compared to salmon processed under strict hygienic conditions. Higher levels of Pseudomonas spp. and Shewanella spp. were found on fillets produced early on the production day compared to later processed fillets. The levels of Photobacterium spp. were not dependent on the processing method or time of processing. In follow-up studies of two plants, bacterial isolates (n=2101) from the in-plant processing environments (sanitized equipment/machines and seawater) and from salmon collected at different sites in the production were identified by partial 16S rRNA gene sequencing. Pseudomonas spp. dominated in equipment/machines after sanitation with 72 and 91% of samples from the two plants being Pseudomonas-positive. The phylogenetic analyses, based on partial 16S rRNA gene sequencing, showed 48 unique sequence profiles of Pseudomonas of which two were dominant. Only six profiles were found on both machines and in fillets in both plants. Shewanella spp. were found on machines after sanitation in the slaughter department while Photobacterium spp. were not detected after sanitation in any parts of the plants. Shewanella spp. and Photobacterium spp. were found on salmon in the slaughter departments. Shewanella was frequently present in seawater tanks used for bleeding/short term storage. In conclusion, this study provides new knowledge on the processing environment as a source of contamination of salmon fillets with Pseudomonas spp. and Shewanella spp., while Photobacterium spp. most likely originate from the live fish and seawater. The study show that strict hygiene during processing is a prerequisite for optimal shelf life of salmon fillets and that about 90% reductions in the initial levels of bacteria on salmon fillets can be obtained using optimal hygienic conditions. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Langsrud, S; Moen, B; Møretrø, T; Løype, M; Heir, E
2016-02-01
The microbiota surviving sanitation of salmon-processing conveyor belts was identified and its growth dynamics further investigated in a model mimicking processing surfaces in such plants. A diverse microbiota dominated by Gram-negative bacteria was isolated after regular sanitation in three salmon processing plants. A cocktail of 14 bacterial isolates representing all genera isolated from conveyor belts (Listeria, Pseudomonas, Stenotrophomonas, Brochothrix, Serratia, Acinetobacter, Rhodococcus and Chryseobacterium) formed stable biofilms on steel coupons (12°C, salmon broth) of about 10(9) CFU cm(-2) after 2 days. High-throughput sequencing showed that Listeria monocytogenes represented 0·1-0·01% of the biofilm population and that Pseudomonas spp dominated. Interestingly, both Brochothrix sp. and a Pseudomonas sp. dominated in the surrounding suspension. The microbiota surviving sanitation is dominated by Pseudomonas spp. The background microbiota in biofilms inhibit, but do not eliminate L. monocytogenes. The results highlights that sanitation procedures have to been improved in the salmon-processing industry, as high numbers of a diverse microbiota survived practical sanitation. High-throughput sequencing enables strain level studies of population dynamics in biofilm. © 2015 The Society for Applied Microbiology.
Vera, L M; Metochis, C; Taylor, J F; Clarkson, M; Skjærven, K H; Migaud, H; Tocher, D R
2017-11-17
To ensure sustainability of aquaculture, plant-based ingredients are being used in feeds to replace marine-derived products. However, plants contain secondary metabolites which can affect food intake and nutrient utilisation of fish. The application of nutritional stimuli during early development can induce long-term changes in animal physiology. Recently, we successfully used this approach to improve the utilisation of plant-based diets in diploid and triploid Atlantic salmon. In the present study we explored the molecular mechanisms occurring in the liver of salmon when challenged with a plant-based diet in order to determine the metabolic processes affected, and the effect of ploidy. Microarray analysis revealed that nutritional history had a major impact on the expression of genes. Key pathways of intermediary metabolism were up-regulated, including oxidative phosphorylation, pyruvate metabolism, TCA cycle, glycolysis and fatty acid metabolism. Other differentially expressed pathways affected by diet included protein processing in endoplasmic reticulum, RNA transport, endocytosis and purine metabolism. The interaction between diet and ploidy also had an effect on the hepatic transcriptome of salmon. The biological pathways with the highest number of genes affected by this interaction were related to gene transcription and translation, and cell processes such as proliferation, differentiation, communication and membrane trafficking. The present study revealed that nutritional programming induced changes in a large number of metabolic processes in Atlantic salmon, which may be associated with the improved fish performance and nutrient utilisation demonstrated previously. In addition, differences between diploid and triploid salmon were found, supporting recent data that indicate nutritional requirements of triploid salmon may differ from those of their diploid counterparts.
Ribotype diversity of Listeria monocytogenes isolates from two salmon processing plants in Norway.
Klaeboe, Halvdan; Rosef, Olav; Fortes, Esther; Wiedmann, Martin
2006-10-01
The purpose of this study was to use automated ribotyping procedure to track Listeria monocytogenes transmission in the cold smoked fish production chain and to characterize L. monocytogenes subtypes associated with the salmon processing industry. A total of 104 isolates, which had previously been obtained from a raw fish slaughter and processing plant (plant B) and an adjacent, downstream, salmon smoking operation (plant A), were characterized. These isolates had been obtained through a longitudinal study on Listeria presence, which covered a 31-week period, in both plants. Isolates had been obtained from samples taken from different machinery used throughout the production process. In addition, six isolates obtained from products produced in plant A two years after the initial study were included, so that a total of 110 isolates were characterized. Automated ribotyping was performed using both the restriction enzymes EcoRI and PvuII to increase the discriminatory power. The 110 L. monocytogenes isolates could be divided into 11 EcoRI ribotypes; PvuII ribotype data yielded multiple subtypes within 7 EcoRI ribotypes for a total of 21 subtypes based on both EcoRI and PvuII ribotyping. A total of three EcoRI ribotypes (DUP-1023C, DUP-1045B, and DUP-1053E) were isolated at multiple sampling times from both plants. In addition, one subtype (DUP-1053B) was isolated at multiple sampling times in only plant A, the salmon smoking operation. These data not only support that L. monocytogenes can persist throughout the salmon production system, but also showed that L. monocytogenes may be transmitted between slaughter and smoking operations or may be unique to smoking operations. While the majority of subtypes isolated have been rarely or never linked to human listeriosis cases, some subtypes have previously caused human listeriosis outbreaks and cases. Molecular subtyping thus is critical to identify L. monocytogenes transmission and niches in order to allow design and implementation of control strategies at the appropriate stage of production and in order to reduce the prevalence of L. monocytogenes linked to human disease.
History of salmon in the Great Lakes, 1850-1970
Parsons, John W.
1973-01-01
This history of the salmon in the Great Lakes describes the decline and extinction of the Atlantic salmon (Salmo salar) in Lake Ontario in the 1800's; the failure to establish, by salmon culture, permanent or sizable populations of Atlantic or Pacific salmon in any of the Great Lakes in 1867-1965; and the success of the plantings of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytsha) in the Great Lakes, in 1966-70 -- particularly in Lake Michigan. Despite plantings of 5 million fry and fingerlings from Lake Ontario stocks in 1866-84, the native Atlantic salmon in Lake Ontario became extinct in the late 1800's primarily because tributaries in which they spawned were blocked by mill dams. Plantings of 13 million chinook salmon and landlocked and anadromous forms of Atlantic salmon in Lake Ontario and the other Great Lakes in 1873-1947 failed completely. The first species to develop a self-sustaining population was the pink salmon (O. gorbuscha), which was planted in Lake Superior in 1956; however, it has not become abundant. A salmon fishery finally was established when 15 million coho salmon and 6 million chinook salmon were planted as smolt in the Great Lakes in 1966-70. In 1970, for example, 576,000 coho salmon (12% of those planted in 1969) were caught by anglers in Lake Michigan. Most weighed 5 to 10 pounds (2.3-4.5 kg). Sport fishing for salmon was fair in Lakes Superior and Huron, and poor in Lakes Erie and Ontario. By 1970, natural reproduction of coho, chinook, pink, and kokanee (O. nerka) salmon had occurred in some tributaries of one or more of the upper three Great Lakes. It is expected, however, that the sport fishery will continue to be supported almost entirely by planted fish.
Porsby, Cisse Hedegaard; Vogel, Birte Fonnesbech; Mohr, Mona; Gram, Lone
2008-03-20
Cold-smoked salmon is a ready-to-eat product in which Listeria monocytogenes sometimes can grow to high numbers. The bacterium can colonize the processing environment and it is believed to survive or even grow during the processing steps. The purpose of the present study was to determine if the steps in the processing of cold-smoked salmon affect survival and subsequent growth of a persistent strain of L. monocytogenes to a lesser degree than presumed non-persistent strains. We used a sequence of experiments increasing in complexity: (i) small salmon blocks salted, smoked or dried under model conditions, (ii) fillets of salmon cold-smoked in a pilot plant and finally, (iii) assessment of the bacterial levels before and after processing during commercial scale production. L. monocytogenes proliferated on salmon blocks that were brined or dipped in liquid smoke and left at 25 degrees C in a humidity chamber for 24 h. However, combining brining and liquid smoke with a drying (25 degrees C) step reduced the bacterium 10-100 fold over a 24 h period. Non-salted, brine injected or dry salted salmon fillets were surface inoculated with L. monocytogenes and cold-smoked in a pilot plant. L. monocytogenes was reduced from 10(3) to 10-10(2) CFU/cm(2) immediately after cold-smoking. The greatest reductions were observed in dry salted and brine injected fillets as compared to cold-smoking of non-salted fresh fillets. Levels of L. monocytogenes decreased further when the cold-smoked fish was vacuum-packed and stored at 5 degrees C. A similar decline was seen when inoculating brine injected fillets after cold-smoking. High phenol concentrations are a likely cause of this marked growth inhibition. In a commercial production facility, the total viable count of salmon fillets was reduced 10-1000 fold by salting, cold-smoking and process-freezing (a freezing step after smoking and before slicing). The prevalence of L. monocytogenes in the commercial production facility was too low to determine any quantitative effects, however, one of nine samples was positive before processing and none after. Taken together, the processing steps involved in cold-smoking of salmon are bactericidal and reduce, but do not eliminate L. monocytogenes. A persistent strain was no less sensitive to the processing steps than a clinical strain or strain EGD.
Fagerlund, Annette; Langsrud, Solveig; Schirmer, Bjørn C. T.; Møretrø, Trond; Heir, Even
2016-01-01
Listeria monocytogenes is an important foodborne pathogen responsible for the disease listeriosis, and can be found throughout the environment, in many foods and in food processing facilities. The main cause of listeriosis is consumption of food contaminated from sources in food processing environments. Persistence in food processing facilities has previously been shown for the L. monocytogenes sequence type (ST) 8 subtype. In the current study, five ST8 strains were subjected to whole-genome sequencing and compared with five additionally available ST8 genomes, allowing comparison of strains from salmon, poultry and cheese industry, in addition to a human clinical isolate. Genome-wide analysis of single-nucleotide polymorphisms (SNPs) confirmed that almost identical strains were detected in a Danish salmon processing plant in 1996 and in a Norwegian salmon processing plant in 2001 and 2011. Furthermore, we show that L. monocytogenes ST8 was likely to have been transferred between two poultry processing plants as a result of relocation of processing equipment. The SNP data were used to infer the phylogeny of the ST8 strains, separating them into two main genetic groups. Within each group, the plasmid and prophage content was almost entirely conserved, but between groups, these sequences showed strong divergence. The accessory genome of the ST8 strains harbored genetic elements which could be involved in rendering the ST8 strains resilient to incoming mobile genetic elements. These included two restriction-modification loci, one of which was predicted to show phase variable recognition sequence specificity through site-specific domain shuffling. Analysis indicated that the ST8 strains harbor all important known L. monocytogenes virulence factors, and ST8 strains are commonly identified as the causative agents of invasive listeriosis. Therefore, the persistence of this L. monocytogenes subtype in food processing facilities poses a significant concern for food safety. PMID:26953695
An Experimental Approach for Restoration of Salmon River Ecosystems
NASA Astrophysics Data System (ADS)
Stanford, J. A.
2005-05-01
River ecosystem theory predicts that dynamic, nonlinear physical and biological processes linking water, heat and materials (biota, sediment, plant-growth nutrients) flux and retention to fluvial landscape change in a habitat mosaic context drive salmon life histories and productivity in freshwater. Multidisciplinary studies and cross-site comparisons within a network of pristine salmon river observatories around the north Pacific Rim support these predictions. Billions of dollars have been spent on salmon-river restoration worldwide to little avail, mainly because salmon biology, rather than ecosystem process boundaries and bottlenecks, is driving restoration goals. I argue that entire river catchment restoration, in relation to these dynamic processes and bottlenecks and also coherent with the estuarine and marine implications of salmon life history parameters, is the only possibility for sustaining or restoring natural productivity and life history (genetic) diversity in salmon rivers. This can be done only in a few places owing to the continual press of human demands on river ecosystems, the morass of legal challenges to proactive salmon river restoration strategies and insufficient understanding of freshwater and marine linkages. The Elwha and Yakima Rivers in Washington, among a few others that I will name, offer real opportunities to restore entire watersheds for wild salmon. These restorations should be viewed as experimental manipulations in which outcomes may be evaluated against norms measured in the salmon river observatory network. Bias from hatcheries and harvest, among other anthropogenic interferences, must be eliminated for such experiments to be evaluated in light of contemporary river ecosystem theory. And, a much more synthetic understanding of freshwater and marine linkages must be forthcoming in concert with a much more robust general theory of river restoration.
Arvanitoyannis, Ioannis S; Varzakas, Theodoros H
2008-05-01
The Failure Mode and Effect Analysis (FMEA) model was applied for risk assessment of salmon manufacturing. A tentative approach of FMEA application to the salmon industry was attempted in conjunction with ISO 22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (salmon processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points were identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram and fishbone diagram). In this work, a comparison of ISO 22000 analysis with HACCP is carried out over salmon processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the RPN per identified processing hazard. Fish receiving, casing/marking, blood removal, evisceration, filet-making cooling/freezing, and distribution were the processes identified as the ones with the highest RPN (252, 240, 210, 210, 210, 210, 200 respectively) and corrective actions were undertaken. After the application of corrective actions, a second calculation of RPN values was carried out resulting in substantially lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO 22000 system of a salmon processing industry is anticipated to prove advantageous to industrialists, state food inspectors, and consumers.
Comparative survival and growth of Atlantic salmon from egg stocking and fry releases
Johnson, James H.
2004-01-01
First summer survival and subsequent growth of Atlantic salmon Salmo salar planted as eggs and fry in a tributary of Cayuga Lake, New York, were examined for 3 years. Atlantic salmon were planted in December 1999-2001 in 20 Whitlock-Vibert (W-V) egg incubators, each containing 300 eyed eggs. The following May, 500 fin-clipped Atlantic salmon fry were released in the same stream section. In autumn, a backpack electroshocker was used to capture fry to assess survival and growth. Mean survival was significantly greater for fry (27.9%) than eggs (0.8%). In autumn, mean length was significantly greater for Atlantic salmon released as fry (90.1 mm) than those planted as eggs (76.2 mm), probably owing to accelerated growth in the hatchery caused by warmer water temperatures (i.e., hatchery, 9.4A?C; stream, 5.1A?C). Releasing Atlantic salmon fry in May was nearly 11 times more costly in terms of hatchery effort than was releasing eggs in December. Although the survival of Atlantic salmon eggs in W-V incubators was low, when considering production costs, the use of egg plantings may warrant consideration under certain restoration or enhancement situations.
Epidemiological Survey of Listeria monocytogenes in a gravlax salmon processing line
Cruz, C.D.; Silvestre, F.A.; Kinoshita, E.M.; Landgraf, M.; Franco, B.D.G.M.; Destro, M.T.
2008-01-01
Listeria monocytogenes is a cause of concern to food industries, mainly for those producing ready-to-eat (RTE) products. This microorganism can survive processing steps such as curing and cold smoking and is capable of growing under refrigeration temperatures. Its presence in RTE fish products with extended shelf life may be a risk to the susceptible population. One example of such a product is gravlax salmon; a refrigerated fish product not exposed to listericidal processes and was the subject of this study. In order to evaluate the incidence and dissemination of L. monocytogenes 415 samples were collected at different steps of a gravlax salmon processing line in São Paulo state, Brazil. L. monocytogenes was confirmed in salmon samples (41%), food contact surfaces (32%), non-food contact surfaces (43%) and of food handlers’ samples (34%), but could not be detected in any ingredient. 179 L. monocytogenes isolates randomly selected were serogrouped and typed by PFGE. Most of L. monocytogenes strains belonged to serogroup 1 (73%). 61 combined pulsotypes were found and a dendrogram identified six clusters: most of the strains (120) belonged to cluster A. It was suggested that strains arriving into the plant via raw material could establish themselves in the processing environment contaminating the final product. The wide dissemination of L. monocytogenes in this plant indicates that a great effort has to be taken to eliminate the microorganism from these premises, even though it was not observed multiplication of the microorganism in the final product stored at 4°C up to 90 days. PMID:24031233
Quality grading of Atlantic salmon (Salmo salar) by computer vision.
Misimi, E; Erikson, U; Skavhaug, A
2008-06-01
In this study, we present a promising method of computer vision-based quality grading of whole Atlantic salmon (Salmo salar). Using computer vision, it was possible to differentiate among different quality grades of Atlantic salmon based on the external geometrical information contained in the fish images. Initially, before the image acquisition, the fish were subjectively graded and labeled into grading classes by a qualified human inspector in the processing plant. Prior to classification, the salmon images were segmented into binary images, and then feature extraction was performed on the geometrical parameters of the fish from the grading classes. The classification algorithm was a threshold-based classifier, which was designed using linear discriminant analysis. The performance of the classifier was tested by using the leave-one-out cross-validation method, and the classification results showed a good agreement between the classification done by human inspectors and by the computer vision. The computer vision-based method classified correctly 90% of the salmon from the data set as compared with the classification by human inspector. Overall, it was shown that computer vision can be used as a powerful tool to grade Atlantic salmon into quality grades in a fast and nondestructive manner by a relatively simple classifier algorithm. The low cost of implementation of today's advanced computer vision solutions makes this method feasible for industrial purposes in fish plants as it can replace manual labor, on which grading tasks still rely.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-23
... DEPARTMENT OF AGRICULTURE Forest Service Salmon-Challis National Forest, ID; Forestwide Invasive... to the biological diversity and ecological integrity within and outside the Salmon-Challis National... loss of recreational opportunities. Within the 3,108,904 acres of the of the Salmon-Challis National...
2012-01-01
Background Aquaculture of piscivorous fish is in continual expansion resulting in a global requirement to reduce the dependence on wild caught fish for generation of fishmeal and fish oil. Plant proteins represent a suitable protein alternative to fish meal and are increasingly being used in fish feed. In this study, we examined the transcriptional response of Atlantic salmon (Salmo salar) to a high marine protein (MP) or low fishmeal, higher plant protein replacement diet (PP), formulated to the same nutritional specification within previously determined acceptable maximum levels of individual plant feed materials. Results After 77 days of feeding the fish in both groups doubled in weight, however neither growth performance, feed efficiency, condition factor nor organ indices were significantly different. Assessment of histopathological changes in the heart, intestine or liver did not reveal any negative effects of the PP diet. Transcriptomic analysis was performed in mid intestine, liver and skeletal muscle, using an Atlantic salmon oligonucleotide microarray (Salar_2, Agilent 4x44K). The dietary comparison revealed large alteration in gene expression in all the tissues studied between fish on the two diets. Gene ontology analysis showed, in the mid intestine of fish fed PP, higher expression of genes involved in enteritis, protein and energy metabolism, mitochondrial activity/kinases and transport, and a lower expression of genes involved in cell proliferation and apoptosis compared to fish fed MP. The liver of fish fed PP showed a lower expression of immune response genes but a higher expression of cell proliferation and apoptosis processes that may lead to cell reorganization in this tissue. The skeletal muscle of fish fed PP vs MP was characterized by a suppression of processes including immune response, energy and protein metabolism, cell proliferation and apoptosis which may reflect a more energy efficient tissue. Conclusions The PP diet resulted in significant effects on transcription in all the 3 tissues studied. Despite of these alterations, we demonstrated that high level of plant derived proteins in a salmon diet allowed fish to grow with equal efficiency as those on a high marine protein diet, and with no difference in biometric quality parameters. PMID:22853566
Tacchi, Luca; Secombes, Christopher J; Bickerdike, Ralph; Adler, Michael A; Venegas, Claudia; Takle, Harald; Martin, Samuel A M
2012-08-01
Aquaculture of piscivorous fish is in continual expansion resulting in a global requirement to reduce the dependence on wild caught fish for generation of fishmeal and fish oil. Plant proteins represent a suitable protein alternative to fish meal and are increasingly being used in fish feed. In this study, we examined the transcriptional response of Atlantic salmon (Salmo salar) to a high marine protein (MP) or low fishmeal, higher plant protein replacement diet (PP), formulated to the same nutritional specification within previously determined acceptable maximum levels of individual plant feed materials. After 77 days of feeding the fish in both groups doubled in weight, however neither growth performance, feed efficiency, condition factor nor organ indices were significantly different. Assessment of histopathological changes in the heart, intestine or liver did not reveal any negative effects of the PP diet. Transcriptomic analysis was performed in mid intestine, liver and skeletal muscle, using an Atlantic salmon oligonucleotide microarray (Salar_2, Agilent 4x44K). The dietary comparison revealed large alteration in gene expression in all the tissues studied between fish on the two diets. Gene ontology analysis showed, in the mid intestine of fish fed PP, higher expression of genes involved in enteritis, protein and energy metabolism, mitochondrial activity/kinases and transport, and a lower expression of genes involved in cell proliferation and apoptosis compared to fish fed MP. The liver of fish fed PP showed a lower expression of immune response genes but a higher expression of cell proliferation and apoptosis processes that may lead to cell reorganization in this tissue. The skeletal muscle of fish fed PP vs MP was characterized by a suppression of processes including immune response, energy and protein metabolism, cell proliferation and apoptosis which may reflect a more energy efficient tissue. The PP diet resulted in significant effects on transcription in all the 3 tissues studied. Despite of these alterations, we demonstrated that high level of plant derived proteins in a salmon diet allowed fish to grow with equal efficiency as those on a high marine protein diet, and with no difference in biometric quality parameters.
Hevrøy, Ernst M; El-Mowafi, Adel; Taylor, Richard; Norberg, Birgitta; Espe, Marit
2008-12-01
To investigate the endocrine signalling from dietary plant protein on somatotropic system and gastrointestinal hormone cholecystokinin (CCK), two iso-amino acid diets based on either high plant or high fish meal protein were fed to Atlantic salmon. Salmon with an average starting weight of 641+/-23 g (N=180), were fed a fish meal (FM) based diet (containing 40% FM) or diets mainly consisting of blended plant proteins (PP) containing only 13% marine protein, of which only 5% was FM for 3 months. mRNA levels of target genes GH, GH-R, IGF-I, IGF-II, IGFBP-1, IGF-IR in addition to CCK-L, were studied in brain, hepatic tissue and fast muscle, and circulating levels of IGF-I in plasma of Atlantic salmon were measured. We detected reduced feed intake resulting in lower growth, weight gain and muscle protein accretion in salmon fed plant protein compared to a diet based on fish meal. There were no significant effects on the regulation of the target genes in brain or in hepatic tissues, but a trend of down-regulation of IGF-I was detected in fast muscle. Lower feed intake, and therefore lower intake of the indispensable amino acids, may have resulted in lower pituitary GH and lower IGF-I mRNA levels in muscle tissues. This, together with higher protein catabolism, may be the main cause of the reduced growth of salmon fed plant protein diet. There were no signalling effects detected either by the minor differences of the diets on mRNA levels of GH, GH-R, IGF-IR, IGF-II, IGFBP-1, CCK or plasma protein IGF-I.
Overney, Anaïs; Chassaing, Danielle; Carpentier, Brigitte; Guillier, Laurent; Firmesse, Olivier
2016-12-05
Listeria monocytogenes is one of the main targets of hygiene procedures in the ready-to-eat food industry due to its ability to persist for months or even years in processing plants, where it can contaminate food during processing. The factors associated with persistence are often those that foster growth, which itself depends on food contamination of surfaces. It is therefore essential to experiment by using food soils or media modelling these soils to understand the behaviour of L. monocytogenes on surfaces of food processing plants. Thus, we set up an experimental plan including three physiological parameters characteristic of the behaviour of cells on surfaces, namely spatial distribution, adhesion forces and the physiological state of sessile L. monocytogenes. These were recorded in two food soils: smoked salmon juice and meat exudate. According to our results, the behaviour of L. monocytogenes on stainless steel surfaces is highly dependent on the food soil used. The presence of viable but non-culturable (VBNC) cells was demonstrated using meat exudate, while all viable cells were recovered using smoked salmon juice. Moreover, on the basis of our criteria and after validation with three strains of L. monocytogenes, we showed that smoked salmon juice can be substituted by a modified culture medium, demonstrating that drawbacks associated with the use of food soils can be overcome. Copyright © 2016 Elsevier B.V. All rights reserved.
Dietary and spatial overlap between sympatric ursids relative to salmon use
Fortin, Jennifer K.; Farley, Sean D.; Rode, Karyn D.; Robbins, Charles T.
2007-01-01
We hypothesized that there would be minimal dietary overlap between sympatric brown bears (Ursus arctos) and American black bears (U. americanus) relative tosalmon (Oncorhynchus spp.) utilization when alternative foods (e.g., fruits) are abundant. To maximize the chance that we would reject this hypothesis, we examined the diets of brown and black bears known to have visited salmon streams. Species, sex, and individual identification of bears visiting salmon streams were determined by DNA analysis of hair and feces collected in 2002-2004 along those streams. Diets were estimated from fecal residues and stable isotope analyses of hair. Assimilated diets of brown bears were 66.0% (SD = 16.7%) salmon, 13.9% (SD = 7.5%) terrestrial animal matter, and 20.1% (SD = 17.2%) plant matter. Assimilated diets of black bears were 8.0% (SD = 5.4%)salmon, 8.4% (SD = 9.7%) terrestrial animal matter, and 83.6% (SD = 7.7%) plant matter. Male and female brown bears did not differ in either the proportion of dietary salmon, terrestrial animal matter, or plant matter. The relative amounts of fruit residues in the feces of brown bears (87.0%, SD = 15.2%) and black bears (91.8%, SD = 7.2%) did not differ. Both sexes of brown bears visited salmon streams and consumed significant amounts of salmon, but only male American black bears visited streams and then consumed minimal amounts of salmon. Thus, brown bears were largely carnivorous and black bears were largely herbivorous and frugivorous. This reduced dietary overlap relative to salmon and fruit use is understandable in light of the concentrated, defendable nature of salmon in small streams, the widely dispersed, non-defendable nature of abundant fruits, the dominance of brown over black bears, the higher energy requirement of the larger brown bear, and, therefore, the differing ability of the species to efficiently exploit different food resources.
Placement of salmon carcasses is a common restoration technique in Oregon and Washington streams, with the goal of improving food resources and productivity of juvenile salmon. To explore the effectiveness of this restoration technique, we measured the δ15N of juvenile coho salmo...
Di Ciccio, Pierluigi; Meloni, Domenico; Festino, Anna Rita; Conter, Mauro; Zanardi, Emanuela; Ghidini, Sergio; Vergara, Alberto; Mazzette, Rina; Ianieri, Adriana
2012-08-01
The aim of the present study was to investigate the sources of Listeria monocytogenes contamination in a cold smoked salmon processing environment over a period of six years (2003-2008). A total of 170 samples of raw material, semi-processed, final product and processing surfaces at different production stages were tested for the presence of L. monocytogenes. The L. monocytogenes isolates were characterized by multiplex PCR for the analysis of virulence factors and for serogrouping. The routes of contamination over the six year period were traced by PFGE. L. monocytogenes was isolated from 24% of the raw salmon samples, 14% of the semi-processed products and 12% of the final products. Among the environmental samples, 16% were positive for L. monocytogenes. Serotyping yielded three serovars: 1/2a, 1/2b, 4b, with the majority belonging to serovars 1/2a (46%) and 1/2b (39%). PFGE yielded 14 profiles: two of them were repeatedly isolated in 2005-2006 and in 2007-2008 mainly from the processing environment and final products but also from raw materials. The results of this longitudinal study highlighted that contamination of smoked salmon occurs mainly during processing rather than originating from raw materials, even if raw fish can be a contamination source of the working environment. Molecular subtyping is critical for the identification of the contamination routes of L. monocytogenes and its niches into the production plant when control strategies must be implemented with the aim to reduce its prevalence during manufacturing. Copyright © 2012 Elsevier B.V. All rights reserved.
40 CFR 408.170 - Applicability; description of the Alaskan mechanized salmon processing subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Alaskan mechanized salmon processing subcategory. 408.170 Section 408.170 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.170 Applicability; description of the Alaskan mechanized salmon processing subcategory. The provisions of this subpart are...
40 CFR 408.170 - Applicability; description of the Alaskan mechanized salmon processing subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Alaskan mechanized salmon processing subcategory. 408.170 Section 408.170 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.170 Applicability; description of the Alaskan mechanized salmon processing subcategory. The provisions of this subpart are...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... frequencies was detected between wild- spawning coho salmon from the upper North Fork Nooksack River and.... These findings suggest that a distinct Nooksack River wild coho salmon population persists, amidst... List Puget Sound Coho Salmon as Endangered or Threatened AGENCY: National Marine Fisheries Service...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Coast mechanized salmon processing subcategory. 408.190 Section 408.190 Protection of Environment... PROCESSING POINT SOURCE CATEGORY West Coast Mechanized Salmon Processing Subcategory § 408.190 Applicability; description of the West Coast mechanized salmon processing subcategory. The provisions of this subpart are...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Alaskan hand-butchered salmon processing subcategory. 408.160 Section 408.160 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Hand-Butchered Salmon Processing Subcategory § 408.160 Applicability; description of the Alaskan hand-butchered salmon processing subcategory. The provisions of this subpart are...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Coast hand-butchered salmon processing subcategory. 408.180 Section 408.180 Protection of Environment... PROCESSING POINT SOURCE CATEGORY West Coast Hand-Butchered Salmon Processing Subcategory § 408.180 Applicability; description of the West Coast hand-butchered salmon processing subcategory. The provisions of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Coast hand-butchered salmon processing subcategory. 408.180 Section 408.180 Protection of Environment... PROCESSING POINT SOURCE CATEGORY West Coast Hand-Butchered Salmon Processing Subcategory § 408.180 Applicability; description of the West Coast hand-butchered salmon processing subcategory. The provisions of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Coast mechanized salmon processing subcategory. 408.190 Section 408.190 Protection of Environment... PROCESSING POINT SOURCE CATEGORY West Coast Mechanized Salmon Processing Subcategory § 408.190 Applicability; description of the West Coast mechanized salmon processing subcategory. The provisions of this subpart are...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Alaskan hand-butchered salmon processing subcategory. 408.160 Section 408.160 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Hand-Butchered Salmon Processing Subcategory § 408.160 Applicability; description of the Alaskan hand-butchered salmon processing subcategory. The provisions of this subpart are...
Misimi, E; Mathiassen, J R; Erikson, U
2007-01-01
Computer vision method was used to evaluate the color of Atlantic salmon (Salmo salar) fillets. Computer vision-based sorting of fillets according to their color was studied on 2 separate groups of salmon fillets. The images of fillets were captured using a digital camera of high resolution. Images of salmon fillets were then segmented in the regions of interest and analyzed in red, green, and blue (RGB) and CIE Lightness, redness, and yellowness (Lab) color spaces, and classified according to the Roche color card industrial standard. Comparisons of fillet color between visual evaluations were made by a panel of human inspectors, according to the Roche SalmoFan lineal standard, and the color scores generated from computer vision algorithm showed that there were no significant differences between the methods. Overall, computer vision can be used as a powerful tool to sort fillets by color in a fast and nondestructive manner. The low cost of implementing computer vision solutions creates the potential to replace manual labor in fish processing plants with automation.
Merkin, Grigory V; Stien, Lars Helge; Pittman, Karin; Nortvedt, Ragnar
2014-06-01
Commercially collected records of Atlantic salmon (Salmo salar L.) muscle texture hardness were used to evaluate the effect of slaughter procedures and seasonality on texture quality. A database collected by Marine Harvest® contained flesh hardness records of Atlantic salmon slaughtered at processing plants in Norway from summer 2010 to summer 2011. The fish were slaughtered either by (1) percussion followed by automated bleeding ("Percussive") or (2) live chilling with exposure to carbon dioxide (CO2 ) followed by manual severing gill arches and bleeding ("CO2 ") or (3) live chilling with exposure to CO2 followed by percussive stunning and at the end automated bleeding ("CO2 ·percussive"). Hardness in salmon muscle cutlets was measured in Newtons (N) by Materials Testing Machine Zwick 500N. The hardness in salmon varied significantly over the study period (P < 0.05, mixed effect model) and showed the softest value of 21.2 (± 0.7) Newton (N) in summer 2011 and hardest 24.1 (± 0.2) N in autumn 2010. Slaughter procedures had a significant effect on salmon muscle hardness (P < 0.05, mixed effect model), where percussion followed by automated bleeding resulted in the hardest value (24.0 ± 0.4 N) as compared with CO2 stunning (21.8 ± 0.2 N) and combination of CO2 and percussive stunning (23.1 ± 0.15 N). CO2 is suspected as a causal factor in accelerated postmortem softening of the salmon muscle. Commercial use of CO2 in combination with live chilling results in accelerated postmortem softening of the muscle tissue in salmon and should be avoided. © 2014 Institute of Food Technologists®
40 CFR 408.165 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Hand-Butchered Salmon Processing Subcategory § 408.165 Standards of performance for new sources. (a... this subpart: (1) Any hand-butchered salmon processing facility located in population or processing... salmon processing facility not covered under § 408.165(a)(1) shall meet the following limitations: No...
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORY Alaskan Hand-Butchered Salmon Processing Subcategory § 408.162 Effluent limitations guidelines... available (BPT): (a) Any hand-butchered salmon processing facility located in population or processing... salmon processing facility not covered under § 408.162(a) shall meet the following limitations: No...
40 CFR 408.165 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Hand-Butchered Salmon Processing Subcategory § 408.165 Standards of performance for new sources. (a... this subpart: (1) Any hand-butchered salmon processing facility located in population or processing... salmon processing facility not covered under § 408.165(a)(1) shall meet the following limitations: No...
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORY Alaskan Hand-Butchered Salmon Processing Subcategory § 408.162 Effluent limitations guidelines... available (BPT): (a) Any hand-butchered salmon processing facility located in population or processing... salmon processing facility not covered under § 408.162(a) shall meet the following limitations: No...
Núñez-Acuña, Gustavo; Gonçalves, Ana Teresa; Valenzuela-Muñoz, Valentina; Pino-Marambio, Jorge; Wadsworth, Simon; Gallardo-Escárate, Cristian
2015-11-01
One of the most significant threats to the Chilean salmon aquaculture industry is the ectoparasitic sea louse Caligus rogercresseyi. To cope with sea lice infestations, functional diets have become an important component in strengthening the host immune response. The aim of this study was to evaluate molecular mechanisms activated through immunostimulation by in-feed plant-derived additives in Atlantic salmon infected with sea lice. Herein, a transcriptome-wide sequencing analysis was performed from skin and head kidney tissues, evidencing that the immune response genes were the most variable after the challenge, especially in the head kidney, while other genes involved in metabolism were highly expressed individuals fed with the immunostimulants. Interestingly, defensive enzymes such as Cytochrome p450 and serpins were down-regulated in infested individuals, especially in skin tissue. Additionally, MHC-I and MHC-II genes were differentially expressed after the incorporation of the in-feed additives, giving some cues about the protection mechanisms of plant-derived compound as immunostimulants for infested salmons. This is the first published study that evaluates the transcriptomic response of sea lice-infested Atlantic salmon fed with in-feed additives. Copyright © 2015 Elsevier Ltd. All rights reserved.
77 FR 3226 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
...: Infectious Salmon Anemia (ISA)--Payment of Indemnity. OMB Control Number: 0579-0192. Summary of Collection... eradicate pest or diseases of livestock or poultry. Infectious Salmon Anemia (ISA) poses a substantial..., anemia, and lethargy. The Animal and Plant Health Inspection Service (APHIS) will collect information...
DeSantos, F A; Ramamoorthi, L; Bechtel, P; Smiley, S; Brewer, M S
2010-08-01
Salmon-based infant food (puree) and toddler food (puree plus chunks) were manufactured from pink salmon, with and without bone, and from Sockeye salmon, with and without bone, to contain 45% salmon, 55% water, and 5% starch. Products were retort processed at 118 to 121 degrees C for 55 min in a steam-jacketed still retort. A trained descriptive panel (n = 7) evaluated infant and toddler foods separately. Instrumental color, pH, and water activity were also determined. Infant and toddler foods were also evaluated by a consumer panel (n = 104) of parents for product acceptability. During the manufacturing process (cooking, homogenization, retort processing), salmon infant food from pink salmon lost much of its characteristic pink color while that from sockeye salmon retained a greater amount. Bitterness was more evident in samples with bones. In the toddler food formulation containing chunks, the odor and flavor characteristics were influenced primarily by the type of salmon. The presence of bone affected visual pink color and lightness, and salmon odor only. Consumers scored products made with sockeye salmon as more acceptable despite the fact that they had more off-flavor than products from pink salmon. The appearance and thickness of the pureed infant food was more acceptable than the toddler food with chunks despite the chunky toddler product having more acceptable salmon flavor. This indicates that the color and appearance of the prototypes were the main drivers for liking. Of the total number of parents surveyed, 73% would feed this salmon product to their children.
40 CFR 408.175 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mechanized Salmon Processing Subcategory § 408.175 Standards of performance for new sources. (a) The...: (1) Any mechanized salmon processing facility located in population or processing centers including... grease 28 10 pH (1) (1) 1 Within the range 6.0 to 9.0. (2) Any mechanized salmon processing facility not...
40 CFR 408.175 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mechanized Salmon Processing Subcategory § 408.175 Standards of performance for new sources. (a) The...: (1) Any mechanized salmon processing facility located in population or processing centers including... grease 28 10 pH (1) (1) 1 Within the range 6.0 to 9.0. (2) Any mechanized salmon processing facility not...
Caballero-Solares, Albert; Hall, Jennifer R; Xue, Xi; Eslamloo, Khalil; Taylor, Richard G; Parrish, Christopher C; Rise, Matthew L
2017-05-01
The effects of replacing marine ingredients by terrestrial ingredients on the health of Atlantic salmon (Salmo salar) are poorly understood. During a 14-week trial, Atlantic salmon fed a fish meal-fish oil based diet (MAR) showed similar growth performance to others fed a plant protein/vegetable oil based diet (VEG), whereas poorer performance was observed in those fed an animal by-product meal/vegetable oil based diet (ABP). At the end of the trial, salmon were injected with either phosphate-buffered saline (PBS) or the viral mimic polyriboinosinic polyribocytidylic acid (pIC) and sampled for head kidney RNA after 24 h. The levels of 27 immune-related transcripts, and of 5 others involved in eicosanoid synthesis (including paralogues in both cases) were measured in the head kidney of the salmon using qPCR. All of the assayed immune-related genes and cox2 were pIC-induced, while the other eicosanoid synthesis-related genes were pIC-repressed. Linear regression was used to establish correlations between different immune transcripts, elucidating the cascade of responses to pIC and specialization among paralogues. Regarding the effect of diet on the antiviral immune response, pIC-treated fish fed diets ABP and VEG showed higher transcript levels of tlr3, irf1b, stat1a, isg15b, and gig1 compared to those fed diet MAR. We infer that the observed dietary immunomodulation could be due to the lower proportion of arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) in diets ABP and VEG. Furthermore, our results suggest a major role of dietary ARA in Atlantic salmon immunity, as low ARA proportion in diet VEG coincided with the highest pIC-induction of some immune transcripts (tlr7, stat1c, mxb, and gig1) and the lowest levels of transcripts encoding eicosanoid-synthesizing enzymes (5loxa, 5loxb, and pgds). In contrast, the high ARA/EPA ratio of diet ABP appeared to favor increased expression of transcripts involved in the synthesis of pro-inflammatory eicosanoids (5loxa and 5loxb) and chemotaxis (ccl19b). In conclusion, our findings show that nutritionally balanced plant-based diets may enhance the immune response of Atlantic salmon. Future studies should explore the possible advantages of plant-based diets in Atlantic salmon exposed to a viral infection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.172 Effluent limitations guidelines... available (BPT): (a) Any mechanized salmon processing facility located in population or processing centers... grease 29 11 pH (1) (1) 1 Within the range 6.0 to 9.0. (b) Any mechanized salmon processing facility not...
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.172 Effluent limitations guidelines... available (BPT): (a) Any mechanized salmon processing facility located in population or processing centers... grease 29 11 pH (1) (1) 1 Within the range 6.0 to 9.0. (b) Any mechanized salmon processing facility not...
Growth of Atlantic salmon, Salmo salar fed diets containing barley protein concentrate
USDA-ARS?s Scientific Manuscript database
Atlantic salmon (Salmo salar) is an important cultured carnivorous species that in the past has not tolerated high levels of most plant protein feed ingredients in the diet. In order to increase efficiency, sustainability and production to meet global demand, new sources of protein must be incorpo...
Microbial evaluation of Alaska salmon caviar.
Himelbloom, B H; Crapo, C A
1998-05-01
Microbial quality of pink salmon caviar (ikura) processed at one plant in Alaska during a 30-day season was examined. Ikura (aw = 0.98; pH 6.1) averaged 49% water, 32% protein, 11% fat, 7% ash, and 3% salt. Aerobic plate counts (APCs) ranged from < 10(2)/g to 4.5 x 10(7)/g with increasing APC toward season's end. Coliform counts ranged from < 3/g to 2.4 x 10(3)/g. Escherichia coli, Staphylococcus aureus, yeasts, and molds were not detected. High-APC (10(7)/g) thawed caviar exhibited predominantly lactic acid bacteria; low-APC (10(3)/g) thawed caviar exhibited predominantly gram-negative bacteria. Freezing had little effect on the microbial counts, and shelf life of thawed caviar was 3 to 5 days at 2 degrees C.
USDA-ARS?s Scientific Manuscript database
Four different red salmon oil extraction processes were used to extract oil from red salmon heads: RS1 involved a mixture of ground red salmon heads and water, no heat treatment, and centrifugation; RS2 involved ground red salmon heads (no water added), heat treatment, and centrifugation; RS3 involv...
Understanding sources of sea lice for salmon farms in Chile.
Kristoffersen, A B; Rees, E E; Stryhn, H; Ibarra, R; Campisto, J-L; Revie, C W; St-Hilaire, S
2013-08-01
The decline of fisheries over recent decades and a growing human population has coincided with an increase in aquaculture production. As farmed fish densities increase, so have their rates of infectious diseases, as predicted by the theory of density-dependent disease transmission. One of the pathogen that has increased with the growth of salmon farming is sea lice. Effective management of this pathogen requires an understanding of the spatial scale of transmission. We used a two-part multi-scale model to account for the zero-inflated data observed in weekly sea lice abundance levels on rainbow trout and Atlantic salmon farms in Chile, and to assess internal (farm) and external (regional) sources of sea lice infection. We observed that the level of juvenile sea lice was higher on farms that were closer to processing plants with fish holding facilities. Further, evidence for sea lice exposure from the surrounding area was supported by a strong positive correlation between the level of juvenile sea lice on a farm and the number of gravid females on neighboring farms within 30 km two weeks prior. The relationship between external sources of sea lice from neighboring farms and juvenile sea lice on a farm was one of the strongest detected in our multivariable model. Our findings suggest that the management of sea lice should be coordinated between farms and should include all farms and processing plants with holding facilities within a relatively large geographic area. Understanding the contribution of pathogens on a farm from different sources is an important step in developing effective control strategies. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Preserving Salmon Byproducts through Smoke-Processing Prior to Ensilage
USDA-ARS?s Scientific Manuscript database
Salmon is an important fishery in Alaska and accounts for about 9% of the annual catch. Processing these fish results in valuable byproducts that contain oils with high concentrations of long-chain n-3 polyunsaturated fatty acids (PUFA). Previous research demonstrated that when discarded salmon head...
Selected quality parameters of salmon and meat when fried with or without added fat.
Elmadfa, I; Al-Saghir, S; Kanzler, S; Frisch, G; Majchrzak, D; Wagner, K-H
2006-07-01
To determine whether pan-frying (pork, beef and salmon) without oil or with different fats (olive oil, corn oil or a partially hydrogenated plant oil) or steaming (only salmon) have effects on the total fat content, the fatty acid pattern, lipid peroxidation, tocopherols and in particular for salmon on vitamin D(3) and astaxanthin. Pork, beef patties and salmon were pan-fried (6 min each), beef fillet was pan-fried (5 min) with an additional braising period of 90 minutes and salmon was steamed for 12 minutes. Each pan-frying treatment was done with the above mentioned fats and without fat. Total fat was determined gravimetrically, the fatty acid pattern with GC, the tocopherols, astaxanthin and vitamin D(3) by using HPLC. The effects on the fat quality and quantity in the final products were related to the pan-frying fat used, however, the power of the outcome was depending on the surface to volume ratio. The highest increase in total fat was observed for pork, followed by the beef patties and the braised beef. The same has been assessed for the fatty acid pattern. Tocopherols changed according to the oil used, in particular gamma-tocopherol significantly increased for each preparation after the use of corn oil. Only in pork an increase in lipid oxidation of the oil preparations has been observed. Vitamin D(3) in salmon significantly decreased after heat treatment, however a 150 g salmon portion would provide between 13.9 and 14.7 mug Vitamin D(3) which is around five times more than the average daily intake. Pan-frying without fat can be recommended for the daily use, since the total fat intake is too high in developed countries and one main task of nutritional recommendations is to reduce the total fat intake. When pan-fried with fat, the choice of the fat is of high importance since it directly influences the quality and the flavour of the final product. In order to increase the fat quality from nutritional point of view only oils of plant or vegetable origin should be used in households. Pan-fried salmon is a good source of Vitamin D(3).
Geomorphology and the Restoration Ecology of Salmon
NASA Astrophysics Data System (ADS)
Montgomery, D. R.
2005-05-01
Natural and anthropogenic influences on watershed processes affect the distribution and abundance of salmon across a wide range of spatial and temporal scales, from differences in species use and density between individual pools and riffles to regional patterns of threatened, endangered, and extinct runs. The specific impacts of human activities (e.g., mining, logging, and urbanization) vary among regions and watersheds, as well as between different channel reaches in the same watershed. Understanding of both disturbance history and key biophysical processes are important for diagnosing the nature and causes of differences between historical and contemporary fluvial and watershed conditions based on evaluation of both historical and spatial contexts. In order to be most effective, the contribution of geomorphologic insight to salmon recovery efforts requires both assessment protocols commensurate with providing adequate knowledge of historical and spatial context, and experienced practitioners well versed in adapting general theory to local settings. The historical record of salmon management in Europe, New England and the Pacific Northwest indicates that there is substantial need to incorporate geomorphic insights on the effects of changes in watershed processes on salmon habitat and salmon abundance into salmon recovery efforts.
Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willard, Catherine; Hebdon, J. Lance; Castillo, Jason
2004-06-01
On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacksmore » and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2002. Age-0, age-1, and age-2 O. nerka were captured in Redfish Lake, and population abundance was estimated at 50,204 fish. Age-0, age-1, age-2, and age-3 kokanee were captured in Alturas Lake, and population abundance was estimated at 24,374 fish. Age-2 and age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 18,328 fish. The ultimate goal of the Idaho Department of Fish and Game (IDFG) captive broodstock development and evaluation efforts is to recover sockeye salmon runs in Idaho waters. Recovery is defined as reestablishing sockeye salmon runs and providing for utilization of sockeye salmon and kokanee resources by anglers. The immediate project goal is to maintain this unique sockeye salmon population through captive broodstock technology and avoid species extinction. The project objectives are: (1) Develop captive broodstocks from Redfish Lake anadromous sockeye salmon. (2) Determine the contribution hatchery-produced sockeye salmon make toward avoiding population extinction and increasing population abundance. (3) Describe O. nerka population characteristics for Sawtooth Valley lakes in relation to carrying capacity and broodstock program supplementation efforts. (4) Refine our ability to discern the origin of wild and broodstock sockeye salmon to provide maximum effectiveness in their utilization within the broodstock program. (5) Transfer technology through participation in the technical oversight committee process, providing written activity reports and participation in essential program management and planning activities.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
...We, the U.S. Fish and Wildlife Service, determine threatened status for the salmon-crested cockatoo (Cacatua moluccensis) under the Endangered Species Act of 1973, as amended (Act). This final rule implements the Federal protections provided by the Act for this species. We are also publishing a special rule for the species.
Multivariate Models of Adult Pacific Salmon Returns
Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa
2013-01-01
Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586
Yuan, Wenqian; Lee, Hui Wen; Yuk, Hyun-Gyun
2017-11-02
Extracts from medicinal plants have been reported to possess good antimicrobial properties, but a majority of them remain unexplored. This study aimed at identifying a novel plant extract with antimicrobial activity, to validate its efficacy in food model, and to elucidate its composition and antimicrobial mechanism. A total of 125 plant extracts were screened, and Cinnamomum javanicum leaf and stem extract showed potential antimicrobial activity against Listeria monocytogenes (MIC=0.13mg/mL). Total phenolic content of the extract was 78.3mg GAE/g extract and its antioxidant activity was 57.2-326.5mg TE/g extract. When applied on cold smoked salmon, strong strain-dependent antimicrobial effectiveness was observed, with L. monocytogenes LM2 (serotype 4b) and LM8 (serotype 3a) being more resistant compared to SSA81 (serotype 1/2a). High extract concentration (16mg/mL) was needed to inhibit or reduce the growth of L. monocytogenes on smoked salmon, which resulted in surface color change. GC-MS revealed that eucalyptol (25.54 area%) was the most abundant compound in the crude extract. Both crude extract and eucalyptol induced significant membrane damages in treated L. monocytogenes. These results suggest anti-L. monocytogenes activity of C. javanicum plant extract, identified its major volatile components, and elucidated its membrane-damaging antimicrobial mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
1989-01-01
methodology weight in the sockeye salmon for determining instream flow re- ( Oncorhynchus nerka ) and the pink quirements for fish. Pages 72-86 in salmon (0...Scientific name ........... Oncorhynchus jor pink salmon runs. Migration gorbuscha (Walbaum) (Figure a patterns of fish entering British Preferred...A dominant male guards the considered the most specialized of the female during the digging process, salmon in the genus Oncorhynchus be- attacking
De Santis, Christian; Crampton, Viv O; Bicskei, Beatrix; Tocher, Douglas R
2015-12-01
The production of carnivorous fish such as Atlantic salmon (Salmo salar) is dependent on the availability of high quality proteins for feed formulations. For a number of nutritional, strategic and economic reasons, the use of plant proteins has steadily increased over the years, however a major limitation is associated with the presence of anti-nutritional factors and the nutritional profile of the protein concentrate. Investigating novel raw materials involves understanding the physiological consequences associated with the dietary inclusion of protein concentrates. The primary aim of the present study was to assess the metabolic response of salmon to increasing inclusion of air-classified faba bean protein concentrate (BPC) in feeds as a replacement for soy protein concentrate (SPC). Specifically, we tested treatments with identical contents of fishmeal (222.4gkg(-1)) and progressively higher inclusion of BPC (0gkg(-1), 111.8gkg(-1), 223.6gkg(-1), 335.4gkg(-1), 447.2gkg(-1)) substituting SPC. This study demonstrated a dose-dependent metabolic response to a plant ingredient and was the first to compare the nutrigenomic transcriptional responses after substitution of terrestrial feed ingredients such as BPC and SPC without withdrawal of marine ingredients. It was found that after eight weeks a major physiological response in liver was only evident above 335.4gkg(-1) BPC and included decreased expression of metabolic pathways, and increased expression of genes regulating transcription and translation processes and the innate immune response. Furthermore, we showed that the nutritional stress caused by BPC resembled, at least at hepatic transcriptional level, that caused by soybean meal (included as a positive control in our experimental design). The outcomes of the present study suggested that Atlantic salmon parr might efficiently utilize moderate substitution of dietary SPC with BPC, with the optimum inclusion level being around 120gkg(-1)in the type of feeds tested here. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Aydin, Kerim Y.; McFarlane, Gordon A.; King, Jacquelynne R.; Megrey, Bernard A.; Myers, Katherine W.
2005-03-01
Three independent modeling methods—a nutrient-phytoplankton-zooplankton (NPZ) model (NEMURO), a food web model (Ecopath/Ecosim), and a bioenergetics model for pink salmon ( Oncorhynchus gorbuscha)—were linked to examine the relationship between seasonal zooplankton dynamics and annual food web productive potential for Pacific salmon feeding and growing in the Alaskan subarctic gyre ecosystem. The linked approach shows the importance of seasonal and ontogenetic prey switching for zooplanktivorous pink salmon, and illustrates the critical role played by lipid-rich forage species, especially the gonatid squid Berryteuthis anonychus, in connecting zooplankton to upper trophic level production in the subarctic North Pacific. The results highlight the need to uncover natural mechanisms responsible for accelerated late winter and early spring growth of salmon, especially with respect to climate change and zooplankton bloom timing. Our results indicate that the best match between modeled and observed high-seas pink salmon growth requires the inclusion of two factors into bioenergetics models: (1) decreasing energetic foraging costs for salmon as zooplankton are concentrated by the spring shallowing of pelagic mixed-layer depth and (2) the ontogenetic switch of salmon diets from zooplankton to squid. Finally, we varied the timing and input levels of coastal salmon production to examine effects of density-dependent coastal processes on ocean feeding; coastal processes that place relatively minor limitations on salmon growth may delay the seasonal timing of ontogenetic diet shifts and thus have a magnified effect on overall salmon growth rates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Alaskan Hand-Butchered Salmon Processing Subcategory § 408.167 Effluent limitations guidelines... salmon processing facility located in population or processing centers including but not limited to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Alaskan Hand-Butchered Salmon Processing Subcategory § 408.167 Effluent limitations guidelines... salmon processing facility located in population or processing centers including but not limited to...
Stephen F. Jane; Keith H. Nislow; Andrew R. Whiteley
2014-01-01
Information about historical animal or plant abundance often either explicitly or implicitly informs current conservation practice. If it can be shown that an organism was not historically abundant in a region, its conservation importance may be downgraded. In contrast to abundant archaeological support for historic importance of salmon in the Pacific Northwest,...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
... impacts to two coho stocks. Amendment 17 Issue 7. The description of impacts to pink salmon from the ocean fishery is updated to reflect recent analyses of exploitation rate for pink salmon, conducted since the... income in local and state economies through expenditures on harvesting, processing, and marketing of the...
Ogura, Takahiro; Hernández, Adrián; Aizawa, Tomoko; Ogihara, Jun; Sunairi, Michio; Alcaino, Javier; Salvo-Garrido, Haroldo; Maureira-Butler, Iván J
2013-01-01
The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar) crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein.
Ogura, Takahiro; Hernández, Adrián; Aizawa, Tomoko; Ogihara, Jun; Sunairi, Michio; Alcaino, Javier; Salvo-Garrido, Haroldo; Maureira-Butler, Iván J.
2013-01-01
The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar) crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein. PMID:24278278
Christensen, Jennie R; Yunker, Mark B; MacDuffee, Misty; Ross, Peter S
2013-04-01
The present study characterizes the uptake and loss of persistent organic pollutants (POPs) in grizzly bears (Ursus arctos horribilis) by sampling and analyzing their terrestrial and marine foods and fecal material from a remote coastal watershed in British Columbia, Canada. The authors estimate that grizzly bears consume 341 to 1,120 µg of polychlorinated biphenyls (PCBs) and 3.9 to 33 µg of polybrominated diphenyl ethers daily in the fall when they have access to an abundant supply of returning salmon. The authors also estimate that POP elimination by grizzly bears through defecation is very low following salmon consumption (typically <2% of intake) but surprisingly high following plant consumption (>100% for PCBs and organochlorine pesticides). Excretion of individual POPs is largely driven by a combination of fugacity (differences between bear and food concentrations) and the digestibility of the food. The results of the present study are substantiated by a principal components analysis, which also demonstrates a strong role for log KOW in governing the excretion of different POPs in grizzly bears. Collectively, the present study's results reveal that grizzly bears experience a vegetation-associated drawdown of POPs previously acquired through the consumption of salmon, to such an extent that net biomagnification is reduced. Copyright © 2013 SETAC.
Betancor, Monica B; Dam, Thi M C; Walton, James; Morken, Thea; Campbell, Patrick J; Tocher, Douglas R
2016-04-01
Increased substitution of marine ingredients by terrestrial plant products in aquafeeds has been proven to be suitable for Atlantic salmon farming. However, a reduction in n-3 long-chain PUFA is a consequence of this substitution. In contrast, relatively little attention has been paid to the effects of fishmeal and oil substitution on levels of micronutrients such as Se, considering fish are major sources of this mineral for human consumers. To evaluate the effects of dietary marine ingredient substitution on tissue Se distribution and the expression of Se metabolism and antioxidant enzyme genes, Atlantic salmons were fed three feeds based on commercial formulations with increasing levels of plant proteins (PP) and vegetable oil. Lipid content in flesh did not vary at any sampling point, but it was higher in the liver of 1 kg of fish fed higher PP. Fatty acid content reflected dietary input and was related to oxidation levels (thiobarbituric acid-reactive substances). Liver had the highest Se levels, followed by head kidney, whereas the lowest contents were found in brain and gill. The Se concentration of flesh decreased considerably with high levels of substitution, reducing the added value of fish consumption. Only the brain showed significant differences in glutathione peroxidase, transfer RNA selenocysteine 1-associated protein 1b and superoxide dismutase expression, whereas no significant regulation of Se-related genes was found in liver. Although Se levels in the diets satisfied the essential requirements of salmon, high PP levels led to a reduction in the supply of this essential micronutrient.
Accelerated recovery of Atlantic salmon (Salmo salar) from effects of crowding by swimming.
Veiseth, Eva; Fjaera, Svein Olav; Bjerkeng, Bjørn; Skjervold, Per Olav
2006-07-01
The effects of post-crowding swimming velocity (0, 0.35, and 0.70 m/s) and recovery time (1.5, 6, and 12 h) on physiological recovery and processing quality parameters of adult Atlantic salmon (Salmo salar) were determined. Atlantic salmon crowded to a density similar to that of a commercial slaughter process (>200 kg/m(3), 40 min) were transferred to a swimming chamber for recovery treatment. Osmolality and concentrations of cortisol, glucose and lactate in blood plasma were used as physiological stress indicators, whereas image analyses of extent and duration of rigor contraction, and fillet gaping were used as measures of processing quality. Crowded salmon had a 5.8-fold higher plasma cortisol concentration than control salmon (P<0.05). The elevated plasma cortisol concentration was reduced by increasing the swimming velocity, and had returned to control levels after 6 h recovery at high water velocity. Similar effects of swimming velocity were observed for plasma osmolality and lactate concentration. A lower plasma glucose concentration was present in crowded than in control fish (P<0.05), although a typical post-stress elevation in plasma glucose was observed after the recovery treatments. Lower muscle pH was found in crowded compared with control salmon (P<0.05), but muscle pH returned to control levels after 6 h recovery at intermediate and high swimming velocities and after 12 h in the low velocity group. Crowding caused an early onset of rigor mortis contraction. However, subjecting crowded salmon to active swimming for 6 h before slaughter delayed the onset of rigor mortis contraction from 2.5 to 7.5 h post mortem. The extent of rigor mortis contraction was also affected by crowding and post-stress swimming activity (P<0.05), and the largest degree of contraction was found in crowded salmon. In conclusion, active swimming accelerated the return of plasma cortisol, hydromineral balance, and the energy metabolism of adult Atlantic salmon to pre-stress levels. Moreover, an active swimming period delayed the onset of rigor mortis contraction, which has a positive technological implication for the salmon processing industry.
Utilization of smoked salmon trim in extruded smoked salmon jerky.
Kong, J; Dougherty, M P; Perkins, L B; Camire, M E
2012-06-01
During smoked salmon processing, the dark meat along the lateral line is removed before packaging; this by-product currently has little economic value. In this study, the dark meat trim was incorporated into an extruded jerky. Three formulations were processed: 100% smoked trim, 75% : 25% smoked trim : fresh salmon fillet, and 50% : 50% smoked trim : fresh salmon blends (w/w basis). The base formulation contained salmon (approximately 83.5%), tapioca starch (8%), pregelatinized potato starch (3%), sucrose (4%), salt (1.5%), sodium nitrate (0.02%), and ascorbyl palmitate (0.02% of the lipid content). Blends were extruded in a laboratory-scale twin-screw extruder and then hot-smoked for 5 h. There were no significant differences among formulations in moisture, water activity, and pH. Protein was highest in the 50 : 50 blend jerky. Ash content was highest in the jerky made with 100% trim. Total lipids and salt were higher in the 100% trim jerky than in the 50 : 50 blend. Hot smoking did not adversely affect docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) content in lipids from 100% smoked trim jerky. Servings of salmon jerky made with 75% and 100% smoked trim provided at least 500 mg of EPA and DHA. The 50 : 50 formulation had the highest Intl. Commission on Illumination (CIE) L*, a*, and b* color values. Seventy consumers rated all sensory attributes as between "like slightly" and "like moderately." With some formulation and processing refinements, lateral line trim from smoked salmon processors has potential to be incorporated into acceptable, healthful snack products. Dark meat along the lateral line is typically discarded by smoked salmon processors. This omega-3 fatty acid rich by-product can be used to make a smoked salmon jerky that provides a convenient source of these healthful lipids for consumers. © 2012 Institute of Food Technologists®
ADDING NUTRIENTS TO ENHANCE SALMON RUNS: DEVELOPING A COHERENT PUBLIC POLICY
One scheme to help restore salmon to the Pacific Northwest is the addition of nutrients (i.e., raw or processed salmon carcasses, and commercially produced organic or inorganic fertilizers) to headwaters (i.e., watersheds, lakes, or streams) that are now nutrient deficient becau...
Vera-Bizama, Fredy; Valenzuela-Muñoz, Valentina; Gonçalves, Ana Teresa; Marambio, Jorge Pino; Hawes, Christopher; Wadsworth, Simon; Gallardo-Escárate, Cristian
2015-12-01
The transcriptomic response of the sea louse Caligus rogercresseyi during the infestation on Atlantic salmon (Salmo salar) and coho salmon (Oncorhynchus kisutch) was evaluated using 27 genes related to immune response, antioxidant system and secretome. Results showed early responses of TLR/IMD signaling pathway in sea lice infesting Atlantic salmon. Overall, genes associated with oxidative stress responses were upregulated in both host species. This pattern suggests that reactive oxygen species emitted by the host as a response to the infestation, could modulate the sea louse antioxidant system. Secretome-related transcripts evidenced upregulation of trypsins and serpins, mainly associated to Atlantic salmon than coho salmon. Interestingly, cathepsins and trypsin2 were downregulated at 7 days post-infection (dpi) in coho salmon. The principal component analysis revealed an inverse time-dependent pattern based on the different responses of C. rogercresseyi infecting both salmon species. Here, Atlantic salmon strongly modulates the transcriptome responses at earlier infection stages; meanwhile coho salmon reveals a less marked modulation, increasing the transcription activity during the infection process. This study evidences transcriptome differences between two salmon host species and provides pivotal knowledge towards elaborating future control strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
One scheme to help restore salmon to the Pacific Northwest is the addition of nutrients (i.e., raw or processed salmon carcasses, and commercially produced organic or inorganic fertilizers) to headwaters (e.g., watersheds, lakes, or streams) that are now nutrient deficient becau...
Stabilizing Smoked Salmon (Oncorhynchus gorbuscha) Tissue after Extraction of Oil
USDA-ARS?s Scientific Manuscript database
Alaska salmon oils are rich in n-3 polyunsaturated fatty acids and are prized by the food and pharmaceutical industries. However, the tissue that remains after oil extraction does not have an established market. Discarded salmon tissues were preserved using a combination of smoke-processing and acid...
Geist; Dauble
1998-09-01
/ Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. We present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of our conceptual model. We suggest that traditional habitat models and our conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.KEY WORDS: Hyporheic zone; Geomorphology; Spawning habitat; Large rivers; Fall chinook salmon; Habitat management
Cessation of a salmon decline with control of parasites.
Peacock, Stephanie J; Krkosek, Martin; Proboszcz, Stan; Orr, Craig; Lewis, Mark A
2013-04-01
The resilience of coastal social-ecological systems may depend on adaptive responses to aquaculture disease outbreaks that can threaten wild and farm fish. A nine-year study of parasitic sea lice (Lepeophtheirus salmonis) and pink salmon (Oncorhynchus gorbuscha) from Pacific Canada indicates that adaptive changes in parasite management on salmon farms have yielded positive conservation outcomes. After four years of sea lice epizootics and wild salmon population decline, parasiticide application on salmon farms was adapted to the timing of wild salmon migrations. Winter treatment of farm fish with parasiticides, prior to the out-migration of wild juvenile salmon, has reduced epizootics of wild salmon without significantly increasing the annual number of treatments. Levels of parasites on wild juvenile salmon significantly influence the growth rate of affected salmon populations, suggesting that these changes in management have had positive outcomes for wild salmon populations. These adaptive changes have not occurred through formal adaptive management, but rather, through multi-stakeholder processes arising from a contentious scientific and public debate. Despite the apparent success of parasite control on salmon farms in the study region, there remain concerns about the long-term sustainability of this approach because of the unknown ecological effects of parasticides and the potential for parasite resistance to chemical treatments.
Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America
Malick, Michael J.; Cox, Sean P.
2016-01-01
Sockeye salmon (Oncorhynchus nerka) stocks throughout the southern part of their North American range have experienced declines in productivity over the past two decades. In this study, we tested the hypothesis that pink (O. gorbuscha) and chum (O. keta) salmon stocks have also experienced recent declines in productivity by investigating temporal and spatial trends in productivity of 99 wild North American pink and chum salmon stocks. We used a combination of population dynamics and time series models to quantify individual stock trends as well as common temporal trends in pink and chum salmon productivity across local, regional, and continental spatial scales. Our results indicated widespread declines in productivity of wild chum salmon stocks throughout Washington (WA) and British Columbia (BC) with 81% of stocks showing recent declines in productivity, although the exact form of the trends varied among regions. For pink salmon, the majority of stocks in WA and BC (65%) did not have strong temporal trends in productivity; however, all stocks that did have trends in productivity showed declining productivity since at least brood year 1996. We found weaker evidence of widespread declines in productivity for Alaska pink and chum salmon, with some regions and stocks showing declines in productivity (e.g., Kodiak chum salmon stocks) and others showing increases (e.g., Alaska Peninsula pink salmon stocks). We also found strong positive covariation between stock productivity series at the regional spatial scale for both pink and chum salmon, along with evidence that this regional-scale positive covariation has become stronger since the early 1990s in WA and BC. In general, our results suggest that common processes operating at the regional or multi-regional spatial scales drive productivity of pink and chum salmon stocks in western North America and that the effects of these process on productivity may change over time. PMID:26760510
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Shannon C.
2001-10-29
BPA proposes to fund a project with the Washington State Department of Fish and Wildlife that will restore historic spawning areas for chum salmon in Duncan Creek. Duncan Creek, a Washington tributary of the Columbia River, was traditionally an important spawning area for chum salmon. The spring seeps areas that chum historically used for spawning are still present in Duncan Creek, however during the past 30 years they have been covered by sediment and debris and infested with reed canary grass. This project proposes to rehabilitate these spawning channels in order to provide chum salmon with a protected spawning andmore » incubation environment. The proposed habitat rehabilitation project will include removing existing gravel in the seeps of Duncan Creek that contain mud, sand, and organics and replacing them with gravels that will maximize egg-to-fry survival rates for chum salmon. A trackhoe or similar equipment will be used to excavate the spawning sites. Invasive vegetation will be removed. Spawning channels will then be reconstructed using sediment free spawning gravels and base rock. Upon completion of work, all disturbed spring channel banks will be protected from erosion with staked coir fabric and revegetated with native willows. Plantings will help to restore native plant communities, increase stream channel shading, and reduce re-infestation by reed canary grass.« less
Tarvainen, Marko; Nuora, Anu; Quirin, Karl-Werner; Kallio, Heikki; Yang, Baoru
2015-04-15
Increasing concern of consumers on the safety of synthetic food additives has created high interest in natural preservatives in food industry. Plant extracts produced by supercritical CO2 technology from rosemary (R), oregano (O) and an antimicrobial blend (AB) consisting of seven different plants were studied for their effects on lipid oxidation in Atlantic salmon (Salmo salar). Fish pieces were marinated with rapeseed oil containing 0, 1, 2 or 4 g of plant extracts/kg of fish. After cooking the pieces were stored in refrigerator for 26 days. Peroxide values (PVs) were determined and oxidised triacylglycerols (TAGs) measured by UHPLC-ESI/MS at 0, 7, 14 and 26 days of storage. During the first two weeks of storage, AB delayed oxidation by at least one week compared to control samples as shown by PVs (<10 meq. O2) and by the oxidised TAGs. Oregano and rosemary showed also some antioxidative potential. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brooks, J. F.; Trainor, S.
2017-12-01
Over 20,000 residents in Alaska and Yukon Territory rely upon the Yukon River to provide them harvests of Pacific salmon each year. Salmon are a highly valued food resource and the practice of salmon fishing along the Yukon is deep rooted in local cultures and traditions. Potential future impacts of climate change on the health of Yukon River salmon stocks could be significant. Collaborative managerial processes which incorporate the viewpoints of subsistence stakeholders will be crucial in enabling communities and managerial institutions to adapt and manage these impacts. However, the massive extent of the Yukon River makes it difficult for communities rich with highly localized knowledge to situate themselves within a drainage-wide context of resource availability, and to fully understand the implications that management decisions may have for their harvest. Differences in salmon availability and abundance between the upper and lower Yukon, commercial vs. subsistence fishery interests, and enforcement of the international Pacific Salmon Treaty further complicate understanding and makes the topic of salmon as a subsistence resource a highly contentious issue. A map which synthesizes the presence and absence of Pacific salmon throughout the entire Yukon River drainage was requested by both subsistence fishers and natural resource managers in Alaska in order to help facilitate productive conversations about salmon management decisions. Interviews with Alaskan stakeholders with managerial, biological, and subsistence harvest backgrounds were carried out and a literature review was conducted in order to understand what such a map should and could accomplish. During the research process, numerous data gaps concerning the distribution of salmon along the Yukon River were discovered, and insights about the complexities involved in translating science when it is situated within a charged political, economic, and cultural context were revealed. Preliminary maps depicting the timing of salmon pulses, the data gaps present, and the political landscape of the Yukon River were created. A future step of developing an interactive online mapping tool has been identified as a way to most clearly communicate the complexity of the interwoven systems involved in the status of Yukon River salmon and their management.
Controlling Listeria monocytogenes in Cold Smoked Salmon with the Antimicrobial Peptide Salmine.
Cheng, Christopher; Arritt, Fletcher; Stevenson, Clinton
2015-06-01
Listeria monocytogenes (LM) is a major safety concern for smoked salmon producers, as it can survive both the brining and smoking process in cold smoked salmon production. Salmine is a cationic antimicrobial peptide derived from the milt of salmon that has been shown to inhibit the growth of LM in vitro. Commercialization of this peptide would add value to a waste product produced when raising salmon. The purpose of this study was to determine the anti-listeria activity of salmine in smoked salmon by measuring the viable counts of LM over time. Cold smoked salmon was treated with a salmine solution or coated with agar or k-carrageenan films incorporating salmine to maintain a high surface concentration of the antimicrobial. Samples were then inoculated with approximately 1.0 × 10(3) cells of LM. The viable counts were then enumerated throughout 4 wk at 4 °C storage. It was found that 5 mg/g salmine delayed the growth of LM on smoked salmon. These samples had significantly (P < 0.05) lower LM counts than on the untreated samples on days 13 and 22. Edible films did not significantly (P > 0.05) improve the antimicrobial efficacy of salmine. The peptide combined with biopolymers also had lower antimicrobial activity in vitro when compared to salmine alone. These results suggest there is potential for salmine to be used as a natural hurdle to inhibit growth of LM due to post process contamination; however, future investigations for extending this effect throughout the shelf life of smoked salmon products are warranted. © 2015 Institute of Food Technologists®
Updraft gasification of salmon processing waste
USDA-ARS?s Scientific Manuscript database
The purpose of this research is to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible “syngas” in a high temperature (above 700 °C), oxygen deficient environmen...
Hafsa, Ahmed Ben; Nabi, Nesrine; Zellama, Mohamed Salem; Said, Khaled; Chaouachi, Maher
2016-01-01
Genetic transformation of fish is mainly oriented towards the improvement of growth for the benefit of the aquaculture. Actually, Atlantic salmon (Salmo salar) is the species most transformed to achieve growth rates quite large compared to the wild. To anticipate the presence of contaminations with GM salmon in fish markets and the lack of labeling regulations with a mandatory threshold, the proper methods are needed to test the authenticity of the ingredients. A quantitative real-time polymerase chain reaction (QRT-PCR) method was used in this study. Ct values were obtained and validated using 15 processed food containing salmon. The relative and absolute limits of detection were 0.01% and 0.01 ng/μl of genomic DNA, respectively. Results demonstrate that the developed QRT-PCR method is suitable specifically for identification of S. salar in food ingredients based on the salmon growth hormone gene 1 (GH1). The processes used to develop the specific salmon reference gene case study are intended to serve as a model for performing quantification of Aquadvantage® GM salmon on future genetically modified (GM) fish to be commercialized. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Many studies have evaluated the adequacy of alternate ingredient diets for Atlantic salmon, Salmo salar, mainly with focus on fish performance and health; however, comprehensive analysis of fillet quality is lacking, particularly for salmon fed these diets in recirculation aquaculture systems (RAS)....
[Thiamine retention as a function of thermal processing conditions: canned salmon].
Quitral, V; Romero, N; Avila, L; Marín, M E; Nuñez, H; Simpson, R
2006-03-01
The present work studied the effect of different treatments at high temperatures on the nutritional properties of thiamine retention and color measurement experimentally. Canned salmon (Salmo salar) was processed under different temperatures and time conditions (110 degrees C for 135 minutes; 114 degrees C for 89 minutes; 118 degrees C for 69 minutes and 121 degrees C for 62 minutes). Thiamine was determined by HPLC before and after the process. Color changes, due to processing conditions, were also measured utilizing a Hunter colorimeter. The canning was prepared in 300 x 407 cans and sterilized until Fo value reached 6 min. The nutritional value or index represented by the B1 vitamin or thiamine was affected by high temperature and time exposition. The lowest loss of thiamine of 19.2% was obtained in the canned salmon sterilized at 114 degrees C for 89 minutes. The color in canned salmon was different from the raw material, with a severe loss of red color and a greater clarity of the meat.
O'Shea, B; Wadsworth, S; Pino Marambio, J; Birkett, M A; Pickett, J A; Mordue Luntz, A J
2017-04-01
The potential for developing botanically derived natural products as novel feed-through repellents for disrupting settlement of the salmon louse, Lepeophtheirus salmonis (Caligidae) upon farmed Atlantic salmon, Salmo salar, was investigated using an established laboratory vertical Y-tube behavioural bioassay for assessing copepodid behaviour. Responses to artificial sea water conditioned with the odour of salmon, or to the known salmon-derived kairomone component, α-isophorone, in admixture with selected botanical materials previously known to interfere with invertebrate arthropod host location were recorded. Materials included oils extracted from garlic, Allium sativum (Amaryllidaceae), rosemary, Rosmarinus officinalis (Lamiaceae), lavender, Lavandula angustifolia (Lamiaceae), and bog myrtle, Myrica gale (Myricaceae), and individual components (diallyl sulphide and diallyl disulphide from garlic; allyl, propyl, butyl, 4-pentenyl and 2-phenylethyl isothiocyanate from plants in the Brassica genus). Removal of attraction to salmon-conditioned water (SCW) or α-isophorone was observed when listed materials were presented at extremely low parts per trillion (ppt), that is picograms per litre or 10 -12 level. Significant masking of attraction to SCW was observed at a level of 10 ppt for diallyl disulphide and diallyl sulphide, and allyl isothiocyanate and butyl isothiocyanate. The potential of very low concentrations of masking compounds to disrupt Le. salmonis copepodid settlement on a host fish has been demonstrated in vitro. © 2016 John Wiley & Sons Ltd.
Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall-Griswold, J.A.; Petrosky, C.E.
The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM)more » database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.« less
WATERSHED BIOGEOCHEMISTRY IN THE OREGON COAST RANGE: THE ROLE OF RED ALDER AND SALMON
Variations in plant community composition across the landscape can influence nutrient retention and loss at the watershed scale. A striking example of plant species influence is the role of N2-fixing red alder (Alnus rubra) in the biogeochemistry of Pacific Northwest forests. T...
Quinn, Thomas P; Cunningham, Curry J; Randall, Jessica; Hilborn, Ray
2014-10-01
It has long been recognized that, as populations increase in density, ecological processes affecting growth and survival reduce per capita recruitment in the next generation. In contrast to the evidence for such "compensatory" density dependence, the alternative "depensatory" process (reduced per capita recruitment at low density) has proven more difficult to demonstrate in the field. To test for such depensation, we measured the spawner-recruit relationship over five decades for a sockeye salmon (Oncorhynchus nerka) population in Alaska breeding in high-quality, unaltered habitat. Twenty-five years of detailed estimates of predation by brown bears, Ursus arctos, revealed strong density dependence in predation rate; the bears killed ca. 80% of the salmon in years of low salmon spawning abundance. Nevertheless, the reconstructed spawner-recruit relationship, adjusted to include salmon intercepted in the commercial fishery, provided no evidence of demographic depensation. That is, in years when few salmon returned and the great majority were killed by bears, the few that spawned were successful enough that the population remained highly productive, even when those killed by bears were included as potential spawners. We conclude that the high quality of breeding habitat at this site and the productive nature of semelparous Pacific salmon allowed this population to avoid the hypothesized depressed recruitment from depensatory processes expected at low density. The observed lack of demographic depensation is encouraging from a conservation standpoint because it implies that depleted populations may have the potential to rebound successfully given suitable spawning and rearing habitat, even in the presence of strong predation pressure.
Salmon habitat assessment for conservation planning in the lower White Salmon River, Washington
Hardiman, Jill M.; Allen, M. Brady
2015-01-01
In 2011, Condit Dam was removed from the White Salmon River, Washington. Since dam removal, there has been interest among scientists (State and Federal), Tribes, non-profit organizations, and the general public in assessing Pacific salmon habitat and use in the White Salmon River for conservation planning and potential fishery management actions. The study area extended from the lower 6 miles of the White Salmon River to the confluence with the Columbia River, including the former reservoir area. The Mid-Columbia Fisheries Enhancement Group received a grant to initiate efforts to plan for salmon habitat protection in the lower 6 river miles of the White Salmon River. As part of efforts by the Mid-Columbia Fisheries Enhancement Group to conduct conservation planning, the U.S. Geological Survey (USGS) used current and historical habitat information to assist in the planning process. The USGS compiled existing georeferenced habitat data into a Geographic Information System to identify areas of high quality habitat for salmon, potential areas for restoration/improvement, and areas that could be threatened. The primary sources of georeferenced data for this project include a lidar flight contracted by PacifiCorp, bathymetry from USGS, and fall Chinook salmon redd surveys from the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife. Redd observations provided support that the study area is a migratory corridor for salmon and steelhead and that the lowest 2–3 miles had the highest concentration of documented fall Chinook salmon redds. The study area has potential for restoration/conservation areas to improve/conserve salmon habitat.
Rüfer, Corinna E; Moeseneder, Jutta; Briviba, Karlis; Rechkemmer, Gerhard; Bub, Achim
2008-05-01
The objective of the present study was to investigate the bioavailability and the configurational isomer distribution of the carotenoid astaxanthin (AST) in human plasma after ingestion of wild (Oncorhynchus spp.) and aquacultured (Salmo salar) salmon. In a randomised and double-blind trial, twenty-eight healthy men consumed 250 g wild or aquacultured salmon daily for 4 weeks which provided 5 mug AST/g salmon flesh. The plasma AST concentrations as well as the isomer distribution were measured by HPLC using a reversed and a chiral stationary phase. After 6 d of intervention with salmon, plasma AST concentrations reached a plateau of 39 nmol/l after consumption of wild salmon and of 52 nmol/l after administration of aquacultured salmon. At days 3, 6, 10 and 14 -- but not at day 28 -- the AST concentrations in human plasma were significantly greater after ingestion of aquacultured salmon. After administration of wild salmon, the (3S,3'S) isomer predominated in plasma (80 %), whereas after intake of aquacultured salmon the meso form (3R,3'S) prevailed (48 %). Therefore, the AST isomer pattern in human plasma resembles that of the ingested salmon. However, after consumption of both wild and aquacultured salmon for 28 d the relative proportion of the (3S,3'S) isomer was slightly higher and the (3R,3'R) form lower in human plasma compared with the isomer distribution in salmon flesh. A selective process of isomer absorption could be responsible for the observed differences in the relative proportions of the (3S,3'S) and (3R,3'R) isomers in human plasma compared with salmon flesh.
Aniakchak sockeye salmon investigations
Hamon, Troy R.; Pavey, Scott A.; Miller, Joe L.; Nielsen, Jennifer L.
2005-01-01
Aniakchak National Monument and Preserve provides unusual and dramatic landscapes shaped by numerous volcanic eruptions, a massive flood, enormous landslides, and ongoing geological change. The focal point of the monument is Aniakchak Caldera, a restless volcano that embodies the instability of the Alaska Peninsula. This geological instability creates a dynamic and challenging environment for the biological occupants of Aniakchak and unparalleled opportunities for scientists to measure the adaptability of organisms and ecosystems to change. The sockeye salmon (Oncorhynchus nerka) is one member of the Aniakchak ecosystem that has managed to adapt to geologic upheaval and is now thriving in the park. Aside from just surviving in the harsh environment, these salmon are also noteworthy for providing essential marinederived nutrients to plants and animals and as a source of food for historic and present day people in the region.
Friesema, I; de Jong, A; Hofhuis, A; Heck, M; van den Kerkhof, H; de Jonge, R; Hameryck, D; Nagel, K; van Vilsteren, G; van Beek, P; Notermans, D; van Pelt, W
2014-10-02
On 15 August 2012, an increase in the number of Salmonella Thompson cases was noticed by the Salmonella surveillance in the Netherlands. A case–control study was performed, followed by a food investigation. In total 1,149 cases were laboratory-confirmed between August and December 2012 of which four elderly (76–91 years) were reported to have died due to the infection. The cause of the outbreak was smoked salmon processed at a single site. The smoked salmon had been continuously contaminated in the processing lines through reusable dishes, which turned out to be porous and had become loaded with bacteria. This is the largest outbreak of salmonellosis ever recorded in the Netherlands. The temporary closure of the processing site and recall of the smoked salmon stopped the outbreak. An estimated four to six million Dutch residents were possibly exposed to the contaminated smoked salmon and an estimated 23,000 persons would have had acute gastroenteritis with S. Thompson during this outbreak. This outbreak showed that close collaboration between diagnostic laboratories, regional public health services, the national institute for public health and the food safety authorities is essential in outbreak investigations.
Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?
Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.
2013-01-01
In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.
Vetter, Walter; Bendig, Paul; Blumenstein, Marina; Hägele, Florian; Behnisch, Peter A; Brouwer, Abraham
2015-10-01
Fish is a major source for the intake of polybrominated diphenyl ethers (PBDEs). However, fish is scarcely consumed without being cooked, and previous studies showed that the heating of salmon fillet contaminated with BDE-209 for longer periods of time was accompanied with the partial transformation of this brominated flame retardant. In this study, we heated salmon fillet spiked with BDE-209 and verified that this process was linked with the formation of polybrominated dibenzofurans (PBDFs) in the fish. Each minute of heating 1 g salmon fillet spiked with 200 ng BDE-209 generated about 0.5 ‰ PBDFs relative to the initial amount of the pre-dioxin BDE-209. This result of the chemical analysis by gas chromatography with mass spectrometry (GC/MS) was verified by means of an effect-directed bio-assay (DR CALUX). While unheated salmon with BDE-209 and heated salmon without BDE-209 were tested nontoxic, the bioanalytical response of fish linearly increased upon heating. We also found that PBDF formation did neither occur with BDE-47 nor when BDE-209 was heated in edible oil instead of salmon fillet. Due to the formation of PBDFs in this process, the consumption of heated, BDE-209 contaminated fish may add to the uptake of dioxin-like compounds with our diet.
Duda, Jeffrey J.; Beirne, Matthew M.; Larsen, Kimberly; Barry, Dwight; Stenberg, Karl; McHenry, Michael L.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
The removal of two long-standing dams on the Elwha River in Washington State will initiate a suite of biological and physical changes to the estuary at the river mouth. Estuaries represent a transition between freshwater and saltwater, have unique assemblages of plants and animals, and are a critical habitat for some salmon species as they migrate to the ocean. This chapter summarizes a number of studies in the Elwha River estuary, and focuses on physical and biological aspects of the ecosystem that are expected to change following dam removal. Included are data sets that summarize (1) water chemistry samples collected over a 16 month period; (2) beach seining activities targeted toward describing the fish assemblage of the estuary and migratory patterns of juvenile salmon; (3) descriptions of the aquatic and terrestrial invertebrate communities in the estuary, which represent an important food source for juvenile fish and are important water quality indicators; and (4) the diet and growth patterns of juvenile Chinook salmon in the lower Elwha River and estuary. These data represent baseline conditions of the ecosystem after nearly a century of changes due to the dams and will be useful in monitoring the changes to the river and estuary following dam removal.
Akse, L; Birkeland, S; Tobiassen, T; Joensen, S; Larsen, R
2008-10-01
Processing of fish is generally conducted postrigor, but prerigor processing is associated with some potential advantages. The aim of this study was to study how 5 processing regimes of cold-smoked cod and salmon conducted at different stages of rigor influenced yield, fillet shrinkage, and gaping. Farmed cod and salmon was filleted, salted by brine injection of 25% NaCl, and smoked for 2 h at different stages of rigor. Filleting and salting prerigor resulted in increased fillet shrinkage and less increase in weight during brine injection, which in turn was correlated to the salt content of the fillet. These effects were more pronounced in cod fillets when compared to salmon. Early processing reduced fillet gaping and fillets were evaluated as having a firmer texture. In a follow-up trial with cod, shrinkage and weight gain during injection was studied as an effect of processing time postmortem. No changes in weight gain were observed for fillets salted the first 24 h postmortem; however, by delaying the processing 12 h postmortem, the high and rapid shrinking of cod fillets during brine injection was halved.
Updraft gasification of salmon processing waste.
Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles
2009-10-01
The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable.
USDA-ARS?s Scientific Manuscript database
To increase the sustainability of salmonid production, alternative protein sources to fish meal need to be identified. Many studies have examined terrestrial plant meals/protein concentrates as alternatives. Recently the focus has turned to aquatic protists and plants as well as by-products from oth...
Staying Healthy during Pregnancy
... products, including orange juice, soy milk, and cereals dark green vegetables including spinach, kale, and broccoli tofu ... plant foods. Iron-rich foods include: red meat dark poultry salmon eggs tofu enriched grains dried beans ...
Gajardo, Karina; Rodiles, Ana; Kortner, Trond M; Krogdahl, Åshild; Bakke, Anne Marie; Merrifield, Daniel L; Sørum, Henning
2016-08-03
Gut health challenges, possibly related to alterations in gut microbiota, caused by plant ingredients in the diets, cause losses in Atlantic salmon production. To investigate the role of the microbiota for gut function and health, detailed characterization of the gut microbiota is needed. We present the first in-depth characterization of salmon gut microbiota based on high-throughput sequencing of the 16S rRNA gene's V1-V2 region. Samples were taken from five intestinal compartments: digesta from proximal, mid and distal intestine and of mucosa from mid and distal intestine of 67.3 g salmon kept in seawater (12-14 °C) and fed a commercial diet for 4 weeks. Microbial richness and diversity differed significantly and were higher in the digesta than the mucosa. In mucosa, Proteobacteria dominated the microbiota (90%), whereas in digesta both Proteobacteria (47%) and Firmicutes (38%) showed high abundance. Future studies of diet and environmental impacts on gut microbiota should therefore differentiate between effects on mucosa and digesta in the proximal, mid and the distal intestine. A core microbiota, represented by 22 OTUs, was found in 80% of the samples. The gut microbiota of Atlantic salmon showed similarities with that of mammals.
Temporal signal processing of dolphin biosonar echoes from salmon prey.
Au, Whitlow W L; Ou, Hui Helen
2014-08-01
Killer whales project short broadband biosonar clicks. The broadband nature of the clicks provides good temporal resolution of echo highlights and allows for the discriminations of salmon prey. The echoes contain many highlights as the signals reflect off different surfaces and parts of the fish body and swim bladder. The temporal characteristics of echoes from salmon are highly aspect dependent and six temporal parameters were used in a support vector machine to discriminate between species. Results suggest that killer whales can classify salmon based on their echoes and provide some insight as to which features might enable the classification.
NASA Astrophysics Data System (ADS)
Kline, Thomas C., Jr.; Boldt, Jennifer L.; Farley, Edward V., Jr.; Haldorson, Lewis J.; Helle, John H.
2008-05-01
Marine survival rate (the number of adult salmon returning divided by the number of salmon fry released) of pink salmon runs propagated by Prince William Sound, Alaska (PWS) salmon hatcheries is highly variable resulting in large year-to-year run size variation, which ranged from ∼20 to ∼50 million during 1998-2004. Marine survival rate was hypothesized to be determined during their early marine life stage, a time period corresponding to the first growing season after entering the marine environment while they are still in coastal waters. Based on the predictable relationships of 13C/ 12C ratios in food webs and the existence of regional 13C/ 12C gradients in organic carbon, 13C/ 12C ratios of early marine pink salmon were measured to test whether marine survival rate was related to food web processes. Year-to-year variation in marine survival rate was inversely correlated to 13C/ 12C ratios of early marine pink salmon, but with differences among hatcheries. The weakest relationship was for pink salmon from the hatchery without historic co-variation of marine survival rate with other PWS hatcheries or wild stocks. Year-to-year variation in 13C/ 12C ratio of early marine stage pink salmon in combination with regional spatial gradients of 13C/ 12C ratio measured in zooplankton suggested that marine survival was driven by carbon subsidies of oceanic origin (i.e., oceanic zooplankton). The 2001 pink salmon cohort had 13C/ 12C ratios that were very similar to those found for PWS carbon, i.e., when oceanic subsidies were inferred to be nil, and had the lowest marine survival rate (2.6%). Conversely, the 2002 cohort had the highest marine survival (9.7%) and the lowest mean 13C/ 12C ratio. These isotope patterns are consistent with hypotheses that oceanic zooplankton subsidies benefit salmon as food subsidies, or as alternate prey for salmon predators. Oceanic subsidies are manifestations of significant exchange of material between PWS and the Gulf of Alaska. Given that previously observed inter-decadal cycles of oceanic zooplankton abundance were climatically driven, exchange between PWS and the Gulf of Alaska may be an important process for effecting synoptic changes in marine populations of higher trophic levels, and thus an important consideration for climate-change models and scenarios.
Deciphering microbial landscapes of fish eggs to mitigate emerging diseases
Liu, Yiying; de Bruijn, Irene; Jack, Allison LH; Drynan, Keith; van den Berg, Albert H; Thoen, Even; Sandoval-Sierra, Vladimir; Skaar, Ida; van West, Pieter; Diéguez-Uribeondo, Javier; van der Voort, Menno; Mendes, Rodrigo; Mazzola, Mark; Raaijmakers, Jos M
2014-01-01
Animals and plants are increasingly suffering from diseases caused by fungi and oomycetes. These emerging pathogens are now recognized as a global threat to biodiversity and food security. Among oomycetes, Saprolegnia species cause significant declines in fish and amphibian populations. Fish eggs have an immature adaptive immune system and depend on nonspecific innate defences to ward off pathogens. Here, meta-taxonomic analyses revealed that Atlantic salmon eggs are home to diverse fungal, oomycete and bacterial communities. Although virulent Saprolegnia isolates were found in all salmon egg samples, a low incidence of Saprolegniosis was strongly correlated with a high richness and abundance of specific commensal Actinobacteria, with the genus Frondihabitans (Microbacteriaceae) effectively inhibiting attachment of Saprolegniato salmon eggs. These results highlight that fundamental insights into microbial landscapes of fish eggs may provide new sustainable means to mitigate emerging diseases. PMID:24671087
Determinants of public attitudes to genetically modified salmon.
Amin, Latifah; Azad, Md Abul Kalam; Gausmian, Mohd Hanafy; Zulkifli, Faizah
2014-01-01
The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country.
Determinants of Public Attitudes to Genetically Modified Salmon
Amin, Latifah; Azad, Md. Abul Kalam; Gausmian, Mohd Hanafy; Zulkifli, Faizah
2014-01-01
The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country. PMID:24489695
Bisson, P.A.; Dunham, J.B.; Reeves, G.H.
2009-01-01
In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability. ?? 2009 by the author(s).
Valenzuela-Miranda, Diego; Cabrejos, María Eugenia; Yañez, José Manuel; Gallardo-Escárate, Cristian
2015-04-01
The infectious salmon anemia virus (ISAV) is a severe disease that mainly affects the Atlantic salmon (Salmo salar) aquaculture industry. Although several transcriptional studies have aimed to understand Salmon-ISAV interaction through the evaluation of host-gene transcription, none of them has focused their attention upon the viral transcriptional dynamics. For this purpose, RNA-Seq and RT-qPCR analyses were conducted in gills, liver and head-kidney of S. salar challenged by cohabitation with ISAV. Results evidence the time and tissue transcript patterns involved in the viral expression and how the transcription levels of ISAV segments are directly linked with the protein abundance found in other virus of the Orthomyxoviridae family. In addition, RT-qPCR result evidenced that quantification of ISAV through amplification of segment 3 would result in a more sensitive approach for detection and quantification of ISAV. This study offers a more comprehensive approach regarding the ISAV infective process and gives novel knowledge for its molecular detection. Copyright © 2014 Elsevier B.V. All rights reserved.
Salmon trypsin stimulates the expression of interleukin-8 via protease-activated receptor-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Anett K.; Department of Pharmacology, Institute of Medical Biology, University of Tromso, Tromso; Seternes, Ole-Morten
2008-08-01
In this study, we focus on salmon trypsin as an activator of inflammatory responses in airway cells in vitro. The rationale behind the investigation is that salmon industry workers are exposed to aerosols containing enzymes, which are generated during industrial processing of the fish. Knowing that serine proteases such as trypsin are highly active mediators with diverse biological activities, the stimulation of nuclear factor-kappa B (NF-{kappa}B) and interleukin (IL)-8 and the role of protease-activated receptors (PAR) in inflammatory signal mediation were investigated. Protease-activated receptors are considered important under pathological situations in the human airways, and a thorough understanding of PAR-inducedmore » cellular events and their consequences in airway inflammation is necessary. Human airway epithelial cells (A549) were exposed to trypsin isolated from fish (Salmo salar), and we observed that purified salmon trypsin could generate secretion of IL-8 in a concentration-dependent manner. Furthermore, we demonstrate that PAR-2 activation by salmon trypsin is coupled to an induction of NF-{kappa}B-mediated transcription using a PAR-2 transfected HeLa cell model. Finally, we show that the release of IL-8 from A549 following stimulation with purified salmon trypsin is mediated through activation of PAR-2 using specific small interfering RNAs (siRNAs). The results presented suggest that salmon trypsin, via activation of PAR-2, might influence inflammation processes in the airways if inhaled in sufficient amounts.« less
Juvenile Salmon Usage of the Skeena River Estuary
Carr-Harris, Charmaine; Gottesfeld, Allen S.; Moore, Jonathan W.
2015-01-01
Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that use the estuary, then numerous fisheries would also be negatively affected. PMID:25749488
Juvenile salmon usage of the Skeena River estuary.
Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W
2015-01-01
Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that use the estuary, then numerous fisheries would also be negatively affected.
Lysenko, Liudmila A; Kantserova, Nadezda P; Kaivarainen, Elena I; Krupnova, Marina Yu; Nemova, Nina N
2017-09-01
Growth-related dynamics of intracellular protease activities in four year classes of the Atlantic salmon (Salmo salar L. 1758) parr and smolts inhabiting salmon rivers of northwestern Russia (the White Sea basin) were studied. Cathepsin B, cathepsin D, proteasome, and calpain activities in the skeletal muscles of salmon were assessed to investigate their relative contribution to the total protein degradation as well as to young fish growth process. It was confirmed that calpain activity dominates in salmon muscles while proteasome plays a minor role, in contrast to terrestrial vertebrates. Calpain and proteasome activities were maximal at the early post-larval stage (in parrs 0+) and declined with age (parrs 1+ through 2+) dropping to the lowest level in salmon smolts. Annual growth increments and proteolytic activities of calpains and proteasome in the muscles of salmon juveniles changed with age in an orchestrated manner, while lysosomal cathepsin activities increased with age. Comparing protease activities and growth increments in salmon parr and smolts we suggested that the partial suppression of the protein degradation could be a mechanism stimulating efficient growth in smoltifying salmon. Growth and smoltification-related dynamics of protease activities was quite similar in salmon populations from studied spawning rivers, such as Varzuga and Indera; however, some habitat-related differences were observed. Growth increments and protease activities varied in salmon parr 0+ (but not on later ages) inhabiting either main rivers or small tributaries apparently due to habitat difference on the resources for fish growth. Copyright © 2017 Elsevier Inc. All rights reserved.
Sustainable fisheries management: Pacific salmon
Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald; Williams, Jack E.; Reiser, Dudley W.
1999-01-01
What has happened to the salmon resource in the Pacific Northwest? Who is responsible and what can be done to reverse the decline in salmon populations? The responsibly falls on everyone involved - fishermen, resource managers and concerned citizens alike - to take the steps necessary to ensure that salmon populations make a full recovery.This collection of papers examines the state of the salmon fisheries in the Pacific Northwest. They cover existing methods and supply model approaches for alternative solutions. The editors stress the importance of input from and cooperation with all parties involved to create a viable solution. Grass roots education and participation is the key to public support - and ultimately the success - of whatever management solutions are developed.A unique and valuable scientific publication, Sustainable Fisheries Management: Pacific Salmon clearly articulates the current state of the Pacific salmon resource, describes the key features of its management, and provides important guidance on how we can make the transition towards sustainable fisheries. The solutions presented in this book provide the basis of a strategy for sustainable fisheries, requiring society and governmental agencies to establish a shared vision, common policies, and a process for collaborative management.
USDA-ARS?s Scientific Manuscript database
The inclusion of alternative protein sources in aquafeed needs to be increased in order to reduce reliance on fishmeal and to enhance salmonid culture sustainability. Many studies have examined terrestrial plant meals and protein concentrates as alternative sources of protein. Recently the focus h...
Valenzuela-Muñoz, Valentina; Valenzuela-Miranda, Diego; Gallardo-Escárate, Cristian
2018-05-24
The increasing capacity of transcriptomic analysis by high throughput sequencing has highlighted the presence of a large proportion of transcripts that do not encode proteins. In particular, long non-coding RNAs (lncRNAs) are sequences with low coding potential and conservation among species. Moreover, cumulative evidence has revealed important roles in post-transcriptional gene modulation in several taxa. In fish, the role of lncRNAs has been scarcely studied and even less so during the immune response against sea lice. In the present study we mined for lncRNAs in Atlantic salmon (Salmo salar) and Coho salmon (Oncorhynkus kisutch), which are affected by the sea louse Caligus rogercresseyi, evaluating the degree of sequence conservation between these two fish species and their putative roles during the infection process. Herein, Atlantic and Coho salmon were infected with 35 lice/fish and evaluated after 7 and 14 days post-infestation (dpi). For RNA sequencing, samples from skin and head kidney were collected. A total of 5658/4140 and 3678/2123 lncRNAs were identified in uninfected/infected Atlantic and Coho salmon transcriptomes, respectively. Species-specific transcription patterns were observed in exclusive lncRNAs according to the tissue analyzed. Furthermore, neighbor gene GO enrichment analysis of the top 100 highly regulated lncRNAs in Atlantic salmon showed that lncRNAs were localized near genes related to the immune response. On the other hand, in Coho salmon the highly regulated lncRNAs were localized near genes involved in tissue repair processes. This study revealed high regulation of lncRNAs closely localized to immune and tissue repair-related genes in Atlantic and Coho salmon, respectively, suggesting putative roles for lncRNAs in salmon against sea lice infestation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Guerrin, F; Dumas, J
2001-02-01
This work aims at representing empirical knowledge of freshwater ecologists on the functioning of salmon redds (spawning areas of salmon) and its impact on mortality of early stages. For this, we use Qsim, a qualitative simulator. In this first part, we provide unfamiliar readers with the underlying qualitative differential equation (QDE) ontology of Qsim: representing quantities, qualitative variables, qualitative constraints, QDE structure. Based on a very simple example taken of the salmon redd application, we show how informal biological knowledge may be represented and simulated using an approach that was first intended to analyze qualitatively ordinary differential equations systems. A companion paper (Part II) gives the full description and simulation of the salmon redd qualitative model. This work was part of a project aimed at assessing the impact of the environment on salmon populations dynamics by the use of models of processes acting at different levels: catchment, river, and redds. Only the latter level is dealt with in this paper.
USDA-ARS?s Scientific Manuscript database
There is growing interest for fish meals and oils made from utilizing different fish by-products (heads, viscera, frames, etc.) that come directly from the commercial processing line. The major components of fish processing waste from salmon filleting operations are heads and viscera. In order to ma...
USDA-ARS?s Scientific Manuscript database
In smoked fish processes, smoking is the only step that is capable of inactivating pathogens, such as Listeria monocytogenes, that contaminate the raw fish. The objectives of this study were to examine and develop a model to describe the survival of L. monocytogenes in salmon as affected by salt, s...
Rodrigues, Daniele B; Chitchumroonchokchai, Chureeporn; Mariutti, Lilian R B; Mercadante, Adriana Z; Failla, Mark L
2017-12-27
In vitro digestion methods are routinely used to assess the bioaccessibility of carotenoids and other dietary lipophilic compounds. Here, we compared the recovery of carotenoids and their efficiency of micellarization in digested fruits, vegetables, egg yolk, and salmon and also in mixed-vegetable salads with and without either egg yolk or salmon using the static INFOGEST method22 and the procedure of Failla et al.16 Carotenoid stability during the simulated digestion was ≥70%. The efficiencies of the partitioning of carotenoids into mixed micelles were similar when individual plant foods and salad meals were digested using the two static methods. Furthermore, the addition of cooked egg or salmon to vegetable salads increased the bioaccessibility of some carotenoids. Our findings showed that the two methods of in vitro digestion generated similar estimates of carotenoid retention and bioaccessibility for diverse foods.
Lapis, Trina J; Oliveira, Alexandra C M; Crapo, Charles A; Himelbloom, Brian; Bechtel, Peter J; Long, Kristy A
2013-01-01
Establishing n-3 polyunsaturated fatty acid contents in canned wild Alaska pink salmon products is challenging due to ample natural variation found in lipid content of pink salmon muscle. This study investigated the effect of adding salmon oil (SO) to canned pink salmon produced from fish exhibiting two opposite degrees of skin watermarking, bright (B) and dark (D). Specific goals of the study were to evaluate the benefits of adding SO to canned pink salmon with regard to nutritional value of the product, sensory characteristics, and the oxidative and hydrolytic stability of the lipids over thermal processing. Six groups of canned pink salmon were produced with variable levels of SO, either using bright (with 0, 1, or 2% SO) or dark (with 0, 2, or 4% SO) pink salmon. Compositional analysis revealed highest (P < 0.05) lipid content in sample B2 (8.7%) and lowest (P < 0.05) lipid content in sample D0 (3.5%). Lipid content of samples B0, B1, D2, and D4 was not significantly different (P > 0.05) ranging from 5.7% to 6.8%. Consequently, addition of SO to canned pink salmon allowed for consistent lipid content between bright and dark fish. Addition of 1% or 2% SO to canned bright pink salmon was not detrimental to the sensory properties of the product. It is recommended that canned bright pink salmon be supplemented with at least 1% SO, while supplementation with 2% SO would guarantee a minimum quantity of 1.9 g of n-3 fatty acids per 100 g of product. Addition of 4% SO to canned dark pink salmon was detrimental to product texture and taste, while supplementation with 2% SO did not negatively affect sensorial properties of the product. Accordingly, canned dark pink salmon should be supplemented with 2% SO so that a minimum n-3 fatty acids content of 1.5 g per 100 g of product. PMID:24804010
76 FR 51346 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-18
...: National Oceanic and Atmospheric Administration (NOAA). Title: Alaska Prohibited Species Donation Program... information collection. A prohibited species donation (PSD) program for Pacific salmon and Pacific halibut has... participating in the donation program voluntarily retain and process salmon and halibut bycatch. An authorized...
Guidance for Protection and Restoration of Nearshore Ecosystems of Puget Sound
2004-11-01
marine, watershed, ecosystem process U U U SAR 20 Bernard L. Hargrave 206-764-6839 2 PUGET SOUND...D. L. Bottom, and T. J. Cornwell . 2002. Contrasting functional performance of juvenile salmon in recovering wetlands of the Salmon River estuary
Environmental variability and chum salmon production at the northwestern Pacific Ocean
NASA Astrophysics Data System (ADS)
Kim, Suam; Kang, Sukyung; Kim, Ju Kyoung; Bang, Minkyoung
2017-12-01
Chum salmon, Oncorhynchus keta, are distributed widely in the North Pacific Ocean, and about 76% of chum salmon were caught from Russian, Japanese, and Korean waters of the northwestern Pacific Ocean during the last 20 years. Although it has been speculated that the recent increase in salmon production was aided by not only the enhancement program that targeted chum salmon but also by favorable ocean conditions since the early 1990s, the ecological processes for determining the yield of salmon have not been clearly delineated. To investigate the relationship between yield and the controlling factors for ocean survival of chum salmon, a time-series of climate indices, seawater temperature, and prey availability in the northwestern Pacific including Korean waters were analyzed using some statistical tools. The results of cross-correlation function (CCF) analysis and cumulative sum (CuSum) of anomalies indicated that there were significant environmental changes in the North Pacific during the last century, and each regional stock of chum salmon responded to the Pacific Decadal Oscillation (PDO) differently: for Russian stock, the correlations between PDO index and catch were significantly negative with a time-lag of 0 and 1 years; for Japanese stock, significantly positive with a timelag of 0-2 years; and for Korean stock, positive but no significant correlation. The results of statistical analyses with Korean chum salmon also revealed that a coastal seawater temperature over 14°C and the return rate of spawning adults to the natal river produced a significant negative correlation.
Development of a Method to Produce Freeze-Dried Cubes from 3 Pacific Salmon Species
USDA-ARS?s Scientific Manuscript database
Freeze-dried boneless skinless cubes of pink (Oncorhynchus gorbuscha), sockeye (Oncorhynchus nerka), and chum (Oncorhynchus keta) salmon were prepared and physical properties evaluated. To minimize freeze-drying time, the kinetics of dehydration and processing yields were investigated. The physical ...
Doubling sockeye salmon production in the Fraser River—Is this sustainable development?
NASA Astrophysics Data System (ADS)
Henderson, Michael A.; Healey, Michael C.
1993-11-01
We evaluate a proposal to double sockeye salmon production from the Fraser River and conclude that significant changes will be required to current management processes, particularly the way available catch is allocated, if the plan is to be consistent with five major principles embodied in the concept of sustainable development. Doubling sockeye salmon production will not, in itself, increase economic equity either regionally or globally. Developing nations may actually be hindered in their attempts to institute other, nonsalmon fisheries in the North Pacific Ocean as a result of the possible interception of salmon. Further, other users of the Fraser River basin will have to forgo opportunities so that salmon habitat can be conserved. If doubling sockeye salmon production is to meet the goal of doing more with less, it will be necessary to develop more efficient technologies to harvest the fish. If increasing salmon production is to reflect the integration of environmental and economic decision making at the highest level, then a serious attempt must be made to incorporate environmental assets into national economic accounting. Finally, to promote biodiversity and cultural self-sufficiency within the Fraser River basin, it will be important to safeguard the small, less-productive salmon stocks as well as the large ones and to allocate a substantial portion of the increased production to the Native Indian community.
Rønning, Sissel B; Østbye, Tone-Kari; Krasnov, Aleksei; Vuong, Tram T; Veiseth-Kent, Eva; Kolset, Svein O; Pedersen, Mona E
2017-04-01
Pin bones represent a major problem for processing and quality of fish products. Development of methods of removal requires better knowledge of the pin bones' attachment to the muscle and structures involved in the breakdown during loosening. In this study, pin bones from cod and salmon were dissected from fish fillets after slaughter or storage on ice for 5 days, and thereafter analysed with molecular methods, which revealed major differences between these species before and after storage. The connective tissue (CT) attaches the pin bone to the muscle in cod, while the pin bones in salmon are embedded in adipose tissue. Collagens, elastin, lectin-binding proteins and glycosaminoglycans (GAGs) are all components of the attachment site, and this differ between salmon and cod, resulting in a CT in cod that is more resistant to enzymatic degradation compared to the CT in salmon. Structural differences are reflected in the composition of transcriptome. Microarray analysis comparing the attachment sites of the pin bones with a reference muscle sample showed limited differences in salmon. In cod, on the other hand, the variances were substantial, and the gene expression profiles suggested difference in myofibre structure, metabolism and cell processes between the pin bone attachment site and the reference muscle. Degradation of the connective tissue occurs closest to the pin bones and not in the neighbouring tissue, which was shown using light microscopy. This study shows that the attachment of the pin bones in cod and salmon is different; therefore, the development of methods for removal should be tailored to each individual species.
The importance of genetic verification for determination of Atlantic salmon in north Pacific waters
Nielsen, J.L.; Williams, I.; Sage, G.K.; Zimmerman, C.E.
2003-01-01
Genetic analyses of two unknown but putative Atlantic salmon Salmo salar captured in the Copper River drainage, Alaska, demonstrated the need for validation of morphologically unusual fishes. Mitochondrial DNA sequences (control region and cytochrome b) and data from two nuclear genes [first internal transcribed spacer (ITS-1) sequence and growth hormone (GH1) amplification product] indicated that the fish caught in fresh water on the Martin River was a coho salmon Oncorhynchus kisutch, while the other fish caught in the intertidal zone of the Copper River delta near Grass Island was an Atlantic salmon. Determination of unusual or cryptic fish based on limited physical characteristics and expected seasonal spawning run timing will add to the controversy over farmed Atlantic salmon and their potential effects on native Pacific species. It is clear that determination of all putative collections of Atlantic salmon found in Pacific waters requires validation. Due to uncertainty of fish identification in the field using plastic morphometric characters, it is recommended that genetic analyses be part of the validation process. ?? 2003 The Fisheries Society of the British Isles.
Evolution of polyploidy and the diversification of plant-pollinator interactions.
Thompson, John N; Merg, Kurt F
2008-08-01
One of the major mechanisms of plant diversification has been the evolution of polyploid populations that differ from their diploid progenitors in morphology, physiology, and environmental tolerances. Recent studies have indicated that polyploidy may also have major effects on ecological interactions with herbivores and pollinators. We evaluated pollination of sympatric diploid and tetraploid plants of the rhizomatous herb Heuchera grossulariifolia (Saxifragaceae) along the Selway and Salmon Rivers of northern Idaho, USA, during four consecutive years. Previous molecular and ecological analyses had indicated that the tetraploid populations along these two river systems are independently derived and differ from each other in multiple traits. In each region, we evaluated floral visitation rate by all insect visitors, pollination efficacy of all major visitors, and relative contribution of all major pollinators to seed set. In both regions, diploid and tetraploid plants attracted different suites of floral visitors. Most pollination was attributable to several bee species and the moth Greya politella. Lasioglossum bees preferentially visited diploid plants at Lower Salmon but not at Upper Selway, queen Bombus centralis preferentially visited tetraploids at both sites, and worker B. centralis differed between sites in their cytotype preference. Hence, diploid and autotetraploid H. grossulariifolia plants act essentially as separate ecological species and may experience partial reproductive isolation through differential visitation and pollination by their major floral visitors. Overall the results, together with recent results from other studies, suggest that the repeated evolution of polyploidy in plants may contribute importantly to the structure and diversification of ecological interactions in terrestrial communities.
SOIL N AND C GEOGRAPHY OF THE SALMON RIVER WATERSHED AND THE OREGON COAST
To help establish restorative criteria of salmon runs in the Pacific Northwest, resource inventories on affected watersheds are a critical component of this process. Diverse soil and geology influence the rich terrestrial and aquatic biota of the Oregon Coast. We characterized ...
Developing Curriculum for Canadian Schools: What We Learned from the Atlantic Salmon
ERIC Educational Resources Information Center
Anderson, Gary J.; And Others
1977-01-01
The process of developing a distinctively Canadian junior high school curriculum unit integrating subject content of history, science, and geography around a common theme is discussed. The unit focuses on the life cycle and environment of the Atlantic Salmon, Salmo salar. (MJB)
NASA Astrophysics Data System (ADS)
Grossman, E. E.; Rosenbauer, R. J.; Takesue, R. K.; Gelfenbaum, G.; Reisenbichler, R.; Paulson, A.; Sexton, N. R.; Labiosa, B.; Beamer, E. M.; Hood, G.; Wyllie-Echeverria, S.
2006-12-01
Historic land use, ongoing resource extraction, and population expansion throughout Puget Sound have scientists and managers rapidly seeking effective restoration strategies to recover salmon (a cultural icon, as well as, a host of other endangered species and threatened habitats. Of principal concern is the reduction of salmon (Oncorhynchus spp.) and diminished carrying capacity of critical habitat in deltaic regions. Delta habitats, essential to salmon survival, have lost 70 to 80 % area since ~1850 and are now adjusting to a new suite of environmental changes associated with land use practices, including wetland restoration, and regional climate change. The USGS Coastal Habitats in Puget Sound Project, in collaboration with partners from the Skagit River System Cooperative, University of Washington, and other federal, state, and local agencies, is integrating geologic, biologic, hydrologic, and socioeconomic information to quantify changes in the distribution and function of deltaic-estuarine nearshore habitats and better predict "possible futures". We are combining detailed geologic and geochemical analyses of sedimentary environments, plant biomarkers (n-alkanes, PAHs, fatty-acids, and sterols), and compound-specific isotopes to estimate historic habitat coverage, eelgrass (Zostera marina) abundance and modern characteristics of nutrient cycling. Hydrologic and sediment transport processes are being measured to characterize physical processes shaping modern habitats including sediment transport and freshwater mixing that control the temporal and spatial pattern of substrate and water column conditions available as habitat. We are using geophysical, remote sensing, and modeling techniques to determine large-scale coastal morphologic and land-use change and characterize how alteration of physical, hydrologic, and biogeochemical processes influence the dynamics of freshwater mixing, and sediment and nutrient transport in the nearshore. To assist restoration planning, we are integrating a Geographic Information System of land use, ecologic, and hydrodynamic attributes with a hydrodynamic process model to (1) quantitatively estimate land-use impacts on ecologic functions and (2) to provide decision-support tools to help develop and implement effective restoration strategies that will balance socioeconomic demands and ecologic function of the Puget Sound lowlands.
Rasmussen, Rie Romme; Søndergaard, Annette Bøge; Bøknæs, Niels; Cederberg, Tommy Licht; Sloth, Jens Jørgen; Granby, Kit
2017-06-01
Mitigation of contaminants in industrial processing was studied for prawns (cooked and peeled), Greenland halibut (cold smoked) and Atlantic salmon (cold smoked and trimmed). Raw prawns had significantly higher cadmium, chromium, iron, selenium and zinc content in autumn than in spring, while summer levels typically were intermediate. Peeling raw prawns increased mercury concentration but reduced the concentration of all other elements including inorganic arsenic, total arsenic, chromium, zinc, selenium but especially cadmium, copper and iron (p < 0.05), however interaction between seasons and processing was observed. Non-toxic organic arsenic in raw Greenland halibut (N = 10) and salmon (N = 4) did not transform to carcinogenic inorganic arsenic during industrial cold smoking. Hence inorganic arsenic was low (<0.003 mg/kg wet weight) in both raw and smoked fillets rich in organic arsenic (up to 9.0 mg/kg for farmed salmon and 0.7 mg/kg for wild caught Greenland halibut per wet weight). Processing salmon did not significantly change any levels (calculated both per wet weight, dry weight or lipid content). Cold smoking decreased total arsenic (17%) and increased PCB congeners (10-22%) in Greenland halibut (wet weight). However PFOS, PCB and PBDE congeners were not different in processed Greenland halibut when corrected for water loss or lipid content. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kondo, Yasuto; Ahn, Jeakun; Komatsubara, Ryo; Terada, Akihiko; Yasuda, Toshitaka; Tsuge, Ikuya; Urisu, Atsuo
2009-06-01
Salmon is one of the most widely consumed seafoods in Japan and many other countries around the world. Due to the confirmed cases of salmon-induced allergy, the food sanitation law in Japan stipulates salmon as one of the specific food items for which labeling is recommended when used as an ingredient of processed foods. However, trout, the landlocked form of anadromous salmon, is not subject to the allergen-labeling requirements, even though both populations belong to a single species. Since no supporting data have been demonstrated to make a clear distinction between these two populations in terms of allergenicity, we comparatively examined their allergenic properties using sera from patients allergic to fish. Extracts of Oncorhynchus nerka from different habitats were obtained: kokanee (landlocked) and red salmon (anadromous). Control extracts were derived from four other species. This study focused on the (1) IgE-binding capacity of the fish extracts in patients' sera (n = 50), (2) ELISA inhibition test (n = 6), and (3) inhibition immunoblot test (n = 8) between the kokanee and red salmon. The extracts from kokanee and red salmon showed the highest correlation with each other in terms of the IgE-binding capacity, and showed complete (100%) reciprocal cross-inhibition in the ELISA inhibition test. On immunoblotting, there was no marked difference in the staining pattern between the two extracts, and each IgE-binding band gradually disappeared when the patients' sera were preincubated with the counterpart antigen in a dose-dependent manner. These results suggest that kokanee has similar allergenic properties to red salmon.
Effects of salmon calcitonin on fracture healing in ovariectomized rats.
Li, Xiaolin; Luo, Xinle; Yu, Nansheng; Zeng, Bingfang
2007-01-01
To explore the effects of salmon calcitonin on the healing process of osteoporotic fractures in ovariectomized rats. We performed this study in The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China, during the period March 2002 to December 2004. We used 120 female adult Wistar rats in this experiment, among which 90 underwent ovariectomy (OVX) and the other 30 had sham-operation. All rats had their left tibias fractured 3 months later. The 90 OVX rats were randomly divided into 3 groups with 30 in each, while the 30 sham-operated rats served as control group. After the fracture the rats had subcutaneous injection of normal saline, salmon calcitonin and estrogen, respectively. X-ray film, histological examination, bone mineral density (BMD) measurement and biomechanics testing were carried out to evaluate the fracture healing. Compared with OVX rats treated with normal saline, the rats with salmon calcitonin had significantly higher BMD values in the left tibia, higher max torque, shear stress of the left tibia 8 weeks after fracture (p<0.05), and presented with stronger callus formation, shorter fracture healing time and faster normalization of microstructure of bone trabeculae. Salmon calcitonin can, not only increase BMD in osteoporotic bone, but also enhance the bone biomechanical properties and improve the process of fracture healing in fractured osteoporotic bone.
Characteristics of formed Atlantic salmon jerky.
Oberholtzer, Ashlan S; Dougherty, Michael P; Camire, Mary Ellen
2011-08-01
Smoked salmon (Salmo salar L.) processing may generate large amounts of small pieces of trimmed flesh that has little economic value. Opportunities exist to develop new added-value foods from this by-product. Brining was compared with dry salting for the production of formed salmon jerky-style strips that were then smoked. The formulations also contained brown sugar and potato starch. Salted samples had higher salt concentrations and required less force to break using a TA-XT2 Texture Analyzer. Brined samples contained more fat and were darker, redder and more yellow than the salted samples. Processing concentrated omega-3 fatty acids compared with raw salmon, and the brined jerky had the highest omega-3 fatty acid content. A panel of 57 consumers liked the appearance and aroma of both samples equally (approximately 6.7 for appearance and 6.3 for aroma on the 9-point hedonic scale. Higher acceptability scores for taste, texture, and overall quality were given to the brined product (6.7 to 6.9 against 6.2 to 6.3). Salmon trim from smoking facilities can be utilized to produce a jerky that is a good source of omega-3 fatty acids, simultaneously adding value and reducing the waste stream. © 2011 Institute of Food Technologists®
Stabilizing Oils from Smoked Pink Salmon (Oncorhynchus gorbuscha)
USDA-ARS?s Scientific Manuscript database
Smoking of meats and fish is one of the earliest preservation technologies developed by humans. In this study, the smoking process was evaluated as a method for reducing oxidation of Pink Salmon (Oncorhynchus gorbuscha) oils and also maintaining the quality of oil in aged fish prior to oil extractio...
Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy
2006-05-01
On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound inmore » Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred to Eagle Fish Hatchery on September 14, 2004 and later incorporated into hatchery spawn matrices. Nine anadromous females, 102 captive females from brood year 2001, and one captive female from brood year 2000 broodstock groups were spawned at the Eagle Hatchery in 2004. Spawn pairings produced approximately 140,823 eyed-eggs with egg survival to eyed stage of development averaging 72.8%. Eyed-eggs (49,134), presmolts (130,716), smolts (96), and adults (241) were planted or released into Sawtooth Valley waters in 2004. Reintroduction strategies involved releases to Redfish Lake, Alturas Lake, and Pettit Lake. During this reporting period, five broodstocks and five unique production groups were in culture at Idaho Department of Fish and Game (Eagle Fish Hatchery and Sawtooth Fish Hatchery) and Oregon Department of Fish and Wildlife (Oxbow Fish Hatchery) facilities. Two of the five broodstocks were incorporated into the 2004 spawning design.« less
Grays River Watershed and Biological Assessment Final Report 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, Christopher W.; McGrath, Kathleen E.; Geist, David R.
2008-02-04
The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest andmore » agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.« less
Grays River Watershed and Biological Assessment, 2006 Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, Christopher; Geist, David
2007-04-01
The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest andmore » agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.« less
Catalán, Natalia; Villasante, Alejandro; Wacyk, Jurij; Ramírez, Carolina; Romero, Jaime
2017-12-22
The main goal of the present study was to address the effect of feeding fermented soybean meal-based diet to Atlantic salmon on gut microbiota. Further, expression of genes of interest, including cathelicidin antimicrobial peptide (cath), mucin 2 (muc2), aquaporin (aqp8ab), and proliferating cell nuclear antigen (pcna), in proximal intestine of fish fed either experimental diet was analyzed. Three experimental diets, including a control fishmeal (30% FM), soybean meal (30% SBM), or fermented soybean meal diet (30% FSBM) were randomly assigned to triplicate tanks during a 50-day trial. The PCR-TTGE showed microbiota composition was influenced by experimental diets. Bands corresponding to genus Lactobacillus and Pediococcus were characteristic in fish fed the FSBM-based diet. On the other hand, bands corresponding to Isoptericola, Cellulomonas, and Clostridium sensu stricto were only observed in fish FM-based diet, while Acinetobacter and Altererythrobacter were detected in fish fed SBM-based diet. The expression of muc2 and aqp8ab were significantly greater in fish fed the FSBM-based diet compared with the control group. Our results suggest feeding FSBM to Atlantic salmon may (1) boost health and growth physiology in fish by promoting intestinal lactic acid bacteria growth, having a prebiotic-like effect, (2) promote proximal intestine health by increasing mucin production, and (3) boost intestinal trans-cellular uptake of water. Further research to better understands the effects of bioactive compounds derived from the fermentation process of plant feedstuff on gut microbiota and the effects on health and growth in fish is required.
Chemical and histological studies of wild and hatchery salmon in fresh water
Wood, E.M.; Yasutake, W.T.; Halver, J.E.; Woodall, A.N.
1960-01-01
In a study of coho salmon (Oncorhynchus kisutch), the gross chemical and histological changes occurring over a 14-month period spent in fresh water were determined. The determinations were made at 3-month intervals on: 1) hatchery-reared fish, 2) fish hatchery-reared for 3, 6, 9, and 12 months and then planted in a controlled stream for the remainder of the period; and 3) an indigenous group of wild fish in this stream. Wild fish showed high incidence of tissue damage from spinose hairs of the moth larva, Halisidota argentata. Hatchery fish were similarly affected with the severity and incidence of lesions varying directly with the time of exposure of the larvae in the wild environment. Both groups of fish were heavily parasitized by sporozoan organisms in the kidney and spinal cord. Kidney disease appeared in both wild and planted hatchery fish. The gross chemical composition of hatchery fish transformed rapidly after planting to that of the wild fish. Although the initial rate of fat loss is essentially constant for all hatchery groups after planting, fish that were hatchery reared for 9 to 12 months did not complete the transformation to the wild-type body composition by the time of downstream migration at 14 months.
Liu, Yiying; Zachow, Christin; Raaijmakers, Jos M.; de Bruijn, Irene
2016-01-01
Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture. PMID:26805821
Liu, Yiying; Zachow, Christin; Raaijmakers, Jos M; de Bruijn, Irene
2016-01-21
Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture.
The angler specialization concept applied: New York’s Salmon River anglers
Chad P. Dawson; Tommy L. Brown; Nancy Connelly
1992-01-01
The concept of angler specialization was applied to a study of Salmon River anglers to test this concept when using a variety of angling techniques and two species groups within the same environmental setting. A revision of the concept is suggested to account for angler expectancy and cognitive processes.
USDA-ARS?s Scientific Manuscript database
Maturation of Atlantic salmon Salmo salar is an extremely complex process, particularly in aquaculture systems, with many variables (known or otherwise) having the capacity to influence the timing and prevalence of maturation, and acting as promoters and/or inhibitors of sexual development. The vast...
78 FR 12713 - Pacific Fishery Management Council; Public Meetings and Hearings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
.... Authority: 16 U.S.C. 1801 et. seq. Dated: February 20, 2013. Kara Meckley, Acting Deputy Director, Office of... announced its annual preseason management process for the 2013 ocean salmon fisheries. This notice informs the public of opportunities to provide comments on the 2013 ocean salmon management measures which...
Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny
2016-09-01
It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to estrogenic activity of the WWTP effluents. These results suggest that lhb gene expression may be a sensitive index of acute exposure to estrogenic chemicals in juvenile coho salmon. Further work is needed to determine the kinetics and specificity of lhb induction to evaluate its utility as a potential indicator of estrogen exposure in immature fish. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Beechie, T. J.; Pess, G. R.; Hall, J.; Timpane-Padgham, B.; Stefankiv, O.; Liermann, M. C.; Fresh, K.; Rowse, M.
2015-12-01
Natural processes create dynamic habitat features in large rivers and floodplains, and past land uses that restrict fluvial processes have altered habitat conditions in those environments in Puget Sound, USA. As a result, Chinook salmon and steelhead are listed as threatened species under the US Endangered Species Act (ESA). To help restore these salmon populations, restoration actions often focus on removing constraints on natural processes to restore fluvial dynamics and ultimately restore critical salmon habitats on floodplains. An important aspect of this restoration effort is monitoring whether habitat conditions are improving as anticipated, yet there are currently few protocols available for monitoring trends in large river and floodplain habitats. We identified several remote-sensing metrics that are indicators of salmon habitat condition, and developed repeatable protocols for measuring those metrics. We then tested their sensitivity to land use change by comparing habitat conditions among land cover classes (developed, agriculture, forested, and mixed). As expected, metrics of habitat complexity or condition such as side-channel length, node density, wood jam area, or riparian buffer widths were highest in forested sites and lowest in agriculture and urban sites. By contrast, percent disconnected floodplain and percent armored banks were highest in developed sites and lowest in forested sites. Our results indicate that remote sensing metrics are sensitive enough to detect differences in habitat status among land cover classes, and therefore help us understand the impact of various land uses on habitat conditions. However, detecting trends in habitat condition through time may be difficult because magnitudes of change through time are very small.
Sandlund, Liv; Nilsen, Frank; Male, Rune; Dalvin, Sussie
2016-08-01
The function of the ecdysone receptor (EcR) during development and molting has been thoroughly investigated in some arthropods such as insects but rarely in crustacean copepods such as the salmon louse Lepeophtheirus salmonis (L. salmonis) (Copepoda, Caligidae). The salmon louse is an ectoparasite on Atlantic salmon that has major economical impact in aquaculture due to the cost of medical treatment methods to remove lice from the fish. Handling of salmon louse infestations is further complicated by development of resistance towards available medicines. Understanding of basic molecular biological processes in the salmon louse is essential to enable development of new tools to control the parasite. In this study, we found L. salmonis EcR (LsEcR) transcript to be present in the neuronal somata of the brain, nuclei of muscle fibres and the immature intestine of the salmon louse. Furthermore, we explored the function of LsEcR during development using RNA interference mediated knock-down and through infection trials. Our results show that knock-down of LsEcR in the salmon louse is associated with hypotrophy of several tissues, delayed development and mortality. In addition, combined knock-down of LsEcR/LsRXR resulted in molting arrest during early larval stages. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Migration trends of Sockeye Salmon at the northern edge of their distribution
Carey, Michael P.; Zimmerman, Christian E.; Keith, Kevin D.; Schelske, Merlyn; Lean, Charles; Douglas, David C.
2017-01-01
Climate change is affecting arctic and subarctic ecosystems, and anadromous fish such as Pacific salmon Oncorhynchus spp. are particularly susceptible due to the physiological challenge of spawning migrations. Predicting how migratory timing will change under Arctic warming scenarios requires an understanding of how environmental factors drive salmon migrations. Multiple mechanisms exist by which environmental conditions may influence migrating salmon, including altered migration cues from the ocean and natal river. We explored relationships between interannual variability and annual migration timing (2003–2014) of Sockeye Salmon O. nerka in a subarctic watershed with environmental conditions at broad, intermediate, and local spatial scales. Low numbers of Sockeye Salmon have returned to this high-latitude watershed in recent years, and run size has been a dominant influence on the migration duration and the midpoint date of the run. The duration of the migration upriver varied by as much as 25 d across years, and shorter run durations were associated with smaller run sizes. The duration of the migration was also extended with warmer sea surface temperatures in the staging area and lower values of the North Pacific Index. The midpoint date of the total run was earlier when the run size was larger, whereas the midpoint date was delayed during years in which river temperatures warmed earlier in the season. Documenting factors related to the migration of Sockeye Salmon near the northern limit of their range provides insights into the determinants of salmon migrations and suggests processes that could be important for determining future changes in arctic and subarctic ecosystems.
Zhang, Fuming; Xie, Jin; Linhardt, Robert J.
2015-01-01
Glycosaminoglycans (GAGs) are linear, highly negatively charged polysaccharides. They are ubiquitous molecules exhibiting a wide range of biological functions with numerous applications in pharmaceutical, cosmetic, and nutraceutical industrials. The commercial fish-processing industry generates large quantities of solid waste, which can represent a potential resource for GAG production. In this study, we used a three-step recovery and purification scheme for isolation of GAGs from the heads of red salmon (Oncorhynchus nerka). The GAGs recovery yield was 6 to 7 mg from 1 gram of salmon head powder. The recovered GAGs were structurally analyzed with polyacrylamide gel electrophoresis and by disaccharide composition analysis with reversed-phase ion-pair high-performance liquid chromatography. The analyses showed the major composition of the GAGs in red salmon head were chondroitin sulfate C and E. PMID:26918243
Zhang, Fuming; Xie, Jin; Linhardt, Robert J
Glycosaminoglycans (GAGs) are linear, highly negatively charged polysaccharides. They are ubiquitous molecules exhibiting a wide range of biological functions with numerous applications in pharmaceutical, cosmetic, and nutraceutical industrials. The commercial fish-processing industry generates large quantities of solid waste, which can represent a potential resource for GAG production. In this study, we used a three-step recovery and purification scheme for isolation of GAGs from the heads of red salmon ( Oncorhynchus nerka ). The GAGs recovery yield was 6 to 7 mg from 1 gram of salmon head powder. The recovered GAGs were structurally analyzed with polyacrylamide gel electrophoresis and by disaccharide composition analysis with reversed-phase ion-pair high-performance liquid chromatography. The analyses showed the major composition of the GAGs in red salmon head were chondroitin sulfate C and E.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... currently the best available science. The MSA requires that management decisions be based on the best available science. The FMP as amended by Amendment 16 provides a process for changing estimates of MSY if..., the Council manages Klamath Basin on an aggregate basis using the best available science. The...
Estimation of the relative influence of climate change, compared to other human activities, on dynamics of Pacific salmon (Oncorhynchus spp.) populations can help management agencies take appropriate management actions. We used empirically based simulation modelling of 48 sockeye...
Selecting salmonids to better utilize plant based diets.
USDA-ARS?s Scientific Manuscript database
Evaluation of genotype by diet interactions in aquaculture species for specific dietary components has only recently begun on a limited basis. Initial studies have examined such species as rainbow trout and Atlantic salmon. Because of the high-protein diet these species consume in the wild, commerci...
Discovering Alaska's Salmon: A Children's Activity Book.
ERIC Educational Resources Information Center
Devaney, Laurel
This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…
Valenzuela-Miranda, Diego; Boltaña, Sebastian; Cabrejos, Maria E; Yáñez, José M; Gallardo-Escárate, Cristian
2015-08-01
Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing high mortality in farmed Atlantic salmon (Salmo salar). The collective data from the Atlantic salmon-ISAV interactions, performed "in vitro" using various salmon cell lines and "in vivo" fish infected with different ISAV isolates, have shown a strong regulation of immune related transcripts during the infection. Despite this strong defence response, the majority of fish succumb to infections with ISAV. The deficient protection of the host against ISAV is in part due to virulence factors of the virus, which allow evade the host-defence machinery. As such, the viral replication is uninhibited and viral loads quickly spread to several tissues causing massive cellular damage before the host can develop an effective cell-mediated and humoral outcome. To interrogate the correlation of the viral replication with the host defence response, we used fish that have been infected by cohabitation with ISAV-injected salmons. Whole gene expression patterns were measured with RNA-seq using RNA extracted from Head-kidney, Liver and Gills. The results show divergent mRNA abundance of functional modules related to interferon pathway, adaptive/innate immune response and cellular proliferation/differentiation. Furthermore, gene regulation in distinct tissues during the infection process was independently controlled within the each tissue and the observed mRNA expression suggests high modulation of the ISAV-segment transcription. Importantly this is the first time that strong correlations between functional modules containing significant immune process with protein-protein affinities and viral-segment transcription have been made between different tissues of ISAV-infected fish. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dettleff, Phillip; Moen, Thomas; Santi, Nina; Martinez, Victor
2017-02-01
The infectious salmon anemia virus (ISAv) produces a systemic infection in salmonids, causing large losses in salmon production. However, little is known regarding the mechanisms exerting disease resistance. In this paper, we perform an RNA-seq analysis in Atlantic salmon challenged with ISAv (using individuals coming from families that were highly susceptible or highly resistant to ISAv infection). We evaluated the differential expression of both host and ISAv genes in a target organ for the virus, i.e. the spleen. The results showed differential expression of host genes related to response to stress, immune response and protein folding (genes such as; atf3, mhc, mx1-3, cd276, cd2, cocs1, c7, il10, il10rb, il13ra2, ubl-1, ifng, ifngr1, hivep2, sigle14 and sigle5). An increased protein processing activity was found in susceptible fish, which generates a subsequent unfolded protein response. We observed extreme differences in the expression of viral segments between susceptible and resistant groups, demonstrating the capacity of resistant fish to overcome the virus replication, generating a very low viral load. This phenomenon and survival of this higher resistant fish seem to be related to differences in immune and translational process, as well as to the increase of HIV-EP2 (hivep2) transcript in resistant fish, although the causal mechanism is yet to be discovered. This study provides valuable information about disease resistance mechanisms in Atlantic salmon from a host-pathogen interaction point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reyes-Cerpa, Sebastián; Vallejos-Vidal, Eva; Gonzalez-Bown, María José; Morales-Reyes, Jonathan; Pérez-Stuardo, Diego; Vargas, Deborah; Imarai, Mónica; Cifuentes, Víctor; Spencer, Eugenio; Sandino, Ana María; Reyes-López, Felipe E
2018-03-01
Salmon farming may face stress due to the intensive culture conditions with negative impacts on overall performance. In this aspect, functional feed improves not only the basic nutritional requirements but also the health status and fish growth. However, to date no studies have been carried out to evaluate the effect of functional diets in salmon subjected to crowding stress. Thus, the aim of this study was to evaluate the effect of yeast extract (Xanthophyllomyces dendrorhous; diet A) and the combination of plant extracts (common Saint John's wort, lemon balm, and rosemary; diet B) on the antioxidant and immune status of Atlantic salmon grown under normal cultured conditions and then subjected to crowding stress. Fish were fed with functional diets during 30 days (12 kg/m 3 ) and then subjected to crowding stress (20 kg/m 3 ) for 10 days. The lipid peroxidation in gut showed that both diets induced a marked decrease on oxidative damage when fish were subjected to crowding stress. The protein carbonylation in muscle displayed at day 30 a marked decrease in both functional diets that was more marked on the stress condition. The expression of immune markers (IFNγ, CD4, IL-10, TGF-β, IgM mb , IgM sec , T-Bet, and GATA-3) indicated the upregulation of those associated to humoral-like response (CD4, IL-10, GATA-3) when fish were subjected to crowding stress. These results were confirmed with the expression of secreted IgM. Altogether, these functional diets improved the antioxidant status and increased the expression of genes related to Th2-like response suggesting a protective role on fish subjected to crowding stress. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Arnaud, Cécilia; de Lamballerie, Marie; Pottier, Laurence
2018-01-01
Cod and salmon are both widely found in the seafood market, but those products are easily spoiled. This work reports on the investigation of the effects of three moderate pressure values (150, 300 and 450 MPa) applied for 5 min at 20°C on crude sliced cod and salmon fillets. It was found that high pressure processing (HPP) significantly reduced the microbial load during refrigerated storage for up to 14 days. As expected, the most effective treatment was 450 MPa because it inhibited microbial growth. This process affected the hardness, lightness, lipid oxidation, protein denaturation and oxidation. The fish muscle composition (lipid amount and protein profile) played a main role in the changes promoted by pressure. HPP permits the shelf life of the raw product at 4°C to be increased with minimal changes in the organoleptic characteristics and to enable crude consumption.
Limnology and fish ecology of sockeye salmon nursery lakes of the world
Hartman, Wilbur L.; Burgner, R.L.
1972-01-01
Many important, recently glaciated oligotrophic lakes that lie in coastal regions around the northern rim of the Pacific Ocean produce anadromous populations of sockeye salmon, Oncorhynchus nerka. This paper describes the limnology and fish ecology of two such lakes in British Columbia, five in Alaska, and one in Kamchatka. Then we discuss the following general topics: the biogenic eutrophication of nursery lakes from the nutrients released from salmon carcasses wherein during years of highest numbers of spawners, lake phosphate balances in Lakes Babine, Iliamna, and Dalnee are significantly affected; the use of nursery lakes by young sockeye that reveals five patterns related to size and configuration of lake basins and the distribution of spawning areas; the interactions between various life history stages of sockeye salmon and such resident predators, competitors, and prey as Arctic char, lake trout, Dolly Varden, cutthroat trout, lake whitefish, pygmy whitefish, pond smelt, sticklebacks, and sculpins; the self-regulation of sockeye salmon abundance in these nursery lakes as controlled by density-dependent processes; the interrelations between young sockeye salmon biomass and growth rates, and zooplankton abundance in Babine Lake; and finally, the diel, vertical, pelagial migratory behavior of young sockeye in Babine Lake and the new hypothesis dealing with bioenergetic conservation.
Antibody against infectious salmon anaemia virus among feral Atlantic salmon (Salmo salar)
Cipriano, R.C.
2009-01-01
Archived sera from Atlantic salmon (Salmo salar) that returned to the Penobscot River (Maine), Merrimack River (Massachusetts), and Connecticut River (in Massachusetts) from 1995 to 2002 were analysed for antibodies against infectious salmon anaemia virus (ISAV) using an enzyme-linked immunosorbent assay (ELISA). Up to 60 samples were archived per river system per year. In a given year, the number of fish sampled by ELISA for ISAV antibodies in the Penobscot River ranged from 2.9 to 11.2, and the range of salmon sampled in the Merrimack River and the Connecticut River was 31.3-100 and 20.0-67.5, respectively. Archived sera were not available for the 1995 and 2002 year classes from the Connecticut River. In all, 1141 samples were processed; 14 serum samples tested positive for antibodies to ISAV. In the Penobscot River, serum from one fish tested positive in each of the 1995 and 1999 year-class returns, and sera from two fish tested positive in the 1998 returns. In the Merrimack River, sera from four fish tested positive in each of the 1996 and 1997 returns, and sera from two fish were positive in the 2002 return. None of the archived sera from Atlantic salmon that returned to the Connecticut River tested positive. ?? 2009 United States Government, Department of the Interior.
Spoilage of sous vide cooked salmon (Salmo salar) stored under refrigeration.
Díaz, P; Garrido, M D; Bañón, S
2011-02-01
The spoilage of Sous Vide 'SV' cooked salmon stored under refrigeration was studied. Samples were packaged under vacuum in polyamide-polypropylene pouches, cooked at an oven temperature/time of 80 (°)C/45 min, quickly chilled at 3 (°)C and stored at 2 (°)C for 0, 5 or 10 weeks for catering use. Microbial (aerobic and anaerobic psychrotrophs, lactic acid bacteria, molds and yeasts and Enterobacteriaceae), physical-chemical (pH, water activity, TBARS, acidity, L*a*b* color, texture profile analysis and shear force) and sensory (appearance, odor, flavor, texture and overall quality) parameters were determined. SV processing prevented the growth of aerobic and anaerobic psychrotrophs, lactic acid bacteria, molds and yeasts and Enterobacteriaceae. There were no relevant changes in pH, water activity, TBARS, CIELab color associated with cooked salmon spoilage. Instrumental texture data were contradictory. Slight decrease in lactic acid levels was found. In contrast, the SV cooked salmon suffered considerable sensory deterioration during its refrigerated storage, consisting of severe losses of cooked salmon odor and flavor, slight rancidity, discoloration associated with white precipitation, and moderates softness, and loss of chewiness and juiciness. No acidification, putrefaction or relevant rancidity was detected. The sensory spoilage preceded microbiological and physical-chemical spoilage, suggesting that microbiological quality alone may overestimate the shelf life of SV cooked salmon.
Stephen, Craig; Dicicco, Emiliano; Munk, Brandon
2008-12-01
Salmon farming is a significant contribution to the global seafood market to which the goal of sustainability is often applied. Diseases related to farms are perhaps the most contentious issues associated with sustainable salmon farming. We reviewed literature and policies in British Columbia, Canada, as well as interviewed key informants to examine how fish health regulations do or could support sustainability goals. We found four main obstacles to the development and application of a sustainability-based health management system. First, salmon farming faced the same challenges as other industries when trying to establish an operational definition of sustainability that captures all stakeholders' interests. Second, there was no program responsible for integrating the various regulations, responsible departments, and monitoring efforts to develop a comprehensive view of sustainability. Third, there was inadequate research base and social consensus on the criteria that should be used to track health outcomes for sustainability purposes. Fourth, the regulatory and management paradigm for salmon farming has been focused on diseases and pathogens as opposed to embracing a more inclusive health promotion model that includes biotic, abiotic, and social determinants of health. A transparent and inclusive participatory process that effectively links expert views with community and industry concerns should serve as the foundation for the next generation of health management regulations for salmon farming.
Caldeira, Carina; García-Molina, Almudena; Valverde, Anthony; Bompart, Daznia; Hassane, Megan; Martin, Patrick; Soler, Carles
2018-04-13
Atlantic salmon (Salmo salar) is an endangered freshwater species that needs help to recover its wild stocks. However, the priority in aquaculture is to obtain successful fertilisation and genetic variability to secure the revival of the species. The aims of the present work were to study sperm subpopulation structure and motility patterns in wild anadromous males and farmed male Atlantic salmon parr. Salmon sperm samples were collected from wild anadromous salmon (WS) and two generations of farmed parr males. Sperm samples were collected from sexually mature males and sperm motility was analysed at different times after activation (5 and 35s). Differences among the three groups were analysed using statistical techniques based on Cluster analysis the Bayesian method. Atlantic salmon were found to have three sperm subpopulations, and the spermatozoa in ejaculates of mature farmed parr males had a higher velocity and larger size than those of WS males. This could be an adaptation to high sperm competition because salmonid species are naturally adapted to this process. Motility analysis enables us to identify sperm subpopulations, and it may be useful to correlate these sperm subpopulations with fertilisation ability to test whether faster-swimming spermatozoa have a higher probability of success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
RH Visser
2000-03-16
The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., themore » Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities.« less
Shiryaeva, Olga; Aasmoe, Lisbeth; Straume, Bjørn; Bang, Berit Elisabeth
2015-01-01
Respiratory outcomes and work-related factors were studied in two seafood worker populations representing different occupational environments. Levels of fractional exhaled nitric oxide (FENO), spirometric values, prevalence of respiratory symptoms, and self-evaluated exposures were compared between 139 Norwegian salmon workers and 127 Russian trawler workers. Increased odds ratios (ORs) of shortness of breath with wheezing and prolonged cough as general respiratory symptoms were found in salmon workers, while increased ORs of work-related dry cough and running nose were found in trawler fishermen. Both worker groups ranked "cold work environment," "use of disinfectants," and "contaminated indoor air" as the first, second, and third most important causes of work-related respiratory symptoms, respectively. Fractional exhaled nitric oxide levels were higher in asthmatic trawler workers compared to asthmatic salmon workers. Respiratory symptoms commonly associated with obstructive airway diseases were more prevalent in salmon workers, while symptoms commonly associated with asthma and short-term effects of cold air exposure were more prevalent in trawler workers.
IBSEM: An Individual-Based Atlantic Salmon Population Model.
Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A
2015-01-01
Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a 'wild' genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors.
First report of powdery mildew caused by Podosphaera leucotricha on Callery pear in North America
USDA-ARS?s Scientific Manuscript database
Podosphaera leucotricha (Ellis & Everh.) E.S. Salmon (Ascomycetes, Erysiphales) is the etiological agent of a powdery mildew disease that occurs on rosaceous plants, primarily Malus and Pyrus. This fungus is nearly circumglobal. In May 2009, leaves of Bradford pear (Pyrus calleryana Decne.), some di...
Zarkasi, Kamarul Zaman; Taylor, Richard S; Glencross, Brett D; Abell, Guy C J; Tamplin, Mark L; Bowman, John P
2017-10-01
In this study, microbial community dynamics were assessed within a simple in vitro model system in order to understand those changes influenced by diet. The abundance and diversity of bacteria were monitored within different treatment slurries inoculated with salmon faecal samples in order to mimic the effects of dietary variables. A total of five complete diets and two ingredients (plant meal) were tested. The total viable counts (TVCs) and sequencing data revealed that there was very clear separation between the complete diets and the plant meal treatments, suggesting a dynamic response by the allochthonous bacteria to the treatments. Automated ribosomal intergenic spacer analysis (ARISA) results showed that different diet formulations produced different patterns of fragments, with no separation between the complete diets. However, plant-based protein ingredients were clearly separated from the other treatments. 16S rRNA Illumina-based sequencing analysis showed that members of the genera Aliivibrio, Vibrio and Photobacterium became predominant for all complete diets treatments. The plant-based protein ingredient treatments only sustained weak growth of the genus Sphingomonas. In vitro based testing of diets could be a useful strategy to determine the potential impact of either complete feeds or ingredients on major fish gastrointestinal tract microbiome members. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Tironi, Antonio; Marin, Víctor H.; Campuzano, Francisco J.
2010-05-01
This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.
An expert panel process to evaluate habitat restoration actions in the Columbia River estuary.
Krueger, Kirk L; Bottom, Daniel L; Hood, W Gregory; Johnson, Gary E; Jones, Kim K; Thom, Ronald M
2017-03-01
We describe a process for evaluating proposed ecosystem restoration projects intended to improve survival of juvenile salmon in the Columbia River estuary (CRE). Changes in the Columbia River basin (northwestern USA), including hydropower development, have contributed to the listing of 13 salmon stocks as endangered or threatened under the U.S. Endangered Species Act. Habitat restoration in the CRE, from Bonneville Dam to the ocean, is part of a basin-wide, legally mandated effort to mitigate federal hydropower impacts on salmon survival. An Expert Regional Technical Group (ERTG) was established in 2009 to improve and implement a process for assessing and assigning "survival benefit units" (SBUs) to restoration actions. The SBU concept assumes site-specific restoration projects will increase juvenile salmon survival during migration through the 234 km CRE. Assigned SBUs are used to inform selection of restoration projects and gauge mitigation progress. The ERTG standardized the SBU assessment process to improve its scientific integrity, repeatability, and transparency. In lieu of experimental data to quantify the survival benefits of individual restoration actions, the ERTG adopted a conceptual model composed of three assessment criteria-certainty of success, fish opportunity improvements, and habitat capacity improvements-to evaluate restoration projects. Based on these criteria, an algorithm assigned SBUs by integrating potential fish density as an indicator of salmon performance. Between 2009 and 2014, the ERTG assessed SBUs for 55 proposed projects involving a total of 181 restoration actions located across 8 of 9 reaches of the CRE, largely relying on information provided in a project template based on the conceptual model, presentations, discussions with project sponsors, and site visits. Most projects restored tidal inundation to emergent wetlands, improved riparian function, and removed invasive vegetation. The scientific relationship of geomorphic and salmonid responses to restoration actions remains the foremost concern. Although not designed to establish a broad strategy for estuary restoration, the scoring process has adaptively influenced the types, designs, and locations of restoration proposals. The ERTG process may be a useful model for others who have unique ecosystem restoration goals and share some of our common challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.
The listing of 13 salmon and steelhead stocks in the Columbia River basin (hereafter collectively referred to as “salmon”) under the Endangered Species Act of 1973, as amended, has stimulated tidal wetland restoration in the lower 235 kilometers of the Columbia River and estuary for juvenile salmon habitat functions. The purpose of the research reported herein was to evaluate the effect on listed salmon of the restoration effort currently being conducted under the auspices of the federal Columbia Estuary Ecosystem Restoration Program (CEERP). Linking changes in the quality and landscape pattern of tidal wetlands in the lower Columbia River andmore » estuary (LCRE) to salmon recovery is a complex problem because of the characteristics of the ecosystem, the salmon, the restoration actions, and available sampling technologies. Therefore, we designed an evidence-based approach to develop, synthesize, and evaluate information to determine early-stage (~10 years) outcomes of the CEERP. We developed an ecosystem conceptual model and from that, a primary hypothesis that habitat restoration activities in the LCRE have a cumulative beneficial effect on juvenile salmon. There are two necessary conditions of the hypothesis: • habitat-based indicators of ecosystem controlling factors, processes, and structures show positive effects from restoration actions, and • fish-based indicators of ecosystem processes and functions show positive effects from restoration actions and habitats undergoing restoration. Our evidence-based approach to evaluate the primary hypothesis incorporated seven lines of evidence, most of which are drawn from the LCRE. The lines of evidence are spatial and temporal synergies, cumulative net ecosystem improvement, estuary-wide meta-analysis, offsite benefits to juvenile salmon, landscape condition evaluation, and evidence-based scoring of global literature. The general methods we used to develop information for the lines of evidence included field measurements, data analyses, modeling, meta-analysis, and reanalysis of previously collected data sets. We identified a set of 12 ancillary hypotheses regarding habitat and salmon response. Each ancillary hypothesis states that the response metric will trend toward conditions at relatively undisturbed reference sites. We synthesized the evidence for and against the two necessary conditions by using eleven causal criteria: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, analogy, complete exposure pathway, and predictive performance. Our final evaluation included cumulative effects assessment because restoration is occurring at multiple sites and the collective effect is important to salmon recovery. We concluded that all five lines of evidence from the LCRE indicated positive habitat-based and fish-based responses to the restoration performed under the CEERP, although tide gate replacements on small sloughs were an exception. Our analyses suggested that hydrologic reconnections restore access for fish to move into a site to find prey produced there. Reconnections also restore the potential for the flux of prey from the site to the main stem river, where our data show that they are consumed by salmon. We infer that LCRE ecosystem restoration supports increased juvenile salmon growth and enhanced fitness (condition), thereby potentially improving survival rates during the early ocean stage.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
...We, the National Marine Fisheries Service (NMFS), are issuing a final rule under the Endangered Species Act (ESA) of 1973, as amended, that redefines the geographic range of the endangered Central California Coast (CCC) coho salmon (Oncorhynchus kisutch) Evolutionarily Significant Unit (ESU) to include all naturally spawned populations of coho salmon that occur in Soquel and Aptos creeks. Information supporting this boundary change includes recent observations of coho salmon in Soquel Creek, genetic analysis of these fish indicating they are derived from other nearby populations in the ESU, and the presence of freshwater habitat conditions and watershed processes in Soquel and Aptos Creeks that are similar to those found in closely adjacent watersheds that support coho salmon populations that are part of the ESU. We have also reassessed the status of this ESU throughout its redefined range and conclude that it continues to be endangered.
Fine scale relationships between sex, life history, and dispersal of masu salmon
Kitanishi, Shigeru; Yamamoto, Toshiaki; Koizumi, Itsuro; Dunham, Jason B.; Higashi, Seigo
2012-01-01
Identifying the patterns and processes driving dispersal is critical for understanding population structure and dynamics. In many organisms, sex-biased dispersal is related to the type of mating system. Considerably less is known about the influence of life history variability on dispersal. Here we investigated patterns of dispersal in masu salmon (Oncorhynchus masou) to evaluate influences of sex and life history on dispersal. As expected, assignment tests and isolation by distance analysis revealed that dispersal of marine-migratory masu salmon was male-biased. However, dispersal of resident and migratory males did not follow our expectation and marine-migratory individuals dispersed more than residents. This may be because direct competition between marine-migratory and resident males is weak or that the cost of dispersal is smaller for marine-migratory individuals. This study revealed that both sex and migratory life history influence patterns of dispersal at a local scale in masu salmon.
Analysis of Salmon and Steelhead Supplementation, 1990 Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William H.; Coley, Travis C.; Burge, Howard L.
Supplementation or planting salmon and steelhead into various locations in the Columbia River drainage has occurred for over 100 years. All life stages, from eggs to adults, have been used by fishery managers in attempts to establish, rebuild, or maintain anadromous runs. This report summarizes and evaluates results of past and current supplementation of salmon and steelhead. Conclusions and recommendations are made concerning supplementation. Hatchery rearing conditions and stocking methods can affect post released survival of hatchery fish. Stress was considered by many biologists to be a key factor in survival of stocked anadromous fish. Smolts were the most commonmore » life stage released and size of smolts correlated positively with survival. Success of hatchery stockings of eggs and presmolts was found to be better if they are put into productive, underseeded habitats. Stocking time, method, species stocked, and environmental conditions of the receiving waters, including other fish species present, are factors to consider in supplementation programs. The unpublished supplementation literature was reviewed primarily by the authors of this report. Direct contact was made in person or by telephone and data compiled on a computer database. Areas covered included Oregon, Washington, Idaho, Alaska, California, British Columbia, and the New England states working with Atlantic salmon. Over 300 projects were reviewed and entered into a computer database. The database information is contained in Appendix A of this report. 6 refs., 9 figs., 21 tabs.« less
Kemp, Brian M.; Thorgaard, Gary H.
2018-01-01
The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha). Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed “the four H’s”: habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins may have divergent demographic histories. PMID:29320518
Brauner, C J; Sackville, M; Gallagher, Z; Tang, S; Nendick, L; Farrell, A P
2012-06-19
Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.
Hansen, Adam G.; Gardner, Jennifer R.; Beauchamp, David A.; Paradis, Rebecca; Quinn, Thomas P.
2016-01-01
Pacific salmon Oncorhynchus spp. are adept at colonizing habitat that has been reopened to anadromous passage. Sockeye Salmon O. nerka are unique in that most populations require lakes to fulfill their life history. Thus, for Sockeye Salmon to colonize a system, projects like dam removals must provide access to lakes. However, if the lakes contain landlocked kokanee (lacustrine Sockeye Salmon), the recovery of Sockeye Salmon could be mediated by interactions between the two life history forms and the processes associated with the resumption of anadromy. Our objective was to evaluate the extent to which estimates of Sockeye Salmon smolt production and recovery are sensitive to the resumption of anadromy by kokanee after dam removal. We informed the analysis based on the abiotic and biotic features of Lake Sutherland, which was recently opened to passage after dam removal on the Elwha River, Washington. We first developed maximum expectations for the smolt-producing capacity of Lake Sutherland by using two predictive models developed from Sockeye Salmon populations in Alaska and British Columbia: one model was based on the mean seasonal biomass of macrozooplankton, and the other was based on the euphotic zone volume of the lake. We then constructed a bioenergetics-based simulation model to evaluate how the capacity of Lake Sutherland to rear yearling smolts could change with varying degrees of anadromy among O. nerka fry. We demonstrated that (1) the smolt-producing capacity of a nursery lake for juvenile Sockeye Salmon changes in nonlinear ways with changes in smolt growth, mortality, and the extent to which kokanee resume anadromy after dam removal; (2) kokanee populations may be robust to changes in abundance after dam removal, particularly if lakes are located higher in the watershed on tributaries separate from where dams were removed; and (3) the productivity of newly establishing Sockeye Salmon can vary considerably depending on whether the population becomes rearing limited or is recruitment limited and depending on how adult escapement is managed.
Arai, Takaomi
2014-01-01
The disabling of the Fukushima Daiichi Nuclear Power Plant (F1NPP) resulted in the release of radionuclides, including 134Cs and 137Cs, into the air and the ocean. The unpredicted nuclear accident is of global concern for human health and the ecosystem. Although investigations of radionuclides in environments were performed shortly after the accident started, the temporal and spatial impacts and fluctuations on the releasing radionuclides to natural environment remain unclear. I focused on salmon, which migrate from inland to the open ocean globally, to reveal the three-year (May 2011 to February 2014) fluctuations and accumulations of 134Cs and 137Cs from terrestrial to open ocean environments after the F1NPP accident. The 134Cs and 137Cs concentrations in six salmonids exhibited lower temporal variations for three years after the F1NPP accident, suggesting that these radionuclides are widely distributed and these radionuclides remain in the natural environment globally with less convergence. The accumulation patterns were significantly different among the different salmon species. Fluvial (freshwater residence) type salmons exhibited significantly higher accumulation in 134Cs (25.3-40.2 Bq kg(-1) in mean) and 137Cs (41.4-51.7 Bq kg(-1) in mean) than did the anadromous (sea-run) type salmons (0.64-8.03 Bq kg(-1) in mean 134Cs and 0.42-10.2 Bq kg(-1) in mean 137Cs) suggesting widespread contamination in terrestrial environments versus the coastal and open ocean environments. Salmonids are the most highly migratory animals and are characterised by their strong tendency to return home to their natal site for reproduction. Salmonids have a potential to be a good indicator as an effective monitoring animal.
Guyette, Margaret Q.; Loftin, Cynthia S.; Zydlewski, Joseph D.; Cunjak, Richard
2014-01-01
Assimilation of nutrients from carcass analogues was both direct and indirect, and a nutrient legacy was evident in the second year of sampling. Incorporation of nutrients from the pellets at a range of heights in the food web demonstrated the potential for marine-derived subsidies to contribute to freshwater ecosystem processes in Atlantic salmon nursery streams.
2017-01-01
The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37–45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012–2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction. PMID:29236731
Morton, Alexandra; Routledge, Richard; Hrushowy, Stacey; Kibenge, Molly; Kibenge, Frederick
2017-01-01
The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37-45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012-2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction.
Performance of salmon fishery portfolios across western North America.
Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C
2014-12-01
Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications . Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally, assessing the sources of portfolio risk can guide actions to maintain existing resilience (protect habitat and disturbance regimes that maintain response diversity; employ harvest strategies sensitive to different portfolio components) or improve restoration activities. Improving our understanding of portfolio reliability may allow for management of natural resources that is robust to ongoing environmental change. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally, assessing the sources of portfolio risk can guide actions to maintain existing resilience (protect habitat and disturbance regimes that maintain response diversity; employ harvest strategies sensitive to different portfolio components) or improve restoration activities. Improving our understanding of portfolio reliability may allow for management of natural resources that is robust to ongoing environmental change.
Performance of salmon fishery portfolios across western North America
Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C
2014-01-01
Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally, assessing the sources of portfolio risk can guide actions to maintain existing resilience (protect habitat and disturbance regimes that maintain response diversity; employ harvest strategies sensitive to different portfolio components) or improve restoration activities. Improving our understanding of portfolio reliability may allow for management of natural resources that is robust to ongoing environmental change. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally, assessing the sources of portfolio risk can guide actions to maintain existing resilience (protect habitat and disturbance regimes that maintain response diversity; employ harvest strategies sensitive to different portfolio components) or improve restoration activities. Improving our understanding of portfolio reliability may allow for management of natural resources that is robust to ongoing environmental change. PMID:25552746
Effects of well-boat transportation on the muscle pH and onset of rigor mortis in Atlantic salmon.
Gatica, M C; Monti, G; Gallo, C; Knowles, T G; Warriss, P D
2008-07-26
During the transport of salmon (Salmo salar), in a well-boat, 10 fish were sampled at each of six stages: in cages after crowding at the farm (stage 1), in the well-boat after loading (stage 2), in the well-boat after eight hours transport and before unloading (stage 3), in the resting cages immediately after finishing unloading (stage 4), after 24 hours resting in cages, (stage 5) and in the processing plant after pumping from the resting cages (stage 6). The water in the well-boat was at ambient temperature with recirculation to the sea. At each stage the fish were stunned percussively and bled by gill cutting. Immediately after death, and then every three hours for 18 hours, the muscle pH and rigor index of the fish were measured. At successive stages the initial muscle pH of the fish decreased, except for a slight gain in stage 5, after they had been rested for 24 hours. The lowest initial muscle pH was observed at stage 6. The fishes' rigor index showed that rigor developed more quickly at each successive stage, except for a slight decrease in rate at stage 5, attributable to the recovery of muscle reserves.
Martínez-Delgado, Alejandra Anahí; Khandual, Sanghamitra; Villanueva-Rodríguez, Socorro Josefina
2017-06-15
Astaxanthin is a carotenoid pigment found in numerous organisms ranging from bacteria to algae, yeasts, plants, crustaceans and fish such as salmon. Technological importance of this pigment emerged from various studies demonstrating that it is a powerful antioxidant, even with higher activity than alpha-tocopherol and other carotenoids. It has been included in various pharmaceutical products because of several beneficial properties. By its nature, astaxanthin is susceptible to degradation and can undergo chemical changes during food processing. Therefore, different studies have focused on improving the stability of the carotenoid under conditions such as high temperatures, pressures and mechanical force, among others. In this review, common processes involved in food processing and their effect on the stability of astaxanthin, integrated into a food matrix are discussed. Moreover, preservation techniques such as microencapsulation, inclusion in emulsions, suspensions, liposomes, etc., that are being employed to maintain stability of the product are also reviewed. Copyright © 2016 Elsevier Ltd. All rights reserved.
IBSEM: An Individual-Based Atlantic Salmon Population Model
Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A.
2015-01-01
Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a ‘wild’ genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors. PMID:26383256
Rizo, Arantxa; Fuentes, Ana; Barat, José M; Fernández-Segovia, Isabel
2018-05-01
Food manufacturers need to reduce sodium content to meet consumer and public health demands. In the present study, the use of sodium-free (SF) salt and KCl to develop a novel smoke-flavoured salmon product with reduced sodium content was evaluated. Fifty percent of NaCl was replaced with 50% of SF salt or 50% KCl in the salmon smoke-flavouring process, which was carried out using water vapour permeable bags. Triangle tests showed that samples with either SF salt or KCl were statistically similar to the control samples (100% NaCl). Because no sensorial advantage in using SF salt was found compared to KCl and given the lower price of KCl, the KCl-NaCl samples were selected for the next phase. The changes of physicochemical and microbial parameters in smoke-flavoured salmon during 42 days showed that partial replacement of NaCl with KCl did not significantly affect the quality and shelf-life of smoke-flavoured salmon, which was over 42 days. Smoke-flavoured salmon with 37% sodium reduction was developed without affecting the sensory features and shelf-life. This is an interesting option for reducing the sodium content in such products to help meet the needs set by both health authorities and consumers. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Lebow, Noelle K; DesRocher, Lisa D; Younce, Frank L; Zhu, Mei-Jun; Ross, Carolyn F; Smith, Denise M
2017-12-01
Cold-smoked salmon (CSS) production lacks a validated kill step for Listeria monocytogenes. Although Listeria spp. are reduced by nisin or high-pressure processing (HPP), CSS muscle discoloration is often observed after HPP. Effects of nisin and low-temperature HPP on L. innocua survival (nonpathogenic surrogate for L. monocytogenes), spoilage organism growth, color, and sensory preference and peelability of CSS were studied. Cold-smoked sockeye salmon (Oncorhynchus nerka) fillets ± nisin (10 μg/g) were inoculated with a 3-strain L. innocua cocktail, vacuum-packaged, frozen at - 30 °C, and high-pressure processed in an ice slurry within an insulated sleeve. Initial experiments indicated that nisin and HPP for 120 s at 450 MPa (N450) and 600 MPa (N600) were most effective against L. innocua, and thus were selected for further storage studies. L. innocua in N450 and N600-treated CSS was reduced 2.63 ± 0.15 and 3.99 ± 0.34 Log CFU/g, respectively, immediately after HPP. L. innocua and spoilage growth were not observed in HPP-treated CSS during 36 d storage at 4 °C. Low-temperature HPP showed a smaller increase in lightness of CSS compared to ambient-temperature HPP performed in previous studies. Sensory evaluation indicated that overall liking of CSS treated with N450 and N600 were preferred over the control by 61% and 62% of panelists, respectively (P < 0.05). Peelability of sliced CSS was reduced by HPP (P < 0.05). Nisin in combination with low-temperature HPP was effective in controlling L. innocua in CSS while maintaining consumer acceptability. Cold-smoked salmon is a high-risk ready-to-eat product that may be contaminated with L. monocytogenes. Results showed that nisin combined with high-pressure processing at low temperature, reduced the population of Listeria and controlled the spoilage organisms during storage. As an added benefit, high-pressure processing at low temperature may reduce lightening of the salmon flesh, leading to enhanced consumer preference. © 2017 Institute of Food Technologists®.
Nutrient fluxes and the recent collapse of coastal California salmon populations
Moore, Jonathan W.; Hayes, Sean A.; Duffy, Walter; Gallagher, Sean; Michel, Cyril J.; Wright, David
2011-01-01
Migratory salmon move nutrients both in and out of fresh waters during the different parts of their life cycle. We used a mass-balance approach to quantify recent changes in phosphorus (P) fluxes in six coastal California, USA, watersheds that have recently experienced dramatic decreases in salmon populations. As adults, semelparous Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon imported 8.3 and 10.4 times more P from the ocean, respectively, than they exported as smolts, while iteroparous steelhead (i.e., sea-run rainbow trout, Oncorhynchus mykiss) imported only 1.6 times more than they exported as kelts and smolts. Semelparous species whose life histories led them to import more nutrients were also the species whose populations decreased the most dramatically in California in recent years. In addition, the relationship between import and export was nonlinear, with export being proportionally more important at lower levels of import. This pattern was driven by two density-dependent processes — smolts were larger and disproportionately more abundant at lower spawner abundances. In fact, in four of our six streams we found evidence that salmon can drive net export of P at low abundance, evidence for the reversal of the "conveyor belt" of nutrients.
Crystallization and X-ray analysis of the salmon-egg lectin SEL24K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, Kenji; Fisher, Andrew J.; Hedrick, Jerry L., E-mail: jlhedrick@ucdavis.edu
2007-05-01
The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant. The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) is released from the egg during the cortical reaction. The lectin functions in blocking polyspermy during the fertilization process. The egg lectin was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant. The crystal diffracted synchrotron-radiation X-rays to 1.63 Å resolution. The crystal belongsmore » to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 93.0, b = 73.6, c = 113.6 Å, α = 90, β = 92.82, γ = 90°. The crystal is likely to contain eight molecules in the asymmetric unit (V{sub M} = 2.3 Å{sup 3} Da{sup −1}), corresponding to a solvent content of 45.5%. A self-rotation function suggests an arrangement with 222 point symmetry within the asymmetric unit.« less
Code of Federal Regulations, 2012 CFR
2012-10-01
... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...
Code of Federal Regulations, 2013 CFR
2013-10-01
... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...
Code of Federal Regulations, 2014 CFR
2014-10-01
... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...
Code of Federal Regulations, 2010 CFR
2010-10-01
... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...
Habitat Utilization by Juvenile Pink and Chum Salmon in Upper Resurrection Bay, Alaska
1989-11-01
salmon Oncorhynchus kotez Chum salmon Untcorhynchua kisutch Coho salmon Orncorhynchus nerka Sockeye salmon Oncorhynchus tohawytacha Kink salmon...coho salmon, 40 Dolly Varden, 31 sculpin, 8 tomcod (Microgadus proxins), 17 starry flounder, and 10 sockeye salmon (0. nerka ) stomachs from Cliff and...AK. Godin, J. G. J. 1981. "Daily Patterns of Feeding Behavior, Daily Rations, and Diets of Juvenile Pink Salmon ( Oncorhynchus go’buscha) in Two
Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals.
Carmona-Antoñanzas, Greta; Tocher, Douglas R; Martinez-Rubio, Laura; Leaver, Michael J
2014-01-15
Lipid content and composition in aquafeeds have changed rapidly as a result of the recent drive to replace ecologically limited marine ingredients, fishmeal and fish oil (FO). Terrestrial plant products are the most economic and sustainable alternative; however, plant meals and oils are devoid of physiologically important cholesterol and long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and arachidonic (ARA) acids. Although replacement of dietary FO with vegetable oil (VO) has little effect on growth in Atlantic salmon (Salmo salar), several studies have shown major effects on the activity and expression of genes involved in lipid homeostasis. In vertebrates, sterols and LC-PUFA play crucial roles in lipid metabolism by direct interaction with lipid-sensing transcription factors (TFs) and consequent regulation of target genes. The primary aim of the present study was to elucidate the role of key TFs in the transcriptional regulation of lipid metabolism in fish by transfection and overexpression of TFs. The results show that the expression of genes of LC-PUFA biosynthesis (elovl and fads2) and cholesterol metabolism (abca1) are regulated by Lxr and Srebp TFs in salmon, indicating highly conserved regulatory mechanism across vertebrates. In addition, srebp1 and srebp2 mRNA respond to replacement of dietary FO with VO. Thus, Atlantic salmon adjust lipid metabolism in response to dietary lipid composition through the transcriptional regulation of gene expression. It may be possible to further increase efficient and effective use of sustainable alternatives to marine products in aquaculture by considering these important molecular interactions when formulating diets. © 2013.
Composition and consumer acceptability of a novel extrusion-cooked salmon snack.
Kong, J; Dougherty, M P; Perkins, L B; Camire, M E
2008-04-01
The objectives of this study were to develop a value-added jerky-style snack from salmon flesh and to minimize loss of healthful lipids during processing. Three formulations were extruded in a laboratory-scale twin-screw extruder. The base formulation included Atlantic salmon (82%, w/w), sucrose (4%), pregelatinized starch (3%), modified tapioca starch (3%), salt (2%), and teriyaki flavoring (2%). Three oil binding agents (tapioca starch, high-amylose cornstarch, oat fiber) were each studied at the 4% level. Barrel temperature, from feed to die, was 65, 155, 155, and 80 degrees C. Screw speed was 250 rpm. Feed rate was 220 g/min. Extrudates were convection-dried at 93 degrees C for 40 min. A texture analyzer was used to evaluate textural properties. Sixty-three consumers evaluated the hedonic attributes of the snacks. Extrusion cooking did not adversely affect content of omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in Atlantic salmon. The oat fiber formulation had the highest lipid (17.49%) content. The other formulations had higher moisture content. A serving (28 g) of the oat formulation provides 0.6 g EPA + DHA. Snacks containing oat fiber had the highest CIE L* and b* values. Snacks containing oat fiber required greater force to bend, cut, and puncture. The oat fiber formulation had the lowest overall acceptability. This portable snack could appeal to consumers who are interested in the health benefits of fish and omega-3 fatty acids and provide salmon processors with a value-added solution for processing by-products.
Debes, Paul V; Normandeau, Eric; Fraser, Dylan J; Bernatchez, Louis; Hutchings, Jeffrey A
2012-06-01
Escaped domesticated individuals can introduce disadvantageous traits into wild populations due to both adaptive differences between population ancestors and human-induced changes during domestication. In contrast to their domesticated counterparts, some endangered wild Atlantic salmon populations encounter during their marine stage large amounts of suspended sediments, which may act as a selective agent. We used microarrays to elucidate quantitative transcriptional differences between a domesticated salmon strain, a wild population and their first-generation hybrids during their marine life stage, to describe transcriptional responses to natural suspended sediments, and to test for adaptive genetic variation in plasticity relating to a history of natural exposure or nonexposure to suspended sediments. We identified 67 genes differing in transcription level among salmon groups. Among these genes, processes related to energy metabolism and ion homoeostasis were over-represented, while genes contributing to immunity and actin-/myosin-related processes were also involved in strain differentiation. Domestic-wild hybrids exhibited intermediate transcription patterns relative to their parents for two-thirds of all genes that differed between their parents; however, genes deviating from additivity tended to have similar levels to those expressed by the wild parent. Sediments induced increases in transcription levels of eight genes, some of which are known to contribute to external or intracellular damage mitigation. Although genetic variation in plasticity did not differ significantly between groups after correcting for multiple comparisons, two genes (metallothionein and glutathione reductase) tended to be more plastic in response to suspended sediments in wild and hybrid salmon, and merit further examination as candidate genes under natural selection. © 2012 Blackwell Publishing Ltd.
Declining wild salmon populations in relation to parasites from farm salmon.
Krkosek, Martin; Ford, Jennifer S; Morton, Alexandra; Lele, Subhash; Myers, Ransom A; Lewis, Mark A
2007-12-14
Rather than benefiting wild fish, industrial aquaculture may contribute to declines in ocean fisheries and ecosystems. Farm salmon are commonly infected with salmon lice (Lepeophtheirus salmonis), which are native ectoparasitic copepods. We show that recurrent louse infestations of wild juvenile pink salmon (Oncorhynchus gorbuscha), all associated with salmon farms, have depressed wild pink salmon populations and placed them on a trajectory toward rapid local extinction. The louse-induced mortality of pink salmon is commonly over 80% and exceeds previous fishing mortality. If outbreaks continue, then local extinction is certain, and a 99% collapse in pink salmon population abundance is expected in four salmon generations. These results suggest that salmon farms can cause parasite outbreaks that erode the capacity of a coastal ecosystem to support wild salmon populations.
John D. Armstrong; Keith H. Nislow
2012-01-01
Modelling approaches for relating discharge to the biology of Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., growing in rivers are reviewed. Process-based and empirical models are set within a common framework of input of water flow and output of characteristics of fish, such as growth and survival, which relate directly to population dynamics. A...
Brain aging phenomena in migrating sockeye salmon Oncorhynchus nerka nerka.
Götz, M E; Malz, C R; Dirr, A; Blum, D; Gsell, W; Schmidt, S; Burger, R; Pohli, S; Riederer, P
2005-09-01
Aging, a process occurring in all vertebrates, is closely related to a loss in physical and functional abilities. There is widespread interest in clarifying the relevance of environmental, metabolic, and genetic factors for vertebrate aging. In the Pacific salmon a dramatic example of aging is known. Looking for changes in the salmon brain, perhaps even in the role of initiating the aging processes, we investigated several biochemical parameters that should reflect brain functional activity and stress response such as the neurotransmitters dopamine, and serotonin, and two of their respective metabolites 3,4-dihydroxyphenylacetic acid, and 5-hydroxyindole acetic acid, as well as glutathione, glutathione disulfide, and the extent of terminal deoxynucleotidyltransferase-mediated dUTP nick end-labelling. The aging of migrating sockeye salmon (Oncorhynchus nerka nerka) is accompanied by gradual increase in dopamine and serotonin turnover and a gradual decrease of brain total protein and glutathione levels. There appears to be an increased need for detoxification of reactive biological intermediates since activities of superoxide dismutase and catalase increase with age. However, our data do not support a major increase in apoptotic cell death during late aging but rather implicate an age related downward regulation of protein and glutathione synthesis and proteolysis increasing the need for autophagocytosis or heterophagocytosis in the course of cell death.
Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancuso, Michael; Moseley, Robert
The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston,more » Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.« less
Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Faukner, Jimmy; Soto, Toz
2018-01-01
An area of great importance to resource management and conservation biology in the Klamath Basin is balancing water usage against the life history requirements of threatened Coho Salmon. One tool for addressing this topic is a freshwater dynamics model to forecast Coho Salmon productivity based on environmental inputs. Constructing such a forecasting tool requires local data to quantify the unique life history processes of Coho Salmon inhabiting this region. Here, we describe analytical methods for estimating a series of sub-models, each capturing a different life history process, which will eventually be synchronized as part of a freshwater dynamics model for Klamath River Coho Salmon. Specifically, we draw upon extensive population monitoring data collected in the basin to estimate models of freshwater productivity, overwinter survival, and migration patterns. Our models of freshwater productivity indicated that high summer temperatures and high winter flows can both adversely affect smolt production and that such relationships are more likely in tributaries with naturally regulated flows due to substantial intraannual environmental variation. Our models of overwinter survival demonstrated extensive variability in survival among years, but not among rearing locations, and demonstrated that a substantial proportion (~ 20%) of age-0+ fish emigrate from some rearing sites in the winter. Our models of migration patterns indicated that many age-0+ fish redistribute in the basin during the summer and winter. Further, we observed that these redistributions can entail long migrations in the mainstem where environmental stressors likely play a role in cueing refuge entry. Finally, our models of migration patterns indicated that changes in discharge are important in cueing the seaward migration of smolts, but that the nature of this behavioral response can differ dramatically between tributaries with naturally and artificially regulated flows. Collectively, these analyses demonstrate that environmental variation interacts with most phases of the freshwater life history of Klamath River Coho Salmon and that anthropogenic environmental variation can have a particularly large bearing on productivity.
The effect of nonylphenol on gene expression in Atlantic salmon smolts
Robertson, Laura S.; McCormick, Stephen D.
2012-01-01
The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na+/K+-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers.
Pontigo, Juan Pablo; Agüero, María José; Sánchez, Patricio; Oyarzún, Ricardo; Vargas-Lagos, Carolina; Mancilla, Jorge; Kossmann, Hans; Morera, Francisco J; Yáñez, Alejandro J; Vargas-Chacoff, Luis
2016-11-01
The NOD-like receptors (NLRs) were recently identified as an intracellular pathogen recognition receptor family in vertebrates. While the immune system participation of NLRs has been characterized and analyzed in various mammalian models, few studies have considered NLRs in teleost species. Therefore, this study analyzed the Atlantic salmon (Salmo salar) NLRC5. Structurally, Atlantic salmon NLRC5 presented leucine-rich repeat subfamily genes. Phylogenetically, NLRC5 was moderately conserved between S. salar and other species. Real-time quantitative PCR revealed NLRC5 expression in almost all analyzed organs, with greatest expressions in the head kidney, spleen, and hindgut. Furthermore, NLRC5 gene expression decreased during smolt stage. These data suggest that NLRC5 participates in the Atlantic salmon immune response and is regulated, at least partly, by the smoltification process, suggesting that there is a depression of immune system from parr at smolt stage. This is the first report on the NLRC5 gene in salmonid smolts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M
2012-01-01
Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds. PMID:22957178
Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M
2012-07-01
Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds.
Intestinal morphology of the wild Atlantic salmon (Salmo salar).
Løkka, Guro; Austbø, Lars; Falk, Knut; Bjerkås, Inge; Koppang, Erling Olaf
2013-08-01
The worldwide-industrialized production of Atlantic salmon (Salmo salar) has increased dramatically during the last decades, followed by diseases related to the on-going domestication process as a growing concern. Even though the gastrointestinal tract seems to be a target for different disorders in farmed fish, a description of the normal intestinal status in healthy, wild salmon is warranted. Here, we provide such information in addition to suggesting a referable anatomical standardization for the intestine. In this study, two groups of wild Atlantic salmon were investigated, consisting of post smolts on feed caught in the sea and of sexually mature, starved individuals sampled from a river. The two groups represent different stages in the anadromous salmon life cycle, which also are part of the production cycle of farmed salmon. Selected regions of gastrointestinal tract were subjected to morphological investigations including immunohistochemical, scanning electron microscopic, and morphometric analyses. A morphology-based nomenclature was established, defining the cardiac part of the stomach and five different regions of the Atlantic salmon intestine, including pyloric caeca, first segment of the mid-intestine with pyloric caeca, first segment of the mid-intestine posterior to pyloric caeca, second segment of the mid-intestine and posterior intestinal segment. In each of the above described regions, for both groups of fish, morphometrical measurements and regional histological investigations were performed with regards to magnitude and direction of mucosal folding as well as the composition of the intestinal wall. Additionally, immunohistochemistry showing cells positive for cytokeratins, α-actin and proliferating cell nuclear antigen, in addition to alkaline phosphatase reactivity in the segments is presented. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.
2008-12-17
Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangeredmore » under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and Johnson 1997; Pravecek and Kline 1998; Kline and Heindel 1999; Hebdon et al. 2000; Flagg et al. 2001; Kline and Willard 2001; Frost et al. 2002; Hebdon et al. 2002; Hebdon et al. 2003; Kline et al. 2003a; Kline et al. 2003b; Willard et al. 2003a; Willard et al. 2003b; Baker et al. 2004; Baker et al. 2005; Willard et al. 2005; Baker et al. 2006; Plaster et al. 2006; Baker et al. 2007). The immediate goal of the program is to utilize captive broodstock technology to conserve the population's unique genetics. Long-term goals include increasing the number of individuals in the population to address delisting criteria and to provide sport and treaty harvest opportunity. (1) Develop captive broodstocks from Redfish Lake sockeye salmon, culture broodstocks and produce progeny for reintroduction. (2) Determine the contribution hatchery-produced sockeye salmon make toward avoiding population extinction and increasing population abundance. (3) Describe O. nerka population characteristics for Sawtooth Valley lakes in relation to carrying capacity and broodstock program reintroduction efforts. (4) Utilize genetic analysis to discern the origin of wild and broodstock sockeye salmon to provide maximum effectiveness in their utilization within the broodstock program. (5) Transfer technology through participation in the technical oversight committee process, provide written activity reports, and participate in essential program management and planning activities. Idaho Department of Fish and Game's participation in the Snake River Sockeye Salmon Captive Broodstock Program includes two areas of effort: (1) sockeye salmon captive broodstock culture, and (2) sockeye salmon research and evaluations. Although objectives and tasks from both components overlap and contribute to achieving the same goals, work directly related to sockeye salmon captive broodstock research and enhancement will appear under a separate cover. Research and enhancement activities associated with Snake River sockeye salmon are permitted under NOAA permit numbers 1120, 1124, and 1481. This report details fish culture information collected between January 1 and December 31, 2007.« less
Poley, Jordan D; Braden, Laura M; Messmer, Amber M; Igboeli, Okechukwu O; Whyte, Shona K; Macdonald, Alicia; Rodriguez, Jose; Gameiro, Marta; Rufener, Lucien; Bouvier, Jacques; Wadowska, Dorota W; Koop, Ben F; Hosking, Barry C; Fast, Mark D
2018-03-13
Drug resistance in the salmon louse Lepeophtheirus salmonis is a global issue for Atlantic salmon aquaculture. Multiple resistance has been described across most available compound classes with the exception of the benzoylureas. To target this gap in effective management of L. salmonis and other species of sea lice (e.g. Caligus spp.), Elanco Animal Health is developing an in-feed treatment containing lufenuron (a benzoylurea) to be administered prior to seawater transfer of salmon smolts and to provide long-term protection of salmon against sea lice infestations. Benzoylureas disrupt chitin synthesis, formation, and deposition during all moulting events. However, the mechanism(s) of action are not yet fully understood and most research completed to date has focused on insects. We exposed the first parasitic stage of L. salmonis to 700 ppb lufenuron for three hours and observed over 90% reduction in survival to the chalimus II life stage on the host, as compared to vehicle controls. This agrees with a follow up in vivo administration study on the host, which showed >95% reduction by the chalimus I stage. Transcriptomic responses of salmon lice exposed to lufenuron included genes related to moulting, epithelial differentiation, solute transport, and general developmental processes. Global metabolite profiles also suggest that membrane stability and fluidity is impacted in treated lice. These molecular signals are likely the underpinnings of an abnormal moulting process and cuticle formation observed ultrastructurally using transmission electron microscopy. Treated nauplii-staged lice exhibited multiple abnormalities in the integument, suggesting that the coordinated assembly of the epi- and procuticle is impaired. In all cases, treatment with lufenuron had rapid impacts on L. salmonis development. We describe multiple experiments to characterize the efficacy of lufenuron on eggs, larvae, and parasitic stages of L. salmonis, and provide the most comprehensive assessment of the physiological responses of a marine arthropod to a benzoylurea chemical. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Optimum cooking conditions for shrimp and Atlantic salmon.
Brookmire, Lauren; Mallikarjunan, P; Jahncke, M; Grisso, R
2013-02-01
The quality and safety of a cooked food product depends on many variables, including the cooking method and time-temperature combinations employed. The overall heating profile of the food can be useful in predicting the quality changes and microbial inactivation occurring during cooking. Mathematical modeling can be used to attain the complex heating profile of a food product during cooking. Studies were performed to monitor the product heating profile during the baking and boiling of shrimp and the baking and pan-frying of salmon. Product color, texture, moisture content, mass loss, and pressed juice were evaluated during the cooking processes as the products reached the internal temperature recommended by the FDA. Studies were also performed on the inactivation of Salmonella cocktails in shrimp and salmon. To effectively predict inactivation during cooking, the Bigelow, Fermi distribution, and Weibull distribution models were applied to the Salmonella thermal inactivation data. Minimum cooking temperatures necessary to destroy Salmonella in shrimp and salmon were determined. The heating profiles of the 2 products were modeled using the finite difference method. Temperature data directly from the modeled heating profiles were then used in the kinetic modeling of quality change and Salmonella inactivation during cooking. The optimum cooking times for a 3-log reduction of Salmonella and maintaining 95% of quality attributes are 100, 233, 159, 378, 1132, and 399 s for boiling extra jumbo shrimp, baking extra jumbo shrimp, boiling colossal shrimp, baking colossal shrimp, baking Atlantic salmon, and pan frying Atlantic Salmon, respectively. © 2013 Institute of Food Technologists®
Kortner, Trond M; Penn, Michael H; Bjӧrkhem, Ingemar; Måsøval, Kjell; Krogdahl, Åshild
2016-09-07
The present study was undertaken to gain knowledge on the role of bile components and lecithin on development of aberrations in digestive functions which seemingly have increased in Atlantic salmon in parallel with the increased use of plant ingredients in fish feed. Post smolt Atlantic salmon were fed for 77 days one of three basal diets: a high fish meal diet (HFM), a low fishmeal diet (LFM), or a diet with high protein soybean meal (HPS). Five additional diets were made from the LFM diet by supplementing with: purified taurocholate (1.8 %), bovine bile salt (1.8 %), taurine (0.4 %), lecithin (1.5 %), or a mix of supplements (suppl mix) containing taurocholate (1.8 %), cholesterol (1.5 %) and lecithin (0.4 %). Two additional diets were made from the HPS diet by supplementing with: bovine bile salt (1.8 %) or the suppl mix. Body and intestinal weights were recorded, and blood, bile, intestinal tissues and digesta were sampled for evaluation of growth, nutrient metabolism and intestinal structure and function. In comparison with fish fed the HFM diet fish fed the LFM and HPS diets grew less and showed reduced plasma bile salt and cholesterol levels. Histological examination of the distal intestine showed signs of enteritis in both LFM and HPS diet groups, though more pronounced in the HPS diet group. The HPS diet reduced digesta dry matter and capacity of leucine amino peptidase in the distal intestine. None of the dietary supplements improved endpoints regarding fish performance, gut function or inflammation in the distal intestine. Some endpoints rather indicated negative effects. Dietary supplementation with bile components or lecithin in general did not improve endpoints regarding performance or gut health in Atlantic salmon, in clear contrast to what has been previously reported for rainbow trout. Follow-up studies are needed to clarify if lower levels of bile salts and cholesterol may give different and beneficial effects, or if other supplements, and other combinations of supplements might prevent or ameliorate inflammation in the distal intestine.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...
36 CFR 294.29 - List of designated Idaho Roadless Areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Perce Rapid River 922 X X Nez Perce Salmon Face 855 X Nez Perce Selway Bitterroot X Nez Perce Silver... Payette Snowbank 924 X Payette Sugar Mountain 014 X Salmon Agency Creek 512 X X Salmon Allan Mountain 946 X X Salmon Anderson Mountain 942 X Salmon Blue Joint Mountain 941 X Salmon Camas Creek 901 X Salmon...
NASA Astrophysics Data System (ADS)
Tao, Feifei; Mba, Ogan; Liu, Li; Ngadi, Michael
2017-04-01
Polyunsaturated fatty acids (PUFAs) are important nutrients present in Salmon. However, current methods for quantifying the fatty acids (FAs) contents in foods are generally based on gas chromatography (GC) technique, which is time-consuming, laborious and destructive to the tested samples. Therefore, the capability of near-infrared (NIR) hyperspectral imaging to predict the PUFAs contents of C20:2 n-6, C20:3 n-6, C20:5 n-3, C22:5 n-3 and C22:6 n-3 in Salmon fillets in a rapid and non-destructive way was investigated in this work. Mean reflectance spectra were first extracted from the region of interests (ROIs), and then the spectral pre-processing methods of 2nd derivative and Savitzky-Golay (SG) smoothing were performed on the original spectra. Based on the original and the pre-processed spectra, PLSR technique was employed to develop the quantitative models for predicting each PUFA content in Salmon fillets. The results showed that for all the studied PUFAs, the quantitative models developed using the pre-processed reflectance spectra by "2nd derivative + SG smoothing" could improve their modeling results. Good prediction results were achieved with RP and RMSEP of 0.91 and 0.75 mg/g dry weight, 0.86 and 1.44 mg/g dry weight, 0.82 and 3.01 mg/g dry weight for C20:3 n-6, C22:5 n-3 and C20:5 n-3, respectively after pre-processing by "2nd derivative + SG smoothing". The work demonstrated that NIR hyperspectral imaging could be a useful tool for rapid and non-destructive determination of the PUFA contents in fish fillets.
Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York
Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.
2016-01-01
Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the Salmon River during May and June prior to out-migration. Over the 4 years examined (2009–2012), annual consumption of Chinook Salmon parr by hatchery-released yearling steelhead O. mykiss and Coho Salmon O. kisutch ranged from 1.5 to 3.3 million and from 0.4 to 2.1 million, respectively. In 2009, Fallfish Semotilus corporalis were estimated to consume 2.9 million Chinook Salmon parr. Predation was higher in May, when the average TL of Chinook Salmon parr was 44.5 mm, than in June. Fallfish were also important predators of naturally reproduced steelhead subyearlings, consuming an estimated 800,000 steelhead in 2009. Hatchery-released yearling salmonids consumed 13.8–15.3% of the Chinook Salmon parr that were estimated to be present in the Salmon River during 2010–2012. Earlier releases of hatchery salmonid yearlings could reduce the riverine consumption of Chinook Salmon parr by facilitating the out-migration of yearlings prior to Chinook Salmon emergence.
Setting the stage for a sustainable Pacific salmon fisheries strategy
MacDonald, Donald D.; Steward, Cleveland R.; Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald D.; Williams, Jack E.; Reiser, Dudley W.
1999-01-01
Salmon and steelhead Oncorhynchus spp., have been keystone species for ecosystems and human cultures of the North American Pacific coast for cons. Yet, in the past century, many populations have been greatly diminished and some are now extinct-the result of a combination of factors, including habitat loss and degradation, overfishing, natural variability in salmon production, negative effects of artificial propagation, and weaknesses in institutional and regulatory structures. We argue that a major shift is required, from the egocentric environmental approach (wherein each part of the ecosystem is managed as a unit) to the ecocentric ecosystem approach (wherein all parts are integrated for management). A management framework is proposed that contains-for each management unit such as a watershed-four elements: management goals; management objectives, ecosystem indicators; and a coordinated action plan. We also describe the Sustainable Fisheries Strategy, a consultative process for developing an ecosystem-based approach toward achieving sustainable Pacific salmon and steelhead populations and fisheries. This book is one of three important underpinnings of the Strategy; the other two are the Strategy itself and a manual being developed to guide community-based programs embracing the principles of sustainable fisheries. This book contains important historical perspectives as well as numerous innovative ideas for moving toward ecosystem-oriented, sustainable management of Pacific salmon and steelhead.
Cornu, M; Beaufort, A; Rudelle, S; Laloux, L; Bergis, H; Miconnet, N; Serot, T; Delignette-Muller, M L
2006-02-01
Salting and smoking are ancient processes for fish preservation. The effects of salt and phenolic smoke compounds on the growth rate of L. monocytogenes in cold-smoked salmon were investigated through physico-chemical analyses, challenge tests on surface of cold-smoked salmon at 4 degrees C and 8 degrees C, and a survey of the literature. Estimated growth rates were compared to predictions of existing secondary models, taking into account the effects of temperature, water phase salt content, phenolic content, and additional factors (e.g. pH, lactate, dissolved CO2). The secondary model proposed by Devlieghere et al. [Devlieghere, F., Geeraerd, A.H., Versyck, K.J., Vandewaetere, B., van Impe, J., Debevere, J., 2001. Growth of Listeria monocytogenes in modified atmosphere packed cooked meat products: a predictive model. Food Microbiology 18, 53-66.] and modified by Giménez and Dalgaard [Giménez, B., Dalgaard, P., 2004. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon. Journal of Applied Microbiology 96, 96-109.] appears appropriate. However, further research is needed to understand all effects affecting growth of L. monocytogenes in cold-smoked salmon and to obtain fully validated predictive models for use in quantitative risk assessment.
Evolutionary history of Pacific salmon in dynamic environments
Waples, Robin S; Pess, George R; Beechie, Tim
2008-01-01
Contemporary evolution of Pacific salmon (Oncorhynchus spp.) is best viewed in the context of the evolutionary history of the species and the dynamic ecosystems they inhabit. Speciation was complete by the late Miocene, leaving c. six million years for intraspecific diversification. Following the most recent glacial maximum, large areas became available for recolonization. Current intraspecific diversity is thus the product of recent evolution overlaid onto divergent historical lineages forged during recurrent episodes of Pleistocene glaciation. In northwestern North America, dominant habitat features have been relatively stable for the past 5000 years, but salmon ecosystems remain dynamic because of disturbance regimes (volcanic eruptions, landslides, wildfires, floods, variations in marine and freshwater productivity) that occur on a variety of temporal and spatial scales. These disturbances both create selective pressures for adaptive responses by salmon and inhibit long-term divergence by periodically extirpating local populations and creating episodic dispersal events that erode emerging differences. Recent anthropogenic changes are replicated pervasively across the landscape and interrupt processes that allow natural habitat recovery. If anthropogenic changes can be shaped to produce disturbance regimes that more closely mimic (in both space and time) those under which the species evolved, Pacific salmon should be well-equipped to deal with future challenges, just as they have throughout their evolutionary history. PMID:25567626
Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire
2010-01-01
Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves the loss of a single hemoglobin gene cluster after the whole genome duplication (WGD) at the base of the teleost radiation but prior to the salmonid-specific WGD, which then produced the duplicated copies seen today. We also propose that the relatively high number of hemoglobin genes as well as the presence of non-Bohr β hemoglobin genes may be due to the dynamic life history of salmon and the diverse environmental conditions that the species encounters. Data deposition: BACs S0155C07 and S0079J05 (fps135): GenBank GQ898924; BACs S0055H05 and S0014B03 (fps1046): GenBank GQ898925 PMID:20923558
Ruggerone, G.T.; Zimmermann, M.; Myers, K.W.; Nielsen, J.L.; Rogers, D.E.
2003-01-01
The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd-numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd-year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977-97 indicated that smolts entering the ocean during even-numbered years and interacting with abundant odd-year pink salmon during the following year experienced 26% (age-2 smolt) to 45% (age-1 smolt) lower survival compared with smolts migrating during odd-numbered years. Adult sockeye salmon returning to Bristol Bay from even-year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd-year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.
2013-05-01
Chinook salmon (presumably subyearling) was the most prevalent life-history type detected at the Russian Island and Woody Island sites. The number of...Extend and refine the computational grid We extended the Virtual Columbia River to include regions upstream of Beaver Army, which previously served as...the Columbia River above Beaver Army and particularly above the confluence of the Willamette River. That process of calibration is highly iterative
Retrospective analysis of AYK Chinook salmon growth
Ruggerone, Gregory T.; Nielsen, Jennifer L.; Agler, B.A.
2007-01-01
Harvests of Yukon and Kuskokwim Chinook salmon declined significantly during 1998- 2002 in response to fewer returning salmon. Factors affecting the decline in Chinook salmon abundance are largely unknown. Growth of salmon in freshwater and the ocean is generally thought to influence salmon survival, therefore we examined historical Chinook salmon catch trends and developed growth indices of age-1.3 and age-1.4 Yukon and Kuskokwim Chinook salmon during each year and life stage in freshwater and the ocean, 1964-2004, using measurements of salmon scale growth. Availability of Yukon scales was greater than that of Kuskokwim scales during 1964-2004.Harvests of Yukon and Kuskokwim Chinook salmon rapidly increased in the mid-1970s, then rapidly declined in the late 1990s, apparently in response to the 1976/77 ocean regime shift and the 1997/98 El Nino event. Runs of Nushagak District Chinook salmon (Bristol Bay) also appeared to have been affected by these events in addition to the 1989 regime shift. The rapid responses of Chinook salmon abundance to climate change suggest late life stages were primarily affected, at least initially. Therefore, we searched for Chinook salmon growth patterns that might be related to changes in climate.
Validation of a One-Step Method for Extracting Fatty Acids from Salmon, Chicken and Beef Samples.
Zhang, Zhichao; Richardson, Christine E; Hennebelle, Marie; Taha, Ameer Y
2017-10-01
Fatty acid extraction methods are time-consuming and expensive because they involve multiple steps and copious amounts of extraction solvents. In an effort to streamline the fatty acid extraction process, this study compared the standard Folch lipid extraction method to a one-step method involving a column that selectively elutes the lipid phase. The methods were tested on raw beef, salmon, and chicken. Compared to the standard Folch method, the one-step extraction process generally yielded statistically insignificant differences in chicken and salmon fatty acid concentrations, percent composition and weight percent. Initial testing showed that beef stearic, oleic and total fatty acid concentrations were significantly lower by 9-11% with the one-step method as compared to the Folch method, but retesting on a different batch of samples showed a significant 4-8% increase in several omega-3 and omega-6 fatty acid concentrations with the one-step method relative to the Folch. Overall, the findings reflect the utility of a one-step extraction method for routine and rapid monitoring of fatty acids in chicken and salmon. Inconsistencies in beef concentrations, although minor (within 11%), may be due to matrix effects. A one-step fatty acid extraction method has broad applications for rapidly and routinely monitoring fatty acids in the food supply and formulating controlled dietary interventions. © 2017 Institute of Food Technologists®.
Johnson, J. H.
2008-01-01
Diel feeding periodicity, daily ration, and diet composition of wild and hatchery subyearling Chinook salmon Oncorhynchus tshawytscha were examined in Lake Ontario and the Salmon River, New York. The diet of wild riverine salmon was composed mainly of aquatic invertebrates (63.4%), mostly ephemeropterans (25.8%), chiromomids (15.8%), and trichopterans (8.3%). The diet of riverine Chinook was more closely associated with the composition of drift samples rather than bottom samples, suggesting mid-water feeding. In Lake Ontario terrestrial invertebrates were more important in the diet of hatchery Chinook (49.0%) than wild salmon (30.5%) and diet overlap between hatchery and wild salmon was low (0.46%). The diet of both hatchery and wild Chinook salmon was more closely associated with the composition of mid-water invertebrate samples rather than benthic core samples, indicating mid-water and surface feeding. Hatchery Chinook salmon consumed significantly less food (P < 0.05) than wild Chinook salmon in the lake and in the river, and wild salmon from Lake Ontario consumed more food than wild salmon in the Salmon River. Peak feeding of wild Chinook salmon occurred between 1200-1600 hours in Lake Ontario and between 1600-2000 hours in the Salmon River; there was no discernable feeding peak for the hatchery Chinook in Lake Ontario. Hatchery Chinook salmon also had the least diverse diet over the 24-hour sample period. These results suggest that at 7 days post-stocking hatchery Chinook salmon had not yet fully adapted to their new environment.
Evidence for competition at sea between Norton Sound chum salmon and Asian hatchery chum salmon
Ruggerone, Gregory T.; Agler, B.A.; Nielsen, Jennifer L.
2012-01-01
Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.
Comment on "Declining wild salmon populations in relation to parasites from farm salmon".
Riddell, Brian E; Beamish, Richard J; Richards, Laura J; Candy, John R
2008-12-19
Krkosek et al. (Reports, 14 December 2007, p. 1772) claimed that sea lice spread from salmon farms placed wild pink salmon populations "on a trajectory toward rapid local extinction." Their prediction is inconsistent with observed pink salmon returns and overstates the risks from sea lice and salmon farming.
Genetic variation in chinook, Oncorhynchus tshawytscha, and coho, O. Kisutch
Reisenbichler, R.R.; Phelps, S.R.
1987-01-01
We used starch-gel electrophoresis to genetically characterize the populations of chinook salmon, Oncorhynchus tshawytscha, and coho salmon, O. kisutch, in the major drainages of the north coast of Washington (the Quillayute, Uoh, Queets, and Quinault Rivers). Of 55 loci examined for electrophoretically detectable variation. 6 were polymorphic (frequency of the common allele was less than 0.95) in chinook salmon and 3 in coho salmon. Statistical tests of interdrainage and intradrainage variation for coho salmon were tenuous because most of the fish examined were from a single year class so that we could not account for variation among year classes. Nevertheless, these tests suggested that distinct stocks ofcoho salmon exist within drainages. and that variation was not significantly greater among drainages than within drainages. Interdrainage variation for wild chinook salmon was not significant. The data suggested that summer chinook salmon were electrophoretically different from fall chinook salmon, and the hatchery populations of chinook salmon were distinct from wild fish. A hatchery population developed primarily from north coast fish was electrophoretically more similar to wild chinook salmon than were the others.
G.V. Hilderbrand; C.C. Schwartz; C.T. Robbins; M.E. Hanley Jacoby; S.M. Arthur; C. Servheen
1999-01-01
We hypothesized that the relative availability of meat, indicated by contribution to the diet, would be positively related to body size and population productivity of North American brown, or grizzly, bears (Ursus arctos). Dietary contributions of plant matter and meat derived from both terrestrial and marine sources were quantified by stable-...
Nemova, Nina N; Murzina, Svetlana A; Nefedova, Zinaida A; Veselov, Alexey E
2015-07-30
The present research focused on determining the lipid status of salmon fingerlings (0+) in early development after dispersal form groups of spawning nests in biotopes of different hydrological conditions. The revealed qualitative and quantitative differences in the levels of phospholipids and fatty acids among two generations of Atlantic salmon fingerlings (0+) living in different biotopes of the Arenga River (a tributary of the Varzuga River) may be associated with the peculiarities of their genetically determined processes of the biosynthesis and modification of individual lipid classes and trophoecological factors (food spectrum, quality and availability of food objects, and hydrological regime). The research was organized to observe the dynamics of these developmental changes from ages 0+ to 2+.
Sutherland, Ben J G; Koczka, Kim W; Yasuike, Motoshige; Jantzen, Stuart G; Yazawa, Ryosuke; Koop, Ben F; Jones, Simon R M
2014-03-15
Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection. In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon. Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance functions including local inflammation with cytokines, specific innate pattern recognition receptors, and iron homeostasis. Suppressed antiviral immunity in both susceptible and resistant species indicates the importance of future work investigating co-infections of viral pathogens and lice.
Holtgrieve, Gordon W; Schindler, Daniel E
2011-02-01
In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP < ER) in response to bioturbation of benthic habitats by salmon. Following the seasonal arrival of salmon, GPP declined to <12% of pre-salmon rates, while ER increased by over threefold. Metabolism by live salmon could not account for the observed increase in ER early in the salmon run, suggesting salmon nutrients and disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.
Directional selection by fisheries and the timing of sockeye salmon (Oncorhynchus nerka) migrations.
Quinn, Thomas P; Hodgson, Sayre; Flynn, Lucy; Hilborn, Ray; Rogers, Donald E
2007-04-01
The timing of migration from feeding to breeding areas is a critical link between the growth and survival of adult animals, their reproduction, and the fitness of their progeny. Commercial fisheries often catch a large fraction of the migrants (e.g., salmon), and exploitation rates can vary systematically over the fishing season. We examined daily records of sockeye salmon (Oncorhynchus nerka) in the Egegik and Ugashik management districts in Bristol Bay, Alaska (USA), for evidence of such temporally selective fishing. In recent years, the early migrants have experienced lower fishing rates than later migrants, especially in the Egegik district, and the median migration date of the fish escaping the fisheries has been getting progressively earlier in both districts. Moreover, the overall runs (catch and escapement) in the Egegik district and, to a lesser extent the Ugashik district, have been getting earlier, as predicted in response to the selection on timing. The trends in timing were not correlated with sea surface temperature in the region of the North Pacific Ocean where the salmon tend to concentrate, but the trends in the two districts were correlated with each other, indicating that there may be some common environmental influence in addition to the effect of selection. Despite the selection, both groups of salmon have remained productive. We hypothesize that this resilience may result from representation of all component populations among the early and late migrants, so that the fisheries have not eliminated entire populations, and from density-dependent processes that may have helped maintain the productivity of these salmon populations.
Chau, Man Ling; Aung, Kyaw Thu; Hapuarachchi, Hapuarachchige Chanditha; Lee, Pei Sze Valarie; Lim, Pei Ying; Kang, Joanne Su Lin; Ng, Youming; Yap, Hooi Ming; Yuk, Hyun-Gyun; Gutiérrez, Ramona Alikiiteaga; Ng, Lee Ching
2017-02-28
As the preparation of salads involves extensive handling and the use of uncooked ingredients, they are particularly vulnerable to microbial contamination. This study aimed to determine the microbial safety and quality of pre-packed salads and salad bar ingredients sold in Singapore, so as to identify public health risks that could arise from consuming salads and to determine areas for improvement in the management of food safety. The most frequently encountered organism in pre-packed salad samples was B. cereus, particularly in pasta salads (33.3%, 10/30). The most commonly detected organism in salad bar ingredients was L. monocytogenes, in particular seafood ingredients (44.1%, 15/34), largely due to contaminated smoked salmon. Further investigation showed that 21.6% (37/171) of the pre-packed smoked salmon sold in supermarkets contained L. monocytogenes. Significantly higher prevalence of L. monocytogenes and higher Standard Plate Count were detected in smoked salmon at salad bars compared to pre-packed smoked salmon in supermarkets, which suggested multiplication of the organism as the products move down the supply chain. Further molecular analysis revealed that L. monocytogenes Sequence Type (ST) 2 and ST87 were present in a particular brand of pre-packed salmon products over a 4-year period, implying a potential persistent contamination problem at the manufacturing level. Our findings highlighted a need to improve manufacturing and retail hygiene processes as well as to educate vulnerable populations to avoid consuming food prone to L. monocytogenes contamination.
Arkoosh, Mary R; Van Gaest, Ahna L; Strickland, Stacy A; Hutchinson, Greg P; Krupkin, Alex B; Dietrich, Joseph P
2017-03-01
Polybrominated diphenyl ethers (PBDEs) have been used as flame-retardants in consumer products and are currently detected in salmon globally. The two most predominant PBDE congeners found in salmon are BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) and BDE-99 (2,2',4,4',5-pentabromodiphenyl ether). In the present study, groups of juvenile Pacific Chinook salmon were fed five environmentally relevant concentrations of either BDE-47 (0.3-552 ng total PBDEs/g food), BDE-99 (0.3-580 ng total PBDEs/g food), or nearly equal mixtures of both congeners (0.7-690 ng total PBDEs/g food) for 39-40 days. The concentrations of circulating total thyroid hormones, thyroxine (T 4 ) and 3,5,3'-triiodothyronine (T 3 ), were measured using a hormone-specific time-resolved fluoroimmunoassay to determine if PBDE exposure disrupts the hypothalamic-pituitary-thyroid endocrine axis. The concentrations of both circulating T 4 and T 3 were altered in juvenile salmon by dietary uptake of BDE-99. Exposure to BDE-47 did not alter either T 3 or T 4 circulating hormone concentrations. However, exposure to a mixture of BDE-47 and BDE-99 reduced T 3 in fish with lower concentrations of total whole body PBDEs than with either congener alone at equivalent PBDE whole body concentrations. Accordingly, the disruption of PBDEs on circulating thyroid hormone concentrations has the potential to impact a number of critical functions in juvenile salmon including growth, parr-smolt transformation, and immunological processes. Published by Elsevier Ltd.
Salmon lice – impact on wild salmonids and salmon aquaculture
Torrissen, O; Jones, S; Asche, F; Guttormsen, A; Skilbrei, O T; Nilsen, F; Horsberg, T E; Jackson, D
2013-01-01
Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion. PMID:23311858
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... Atlantic Salmon From Norway: Extension of Time Limits for Preliminary and Final Results of Full Third... countervailing duty (CVD) orders on fresh and chilled Atlantic salmon from Norway, pursuant to section 751(c) of... Salmon U.S., Inc. (Phoenix Salmon), a domestic interested party. Phoenix Salmon claimed interested party...
The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation.
Gill, Karen M; Goater, Lori A; Braatne, Jeffrey H; Rood, Stewart B
2018-04-01
River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this 'irrigation effect' we studied the facultative shrub, netleaf hackberry (Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow (Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.
The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation
NASA Astrophysics Data System (ADS)
Gill, Karen M.; Goater, Lori A.; Braatne, Jeffrey H.; Rood, Stewart B.
2018-04-01
River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this `irrigation effect' we studied the facultative shrub, netleaf hackberry ( Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow ( Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.
Estuarine Ecology of Juvenile Salmon in Western Alaska: a Review
Zimmerman, Christian E.; Hillgruber, Nicola
2009-01-01
In the late 1990s and early 2000s, large declines in numbers of chum salmon Oncorhynchus keta and Chinook salmon O. tshawytscha returning to the Arctic-YukonKuskokwim (AYK) region (Alaska, USA) illuminated the need for an improved understanding of the variables controlling salmon abundance at all life stages. In addressing questions about salmon abundance, large gaps in our knowledge of basic salmon life history and the critical early marine life stage were revealed. In this paper, results from studies conducted on the estuarine ecology of juvenile salmon in western Alaska are summarized and compared, emphasizing timing and distribution during outmigration, environmental conditions, age and growth, feeding, and energy content of salmon smolts. In western Alaska, water temperature dramatically changes with season, ranging from 0°C after ice melt in late spring/early summer to 19°C in July. Juvenile salmon were found in AYK estuaries from early May until August or September, but to date no information is available on their residence duration or survival probability. Chum salmon were the most abundant juvenile salmon reported, ranging in percent catch from <0.1% to 4.7% and most research effort has focused on this species. Abundances of Chinook salmon, sockeye salmon O. nerka, and pink salmon O. gorbuscha varied among estuaries, while coho salmon O. kisutch juveniles were consistently rare, never amounting to more than 0.8% of the catch. Dietary composition of juvenile salmon was highly variable and a shift was commonly reported from epibenthic and neustonic prey in lower salinity water to pelagic prey in higher salinity water. Gaps in the knowledge of AYK salmon estuarine ecology are still evident. For example, data on outmigration patterns and residence timing and duration, rearing conditions and their effect on diet, growth, and survival are often completely lacking or available only for few selected years and sites. Filling gaps in knowledge concerning salmon use and survival in estuarine and near-shore habitats within the AYK region will aid in assessing the relative roles of all habitats (freshwater to marine) in controlling salmon abundance.
Mahony, Amelia; Fraser, Sarah; Groman, David B; Jones, Simon R M
2015-06-29
A PCR for the specific detection of the salmon brain parasite Myxobolus arcticus (Pugachev and Khokhlov, 1979) was developed using primers designed to amplify a 1363 base pair fragment of the small subunit rDNA. The assay did not amplify DNA from 5 other Myxobolus species or from 7 other myxozoan species belonging to 5 other genera. For juvenile sockeye salmon Oncorhynchus nerka (Walbaum) collected from Chilko Lake, British Columbia (BC), Canada, in 2011, the prevalence by PCR was 96%, in contrast to 71% by histological examination of brain tissue. In 2010, the histological prevalence was 52.5%. Sequence identity between M. arcticus from Chilko Lake and other sites in BC ranged from 99.7 to 99.8% and was 99.6% for a Japanese sequence. In contrast, an M. arcticus sequence from Norway shared 95.3% identity with the Chilko Lake sequence, suggesting misidentification of the parasite. Chilko Lake sockeye salmon were previously reported free of infection with M. arcticus, and more research is required to understand the processes involved in the local and global dispersion of this parasite.
The effect of nonylphenol on gene expression in Atlantic salmon smolts.
Robertson, Laura S; McCormick, Stephen D
2012-10-15
The parr-smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na(+)/K(+)-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers. Published by Elsevier B.V.
Protective oral vaccination against infectious salmon anaemia virus in Salmo salar.
Caruffo, Mario; Maturana, Carlos; Kambalapally, Swetha; Larenas, Julio; Tobar, Jaime A
2016-07-01
Infectious salmon anemia (ISA) is a systemic disease caused by an orthomyxovirus, which has a significant economic impact on the production of Atlantic salmon (Salmo salar). Currently, there are several commercial ISA vaccines available, however, those products are applied through injection, causing stress in the fish and leaving them susceptible to infectious diseases due to the injection process and associated handling. In this study, we evaluated an oral vaccine against ISA containing a recombinant viral hemagglutinin-esterase and a fusion protein as antigens. Our findings indicated that oral vaccination is able to protect Atlantic salmon against challenge with a high-virulence Chilean isolate. The oral vaccination was also correlated with the induction of IgM-specific antibodies. On the other hand, the vaccine was unable to modulate expression of the antiviral related gene Mx, showing the importance of the humoral response to the disease survival. This study provides new insights into fish protection and immune response induced by an oral vaccine against ISA, but also promises future development of preventive solutions or validation of the current existing therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guerrin, F; Dumas, J
2001-02-01
This paper describes a qualitative model of the functioning of salmon redds (spawning areas of salmon) and its impact on mortality rates of early stages. For this, we use Qsim, a qualitative simulator, which appeared adequate for representing available qualitative knowledge of freshwater ecology experts (see Part I of this paper). Since the number of relevant variables was relatively large, it appeared necessary to decompose the model into two parts, corresponding to processes occurring at separate time-scales. A qualitative clock allows us to submit the simulation of salmon developmental stages to the calculation of accumulated daily temperatures (degree-days), according to the clock ticks and a water temperature regime set by the user. Therefore, this introduces some way of real-time dating and duration in a purely qualitative model. Simulating both sub-models, either separately or by means of alternate transitions, allows us to generate the evolutions of variables of interest, such as the mortality rates according to two factors (flow of oxygenated water and plugging of gravel interstices near the bed surface), under various scenarios.
Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.
2015-01-01
A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.
Garver, K A; Marty, G D; Cockburn, S N; Richard, J; Hawley, L M; Müller, A; Thompson, R L; Purcell, M K; Saksida, S
2016-02-01
A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon. © 2015 John Wiley & Sons Ltd.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (dog) salmon, Oncorhynchus keta Sockeye (red) salmon, Oncorhynchus nerka Steelhead (rainbow trout... Region, NMFS. Salmon means any anadromous species of the family Salmonidae and genus Oncorhynchus, commonly known as Pacific salmon, including, but not limited to: Chinook (king) salmon, Oncorhynchus...
Stream food web response to a salmon carcass analogue addition in two central Idaho, U.S.A. streams
KOHLER, ANDRE E; RUGENSKI, AMANDA; TAKI, DOUG
2008-01-01
Pacific salmon and steelhead once contributed large amounts of marine-derived carbon, nitrogen and phosphorus to freshwater ecosystems in the Pacific Northwest of the United States of America (California, Oregon, Washington and Idaho). Declines in historically abundant anadromous salmonid populations represent a significant loss of returning nutrients across a large spatial scale. Recently, a manufactured salmon carcass analogue was developed and tested as a safe and effective method of delivering nutrients to freshwater and linked riparian ecosystems where marine-derived nutrients have been reduced or eliminated. We compared four streams: two reference and two treatment streams using salmon carcass analogue(s) (SCA) as a treatment. Response variables measured included: surface streamwater chemistry; nutrient limitation status; carbon and nitrogen stable isotopes; periphyton chlorophyll a and ash-free dry mass (AFDM); macroinvertebrate density and biomass; and leaf litter decomposition rates. Within each stream, upstream reference and downstream treatment reaches were sampled 1 year before, during, and 1 year after the addition of SCA. Periphyton chlorophyll a and AFDM and macroinvertebrate biomass were significantly higher in stream reaches treated with SCA. Enriched stable isotope (δ15N) signatures were observed in periphyton and macroinvertebrate samples collected from treatment reaches in both treatment streams, indicating trophic transfer from SCA to consumers. Densities of Ephemerellidae, Elmidae and Brachycentridae were significantly higher in treatment reaches. Macroinvertebrate community composition and structure, as measured by taxonomic richness and diversity, did not appear to respond significantly to SCA treatment. Leaf breakdown rates were variable among treatment streams: significantly higher in one stream treatment reach but not the other. Salmon carcass analogue treatments had no detectable effect on measured water chemistry variables. Our results suggest that SCA addition successfully increased periphyton and macroinvertebrate biomass with no detectable response in streamwater nutrient concentrations. Correspondingly, no change in nutrient limitation status was detected based on dissolved inorganic nitrogen to soluble reactive phosphorus ratios (DIN/SRP) and nutrient-diffusing substrata experiments. Salmon carcass analogues appear to increase freshwater productivity. Salmon carcass analogues represent a pathogen-free nutrient enhancement tool that mimics natural trophic transfer pathways, can be manufactured using recycled fish products, and is easily transported; however, salmon carcass analogues should not be viewed as a replacement for naturally spawning salmon and the important ecological processes they provide.
1986-04-01
method in fingerlinqs prey on sockeye salmon Puqet Sound to predict coho salmon fry ( Oncorhynchus nerka ); 30% of catches from stream discharqe data, coho...numbers of males distinguish it from chinook salmon and females in a soawninq run are sim- ( Oncorhynchus tshawytscha), which have ilar males may...behind sockeye salmon (qnco- qoal is te umber of spawners rhynchus nerka ), pink salmon (. necesar) to majinta1n the run of a -orhuscha), and chum salmon
Code of Federal Regulations, 2010 CFR
2010-10-01
... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring...
[Carotenoids and vitamin A in fish].
Elmadfa, I; Majchrzak, D
1998-06-01
Seven commercial salmon and six trout samples were investigated. Retinol and the carotenoids astaxanthin and canthaxanthin important for pigmentation of the muscle were determined by RP-HPLC. Vitamin A concentrations of raw salmon samples were 16-19 micrograms/100 g, of smoked salmon samples 9-19 micrograms/ 100 g; retinol values of salmon trout (raw) and trout (raw) reached 14-16 micrograms/100 g and 7-9 micrograms/100 g. Concentrations of astaxanthin the important carotenoid of pigmentation, ranged in samples of salmon from 310-465 micrograms/100 g. Samples of salmon trout showed astaxanthin values between 90 and 536 micrograms/100 g, trout samples only 67-85 micrograms/100 g. Concentrations of canthaxanthin were different in the examined samples and were not detectable in all samples. Highest values of canthaxanthin were found in salmon trout samples (113-226 micrograms/100 g), Irish smoked salmon and stremel-salmon (145-169 micrograms/100 g). Raw samples of salmon and of trout showed only low concentrations of canthaxanthin. Astaxanthin and canthaxanthin together reached values of 419-524 micrograms/100 g for salmon, 316-701 micrograms/100 g for salmon trout, and 72-91 micrograms/100 g for trout samples.
Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model
Madenjian, Charles P.; O'Connor, Daniel V.; Chernyak, Sergei M.; Rediske, Richard R.; O'Keefe, James P.
2004-01-01
We evaluated the Wisconsin bioenergetics model for chinook salmon (Oncorhynchus tshawytscha) in both the laboratory and the field. Chinook salmon in laboratory tanks were fed alewife (Alosa pseudoharengus), the predominant food of chinook salmon in Lake Michigan. Food consumption and growth by chinook salmon during the experiment were measured. To estimate the efficiency with which chinook salmon retain polychlorinated biphenyls (PCBs) from their food in the laboratory, PCB concentrations of the alewife and of the chinook salmon at both the beginning and end of the experiment were determined. Based on our laboratory evaluation, the bioenergetics model was furnishing unbiased estimates of food consumption by chinook salmon. Additionally, from the laboratory experiment, we calculated that chinook salmon retained 75% of the PCBs contained within their food. In an earlier study, assimilation rate of PCBs to chinook salmon from their food in Lake Michigan was estimated at 53%, thereby suggesting that the model was substantially overestimating food consumption by chinook salmon in Lake Michigan. However, we concluded that field performance of the model could not be accurately assessed because PCB assimilation efficiency is dependent on feeding rate, and feeding rate of chinook salmon was likely much lower in our laboratory tanks than in Lake Michigan.
Murray, Alexander G; Munro, Lorna A; Wallace, I Stuart; Berx, Barbara; Pendrey, Daniel; Fraser, David; Raynard, Rob S
2010-09-17
Infectious salmon anaemia (ISA) is an orthomyxoviral disease, primarily affecting marine-phase farmed Atlantic salmon, which can result in high levels of mortality. ISA first emerged in Norway in the 1980s and subsequently has occurred in Canada, the USA, the Faeroe Islands and Chile. An outbreak occurred in Scotland in 1998-1999, but was eradicated at a cost of over pounds sterling 20M. The epidemiology of a new outbreak of ISA in the Scottish Shetland Islands during 2008-2009 is described. Six sites have been confirmed ISA-positive. Spread of the virus via transport of fish between marine sites, harvest vessels, smolts and wild fish appears to have been of little or no importance, with spread primarily associated with marine water currents. The use of management areas by Marine Scotland to control the event appears to have been effective in restricting spread to a small area. This localised outbreak contrasts with the 1998-1999 outbreak that spread over a wide geographic area with transported fish and harvest vessels. The development and application of industry codes of good practice, good husbandry and biosecurity practices, limited marine site-to-site movement of live fish and improved disinfection of vessels and processing plant waste that occurred subsequent to the 1998-1999 outbreak may explain the localised spread of infection in 2008-2009. Depopulation of confirmed sites has been achieved within 7 wk (mean = 3.7 wk); however, it is likely that subclinical infection persisted undetected for months on at least 1 site. The origin of the 2008-2009 outbreak remains unknown. Potential sources include evolution from a local reservoir of infection or importation. Synchronous fallowing of management areas, with good husbandry and biosecurity, reduces the risk of ISA recurring. Movement of fish between sites in different management areas represents the greatest risk of regional-scale spread, should this occur.
Heterosigma bloom and associated fish kill
Hershberger, P.K.; Rensel, J.E.; Postel, J.R.; Taub, F.B.
1997-01-01
A bloom of the harmful marine phytoplankton, Heterosigma carterae occurred in upper Case Inlet, south Puget Sound, Washington in late September, 1994, correlating with the presence of at least 35 dead salmon. This marks the first time that this alga has been closely correlated with a wild fish kill; in the past it was thought to be associated with kills of penned fish at fish farms only. We were informed of the presence of a possible harmful algal bloom and dead salinois Ilear the town of Allyn on 27 September and a team was formed to investigate. We arrived at the Allyn waterfront at 17:30 hours the same day. Prior to our arrival, state agency personnel walked approximatcly two miles of shoreline from the powerlines north of the dock, to the mouth of Sherwood Creek and conducted the only official count of dead fish present along the shore consisting of 12 coho salmon (Oncorhynchus kisutch), 11 chum salmon (Oncorhynchus keta), 12 chinook salmon (Oncorhynchus tschawytscha), one flat fish, and one sculpin on the morning of 9/27. Since previous harmful blooms of Heterosigma have resultedin the majority of net penreared salmon sinking to the bottom of pens, and only approximately two miles of shoreline were sampled, it is suspected that many more exposed fish may have succumbed than were counted. Witnesses who explored the east side of the bay reported seeing many dead salmon there as well, but no counts were made. State agency personnel who observed the fish kill reported seeing “dying fish coming to the beach, gulping at the surface, trying to get out of the water” Scavengers were seen consuming the salmon carcasses; these included two harbor seals, a house cat, and Hymenopteran insects. None suffered any noticeable acute ill effects. Although precise cause of death has not been ascertained, visual inspection of the reproductive organs from a deceased male chum salmon found on the shore at Allyn confirmed that the fish was not yet reproductively mature and therefore did not die from completion of the spawning process.
Cunningham, Curry J; Westley, Peter A H; Adkison, Milo D
2018-05-18
Understanding how species might respond to climate change involves disentangling the influence of co-occurring environmental factors on population dynamics, and is especially problematic for migratory species like Pacific salmon that move between ecosystems. To date, debate surrounding the causes of recent declines in Yukon River Chinook salmon (Oncorhynchus tshawytscha) abundance has centered on whether factors in freshwater or marine environments control variation in survival, and how these populations at the northern extremity of the species range will respond to climate change. To estimate the effect of factors in marine and freshwater environments on Chinook salmon survival, we constructed a stage-structured assessment model that incorporates the best available data, estimates incidental marine bycatch mortality in trawl fisheries, and uses Bayesian model selection methods to quantify support for alternative hypotheses. Models fitted to two index populations of Yukon River Chinook salmon indicate that processes in the nearshore and marine environments are the most important determinants of survival. Specifically, survival declines when ice leaves the Yukon River later in the spring, increases with wintertime temperature in the Bering Sea, and declines with the abundance of globally enhanced salmon species consistent with competition at sea. In addition, we found support for density-dependent survival limitations in freshwater but not marine portions of the life cycle, increasing average survival with ocean age, and age-specific selectivity of bycatch mortality in the Bering Sea. This study underscores the utility of flexible estimation models capable of fitting multiple data types and evaluating mortality from both natural and anthropogenic sources in multiple habitats. Overall, these analyses suggest that mortality at sea is the primary driver of population dynamics, yet under a warming climate Chinook salmon populations at the northern extent of the species' range may be expected to fare better than southern populations, but are influenced by foreign salmon production. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Denholm, Scott J; Hoyle, Andrew S; Shinn, Andrew P; Paladini, Giuseppe; Taylor, Nick G H; Norman, Rachel A
2016-01-01
Gyrodactylus salaris (Monogenea, Platyhelminthes) is a notifiable freshwater pathogen responsible for causing catastrophic damage to wild Atlantic salmon stocks, most notably in Norway. In some strains of Baltic salmon (e.g., from the river Neva) however, the impact is greatly reduced due to some form of innate resistance that regulates parasite numbers, resulting in fewer host mortalities. Gyrodactylus salaris is known from 17 European states; its status in a further 35 states remains unknown; the UK, the Republic of Ireland and certain watersheds in Finland are free of the parasite. Thus, the parasite poses a serious threat if it emerges in Atlantic salmon rearing regions throughout Europe. At present, infections are generally controlled via extreme measures such as the treatment of entire river catchments with the biocide rotenone, in order to remove all hosts, before restocking with the original genetic stock. The use of rotenone in this way in EU countries is unlikely as it would be in contravention of the Water Framework Directive. Not only are such treatments economically and environmentally costly, they also eradicate the potential for any host/parasite evolutionary process to occur. Based on previous studies, UK salmon stocks have been shown to be highly susceptible to infection, analogous to Norwegian stocks. The present study investigates the impact of a G. salaris outbreak within a naïve salmon population in order to determine long-term consequences of infection and the likelihood of coexistence. Simulation of the salmon/ G. salaris system was carried out via a deterministic mathematical modelling approach to examine the dynamics of host-pathogen interactions. Results indicated that in order for highly susceptible Atlantic strains to evolve a resistance, both a moderate-strong deceleratingly costly trade-off on birth rate and a lower overall cost of the immune response are required. The present study provides insights into the potential long term impact of G. salaris if introduced into G. salaris-free territories and suggests that in the absence of external controls salmon populations are likely to recover to high densities nearing 90% of that observed pre-infection.
Telemetry link for an automatic salmon migration monitor
NASA Technical Reports Server (NTRS)
Baldwin, H. A.; Freyman, R. W.
1973-01-01
The antenna and transmitter described in this report were designed for integration into the remote acoustic assessment system for detection of sockeye salmon in the Bristol Bay region of the Bering Sea. The assessment system configuration consists of an upward directed sonar buoy anchored 150 ft below the surface and attached by cable to a spar buoy tethered some 300 ft laterally. The spar buoy contains a telemetry transmitter, power supply, data processing electronics, an antenna and a beacon light.
Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; ,; Gillikin, Daniel; ,
2010-01-01
To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.
NASA Astrophysics Data System (ADS)
Satterfield, Franklin R.; Finney, Bruce P.
Food web interactions and the response of Pacific salmon to physical processes in the North Pacific Ocean over interannual and interdecadal timescales are explored using naturally occurring stable isotope ratios of carbon ( 13C/ 12C) and nitrogen ( 15N/ 14N). Stable isotope analyses of five species of sexually mature North Pacific salmon from Alaska ( Oncorhynchus spp.) cluster into three groups: chinook salmon ( O. tshawytscha) have the highest values, followed by coho ( O. kisutch), with chum ( O. keta), sockeye ( O. nerka), and pink ( O. gorbuscha) together having the lowest values. Although detailed isotopic data on salmon prey are lacking, there are limited data on relevant prey items from areas in which they are found in high abundance. These data suggest that the characteristics of the sockeye, pink and chum we have analyzed are compatible with their diets including open ocean squid and zooplankton, which are in general agreement with stomach content analyses. Isotope relationships between muscle and scale show consistent relationships for both δ13C ( R2=0.98) and δ 15N ( R2=0.90). Thus, scales, which have been routinely archived for many systems, can be used for retrospective analyses. Archived sockeye salmon scales spanning 1966-1999 from Red Lake, Kodiak Island, Alaska were analyzed for their stable isotope ratios of carbon and nitrogen. The δ15N record displays a decreasing trend of ~3‰ from 1969-1982 and an increasing trend of ~3‰ from 1982-1992, while the variations in δ13C are relatively minor. These trends may result from factors such as shifts in trophic level of feeding and/or feeding location, or may originate at the base of the food web via changes in processes such as nutrient cycling or primary productivity. Detailed studies on prey isotopic variability and its controls are needed to distinguish between these factors, and thus to improve the use of stable isotope analysis as a tool to learn more about present and past ecosystem change in the North Pacific and its relation to climatic change.
Comparative anatomy of the dorsal hump in mature Pacific salmon.
Susuki, Kenta; Ban, Masatoshi; Ichimura, Masaki; Kudo, Hideaki
2017-07-01
Mature male Pacific salmon (Genus Oncorhynchus) demonstrate prominent morphological changes, such as the development of a dorsal hump. The degree of dorsal hump formation depends on the species in Pacific salmon. It is generally accepted that mature males of sockeye (O. nerka) and pink (O. gorbuscha) salmon develop most pronounced dorsal humps. The internal structure of the dorsal hump in pink salmon has been confirmed in detail. In this study, the dorsal hump morphologies were analyzed in four Pacific salmon species inhabiting Japan, masu (O. masou), sockeye, chum (O. keta), and pink salmon. The internal structure of the dorsal humps also depended on the species; sockeye and pink salmon showed conspicuous development of connective tissue and growth of bone tissues in the dorsal tissues. Masu and chum salmon exhibited less-pronounced increases in connective tissues and bone growth. Hyaluronic acid was clearly detected in dorsal hump connective tissue by histochemistry, except for in masu salmon. The lipid content in dorsal hump connective tissue was richer in masu and chum salmon than in sockeye and pink salmon. These results revealed that the patterns of dorsal hump formation differed among species, and especially sockeye and pink salmon develop pronounced dorsal humps through both increases in the amount of connective tissue and the growth of bone tissues. In contrast, masu and chum salmon develop their dorsal humps by the growth of bone tissues, rather than the development of connective tissue. © 2017 Wiley Periodicals, Inc.
Arab Tehrany, Elmira; Kahn, Cyril J F; Baravian, Christophe; Maherani, Behnoush; Belhaj, Nabila; Wang, Xiong; Linder, Michel
2012-06-15
Health benefits of unsaturated fatty acids have been demonstrated over the last decades. Nanotechnology provided new process to produce particles such as liposomes and nanoliposomes made of pure phospholipids. These techniques are already used in pharmaceutics to augment the bioavailability and the bioefficiency of drugs. The aim of this paper is to characterize and evaluate the potential of nanoliposomes made of three lecithins (soya, rapeseed and salmon) on cell culture in order to use them in the future as drug delivery systems for tissue engineering. We began to measure, with zetasizer, the radius size of liposomes particles which are 125.5, 136.7 and 130.3 nm respectively for rapeseed, soya and salmon lecithin. Simultaneously, solutions observed by TEM demonstrated the particles were made much of liposomes than droplet (emulsion). Finally, we found that the solutions of lecithins were enough stable over 5 days at 37 °C to be used in culture medium. We investigated the effect of soya, rapeseed and salmon lecithin liposome from 2mg/mL to 5.2 μg/mL on metabolic activity and cell proliferation on rat bone marrow stem cells (rBMSC) during 14 days. The results showed that the three lecithins (soya, rapeseed and salmon) improve cell proliferation at different concentration. Copyright © 2012 Elsevier B.V. All rights reserved.
Farag, A M; Harper, D D; Cleveland, L; Brumbaugh, W G; Little, E E
2006-05-01
The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 microg Cr l(-1). The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 microg Cr l(-1). Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 microg Cr l(-1). Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 microg Cr l(-1). Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 mug Cr l(-1) is most likely protective of Chinook salmon fertilization.
Farag, A.M.; Harper, D.D.; Cleveland, L.; Brumbaugh, W.G.; Little, E.E.
2006-01-01
The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 μg Cr l−1. The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 μg Cr l−1. Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 μg Cr l−1. Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 μg Cr l−1. Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 μg Cr l−1 is most likely protective of Chinook salmon fertilization.
Can reduced predation offset negative effects of sea louse parasites on chum salmon?
Peacock, Stephanie J.; Connors, Brendan M.; Krkošek, Martin; Irvine, James R.; Lewis, Mark A.
2014-01-01
The impact of parasites on hosts is invariably negative when considered in isolation, but may be complex and unexpected in nature. For example, if parasites make hosts less desirable to predators then gains from reduced predation may offset direct costs of being parasitized. We explore these ideas in the context of sea louse infestations on salmon. In Pacific Canada, sea lice can spread from farmed salmon to migrating juvenile wild salmon. Low numbers of sea lice can cause mortality of juvenile pink and chum salmon. For pink salmon, this has resulted in reduced productivity of river populations exposed to salmon farming. However, for chum salmon, we did not find an effect of sea louse infestations on productivity, despite high statistical power. Motivated by this unexpected result, we used a mathematical model to show how a parasite-induced shift in predation pressure from chum salmon to pink salmon could offset negative direct impacts of sea lice on chum salmon. This shift in predation is proposed to occur because predators show an innate preference for pink salmon prey. This preference may be more easily expressed when sea lice compromise juvenile salmon hosts, making them easier to catch. Our results indicate how the ecological context of host–parasite interactions may dampen, or even reverse, the expected impact of parasites on host populations. PMID:24352951
Can reduced predation offset negative effects of sea louse parasites on chum salmon?
Peacock, Stephanie J; Connors, Brendan M; Krkosek, Martin; Irvine, James R; Lewis, Mark A
2014-02-07
The impact of parasites on hosts is invariably negative when considered in isolation, but may be complex and unexpected in nature. For example, if parasites make hosts less desirable to predators then gains from reduced predation may offset direct costs of being parasitized. We explore these ideas in the context of sea louse infestations on salmon. In Pacific Canada, sea lice can spread from farmed salmon to migrating juvenile wild salmon. Low numbers of sea lice can cause mortality of juvenile pink and chum salmon. For pink salmon, this has resulted in reduced productivity of river populations exposed to salmon farming. However, for chum salmon, we did not find an effect of sea louse infestations on productivity, despite high statistical power. Motivated by this unexpected result, we used a mathematical model to show how a parasite-induced shift in predation pressure from chum salmon to pink salmon could offset negative direct impacts of sea lice on chum salmon. This shift in predation is proposed to occur because predators show an innate preference for pink salmon prey. This preference may be more easily expressed when sea lice compromise juvenile salmon hosts, making them easier to catch. Our results indicate how the ecological context of host-parasite interactions may dampen, or even reverse, the expected impact of parasites on host populations.
Bryan, Heather M; Darimont, Chris T; Paquet, Paul C; Wynne-Edwards, Katherine E; Smits, Judit E G
2013-01-01
Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology.
Bryan, Heather M.; Darimont, Chris T.; Paquet, Paul C.; Wynne-Edwards, Katherine E.; Smits, Judit E. G.
2013-01-01
Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology. PMID:24312230
PACIFIC SALMON: LESSONS LEARNED FOR RECOVERING ATLANTIC SALMON
n evaluation of the history of efforts to reverse the long-term decline of Pacific Salmon provides instructive policy lessons for recovering Atlantic Salmon. From California to southern British Columbia, wild runs of Pacific salmon have universally declined and many have disappe...
Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R
2017-02-01
In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream networks will hamper efforts to understand and mitigate the vulnerability of anadromous fish habitat to climate-induced hydrologic change. © 2016 John Wiley & Sons Ltd.
Anadromous salmonids in the Delta: New science 2006–2016
Perry, Russell W.; Buchanan, Rebecca A.; Brandes, Patricia L.; Burau, Jon R.; Israel, Joshua A
2016-01-01
As juvenile salmon enter the Sacramento–SanJoaquin River Delta (“the Delta”) they disperse among its complex channel network where they are subject to channel-specific processes that affect their rate of migration, vulnerability to predation, feeding success, growth rates, and ultimately, survival. In the decades before 2006, tools available to quantify growth, dispersal, and survival of juvenile salmon in this complex channel network were limited.Fortunately, thanks to technological advances such as acoustic telemetry and chemical and structural otolith analysis, much has been learned over the past decade about the role of the Delta in the life cycle of juvenile salmon. Here, we review new science between 2006and 2016 that sheds light on how different life stages and runs of juvenile salmon grow, move, and survive in the complex channel network of the Delta. One of the most important advances during the past decade has been the widespread adoption of acoustic telemetry techniques. Use of telemetry has shed light on how survival varies among alternative migration routes and the proportion of fish that use each migration route. Chemical and structural analysis of otoliths has provided insights about when juveniles left their natal river and provided evidence of extended rearing in the brackish or saltwater regions of the Delta. New advancements in genetics now allow individuals captured by trawls to be assigned to specific runs. Detailed information about movement and survival in the Delta has spurred development of agent-based models of juvenile salmon that are coupled to hydrodynamic models. Although much has been learned, knowledge gaps remain about how very small juvenile salmon (fry and parr) use the Delta. Understanding how all life stages of juvenile salmon grow, rear, and survive in the Delta is critical for devising management strategies that support a diversity of life history strategies.
The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA
NASA Astrophysics Data System (ADS)
Moravek, J.; Clipp, H.; Kiffney, P.
2016-02-01
Salmon are a valuable resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the long term implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat after 12 years of re-colonization, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the long term, landscape-scale implications of sustainable salmon management in the Pacific Northwest.
The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA
NASA Astrophysics Data System (ADS)
Moravek, J.; Clipp, H.; Kiffney, P.
2015-12-01
Salmon are a valuable cultural and economic resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the landscape-scale implications of sustainable salmon management in the Pacific Northwest.
Harvey, Alison Catherine; Solberg, Monica Favnebøe; Troianou, Eva; Carvalho, Gary Robert; Taylor, Martin Ian; Creer, Simon; Dyrhovden, Lise; Matre, Ivar Helge; Glover, Kevin Alan
2016-12-01
Domestication of Atlantic salmon for commercial aquaculture has resulted in farmed salmon displaying substantially higher growth rates than wild salmon under farming conditions. In contrast, growth differences between farmed and wild salmon are much smaller when compared in the wild. The mechanisms underlying this contrast between environments remain largely unknown. It is possible that farmed salmon have adapted to the high-energy pellets developed specifically for aquaculture, contributing to inflated growth differences when fed on this diet. We studied growth and survival of 15 families of farmed, wild and F1 hybrid salmon fed three contrasting diets under hatchery conditions; a commercial salmon pellet diet, a commercial carp pellet diet, and a mixed natural diet consisting of preserved invertebrates commonly found in Norwegian rivers. For all groups, despite equal numbers of calories presented by all diets, overall growth reductions as high 68 and 83%, relative to the salmon diet was observed in the carp and natural diet treatments, respectively. Farmed salmon outgrew hybrid (intermediate) and wild salmon in all treatments. The relative growth difference between wild and farmed fish was highest in the carp diet (1: 2.1), intermediate in the salmon diet (1:1.9) and lowest in the natural diet (1:1.6). However, this trend was non-significant, and all groups displayed similar growth reaction norms and plasticity towards differing diets across the treatments. No indication of genetic-based adaptation to the form or nutritional content of commercial salmon diets was detected in the farmed salmon. Therefore, we conclude that diet alone, at least in the absence of other environmental stressors, is not the primary cause for the large contrast in growth differences between farmed and wild salmon in the hatchery and wild. Additionally, we conclude that genetically-increased appetite is likely to be the primary reason why farmed salmon display higher growth rates than wild salmon when fed ad lib rations under hatchery conditions. Our results contribute towards an understanding of the potential genetic changes that have occurred in farmed salmon in response to domestication, and the potential mechanisms underpinning genetic and ecological interactions between farmed escapees and wild salmonids.
THE FUTURE OF PACIFIC NORTHWEST SALMON: ANATOMY OF A CRISIS
Salmon are categorized biologically into two groups: Pacific salmon or Atlantic salmon. All seven species of Pacific salmon on both sides of the North Pacific Ocean have declined substantially from historic levels, but large runs still occur in northern British Columbia, Yukon,...
WILD SALMON RESTORATION: IS IT WORTH IT?
Salmon are categorized biologically into two groups: Pacific salmon and Atlantic salmon. Atlantic salmon are found on both sides of the North Atlantic Ocean, but have declined precipitously compared to the size of runs prior to the 1700s. The largest (though small by historic ...
Effects of parasites from salmon farms on productivity of wild salmon
Krkošek, Martin; Connors, Brendan M.; Morton, Alexandra; Lewis, Mark A.; Dill, Lawrence M.; Hilborn, Ray
2011-01-01
The ecological risks of salmon aquaculture have motivated changes to management and policy designed to protect wild salmon populations and habitats in several countries. In Canada, much attention has focused on outbreaks of parasitic copepods, sea lice (Lepeophtheirus salmonis), on farmed and wild salmon in the Broughton Archipelago, British Columbia. Several recent studies have reached contradictory conclusions on whether the spread of lice from salmon farms affects the productivity of sympatric wild salmon populations. We analyzed recently available sea lice data on farms and spawner–recruit data for pink (Oncorhynchus gorbuscha) and coho (Oncorhynchus kisutch) salmon populations in the Broughton Archipelago and nearby regions where farms are not present. Our results show that sea lice abundance on farms is negatively associated with productivity of both pink and coho salmon in the Broughton Archipelago. These results reconcile the contradictory findings of previous studies and suggest that management and policy measures designed to protect wild salmon from sea lice should yield conservation and fishery benefits. PMID:21873246
Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon
Rogers, Luke A.; Peacock, Stephanie J.; McKenzie, Peter; DeDominicis, Sharon; Jones, Simon R. M.; Chandler, Peter; Foreman, Michael G. G.; Revie, Crawford W.; Krkošek, Martin
2013-01-01
Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions. PMID:23577082
Kudo, H; Doi, Y; Ueda, H; Kaeriyama, M
2009-09-01
Despite the importance of olfactory receptor neurons (ORNs) for homing migration, the expression of olfactory marker protein (OMP) is not well understood in ORNs of Pacific salmon (genus Oncorhynchus). In this study, salmon OMP was characterized in the olfactory epithelia of lacustrine sockeye salmon (O. nerka) by molecular biological and histochemical techniques. Two cDNAs encoding salmon OMP were isolated and sequenced. These cDNAs both contained a coding region encoding 173 amino acid residues, and the molecular mass of the two proteins was calculated to be 19,581.17 and 19,387.11Da, respectively. Both amino acid sequences showed marked homology (90%). The protein and nucleotide sequencing demonstrates the existence of high-level homology between salmon OMPs and those of other teleosts. By in situ hybridization using a digoxigenin-labeled salmon OMP cRNA probe, signals for salmon OMP mRNA were observed preferentially in the perinuclear regions of the ORNs. By immunohistochemistry using a specific antibody to salmon OMP, OMP-immunoreactivities were noted in the cytosol of those neurons. The present study is the first to describe cDNA cloning of OMP in salmon olfactory epithelium, and indicate that OMP is a useful molecular marker for the detection of the ORNs in Pacific salmon.
Steven M. Wondzell; Agnieszka Przeszlowska; Dirk Pflugmacher; Miles A. Hemstrom; Peter A. Bisson
2012-01-01
Interactions between landuse and ecosystem change are complex, especially in riparian zones. To date, few models are available to project the influence of alternative landuse practices, natural disturbance and plant succession on the likely future conditions of riparian zones and aquatic habitats across large spatial extents. A state and transition approach was used to...
ERIC Educational Resources Information Center
Sherman, Lee
2002-01-01
The estuary at the mouth of the Columbia River in Wahkiakum County Washington) provides a natural laboratory for experiential learning. Wahkiakum High School students participate in interdisciplinary projects that have included habitat restoration, a salmon hatchery, stream restoration, tree planting, and recreating the final leg of the Lewis and…
Nuez-Ortín, Waldo G.; Carter, Chris G.; Wilson, Richard; Cooke, Ira; Nichols, Peter D.
2016-01-01
Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend. PMID:27556399
Nuez-Ortín, Waldo G; Carter, Chris G; Wilson, Richard; Cooke, Ira; Nichols, Peter D
2016-01-01
Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.
Jenkins, Kurt J.; Chelgren, Nathan; Sager-Fradkin, K.A.; Happe, P.J.; Adams, Michael J.
2015-01-01
The downstream transport of sediments and organics and upstream migration of anadromous fishes are key ecological processes in unregulated riverine ecosystems of the North Pacific coast, but their influence on wildlife habitats and populations is poorly documented. Removal of two large hydroelectric dams in Washington’s Elwha Valley provides an unprecedented opportunity to study long-term responses of wildlife populations to dam removal and restoration of these key ecological processes. We compared pre-dam removal patterns in the relative abundance and occupancy of mesocarnivores, small mammals and lentic amphibians of the Elwha River riparian zone above, between and below the dams. Occupancy of riparian habitats by three mesocarnivore species diminished upriver but did not appear to be closely linked with the absence of salmon in the upper river. Although the importance of salmon in the lower river cannot be discounted, other gradients in food resources also likely contributed to observed distribution patterns of mesocarnivores. Abundance and occupancy patterns within congeneric pairs of new world mice (Peromyscus spp.) and shrews (Sorex spp.) indicated that closely related species were negatively associated with each other and responded to habitat gradients in the riparian zone. The availability of lentic habitats of amphibians was highly variable, and occupancy was low as a result of rapidly changing flows during the larval development period. We speculate that long-term changes in habitat conditions and salmon availability following dam removal will elicit long-term changes in distribution of mesocarnivores, small mammals and amphibians. Long-term monitoring will enhance understanding of the role of fish and restored ecosystem processes on wildlife communities along salmon-bearing rivers in the region.
THE SALMON 2100 PROJECT -- AN ALTERNATIVES FUTURES PERSPECTIVE ON PACIFIC NORTHWEST SALMON RECOVERY
The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in the Pacific Northwest and California. Wild salmon recovery efforts in western North Americ...
50 CFR 660.412 - EFH identifications and descriptions for Pacific salmon.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Pacific salmon. 660.412 Section 660.412 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... COAST STATES West Coast Salmon Fisheries § 660.412 EFH identifications and descriptions for Pacific salmon. Pacific salmon essential fish habitat (EFH) includes all those water bodies occupied or...
Rasmussen Hellberg, Rosalee S; Morrissey, Michael T; Hanner, Robert H
2010-09-01
The purpose of this study was to develop a species-specific multiplex polymerase chain reaction (PCR) method that allows for the detection of salmon species substitution on the commercial market. Species-specific primers and TaqMan® probes were developed based on a comprehensive collection of mitochondrial 5' cytochrome c oxidase subunit I (COI) deoxyribonucleic acid (DNA) "barcode" sequences. Primers and probes were combined into multiplex assays and tested for specificity against 112 reference samples representing 25 species. Sensitivity and linearity tests were conducted using 10-fold serial dilutions of target DNA (single-species samples) and DNA admixtures containing the target species at levels of 10%, 1.0%, and 0.1% mixed with a secondary species. The specificity tests showed positive signals for the target DNA in both real-time and conventional PCR systems. Nonspecific amplification in both systems was minimal; however, false positives were detected at low levels (1.2% to 8.3%) in conventional PCR. Detection levels were similar for admixtures and single-species samples based on a 30 PCR cycle cut-off, with limits of 0.25 to 2.5 ng (1% to 10%) in conventional PCR and 0.05 to 5.0 ng (0.1% to 10%) in real-time PCR. A small-scale test with food samples showed promising results, with species identification possible even in heavily processed food items. Overall, this study presents a rapid, specific, and sensitive method for salmon species identification that can be applied to mixed-species and heavily processed samples in either conventional or real-time PCR formats. This study provides a newly developed method for salmon and trout species identification that will assist both industry and regulatory agencies in the detection and prevention of species substitution. This multiplex PCR method allows for rapid, high-throughput species identification even in heavily processed and mixed-species samples. An inter-laboratory study is currently being carried out to assess the ability of this method to identify species in a variety of commercial salmon and trout products.
Breau, Cindy; Cunjak, Richard A; Peake, Stephan J
2011-07-01
1. Temperature governs most physiological processes in animals. Ectotherms behaviourally thermoregulate by selecting habitats with temperatures regulating their body temperature for optimal physiological functioning. However, ectotherms can experience temperature extremes forcing the organisms to seek temperature refuge. 2. Fish actively avoid potentially lethal temperatures by moving to cool-water sites created by inflowing tributaries and groundwater seeps. Juvenile Atlantic salmon (Salmo salar) of different age classes exhibit different behavioural responses to elevated temperatures (>23 °C). Yearling (1+) and 2-year-old (2+) Atlantic salmon often cease feeding, abandon territorial behaviour and swim continuously in aggregations in cool-water sites; whereas young-of-the-year (0+) fish continue defending territories and foraging. 3. This study determined whether the behavioural shift in older individuals (2+) occurred when basal metabolic rate, driven by increasing water temperature, reached the maximum metabolic rate such that anaerobic pathways were recruited to provide energy to support vital processes. Behaviour (feeding and stress responses), oxygen consumption, muscle lactate and glycogen, and circulating blood lactate and glucose concentrations were measured in wild 0+ and 2+ Atlantic salmon acclimated to water temperatures between 16 and 28 °C. 4. Results indicate that oxygen consumption of the 2+ fish increased with temperature and reached a plateau at 24 °C, a temperature that corresponded to cessation of feeding and a significant increase in muscle and blood lactate levels. By contrast, oxygen consumption in 0+ fish did not reach a plateau, feeding continued and muscle lactate did not increase, even at the highest temperatures tested (28 °C). 5. To conclude, the experiment demonstrated that the 0+ and 2+ fish had different physiological responses to the elevated water temperatures. The results suggest that wild 2+ Atlantic salmon employ behavioural responses (e.g. movement to cool-water sites) at elevated temperatures in an effort to mitigate physiological imbalances associated with an inability to support basal metabolism through aerobic metabolic processes. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Bicskei, Beatrix; Bron, James E; Glover, Kevin A; Taggart, John B
2014-10-09
Atlantic salmon have been subject to domestication for approximately ten generations, beginning in the early 1970s. This process of artificial selection will have created various genetic differences between wild and farmed stocks. Each year, hundreds of thousands of farmed fish escape into the wild. These escapees may interbreed with wild conspecifics raising concerns for both the fish-farming industry and fisheries managers. Thus, a better understanding of the interactions between domesticated and wild salmon is essential to the continued sustainability of the aquaculture industry and to the maintenance of healthy wild stocks. We compared the transcriptomes of a wild Norwegian Atlantic salmon population (Figgjo) and a Norwegian farmed strain (Mowi) at two life stages: yolk sac fry and post first-feeding fry. The analysis employed 44 k oligo-microarrays to analyse gene expression of 36 farmed, wild and hybrid (farmed dam x wild sire) individuals reared under identical hatchery conditions. Although some of the transcriptional differences detected overlapped between sampling points, our results highlighted the importance of studying various life stages. Compared to the wild population, the Mowi strain displayed up-regulation in mRNA translation-related and down regulation in nervous and immune system -related pathways in the sac fry, whereas up-regulation of digestive and endocrine activities, carbohydrate, energy, amino acid and lipid metabolism and down-regulation of environmental information processing and immune system pathways were evident in the feeding fry. Differentially regulated pathways that were common among life stages generally belonged to environmental information processing and immune system functional groups. In addition, we found indications of strong maternal effects, reinforcing the importance of including reciprocal hybrids in the analysis. In agreement with previous studies we showed that domestication has caused changes in the transcriptome of wild Atlantic salmon and that many of the affected pathways are life-stage specific We highlighted the importance of reciprocal hybrids to the deconvolution of maternal/paternal effects and our data support the view that the genetic architecture of the strains studied highly influences the genes differentially expressed between wild and domesticated fish.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon (Oncorhynchus kisutch). 226.210... Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon (Oncorhynchus kisutch). 226.210... Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California Coasts Coho Salmon...
Sockeye salmon evolution, ecology, and management
Woody, Carol Ann
2007-01-01
This collection of articles and photographs gives managers a good idea of recent research into what the sockeye salmon is and does, covering such topics as the vulnerability and value of sockeye salmon ecotypes, their homing ability, using new technologies to monitor reproduction, DNA and a founder event in the Lake Clark sockeye salmon, marine-derived nutrients, the exploitation of large prey, dynamic lake spawning migrations by females, variability of sockeye salmon residence, expression profiling using cDNA microarray technology, learning from stable isotropic records of native otolith hatcheries, the amount of data needed to manage sockeye salmon and estimating salmon "escapement."
Mulcahy, D.; Pascho, R.J.; Jenes, C.K.
1983-01-01
Infectious haematopoietic mecrosis virus (IHNV) is enzootic in virtually all populations of sockeye salmon, Oncorhynchus nerka (Walbaum), and in populations of chinook salmon, O. tshawytscha (Walbaum), of the Sacramento River drainage in California. This disease is an obstacle in hatcheries using brood stocks from these populations. However, naturally spawning sockeye salmon are highly successful and are the most important commercially fished salmon species in the United States. Most of the commercial landings of sockeye salmon are of feral fish originating in Alaska. The success of natural populations of salmon in which IHNV is enzootic, and the recurrent outbreaks of the disease in hatchery fish, led us to compare IHNW prevalence rates in hatchery and feral salmon populations.
Relationship of farm salmon, sea lice, and wild salmon populations.
Marty, Gary D; Saksida, Sonja M; Quinn, Terrance J
2010-12-28
Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10-20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon--proposed through coordinated fallowing or closed containment--will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability.
Johnson, J. H.; Nash, K. J.; Chiavelli, R. A.; DiRado, J. A.; Mackey, G. E.; Knight, J. R.; Diaz, A. R.
2017-01-01
Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi-national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.
Using state-space models to predict the abundance of juvenile and adult sea lice on Atlantic salmon.
Elghafghuf, Adel; Vanderstichel, Raphael; St-Hilaire, Sophie; Stryhn, Henrik
2018-04-11
Sea lice are marine parasites affecting salmon farms, and are considered one of the most costly pests of the salmon aquaculture industry. Infestations of sea lice on farms significantly increase opportunities for the parasite to spread in the surrounding ecosystem, making control of this pest a challenging issue for salmon producers. The complexity of controlling sea lice on salmon farms requires frequent monitoring of the abundance of different sea lice stages over time. Industry-based data sets of counts of lice are amenable to multivariate time-series data analyses. In this study, two sets of multivariate autoregressive state-space models were applied to Chilean sea lice data from six Atlantic salmon production cycles on five isolated farms (at least 20 km seaway distance away from other known active farms), to evaluate the utility of these models for predicting sea lice abundance over time on farms. The models were constructed with different parameter configurations, and the analysis demonstrated large heterogeneity between production cycles for the autoregressive parameter, the effects of chemotherapeutant bath treatments, and the process-error variance. A model allowing for different parameters across production cycles had the best fit and the smallest overall prediction errors. However, pooling information across cycles for the drift and observation error parameters did not substantially affect model performance, thus reducing the number of necessary parameters in the model. Bath treatments had strong but variable effects for reducing sea lice burdens, and these effects were stronger for adult lice than juvenile lice. Our multivariate state-space models were able to handle different sea lice stages and provide predictions for sea lice abundance with reasonable accuracy up to five weeks out. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
An evolutionary view on tooth development and replacement in wild Atlantic salmon (Salmo salar L.).
Huysseune, A; Witten, P E
2008-01-01
To gain an insight into the evolution of tooth replacement mechanisms, we studied the development of first-generation and replacement teeth on the dentary of wild Atlantic salmon (Salmo salar L.), a protacanthopterygian teleost, using serially sectioned heads of early posthatching stages as well as adults. First-generation teeth develop within the oral epithelium. The anlage of the replacement tooth is first seen as a placode-like thickening of the outer dental epithelium of the predecessor, at its lingual and caudal side. Ongoing development of the replacement tooth germ is characterized by the elaboration of a population of epithelial cells, termed here the middle dental epithelium, apposed to the inner dental epithelium on the lingual side of the tooth germ. Before the formation of the new successor, a single-layered outer dental epithelium segregates from the middle dental epithelium. The dental organs of the predecessor and the successor remain broadly interconnected. The absence of a discrete successional dental lamina in salmon stands in sharp contrast to what is observed in other teleosts, even those that share with salmon the extraosseous formation of replacement teeth. The mode of tooth replacement in Atlantic salmon displays several characters similar to those observed in the shark Squalus acanthias. To interpret similarities in tooth replacement between Atlantic salmon and chondrichthyans as a case of convergence, or to see them as a result of a heterochronic shift, requires knowledge on the replacement process in more basal actinopterygian lineages. The possibility that the middle dental epithelium functionally substitutes for a successional lamina, and could be a source of stem cells, whose descendants subsequently contribute to the placode of the new replacement tooth, needs to be explored.
Overney, Anaïs; Jacques-André-Coquin, Joséphine; Ng, Patricia; Carpentier, Brigitte; Guillier, Laurent; Firmesse, Olivier
2017-03-06
The ability of Listeria monocytogenes to adhere to and persist on surfaces for months or even years may be responsible for its transmission from contaminated surfaces to food products. Hence the necessity to find effective means to prevent the establishment of L. monocytogenes in food processing environments. The aim of this study was to assess, through a fractional experimental design, the environmental factors that could affect the survival of L. monocytogenes cells on surfaces to thereby prevent the persistence of this pathogen in conditions mimicking those encountered in food processing plants: culture with smoked salmon juice or meat exudate, use of two materials with different hygiene status, biofilm of L. monocytogenes in pure-culture or dual-culture with a Pseudomonas fluorescens strain, application of a drying step after cleaning and disinfection (C&D) and comparison of two strains of L. monocytogenes. Bacterial survival was assessed by culture, qPCR to quantify total cells, and propidium monoazide coupled with qPCR to quantify viable cells and highlight viable but non-culturable (VBNC) cells. Our results showed that failure to apply C&D causes cell persistence on surfaces. Moreover, the sanitation procedure leads only to a loss of culturability and appearance of VBNC populations. However, an additional daily drying step after C&D optimises the effectiveness of these procedures to reduce culturable populations. Our results reinforce the importance to use molecular tools to monitor viable pathogens in food processing plants to avoid underestimating the amounts of cells using only methods based on cell culture. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucera, Paul A.
2009-06-26
Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population.more » The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical camera identified salmon passage observations were identical to DIDSON target counts. However, optical cameras identified eight jack salmon (3 upstream, 5 downstream) less than 55 cm in length that DIDSON did not count as salmon because of the length criteria employed ({ge} 55 cm). Precision of the DIDSON technology was evaluated by comparing estimated net upstream salmon escapement and associated 95% confidence intervals between two DIDSON sonar units operated over a five day period. The DIDSON 1 salmon escapement was 145.7 fish ({+-} 2.3), and the DIDSON 2 escapement estimate was 150.5 fish ({+-} 5). The overlap in the 95% confidence intervals suggested that the two escapement estimates were not significantly different from each other. Known length salmon carcass trials were conducted in 2008 to examine the accuracy of manually measured lengths, obtained using DIDSON software, on high frequency files at a 5 m window length. Linear regression demonstrated a highly significant relationship between known lengths and manually measured salmon carcass lengths (p < 0.0001). A positive bias in manual length measurement of 6.8% to 8% existed among the two observers in the analysis. Total Secesh River salmon escapement (natural origin and hatchery) in 2008 was 912 fish. Natural origin salmon escapement in the entire Secesh River drainage was 847 fish. The estimated natural origin spawner abundance was 836 fish. Salmon spawner abundance in 2008 increased by three fold compared to 2007 abundance levels. The 10 year geometric mean natural origin spawner abundance was 538 salmon and was below the recommended viable population threshold level established by the ICTRT (2007). One additional Snake River basin salmon population was assessed for comparison of natural origin salmon spawner abundance. The Johnson Creek/EFSF Salmon River population had a 10 year geometric mean natural origin spawner abundance of 254 salmon. Salmon spawner abundance levels in both streams were below viable population thresholds. DIDSON technology has been used in the Secesh River to determine salmon escapement over the past five years. The results suggest that DIDSON technology is reliable and can be used to generate accurate and precise estimates of salmon escapement if appropriate methods are used.« less
Braden, Laura M; Sutherland, Ben J G; Koop, Ben F; Jones, Simon R M
2017-01-30
Outcomes of infections with the salmon louse Lepeophtheirus salmonis vary considerably among its natural hosts (Salmo, Oncorhynchus spp.). Host-parasite interactions range from weak to strong host responses accompanied by high to low parasite abundances, respectively. Parasite behavioral studies indicate that the louse prefers the host Atlantic Salmon (Salmo salar), which is characterized by a weak immune response, and that this results in enhanced parasite reproduction and growth rates. Furthermore, parasite-derived immunosuppressive molecules (e.g., proteases) have been detected at higher amounts in response to the mucus of Atlantic Salmon relative to Coho Salmon (Oncorhynchus kisutch). However, the host-specific responses of the salmon louse have not been well characterized in either of the genetically distinct sub-species that occur in the Atlantic and Pacific Oceans. We assessed and compared the transcriptomic feeding response of the Pacific salmon louse (L. salmonis oncorhynchi,) while parasitizing the highly susceptible Atlantic Salmon and Sockeye Salmon (Oncorhynchus nerka) or the more resistant Coho Salmon (Oncorhynchus kisutch) using a 38 K oligonucleotide microarray. The response of the louse was enhanced both in the number of overexpressed genes and in the magnitude of expression while feeding on the non-native Atlantic Salmon, compared to either Coho or Sockeye Salmon. For example, putative virulence factors (e.g., cathepsin L, trypsin, carboxypeptidase B), metabolic enzymes (e.g., cytochrome B, cytochrome C), protein synthesis enzymes (e.g., ribosomal protein P2, 60S ribosomal protein L7), and reproduction-related genes (e.g., estrogen sulfotransferase) were overexpressed in Atlantic-fed lice, indicating heightened parasite fitness with this host species. In contrast, responses in Coho- or Sockeye-fed lice were more similar to those of parasites deprived of a host. To test for host acclimation by the parasite, we performed a reciprocal host transfer experiment and determined that the exaggerated response to Atlantic Salmon was independent of the initial host species, confirming our conclusion that the Pacific salmon louse exhibits an enhanced response to Atlantic Salmon. This study characterized global transcriptomic responses of Pacific salmon lice during infection of susceptible and resistant hosts. Similar parasite responses during infection of Coho or Sockeye Salmon, despite differences in natural immunity to infection between these host species, indicate that host susceptibility status alone does not drive the parasite response. We identified an enhanced louse response after feeding on Atlantic Salmon, characterized by up-regulation of virulence factors, energy metabolism and reproductive-associated transcripts. In contrast, the responses of lice infecting Coho or Sockeye Salmon were weaker, with reduced expression of virulence factors. These observations indicate that the response of the louse is independent of host susceptibility and suggest that co-evolutionary host-parasite relationships may influence contemporary host-parasite interactions. This research improves our understanding of the susceptibility of Atlantic Salmon and may assist in the development of novel control measures against the salmon louse.
Differential use of salmon by vertebrate consumers: implications for conservation
Wheat, Rachel E.; Allen, Jennifer M.; Wilmers, Christopher C.
2015-01-01
Salmon and other anadromous fish are consumed by vertebrates with distinct life history strategies to capitalize on this ephemeral pulse of resource availability. Depending on the timing of salmon arrival, this resource may be in surplus to the needs of vertebrate consumers if, for instance, their populations are limited by food availability during other times of year. However, the life history of some consumers enables more efficient exploitation of these ephemeral resources. Bears can deposit fat and then hibernate to avoid winter food scarcity, and highly mobile consumers such as eagles, gulls, and other birds can migrate to access asynchronous pulses of salmon availability. We used camera traps on pink, chum, and sockeye salmon spawning grounds with various run times and stream morphologies, and on individual salmon carcasses, to discern potentially different use patterns among consumers. Wildlife use of salmon was highly heterogeneous. Ravens were the only avian consumer that fed heavily on pink salmon in small streams. Eagles and gulls did not feed on early pink salmon runs in streams, and only moderately at early sockeye runs, but were the dominant consumers at late chum salmon runs, particularly on expansive river flats. Brown bears used all salmon resources far more than other terrestrial vertebrates. Notably, black bears were not observed on salmon spawning grounds despite being the most frequently observed vertebrate on roads and trails. From a conservation and management perspective, all salmon species and stream morphologies are used extensively by bears, but salmon spawning late in the year are disproportionately important to eagles and other highly mobile species that are seasonally limited by winter food availability. PMID:26339539
Gottesfeld, A S; Proctor, B; Rolston, L D; Carr-Harris, C
2009-01-01
We examine sea lice, Lepeophtheirus salmonis, on juvenile and adult salmon from the north coast of British Columbia between 2004 and 2006 in an area that does not at present contain salmon farms. There is a pronounced zonation in the abundance of L. salmonis on juvenile pink salmon, Oncorhynchus gorbuscha, in the Skeena and Nass estuaries. Abundances in the proximal and distal zones of these estuaries are 0.01 and 0.05 respectively. The outer zones serve as feeding and staging areas for the pink salmon smolts. Returning Chinook, Oncorhynchus tshawytscha, and coho salmon, Oncorhynchus kisutch, concentrate in these areas. We collected data in 2006 to examine whether L. salmonis on returning adult salmon are an important source of the sea lice that appear on juvenile pink salmon. Nearly all (99%) of the sea lice on returning Chinook and over 80% on coho salmon were L. salmonis. Most of the L. salmonis were motile stages including many ovigerous females. There was a sharp increase in the abundance of sea lice on juvenile pink salmon smolts between May and July 2006 near the sites of adult captures. As there are no salmon farms on the north coast, few sticklebacks, Gasterosteus aculeatus, and very few resident salmonids until later in the summer, it seems that the most important reservoir of L. salmonis under natural conditions is returning adult salmon. This natural source of sea lice results in levels of abundance that are one or two orders of magnitude lower than those observed on juvenile pink salmon in areas with salmon farms such as the Broughton Archipelago.
Gerig, Brandon S; Chaloner, Dominic T; Janetski, David J; Rediske, Richard R; O'Keefe, James P; Moerke, Ashley H; Lamberti, Gary A
2016-01-19
In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.
Solberg, Monica Favnebøe; Skaala, Øystein; Nilsen, Frank; Glover, Kevin Alan
2013-01-01
One of the most important traits linked with the successful domestication of animals is reducing their sensitivity to environmental stressors in the human controlled environment. In order to examine whether domestication selection in Atlantic salmon Salmo salar L., over approximately ten generations, has inadvertently selected for reduced responsiveness to stress, we compared the growth reaction norms of 29 wild, hybrid and domesticated families reared together under standard hatchery conditions (control) and in the presence of a stressor (reduced water level twice daily). The experiment was conducted for a 14 week period. Farmed salmon outgrew wild salmon 1∶2.93 in the control tanks, and no overlap in mean weight was displayed between families representing the three groups. Thus, the elevation of the reaction norms differed among the groups. Overall, growth was approximately 25% lower in the stressed tanksl; however, farmed salmon outgrew wild salmon 1∶3.42 under these conditions. That farmed salmon maintained a relatively higher growth rate than the wild salmon in the stressed tanks demonstrates a lower responsiveness to stress in the farmed salmon. Thus, flatter reaction norm slopes were displayed in the farmed salmon, demonstrating reduced plasticity for this trait under these specific experimental conditions. For all growth measurements, hybrid salmon displayed intermediate values. Wild salmon displayed higher heritability estimates for body weight than the hybrid and farmed salmon in both environments. This suggests reduced genetic variation for body weight in the farmed contra wild salmon studied here. While these results may be linked to the specific families and stocks investigated, and verification in other stocks and traits is needed, these data are consistent with the theoretical predictions of domestication. PMID:23382901
Plasmacytoid leukemia of chinook salmon.
Kent, M L; Eaton, W D; Casey, J W
1997-04-01
Plasmacytoid leukemia is a common disease of seawater pen-reared chinook salmon (Oncorhynchus tshawytscha) in British Columbia, Canada, but has also been detected in wild salmon, in freshwater-reared salmon in United States, and in salmon from netpens in Chile. The disease can be transmitted under laboratory conditions, and is associated with a retrovirus, the salmon leukemia virus. However, the proliferating plasmablasts are often infected with the microsporean Enterocytozoon salmonis, which may be an important co-factor in the disease.
St Hilaire, S; Ribble, C; Traxler, G; Davies, T; Kent, M L
2001-10-08
In British Columbia, Canada, infectious hematopoietic necrosis virus (IHNV) is prevalent in wild sockeye salmon Oncorhynchus nerka and has caused disease in seawater net-pen reared Atlantic salmon Salmo salar. In this study, chinook salmon Oncorhynchus tshawytscha experimentally exposed to an isolate of IHNV found in British Columbia became carriers of the virus. When Atlantic salmon were cohabited with these virus-exposed chinook salmon, IHNV was isolated from the Atlantic salmon. Identification of chinook salmon populations that have been exposed to IHNV may be difficult, as virus isolation was successful only in fish that were concurrently infected with either Renibacterium salmoninarum or Piscirickettisia salmonis. Also, IHNV-specific antibodies were detected in only 2 of the 70 fish experimentally exposed to the virus. Two samples collected from chinook salmon exposed to IHNV while at a salt water net-pen site had a seroprevalence of 19 and 22%; however, the inconsistencies between our laboratory and field data suggest that further research is required before we can rely on serological analysis for identifying potential carrier populations. Because of the difficulty in determining the exposure status of populations of chinook salmon, especially if there is no concurrent disease, it may be prudent not to cohabit Atlantic salmon with chinook salmon on a farm if there is any possibility that the latter have been exposed to the virus.
Page, G I; Davies, S J
2006-01-01
A comparative investigation of tissue carotenoid distribution between rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, was undertaken to identify the relative efficiency of utilization of astaxanthin and canthaxanthin. Higher apparent digestibility coefficients (ADCs) (96% in trout vs. 28-31% in salmon; P<0.05), and pigment retention efficiencies (11.5-12.5% in trout vs. 5.5% in salmon; P<0.05), for both astaxanthin and canthaxanthin, were observed for rainbow trout. Astaxanthin deposition was higher than canthaxanthin in rainbow trout, while the reverse was true for Atlantic salmon, suggesting species-specificity in carotenoid utilization. The white muscle (95% in trout vs. 93% in salmon) and kidneys (0.5% in trout vs. 0.2% in salmon) represented higher proportions of the total body carotenoid pool in rainbow trout than in Atlantic salmon (P<0.05), whereas the liver was a more important storage organ in Atlantic salmon (2-6% in salmon vs. 0.2% in trout; P<0.05). The liver and kidney appeared to be important sites of carotenoid catabolism based on the relative proportion of the peak chromatogram of the fed carotenoid in both species, with the pyloric caecae and hind gut being more important in Atlantic salmon than in the rainbow trout. Liver catabolism is suspected to be a critical determinant in carotenoid clearance, with higher catabolism expected in Atlantic salmon than in rainbow trout.
Test Excavation and Evaluation of 45-FR-317, on the Middle Columbia River, Near Pasco, Washington.
1984-01-01
present in the area, the most important of which, for humans, were chinook salmon ( Oncorhynchus tshawtscha), coho salmon (0. kisutch), and steelhead...trout (Salmo gairderi); sockeye salmon (0. nerka ), chum salmon (0. keta), and pink salmon (0. gorbuscha) were more limited and of lesser importance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... Atlantic Salmon From Norway: Revocation of Antidumping and Countervailing Duty Orders AGENCY: Import...'') and countervailing duty (``CVD'') orders on fresh and chilled Atlantic salmon (``salmon'') from Norway... orders on salmon from Norway, pursuant to sections 751(c) and 752 of the Tariff Act of 1930, as amended...
... page: https://medlineplus.gov/recipe/poachedsalmon.html Poached Salmon To use the sharing features on this page, ... olive oil Ground black pepper, to taste For salmon: 4 salmon steaks, 5 oz each 3 cups ...
Early human use of anadromous salmon in North America at 11,500 y ago.
Halffman, Carrin M; Potter, Ben A; McKinney, Holly J; Finney, Bruce P; Rodrigues, Antonia T; Yang, Dongya Y; Kemp, Brian M
2015-10-06
Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America.
Early human use of anadromous salmon in North America at 11,500 y ago
Halffman, Carrin M.; Potter, Ben A.; McKinney, Holly J.; Finney, Bruce P.; Rodrigues, Antonia T.; Yang, Dongya Y.; Kemp, Brian M.
2015-01-01
Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America. PMID:26392548
Are inland wolf-ungulate systems influenced by marine subsidies of Pacific salmon?
Adams, Layne G.; Farley, Sean D.; Stricker, Craig A.; Demma, Dominic J.; Roffler, Gretchen H.; Miller, Dennis C.; Rye, Robert O.
2010-01-01
Wolves (Canis lupus) in North America are considered obligate predators of ungulates with other food resources playing little role in wolf population dynamics or wolf–prey relations. However, spawning Pacific salmon (Oncorhyncus spp.) are common throughout wolf range in northwestern North America and may provide a marine subsidy affecting inland wolf–ungulate food webs far from the coast. We conducted stable‐isotope analyses for nitrogen and carbon to evaluate the contribution of salmon to diets of wolves in Denali National Park and Preserve, 1200 river‐km from tidewater in interior Alaska, USA. We analyzed bone collagen from 73 wolves equipped with radio collars during 1986–2002 and evaluated estimates of salmon in their diets relative to the availability of salmon and ungulates within their home ranges. We compared wolf densities and ungulate : wolf ratios among regions with differing salmon and ungulate availability to assess subsidizing effects of salmon on these wolf–ungulate systems. Wolves in the northwestern flats of the study area had access to spawning salmon but low ungulate availability and consumed more salmon (17% ± 7% [mean ± SD]) than in upland regions, where ungulates were sixfold more abundant and wolves did or did not have salmon spawning areas within their home ranges (8% ± 6% and 3% ± 3%, respectively). Wolves were only 17% less abundant on the northwestern flats compared to the remainder of the study area, even though ungulate densities were 78% lower. We estimated that biomass from fall runs of chum (O. keta) and coho (O. kisutch) salmon on the northwestern flats was comparable to the ungulate biomass there, and the contribution of salmon to wolf diets was similar to estimates reported for coastal wolves in southeast Alaska. Given the ubiquitous consumption of salmon by wolves on the northwestern flats and the abundance of salmon there, we conclude that wolf numbers in this region were enhanced by the allochthonous subsidy provided by salmon and discuss implications for wolf–ungulate relations.
Price, Michael H H; Proboszcz, Stan L; Routledge, Rick D; Gottesfeld, Allen S; Orr, Craig; Reynolds, John D
2011-02-09
Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.
A Modeled Comparison of Direct and Food Web-Mediated Impacts of Common Pesticides on Pacific Salmon
Macneale, Kate H.; Spromberg, Julann A.; Baldwin, David H.; Scholz, Nathaniel L.
2014-01-01
In the western United States, pesticides used in agricultural and urban areas are often detected in streams and rivers that support threatened and endangered Pacific salmon. Although concentrations are rarely high enough to cause direct salmon mortality, they can reach levels sufficient to impair juvenile feeding behavior and limit macroinvertebrate prey abundance. This raises the possibility of direct adverse effects on juvenile salmon health in tandem with indirect effects on salmon growth as a consequence of reduced prey abundance. We modeled the growth of ocean-type Chinook salmon (Oncorhynchus tshawytscha) at the individual and population scales, investigating insecticides that differ in how long they impair salmon feeding behavior and in how toxic they are to salmon compared to macroinvertebrates. The relative importance of these direct vs. indirect effects depends both on how quickly salmon can recover and on the relative toxicity of an insecticide to salmon and their prey. Model simulations indicate that when exposed to a long-acting organophosphate insecticide that is highly toxic to salmon and invertebrates (e.g., chlorpyrifos), the long-lasting effect on salmon feeding behavior drives the reduction in salmon population growth with reductions in prey abundance having little additional impact. When exposed to short-acting carbamate insecticides at concentrations that salmon recover from quickly but are lethal to invertebrates (e.g., carbaryl), the impacts on salmon populations are due primarily to reductions in their prey. For pesticides like carbaryl, prey sensitivity and how quickly the prey community can recover are particularly important in determining the magnitude of impact on their predators. In considering both indirect and direct effects, we develop a better understanding of potential impacts of a chemical stressor on an endangered species and identify data gaps (e.g., prey recovery rates) that contribute uncertainty to these assessments. PMID:24686837
Price, Michael H. H.; Proboszcz, Stan L.; Routledge, Rick D.; Gottesfeld, Allen S.; Orr, Craig; Reynolds, John D.
2011-01-01
Background Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). Methodology/Principal Findings We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. Conclusions/Significance This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern. PMID:21347456
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berejikian, Barry A.
This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia river basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: Adult and jack Chinook salmon males were stocked into four replicate spawning channels at a constant density (N = 16 per breeding group), but different ratios, and were left to spawn naturallymore » with a fixed number of females (N = 6 per breeding group). Adult males obtained primary access to females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Spawning participation by jack and adult males is consistent with a negative frequency dependent selection model, which means that selection during spawning favors the rarer life history form. Results of DNA parentage assignments will be analyzed to estimate adult-to-fry fitness of each male. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. The results suggest that sockeye salmon are capable of imprinting to homing cues during the developmental periods that correspond to several of current release strategies employed as part of the Captive Broodstock program (specifically, planting eyed eggs, fall and smolt releases into the lake) appear to be appropriate for successful homing of sockeye in Redfish Lake. Also, our findings indicated that sockeye salmon were capable of olfactory imprinting at multiple life stages and over varying exposure durations. Fish exposed to odors just prior to smolting showed the strongest attraction to the imprinting odor arginine and this period corresponds to the period of highest plasma thyroxine levels and increased BAAR receptor mRNA in juveniles. Objective 3: Spring Chinook salmon were exposed to three different photoperiods and three feed rations at the button-up stage of development. Both photoperiod at emergence and ration post-ponding affected the number of males maturing at age one. Nearly 70% of the males in the early emergence and satiation fed group matured after the first year of rearing, while none of the fish reared on late emergence photoperiod (equivalent to emergence on May 1) matured during this time irrespective of ration treatment. Within the early emergence groups, reducing growth using ration (low or high) appeared to reduce the number of males maturing at age one from 70% to 40-50%. Maturation rates of fish that emerged in a photoperiod equivalent to mid-February (middle emergence) ranged from 10-25%. Together these data indicate that the seasonal timing of fry emergence and growth after ponding can alter life history patterns in spring Chinook salmon. The results imply that hatchery rearing practices that alter seasonal timing of fry emergence can have drastic effects on life history patterns in juvenile Chinook salmon. All three objectives are on-going and will result in recommendations (at the end of the FY 2009 performance period) to advance hatchery reforms in conventional and captive broodstock programs.« less
Fan, HuiYin; Dumont, Marie-Josée; Simpson, Benjamin K
2017-11-01
Gelatin from salmon ( Salmo salar ) skin with high molecular weight protein chains ( α -chains) was extracted using trypsin-aided process. Response surface methodology was used to optimise the extraction parameters. Yield, hydroxyproline content and protein electrophoretic profile via sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of gelatin were used as responses in the optimization study. The optimum conditions were determined as: trypsin concentration at 1.49 U/g; extraction temperature at 45 °C; and extraction time at 6 h 16 min. This response surface optimized model was significant and produced an experimental value (202.04 ± 8.64%) in good agreement with the predicted value (204.19%). Twofold higher yields of gelatin with high molecular weight protein chains were achieved in the optimized process with trypsin treatment when compared to the process without trypsin.
Seasonal persistence of marine-derived nutrients in south-central Alaskan salmon streams
Rinella, Daniel J.; Wipfi, Mark S.; Walker, Coowe M.; Stricker, Craig A.; Heintz, Ron A.
2013-01-01
Spawning salmon deliver annual pulses of marine-derived nutrients (MDN) to riverine ecosystems around the Pacific Rim, leading to increased growth and condition in aquatic and riparian biota. The influence of pulsed resources may last for extended periods of time when recipient food webs have effective storage mechanisms, yet few studies have tracked the seasonal persistence of MDN. With this as our goal, we sampled stream water chemistry and selected stream and riparian biota spring through fall at 18 stations (in six watersheds) that vary widely in spawner abundance and at nine stations (in three watersheds) where salmon runs were blocked by waterfalls. We then developed regression models that related dissolved nutrient concentrations and biochemical measures of MDN assimilation to localized spawner density across these 27 stations. Stream water ammonium-N and orthophosphate-P concentrations increased with spawner density during the summer salmon runs, but responses did not persist into the following fall. The effect of spawner density on δ15N in generalist macroinvertebrates and three independent MDN metrics (δ15N, δ34S, and ω3:ω6 fatty acids) in juvenile Dolly Varden (Salvelinus malma) was positive and similar during each season, indicating that MDN levels in biota increased with spawner abundance and were maintained for at least nine months after inputs. Delta 15N in a riparian plant, horsetail (Equisetum fluviatile), and scraper macroinvertebrates did not vary with spawner density in any season, suggesting a lack of MDN assimilation by these lower trophic levels. Our results demonstrate the ready assimilation of MDN by generalist consumers and the persistence of this pulsed subsidy in these organisms through the winter and into the next growing season.
Bou, Marta; Berge, Gerd M; Baeverfjord, Grete; Sigholt, Trygve; Østbye, Tone-Kari; Romarheim, Odd Helge; Hatlen, Bjarne; Leeuwis, Robin; Venegas, Claudia; Ruyter, Bente
2017-01-01
Farmed salmon feeds have changed from purely marine-based diets with high levels of EPA and DHA in the 1990s to the current 70 % plant-based diets with low levels of these fatty acids (FA). The aim of this study was to establish the impacts of low dietary EPA and DHA levels on performance and tissue integrity of Atlantic salmon (Salmo salar). Atlantic salmon (50 g) in seawater were fed fourteen experimental diets, containing five levels (0, 0·5, 1·0, 1·5 and 2·0 %) of EPA, DHA or a 1:1 EPA+DHA plus control close to a commercial diet, to a final weight of 400 g. Lack of EPA and DHA did not influence mortality, but the n-3-deficient group exhibited moderately slower growth than those fed levels above 0·5 %. The heart and brain conserved EPA and DHA levels better than skeletal muscle, liver, skin and intestine. Decreased EPA and DHA favoured deposition of pro-inflammatory 20 : 4n-6 and 20 : 3n-6 FA in membrane phospholipids in all tissues. When DHA was excluded from diets, 18 : 3n-3 and EPA were to a large extent converted to DHA. Liver, skeletal and cardiac muscle morphology was normal in all groups, with the exception of cytoplasm packed with large or foamy vacuoles and sometimes swollen enterocytes of intestine in both deficient and EPA groups. DHA supplementation supported normal intestinal structure, and 2·0 % EPA+DHA alleviated deficiency symptoms. Thus, EPA and DHA dietary requirements cannot be based exclusively on growth; tissue integrity and fish health also need to be considered.
Warner, D.M.; Kiley, C.S.; Claramunt, R.M.; Clapp, D.F.
2008-01-01
We used growth and diet data from a fishery-independent survey of Chinook salmon Oncorhynchus tshawytscha, acoustic estimates of prey density and biomass, and statistical catch-at-age modeling to study the influence of the year-class strength of alewife Alosa pseudoharengus on the prey selection and abundance of age-1 Chinook salmon in Lake Michigan during the years 1992-1996 and 2001-2005. Alewives age 2 or younger were a large part of age-1 Chinook salmon diets but were not selectively fed upon by age-1 Chinook salmon in most years. Feeding by age-1 Chinook salmon on alewives age 2 or younger became selective as the biomass of alewives in that young age bracket increased, and age-1 Chinook salmon also fed selectively on young bloaters Coregonus hoyi when bloater density was high. Selection of older alewives decreased at high densities of alewives age 2 or younger and, in some cases, high densities of bloater. The weight and condition of age-1 Chinook salmon were not related to age-1 Chinook salmon abundance or prey abundance, but the abundance of age-1 Chinook salmon in year t was positively related to the density of age-0 alewives in year t - 1. Our results suggest that alewife year-class strength exerts a positive bottom-up influence on age-1 Chinook salmon abundance, prey switching behavior by young Chinook salmon contributing to the stability of the predator-prey relationship between Chinook salmon and alewives. ?? Copyright by the American Fisheries Society 2008.
Hydrodebromination of decabromodiphenyl ether (BDE-209) in cooking experiments with salmon fillet.
Bendig, Paul; Blumenstein, Marina; Hägele, Florian; Vetter, Walter
2012-08-29
Polybrominated diphenyl ethers (PBDEs) are environmental contaminants regularly detected in biota and food. Seafood has been identified as the major dietary source for human uptake. Fish is predominantly consumed after cooking, and this process may alter the actual human intake of contaminants. This study thus aimed to investigate the fate of PBDEs in this cooking process. Heating of fish fortified with 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) at typical cooking conditions (200 °C, in plant oil) resulted in a decrease of its concentration in favor of the formation of lower brominated congeners. After 15 min, ∼25% of BDE-209 was transformed into nona- to octabrominated congeners. The major transformation route was BDE-209 → BDE-206 → BDE-196 and BDE-199. Low amounts of heptabrominated congeners as well as one hexabromodibenzofuran and a heptabromodibenzofuran isomer were also detected. However, penta- and tetrabrominated diphenyl ethers were not observed, and heating of BDE-47 did not produce new transformation products.
Bernaś, Rafał; Poćwierz-Kotus, Anita; Dębowski, Piotr; Wenne, Roman
2016-04-01
The genetic relationship between original Atlantic salmon populations that are now extinct in the southern Baltic Sea and the present-day populations has long been controversial. To investigate and clarify this issue, we successfully genotyped individuals of the historical populations from the Oder and Vistula Rivers using DNA extracted from dried scales with the Atlantic salmon single nucleotide polymorphism array. Our results showed a global F ST of 0.2515 for all pairs of loci, which indicates a high level of genetic differentiation among the groups analyzed in this study. Pairwise F ST values were significant for all comparisons and the highest values were found between present-day reintroduced Slupia River salmon and extinct Vistula River Atlantic salmon. Bayesian analysis of genetic structure revealed the existence of substructures in the extirpated Polish populations and three main clades among studied stocks. The historical salmon population from the Oder River was genetically closer to present-day salmon from the Neman River than to the historical salmon from the Vistula River. Vistula salmon clearly separated from all other analyzed salmon stocks. It is likely that the origins of the Atlantic salmon population from the Morrum River and the Polish historical native populations are different.
Ruggerone, G.T.; Nielsen, J.L.
2004-01-01
Relatively little is known about fish species interactions in offshore areas of the world's oceans because adequate experimental controls are typically unavailable in such vast areas. However, pink salmon (Oncorhynchus gorbuscha) are numerous and have an alternating-year pattern of abundance that provides a natural experimental control to test for interspecific competition in the North Pacific Ocean and Bering Sea. Since a number of studies have recently examined pink salmon interactions with other salmon, we reviewed them in an effort to describe patterns of interaction over broad regions of the ocean. Research consistently indicated that pink salmon significantly altered prey abundance of other salmon species (e.g., zooplankton, squid), leading to altered diet, reduced total prey consumption and growth, delayed maturation, and reduced survival, depending on species and locale. Reduced survival was observed in chum salmon (O. keta) and Chinook salmon (O. tshawytscha) originating from Puget Sound and in Bristol Bay sockeye salmon (O. nerka). Growth of pink salmon was not measurably affected by other salmon species, but their growth was sometimes inversely related to their own abundance. In all marine studies, pink salmon affected other species through exploitation of prey resources rather than interference. Interspecific competition was observed in nearshore and offshore waters of the North Pacific Ocean and Bering Sea, and one study documented competition between species originating from different continents. Climate change had variable effects on competition. In the North Pacific Ocean, competition was observed before and after the ocean regime shift in 1977 that significantly altered abundances of many marine species, whereas a study in the Pacific Northwest reported a shift from predation- to competition-based mortality in response to the 1982/1983 El Nino. Key traits of pink salmon that influenced competition with other salmonids included great abundance, high consumption rates and rapid growth, degree of diet overlap or consumption of lower trophic level prey, and early migration timing into the ocean. The consistent pattern of findings from multiple regions of the ocean provides evidence that interspecific competition can significantly influence salmon population dynamics and that pink salmon may be the dominant competitor among salmon in marine waters. ?? Springer 2005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundebye, Anne-Katrine, E-mail: aha@nifes.no
Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan,more » pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200 g portion per week contributing 3.2 g or 2.8 g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250 mg/day or 1.75 g/week). - Highlights: • A comprehensive study of contaminants and nutrients in farmed- and wild Atlantic salmon. • Wild salmon had higher levels of persistent organic pollutants and mercury than farmed salmon. • Farmed salmon had higher levels of omega-6 fatty acids than wild salmon. • Farmed- and wild salmon had comparable levels of EPA, whereas farmed salmon had lower levels of DHA.« less
USDA-ARS?s Scientific Manuscript database
The salmon louse and infectious salmon anemia virus (ISAv) are the two most significant pathogens of concern to the Atlantic salmon (Salmo salar) aquaculture industry. However, the interactions between sea lice and ISAv, as well as the impact of a prior sea lice infection on the susceptibility of th...
Response of ecosystem metabolism to low densities of spawning Chinook Salmon
Joseph R. Benjamin; J. Ryan Bellmore; Grace A. Watson
2016-01-01
Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to <10% of their historical abundance, with subsequent declines of marine derived nutrients once provided by large salmon runs. We explored whether low densities...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
.... 101206604-1620-01] RIN 0648-BA55 Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery Management Plan AGENCY: National Marine Fisheries Service (NMFS), National... implement Amendment 16 to the Pacific Coast Salmon Fishery Management Plan for Commercial and Recreational...
In the shadow: The emerging role of long non-coding RNAs in the immune response of Atlantic salmon.
Tarifeño-Saldivia, E; Valenzuela-Miranda, D; Gallardo-Escárate, C
2017-08-01
The genomic era has increased the research effort to uncover how the genome of an organism, and specifically the transcriptome, is modulated after interplaying with pathogenic microorganisms and ectoparasites. However, the ever-increasing accessibility of sequencing technology has also evidenced regulatory roles of long non-coding RNAs (lncRNAs) related to several biological processes including immune response. This study reports a high-confidence annotation and a comparative transcriptome analysis of lncRNAs from several tissues of Salmo salar infected with the most prevalent pathogens in the Chilean salmon aquaculture such as the infectious salmon anemia (ISA) virus, the intracellular bacterium Piscirickettsia salmonis and the ectoparasite copepod Caligus rogercresseyi. Our analyses showed that lncRNAs are widely modulated during infection. However, this modulation is pathogen-specific and highly correlated with immuno-related genes associated with innate immune response. These findings represent the first discovery for the widespread differential expression of lncRNAs in response to infections with different types of pathogens in Atlantic salmon, suggesting that lncRNAs are pivotal player during the fish immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Columbia River System Operation Review
1995-11-01
This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.
Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey
Madenjian, Charles P.; Elliott, Robert F.; Schmidt, Larry J.; DeSorcie, Timothy J.; Hesselberg, Robert J.; Quintal, Richard T.; Begnoche, Linda J.; Bouchard, Patrick M.; Holey, Mark E.
1998-01-01
Most of the polychlorinated biphenyl (PCB) body burden accumulated by coho salmon (Oncorhynchus kisutch) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both coho salmon and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan coho salmon retain PCBs from their food. Our estimate was the most reliable estimate to date because (a) the coho salmon and prey fish sampled during our study were sampled in spring, summer, and fall from various locations throughout the lake, (b) detailed measurements were made on the PCB concentrations of both coho salmon and prey fish over wide ranges in fish size, and (c) coho salmon diet was analyzed in detail from April through November over a wide range of salmon size from numerous locations throughout the lake. We estimated that coho salmon from Lake Michigan retain 50% of the PCBs that are contained within their food.
Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger
2000-01-01
Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.
Relationship of farm salmon, sea lice, and wild salmon populations
Marty, Gary D.; Saksida, Sonja M.; Quinn, Terrance J.
2010-01-01
Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10–20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon—proposed through coordinated fallowing or closed containment—will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability. PMID:21149706
Response of ecosystem metabolism to low densities of spawning Chinook salmon
Benjamin, Joseph R.; Bellmore, J. Ryan; Watson, Grace A.
2016-01-01
Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to <10% of their historical abundance, with subsequent declines of marine derived nutrients once provided by large salmon runs. We explored whether low densities (<0.001 spawners/m2) of naturally spawning Chinook Salmon (Oncorhynchus tshawytscha) can affect ecosystem metabolism. We measured gross primary production (GPP) and ecosystem respiration (ER) continuously before, during, and after salmon spawning. We compared downstream reaches with low densities of spawning salmon to upstream reaches with fewer or no spawners in 3 mid-sized (4th-order) rivers in northern Washington. In addition, we measured chemical, physical, and biological factors that may be important in controlling rates of GPP and ER. We observed that low densities of spawning salmon can increase GPP by 46% during spawning, but values quickly return to those observed before spawning. No difference in ER was observed between up- and downstream reaches. Based on our results, salmon density, temperature, and the proximity to salmon redds were the most important factors controlling rates of GPP, whereas temperature was most important for ER. These results suggest that even at low spawning densities, salmon can stimulate basal resources that may propagate up the food web. Understanding how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.
Crystallization and X-ray analysis of the salmon-egg lectin SEL24K.
Murata, Kenji; Fisher, Andrew J; Hedrick, Jerry L
2007-05-01
The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) is released from the egg during the cortical reaction. The lectin functions in blocking polyspermy during the fertilization process. The egg lectin was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant. The crystal diffracted synchrotron-radiation X-rays to 1.63 A resolution. The crystal belongs to the monoclinic space group P2(1), with unit-cell parameters a = 93.0, b = 73.6, c = 113.6 A, alpha = 90, beta = 92.82, gamma = 90 degrees. The crystal is likely to contain eight molecules in the asymmetric unit (V(M) = 2.3 A3 Da(-1)), corresponding to a solvent content of 45.5%. A self-rotation function suggests an arrangement with 222 point symmetry within the asymmetric unit.
Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F
2008-12-09
Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure.
Lohmann, Kenneth J.; Putman, Nathan F.; Lohmann, Catherine M. F.
2008-01-01
Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure. PMID:19060188
Cooke, Steven J; Hinch, Scott G; Donaldson, Michael R; Clark, Timothy D; Eliason, Erika J; Crossin, Glenn T; Raby, Graham D; Jeffries, Ken M; Lapointe, Mike; Miller, Kristi; Patterson, David A; Farrell, Anthony P
2012-06-19
Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.
Cooke, Steven J.; Hinch, Scott G.; Donaldson, Michael R.; Clark, Timothy D.; Eliason, Erika J.; Crossin, Glenn T.; Raby, Graham D.; Jeffries, Ken M.; Lapointe, Mike; Miller, Kristi; Patterson, David A.; Farrell, Anthony P.
2012-01-01
Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon. PMID:22566681
Concentrations of trace elements in Pacific and Atlantic salmon
NASA Astrophysics Data System (ADS)
Khristoforova, N. K.; Tsygankov, V. Yu.; Boyarova, M. D.; Lukyanova, O. N.
2015-09-01
Concentrations of Hg, As, Cd, Pb, Zn, and Cu were analyzed in the two most abundant species of Pacific salmon, chum and pink salmon, caught in the Kuril Islands at the end of July, 2013. The concentrations of toxic elements (Hg, As, Pb, Cd) in males and females of these species are below the maximum permissible concentrations for seafood. It was found that farmed filleted Atlantic salmon are dominated by Zn and Cu, while muscles of wild salmon are dominated by Pb. Observed differences are obviously related to peculiar environmental geochemical conditions: anthropogenic impact for Atlantic salmon grown in coastal waters and the influence of the natural factors volcanism and upwelling for wild salmon from the Kuril waters.
Chronic oral DDT toxicity in juvenile coho and chinook salmon
Buhler, Donald R.; Rasmusson, Mary E.; Shanks, W.E.
1969-01-01
Technical and p,p′-DDT was incorporated into test diets and fed to juvenile chinook and coho salmon for periods as long as 95 days. Pure p,p′-DDT was slightly more toxic to young salmon than was the technical DDT mixture. Chinook salmon appeared to be 2–3 times more sensitive to a given concentration of DDT in the diet than were coho salmon. The size of the fish greatly influenced toxicity, smaller younger fish being more susceptible to a given diet than larger older fish. The dose of DDT accumulated within the median survival time ranged from 27–73 mg/kg for chinook salmon and from 56–72 mg/kg for coho salmon. The extrapolated 90-dose LD50 (Hayes, 1967) for young chinook and coho salmon were 0.0275 and 0.064 mg/kg/day, respectively. Liver size decreased on prolonged feeding with DDT, and carcass lipid content was increased. A severe surface ulceration of the nose region appeared in coho salmon fed DDT over long periods. In addition, an interesting localized degeneration of the distal convoluted tubule was observed in the kidney of coho salmon receiving DDT.
Relative resistance of Pacific salmon to infectious salmon anaemia virus
Rolland, J.B.; Winton, J.R.
2003-01-01
Infectious salmon anaemia (ISA) is a major disease of Atlantic salmon, Salmo salar, caused by an orthomyxovirus (ISAV). Increases in global aqua culture and the international movement of fish made it important to determine if Pacific salmon are at risk. Steelhead trout, Oncorhynchus mykiss, and chum, O. keta, Chinook, O. tshawytscha, coho, O. kisutch, and Atlantic salmon were injected intraperitoneally with a high, medium, or low dose of a Norwegian strain of ISAV. In a second challenge, the same species, except chum salmon, were injected with a high dose of either a Canadian or the Norwegian strain. Average cumulative mortality of Atlantic salmon in trial 1 was 12% in the high dose group, 20% in the medium dose group and 16% in the low dose group. The average cumulative mortality of Atlantic salmon in trial 2 was 98%. No signs typical of ISA and no ISAV-related mortality occurred among any of the groups of Oncorhynchus spp. in either experiment, although ISAV was reisolated from some fish sampled at intervals post-challenge. The results indicate that while Oncorhynchus spp. are quite resistant to ISAV relative to Atlantic salmon, the potential for ISAV to adapt to Oncorhynchus spp. should not be ignored.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 408.193 Section 408.193 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED SEAFOOD PROCESSING POINT SOURCE CATEGORY West Coast Mechanized Salmon Processing...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 408.163 Section 408.163 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED SEAFOOD PROCESSING POINT SOURCE CATEGORY Alaskan Hand-Butchered Salmon Processing...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 408.173 Section 408.173 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED SEAFOOD PROCESSING POINT SOURCE CATEGORY Alaskan Mechanized Salmon Processing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true [Reserved] 408.193 Section 408.193 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED SEAFOOD PROCESSING POINT SOURCE CATEGORY West Coast Mechanized Salmon Processing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true [Reserved] 408.163 Section 408.163 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED SEAFOOD PROCESSING POINT SOURCE CATEGORY Alaskan Hand-Butchered Salmon Processing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true [Reserved] 408.173 Section 408.173 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED SEAFOOD PROCESSING POINT SOURCE CATEGORY Alaskan Mechanized Salmon Processing...
Fish farms, parasites, and predators: implications for salmon population dynamics.
Krkosek, Martin; Connors, Brendan M; Ford, Helen; Peacock, Stephanie; Mages, Paul; Ford, Jennifer S; Morton, Alexandra; Volpe, John P; Hilborn, Ray; Dill, Lawrence M; Lewis, Mark A
2011-04-01
For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an important component of salmon-louse dynamics and has implications for estimating mortality, reducing infection, and developing conservation policy.
Bryan, Heather M; Darimont, Chris T; Paquet, Paul C; Wynne-Edwards, Katherine E; Smits, Judit E G
2014-01-01
Food availability can influence the nutritional and social dynamics within and among species. Our investigation focused on grizzly and black bears in coastal British Columbia, Canada, where recent and dramatic declines in their primary prey (salmon) raise concerns about potentially negative effects on bear physiology. We examined how salmon availability relates to stress and reproductive hormones in coastal grizzly (n = 69) and black bears (n = 68) using cortisol and testosterone. In hair samples from genotyped individuals, we quantified salmon consumption using stable isotope analysis and hormone levels by enzyme immunoassay. To estimate the salmon biomass available to each bear, we developed a spatially explicit approach based on typical bear home-range sizes. Next, we compared the relative importance of salmon consumption and salmon availability on hormone levels in male bears using an information theoretical approach. Cortisol in grizzly bears was higher in individuals that consumed less salmon, possibly reflecting nutritional stress. In black bears, cortisol was better predicted by salmon availability than salmon consumption; specifically, individuals in areas and years with low salmon availability showed higher cortisol levels. This indicates that cortisol in black bears is more strongly influenced by the socially competitive environment mediated by salmon availability than by nutritional requirements. In both species, testosterone generally decreased with increasing salmon availability, possibly reflecting a less competitive environment when salmon were abundant. Differences between species could relate to different nutritional requirements, social densities and competitive behaviour and/or habitat use. We present a conceptual model to inform further investigations in this and other systems. Our approach, which combines data on multiple hormones with dietary and spatial information corresponding to the year of hair growth, provides a promising tool for evaluating the responses of a broad spectrum of wildlife to changes in food availability or other environmental conditions.
Bryan, Heather M.; Darimont, Chris T.; Paquet, Paul C.; Wynne-Edwards, Katherine E.; Smits, Judit E. G.
2014-01-01
Food availability can influence the nutritional and social dynamics within and among species. Our investigation focused on grizzly and black bears in coastal British Columbia, Canada, where recent and dramatic declines in their primary prey (salmon) raise concerns about potentially negative effects on bear physiology. We examined how salmon availability relates to stress and reproductive hormones in coastal grizzly (n = 69) and black bears (n = 68) using cortisol and testosterone. In hair samples from genotyped individuals, we quantified salmon consumption using stable isotope analysis and hormone levels by enzyme immunoassay. To estimate the salmon biomass available to each bear, we developed a spatially explicit approach based on typical bear home-range sizes. Next, we compared the relative importance of salmon consumption and salmon availability on hormone levels in male bears using an information theoretical approach. Cortisol in grizzly bears was higher in individuals that consumed less salmon, possibly reflecting nutritional stress. In black bears, cortisol was better predicted by salmon availability than salmon consumption; specifically, individuals in areas and years with low salmon availability showed higher cortisol levels. This indicates that cortisol in black bears is more strongly influenced by the socially competitive environment mediated by salmon availability than by nutritional requirements. In both species, testosterone generally decreased with increasing salmon availability, possibly reflecting a less competitive environment when salmon were abundant. Differences between species could relate to different nutritional requirements, social densities and competitive behaviour and/or habitat use. We present a conceptual model to inform further investigations in this and other systems. Our approach, which combines data on multiple hormones with dietary and spatial information corresponding to the year of hair growth, provides a promising tool for evaluating the responses of a broad spectrum of wildlife to changes in food availability or other environmental conditions. PMID:27293631
Rinella, Daniel J.; Wipfli, Mark S.; Stricker, Craig A.; Heintz, Ron A.; Rinella, Matthew J.
2012-01-01
We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.
Moroney, Natasha C; Wan, Alex H L; Soler-Vila, Anna; FitzGerald, Richard D; Johnson, Mark P; Kerry, Joe P
2015-03-30
The use of Palmaria palmata (PP) as a natural ingredient in farmed Atlantic salmon diets was investigated. The effect of salmon diet supplementation with P. palmata (0, 5, 10 and 15%) or synthetic astaxanthin (positive control, PC) for 16 weeks pre-slaughter on quality indices of fresh salmon fillets was examined. The susceptibility of salmon fillets/homogenates to oxidative stress conditions was also measured. In salmon fillets stored in modified atmosphere packs (60% N2 /40% CO2 ) for up to 15 days at 4 °C, P. palmata increased surface -a* (greenness) and b* (yellowness) values in a dose-dependent manner, resulting in a final yellow/orange flesh colour. In general, the dietary addition of P. palmata had no effect on pH, lipid oxidation (fresh, cooked and fillet homogenates) and microbiological status. 'Eating quality' sensory descriptors (texture, odour and oxidation flavour) in cooked salmon fillets were not influenced by dietary P. palmata. Salmon fed 5% PP showed increased overall acceptability compared with those fed PC and 0% PP. Dietary P. palmata was ineffective at providing red coloration in salmon fillets, but pigment deposition enhanced fillets with a yellow/orange colour. Carotenoids from P. palmata may prove to be a natural pigment alternative to canthaxanthin in salmon feeds. © 2014 Society of Chemical Industry.
Gatica, M C; Monti, G E; Knowles, T G; Gallo, C B
2010-01-09
Two systems for transporting live salmon (Salmo salar) were compared in terms of their effects on blood variables, muscle pH and rigor index: an 'open system' well-boat with recirculated sea water at 13.5 degrees C and a stocking density of 107 kg/m3 during an eight-hour journey, and a 'closed system' well-boat with water chilled from 16.7 to 2.1 degrees C and a stocking density of 243.7 kg/m3 during a seven-hour journey. Groups of 10 fish were sampled at each of four stages: in cages at the farm, in the well-boat after loading, in the well-boat after the journey and before unloading, and in the processing plant after they were pumped from the resting cages. At each sampling, the fish were stunned and bled by gill cutting. Blood samples were taken to measure lactate, osmolality, chloride, sodium, cortisol and glucose, and their muscle pH and rigor index were measured at death and three hours later. In the open system well-boat, the initial muscle pH of the fish decreased at each successive stage, and at the final stage they had a significantly lower initial muscle pH and more rapid onset of rigor than the fish transported on the closed system well-boat. At the final stage all the blood variables except glucose were significantly affected in the fish transported on both types of well-boat.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Sockeye (red) salmon, Oncorhynchus nerka Steelhead (rainbow trout), Oncorhynchus mykiss Total length of... anadromous species of the family Salmonidae and genus Oncorhynchus, commonly known as Pacific salmon, including, but not limited to: Chinook (king) salmon, Oncorhynchus tshawytscha Coho (silver) salmon...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Sockeye (red) salmon, Oncorhynchus nerka Steelhead (rainbow trout), Oncorhynchus mykiss Total length of... anadromous species of the family Salmonidae and genus Oncorhynchus, commonly known as Pacific salmon, including, but not limited to: Chinook (king) salmon, Oncorhynchus tshawytscha Coho (silver) salmon...
Johnson, James H.
2013-01-01
The habitat use, diet composition, and feeding periodicity of subyearling Atlantic salmon (Salmo salar) was examined during both day and night periods during summer in tributaries of Lake Ontario. The amount of cover used was the major habitat variable that differed between day and night periods in both streams. At night subyearling Atlantic salmon were associated with significantly less cover than during the day. Principal Component Analysis showed that habitat selection of subyearling Atlantic salmon was more pronounced during the day in both streams and that salmon in Orwell Brook exhibited more diel variability in habitat use than salmon in Trout Brook. Subyearling salmon fed primarily from the benthic substrate on baetids, chironomids, and leptocerids. There was a substantial amount of diel variation in diet composition with peak feeding occurring from 0400 h to 0800 h on July 21–22, 2008.
Gregory-Eaves, Irene; Demers, J Marc J; Kimpe, Lynda; Krümmel, Eva M; Macdonald, Robie W; Finney, Bruce P; Blais, Jules M
2007-06-01
Many have demonstrated that anadromous Pacific salmon are significant vectors of nutrients from the ocean to freshwaters. Recently. however, it has been recognized that salmon spawners also input significant quantities of contaminants. The objectives of this paper are to delineate the extent to which salmon-derived nutrients are integrated into the freshwater food web using delta(15)N and delta(13)C and to assess the influence of the salmon pathway in the accumulation of contaminants in rainbow trout (Oncorhynchus mykiss). We found that the delta(15)N and delta(13)C of food web components were related positively and significantly to sockeye salmon (Oncorhynchus nerka) spawner density. Contaminant concentrations in rainbow trout also positively and significantly were related to sockeye salmon spawner density. These data suggest that the anadromous salmon nutrient and contaminant pathways are related and significantly impact the contaminant burden of resident fish.
Salmon as drivers of physical and biological disturbance in river channels
NASA Astrophysics Data System (ADS)
Albers, S. J.; Petticrew, E. L.
2012-04-01
Large migrations across landscapes and ecosystem boundaries combined with disturbances of riverine spawning habitats through nest construction indicate the huge potential that Pacific salmon (Onchorhynchus sp.) have to disturb and alter regional energy flow. Nutrients derived from ocean-reared dead and decaying salmon are released into surrounding aquatic ecosystems fertilizing the water column, recently disturbed by increased suspended sediments due to nest construction. These opposing forces of disturbance and fertilization on spawning habitat have been demonstrated to impact local geomorphic and ecological cycles within salmon streams. An often cited, yet not fully tested, hypothesis is that this pulse of nutrients provided by decaying salmon can shift freshwater habitats to higher production levels. This hypothesis, however, remains contested and uncertain. Fine sediments are increasingly being recognized as important delivery and storage vectors for marine-derived nutrients (MDNs) in spawning streams. The temporal and spatial significance of these sediment vectors on gravelbed storage of MDN have not been quantified thereby restricting our ability to estimate the impact of gravelbed storage of MDNs on the riverine habitats. The objectives of this study were to i) quantify the magnitude of sediment deposition and retention in an active spawning area and ii) determine the contribution of MDN associated with the fine sediment storage. The Horsefly River spawning channel (HFC), an artificial salmon stock enhancement stream, was used to examine the biogeomorphic impacts of salmon spawning. We organized the HFC in an upstream-downstream paired treatment approach where the upstream enclosure was kept free of salmon and the downstream enclosure was loaded with actively spawning salmon. We used the difference in suspended sediment concentration between the salmon enclosure and the control enclosure to determine the contribution of salmon nest construction to suspended sediment concentration. To monitor sediment infiltration into the gravelbed we used modified infiltration bag samplers. Lastly, to examine the contribution of salmon nutrients to the infiltrated sediment we sampled for the presence of a marine isotope signature (15N) in the sediment. Increased sediment in the water column of the salmon enclosure during the active spawn period indicated salmon-mediated sediment resuspension. A gravelbed response to this water column disturbance was detected via increased sediment infiltration during salmon spawning. This stored sediment was enriched in organic matter and 15N indicating a marine salmon signal. Significant relationships between sediment infiltration and salmon enrichment provided further evidence that salmon organic matter, using resuspended sediment as a vector, was infiltrating into the gravelbed. During the post-spawn period organic sediment was elevated in the water column and gravelbed infiltration was reduced reflecting respectively, the release of decay products from salmon carcasses and MDN release from temporary gravelbed storage. This study demonstrated that localized patterns of sediment deposition are regulated by salmon activity, which control gravelbed MDN storage and release. Salmon-mediated, sediment vector influences on riverine habitat have been quantified here on a small experimental scale, but we expect that the effect is replicated and magnified, as it occurs regionally throughout the spawning grounds, with significant ecosystem implications.
50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)
Code of Federal Regulations, 2013 CFR
2013-10-01
... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...
50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)
Code of Federal Regulations, 2011 CFR
2011-10-01
... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...
50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)
Code of Federal Regulations, 2012 CFR
2012-10-01
... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...
50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)
Code of Federal Regulations, 2014 CFR
2014-10-01
... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...
Allen, M. Brady; Connolly, Patrick J.
2011-01-01
Information about the composition and relative abundance of fish species was collected by a rotary screw trap and backpack electrofishing in the lower White Salmon River, Washington. The information was collected downstream of Condit Dam, which is at river kilometer (rkm) 5.2, and is proposed for removal in October 2011. A rotary screw trap was installed in the White Salmon River at rkm 1.5 and operated from March through June during 2006–09. All captured fish were identified to species and enumerated. Daily subsets of fish were weighed, measured, and fin clipped for a genetic analysis by the U.S. Fish and Wildlife Service.Fall Chinook salmon (Oncorhynchus tshawytscha) were captured in the highest numbers (n=18, 640), and were composed of two stocks: tule and upriver bright. Almost all captured fall Chinook salmon were age-0, with only 16 (0.09 percent) being age-1 or older.Tule fall Chinook salmon, the native stock, generally out-migrated from mid-March through early April. The tule stock was the more abundant fall Chinook salmon subspecies, comprising 85 percent of those captured in the trap.Upriver bright fall Chinook salmon comprised 15 percent of the Chinook salmon catch and generally out-migrated from late May to early June.Coho salmon ( kisutch) and steelhead trout (O. mykiss) were captured by the rotary screw trap in all years. Coho salmon were caught in low numbers (n=661) and 69 percent were age-0 fish. Steelhead were slightly more abundant (n=679) than coho salmon and 84 percent were age-1 or older fish.Trap efficiency estimates varied widely (range, 0-10 percent) by species, fish size, and time of year. However, if we use only the estimates from efficiency tests where more than 300 wild age-0 Chinook salmon were released, there was a mean trapping efficiency of 1.4 percent (n=4, median, 1.3 percent, range, 0.3–2.4 percent) during the tule out-migration period, and a mean trapping efficiency of 0.8 percent (n=2, range, 0.3–1.2 percent) during the upriver bright fall Chinook salmon out-migration period.When water levels in the White Salmon River declined in late summer, we electrofished the river margins in 2006–09 along three sites at rkm 1.5, 2.3, and 4.2. Age-0 steelhead were the most abundant fish captured (n=565, 62 percent), followed by age-0 coho salmon (n=222, 24 percent). In autumn, age-0 Chinook salmon were collected while electrofishing (n=40, 4 percent). This suggests that there may be a migration in the autumn as age-0 Chinook salmon or in the spring as age-1 Chinook salmon, since the Chinook salmon that migrate as age-0 fish in the spring departed several months earlier (the typical life history for fall Chinook salmon). The only age-1 salmonids captured while electrofishing were steelhead (n=84, 9 percent). Fish distribution and abundance will likely change when Condit Dam is removed and anadromous fish gain access to their historical spawning and rearing areas in the White Salmon River. These findings should provide a baseline with which to compare juvenile fish species composition and relative abundance after Condit Dam is removed.
Nácher-Mestre, Jaime; Ibáñez, María; Serrano, Roque; Boix, Clara; Bijlsma, Lubertus; Lunestad, Bjørn Tore; Hannisdal, Rita; Alm, Martin; Hernández, Félix; Berntssen, Marc H G
2016-07-01
There is an on-going trend for developing more sustainable salmon feed in which traditionally applied marine feed ingredients are replaced with alternatives. Processed animal products (PAPs) have been re-authorized as novel high quality protein ingredients in 2013. These PAPs may harbor undesirable substances such as pharmaceuticals and metabolites which are not previously associated with salmon farming, but might cause a potential risk for feed and food safety. To control these contaminants, an analytical strategy based on a generic extraction followed by ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS) using quadrupole time-of-flight mass analyzer (QTOF MS) was applied for wide scope screening. Quality control samples, consisting of PAP commodities spiked at 0.02, 0.1 and 0.2 mg/kg with 150 analytes, were injected in every sample batch to verify the overall method performance. The methodology was applied to 19 commercially available PAP samples from six different types of matrices from the EU animal rendering industry. This strategy allows assessing possible emergent risk exposition of the salmon farming industry to 1005 undesirables, including pharmaceuticals, several dyes and relevant metabolites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transcriptional profiling of the parr–smolt transformation in Atlantic salmon
Robertson, Laura S.; McCormick, Stephen D.
2012-01-01
The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. We used GRASP 16K cDNA microarrays to identify genes that are differentially expressed in the liver, gill, hypothalamus, pituitary, and olfactory rosettes of smolts compared to parr. Smolts had higher levels of gill Na+/K+-ATPase activity, plasma cortisol and plasma thyroid hormones relative to parr. Across all five tissues, stringent microarray analyses identified 48 features that were differentially expressed in smolts compared to parr. Using a less stringent method we found 477 features that were differentially expressed at least 1.2-fold in smolts, including 172 features in the gill. Smolts had higher mRNA levels of genes involved in transcription, protein biosynthesis and folding, electron transport, oxygen transport, and sensory perception and lower mRNA levels for genes involved in proteolysis. Quantitative RT-PCR was used to confirm differential expression in select genes identified by microarray analyses and to quantify expression of other genes known to be involved in smolting. This study expands our understanding of the molecular processes that underlie smolting in Atlantic salmon and identifies genes for further investigation.
On-site Direct Detection of Astaxanthin from Salmon Fillet Using Raman Spectroscopy.
Hikima, Jun-Ichi; Ando, Masahiro; Hamaguchi, Hiro-O; Sakai, Masahiro; Maita, Masashi; Yazawa, Kazunaga; Takeyama, Haruko; Aoki, Takashi
2017-04-01
A new technology employing Raman spectroscopy is attracting attention as a powerful biochemical technique for the detection of beneficial and functional food nutrients, such as carotenoids and unsaturated fatty acids. This technique allows for the dynamic characterization of food nutrient substances for the rapid determination of food quality. In this study, we attempt to detect and measure astaxanthin from salmon fillets using this technology. The Raman spectra showed specific bands corresponding to the astaxanthin present in salmon and the value of astaxanthin (Raman band, 1518 cm -1 ) relative to those of protein/lipid (Raman band, 1446 cm -1 ) in the spectra increased in a dose-dependent manner. A standard curve was constructed by the standard addition method using astaxanthin as the reference standard for its quantification by Raman spectroscopy. The calculation formula was established using the Raman bands typically observed for astaxanthin (i.e., 1518 cm -1 ). In addition, we examined salmon fillets of different species (Atlantic salmon, coho salmon, and sockeye salmon) and five fillets obtained from the locations (from the head to tail) of an entire Atlantic salmon. Moreover, the sockeye salmon fillet exhibited the highest astaxanthin concentration (14.2 mg/kg), while coho salmon exhibited an intermediate concentration of 7.0 mg/kg. The Raman-based astaxanthin concentration in the five locations of Atlantic salmon was more strongly detected from the fillet closer to the tail. From the results, a rapid, convenient Raman spectroscopic method was developed for the detection of astaxanthin in salmon fillets.
Gutierrez, Alejandro P; Yáñez, José M; Fukui, Steve; Swift, Bruce; Davidson, William S
2015-01-01
Early sexual maturation is considered a serious drawback for Atlantic salmon aquaculture as it retards growth, increases production times and affects flesh quality. Although both growth and sexual maturation are thought to be complex processes controlled by several genetic and environmental factors, selection for these traits has been continuously accomplished since the beginning of Atlantic salmon selective breeding programs. In this genome-wide association study (GWAS) we used a 6.5K single-nucleotide polymorphism (SNP) array to genotype ∼ 480 individuals from the Cermaq Canada broodstock program and search for SNPs associated with growth and age at sexual maturation. Using a mixed model approach we identified markers showing a significant association with growth, grilsing (early sexual maturation) and late sexual maturation. The most significant associations were found for grilsing, with markers located in Ssa10, Ssa02, Ssa13, Ssa25 and Ssa12, and for late maturation with markers located in Ssa28, Ssa01 and Ssa21. A lower level of association was detected with growth on Ssa13. Candidate genes, which were linked to these genetic markers, were identified and some of them show a direct relationship with developmental processes, especially for those in association with sexual maturation. However, the relatively low power to detect genetic markers associated with growth (days to 5 kg) in this GWAS indicates the need to use a higher density SNP array in order to overcome the low levels of linkage disequilibrium observed in Atlantic salmon before the information can be incorporated into a selective breeding program.
Krkosek, Martin; Gottesfeld, Allen; Proctor, Bart; Rolston, Dave; Carr-Harris, Charmaine; Lewis, Mark A
2007-12-22
Animal migrations can affect disease dynamics. One consequence of migration common to marine fish and invertebrates is migratory allopatry-a period of spatial separation between adult and juvenile hosts, which is caused by host migration and which prevents parasite transmission from adult to juvenile hosts. We studied this characteristic for sea lice (Lepeophtheirus salmonis and Caligus clemensi) and pink salmon (Oncorhynchus gorbuscha) from one of the Canada's largest salmon stocks. Migratory allopatry protects juvenile salmon from L. salmonis for two to three months of early marine life (2-3% prevalence). In contrast, host diversity facilitates access for C. clemensi to juvenile salmon (8-20% prevalence) but infections appear ephemeral. Aquaculture can augment host abundance and diversity and increase parasite exposure of wild juvenile fish. An empirically parametrized model shows high sensitivity of salmon populations to increased L. salmonis exposure, predicting population collapse at one to five motile L. salmonis per juvenile pink salmon. These results characterize parasite threats of salmon aquaculture to wild salmon populations and show how host migration and diversity are important factors affecting parasite transmission in the oceans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 408.183 Section 408.183 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED SEAFOOD PROCESSING POINT SOURCE CATEGORY West Coast Hand-Butchered Salmon Processing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true [Reserved] 408.183 Section 408.183 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED SEAFOOD PROCESSING POINT SOURCE CATEGORY West Coast Hand-Butchered Salmon Processing...
Hansen, Cisse Hedegaard; Vogel, Birte Fonnesbech; Gram, Lone
2006-09-01
Listeria monocytogenes contamination of ready-to-eat food products such as cold-smoked fish is often caused by pathogen subtypes persisting in food-processing environments. The purpose of the present study was to determine whether these L. monocytogenes subtypes can be found in the outside environment, i.e., outside food processing plants, and whether they survive better in the aquatic environment than do other strains. A total of 400 samples were collected from the outside environment, fish slaughterhouses, fish farms, and a smokehouse. L. monocytogenes was not detected in a freshwater stream, but prevalence increased with the degree of human activity: 2% in seawater fish farms, 10% in freshwater fish farms, 16% in fish slaughterhouses, and 68% in a fish smokehouse. The fish farms and slaughterhouses processed Danish rainbow trout, whereas the smokehouse was used for farm-raised Norwegian salmon. No variation with season was observed. Inside the processing plants, the pattern of randomly amplified polymorphic DNA (RAPD) types was homogeneous, but greater diversity existed among isolates from the outside environments. The RAPD type dominating the inside of the fish smokehouse was found only sporadically in outside environments. To examine survival in different environments, L. monocytogenes or Listeria innocua strains were inoculated into freshwater and saltwater microcosms. Pathogen counts decreased over time in Instant Ocean and remained constant in phosphate-buffered saline. In contrast, counts decreased rapidly in natural seawater and fresh water. The count reduction was much slower when the natural waters were autoclaved or filtered (0.2-microm pore size), indicating that the pathogen reduction in natural waters was attributable to a biological mechanism, e.g., protozoan grazing. A low prevalence of L. monocytogenes was found in the outside environment, and the bacteria did not survive well in natural environments. Therefore, L. monocytogenes in the outer environment associated with Danish fish processing is probably of minor importance to the environment inside a fish production plant.
Salmon Supplementation Studies in Idaho Rivers, 1999-2000 Progress Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohler, Andy; Taki, Doug; Teton, Angelo
2001-11-01
As part of the Idaho Supplementation Studies, fisheries crews from the Shoshone-Bannock Tribes have been snorkeling tributaries of the Salmon River to estimate chinook salmon (Oncorhynchus tshawytscha) parr abundance; conducting surveys of spawning adult chinook salmon to determine the number of redds constructed and collect carcass information; operating a rotary screw trap on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag emigrating juvenile chinook salmon; and collecting and PIT-tagging juvenile chinook salmon on tributaries of the Salmon River. The Tribes work in the following six tributaries of the Salmon River: Bear Valleymore » Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork Salmon River. Snorkeling was used to obtain parr population estimates for ISS streams from 1992 to 1997. However, using the relatively vigorous methods described in the ISS experimental design to estimate summer chinook parr populations, results on a project-wide basis showed extraordinarily large confidence intervals and coefficients of variation. ISS cooperators modified their sampling design over a few years to reduce the variation around parr population estimates without success. Consequently, in 1998 snorkeling to obtain parr population estimates was discontinued and only General Parr Monitoring (GPM) sites are snorkeled. The number of redds observed in SBT-ISS streams has continued to decline as determined by five year cycles. Relatively weak strongholds continue to occur in the South Fork Salmon River and Bear Valley Creek. A rotary screw trap was operated on the West Fork Yankee Fork during the spring and fall of 1999 and the spring of 2000 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997 and 1999 (fall only) to 2000. Significant supplementation treatments have occurred in the South Fork Salmon River (IDFG). The East Fork Salmon River received supplementation treatments yearly through 1995. There have been no treatments since 1995, and no significant future treatments from local broodstock are conceivable due to extremely poor escapement. The West Fork Yankee Fork received a single presmolt treatment in 1994. Similarly, no significant future treatments are planned for the WFYF due to extremely poor escapement. However, small scale experimental captive rearing and broodstock techniques are currently being tested with populations from the EFSR and WFYF. Captive rearing/broodstock techniques could potentially provide feedback for evaluation of supplementation. The other three SBT-ISS streams are control streams and do not receive hatchery treatments.« less
Berntssen, M H G; Olsvik, P A; Torstensen, B E; Julshamn, K; Midtun, T; Goksøyr, A; Johansen, J; Sigholt, T; Joerum, N; Jakobsen, J-V; Lundebye, A-K; Lock, E-J
2010-09-01
Oily fish are an important source of health promoting nutrients such as the very long chain marine omega-3 (VLC-n3) fatty acids and simultaneously a source of potentially hazardous contaminants. Fish oils that are used in fish feed are the main source for both contaminants and VLC-n3. Decontamination techniques have recently been developed to effectively remove persistent organic contaminants from fish oils. The aim of the present study was to assess the level of potentially hazardous contaminants and the health beneficial fatty acids in Atlantic salmon reared on novel decontaminated feeds. Atlantic salmon were fed for 18 months (an entire seawater production cycle) on diets based on decontaminated or non-treated (control) fish oils until market size (approximately 5 kg). The level of known notorious persistent organic pollutants (POPs, i.e. dioxins, dioxin-like polychlorinated biphenyls (DL-PCBs), non dioxin-like PCBs, poly brominated diphenyl ethers (PBDE), and organochlorine pesticides), as well as fatty acid composition were analysed in fish oils, the two diets, and Atlantic salmon fillet. The oil decontamination process was a two-step procedure using active carbon and short path distillation. The fillet levels of POPs in market size fish were reduced by 68-85% while the concentration of very long chain omega-3 fatty acids was reduced by 4-7%. No differences in biomarkers of dioxin-like component exposures, such as hepatic gene expression of CYP1A or AhR2B, CYP1A protein expression and 7-ethoxyresorufin O-deethylase (EROD) activity, were observed between salmon raised on normal or decontaminated feeds, thus indicating that the difference in POPs levels were of no biological significance to the fish. Atlantic salmon reared on decontaminated feeds had sum polychlorinated dibenzodioxins/furans (PCDD/Fs) and DL-PCB concentrations that were comparable with terrestrial food products such as beef, while the level of marine omega-3 fatty acids remained as high as for commercially farmed Atlantic salmon. (c) 2010 Elsevier Ltd. All rights reserved.
SALMON 2100 PROJECT: LIKELY SCENARIOS FOR WILD SALMON
The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...
Skilbrei, Ove Tommy; Espedal, Per Gunnar; Nilsen, Frank; Garcia, Enrique Perez; Glover, Kevin A
2015-04-08
Experimental releases of Atlantic salmon smolts treated with emamectin benzoate (EB) against salmon lice have previously been used to estimate the significance of salmon lice on the survival of migrating smolts. In recent years, the salmon louse has developed reduced sensitivity to EB, which may influence the results of such release experiments. We therefore tested the use of 2 anti-lice drugs: EB was administered to salmon smolts in high doses by intra-peritoneal injection and the prophylactic substance EX (SubEX) was administered by bathing. A third, untreated control group was also established. Salmon were challenged with copepodids of 2 strains of salmon lice (1 EB-sensitive strain and 1 with reduced EB-sensitivity) in mixed-group experimental tanks. At 31 d post-challenge, the numbers of pre-adult lice on treated fish were around 20% compared with the control fish, with minor or no differences between the 2 treatments and lice strains. Both treatments therefore appeared to give the smolts a high degree of protection against infestation of copepodids of salmon lice. However, significantly lower growth of the EB-treatment group indicates that bathing the fish in SubEX is less stressful for smolts than intra-peritoneal injection of EB.
Sea lice and salmon population dynamics: effects of exposure time for migratory fish.
Krkosek, Martin; Morton, Alexandra; Volpe, John P; Lewis, Mark A
2009-08-07
The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2-3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon-louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon-louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.
Transmission dynamics of parasitic sea lice from farm to wild salmon.
Krkosek, Martin; Lewis, Mark A; Volpe, John P
2005-04-07
Marine salmon farming has been correlated with parasitic sea lice infestations and concurrent declines of wild salmonids. Here, we report a quantitative analysis of how a single salmon farm altered the natural transmission dynamics of sea lice to juvenile Pacific salmon. We studied infections of sea lice (Lepeophtheirus salmonis and Caligus clemensi) on juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) as they passed an isolated salmon farm during their seaward migration down two long and narrow corridors. Our calculations suggest the infection pressure imposed by the farm was four orders of magnitude greater than ambient levels, resulting in a maximum infection pressure near the farm that was 73 times greater than ambient levels and exceeded ambient levels for 30 km along the two wild salmon migration corridors. The farm-produced cohort of lice parasitizing the wild juvenile hosts reached reproductive maturity and produced a second generation of lice that re-infected the juvenile salmon. This raises the infection pressure from the farm by an additional order of magnitude, with a composite infection pressure that exceeds ambient levels for 75 km of the two migration routes. Amplified sea lice infestations due to salmon farms are a potential limiting factor to wild salmonid conservation.
Transmission dynamics of parasitic sea lice from farm to wild salmon
Krkošek, Martin; Lewis, Mark A; Volpe, John P
2005-01-01
Marine salmon farming has been correlated with parasitic sea lice infestations and concurrent declines of wild salmonids. Here, we report a quantitative analysis of how a single salmon farm altered the natural transmission dynamics of sea lice to juvenile Pacific salmon. We studied infections of sea lice (Lepeophtheirus salmonis and Caligus clemensi ) on juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) as they passed an isolated salmon farm during their seaward migration down two long and narrow corridors. Our calculations suggest the infection pressure imposed by the farm was four orders of magnitude greater than ambient levels, resulting in a maximum infection pressure near the farm that was 73 times greater than ambient levels and exceeded ambient levels for 30 km along the two wild salmon migration corridors. The farm-produced cohort of lice parasitizing the wild juvenile hosts reached reproductive maturity and produced a second generation of lice that re-infected the juvenile salmon. This raises the infection pressure from the farm by an additional order of magnitude, with a composite infection pressure that exceeds ambient levels for 75 km of the two migration routes. Amplified sea lice infestations due to salmon farms are a potential limiting factor to wild salmonid conservation. PMID:15870031
Predation by fallfish (Semotilus corporalis) on Pacific salmon eggs in the Salmon River, New York
Johnson, J. H.; Nack, C.C.; Chalupnicki, M.A.
2009-01-01
Fallfish (Semotilus corporalis) are the largest native cyprinid in the northeastern United States and are the most abundant native species in the Salmon River, New York. The Salmon River is a high-quality spawning and nursery river for Pacific salmon (Oncorhynchus spp.) migrating from Lake Ontario. Because of the large number of Pacific salmon spawning in the river in the fall extensive redd superimposition occurs resulting in salmonid eggs being available on the substrate. We examined the fall diet of 647 fallfish in 2007 and 2008 to determine the extent of predation on Pacific salmon eggs. The contribution of eggs in the diet significantly increased once fallfish attained a size of 100 mm total length. The largest size category of fallfish examined (≥150 mm) had the highest proportion (86.1%) of salmon eggs in their diet. The contribution of Zooplankton and chironomids in the diet of fallfish decreased with fish size. Except for the two largest groups of fallfish examined (i.e., 100–149 mm and ≥150 mm) diet overlap among size groups was low. The high contribution in the diet during the fall and high caloric value of Pacific salmon eggs could increase growth and survival of this species in the Salmon River.
Schoen, Erik R.; Wipfli, Mark S.; Trammell, Jamie; Rinella, Daniel J.; Floyd, Angelica L.; Grunblatt, Jess; McCarthy, Molly D.; Meyer, Benjamin E.; Morton, John M.; Powell, James E.; Prakash, Anupma; Reimer, Matthew N.; Stuefer, Svetlana L.; Toniolo, Horacio; Wells, Brett M.; Witmer, Frank D. W.
2017-01-01
Pacific salmon Oncorhynchus spp. face serious challenges from climate and landscape change, particularly in the southern portion of their native range. Conversely, climate warming appears to be allowing salmon to expand northwards into the Arctic. Between these geographic extremes, in the Gulf of Alaska region, salmon are at historically high abundances but face an uncertain future due to rapid environmental change. We examined changes in climate, hydrology, land cover, salmon populations, and fisheries over the past 30–70 years in this region. We focused on the Kenai River, which supports world-famous fisheries but where Chinook Salmon O. tshawytscha populations have declined, raising concerns about their future resilience. The region is warming and experiencing drier summers and wetter autumns. The landscape is also changing, with melting glaciers, wetland loss, wildfires, and human development. This environmental transformation will likely harm some salmon populations while benefiting others. Lowland salmon streams are especially vulnerable, but retreating glaciers may allow production gains in other streams. Some fishing communities harvest a diverse portfolio of fluctuating resources, whereas others have specialized over time, potentially limiting their resilience. Maintaining diverse habitats and salmon runs may allow ecosystems and fisheries to continue to thrive amidst these changes.
Nekouei, Omid; Vanderstichel, Raphael; Thakur, Krishna; Arriagada, Gabriel; Patanasatienkul, Thitiwan; Whittaker, Patrick; Milligan, Barry; Stewardson, Lance; Revie, Crawford W
2018-03-05
Growth in salmon aquaculture over the past two decades has raised concerns regarding the potential impacts of the industry on neighboring ecosystems and wild fish productivity. Despite limited evidence, sea lice have been identified as a major cause for the decline in some wild Pacific salmon populations on the west coast of Canada. We used sea lice count and management data from farmed and wild salmon, collected over 10 years (2007-2016) in the Muchalat Inlet region of Canada, to evaluate the association between sea lice recorded on salmon farms with the infestation levels on wild out-migrating Chum salmon. Our analyses indicated a significant positive association between the sea lice abundance on farms and the likelihood that wild fish would be infested. However, increased abundance of lice on farms was not significantly associated with the levels of infestation observed on the wild salmon. Our results suggest that Atlantic salmon farms may be an important source for the introduction of sea lice to wild Pacific salmon populations, but that the absence of a dose response relationship indicates that any estimate of farm impact requires more careful evaluation of causal inference than is typically seen in the extant scientific literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trudel, Marc; Tucker, Strahan; Morris, John
Historically, salmon stocks from the Columbia River and Snake River formed one of the most valuable fisheries on the west coast of North America. However, salmon and steelhead returns sharply declined during the 1980s and 1990s to reach nearly 1 million fish. Although several factors may be responsible for the decline of Columbia River salmon and steelhead, there is increasing evidence that these drastic declines were primarily attributable to persistently unfavorable ocean conditions. Hence, an understanding of the effects of ocean conditions on salmon production is required to forecast the return of salmon to the Columbia River basin and tomore » assess the efficacy of mitigation measures such as flow regulation on salmon resources in this system. The Canadian Program on High Seas Salmon has been collecting juvenile salmon and oceanographic data off the west coast of British Columbia and Southeast Alaska since 1998 to assess the effects of ocean conditions on the distribution, migration, growth, and survival of Pacific salmon. Here, we present a summary of the work conducted as part of the Canada-USA Salmon Shelf Survival Study during the 2008 fiscal year and compare these results with those obtained from previous years. The working hypothesis of this research is that fast growth enhances the marine survival of salmon, either because fast growing fish quickly reach a size that is sufficient to successfully avoid predators, or because they accumulate enough energy reserves to better survive their first winter at sea, a period generally considered critical in the life cycle of salmon. Sea surface temperature decreased from FY05 to FY08, whereas, the summer biomass of phytoplankton increased steadily off the west coast of Vancouver Island from FY05 to FY08. As in FY07, zooplankton biomass was generally above average off the west coast of Vancouver Island in FY08. Interestingly, phytoplankton and zooplankton biomass were higher in FY08 than was expected from the observed nutrient concentration that year. This suggests nutrients were more effectively by phytoplankton in FY08. In addition, the abundance of lipid-rich northern copepods increased from FY05 to FY08, whereas lipid-poor southern copepods showed the opposite pattern, suggesting that growth conditions were more favorable to juvenile salmon in FY08 than in previous years. However, growth indices for juvenile coho salmon were near the 1998-2008 average, both off the west coast of Vancouver Island and Southeast Alaska, indicating that additional factors beside prey quality affect juvenile salmon growth in the marine environment. Catches of juvenile Chinook, sockeye and chum salmon off the west coast of Vancouver Island in June-July 2008 were the highest on record during summer since 1998, suggesting that early marine survival for the 2008 smolt year was high. Interestingly, the proportion of hatchery fish was high (80-100%) among the juvenile Columbia River Chinook salmon caught off the British Columbia coast during summer, suggest that relatively few wild Chinook salmon are produced in the Columbia River Chinook. In addition, we also recovered two coded-wire tagged juvenile Redfish Lake sockeye salmon in June 2008 off the west coast of British Columbia. As relatively few Redfish Lake sockeye smolts are tagged each year, this also suggests that early marine survival was high for these fish, and may result in a high return in 2009 if they mature at age three, or in 2010 if they mature at age four. To date, our research shows that different populations of Columbia River salmon move to different locations along the coastal zone where they establish their ocean feeding grounds and overwinter. We further show that ocean conditions experienced by juvenile Columbia River salmon vary among regions of the coast, with higher plankton productivity and temperatures off the west coast of Vancouver Island than in Southeast Alaska. Hence, different stocks of juvenile salmon originating from the Columbia River and Snake River are exposed to different ocean conditions and may respond differently to climate changes. In particular, our work shows that the growth and fat content of Chinook and coho salmon vary along different parts of the coast and among years. These growth differences appear to be associated with differences in prey quality rather than by a direct effect of temperature on salmon growth or prey quantity, indicating that changes in ocean conditions and circulation affect salmon production indirectly through changes in prey community composition and quality. Taken together, our analyses indicate that the relative survival of different stocks of salmon in the ocean will depend on where they migrate in the ocean, and that changes at the base of the food chain must be taken into consideration to understand the effects of ocean conditions on salmon growth, and hence, on salmon survival.« less
Floodplain farm fields provide novel rearing habitat for Chinook salmon
Jeffres, Carson; Conrad, J. Louise; Sommer, Ted R.; Martinez, Joshua; Brumbaugh, Steve; Corline, Nicholas; Moyle, Peter B.
2017-01-01
When inundated by floodwaters, river floodplains provide critical habitat for many species of fish and wildlife, but many river valleys have been extensively leveed and floodplain wetlands drained for flood control and agriculture. In the Central Valley of California, USA, where less than 5% of floodplain wetland habitats remain, a critical conservation question is how can farmland occupying the historical floodplains be better managed to improve benefits for native fish and wildlife. In this study fields on the Sacramento River floodplain were intentionally flooded after the autumn rice harvest to determine if they could provide shallow-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus tshawytscha). Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g) were reared on two hectares for six weeks (Feb-March) between the fall harvest and spring planting. A subsample of the fish were uniquely tagged to allow tracking of individual growth rates (average 0.76 mm/day) which were among the highest recorded in fresh water in California. Zooplankton sampled from the water column of the fields were compared to fish stomach contents. The primary prey was zooplankton in the order Cladocera, commonly called water fleas. The compatibility, on the same farm fields, of summer crop production and native fish habitat during winter demonstrates that land management combining agriculture with conservation ecology may benefit recovery of native fish species, such as endangered Chinook salmon. PMID:28591141
Zimmerman, Christian E.; Swanson, Heidi K.; Volk, Eric C.; Kent, Adam J.R.
2013-01-01
To test the utility of otolith chemical composition as a tool for determining the natal stream of origin for salmon, we examined water chemistry and otoliths of juvenile and adult Chum Salmon Oncorhynchus keta and Coho Salmon O. kisutch from three watersheds (five rivers) in the Norton Sound region of Alaska. The two species are characterized by different life histories: Coho Salmon rear in freshwater for up to 3 years, whereas Chum Salmon emigrate from freshwater shortly after emergence. We used laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) to quantify element: Ca ratios for Mg, Mn, Zn, Sr, and Ba, and we used multicollector LA-ICP-MS to determine 87Sr:86Sr ratios in otolith regions corresponding to the period of freshwater residence. Significant differences existed in both water and otolith elemental composition, suggesting that otolith composition could be used to discriminate the natal origin of Coho Salmon and Chum Salmon but only when 87Sr:86Sr ratios were included in the discriminant function analyses. The best discriminant model included 87Sr:86Sr ratios, and without 87Sr:86Sr ratios it was difficult to discriminate among watersheds and rivers. Classification accuracy was 80% for Coho Salmon and 68% for Chum Salmon, indicating that this method does not provide sufficient sensitivity to estimate straying rates of Pacific salmon at the scale we studied.
McClure, Carol A; Hammell, K Larry; Dohoo, Ian R; Gagné, Nellie
2004-10-21
The infectious salmon anemia (ISA) virus causes lethargy, anemia, hemorrhage of the internal organs, and death in farmed Atlantic salmon Salmo salar. It has been a cause of disease in Norwegian farmed Atlantic salmon since 1984 and has since been identified in Canada, Scotland, the United States, and the Faroe Islands. Wild fish have been proposed as a viral reservoir because they are capable of close contact with farmed salmon. Laboratory studies have shown that brown trout and sea trout Salmo trutta, rainbow trout Oncorhynchus mykiss, and herring Clupea harengus tested positive for the virus weeks after intra-peritoneal injection of the ISA virus. Pollock Pollachius virens are commonly found in and around salmon cages, and their close association with the salmon makes them an important potential viral reservoir to consider. The objective of this study was to determine the presence or prevalence of ISA virus in pollock cohabitating with ISA-infected farmed Atlantic salmon. Kidney tissue from 93 pollock that were living with ISA-infected salmon in sea cages were tested with reverse transcription-polymerase chain reaction (RT-PCR) test. Results yielded the expected 193 bp product for positive controls, while no product was observed in any of the pollock samples, resulting in an ISA viral prevalence of 0%. This study strengthens the evidence that pollock are unlikely to be an ISA virus reservoir for farmed Atlantic salmon.
Birkeland, S; Akse, L
2010-01-01
Improved slaughtering procedures in the salmon industry have caused a delayed onset of rigor mortis and, thus, a potential for pre-rigor secondary processing. The aim of this study was to investigate the effect of rigor status at time of processing on quality traits color, texture, sensory, microbiological, in injection salted, and cold-smoked Atlantic salmon (Salmo salar). Injection of pre-rigor fillets caused a significant (P<0.001) contraction (-7.9%± 0.9%) on the caudal-cranial axis. No significant differences in instrumental color (a*, b*, C*, or h*), texture (hardness), or sensory traits (aroma, color, taste, and texture) were observed between pre- or post-rigor processed fillets; however, post-rigor (1477 ± 38 g) fillets had a significant (P>0.05) higher fracturability than pre-rigor fillets (1369 ± 71 g). Pre-rigor fillets were significantly (P<0.01) lighter, L*, (39.7 ± 1.0) than post-rigor fillets (37.8 ± 0.8) and had significantly lower (P<0.05) aerobic plate count (APC), 1.4 ± 0.4 log CFU/g against 2.6 ± 0.6 log CFU/g, and psychrotrophic count (PC), 2.1 ± 0.2 log CFU/g against 3.0 ± 0.5 log CFU/g, than post-rigor processed fillets. This study showed that similar quality characteristics can be obtained in cold-smoked products processed either pre- or post-rigor when using suitable injection salting protocols and smoking techniques. © 2010 Institute of Food Technologists®
POLICY OPTIONS TO REVERSE THE DECLINE OF WILD PACIFIC SALMON
The primary goal of the Salmon 2100 Project was to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in the Pacific Northwest and California. Wild salmon recovery efforts in western North Americ...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West Coast Salmon Fisheries § 660.402... the Pacific Fishery Management Council. Dressed, head-off length of salmon means the shortest distance...). Dressed, head-off salmon means salmon that have been beheaded, gilled, and gutted without further...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West Coast Salmon Fisheries § 660.402... the Pacific Fishery Management Council. Dressed, head-off length of salmon means the shortest distance...). Dressed, head-off salmon means salmon that have been beheaded, gilled, and gutted without further...
Chinook salmon foraging patterns in a changing Lake Michigan
Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Claramunt, Randall M.
2013-01-01
Since Pacific salmon stocking began in Lake Michigan, managers have attempted to maintain salmon abundance at high levels within what can be sustained by available prey fishes, primarily Alewife Alosa pseudoharengus. Chinook Salmon Oncorhynchus tshawytscha are the primary apex predators in pelagic Lake Michigan and patterns in their prey selection (by species and size) may strongly influence pelagic prey fish communities in any given year. In 1994–1996, there were larger Alewives, relatively more abundant alternative prey species, fewer Chinook Salmon, and fewer invasive species in Lake Michigan than in 2009–2010. The years 2009–2010 were instead characterized by smaller, leaner Alewives, fewer alternative prey species, higher abundance of Chinook Salmon, a firmly established nonnative benthic community, and reduced abundance of Diporeia, an important food of Lake Michigan prey fish. We characterized Chinook Salmon diets, prey species selectivity, and prey size selectivity between 1994–1996 and 2009–2010 time periods. In 1994–1996, Alewife as prey represented a smaller percentage of Chinook Salmon diets than in 2009–2010, when alewife comprised over 90% of Chinook Salmon diets, possibly due to declines in alternative prey fish populations. The size of Alewives eaten by Chinook Salmon also decreased between these two time periods. For the largest Chinook Salmon in 2009–2010, the average size of Alewife prey was nearly 50 mm total length shorter than in 1994–1996. We suggest that changes in the Lake Michigan food web, such as the decline in Diporeia, may have contributed to the relatively low abundance of large Alewives during the late 2000s by heightening the effect of predation from top predators like Chinook Salmon, which have retained a preference for Alewife and now forage with greater frequency on smaller Alewives.
Jezorek, Ian G.; Connolly, Patrick J.
2015-01-01
Biotic and abiotic factors influence fish populations and distributions. Concerns have been raised about the influence of hatchery fish on wild populations. Carson National Fish Hatchery produces spring Chinook salmon Oncorhynchus tshawytscha in the Wind River, Washington, and some spawn in the river. Managers were concerned that Chinook salmon could negatively affect wild steelhead O. mykiss and that a self-sustaining population of Chinook salmon may develop. Our objectives were to assess: 1) the distribution and populations of juvenile spring Chinook salmon and juvenile steelhead in the upper Wind River; 2) the influence of stream flow and of each population on the other; and 3) if Chinook salmon populations were self-sustaining. We snorkeled to determine distribution and abundance. Flow in the fall influenced upstream distribution and abundance of juvenile Chinook salmon. Juvenile Chinook salmon densities were consistently low (range 0.0 to 5.7 fish 100 m-2) and not influenced by number of spawners, winter flow magnitude, or steelhead abundance. Juvenile steelhead were distributed through the study section each year. Age-0 and age-1 steelhead densities (age-0 range: 0.04 to 37.0 fish 100 m-2; age-1 range: 0.02 to 6.21 fish 100 m-2) were consistently higher than for juvenile Chinook salmon. Steelhead spawner abundance positively influenced juvenile steelhead abundance. During this study, Chinook salmon in the Wind River appear to have had little effect on steelhead. Low juvenile Chinook salmon abundance and a lack of a spawner-to-juvenile relationship suggest Chinook salmon are not self-sustaining and potential for such a population is low under current conditions.
1989-01-01
sockeye salmon ( Oncorhynchus nerka ), patterns in their home streams, and and coho salmon (Lowery 1966, significant abrupt deviations from the Armstrong...and cutthroat trout from the same stream, coho salmon ( Oncorhynchus kisutch) but varies widely by geographical (Cramer 1940; Sumner 1952; DeWTtt...salmon cutthroat trout diets (Dimick and Mote ( Oncorhynchus keta), pink salmon 1934; Lowery 1966; Allen 1969; ( Oncorhynchus gorbuscha), and Pacific
Dirk W. Lang; Gordon H. Reeves; James D. Hall; Mark S. Wipfli
2006-01-01
This study examined the influence of fall-spawning coho salmon (Oncorhynchrcs kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from...
Frank K. Lake
2013-01-01
Josephine âJoâ Grant Peters was an Native American herbalist of mixed tribal ancestry (Karuk/Shasta/ Abenaki) who was raised and lived in Northwestern California along the Salmon, Klamath, and Trinity rivers. She was a woman with an exceptional knowledge of native and non-native plants, and of the many cultural traditions for management, harvesting, preparation, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonasson, Brian C.; Carmichael, Richard W.; Keefe, MaryLouise
1997-09-01
Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grandemore » Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek.« less
Poćwierz-Kotus, Anita; Bernaś, Rafał; Kent, Matthew P; Lien, Sigbjørn; Leliűna, Egidijus; Dębowski, Piotr; Wenne, Roman
2015-05-06
Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland. One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses. Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28). Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of its closer geographic proximity.
Effects of introduced fishes on wild juvenile coho salmon in three shallow pacific northwest lakes
Bonar, Scott A.; Bolding, B.D.; Divens, M.; Meyer, W.
2005-01-01
Declines in Pacific salmon Oncorhynchus spp. have been blamed on hydropower, overfishing, ocean conditions, and land use practices; however, less is known about the impacts of introduced fish. Most of the hundreds of lakes and ponds in the Pacific Northwest contain introduced fishes, and many of these water bodies are also important for salmon production, especially of coho salmon O. kisutch. Over 2 years, we examined the predation impacts of 10 common introduced fishes (brown bullhead Ameiurus nebulosus, black crappie Pomoxis nigro-maculatus, bluegill Lepomis macrochirus, golden shiner Notemigonus crysoleucas, green sunfish L. cyanellus, largemouth bass Micropterus salmoides, pumpkinseed L. gibbosus, rainbow trout O. mykiss, warmouth L. gulosus, and yellow perch Perca flavescens) and two native fishes (cutthroat trout O. clarkii and prickly sculpin Cottus asper) on wild juvenile coho salmon in three shallow Pacific Northwest lakes, all located in different watersheds. Of these species, largemouth bass were responsible for an average of 98% of the predation on coho salmon in all lakes, but the total impact to each run varied among lakes and years. Very few coho salmon were eaten by black crappies, brown bullheads, cutthroat trout, prickly sculpin, or yellow perch, whereas other species were not observed to eat coho salmon. Juvenile coho salmon growth in all lakes was higher than in nearby streams. Therefore, food competition between coho salmon and introduced fishes in lakes was probably not limiting coho salmon populations. Largemouth bass are widespread and are present in 85% of lowland warmwater public-access lakes in Washington (n = 421), 84% of those in Oregon (n = 179), and 74% of those in the eight northwesternmost counties in California (n = 19). Future research would help to identify the impact of largemouth bass predation across the region and prioritize lakes where impacts are most severe. Nevertheless, attempts to transplant or increase largemouth bass numbers in lakes important to coho salmon would be counterproductive to coho salmon enhancement efforts. ?? Copyright by the American Fisheries Society 2005.
Jezorek, I.G.; Connolly, P.J.
2010-01-01
We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or both change in the future, the potential for negative interactions with wild steelhead could change.
PNW WILD SALMON IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY
The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not...
WILD SALMON IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY - MAY 2006
The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not...
50 CFR 648.40 - Prohibition on possession.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Atlantic Salmon § 648.40 Prohibition on possession. (a) Incidental catch. All Atlantic salmon caught... maximum probability of survival. (b) Presumption. The possession of Atlantic salmon is prima facie evidence that such Atlantic salmon were taken in violation of this regulation. Evidence that such fish were...
50 CFR 648.41 - Framework specifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Atlantic Salmon § 648.41 Framework specifications. (a) Within season management action. The New England... Atlantic salmon management measures to allow for Atlantic salmon aquaculture projects in the EEZ, provided such an action is consistent with the goals and objectives of the Atlantic Salmon FMP. (b) Framework...
50 CFR 648.40 - Prohibition on possession.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Atlantic Salmon § 648.40 Prohibition on possession. (a) Incidental catch. All Atlantic salmon caught... maximum probability of survival. (b) Presumption. The possession of Atlantic salmon is prima facie evidence that such Atlantic salmon were taken in violation of this regulation. Evidence that such fish were...
50 CFR 648.41 - Framework specifications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Atlantic Salmon § 648.41 Framework specifications. (a) Within season management action. The New England... Atlantic salmon management measures to allow for Atlantic salmon aquaculture projects in the EEZ, provided such an action is consistent with the goals and objectives of the Atlantic Salmon FMP. (b) Framework...
Lessons from sea louse and salmon epidemiology.
Groner, Maya L; Rogers, Luke A; Bateman, Andrew W; Connors, Brendan M; Frazer, L Neil; Godwin, Sean C; Krkošek, Martin; Lewis, Mark A; Peacock, Stephanie J; Rees, Erin E; Revie, Crawford W; Schlägel, Ulrike E
2016-03-05
Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host-parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources. © 2016 The Author(s).
Lessons from sea louse and salmon epidemiology
Rogers, Luke A.; Bateman, Andrew W.; Connors, Brendan M.; Frazer, L. Neil; Godwin, Sean C.; Krkošek, Martin; Lewis, Mark A.; Peacock, Stephanie J.; Rees, Erin E.; Revie, Crawford W.; Schlägel, Ulrike E.
2016-01-01
Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host–parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources. PMID:26880836
Vargas-Chacoff, L; Muñoz, J L P; Hawes, C; Oyarzún, R; Pontigo, J P; Saravia, J; González, M P; Mardones, O; Labbé, B S; Morera, F J; Bertrán, C; Pino, J; Wadsworth, S; Yáñez, A
2017-08-30
Although Caligus rogercresseyi negatively impacts Chilean salmon farming, the metabolic effects of infection by this sea louse have never been completely characterized. Therefore, this study analyzed lactate responses in the plasma, as well as the liver/muscle lactate dehydrogenase (LDH) activity and gene expression, in Salmo salar and Oncorhynchus kisutch infested by C. rogercresseyi. The lactate responses of Atlantic and Coho salmon were modified by the ectoparasite. Both salmon species showed increasing in plasma levels, whereas enzymatic activity increased in the muscle but decreased in the liver. Gene expression was overexpressed in both Coho salmon tissues but only in the liver for Atlantic salmon. These results suggest that salmonids need more energy to adapt to infection, resulting in increased gene expression, plasma levels, and enzyme activity in the muscles. The responses differed between both salmon species and over the course of infection, suggesting potential species-specific responses to sea-lice infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Solberg, Monica F; Kvamme, Bjørn Olav; Nilsen, Frank; Glover, Kevin A
2012-12-05
Ten generations of domestication selection has caused farmed Atlantic salmon Salmo salar L. to deviate from wild salmon in a range of traits. Each year hundreds of thousands of farmed salmon escape into the wild. Thus, interbreeding between farmed escapees and wild conspecifics represents a significant threat to the genetic integrity of wild salmon populations. In a previous study we demonstrated how domestication has inadvertently selected for reduced responsiveness to stress in farmed salmon. To complement that study, we have evaluated the expression of seven stress-related genes in head kidney of salmon of farmed, hybrid and wild origin exposed to environmentally induced stress. In general, the crowding stressor used to induce environmental stress did not have a strong impact on mRNA expression levels of the seven genes, except for insulin-like growth factor-1 (IGF-1) that was downregulated in the stress treatment relative to the control treatment. mRNA expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (Cu/Zn SOD), Mn superoxide dismutase (Mn SOD), glutathione peroxidase (GP) and IGF-1 were affected by genetic origin, thus expressed significantly different between the salmon of farmed, hybrid or wild origin. A positive relationship was detected between body size of wild salmon and mRNA expression level of the IGF-1 gene, in both environments. No such relationship was observed for the hybrid or farmed salmon. Farmed salmon in this study displayed significantly elevated mRNA levels of the IGF-1 gene relative to the wild salmon, in both treatments, while hybrids displayed a non additive pattern of inheritance. As IGF-1 mRNA levels are positively correlated to growth rate, the observed positive relationship between body size and IGF-1 mRNA levels detected in the wild but neither in the farmed nor the hybrid salmon, could indicate that growth selection has increased IGF-1 levels in farmed salmon to the extent that they may not be limiting growth rate.
2012-01-01
Background Ten generations of domestication selection has caused farmed Atlantic salmon Salmo salar L. to deviate from wild salmon in a range of traits. Each year hundreds of thousands of farmed salmon escape into the wild. Thus, interbreeding between farmed escapees and wild conspecifics represents a significant threat to the genetic integrity of wild salmon populations. In a previous study we demonstrated how domestication has inadvertently selected for reduced responsiveness to stress in farmed salmon. To complement that study, we have evaluated the expression of seven stress-related genes in head kidney of salmon of farmed, hybrid and wild origin exposed to environmentally induced stress. Results In general, the crowding stressor used to induce environmental stress did not have a strong impact on mRNA expression levels of the seven genes, except for insulin-like growth factor-1 (IGF-1) that was downregulated in the stress treatment relative to the control treatment. mRNA expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (Cu/Zn SOD), Mn superoxide dismutase (Mn SOD), glutathione peroxidase (GP) and IGF-1 were affected by genetic origin, thus expressed significantly different between the salmon of farmed, hybrid or wild origin. A positive relationship was detected between body size of wild salmon and mRNA expression level of the IGF-1 gene, in both environments. No such relationship was observed for the hybrid or farmed salmon. Conclusion Farmed salmon in this study displayed significantly elevated mRNA levels of the IGF-1 gene relative to the wild salmon, in both treatments, while hybrids displayed a non additive pattern of inheritance. As IGF-1 mRNA levels are positively correlated to growth rate, the observed positive relationship between body size and IGF-1 mRNA levels detected in the wild but neither in the farmed nor the hybrid salmon, could indicate that growth selection has increased IGF-1 levels in farmed salmon to the extent that they may not be limiting growth rate. PMID:23217180
Wildlife studies on the Hanford site: 1994 Highlights report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadwell, L.L.
The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights ofmore » wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population.« less
Studies of transmission of mycobacterial infections in Chinook salmon
Ross, A.J.; Johnson, H.E.
1962-01-01
THE INCLUSION OF VISCERA AND CARCASSES OF TUBERCULOUS ADULT SALMON IN THE DIET OF JUVENILE SALMONIDS is considered to be the major source of mycobacterial infections in hatchery-reared fish (Wood and Ordal, 1958; Ross, Earp, and Wood, 1959). In considering additional modes of infection, we speculated about transovarian transmission or a mechanical process arising from contamination of the ova at the egg-taking stage with subsequent entry of the bacteria into the egg at the time of fertilization. This paper is a report on observations made during an experiment designed to test the latter theories.
Freshwater, C; Trudel, M; Beacham, T D; Neville, C-E; Tucker, S; Juanes, F
2015-07-01
Juvenile sockeye salmon Oncorhynchus nerka that were reared and smolted in laboratory conditions were found to produce otolith daily increments, as well as a consistently visible marine-entry check formed during their transition to salt water. Field-collected O. nerka post-smolts of an equivalent age also displayed visible checks; however, microchemistry estimates of marine-entry date using Sr:Ca ratios differed from visual estimates by c. 9 days suggesting that microstructural and microchemical processes occur on different time scales. © 2015 The Fisheries Society of the British Isles.
Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha)
Bett, Nolan N.; Hinch, Scott G.; Dittman, Andrew H.; Yun, Sang-Seon
2016-01-01
Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST. PMID:27827382
Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha).
Bett, Nolan N; Hinch, Scott G; Dittman, Andrew H; Yun, Sang-Seon
2016-11-09
Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST.
Johnson, James H.; Ringler, Neil H.
2016-01-01
Restoration of Atlantic salmon (Salmo salar) in Lake Ontario could potentially be negatively affected by the presence of non-native salmonids that are naturalized in the basin. Coho salmon (Oncorhynchus kisutch) have been spawning successfully in Lake Ontario tributaries for over 40 years and their juveniles will reside in streams with juvenile Atlantic salmon for one year. This study sought to examine interspecific diet associations between these species, and to compare diets to the composition of the benthos and drift in three Lake Ontario tributaries. Aquatic insects, mainly ephemeropterans and chironomids were the major prey consumed by subyearling Atlantic salmon whereas terrestrial invertebrates made up only 3.7% of the diet. Ephemeropterans and chironomids were the primary aquatic taxa consumed by subyearling coho salmon but, as a group, terrestrial invertebrates (41.8%) were the major prey. In sympatry, Atlantic salmon fed more actively from the benthos whereas the diet of coho salmon was more similar to the drift. The different feeding pattern of each species resulted in low interspecific diet similarity. There is likely little competition between these species for food in Lake Ontario tributaries as juveniles.
Foran, Jeffery A.; Carpenter, David O.; Hamilton, M. Coreen; Knuth, Barbara A.; Schwager, Steven J.
2005-01-01
We reported recently that several organic contaminants occurred at elevated concentrations in farmed Atlantic salmon compared with concentrations of the same contaminants in wild Pacific salmon [Hites et al. Science 303:226–229 (2004)]. We also found that polychlorinated biphenyls (PCBs), toxaphene, dieldrin, dioxins, and polybrominated diphenyl ethers occurred at higher concentrations in European farm-raised salmon than in farmed salmon from North and South America. Health risks (based on a quantitative cancer risk assessment) associated with consumption of farmed salmon contaminated with PCBs, toxaphene, and dieldrin were higher than risks associated with exposure to the same contaminants in wild salmon. Here we present information on cancer and noncancer health risks of exposure to dioxins in farmed and wild salmon. The analysis is based on a tolerable intake level for dioxin-like compounds established by the World Health Organization and on risk estimates for human exposure to dioxins developed by the U.S. Environmental Protection Agency. Consumption of farmed salmon at relatively low frequencies results in elevated exposure to dioxins and dioxin-like compounds with commensurate elevation in estimates of health risk. PMID:15866762
2013-01-01
Background Directional selection for growth has resulted in the 9-10th generation of domesticated Atlantic salmon Salmo salar L. outgrowing wild salmon by a ratio of approximately 3:1 when reared under standard hatchery conditions. In the wild however, growth of domesticated and wild salmon is more similar, and seems to differ at the most by a ratio of 1.25:1. Comparative studies of quantitative traits in farmed and wild salmon are often performed by the use of common-garden experiments where salmon of all origins are reared together to avoid origin-specific environmental differences. As social interaction may influence growth, the large observed difference in growth between wild and domesticated salmon in the hatchery may not be entirely genetically based, but inflated by inter-strain competition. This study had two primary aims: (i) investigate the effect of social interaction and inter-strain competition in common-garden experiments, by comparing the relative growth of farmed, hybrid and wild salmon when reared together and separately; (ii) investigate the competitive balance between wild and farmed salmon by comparing their norm of reaction for survival and growth along an environmental gradient ranging from standard hatchery conditions to a semi-natural environment with restricted feed. Results The main results of this study, which are based upon the analysis of more than 6000 juvenile salmon, can be summarised as; (i) there was no difference in relative growth between wild and farmed salmon when reared together and separately; (ii) the relative difference in body weight at termination between wild and farmed salmon decreased as mortality increased along the environmental gradient approaching natural conditions. Conclusions This study demonstrates that potential social interactions between wild and farmed salmon when reared communally are not likely to cause an overestimation of the genetic growth differences between them. Therefore, common-garden experiments represent a valid methodological approach to investigate genetic differences between wild and farmed salmon. As growth of surviving salmon of all origins became more similar as mortality increased along the environmental gradient approaching natural conditions, a hypothesis is presented suggesting that size-selective mortality is a possible factor reducing growth differences between these groups in the wild. PMID:24165438
Sutherland, Ben J G; Jantzen, Stuart G; Yasuike, Motoshige; Sanderson, Dan S; Koop, Ben F; Jones, Simon R M
2012-12-01
The salmon louse Lepeophtheirus salmonis is a marine ectoparasite of wild and farmed salmon in the Northern Hemisphere. Infections of farmed salmon are of economic and ecological concern. Nauplius and copepodid salmon lice larvae are free-swimming and disperse in the water column until they encounter a host. In this study, we characterized the sublethal stress responses of L. salmonis copepodid larvae by applying a 38K oligonucleotide microarray to profile transcriptomes following 24 h exposures to suboptimal salinity (30-10 parts per thousand (‰)) or temperature (16-4 °C) environments. Hyposalinity exposure resulted in large-scale gene expression changes relative to those elicited by a thermal gradient. Subsequently, transcriptome responses to a more finely resolved salinity gradient between 30 ‰ and 25 ‰ were profiled. Minimal changes occurred at 29 ‰ or 28 ‰, a threshold of response was identified at 27 ‰, and the largest response was at 25 ‰. Differentially expressed genes were clustered by pattern of expression, and clusters were characterized by functional enrichment analysis. Results indicate larval copepods adopt two distinct coping strategies in response to short-term hyposaline stress: a primary response using molecular chaperones and catabolic processes at 27 ‰; and a secondary response up-regulating ion pumps, transporters, a different suite of chaperones and apoptosis-related transcripts at 26 ‰ and 25 ‰. The results further our understanding of the tolerances of L. salmonis copepodids to salinity and temperature gradients and may assist in the development of salmon louse management strategies. © 2012 Blackwell Publishing Ltd.
The primary goal of the Salmon 2100 Project is to identify salmon recovery options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project doe...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... Fishery Management Council; Public Meeting; Work Session To Review Proposed Salmon Methodology Changes...), Commerce. ACTION: Notice of a public meeting. SUMMARY: The Pacific Fishery Management Council's Salmon Technical Team (STT), Scientific and Statistical Committee (SSC) Salmon Subcommittee, and Model Evaluation...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-31
... Fishery Management Council (Council); Work Session To Review Proposed Salmon Methodology Changes AGENCY.... ACTION: Notice of a public meeting. SUMMARY: The Pacific Fishery Management Council's Salmon Technical Team (STT), Scientific and Statistical Committee (SSC) Salmon Subcommittee, and Model Evaluation...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... DEPARTMENT OF AGRICULTURE Forest Service Salmon-Challis National Forest, Butte, Custer and Lemhi Counties, ID, Supplemental Environmental Impact Statement to the 2009 Salmon- Challis National Forest... of intent to prepare a supplemental environmental impact statement. SUMMARY: The Salmon-Challis...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Fraser River Sockeye and Pink Salmon Fisheries § 300.91 Definitions. In addition to the terms defined in... fishing regulations. Commission means the Pacific Salmon Commission established by the Pacific Salmon... impound salmon passing over the net, the net must be raised to the surface. (4) Troll fishing gear means...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Fraser River Sockeye and Pink Salmon Fisheries § 300.91 Definitions. In addition to the terms defined in... fishing regulations. Commission means the Pacific Salmon Commission established by the Pacific Salmon... impound salmon passing over the net, the net must be raised to the surface. (4) Troll fishing gear means...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Mike; Plaster, Kurtis; Redfield, Laura
2008-12-17
On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returnsmore » from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out-migrated from Redfish Lake in 2007. The hatchery origin component originated from a 2006 fall presmolt direct-release. The juvenile out-migrant traps on Alturas Lake Creek and Pettit Lake Creek were operated by the SBT from April 19 to May 23, 2007 and April 18 to May 29, 2007, respectively. The SBT estimated 1,749 natural origin and 4,695 hatchery origin sockeye salmon smolts out-migrated from Pettit Lake and estimated 8,994 natural origin and 6,897 hatchery origin sockeye salmon smolts out-migrated from Alturas Lake in 2007. The hatchery origin component of sockeye salmon out-migrants originated from fall presmolt direct-releases made to Pettit and Alturas lakes in 2006. In 2007, the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC) chose to have all Snake River sockeye salmon juveniles (tagged and untagged) transported due to potential enhanced survival. Therefore, mainstem survival evaluations were only conducted to Lower Granite Dam. Unique PIT tag interrogations from Sawtooth Valley juvenile out-migrant traps to Lower Granite Dam were utilized to estimate survival rates for out-migrating sockeye salmon smolts. Survival rate comparisons were made between smolts originating from Redfish, Alturas, and Pettit lakes and the various release strategies. Alturas Lake hatchery origin smolts tagged at the out-migrant trap recorded the highest survival rate of 78.0%. In 2007, 494 hatchery origin adult sockeye salmon were released to Redfish Lake for natural spawning. We observed 195 areas of excavation in the lake from spawning events. This was the highest number of redds observed in Redfish Lake since the program was initiated. Suspected redds were approximately 3 m x 3 m in size and were constructed by multiple pairs of adults. To monitor the predator population found within the lakes, we monitored bull trout spawning in Fishhook Creek, a tributary to Redfish Lake; and in Alpine Creek, a tributary to Alturas Lake. This represented the tenth consecutive year that the index reaches have been surveyed on these two streams. Adult counts (41 adults) and redd counts (22 redds) in Fishhook Creek increased compared to counts conducted since monitoring began in 1998. Beginning in 2007, we also surveyed an additional trend site in Fishhook Creek resulting in observing 43 adult bull trout and 30 additional redds. Bull trout numbers (13 adults) and the number of redds observed (18 redds) have gradually increased in Alpine Creek compared to counts from initial monitoring.« less
Salmon Site Remedial Investigation Report, Exhibit 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
USDOE /NV
1999-09-01
This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.« less
Salmon Site Remedial Investigation Report, Main Body
DOE Office of Scientific and Technical Information (OSTI.GOV)
US DOE /NV
1999-09-01
This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.« less
Salmon Site Remedial Investigation Report, Exhibit 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
USDOE NV
1999-09-01
This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senn, Harry G.
1984-09-01
The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)
Garseth, Ase Helen; Biering, Eirik; Aunsmo, Arnfinn
2013-10-01
Piscine Reovirus (PRV), the putative causative agent of heart and skeletal muscle inflammation (HSMI), is widely distributed in both farmed and wild Atlantic salmon (Salmo salar L.) in Norway. While HSMI is a common and commercially important disease in farmed Atlantic salmon, the presence of PRV has so far not been associated with HSMI related lesions in wild salmon. Factors associated with PRV-infection were investigated in returning Atlantic salmon captured in Norwegian rivers. A multilevel mixed-effect logistic regression model confirmed clustering within rivers and demonstrated that PRV-infection is associated with life-history, sex, catch-year and body length as a proxy for sea-age. Escaped farmed salmon (odds ratio/OR: 7.32, p<0.001) and hatchery-reared salmon (OR: 1.69 p=0.073) have higher odds of being PRV-infected than wild Atlantic salmon. Male salmon have double odds of being PRV infected compared to female salmon (OR: 2.11, p<0.001). Odds of being PRV-infected increased with body-length measured as decimetres (OR: 1.20, p=0.004). Since body length and sea-age are correlated (r=0.85 p<0.001), body length serves as a proxy for sea-age, meaning that spending more years in sea increases the odds of being PRV-infected. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.
Hannesson, Kirsten O; Ytteborg, Elisabeth; Takle, Harald; Enersen, Grethe; Bæverfjord, Grete; Pedersen, Mona E
2015-08-01
In the present study, the distribution of sulphated glycosaminoglycans (GAGs) in the developing vertebral column of Atlantic salmon (Salmo salar) at 700, 900, 1100 and 1400 d° was examined by light microscopy. The mineralization pattern was outlined by Alizarin red S and soft structures by Alcian blue. The temporal and spatial distribution patterns of different types of GAGs: chondroitin-4-sulphate/dermatan sulphate, chondroitin-6-sulphate, chondroitin-0-sulphate and keratan sulphate were addressed by immunohistochemistry using monoclonal antibodies against the different GAGs. The specific pattern obtained with the different antibodies suggests a unique role of the different GAG types in pattern formation and mineralization. In addition, the distribution of the different GAG types in normal and malformed vertebral columns from 15 g salmon was compared. A changed expression pattern of GAGs was found in the malformed vertebrae, indicating the involvement of these molecules during the pathogenesis. The molecular size of proteoglycans (PGs) in the vertebrae carrying GAGs was analysed with western blotting, and mRNA transcription of the PGs aggrecan, decorin, biglycan, fibromodulin and lumican by real-time qPCR. Our study reveals the importance of GAGs in development of vertebral column also in Atlantic salmon and indicates that a more comprehensive approach is necessary to completely understand the processes involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleary, Peter; Kucera, Paul; Blenden, Michael
This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenilemore » chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303,769 hatchery chinook salmon released in 2002 survived to the lower trap. Post release survival estimates for hatchery chinook salmon were within the range of past estimates; 88.4% in 1998 to 100.9% in 1994. An estimated 7,646 to 23,249 (95% C.I.) natural chinook salmon smolts migrated past the lower Imnaha River trap from April 4 to April 22. An additional 6,767 to 14,706 (95% C.I.) natural chinook salmon smolts migrated past the lower Imnaha River trap from April 23 to May 14, 2002. Natural chinook salmon captured and tagged at the upper rkm 74 trap survived to Lower Granite Dam (LGR) at a rate of 28.8% during migration year 2001 and 21.9% during migration year 2002. The survival estimate for fall tagged natural chinook salmon from the lower trap to LGR was 41.9% in 2001 and 33.3% in 2002. Differences between survival from release to LGR for fall tagged natural chinook salmon from the lower trap have been 5.9% to 16.9% higher than for fall tagged natural chinook salmon from the upper trap from 1994 to 2002. Spring PIT tag release groups of natural chinook salmon, hatchery chinook salmon, and hatchery steelhead produced estimates of survival from the trap to LGR within the range of past estimates since 1993. Estimated survival from release to LGR for 2001 and 2002 were as follows: 83.7% and 86.9% for natural chinook salmon, 80.3% and 77.3% for hatchery chinook salmon, 82.7% and 81.8% for natural steelhead, and 82.0% and 83.0% for hatchery steelhead. Estimates of survival for spring tagged fish from the trap to Lower Monumental Dam (LMO) during the drought of 2001 were the lowest estimates of survival from 1998 to 2002 for natural chinook salmon, and from1997 to 2002 for natural and hatchery steelhead. Estimates of migration year 2001 survival from the trap to LMO were as follows: 65.6% - natural chinook salmon, 68.9% - hatchery chinook salmon, 49.7% natural steelhead, and 42.9% - hatchery steelhead. Estimates of migration year 2002 survival from the trap to LMO were as follows: 76.8% - natural chinook salmon, 68.1% - hatchery chinook salmon, 69.9% natural steelhead, and 78.0% - hatchery steelhead. A smolt-to-adult return rate (SAR) index from LGR to LGR was calculated for migrating pre-smolt and smolt natural chinook salmon, that were PIT tagged in the fall and spring at the lower trap, for brood years 1996 to 1998 (migration years 1998 to 2000). The SARs are representative of in-river Imnaha natural chinook salmon. The LGR to LGR SAR index for presmolt chinook salmon is as follows: 3.08% (BY 1996), 2.41% (BY 1997), and 2.98% (BY 1998). Smolt-to-adult return rate index for spring tagged smolts was lower: 1.75% (BY 1996), 2.24% (BY 1997) and 2.94% (BY 1998). Fall tagged natural chinook salmon from the upper and lower trap and spring tagged natural chinook salmon from the lower trap all had significantly different (p < 0.05) median and cumulative arrival timing at LGR during migration year 2001.« less
Interspecific competition in tributaries: Prospectus for restoring Atlantic salmon in Lake Ontario
Johnson, James H.; Wedge, Leslie R.
1999-01-01
Historically, Lake Ontario may have supported the world's largest freshwater population of Atlantic salmon (Salmo salar). However, by the late 1800's, salmon were virtually extinct in the lake due to the damming of tributaries, overharvest, deforestation, and pollution. Of these factors, the building of dams on tributaries, which precluded access by the salmon to natal spawning streams, was probably the most detrimental. Since the extirpation of Atlantic salmon in the Lake Ontario watershed over a century ago, considerable change has occurred throughout the lake and tributary ecosystem. The changes within the ecosystem that may have the most profound effect on Atlantic salmon restoration include the presence of exotic species, including other salmonines, and reduced habitat quality, especially in tributaries. These changes must be taken into account when considering Atlantic salmon restoration.
Reed, Thomas E.; Schindler, Daniel E.; Hague, Merran J.; Patterson, David A.; Meir, Eli; Waples, Robin S.; Hinch, Scott G.
2011-01-01
Evolutionary adaptation affects demographic resilience to climate change but few studies have attempted to project changes in selective pressures or quantify impacts of trait responses on population dynamics and extinction risk. We used a novel individual-based model to explore potential evolutionary changes in migration timing and the consequences for population persistence in sockeye salmon Oncorhynchus nerka in the Fraser River, Canada, under scenarios of future climate warming. Adult sockeye salmon are highly sensitive to increases in water temperature during their arduous upriver migration, raising concerns about the fate of these ecologically, culturally, and commercially important fish in a warmer future. Our results suggest that evolution of upriver migration timing could allow these salmon to avoid increasingly frequent stressful temperatures, with the odds of population persistence increasing in proportion to the trait heritability and phenotypic variance. With a simulated 2°C increase in average summer river temperatures by 2100, adult migration timing from the ocean to the river advanced by ∼10 days when the heritability was 0.5, while the risk of quasi-extinction was only 17% of that faced by populations with zero evolutionary potential (i.e., heritability fixed at zero). The rates of evolution required to maintain persistence under simulated scenarios of moderate to rapid warming are plausible based on estimated heritabilities and rates of microevolution of timing traits in salmon and related species, although further empirical work is required to assess potential genetic and ecophysiological constraints on phenological adaptation. These results highlight the benefits to salmon management of maintaining evolutionary potential within populations, in addition to conserving key habitats and minimizing additional stressors where possible, as a means to build resilience to ongoing climate change. More generally, they demonstrate the importance and feasibility of considering evolutionary processes, in addition to ecology and demography, when projecting population responses to environmental change. PMID:21738573
Waples, Robin S; Zabel, Richard W; Scheuerell, Mark D; Sanderson, Beth L
2008-01-01
The human footprint is now large in all the Earth's ecosystems, and construction of large dams in major river basins is among the anthropogenic changes that have had the most profound ecological consequences, particularly for migratory fishes. In the Columbia River basin of the western USA, considerable effort has been directed toward evaluating demographic effects of dams, yet little attention has been paid to evolutionary responses of migratory salmon to altered selective regimes. Here we make a first attempt to address this information gap. Transformation of the free-flowing Columbia River into a series of slack-water reservoirs has relaxed selection for adults capable of migrating long distances upstream against strong flows; conditions now favour fish capable of migrating through lakes and finding and navigating fish ladders. Juveniles must now be capable of surviving passage through multiple dams or collection and transportation around the dams. River flow patterns deliver some groups of juvenile salmon to the estuary later than is optimal for ocean survival, but countervailing selective pressures might constrain an evolutionary response toward earlier migration timing. Dams have increased the cost of migration, which reduces energy available for sexual selection and favours a nonmigratory life history. Reservoirs are a benign environment for many non-native species that are competitors with or predators on salmon, and evolutionary responses are likely (but undocumented). More research is needed to tease apart the relative importance of evolutionary vs. plastic responses of salmon to these environmental changes; this research is logistically challenging for species with life histories like Pacific salmon, but results should substantially improve our understanding of key processes. If the Columbia River is ever returned to a quasinatural, free-flowing state, remaining populations might face a Darwinian debt (and temporarily reduced fitness) as they struggle to re-evolve historical adaptations.
Yatabe, Tadaishi; More, Simon J; Geoghegan, Fiona; McManus, Catherine; Hill, Ashley E; Martínez-López, Beatriz
2018-01-01
Salmonid farming in Ireland is mostly organic, which implies limited disease treatment options. This highlights the importance of biosecurity for preventing the introduction and spread of infectious agents. Similarly, the effect of local network properties on infection spread processes has rarely been evaluated. In this paper, we characterized the biosecurity of salmonid farms in Ireland using a survey, and then developed a score for benchmarking the disease risk of salmonid farms. The usefulness and validity of this score, together with farm indegree (dichotomized as ≤ 1 or > 1), were assessed through generalized Poisson regression models, in which the modeled outcome was pathogen richness, defined here as the number of different diseases affecting a farm during a year. Seawater salmon (SW salmon) farms had the highest biosecurity scores with a median (interquartile range) of 82.3 (5.4), followed by freshwater salmon (FW salmon) with 75.2 (8.2), and freshwater trout (FW trout) farms with 74.8 (4.5). For FW salmon and trout farms, the top ranked model (in terms of leave-one-out information criteria, looic) was the null model (looic = 46.1). For SW salmon farms, the best ranking model was the full model with both predictors and their interaction (looic = 33.3). Farms with a higher biosecurity score were associated with lower pathogen richness, and farms with indegree > 1 (i.e. more than one fish supplier) were associated with increased pathogen richness. The effect of the interaction between these variables was also important, showing an antagonistic effect. This would indicate that biosecurity effectiveness is achieved through a broader perspective on the subject, which includes a minimization in the number of suppliers and hence in the possibilities for infection to enter a farm. The work presented here could be used to elaborate indicators of a farm's disease risk based on its biosecurity score and indegree, to inform risk-based disease surveillance and control strategies for private and public stakeholders.
Lhorente, Jean Paul; Gallardo, José A; Villanueva, Beatriz; Carabaño, María J; Neira, Roberto
2014-01-01
Naturally occurring coinfections of pathogens have been reported in salmonids, but their consequences on disease resistance are unclear. We hypothesized that 1) coinfection of Caligus rogercresseyi reduces the resistance of Atlantic salmon to Piscirickettsia salmonis; and 2) coinfection resistance is a heritable trait that does not correlate with resistance to a single infection. In total, 1,634 pedigreed Atlantic salmon were exposed to a single infection (SI) of P. salmonis (primary pathogen) or coinfection with C. rogercresseyi (secondary pathogen). Low and high level of coinfection were evaluated (LC = 44 copepodites per fish; HC = 88 copepodites per fish). Survival and quantitative genetic analyses were performed to determine the resistance to the single infection and coinfections. C. rogercresseyi significantly increased the mortality in fish infected with P. salmonis (SI mortality = 251/545; LC mortality = 544/544 and HC mortality = 545/545). Heritability estimates for resistance to P. salmonis were similar and of medium magnitude in all treatments (h2SI = 0.23 ± 0.07; h2LC = 0.17 ± 0.08; h2HC = 0.24 ± 0.07). A large and significant genetic correlation with regard to resistance was observed between coinfection treatments (rg LC-HC = 0.99 ± 0.01) but not between the single and coinfection treatments (rg SI-LC = -0.14 ± 0.33; rg SI-HC = 0.32 ± 0.34). C. rogercresseyi, as a secondary pathogen, reduces the resistance of Atlantic salmon to the pathogen P. salmonis. Resistance to coinfection of Piscirickettsia salmonis and Caligus rogercresseyi in Atlantic salmon is a heritable trait. The absence of a genetic correlation between resistance to a single infection and resistance to coinfection indicates that different genes control these processes. Coinfection of different pathogens and resistance to coinfection needs to be considered in future research on salmon farming, selective breeding and conservation.
More, Simon J.; Geoghegan, Fiona; McManus, Catherine; Hill, Ashley E.; Martínez-López, Beatriz
2018-01-01
Salmonid farming in Ireland is mostly organic, which implies limited disease treatment options. This highlights the importance of biosecurity for preventing the introduction and spread of infectious agents. Similarly, the effect of local network properties on infection spread processes has rarely been evaluated. In this paper, we characterized the biosecurity of salmonid farms in Ireland using a survey, and then developed a score for benchmarking the disease risk of salmonid farms. The usefulness and validity of this score, together with farm indegree (dichotomized as ≤ 1 or > 1), were assessed through generalized Poisson regression models, in which the modeled outcome was pathogen richness, defined here as the number of different diseases affecting a farm during a year. Seawater salmon (SW salmon) farms had the highest biosecurity scores with a median (interquartile range) of 82.3 (5.4), followed by freshwater salmon (FW salmon) with 75.2 (8.2), and freshwater trout (FW trout) farms with 74.8 (4.5). For FW salmon and trout farms, the top ranked model (in terms of leave-one-out information criteria, looic) was the null model (looic = 46.1). For SW salmon farms, the best ranking model was the full model with both predictors and their interaction (looic = 33.3). Farms with a higher biosecurity score were associated with lower pathogen richness, and farms with indegree > 1 (i.e. more than one fish supplier) were associated with increased pathogen richness. The effect of the interaction between these variables was also important, showing an antagonistic effect. This would indicate that biosecurity effectiveness is achieved through a broader perspective on the subject, which includes a minimization in the number of suppliers and hence in the possibilities for infection to enter a farm. The work presented here could be used to elaborate indicators of a farm’s disease risk based on its biosecurity score and indegree, to inform risk-based disease surveillance and control strategies for private and public stakeholders. PMID:29381760
Valenzuela-Muñoz, Valentina; Boltaña, Sebastian; Gallardo-Escárate, Cristian
2016-12-01
Caligus rogercresseyi, an ectoparasite affecting the Chilean salmon industry, can cause immunosuppression and physiological stress in farmed fish. Interestingly, coho salmon (Oncorhynchus kisutch) are notably resistant to infestation, whereas Atlantic salmon (Salmo salar) are phenotypically more susceptible to sea lice. However, comparative studies on immune responses to C. rogercresseyi have not been conducted. In this study, Illumina sequencing was conducted to evaluate head kidney and skin samples taken 7 and 14 days post-infestation, yielding a total of 1492 and 1522 contigs annotated to immune-related genes for Atlantic and coho salmon, respectively. Both species evidenced an upregulation of inflammatory genes. Atlantic salmon had highly upregulated TLR22 and MHCII at 14 days post-infestation, while coho salmon had highly upregulated stat5 and il1r transcripts. Fourteen transcripts related to T H 1, T H 2, TLR, and macrophage responses were corroborated via RT-qPCR. Statistical analyses indicated an upregulation of mmp13, cox2, il10, ccr3, tlr22a2, and tlr21 in Atlantic salmon and of ifnγ, cd83, T-bet, tlr13, and tlr19 in coho salmon. These results suggest strong differences between the Atlantic and coho salmon immune responses, where coho salmon, the more resistant species, presented a primary T H 1 response. Additionally, putative roles of TLRs in salmonids against sea lice were evidenced. This study is the first comparative transcriptome analysis that reveals species-specific immune responses in salmons infected with C. rogercresseyi. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Beakes, M.; Satterthwaite, W.; Petrik, C.; Hendrix, N.; Danner, E.; Lindley, S. T.
2016-02-01
In past decades there has been a heavy reliance on the production of hatchery-reared fish to supplement declining population numbers of Pacific salmon. In some cases, the benefits of hatchery supplementation have been negligible despite concerted long-term stocking efforts. The management and conservation of depressed salmon populations, via hatchery practices or otherwise, can be improved by expanding our understanding of the dissimilarities between hatchery and wild salmon and how each interacts with the environment. In this study we use a stage-structured salmon life-cycle model to explore the population consequences of disparate survival and behavior between hatchery and wild-origin fall-run Chinook Salmon (Oncorhynchus tshawytscha) in the California Central Valley. We couple empirically-based statistical functions with deterministic theoretical models to identify how environmental conditions (e.g., water temperature, flow) and habitat drive the survival and abundance of both hatchery and wild salmon as they integrate across riverscapes and cross marine and freshwater ecosystem boundaries during their life cycle. Results from this study suggest that hatchery practices can lead to dissimilar interactions between hatchery and wild salmon and the environmental conditions they experience. As such, the population dynamics of fall-run Chinook Salmon in the California Central Valley are partly dependent on the composition of individuals that make up their populations. In total, this study improves out ability to conserve imperiled salmonids by identifying mechanistic linkages between the natal origin of salmon, survival and behavior, and the environment at spatiotemporal scales relevant to salmon populations and fisheries management.
The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... the Exclusive Economic Zone off Alaska; Chinook Salmon Bycatch Data Collection; Workshop for Industry... Chinook salmon bycatch management program that will be implemented under Amendment 91 to the Fishery... trawl fishery who are knowledgeable about industry plans and operations for avoiding Chinook salmon...
76 FR 70062 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-10
...-XA803 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...
78 FR 65555 - Establishment of Class E Airspace; Salmon, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
...-0531; Airspace Docket No. 13-ANM-20] Establishment of Class E Airspace; Salmon, ID AGENCY: Federal... at the Salmon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Salmon, ID, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Salt Lake...
ERIC Educational Resources Information Center
French, M. Jenice; Skochdopole, Laura Downey
1998-01-01
Describes an integrated science unit to help preservice teachers gain confidence in their abilities to learn and teach science. The teachers role played being salmon as they learned about the salmon's life cycle and the difficulties salmon encounter. The unit introduced the use of investigative activities that begin with questions and end with…
77 FR 60631 - Fraser River Sockeye Salmon Fisheries; Inseason Orders
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
...-XC222 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...
78 FR 69002 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
...-XC965 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
... Associates, Inc.; Salmon Creek Hydroelectric Company; Notice of Transfer of Exemption 1. By letter filed April 18, 2013, Henwood Associates, Inc. and Salmon Creek Hydroelectric Company informed the Commission that the exemption from licensing for the Salmon Creek Hydroelectric Project, FERC No. 3730, originally...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Duty Changed Circumstances Review: Fresh and Chilled Atlantic Salmon from Norway AGENCY: Import... Duty Changed Circumstances Review: Fresh and Chilled Atlantic Salmon from Norway SUMMARY: On August 5... antidumping order on fresh and chilled Atlantic Salmon from Norway and preliminarily determined that Nordic...
77 FR 26744 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-07
... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... of reduction payment tender of Southeast Alaska purse seine salmon permits. SUMMARY: The National... Southeast Alaska purse seine salmon fishery. The program authorizes NMFS to make payments to permit holders...
50 CFR 224.101 - Enumeration of endangered marine and anadromous species.
Code of Federal Regulations, 2010 CFR
2010-10-01
... salmon Salmo salar U.S.A., ME, Gulf of Maine Distinct Population Segment. The GOM DPS includes all anadromous Atlantic salmon whose freshwater range occurs in the watersheds from the Androscoggin River...). Excluded are landlocked salmon and those salmon raised in commercial hatcheries for aquaculture 65 FR 69469...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
...] (Formerly Docket No. 1998N-0046) Compliance Policy Guide Sec. 540.375 Canned Salmon -- Adulteration... of Compliance Policy Guide Sec. 540.375 Canned Salmon -- Adulteration Involving Decomposition (CPG... relating to decomposition in fish and fishery products, including canned salmon, is provided in CPG Sec...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... Commercial and Recreational Salmon Fisheries; Inseason Actions 12 Through 34 AGENCY: National Marine... the ocean salmon fisheries. These inseason actions modified the commercial and recreational salmon... ocean salmon fisheries (78 FR 25865, May 3, 2013), NMFS announced the commercial and recreational...
75 FR 78929 - Fraser River Sockeye Salmon Fisheries; Inseason Orders
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
...-XZ20 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders; request for comments. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate salmon fisheries in U.S. waters. The orders were issued by the Fraser River Panel (Panel) of the...
78 FR 45478 - Proposed Establishment of Class E Airspace; Salmon, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
...-0531; Airspace Docket No. 13-ANM-20] Proposed Establishment of Class E Airspace; Salmon, ID AGENCY... action proposes to establish Class E airspace at the Salmon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Salmon, ID, to facilitate vectoring of Instrument Flight Rules...
50 CFR 679.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Alaska. (i) Fishery Management Plan for the Salmon Fisheries in the EEZ off the Coast of Alaska (Salmon FMP). (1) Regulations in this part govern fishing for salmon by fishing vessels of the United States in the Salmon Management Area. (2) State of Alaska laws and regulations that are consistent with the...
[Avoidance of injuries to migrating fish by hydropower and water intake plants].
Adam, B
2004-03-01
Every year numerous downstream migrating fish are lethally injured by hydro power plants and inlet works. Especially the katadromous Eel (Anguilla anguilla) and anadromous species like Atlantic Salmon (Salmo salar), which have to migrate downstream into the ocean for closing their life cycle, are highly endangered. Due to their specific migratory behavioral pattern, size and morphology conventional protection techniques, like screens do not properly keep them out from getting into the power plant intakes. Despite of the relevance of this problem for ecology and fishing, there are no protection and downstream migration facilities in Europe available, which can efficiently avoid the damage of all species and sizes of downstream migrating fish. Nevertheless according to protect the fish populations it's necessary to use consequently fish protection and downstream migration facilities, i.e. mechanical barrieres or alternative techniques like early warning systems as a prerequisit for a fish-friendly operational management of hydro power plants.
Sea-louse parasites on juvenile wild salmon in the Broughton Archipelago, British Columbia, Canada.
Peacock, Stephanie J; Bateman, Andrew W; Krkošek, Martin; Connors, Brendan; Rogers, Scott; Portner, Lauren; Polk, Zephyr; Webb, Coady; Morton, Alexandra
2016-07-01
The global expansion of aquaculture has changed the structure of fish populations in coastal environments, with implications for disease dynamics. In Pacific Canada, farmed salmon act as reservoir hosts for parasites and pathogens, including sea lice (Lepeophtheirus salmonis and Caligus clemensi) that can transmit to migrating wild salmon. Assessing the impact of salmon farms on wild salmon requires regular monitoring of sea-louse infections on both farmed and wild fish. Since 2001, we have collected juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon annually at three sites in the Broughton Archipelago in British Columbia, Canada, during the annual juvenile salmon migration from fresh water to the open ocean. From sampled fish, we recorded counts of parasitic copepodid-, chalimus-, and motile-stage sea lice. We report louse abundances as well as supplementary observations of fish size, development, and health. © 2016 by the Ecological Society of America.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-15
... 11 evolutionarily significant units (ESUs) of Pacific salmon (Oncorhynchus sp.) and 6 distinct... and 6 DPSs of steelhead in Oregon, Washington, and Idaho shall remain listed as determined in 2005... Sound Chinook salmon; (4) Lower Columbia River Chinook salmon; (5) Upper Willamette Chinook salmon; (6...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-15
... southward extension of boundaries for California Coastal Chinook salmon and Central California Coast coho... reviews for listed Pacific salmon ESUs and steelhead DPSs in California, Oregon, Washington, and Idaho (75... for: (1) Southern Oregon/Northern California coho salmon; (2) California Coastal Chinook salmon; (3...
USDA-ARS?s Scientific Manuscript database
Potential feed ingredients with high lipid content were made by enzymatic digestion followed by centrifugation of eye tissue from dusky rockfish (Sebastes ciliatos), coho salmon (Oncorhynchus kisutch), and sockeye salmon (Oncorhynchus nerka) and brain tissue from sockeye salmon. Materials with high ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... Collection; Comment Request; Reporting Requirements for the Ocean Salmon Fishery Off the Coasts of Washington..., designated regulatory areas in the commercial ocean salmon fishery off the coasts of Washington, Oregon, and... requirements to land salmon within specific time frames and in specific areas may be implemented in the...
The Lummi Indians and the Canadian/American Pacific Salmon Treaty.
ERIC Educational Resources Information Center
Boxberger, Daniel L.
1988-01-01
Explores the probable impact of the 1985 international Pacific Salmon Treaty on the Lummi tribe's catch of Fraser River salmon and economic well-being. Discusses the 1974 Boldt Decision, which allocated half of Washington State's salmon catch to treaty tribes, and contradictions in the federal government's conception of international treaties. (SV)
75 FR 24482 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2010 Management Measures
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
.... 100218107-0199-01] RIN 0648-AY60 Fisheries Off West Coast States; West Coast Salmon Fisheries; 2010... rule, NMFS establishes fishery management measures for the 2010 ocean salmon fisheries off Washington, Oregon, and California and the 2011 salmon seasons opening earlier than May 1, 2011. Specific fishery...
78 FR 33810 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-05
... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... reduction loan for the fishing capacity reduction program in the Southeast Alaska purse seine salmon fishery... July 22, 2012. Since then, all harvesters of Southeast Alaska purse seine salmon must pay the fee and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
...] Notice of Request for Extension of Approval of an Information Collection; Infectious Salmon Anemia... of indemnity due to infectious salmon anemia. DATES: We will consider all comments that we receive on... the payment of indemnity due to infectious salmon anemia, contact Dr. William G. Smith, Area...
76 FR 25246 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2011 Management Measures
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
.... 110223162-1268-01] RIN 0648-XA184 Fisheries Off West Coast States; West Coast Salmon Fisheries; 2011... environmental assessment. SUMMARY: NMFS establishes fishery management measures for the 2011 ocean salmon fisheries off Washington, Oregon, and California and the 2012 salmon seasons opening earlier than May 1...
77 FR 41754 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... program in the Southeast Alaska purse seine salmon fishery. NMFS conducted a referendum to approve the..., Chief, Financial Services Division, NMFS, Attn: SE Alaska Purse Seine Salmon Buyback, 1315 East-West...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
... Establishment for White Salmon Wild and Scenic River ``Lower Segment'', Gifford Pinchot National Forest..., is transmitting the final amended boundary of the White Salmon Wild and Scenic River ``Lower Segment... Friday. SUPPLEMENTARY INFORMATION: The White Salmon Wild and Scenic River ``Lower Segment'' boundary is...
77 FR 10772 - Fresh and Chilled Atlantic Salmon From Norway
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-23
... and Chilled Atlantic Salmon From Norway Determination On the basis of the record \\1\\ developed in the... countervailing duty order and antidumping duty order on fresh and chilled Atlantic salmon from Norway would not... and Chilled Atlantic Salmon from Norway: Investigation Nos. 701-TA-302 and 731-TA-454 (Third Review...
77 FR 19004 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... Salmon Fishery. DATES: Comments must be submitted on or before 5 p.m. EST April 13, 2012. ADDRESSES: Send... Seine Salmon Buyback, 1315 East-West Highway, Silver Spring, MD 20910 (see FOR FURTHER INFORMATION...
78 FR 25865 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2013 Management Measures
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
.... 130108020-3409-01] RIN 0648-XC438 Fisheries Off West Coast States; West Coast Salmon Fisheries; 2013.... SUMMARY: Through this final rule NMFS establishes fishery management measures for the 2013 ocean salmon fisheries off Washington, Oregon, and California and the 2014 salmon seasons opening earlier than May 1...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-25
... 660 [Docket No. 120614172-2395-01] RIN 0648-BC29 Fisheries Off West Coast States; West Coast Salmon... CONTACT: Peggy Mundy, Northwest Region Salmon Management Division, NMFS, 206-526-4323. SUPPLEMENTARY... specified each year, designated regulatory areas in the commercial ocean salmon fishery off the coasts of...
Springer, Alan M; van Vliet, Gus B
2014-05-06
Climate change in the last century was associated with spectacular growth of many wild Pacific salmon stocks in the North Pacific Ocean and Bering Sea, apparently through bottom-up forcing linking meteorology to ocean physics, water temperature, and plankton production. One species in particular, pink salmon, became so numerous by the 1990s that they began to dominate other species of salmon for prey resources and to exert top-down control in the open ocean ecosystem. Information from long-term monitoring of seabirds in the Aleutian Islands and Bering Sea reveals that the sphere of influence of pink salmon is much larger than previously known. Seabirds, pink salmon, other species of salmon, and by extension other higher-order predators, are tightly linked ecologically and must be included in international management and conservation policies for sustaining all species that compete for common, finite resource pools. These data further emphasize that the unique 2-y cycle in abundance of pink salmon drives interannual shifts between two alternate states of a complex marine ecosystem.
History and effects of hatchery salmon in the Pacific
Nielsen, Jennifer L.; Gallaugher, Patricia; Wood, Laurie
2004-01-01
There has been a long history of production of hatchery salmon along the Pacific coast - from California’s first efforts in the 1870s using eggs from chinook and rainbow trout to the recent large-scale production hatcheries for pink salmon in Japan and the Russian Far East. The rationale for this production has also varied from replacement of fish lost in commercial ocean harvests to mitigation and restoration of salmon in areas where extensive habitat alteration has reduced salmonid viability and abundance. Over the years, we have become very successful in producing a certain type of product from salmon hatcheries, but until recently we seldom questioned the impacts the production and release of hatchery fish may have on freshwater and marine aquatic ecosystems and on the sustainability of sympatric wild salmon populations. This paper addresses the history of hatcheries around the Pacific Rim and considers potential negative implications of hatchery-produced salmon through discussions of biological impacts and biodiversity, ecological impacts and competitive displacement, fish and ecosystem health, and genetic impacts of hatchery fish as threats to wild populations of Pacific salmon.
Wilzbach, M.A.; Mather, M. E.; Folt, C.L.; Moore, A.; Naiman, R.J.; Youngson, A.F.; McMenemy, J.
1998-01-01
Incorporating human impacts into conservation plans is critical to protect natural resources. Using a model that examines how anthropogenic changes might be proactively influenced to promote conservation, we argue that a denser human population does not spell inevitable doom for Atlantic salmon (Salmo salar). Humans affect the Atlantic salmon ecosystem deleteriously through landscape alteration, exploitation, external inputs, and resource competition. An intact ecosystem provides positive feedback to society by providing food, ecosystem services, and improving the quality of life. As Atlantic salmon and associated ecosystem benefits are increasingly valued by society, policies, laws, and regulations that protect salmon populations and habitats are codified into a 'control system' or institutional infrastructure. Via research that helps maintain wild salmon populations and in informing the public about the benefits of a healthy Atlantic salmon ecosystem, scientists can influence public attitudes and facilitate the implementation of environmental policies that moderate harmful anthropogenic changes. Because exchange among scientists is of paramount importance in increasing our understanding of important interrelationships between humans and fish, we recommend the establishment of an international salmon organizational for research.
McEwan, Gregor F; Groner, Maya L; Fast, Mark D; Gettinby, George; Revie, Crawford W
2015-01-01
A major challenge for Atlantic salmon farming in the northern hemisphere is infestation by the sea louse parasite Lepeophtheirus salmonis. The most frequent method of controlling these sea louse infestations is through the use of chemical treatments. However, most major salmon farming areas have observed resistance to common chemotherapeutants. In terrestrial environments, many strategies employed to manage the evolution of resistance involve the use of refugia, where a portion of the population is left untreated to maintain susceptibility. While refugia have not been deliberately used in Atlantic salmon farming, wild salmon populations that migrate close to salmon farms may act as natural refugia. In this paper we describe an agent-based model that explores the influence of different sizes of wild salmon populations on resistance evolution in sea lice on a salmon farm. Using the model, we demonstrate that wild salmon populations can act as refugia that limit the evolution of resistance in the sea louse populations. Additionally, we demonstrate that an increase in the size of the population of wild salmon results in an increased effect in slowing the evolution of resistance. We explore the effect of a population fitness cost associated with resistance, finding that in some cases it substantially reduces the speed of evolution to chemical treatments.
Quinn, Thomas P.; Wetzel, Lisa A.; Bishop, Susan; Overberg, Kristi; Rogers, Donald E.
2001-01-01
Age structure and morphology differ among Pacific salmon (Oncorhynchus spp.) populations. Sexual selection and reproductive capacity (fecundity and egg size) generally favor large (old), deep-bodied fish. We hypothesized that natural selection from physical access to spawning grounds and size-biased predation by bears, Ursus spp., opposes such large, deep-bodied salmon. Accordingly, size and shape of salmon should vary predictably among spawning habitats. We tested this hypothesis by measuring the age composition and body depth of sockeye salmon, Oncorhynchus nerka, and the intensity of predation in a range of breeding habitats in southwestern Alaska. Stream width was positively correlated with age at maturity and negatively correlated with predation level. However, salmon spawning on lake beaches were not consistently old, indicating that different factors affect age in riverine- and beach-spawning populations. Body depths of male and female salmon were positively correlated with water depth across all sites, as predicted. However, the mouths of some streams were so shallow that they might select against large or deep-bodied salmon, even in the absence of bear predation. Taken together, the results indicated that habitat has direct and indirect effects (via predation) on life history and morphology of mature salmon.
One Northwest community - People, salmon, rivers, and the sea: Towards sustainable salmon fisheries
MacDonald, Donald D.; Steward, Cleveland R.; Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald; Williams, Jack E.; Reiser, Dudley W.
1999-01-01
Pacific salmon management is in crisis. Throughout their range, salmon and steelhead populations are being adversely affected by human activities. Without coordinated, effective, and timely action, the future of the Pacific salmon resource is most certainly in doubt. To address the challenges that are currently facing salmon management, concerned citizens representing a diverse array of government agencies and non-governmental organizations have agreed to cooperate in the development of a Sustainable Fisheries Strategy for west coast salmon and steelhead populations. The Strategy builds on the contents of this book, resulting from the Sustainable Fisheries Conference and subsequent community- and watershed-based citizen forums. This chapter presents the key elements of the Strategy including a common vision for the future, a series of guiding principles, and specific strategies for supporting sustainable fisheries. As such, the Strategy embraces an ecosystem-based approach to managing human activities, rather than the traditional egocentric approach to managing salmonid populations and associated habitats. A system of community-based, watershed-oriented councils, including all stakeholders and agency representatives, is proposed for effective transition to ecosystem-based salmon and steelhead management. It is our hope that everyone involved in Pacific salmon management will embrace both the spirit and the specific elements of the Sustainable Fisheries Strategy as we face the difficult challenges ahead.
Madhun, A S; Isachsen, C H; Omdal, L M; Einen, A C B; Maehle, S; Wennevik, V; Niemelä, E; Svåsand, T; Karlsbakk, E
2018-05-01
Heart and skeletal muscle inflammation (HSMI) caused by piscine orthoreovirus (PRV) and pancreas disease (PD) caused by salmonid alphavirus (SAV) are among the most prevalent viral diseases of Atlantic salmon farmed in Norway. There are limited data about the impact of disease in farmed salmon on wild salmon populations. Therefore, the prevalence of PRV and SAV in returning salmon caught in six sea sites was determined using real-time RT-PCR analyses. Of 419 salmon tested, 15.8% tested positive for PRV, while none were positive for SAV. However, scale reading revealed that 10% of the salmon had escaped from farms. The prevalence of PRV in wild salmon (8%) was significantly lower than in farm escapees (86%), and increased with fish length (proxy for age). Sequencing of the S1 gene of PRV from 39 infected fish revealed a mix of genotypes. The observed increase in PRV prevalence with fish age and the lack of phylogeographic structure of the virus could be explained by virus transmission in the feeding areas. Our results highlight the need for studies about the prevalence of PRV and other pathogens in Atlantic salmon in its oceanic phase. © 2018 The Authors. Journal of Fish Diseases Published by John Wiley & Sons Ltd.
Reduced trace element concentrations in fast-growing juvenile Atlantic salmon in natural streams.
Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L
2010-05-01
To assess the effect of rapid individual growth on trace element concentrations in fish, we measured concentrations of seven trace elements (As, Cd, Cs, Hg, Pb, Se, Zn) in stream-dwelling Atlantic salmon (Salmo salar) from 15 sites encompassing a 10-fold range in salmon growth. All salmon were hatched under uniform conditions, released into streams, and sampled approximately 120 days later for trace element analysis. For most elements, element concentrations in salmon tracked those in their prey. Fast-growing salmon had lower concentrations of all elements than slow growers, after accounting for prey concentrations. This pattern held for essential and nonessential elements, as well as elements that accumulate from food and those that can accumulate from water. At the sites with the fastest salmon growth, trace element concentrations in salmon were 37% (Cs) to 86% (Pb) lower than at sites where growth was suppressed. Given that concentrations were generally below levels harmful to salmon and that the pattern was consistent across all elements, we suggest that dilution of elements in larger biomass led to lower concentrations in fast-growing fish. Streams that foster rapid, efficient fish growth may produce fish with lower concentrations of elements potentially toxic for human and wildlife consumers.
A Process-Based Assessment for Watershed Restoration Planning, Chehalis River Basin, USA
NASA Astrophysics Data System (ADS)
Beechie, T. J.; Thompson, J.; Seixas, G.; Fogel, C.; Hall, J.; Chamberlin, J.; Kiffney, P.; Pollock, M. M.; Pess, G. R.
2016-12-01
Three key questions in identifying and prioritizing river restoration are: (1) How have habitats changed?, (2) What are the causes of those habitat changes?, and (3) How of those changes affected the species of interest? To answer these questions and assist aquatic habitat restoration planning in the Chehalis River basin, USA, we quantified habitat changes across the river network from headwaters to the estuary. We estimated historical habitat capacity to support salmonids using a combination of historical assessments, reference sites, and models. We also estimated current capacity from recent or newly created data sets. We found that losses of floodplain habitats and beaver ponds were substantial, while the estuary was less modified. Both tributary and main channel habitats—while modified—did not show particularly large habitat changes. Assessments of key processes that form and sustain habitats indicate that riparian functions (shading and wood recruitment) have been significantly altered, although peak and low flows have also been altered in some locations. The next step is to link our habitat assessments to salmon life-cycle models to evaluate which life stages and habitat types currently constrain population sizes of spring and fall Chinook salmon, coho salmon, and steelhead. By comparing model runs that represent different components of habitat losses identified in the analysis above, life-cycle models help identify which habitat losses have most impacted each species and population. This assessment will indicate which habitat types provide the greatest restoration potential, and help define a guiding vision for restoration efforts. Future analyses may include development and evaluation of alternative restoration scenarios, including different climate change scenarios, to refine our understanding of which restoration actions provide the greatest benefit to a salmon population.
Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian
2015-12-01
Sea lice are one of the main parasites affecting the salmon aquaculture industry, causing significant economic losses worldwide. Increased resistance to traditional chemical treatments has created the need to find alternative control methods. Therefore, the objective of this study was to identify the transcriptome response of the salmon louse Caligus rogercresseyi to the delousing drug deltamethrin (AlphaMax™). Through bioassays with different concentrations of deltamethrin, adult salmon lice transcriptomes were sequenced from cDNA libraries in the MiSeq Illumina platform. A total of 78 million reads for females and males were assembled in 30,212 and 38,536 contigs, respectively. De novo assembly yielded 86,878 high-quality contigs and, based on published data, it was possible to annotate and identify relevant genes involved in several biological processes. RNA-seq analysis in conjunction with heatmap hierarchical clustering evidenced that pyrethroids modify the ectoparasitic transcriptome in adults, affecting molecular processes associated with the nervous system, cuticle formation, oxidative stress, reproduction, and metabolism, among others. Furthermore, sex-related transcriptome differences were evidenced. Specifically, 534 and 1033 exclusive transcripts were identified for males and females, respectively, and 154 were shared between sexes. For males, estradiol 17-beta-dehydrogenase, sphingolipid delta4-desaturase DES1, ketosamine-3-kinase, and arylsulfatase A, among others, were discovered, while for females, vitellogenin 1, glycoprotein G, transaldolase, and nitric oxide synthase were among those identified. The shared transcripts included annotations for tropomyosin, γ-crystallin A, glutamate receptor-metabotropic, glutathione S-transferase, and carboxipeptidase B. The present study reveals that deltamethrin generates a complex transcriptome response in C. rogercresseyi, thus providing valuable genomic information for developing new delousing drugs.
NASA Astrophysics Data System (ADS)
Christensen, J. R.; Ross, P. S.; Whiticar, M. J.
2004-12-01
The coastal grizzly bears of British Columbia (BC, Canada) rely heavily on salmon returning from the Pacific Ocean, whereas interior bears do not have access to or readily utilize this marine-derived food source. Since salmon have been shown to accumulate persistent organic pollutants (POPs) from the North Pacific Ocean, we hypothesized that salmon consumption by grizzly bears would be reflected by an increase in the POP burden. To test this hypothesis we collected hair and fat tissue from grizzlies at various locations around BC to compare salmon-eating (coastal) grizzlies to non-salmon-eating (interior) grizzlies. We characterized the feeding habits for each bear sampled by measuring the stable carbon and nitrogen isotope signature of their hair. The positive relationship between 13C/12C and 15N/14N isotopic ratios suggests that the majority of the meat portion of the diet of coastal grizzlies is coming from salmon, rather than from terrestrial or freshwater sources. By contrast, stable isotope ratios revealed that interior bears have an almost exclusive vegetarian diet with no marine influence. As hypothesized, the coastal grizzly bears have significantly greater OC pesticide and lower-brominated PBDE congener body burden than the interior grizzlies. We also found a positive relationship between C and N isotope ratios and these same POP contaminants in bear tissue. Overall, these results demonstrate that Pacific salmon represents a significant vector delivering both OC pesticides and PBDEs to BC coastal grizzly bears.
Garseth, Å H; Fritsvold, C; Opheim, M; Skjerve, E; Biering, E
2013-05-01
This is the first comprehensive study on the occurrence and distribution of piscine reovirus (PRV) in Atlantic salmon, Salmo salar L., caught in Norwegian rivers. PRV is a newly discovered reovirus associated with heart and skeletal muscle inflammation (HSMI), a serious and commercially important disease affecting farmed Atlantic salmon in Norway. A cross-sectional survey based on real-time RT-PCR screening of head kidney samples from wild, cultivated and escaped farmed Atlantic salmon caught from 2007 to 2009 in Norwegian rivers has been conducted. In addition, anadromous trout (sea-trout), Salmo trutta L., caught from 2007 to 2010, and anadromous Arctic char, Salvelinus alpinus (L.), caught from 2007 to 2009, were tested. PRV was detected in Atlantic salmon from all counties included in the study and in 31 of 36 examined rivers. PRV was also detected in sea-trout but not in anadromous Arctic char. In this study, the mean proportion of PRV positives was 13.4% in wild Atlantic salmon, 24.0% in salmon released for stock enhancement purposes and 55.2% in escaped farmed salmon. Histopathological examination of hearts from 21 PRV-positive wild and one cultivated salmon (Ct values ranging from 17.0 to 39.8) revealed no HSMI-related lesions. Thus, it seems that PRV is widespread in Atlantic salmon returning to Norwegian rivers, and that the virus can be present in high titres without causing lesions traditionally associated with HSMI. © 2012 Blackwell Publishing Ltd.
Varlet, Vincent; Serot, Thierry; Cardinal, Mireille; Knockaert, Camille; Prost, Carole
2007-05-30
The volatile compounds of salmon fillets smoked according to four smoked generation techniques (smoldering, thermostated plates, friction, and liquid smoke) were investigated. The main odor-active compounds were identified by gas chromatography coupled with olfactometry and mass spectrometry. Only the odorant volatile compounds detected by at least six judges (out of eight) were identified as potent odorants. Phenolic compounds and guaiacol derivatives were the most detected compounds in the olfactometric profile whatever the smoking process and could constitute the smoky odorant skeleton of these products. They were recovered in the aromatic extracts of salmon smoked by smoldering and by friction, which were characterized by 18 and 25 odor-active compounds, respectively. Furannic compounds were more detected in products smoked with thermostated plates characterized by 26 odorants compounds. Finally, the 27 odorants of products treated with liquid smoke were significantly different from the three others techniques applying wood pyrolysis because pyridine derivatives and lipid oxidation products were perceived in the aroma profile.
Lovy, Jan; Piesik, P.; Hershberger, P.K.; Garver, K.A.
2013-01-01
In British Columbia, Canada (BC), aquaculture of finfish in ocean netpens has the potential for pathogen transmission between wild and farmed species due to the sharing of an aquatic environment. Viral hemorrhagic septicemia virus (VHSV) is enzootic in BC and causes serious disease in wild Pacific herring, Clupea pallasii, which often enter and remain in Atlantic salmon, Salmo salar, netpens. Isolation of VHSV from farmed Atlantic salmon has been previously documented, but the effects on the health of farmed salmon and the wild fish sharing the environment are unknown. To determine their susceptibility, Atlantic salmon were exposed to a pool of 9 isolates of VHSV obtained from farmed Atlantic salmon in BC by IP-injection or by waterborne exposure and cohabitation with diseased Pacific herring. Disease intensity was quantified by recording mortality, clinical signs, histopathological changes, cellular sites of viral replication, expression of interferon-related genes, and viral tissue titers. Disease ensued in Atlantic salmon after both VHSV exposure methods. Fish demonstrated gross disease signs including darkening of the dorsal skin, bilateral exophthalmia, light cutaneous hemorrhage, and lethargy. The virus replicated within endothelial cells causing endothelial cell necrosis and extensive hemorrhage in anterior kidney. Infected fish demonstrated a type I interferon response as seen by up-regulation of genes for IFNα, Mx, and ISG15. In a separate trial infected salmon transmitted the virus to sympatric Pacific herring. The results demonstrate that farmed Atlantic salmon can develop clinical VHS and virus can persist in the tissues for at least 10 weeks. Avoiding VHS epizootics in Atlantic salmon farms would limit the potential of VHS in farmed Atlantic salmon, the possibility for further host adaptation in this species, and virus spillback to sympatric wild fishes.
Linkages between Alaskan sockeye salmon abundance, growth at sea, and climate, 1955-2002
Ruggerone, G.T.; Nielsen, J.L.; Bumgarner, J.
2007-01-01
We tested the hypothesis that increased growth of salmon during early marine life contributed to greater survival and abundance of salmon following the 1976/1977 climate regime shift and that this, in turn, led to density-dependent reductions in growth during late marine stages. Annual measurements of Bristol Bay (Bering Sea) and Chignik (Gulf of Alaska) sockeye salmon scale growth from 1955 to 2002 were used as indices of body growth. During the first and second years at sea, growth of both stocks tended to be higher after the 1976-1977 climate shift, whereas growth during the third year and homeward migration was often below average. Multiple regression models indicated that return per spawner of Bristol Bay sockeye salmon and adult abundance of western and central Alaska sockeye salmon were positively correlated with growth during the first 2 years at sea and negatively correlated with growth during later life stages. After accounting for competition between Bristol Bay sockeye and Asian pink salmon, age-specific adult length of Bristol Bay salmon increased after the 1976-1977 regime shift, then decreased after the 1989 climate shift. Late marine growth and age-specific adult length of Bristol Bay salmon was exceptionally low after 1989, possibly reducing their reproductive potential. These findings support the hypothesis that greater marine growth during the first 2 years at sea contributed to greater salmon survival and abundance, which in turn led to density-dependent growth during later life stages when size-related mortality was likely lower. Our findings provide new evidence supporting the importance of bottom-up control in marine ecosystems and highlight the complex dynamics of species interactions that continually change as salmon grow and mature in the ocean. ?? 2007 Elsevier Ltd. All rights reserved.
Isolation and identification of infectious salmon anaemia virus (ISAV) from Coho salmon in Chile.
Kibenge, F S; Gárate, O N; Johnson, G; Arriagada, R; Kibenge, M J; Wadowska, D
2001-05-04
The isolation of infectious salmon anaemia virus (ISAV) from asymptomatic wild fish species including wild salmon, sea trout and eel established that wild fish can be a reservoir of ISAV for farmed Atlantic salmon. This report characterizes the biological properties of ISAV isolated from a disease outbreak in farmed Coho salmon in Chile and compares it with ISAV isolated from farmed Atlantic salmon in Canada and Europe. The virus that was isolated from Coho salmon tissues was initially detected with ISAV-specific RT-PCR (reverse transcription-polymerase chain reaction). The ability of the virus to grow in cell culture was poor, as cytopathology was not always conspicuous and isolation required passage in the presence of trypsin. Virus replication in cell culture was detected by RT-PCR and IFAT (indirect fluorescent antibody test), and the virus morphology was confirmed by positive staining electron microscopy. Further analysis of the Chilean virus revealed similarities to Canadian ISAV isolates in their ability to grow in the CHSE-214 cell line and in viral protein profile. Sequence analysis of genome segment 2, which encodes the viral RNA polymerase PB1, and segment 8, which encodes the nonstructural proteins NS1 and NS2, showed the Chilean virus to be very similar to Canadian strains of ISAV. This high sequence similarity of ISAV strains of geographically distinct origins illustrates the highly conserved nature of ISAV proteins PB1, NS1 and NS2 of ISAV. It is noteworthy that ISAV was associated with disease outbreaks in farmed Coho salmon in Chile without corresponding clinical disease in farmed Atlantic salmon. This outbreak, which produced high mortality in Coho salmon due to ISAV, is unique and may represent the introduction of the virus to a native wild fish population or a new strain of ISAV.
Functional characterisation of a TLR accessory protein, UNC93B1, in Atlantic salmon (Salmo salar).
Lee, P T; Zou, J; Holland, J W; Martin, S A M; Scott, C J W; Kanellos, T; Secombes, C J
2015-05-01
Toll-like receptors (TLRs) are indispensable components of the innate immune system, which recognise conserved pathogen associated molecular patterns (PAMPs) and induce a series of defensive immune responses to protect the host. Biosynthesis, localisation and activation of TLRs are dependent on TLR accessory proteins. In this study, we identified the accessory protein, UNC93B1, from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs aided by the conserved gene synteny of genes flanking UNC93B1 in fish, birds and mammals. Phylogenetic analysis showed that salmon UNC93B1 grouped with other vertebrate UNC93B1 molecules, and had highest amino acid identity and similarity to zebrafish UNC93B1. The salmon UNC93B1 gene organisation was also similar in structure to mammalian UNC93B1. Our gene expression studies revealed that salmon UNC93B1 was more highly expressed in spleen, liver and gill tissues but was expressed at a lower level in head kidney tissue in post-smolts relative to parr. Moreover, salmon UNC93B1 mRNA transcripts were up-regulated in vivo in spleen tissue from polyI:C treated salmon and in vitro in polyI:C or IFNγ stimulated Salmon Head Kidney-1 (SHK-1) cells. Initial studies into the functional role of salmon UNC93B1 in fish TLR signalling found that both wild type salmon UNC93B1 and a molecule with a site-directed mutation (H424R) co-immunoprecipitated with salmon TLR19, TLR20a and TLR20d. Overall, these data illustrate the potential importance of UNC93B1 as an accessory protein in fish TLR signalling. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ilardi, Juan S
2012-01-01
The purpose of this ergonomic investigation is to establish a relationship between quality, productivity and risk of musculoskeletal disorder (MSD) in manual bone-removal process in the salmon fish industry. The method consists in a follow up study of 14 workers in a lane that processes salmon steak. Time between each steak (work cycle), quality of the steak's meat through inspection of deepness and length of the gapping generated by the manual bone-removal process and risk for musculoskeletal disorders through OCRA method were considered for this study. IMC and musculoskeletal Nordic Questionnaire of Kourinka were applied to the workers evaluated. Fourteen women worker's completed the evaluation, age 37.67 ± 8.1, with 65.27 ± 34.41 months of experience, with an IMC of 27.18 ± 3.87 (1.52 ± 0.057 meters of height) at the time of the evaluation. Time for deboning per steak averaged 38 ± 14 seconds with 68.33 ± 14.79 steaks per hour per worker. In quality terms, 74% of the steaks were qualified as "premium steaks" and 26% as "grade or industrial" (lower category and cheapest price). OCRA index for the right hand average 13.79 ± 4.59 and 3.59 ± 0.41 for the left hand. From Nordic questionnaire 80% of the workers manifested musculoskeletal symptoms in the right hand/wrist, followed up by shoulder with 60% of the workers and arm/elbow with over 50%. There was no statistically significant relationship between productivity and quality of the steak after manual bone removal process and between quality and MSD risk. However, there was a statistically significant relationship between productivity and MSD risk (p<0.05). Discussion around the results allows to see complementary results that did have strong correlation between MSD risk and the presence of lower grade salmon steaks and between areas that present musculoskeletal symptoms (MSS) and the intensity of the MSS (p<0.05). The results showed that further research is needed to validate these relationships, due to the increasing demands of health-care services from this productive sector, considering its importance for this region.
Using Grizzly Bears to Assess Harvest-Ecosystem Tradeoffs in Salmon Fisheries
MacDuffee, Misty; Mangel, Marc; Paquet, Paul; Wilmers, Christopher C.
2012-01-01
Implementation of ecosystem-based fisheries management (EBFM) requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for “salmon ecosystem” function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC), Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem) equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a generalizable method to resolve conflicts over shared resources in other systems. PMID:22505845
Using grizzly bears to assess harvest-ecosystem tradeoffs in salmon fisheries.
Levi, Taal; Darimont, Chris T; Macduffee, Misty; Mangel, Marc; Paquet, Paul; Wilmers, Christopher C
2012-01-01
Implementation of ecosystem-based fisheries management (EBFM) requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for "salmon ecosystem" function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC), Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem) equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a generalizable method to resolve conflicts over shared resources in other systems.
Liedtke, Theresa L.; Kock, Tobias J.; Evans, Scott D.; Hansen, Gabriel S.; Rondorf, Dennis W.
2014-01-01
In 2011 and 2012, WDFW conducted post-release mortality studies of steelhead (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) that were captured using beach or purse seines. These studies were comprised of two groups of fish tagged with passive integrated transponder tags (PIT tags): (1) treatment fish that were captured by one of the gear types 9–25 river kilometers (rkm) downstream of Bonneville Dam (rkm 234); and (2) control fish that were captured at the Adult Fish Facility near the Washington shore fish ladder at Bonneville Dam, and then transported and released 8 rkm downstream of the Bonneville Dam. Fish were confirmed to have survived if they moved upstream and were detected on PIT-tag antennas at or upstream of Bonneville Dam, were recovered at hatcheries or at the dam, or were captured by commercial or sport fishers. Post-release survival estimates were higher for steelhead (89–98 percent) than for Chinook salmon and coho salmon (50–90 percent; Washington Department of Fish and Wildlife, unpub. data, 2014). However, some Chinook salmon and coho salmon return to hatcheries, or spawn in the mainstem Columbia River and in tributaries downstream of Bonneville Dam. The proportion of Chinook salmon and coho salmon in the treatment group that were destined for areas downstream of Bonneville Dam likely was higher than in the control group because the control fish were collected as they were attempting to pass the dam. If this assertion was true, mortality would have been overestimated in these studies, so WDFW developed a study plan to determine the post-release movements and intended location of Chinook salmon and coho salmon collected with beach and purse seines in the lower Columbia River.
Exploring the Potential of Nucleic Acid Bases in Organic Light Emitting Diodes
2014-01-01
plant sources, including salmon sperm , [ 19 ] calf thymus, [ 20 ] and vegetation [ 21 ] . After harvesting and purifi cation, DNA takes the form of a...atmosphere. The temperature stability is defi ned here as the point of 5% decrease of the original mass except in those cases where water retention ...C. This is most likely due to water retention in the sample materials. Since DNA showed the greatest early mass loss, the TGA experiment was
NASA Astrophysics Data System (ADS)
Finney, B.
2002-12-01
The response of Pacific salmon to future climatic change is uncertain, but will have large impacts on the economy, culture and ecology of the North Pacific Rim. Relationships between sockeye salmon populations and climatic change can be determined by analyzing sediment cores from lakes where sockeye return to spawn. Sockeye salmon return to their natal lake system to spawn and subsequently die following 2 - 3 years of feeding in the North Pacific Ocean. Sockeye salmon abundance can be reconstructed from stable nitrogen isotope analysis of lake sediment cores as returning sockeye transport significant quantities of N, relatively enriched in N-15, from the ocean to freshwater systems. Temporal changes in the input of salmon-derived N, and hence salmon abundance, can be quantified through downcore analysis of N isotopes. Reconstructions of sockeye salmon abundance from lakes in several regions of Alaska show similar temporal patterns, with variability occurring on decadal to millennial timescales. Over the past 2000 years, shifts in sockeye salmon abundance far exceed the historical decadal-scale variability. A decline occurred from about 100 BC - 800 AD, but salmon were consistently more abundant 1200 - 1900 AD. Declines since 1900 AD coincide with the period of extensive commercial fishing. Correspondence between these records and paleoclimatic data suggest that changes in salmon abundance are related to large scale climatic changes over the North Pacific. For example, the increase in salmon abundance c.a. 1200 AD corresponds to a period of glacial advance in southern Alaska, and a shift to drier conditions in western North America. Although the regionally coherent patterns in reconstructed salmon abundance are consistent with the hypothesis that climate is an important driver, the relationships do not always follow patterns observed in the 20th century. A main feature of recorded climate variability in this region is the alternation between multi-decade periods of above and below average strength of the Aleutian Low pressure system. During periods of stronger low pressure, sea surface temperature anomalies are warm in the northeast Pacific and cool in the central and northwest Pacific, a condition referred to as the positive phase of the Pacific Interdecadal Oscillation (PDO). Historically, during positive phases of the PDO Alaska salmon abundance is generally high. Consistent with this pattern, records of reconstructed sockeye salmon generally show higher abundance during warm periods over the past 300 years. However, the long-term trend suggests generally higher abundance during the cooler Little Ice Age, which southern Alaska glacial records suggest occurred between about 1200 - 1900 AD. The apparent complexity of salmon-climate relationships may be due to several factors. Long-term paleoclimate records from this region suggest additional modes of North Pacific climate variability, relative to the PDO. In addition, data on primary and secondary production in the Northeast Pacific Ocean indicates that climatic forcing has a direct impact on lower trophic levels, which subsequently affects salmon production. Thus records of ocean productivity, which are currently unavailable, may provide a mechanistic linkage between climate change and salmon abundance. The long-term perspective provided by the paleodata suggest that historical observations provide a limited understanding of how Pacific salmon respond to climatic change, and point to important areas of research necessary to better predict future responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zollman, Richard L.; Eschler, Russell; Sealey, Shawn
2009-03-31
The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006, acclimation of Lostine River spring Chinook salmon smolts occurred from February 27, 2006 through to April 10, 2006 and a total of 240,568 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2004 egg source and included captive brood (40,982) and conventional (199,586) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2006 began May 15th, the first Chinook was captured on June 14, 2006 and the last Chinook was captured on September 27, 2006. The weir and trap were removed on October 1, 2006. A total of 534 adult Chinook, including jacks, were captured during the season. The composition of the run included 205 natural origin fish and 329 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 33 natural and 120 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning and 397 adult Chinook were passed or transported above the weir to spawn naturally. In 2006, no hatchery origin adult Chinook were transported and out planted in the Wallowa River and Bear Creek to spawn in under seeded habitat. In order to meet egg take goals for the conventional portion of the program, a determination was made that approximately 147 adults were needed for broodstock. As a result 16 (8 males and 8 females) of the 153 fish collected for broodstock were returned to the Lostine River to spawn naturally. Females that were spawned and provided the brood source were made up of 12 natural females and 45 supplementation females. One of these females tested positive for high levels of Bacterial Kidney Disease and consequently this females eggs were destroyed. The remaining females produced a total of 241,372 eggs at fertilization. Eye-up was 85.47% which yielded a total of 206,309 conventional program eyed eggs. The fecundity averaged 4,162 eggs per female. The brood year 2006 eggs will be incubated and reared at Lookingglass Hatchery until they are smolts in the spring of 2008. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2008.« less