Sample records for salmon smokehouse survival

  1. 3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES THAT INTRODUCED SMOKE INTO UNIT; FLOOR IS UNPAINTED STEEL - Rath Packing Company, Smokehouse-Hog Chilling Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  2. Prevalence and survival of Listeria monocytogenes in Danish aquatic and fish-processing environments.

    PubMed

    Hansen, Cisse Hedegaard; Vogel, Birte Fonnesbech; Gram, Lone

    2006-09-01

    Listeria monocytogenes contamination of ready-to-eat food products such as cold-smoked fish is often caused by pathogen subtypes persisting in food-processing environments. The purpose of the present study was to determine whether these L. monocytogenes subtypes can be found in the outside environment, i.e., outside food processing plants, and whether they survive better in the aquatic environment than do other strains. A total of 400 samples were collected from the outside environment, fish slaughterhouses, fish farms, and a smokehouse. L. monocytogenes was not detected in a freshwater stream, but prevalence increased with the degree of human activity: 2% in seawater fish farms, 10% in freshwater fish farms, 16% in fish slaughterhouses, and 68% in a fish smokehouse. The fish farms and slaughterhouses processed Danish rainbow trout, whereas the smokehouse was used for farm-raised Norwegian salmon. No variation with season was observed. Inside the processing plants, the pattern of randomly amplified polymorphic DNA (RAPD) types was homogeneous, but greater diversity existed among isolates from the outside environments. The RAPD type dominating the inside of the fish smokehouse was found only sporadically in outside environments. To examine survival in different environments, L. monocytogenes or Listeria innocua strains were inoculated into freshwater and saltwater microcosms. Pathogen counts decreased over time in Instant Ocean and remained constant in phosphate-buffered saline. In contrast, counts decreased rapidly in natural seawater and fresh water. The count reduction was much slower when the natural waters were autoclaved or filtered (0.2-microm pore size), indicating that the pathogen reduction in natural waters was attributable to a biological mechanism, e.g., protozoan grazing. A low prevalence of L. monocytogenes was found in the outside environment, and the bacteria did not survive well in natural environments. Therefore, L. monocytogenes in the outer

  3. Survival of Juvenile Chinook Salmon during Barge Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Skalski, J. R.; Deters, Katherine A.

    2011-12-01

    To mitigate for fish losses related to passage through the Federal Columbia River Power System, an extensive fish transportation program using barges and trucks to move fish around and downstream of dams and reservoirs was implemented in 1981. Population modeling and other analyses to support Pacific salmon recovery efforts have assumed that the survival of juvenile salmonids during the transportation experience was 98%. To estimate survival during barge transport from Lower Granite Dam on the Snake River to a release area downstream of Bonneville Dam, a distance of 470 km, we used a novel adaptation of a release-recapture model withmore » acoustic-tagged yearling Chinook salmon (Oncorhynchus tshawytscha) smolts. A total of 1,494 yearling Chinook salmon were surgically implanted with Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic transmitters and passive integrated transponders (PIT) and divided into three groups. The three tagged groups consisted of; (1) a group which was released into the raceway with the population of fish which were later loaded into transportation barges (R{sub B}), (2) a group which was held in a net-pen suspended within the general barge population until 5-6 h prior to barge evacuation, at which time they were confirmed to be alive and then released into the general barge population (R{sub A}), and (3) to validate a model assumption, a group which was euthanized and released into the barge population 2-8 h prior to barge evacuation (R{sub D}). Six replicates of these groups were loaded onto fish transport barges that departed Lower Granite Dam on the Snake River between 29 April and 13 May, 2010. Acoustic receiver arrays between 70 and 220 km downstream of the barge evacuation site were used to detect tagged fish and served as the basis for estimation of survival within the barge. Tag-life-corrected estimates of reach survival were calculated for barged and control fish in each of the six replicate trials. The ratio of survival

  4. Using cure models for analyzing the influence of pathogens on salmon survival

    USGS Publications Warehouse

    Ray, Adam R; Perry, Russell W.; Som, Nicholas A.; Bartholomew, Jerri L

    2014-01-01

    Parasites and pathogens influence the size and stability of wildlife populations, yet many population models ignore the population-level effects of pathogens. Standard survival analysis methods (e.g., accelerated failure time models) are used to assess how survival rates are influenced by disease. However, they assume that each individual is equally susceptible and will eventually experience the event of interest; this assumption is not typically satisfied with regard to pathogens of wildlife populations. In contrast, mixture cure models, which comprise logistic regression and survival analysis components, allow for different covariates to be entered into each part of the model and provide better predictions of survival when a fraction of the population is expected to survive a disease outbreak. We fitted mixture cure models to the host–pathogen dynamics of Chinook Salmon Oncorhynchus tshawytscha and Coho Salmon O. kisutch and the myxozoan parasite Ceratomyxa shasta. Total parasite concentration, water temperature, and discharge were used as covariates to predict the observed parasite-induced mortality in juvenile salmonids collected as part of a long-term monitoring program in the Klamath River, California. The mixture cure models predicted the observed total mortality well, but some of the variability in observed mortality rates was not captured by the models. Parasite concentration and water temperature were positively associated with total mortality and the mortality rate of both Chinook Salmon and Coho Salmon. Discharge was positively associated with total mortality for both species but only affected the mortality rate for Coho Salmon. The mixture cure models provide insights into how daily survival rates change over time in Chinook Salmon and Coho Salmon after they become infected with C. shasta.

  5. Pink salmon ( Oncorhynchus gorbuscha) marine survival rates reflect early marine carbon source dependency

    NASA Astrophysics Data System (ADS)

    Kline, Thomas C., Jr.; Boldt, Jennifer L.; Farley, Edward V., Jr.; Haldorson, Lewis J.; Helle, John H.

    2008-05-01

    Marine survival rate (the number of adult salmon returning divided by the number of salmon fry released) of pink salmon runs propagated by Prince William Sound, Alaska (PWS) salmon hatcheries is highly variable resulting in large year-to-year run size variation, which ranged from ∼20 to ∼50 million during 1998-2004. Marine survival rate was hypothesized to be determined during their early marine life stage, a time period corresponding to the first growing season after entering the marine environment while they are still in coastal waters. Based on the predictable relationships of 13C/ 12C ratios in food webs and the existence of regional 13C/ 12C gradients in organic carbon, 13C/ 12C ratios of early marine pink salmon were measured to test whether marine survival rate was related to food web processes. Year-to-year variation in marine survival rate was inversely correlated to 13C/ 12C ratios of early marine pink salmon, but with differences among hatcheries. The weakest relationship was for pink salmon from the hatchery without historic co-variation of marine survival rate with other PWS hatcheries or wild stocks. Year-to-year variation in 13C/ 12C ratio of early marine stage pink salmon in combination with regional spatial gradients of 13C/ 12C ratio measured in zooplankton suggested that marine survival was driven by carbon subsidies of oceanic origin (i.e., oceanic zooplankton). The 2001 pink salmon cohort had 13C/ 12C ratios that were very similar to those found for PWS carbon, i.e., when oceanic subsidies were inferred to be nil, and had the lowest marine survival rate (2.6%). Conversely, the 2002 cohort had the highest marine survival (9.7%) and the lowest mean 13C/ 12C ratio. These isotope patterns are consistent with hypotheses that oceanic zooplankton subsidies benefit salmon as food subsidies, or as alternate prey for salmon predators. Oceanic subsidies are manifestations of significant exchange of material between PWS and the Gulf of Alaska. Given

  6. Comparative survival and growth of Atlantic salmon from egg stocking and fry releases

    USGS Publications Warehouse

    Johnson, James H.

    2004-01-01

    First summer survival and subsequent growth of Atlantic salmon Salmo salar planted as eggs and fry in a tributary of Cayuga Lake, New York, were examined for 3 years. Atlantic salmon were planted in December 1999-2001 in 20 Whitlock-Vibert (W-V) egg incubators, each containing 300 eyed eggs. The following May, 500 fin-clipped Atlantic salmon fry were released in the same stream section. In autumn, a backpack electroshocker was used to capture fry to assess survival and growth. Mean survival was significantly greater for fry (27.9%) than eggs (0.8%). In autumn, mean length was significantly greater for Atlantic salmon released as fry (90.1 mm) than those planted as eggs (76.2 mm), probably owing to accelerated growth in the hatchery caused by warmer water temperatures (i.e., hatchery, 9.4A?C; stream, 5.1A?C). Releasing Atlantic salmon fry in May was nearly 11 times more costly in terms of hatchery effort than was releasing eggs in December. Although the survival of Atlantic salmon eggs in W-V incubators was low, when considering production costs, the use of egg plantings may warrant consideration under certain restoration or enhancement situations.

  7. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    Estimates of juvenile salmon survival are important data for fishery managers in the Yakima River Basin. Radiotelemetry studies during 2012–14 showed that tagged juvenile Chinook salmon (Oncorhynchus tshawytscha) that passed through the fish bypass at Roza Dam had lower survival than fish that passed through other routes at the dam. That study also identified flow-survival relationships in the reaches between the Roza Dam tailrace and Sunnyside Dam. During 2012–14, survival also was estimated through reaches downstream of Sunnyside Dam, but generally, sample sizes were low and the estimates were imprecise. In 2016, we conducted an evaluation using acoustic cameras and acoustic telemetry to build on information collected during the previous study. The goal of the 2016 research was to identify areas where mortality occurs in the fish bypass at Roza Dam, and to estimate reach-specific survival in reaches downstream of the dam. The 2016 study included juvenile Chinook salmon and coho salmon (O. kisutch).Three acoustic cameras were used to observe fish behavior (1) near the entrances to the fish bypass, (2) at a midway point in the fish bypass (convergence vault), and (3) at the bypass outfall. In total, 504 hours of acoustic camera footage was collected at these locations. We determined that smolt-sized fish (95–170 millimeters [mm]) were present in the highest proportions at each location, but predator-sized fish (greater than 250 mm) also were present at each site. Fish presence generally peaked during nighttime hours and crepuscular periods, and was low during daytime hours. In the convergence vault, smolt-sized fish exhibited holding behavior patterns, which may explain why some fish delayed while passing through the bypass.Some of the acoustic-tagged fish were delayed in the fish bypass following release, but there was no evidence to suggest that they experienced higher mortality than fish that were released at the bypass outfall or downstream of the dam

  8. In situ measurement of coastal ocean movements and survival of juvenile Pacific salmon

    PubMed Central

    Welch, David W.; Melnychuk, Michael C.; Payne, John C.; Rechisky, Erin L.; Porter, Aswea D.; Jackson, George D.; Ward, Bruce R.; Vincent, Stephen P.; Wood, Chris C.; Semmens, Jayson

    2011-01-01

    Many salmon populations in both the Pacific and Atlantic Oceans have experienced sharply decreasing returns and high ocean mortality in the past two decades, with some populations facing extirpation if current marine survival trends continue. Our inability to monitor the movements of marine fish or to directly measure their survival precludes experimental tests of theories concerning the factors regulating fish populations, and thus limits scientific advance in many aspects of fisheries management and conservation. Here we report a large-scale synthesis of survival and movement rates of free-ranging juvenile salmon across four species, 13 river watersheds, and 44 release groups of salmon smolts (>3,500 fish tagged in total) in rivers and coastal ocean waters, including an assessment of where mortality predominantly occurs during the juvenile migration. Of particular importance, our data indicate that, over the size range of smolts tagged, (i) smolt survival was not strongly related to size at release, (ii) tag burden did not appear to strongly reduce the survival of smaller animals, and (iii) for at least some populations, substantial mortality occurred much later in the migration and more distant from the river of origin than generally expected. Our findings thus have implications for determining where effort should be invested to improve the accuracy of salmon forecasting, to understand the mechanisms driving salmon declines, and to predict the impact of climate change on salmon stocks. PMID:21558442

  9. Passage survival of juvenile steelhead, coho salmon, and Chinook salmon in Lake Scanewa and at Cowlitz Falls Dam, Cowlitz River, Washington, 2010–16

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Hurst, William

    2018-04-03

    A multi-year evaluation was conducted during 2010–16 to evaluate passage survival of juvenile steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) in Lake Scanewa, and at Cowlitz Falls Dam in the upper Cowlitz River Basin, Washington. Reservoir passage survival was evaluated in 2010, 2011, and 2016, and included the tagging and release of 1,127 juvenile salmonids. Tagged fish were released directly into the Cowlitz and Cispus Rivers, 22.3 and 8.9 km, respectively, upstream of the reservoir, and were monitored as they moved downstream into, and through the reservoir. A single release-recapture survival model was used to analyze detection records and estimate reservoir passage survival, which was defined as successful passage from reservoir entry to arrival at Cowlitz Falls Dam. Tagged fish generally moved quickly downstream of the release sites and, on average, arrived in the dam forebay within 2 d of release. Median travel time from release to first detection at the dam ranged from 0.23 to 0.96 d for juvenile steelhead, from 0.15 to 1.11 d for juvenile coho salmon, and from 0.18 to 1.89 d for juvenile Chinook salmon. Minimum reservoir passage survival probabilities were 0.960 for steelhead, 0.855 for coho salmon and 0.900 for Chinook salmon.Dam passage survival was evaluated at the pilot-study level during 2013–16 and included the tagging and release of 2,512 juvenile salmonids. Juvenile Chinook salmon were evaluated during 2013–14, and juvenile steelhead and coho salmon were evaluated during 2015–16. A paired-release study design was used that included release sites located upstream and downstream of Cowlitz Falls Dam. The downstream release site was positioned at the downstream margin of the dam’s tailrace, which allowed dam passage survival to be measured in a manner that included mortality that occurred in the passage route and in the dam tailrace. More than one-half of the tagged Chinook salmon (52 percent

  10. Early marine growth in relation to marine-stage survival rates for Alaska sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Farley, Edward V.; Murphy, J.M.; Adkison, Milo D.; Eisner, Lisa B.; Helle, J.H.; Moss, J.H.; Nielsen, Jennifer L.

    2007-01-01

    We tested the hypothesis that larger juvenile sockeye salmon (Oncorhynchus nerka) in Bristol Bay, Alaska, have higher marine-stage survival rates than smaller juvenile salmon. We used scales from returning adults (33 years of data) and trawl samples of juveniles (n= 3572) collected along the eastern Bering Sea shelf during August through September 2000−02. The size of juvenile sockeye salmon mirrored indices of their marine-stage survival rate (e.g., smaller fish had lower indices of marine-stage survival rate). However, there was no relationship between the size of sockeye salmon after their first year at sea, as estimated from archived scales, and brood-year survival size was relatively uniform over the time series, possibly indicating size-selective mortality on smaller individuals during their marine residence. Variation in size, relative abundance, and marine-stage survival rate of juvenile sockeye salmon is likely related to ocean conditions affecting their early marine migratory pathways along the eastern Bering Sea shelf.

  11. An Investigation into the Poor Survival of an Endangered Coho Salmon Population

    PubMed Central

    Chittenden, Cedar M.; Melnychuk, Michael C.; Welch, David W.; McKinley, R. Scott

    2010-01-01

    To investigate reasons for the decline of an endangered population of coho salmon (O. kisutch), 190 smolts were acoustically tagged during three consecutive years and their movements and survival were estimated using the Pacific Ocean Shelf Tracking project (POST) array. Median travel times of the Thompson River coho salmon smolts to the lower Fraser River sub-array were 16, 12 and 10 days during 2004, 2005 and 2006, respectively. Few smolts were recorded on marine arrays. Freshwater survival rates of the tagged smolts during their downstream migration were 0.0–5.6% (0.0–9.0% s.e.) in 2004, 7.0% (6.2% s.e.) in 2005, and 50.9% (18.6% s.e.) in 2006. Overall smolt-to-adult return rates exhibited a similar pattern, which suggests that low freshwater survival rates of out-migrating smolts may be a primary reason for the poor conservation status of this endangered coho salmon population. PMID:20526367

  12. Effects of smolt release timing and size on the survival of hatchery-origin coho salmon in the Strait of Georgia

    NASA Astrophysics Data System (ADS)

    Irvine, J. R.; O'Neill, M.; Godbout, L.; Schnute, J.

    2013-08-01

    Altering release sizes and timings of coho salmon smolts from hatcheries in the Strait of Georgia will not reverse the precipitous survival declines of the past three decades. We modeled the effects on survival of ocean entry year, mean smolt size (weight), and release day. Ocean entry year was by far the most important. During 1979-2006, smolt to adult survivals declined similarly for hatchery and wild coho salmon, although wild salmon consistently survived at higher rates. Best models differed among hatcheries, implying location-specific differences in the optimal size and timing of release. At four of five hatcheries, heavier smolts survived significantly better than lighter smolts. At one hatchery, a significant interaction between ocean entry year and smolt weight reflected an increased positive effect of weight later in the time series. At two Vancouver Island hatcheries, early release groups appeared to survive better than later releases in early years, while later release groups survived best in recent years. We recommend: (1) hatchery managers release coho salmon smolts throughout the outmigration period of higher surviving wild coho salmon smolts and (2) an experimental approach using hatcheries to evaluate density-dependent effects on coho salmon growth and survival.

  13. Changing central Pacific El Niños reduce stability of North American salmon survival rates

    PubMed Central

    Kilduff, D. Patrick; Di Lorenzo, Emanuele; Botsford, Louis W.; Teo, Steven L. H.

    2015-01-01

    Pacific salmon are a dominant component of the northeast Pacific ecosystem. Their status is of concern because salmon abundance is highly variable—including protected stocks, a recently closed fishery, and actively managed fisheries that provide substantial ecosystem services. Variable ocean conditions, such as the Pacific Decadal Oscillation (PDO), have influenced these fisheries, while diminished diversity of freshwater habitats have increased variability via the portfolio effect. We address the question of how recent changes in ocean conditions will affect populations of two salmon species. Since the 1980s, El Niño Southern Oscillation (ENSO) events have been more frequently associated with central tropical Pacific warming (CPW) rather than the canonical eastern Pacific warming ENSO (EPW). CPW is linked to the North Pacific Gyre Oscillation (NPGO), whereas EPW is linked to the PDO, different indicators of northeast Pacific Ocean ecosystem productivity. Here we show that both coho and Chinook salmon survival rates along western North America indicate that the NPGO, rather than the PDO, explains salmon survival since the 1980s. The observed increase in NPGO variance in recent decades was accompanied by an increase in coherence of local survival rates of these two species, increasing salmon variability via the portfolio effect. Such increases in coherence among salmon stocks are usually attributed to controllable freshwater influences such as hatcheries and habitat degradation, but the unknown mechanism underlying the ocean climate effect identified here is not directly subject to management actions. PMID:26240365

  14. Mutagenicity testing in the Salmonella typhimurium assay of phenolic compounds and phenolic fractions obtained from smokehouse smoke condensates.

    PubMed

    Pool, B L; Lin, P Z

    1982-08-01

    Smokehouse smoke, which is used for flavouring meat products, was investigated for its mutagenic activity in the Salmonella typhimurium assay. We were chiefly concerned with the fractions free of polycyclic aromatic hydrocarbons but containing phenol compounds, which are responsible for the preservative and aromatizing properties of the smoke. The most abundantly occurring phenol compounds (phenol, cresols, 2,4-dimethylphenol, brenzcatechine, syringol, eugenol, vanilline and guaiacol) gave negative results when they were tested for mutagenicity at five concentrations up to 5000 micrograms/plate, with and without S-9 mix, using five strains of S. typhimurium. Even when phenol was further investigated in a variety of test conditions, no induction of his+ revertants was observed. When smokehouse smoke was condensed and fractionated the majority of the various phenolic fractions also gave negative results when tested at five concentrations using five strains of S. typhimurium. However there was a slight increase in the number of revertants in a few cases. The presence in the phenolic fractions of very small amounts of mutagenic impurities, the nature of which needs further investigation, cannot be excluded. These results support the further development of non-hazardous smoke-aroma preparations, based on the phenolic components of smokehouse smoke.

  15. Summary of Survival Data from Juvenile Coho Salmon in the Klamath River, Northern California, 2006

    USGS Publications Warehouse

    Beeman, John W.

    2007-01-01

    Little is known about the survival of ESA-listed juvenile coho salmon during their seaward migration in the lower Klamath River. In 2006, the Bureau of Reclamation funded a study to estimate the survival of radio-tagged juvenile coho salmon in the Klamath River downstream of Iron Gate Dam. A series of models were evaluated to determine if survival varied between hatchery and wild fish and among several river reaches between the dam river kilometer 33, a total distance of 276 kilometers. The results from 2006, the first year of study, indicated little support for differences in survival between hatchery and wild fish and lower survival in the most upstream reach than in those farther downstream. This document is a brief summary of survival results to date.

  16. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; ,; Gillikin, Daniel; ,

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  17. Salmon Life Cycle Models Illuminate Population Consequences of Disparate Survival and Behavior Between Hatchery- and Wild-Origin Fish

    NASA Astrophysics Data System (ADS)

    Beakes, M.; Satterthwaite, W.; Petrik, C.; Hendrix, N.; Danner, E.; Lindley, S. T.

    2016-02-01

    In past decades there has been a heavy reliance on the production of hatchery-reared fish to supplement declining population numbers of Pacific salmon. In some cases, the benefits of hatchery supplementation have been negligible despite concerted long-term stocking efforts. The management and conservation of depressed salmon populations, via hatchery practices or otherwise, can be improved by expanding our understanding of the dissimilarities between hatchery and wild salmon and how each interacts with the environment. In this study we use a stage-structured salmon life-cycle model to explore the population consequences of disparate survival and behavior between hatchery and wild-origin fall-run Chinook Salmon (Oncorhynchus tshawytscha) in the California Central Valley. We couple empirically-based statistical functions with deterministic theoretical models to identify how environmental conditions (e.g., water temperature, flow) and habitat drive the survival and abundance of both hatchery and wild salmon as they integrate across riverscapes and cross marine and freshwater ecosystem boundaries during their life cycle. Results from this study suggest that hatchery practices can lead to dissimilar interactions between hatchery and wild salmon and the environmental conditions they experience. As such, the population dynamics of fall-run Chinook Salmon in the California Central Valley are partly dependent on the composition of individuals that make up their populations. In total, this study improves out ability to conserve imperiled salmonids by identifying mechanistic linkages between the natal origin of salmon, survival and behavior, and the environment at spatiotemporal scales relevant to salmon populations and fisheries management.

  18. Bypass system modification at Bonneville Dam on the Columbia River improved the survival of juvenile salmon

    USGS Publications Warehouse

    Ferguson, J.W.; Sandford, B.P.; Reagan, R.E.; Gilbreath, L.G.; Meyer, E.B.; Ledgerwood, R.D.; Adams, N.S.

    2007-01-01

    From 1987 to 1992, we evaluated a fish bypass system at Bonneville Dam Powerhouse 2 on the Columbia River. The survival of subyearling Chinook salmon Oncorhynchus tshawytscha released into the system ranged from 0.774 to 0.911 and was significantly lower than the survival of test fish released into turbines and the area immediately below the powerhouse where bypass system flow reentered the river. Yearling and subyearling Chinook salmon and yearling coho salmon O. kisutch released into the bypass system were injured or descaled. Also, levels of blood plasma cortisol and lactate were significantly higher in yearling and subyearling Chinook salmon that passed through the bypass system than in fish released directly into a net located over the bypass exit. This original system was then extensively modified using updated design criteria, and the site where juvenile fish reentered the river was relocated 2.8 km further downstream to reduce predation on bypassed fish by northern pikeminnow Ptychocheilus oregonensis. Based on studies conducted from 1999 to 2001, the new bypass system resulted in high fish survival, virtually no injuries to fish, fish passage times that were generally similar to water travel times, and mild stress responses from which fish recovered quickly. The mean estimated survival of subyearling Chinook salmon passing through the new bypass system was 0.946 in 2001, which was an usually low-flow year. Survival, physical condition, passage timing, and blood physiological indicators of stress were all useful metrics for assessing the performance of both bypass systems and are discussed. The engineering and hydraulic criteria used to design the new bypass system that resulted in improved fish passage conditions are described.

  19. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Batten, G.; Cushing, Aaron W.

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2011. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon usingmore » a virtual release, paired reference release survival model. This study supports the U.S. Army Corps of Engineers’ continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  20. Transcriptomics of environmental acclimatization and survival in wild adult Pacific sockeye salmon (Oncorhynchus nerka) during spawning migration.

    PubMed

    Evans, Tyler G; Hammill, Edd; Kaukinen, Karia; Schulze, Angela D; Patterson, David A; English, Karl K; Curtis, Janelle M R; Miller, Kristina M

    2011-11-01

    Environmental shifts accompanying salmon spawning migrations from ocean feeding grounds to natal freshwater streams can be severe, with the underlying stress often cited as a cause of increased mortality. Here, a salmonid microarray was used to characterize changes in gene expression occurring between ocean and river habitats in gill and liver tissues of wild migrating sockeye salmon (Oncorhynchus nerka Walbaum) returning to spawn in the Fraser River, British Columbia, Canada. Expression profiles indicate that the transcriptome of migrating salmon is strongly affected by shifting abiotic and biotic conditions encountered along migration routes. Conspicuous shifts in gene expression associated with changing salinity, temperature, pathogen exposure and dissolved oxygen indicate that these environmental variables most strongly impact physiology during spawning migrations. Notably, transcriptional changes related to osmoregulation were largely preparatory and occurred well before salmon encountered freshwater. In the river environment, differential expression of genes linked with elevated temperatures indicated that thermal regimes within the Fraser River are approaching tolerance limits for adult salmon. To empirically correlate gene expression with survival, biopsy sampling of gill tissue and transcriptomic profiling were combined with telemetry. Many genes correlated with environmental variables were differentially expressed between premature mortalities and successful migrants. Parametric survival analyses demonstrated a broad-scale transcriptional regulator, cofactor required for Sp1 transcriptional activation (CRSP), to be significantly predictive of survival. As the environmental characteristics of salmon habitats continue to change, establishing how current environmental conditions influence salmon physiology under natural conditions is critical to conserving this ecologically and economically important fish species. © 2011 Blackwell Publishing Ltd.

  1. Early marine growth of pink salmon in Prince William Sound and the coastal gulf of Alaska during years of low and high survival

    USGS Publications Warehouse

    Cross, A.D.; Beauchamp, D.A.; Myers, K.W.; Moss, J.H.

    2008-01-01

    Although early marine growth has repeatedly been correlated with overall survival in Pacific salmon Oncorhynchus spp., we currently lack a mechanistic understanding of smolt-to-adult survival. Smolt-to-adult survival of pink salmon O. gorbuscha returning to Prince William Sound was lower than average for juveniles that entered marine waters in 2001 and 2003 (3% in both years), and high for those that entered the ocean in 2002 (9%) and 2004 (8%). We used circulus patterns from scales to determine how the early marine growth of juvenile pink salmon differed (1) seasonally during May-October, the period hypothesized to be critical for survival; (2) between years of low and high survival; and (3) between hatchery and wild fish. Juvenile pink salmon exhibited larger average size, migrated onto the continental shelf and out of the sampling area more quickly, and survived better during 2002 and 2004 than during 2001 and 2003. Pink salmon were consistently larger throughout the summer and early fall during 2002 and 2004 than during 2001 and 2003, indicating that larger, faster-growing juveniles experienced higher survival. Wild juvenile pink salmon were larger than hatchery fish during low-survival years, but no difference was observed during high-survival years. Differences in size among years were determined by some combination of growing conditions and early mortality, the strength of which could vary significantly among years. ?? Copyright by the American Fisheries Society 2008.

  2. Estimating freshwater productivity, overwinter survival, and migration patterns of Klamath River Coho Salmon

    USGS Publications Warehouse

    Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Faukner, Jimmy; Soto, Toz

    2018-01-01

    An area of great importance to resource management and conservation biology in the Klamath Basin is balancing water usage against the life history requirements of threatened Coho Salmon. One tool for addressing this topic is a freshwater dynamics model to forecast Coho Salmon productivity based on environmental inputs. Constructing such a forecasting tool requires local data to quantify the unique life history processes of Coho Salmon inhabiting this region. Here, we describe analytical methods for estimating a series of sub-models, each capturing a different life history process, which will eventually be synchronized as part of a freshwater dynamics model for Klamath River Coho Salmon. Specifically, we draw upon extensive population monitoring data collected in the basin to estimate models of freshwater productivity, overwinter survival, and migration patterns. Our models of freshwater productivity indicated that high summer temperatures and high winter flows can both adversely affect smolt production and that such relationships are more likely in tributaries with naturally regulated flows due to substantial intraannual environmental variation. Our models of overwinter survival demonstrated extensive variability in survival among years, but not among rearing locations, and demonstrated that a substantial proportion (~ 20%) of age-0+ fish emigrate from some rearing sites in the winter. Our models of migration patterns indicated that many age-0+ fish redistribute in the basin during the summer and winter. Further, we observed that these redistributions can entail long migrations in the mainstem where environmental stressors likely play a role in cueing refuge entry. Finally, our models of migration patterns indicated that changes in discharge are important in cueing the seaward migration of smolts, but that the nature of this behavioral response can differ dramatically between tributaries with naturally and artificially regulated flows. Collectively, these analyses

  3. Microbial dynamics in mixed culture biofilms of bacteria surviving sanitation of conveyor belts in salmon-processing plants.

    PubMed

    Langsrud, S; Moen, B; Møretrø, T; Løype, M; Heir, E

    2016-02-01

    The microbiota surviving sanitation of salmon-processing conveyor belts was identified and its growth dynamics further investigated in a model mimicking processing surfaces in such plants. A diverse microbiota dominated by Gram-negative bacteria was isolated after regular sanitation in three salmon processing plants. A cocktail of 14 bacterial isolates representing all genera isolated from conveyor belts (Listeria, Pseudomonas, Stenotrophomonas, Brochothrix, Serratia, Acinetobacter, Rhodococcus and Chryseobacterium) formed stable biofilms on steel coupons (12°C, salmon broth) of about 10(9) CFU cm(-2) after 2 days. High-throughput sequencing showed that Listeria monocytogenes represented 0·1-0·01% of the biofilm population and that Pseudomonas spp dominated. Interestingly, both Brochothrix sp. and a Pseudomonas sp. dominated in the surrounding suspension. The microbiota surviving sanitation is dominated by Pseudomonas spp. The background microbiota in biofilms inhibit, but do not eliminate L. monocytogenes. The results highlights that sanitation procedures have to been improved in the salmon-processing industry, as high numbers of a diverse microbiota survived practical sanitation. High-throughput sequencing enables strain level studies of population dynamics in biofilm. © 2015 The Society for Applied Microbiology.

  4. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.

    2011-02-01

    The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. Themore » approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.« less

  5. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Thomas J.; Skalski, John R.

    2010-10-01

    The purpose of this compliance study was to estimate dam passage survival of yearling Chinook salmon and steelhead smolts at The Dalles Dam during spring 2010. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated smolt passage survival from the forebay boat-restricted zone (BRZ) to the tailrace BRZ at The Dalles Dam, as well as the forebay residence time, tailrace egress, and spill passage efficiency (SPE), as required in themore » Columbia Basin Fish Accords. A virtual/paired-release design was used to estimate dam passage survival at The Dalles Dam. The approach included releases of acoustic-tagged smolts above John Day Dam that contributed to the formation of a virtual release at the face of The Dalles Dam. A survival estimate from this release was adjusted by a paired release below The Dalles Dam. A total of 4,298 yearling Chinook salmon and 4,309 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation. The dam passage survival results are summarized as follows: Yearling Chinook Salmon 0.9641 (SE = 0.0096) and Steelhead 0.9535 (SE = 0.0097).« less

  6. Analysis of dam-passage survival of yearling and subyearling Chinook salmon and juvenile steelhead at The Dalles Dam, Oregon, 2010

    USGS Publications Warehouse

    Beeman, John W.; Kock, Tobias J.; Perry, Russell W.; Smith, Steven G.

    2011-01-01

    We performed a series of analyses of mark-recapture data from a study at The Dalles Dam during 2010 to determine if model assumptions for estimation of juvenile salmonid dam-passage survival were met and if results were similar to those using the University of Washington's newly developed ATLAS software. The study was conducted by the Pacific Northwest National Laboratory and used acoustic telemetry of yearling Chinook salmon, juvenile steelhead, and subyearling Chinook salmon released at three sites according to the new virtual/paired-release statistical model. This was the first field application of the new model, and the results were used to measure compliance with minimum survival standards set forth in a recent Biological Opinion. Our analyses indicated that most model assumptions were met. The fish groups mixed in time and space, and no euthanized tagged fish were detected. Estimates of reach-specific survival were similar in fish tagged by each of the six taggers during the spring, but not in the summer. Tagger effort was unevenly allocated temporally during tagging of subyearling Chinook salmon in the summer; the difference in survival estimates among taggers was more likely a result of a temporal trend in actual survival than of tagger effects. The reach-specific survival of fish released at the three sites was not equal in the reaches they had in common for juvenile steelhead or subyearling Chinook salmon, violating one model assumption. This violation did not affect the estimate of dam-passage survival, because data from the common reaches were not used in its calculation. Contrary to expectation, precision of survival estimates was not improved by using the most parsimonious model of recapture probabilities instead of the fully parameterized model. Adjusting survival estimates for differences in fish travel times and tag lives increased the dam-passage survival estimate for yearling Chinook salmon by 0.0001 and for juvenile steelhead by 0.0004. The

  7. Compliance Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Carlson, Thomas J.; Skalski, John R.

    2010-12-21

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon smolts at The Dalles Dam during summer 2010. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 2 km below the dam The forebay-to-tailrace survival estimate satisfies the “BRZ-to-BRZ” survival estimate called for in the Fish Accords. , asmore » well as the forebay residence time, tailrace egress time, and spill passage efficiency, as required in the Columbia Basin Fish Accords. The estimate of dam survival for subyearling Chinook salmon at The Dalles in 2010 was 0.9404 with an associated standard error of 0.0091.« less

  8. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrallymore » buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.« less

  9. Pathological and immunological responses associated with differential survival of Chinook salmon following Renibacterium salmoninarum challenge

    USGS Publications Warehouse

    Metzger, David C.; Elliott, Diane G.; Wargo, Andrew; Park, Linda K.; Purcell, Maureen K.

    2010-01-01

    Chinook salmon Oncorhynchus tshawytscha are highly susceptible to Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD). Previously we demonstrated that introduced Chinook salmon from Lake Michigan, Wisconsin (WI), USA, have higher survival following R. salmoninarum challenge relative to the progenitor stock from Green River, Washington, USA. In the present study, we investigated the pathological and immunological responses that are associated with differential survival in the 2 Chinook salmon stocks following intra-peritoneal R. salmoninarum challenge of 2 different cohort years (2003 and 2005). Histological evaluation revealed delayed appearance of severe granulomatous lesions in the kidney and lower overall prevalence of membranous glomerulopathy in the higher surviving WI stock. The higher survival WI stock had a lower bacterial load at 28 d post-infection, as measured by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). However, at all other time points, bacterial load levels were similar despite higher mortality in the more susceptible Green River stock, suggesting the possibility that the stocks may differ in their tolerance to infection by the bacterium. Interferon-γ, inducible nitric oxide synthase (iNOS), Mx-1, and transferrin gene expression were up-regulated in both stocks following challenge. A trend of higher iNOS gene expression at later time points (≥28 d post-infection) was observed in the lower surviving Green River stock, suggesting the possibility that higher iNOS expression may contribute to greater pathology in that stock.

  10. Compliance Monitoring of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam

    The purpose of this compliance study was to estimate dam passage survival of yearling and subyearling Chinook salmon and steelhead smolts at John Day Dam during the spring and summer outmigrations in 2012. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 for spring migrants and greater than or equal to 0.93 for summer migrants, estimated with a standard error (SE) less than or equal to 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailracemore » 3 km downstream of the dam, as well as the forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required in the Columbia Basin Fish Accords (Fish Accords). A virtual/paired-release design was used to estimate dam passage survival at John Day Dam. The approach included releases of smolts, tagged with acoustic micro-transmitters, above John Day Dam that contributed to the formation of a virtual release at the face of John Day Dam. A survival estimate from this release was adjusted by a paired release below John Day Dam. A total of 3376 yearling Chinook salmon, 5726 subyearling Chinook salmon, and 3239 steelhead smolts were used in the virtual releases. Sample sizes for the below-dam paired releases (R2 and R3, respectively) were 997 and 995 for yearling Chinook salmon smolts, 986 and 983 for subyearling Chinook salmon smolts, and 1000 and 1000 for steelhead smolts. The Juvenile Salmon Acoustic Telemetry System (JSATS) tags were manufactured by Advanced Telemetry Systems. Model SS300 tags, weighing 0.304 g in air, were surgically implanted in yearling and subyearling Chinook salmon, and Model SS130 tag, weighing 0.438 g in air, were surgically implanted in juvenile steelhead for this investigation. The intent of the spring study was to estimate dam passage survival during both 30% and 40% spill conditions. The

  11. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, John G.; Bjomn

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearlingmore » chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).« less

  12. Variability in Migration Routes Influences Early Marine Survival of Juvenile Salmon Smolts

    PubMed Central

    Furey, Nathan B.; Vincent, Stephen P.; Hinch, Scott G.; Welch, David W.

    2015-01-01

    Variability in animal migratory behavior is expected to influence fitness, but few empirical examples demonstrating this relationship exist. The initial marine phase in the migration of juvenile salmon smolts has been identified as a potentially critical life history stage to overall population productivity, yet how fine-scale migration routes may influence survival are unknown. Large-scale acoustic telemetry studies have estimated survival rates of outmigrant Pacific salmon smolts through the Strait of Georgia (SOG) along the British Columbian coastline to the Pacific Ocean, but these data have not been used to identify and characterize fine-scale movements. Data collected on over 850 sockeye salmon (Oncorhynchus nerka) and steelhead (Oncorhynchus mykiss) smolts detected at an array in the Strait of Georgia in 2004–2008 and 2010–2013 were analyzed to characterize migration routes and link movements to subsequent survival at an array 250 km further along the marine migration pathway. Both species exhibited disproportionate use of the most eastern route in the Strait of Georgia (Malaspina Strait). While many smolts moved across the northern Strait of Georgia acoustic array with no indication of long-term milling or large-scale east-to-west movements, large proportions (20–40% of sockeye and 30–50% of steelhead) exhibited a different behavior, apparently moving in a westward or counterclockwise pattern. Variability in migratory behavior for both species was linked to subsequent survival through the Strait of Georgia. Survival for both species was influenced by initial east-to-west location, and sockeye were further influenced by migration timing and duration of time spent near the northern Strait of Georgia array. Westward movements result in a net transport of smolts from Malaspina Strait to the Strait of Georgia, particularly for steelhead. Counterclockwise movements may be due to the currents in this area during the time of outmigration, and the higher

  13. Modeling stream network-scale variation in coho salmon overwinter survival and smolt size

    EPA Science Inventory

    We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over ...

  14. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System taggedmore » smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  15. Assessing the Relative Importance of Local and Regional Processes on the Survival of a Threatened Salmon Population

    PubMed Central

    Miller, Jessica A.; Teel, David J.; Peterson, William T.; Baptista, Antonio M.

    2014-01-01

    Research on regulatory mechanisms in biological populations often focuses on environmental covariates. An integrated approach that combines environmental indices with organismal-level information can provide additional insight on regulatory mechanisms. Survival of spring/summer Snake River Chinook salmon (Oncorhynchus tshawytscha) is consistently low whereas some adjacent populations with similar life histories experience greater survival. It is not known if populations with differential survival respond similarly during early marine residence, a critical period in the life history. Ocean collections, genetic stock identification, and otolith analyses were combined to evaluate the growth-mortality and match-mismatch hypotheses during early marine residence of spring/summer Snake River Chinook salmon. Interannual variation in juvenile attributes, including size at marine entry and marine growth rate, was compared with estimates of survival and physical and biological metrics. Multiple linear regression and multi-model inference were used to evaluate the relative importance of biological and physical metrics in explaining interannual variation in survival. There was relatively weak support for the match-mismatch hypothesis and stronger evidence for the growth-mortality hypothesis. Marine growth and size at capture were strongly, positively related to survival, a finding similar to spring Chinook salmon from the Mid-Upper Columbia River. In hindcast models, basin-scale indices (Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO)) and biological indices (juvenile salmon catch-per-unit-effort (CPUE) and a copepod community index (CCI)) accounted for substantial and similar portions of variation in survival for juvenile emigration years 1998–2008 (R2>0.70). However, in forecast models for emigration years 2009–2011, there was an increasing discrepancy between predictions based on the PDO (50–448% of observed value) compared with those

  16. Assessing the relative importance of local and regional processes on the survival of a threatened salmon population.

    PubMed

    Miller, Jessica A; Teel, David J; Peterson, William T; Baptista, Antonio M

    2014-01-01

    Research on regulatory mechanisms in biological populations often focuses on environmental covariates. An integrated approach that combines environmental indices with organismal-level information can provide additional insight on regulatory mechanisms. Survival of spring/summer Snake River Chinook salmon (Oncorhynchus tshawytscha) is consistently low whereas some adjacent populations with similar life histories experience greater survival. It is not known if populations with differential survival respond similarly during early marine residence, a critical period in the life history. Ocean collections, genetic stock identification, and otolith analyses were combined to evaluate the growth-mortality and match-mismatch hypotheses during early marine residence of spring/summer Snake River Chinook salmon. Interannual variation in juvenile attributes, including size at marine entry and marine growth rate, was compared with estimates of survival and physical and biological metrics. Multiple linear regression and multi-model inference were used to evaluate the relative importance of biological and physical metrics in explaining interannual variation in survival. There was relatively weak support for the match-mismatch hypothesis and stronger evidence for the growth-mortality hypothesis. Marine growth and size at capture were strongly, positively related to survival, a finding similar to spring Chinook salmon from the Mid-Upper Columbia River. In hindcast models, basin-scale indices (Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO)) and biological indices (juvenile salmon catch-per-unit-effort (CPUE) and a copepod community index (CCI)) accounted for substantial and similar portions of variation in survival for juvenile emigration years 1998-2008 (R2>0.70). However, in forecast models for emigration years 2009-2011, there was an increasing discrepancy between predictions based on the PDO (50-448% of observed value) compared with those based on

  17. Linking behavior, physiology, and survival of Atlantic Salmon smolts during estuary migration

    USGS Publications Warehouse

    Stich, Daniel S.; Zydlewski, Gayle B.; Kocik, John F.; Zydlewski, Joseph D.

    2015-01-01

    Decreased marine survival is identified as a component driver of continued declines of Atlantic Salmon Salmo salar. However, estimates of marine mortality often incorporate loss incurred during estuary migration that may be mechanistically distinct from factors affecting marine mortality. We examined movements and survival of 941 smolts (141 wild and 800 hatchery-reared fish) released in freshwater during passage through the Penobscot River estuary, Maine, from 2005 to 2013. We related trends in estuary arrival date, movement rate, and survival to fish characteristics, migratory history, and environmental conditions in the estuary. Fish that experienced the warmest thermal history arrived in the estuary 8 d earlier than those experiencing the coolest thermal history during development. Estuary arrival date was 10 d later for fish experiencing high flow than for fish experiencing low flow. Fish released furthest upstream arrived in the estuary 3 d later than those stocked further downstream but moved 0.5 km/h faster through the estuary. Temporally, movement rate and survival in the estuary both peaked in mid-May. Spatially, movement rate and survival both decreased from freshwater to the ocean. Wild smolts arrived in the estuary later than hatchery fish, but we observed no change in movement rate or survival attributable to rearing history. Fish with the highest gill Na+, K+-ATPase activity incurred 25% lower mortality through the estuary than fish with the lowest gill Na+, K+-ATPase activity. Smolt survival decreased (by up to 40%) with the increasing number of dams passed (ranging from two to nine) during freshwater migration. These results underscore the importance of physiological preparedness on performance and the delayed, indirect effects of dams on survival of Atlantic Salmon smolts during estuary migration, ultimately affecting marine survival estimates.

  18. Mapping of a quantitative trait locus for resistance against infectious salmon anaemia in Atlantic salmon (Salmo Salar): comparing survival analysis with analysis on affected/resistant data

    PubMed Central

    Moen, Thomas; Sonesson, Anna K; Hayes, Ben; Lien, Sigbjørn; Munck, Hege; Meuwissen, Theo HE

    2007-01-01

    Background Infectious Salmon Anaemia (ISA) is a viral disease affecting farmed Atlantic salmon (Salmo salar) worldwide. The identification of Quantitative Trait Loci (QTL) affecting resistance to the disease could improve our understanding of the genetics underlying the trait and provide a means for Marker-Assisted Selection. We previously performed a genome scan on commercial Atlantic salmon families challenge tested for ISA resistance, identifying several putative QTL. In the present study, we set out to validate the strongest of these QTL in a larger family material coming from the same challenge test, and to determine the position of the QTL by interval mapping. We also wanted to explore different ways of performing QTL analysis within a survival analysis framework (i.e. using time-to-event data), and to compare results using survival analysis with results from analysis on the dichotomous trait 'affected/resistant'. Results The QTL, located on Atlantic salmon linkage group 8 (following SALMAP notation), was confirmed in the new data set. Its most likely position was at a marker cluster containing markers BHMS130, BHMS170 and BHMS553. Significant segregation distortion was observed in the same region, but was shown to be unrelated to the QTL. A maximum likelihood procedure for identifying QTL, based on the Cox proportional hazard model, was developed. QTL mapping was also done using the Haley-Knott method (affected/resistant data), and within a variance-component framework (affected/resistant data and time-to-event data). In all cases, analysis using affected/resistant data gave stronger evidence for a QTL than did analysis using time-to-event data. Conclusion A QTL for resistance to Infectious Salmon Anaemia in Atlantic salmon was validated in this study, and its more precise location on linkage group eight was determined. The QTL explained 6% of the phenotypic variation in resistance to the disease. The linkage group also displayed significant segregation

  19. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, John G.; Bjornn

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on themore » Clearwater River to collect data on survival detection probabilities, and travel time.« less

  20. Atlantic salmon (Salmo salar) smolt production: the relative importance of survival and body growth

    USGS Publications Warehouse

    Horton, G.E.; Letcher, B.H.; Bailey, M.M.; Kinnison, M.T.

    2009-01-01

    The complex life history of Atlantic salmon (Salmo salar) coupled with interacting abiotic and biotic factors leads to extreme demographic variability across the species' range. Our goal was to evaluate the relative importance of survival and body growth in determining smolt production across space and time. We used passive integrated transponder tags and capture-mark-recapture analyses to estimate survival, emigration, and growth for six cohorts of presmolt Atlantic salmon in two streams (three cohorts per stream) in New England, USA. We observed remarkable among-cohort consistency in mean monthly survival during a 17-month period from age-0+ autumn to age-2+ spring yet high variability in monthly survival over shorter time intervals (seasons). Despite this latter variability, survival did not translate into amongcohort differences in proportions of age-2+ versus age-3+ smolts. Alternatively, the high variability across seasons and cohorts in mean individual growth rate did lead to differences in within-cohort proportions of age-2+ versus age-3+ smolts (regardless of stream). We conclude that in our two small study streams, variability in growth and size impacted smolt age and, ultimately, smolt production. Density-dependent effects on growth at the scale of the entire study site represent a possible mechanism underlying our observations.

  1. [Postspawning survival in lacustrine sock-eyed salmon Oncorhynchus nerka Walb].

    PubMed

    Markevich, G N; Ivashkin, E G; Pavlov, E D

    2011-01-01

    The state of gonads, age, structure of scales, and size of specimens of the resident lacustrine form of sock-eyed salmon--kokanee Onchorhynchus nerka--are analyzed. In stocked, previously fishless, lakes, there are specimens that have survived spawning and have remained active for a year or several years. No evidence was found of the possibility of repeated spawning. Thus, such fish do not belong to the spawning stock of the population, and their ecological function is not clear.

  2. Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean

    PubMed Central

    Rechisky, Erin L.; Welch, David W.; Porter, Aswea D.; Jacobs-Scott, Melinda C.; Winchell, Paul M.

    2013-01-01

    Multiple dam passage during seaward migration is thought to reduce the subsequent survival of Snake River Chinook salmon. This hypothesis developed because juvenile Chinook salmon from the Snake River, the Columbia River’s largest tributary, migrate >700 km through eight hydropower dams and have lower adult return rates than downstream populations that migrate through only 3 or 4 dams. Using a large-scale telemetry array, we tested whether survival of hatchery-reared juvenile Snake River spring Chinook salmon is reduced in the estuary and coastal ocean relative to a downstream, hatchery-reared population from the Yakima River. During the initial 750-km, 1-mo-long migration through the estuary and coastal ocean, we found no evidence of differential survival; therefore, poorer adult returns of Snake River Chinook may develop far from the Columbia River. Thus, hydrosystem mitigation efforts may be ineffective if differential mortality rates develop in the North Pacific Ocean for reasons unrelated to dam passage. PMID:23576733

  3. Modeling stream network-scale variation in Coho salmon overwinter survival and smolt size

    Treesearch

    Joseph L. Ebersole; Mike E. Colvin; Parker J. Wigington; Scott G. Leibowitz; Joan P. Baker; Jana E. Compton; Bruce A. Miller; Michael A. Carins; Bruce P. Hansen; Henry R. La Vigne

    2009-01-01

    We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over 3 years. Contributing basin area explained the majority of spatial...

  4. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at differentmore » areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.« less

  5. Survival and selection of migrating salmon from capture-recapture models with individual traits

    USGS Publications Warehouse

    Zabel, R.W.; Wagner, T.; Congleton, J.L.; Smith, S.G.; Williams, J.G.

    2005-01-01

    Capture-recapture studies are powerful tools for studying animal population dynamics, providing information on population abundance, survival rates, population growth rates, and selection for phenotypic traits. In these studies, the probability of observing a tagged individual reflects both the probability of the individual surviving to the time of recapture and the probability of recapturing an animal, given that it is alive. If both of these probabilities are related to the same phenotypic trait, it can be difficult to distinguish effects on survival probabilities from effects on recapture probabilities. However, when animals are individually tagged and have multiple opportunities for recapture, we can properly partition observed trait-related variability into survival and recapture components. We present an overview of capture-recapture models that incorporate individual variability and develop methods to incorporate results from these models into estimates of population survival and selection for phenotypic traits. We conducted a series of simulations to understand the performance of these estimators and to assess the consequences of ignoring individual variability when it exists. In addition, we analyzed a large data set of > 153 000 juvenile chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) of known length that were PIT-tagged during their seaward migration. Both our simulations and the case study indicated that the ability to precisely estimate selection for phenotypic traits was greatly compromised when differential recapture probabilities were ignored. Estimates of population survival, however, were far more robust. In the chinook salmon and steelhead study, we consistently found that smaller fish had a greater probability of recapture. We also uncovered length-related survival relationships in over half of the release group/river segment combinations that we observed, but we found both positive and negative relationships between length

  6. Early life history and survival of natural subyearling fall chinook salmon in the Snake and Clearwater rivers in 1995

    USGS Publications Warehouse

    Connor, William P.; Bjornn, Theodore C.; Burge, Howard L.; Garcia, Aaron P.; Rondorf, Dennis W.

    1997-01-01

    The objectives of this segment of our study were to (1) describe the early life history characteristics of naturally produced subyearling fall chinook salmon in the Snake and Clearwater rivers, and (2) estimate survival for juvenile fall chinook salmon emigrating from the Snake and Clearwater rivers to the tail race of Lower Granite Dam.

  7. Signals of large scale climate drivers, hatchery enhancement, and marine factors in Yukon River Chinook salmon survival revealed with a Bayesian life history model.

    PubMed

    Cunningham, Curry J; Westley, Peter A H; Adkison, Milo D

    2018-05-18

    Understanding how species might respond to climate change involves disentangling the influence of co-occurring environmental factors on population dynamics, and is especially problematic for migratory species like Pacific salmon that move between ecosystems. To date, debate surrounding the causes of recent declines in Yukon River Chinook salmon (Oncorhynchus tshawytscha) abundance has centered on whether factors in freshwater or marine environments control variation in survival, and how these populations at the northern extremity of the species range will respond to climate change. To estimate the effect of factors in marine and freshwater environments on Chinook salmon survival, we constructed a stage-structured assessment model that incorporates the best available data, estimates incidental marine bycatch mortality in trawl fisheries, and uses Bayesian model selection methods to quantify support for alternative hypotheses. Models fitted to two index populations of Yukon River Chinook salmon indicate that processes in the nearshore and marine environments are the most important determinants of survival. Specifically, survival declines when ice leaves the Yukon River later in the spring, increases with wintertime temperature in the Bering Sea, and declines with the abundance of globally enhanced salmon species consistent with competition at sea. In addition, we found support for density-dependent survival limitations in freshwater but not marine portions of the life cycle, increasing average survival with ocean age, and age-specific selectivity of bycatch mortality in the Bering Sea. This study underscores the utility of flexible estimation models capable of fitting multiple data types and evaluating mortality from both natural and anthropogenic sources in multiple habitats. Overall, these analyses suggest that mortality at sea is the primary driver of population dynamics, yet under a warming climate Chinook salmon populations at the northern extent of the species

  8. Salmon lice – impact on wild salmonids and salmon aquaculture

    PubMed Central

    Torrissen, O; Jones, S; Asche, F; Guttormsen, A; Skilbrei, O T; Nilsen, F; Horsberg, T E; Jackson, D

    2013-01-01

    Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion. PMID:23311858

  9. Compliance Monitoring of Subyearling Chinook Salmon Smolt Survival and Passage at Bonneville Dam, Summer 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at Bonneville Dam during summer 2012, as required by the 2008 Federal Columbia River Power System Biological Opinion. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 1 km below the dam, as well as forebay residence time, tailrace egress, and spill passage efficiency, as required in the 2008 Columbia Basin Fish Accords.

  10. Evaluating the Potential of Tributary Restoration to Increase the Overall Survival of Salmon

    NASA Astrophysics Data System (ADS)

    Budy, P.; Schaller, H.

    2006-12-01

    Stream restoration has become a major focus of conservation efforts with millions of dollars spent each year on efforts aimed at recovering imperiled species; however, for animals with complex life-history strategies, this reliance on stream restoration for increasing overall survival requires that several key assumptions be met. We addressed fundamental uncertainties of the current focus on tributary restoration for recovery of endangered Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha): 1) is there potential for improving habitat in tributary streams, 2) what magnitude of early survival improvement can be expected based on stream restoration, and 3) will incremental increases in early survival be sufficient to ensure viability of the populations that compose the Evolutionarily Significant Unit (ESU)? We combined simple mechanistic habitat models, population viability measures, and categorical filters to quantify the potential for increasing total life-cycle survival (TLCS) across all 32 populations (ESU), based on increases to early freshwater survival, predicted to occur in response to restored tributary condition. A wide gap remains between how much survival improvement is needed, versus what is likely to occur under tributary restoration; tributary restoration has the potential to increase survival to the necessary minimum for only four populations in the ESU while the remaining populations (84%) still fall far below the survival needed for future viability. In addition, across the ESU; on average, a 171% increase in TLCS is necessary, whereas only ~106% appears possible. A recovery strategy for these salmon that relies largely on tributary restoration, to mitigate for known mortality imposed at other life stages (e.g., migration through hydropower dams) is risky and has a low probability of success. For animals with complex life cycles and exhibiting long migrations, stream restoration efforts may be ineffective and misplaced, if the

  11. Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products.

    PubMed

    Hansen, Lisbeth Truelstrup; Vogel, Birte Fonnesbech

    2011-03-15

    The foodborne bacterial pathogen, Listeria monocytogenes, commonly contaminates foods during processing, where the microorganisms are potentially subjected to low relative humidity (RH) conditions for extended periods of time. The objective of this study was to examine survival during desiccation (43% RH and 15 °C) of biofilm L. monocytogenes N53-1 cells on stainless steel coupons and to assess subsequent transfer to salmon products. Formation of static biofilm (2 days at 100% RH and 15 °C) prior to desiccation for 23 days significantly (P<0.05) improved survival of cells desiccated in initial low salt concentrations (0.5%) compared to the survival for non-biofilm cells also desiccated in low salt, indicating the protective effect of the biofilm matrix. Osmoadaptation of cells in 5% NaCl before formation of the static biofilm significantly (P<0.05) increased long-term desiccation survival (49 days) irrespectively of the initial salt levels (0.5% and 5% NaCl). The efficiency of transfer (EOT) of desiccated biofilm cells was significantly (P<0.05) lower than EOTs for desiccated non-biofilm bacteria, however, as biofilm formation enhanced desiccation survival more bacteria were still transferred to smoked and fresh salmon. In conclusion, the current work shows the protective effect of biofilm formation, salt and osmoadaptation on the desiccation survival of L. monocytogenes, which in turn increases the potential for cross-contamination during food processing. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    USGS Publications Warehouse

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-01-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastesspp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  13. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    NASA Astrophysics Data System (ADS)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-10-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  14. Farmed Atlantic salmon Salmo salar L. parr may reduce early survival of wild fish.

    PubMed

    Sundt-Hansen, L; Huisman, J; Skoglund, H; Hindar, K

    2015-06-01

    The study examined the density-mediated effects on growth, survival and dispersal of wild and farmed Atlantic salmon Salmo salar offspring in the period immediately following emergence, using a substitutive design. In small confined stream channels, wild parr coexisting with farmed parr had a significantly poorer survival, than wild parr alone. Density did not affect this relationship. In larger unconfined stream channels, wild parr coexisting with farmed parr entered a downstream trap in higher numbers than wild parr in allopatry. The results suggests that during the earliest life stages, farmed S. salar can outcompete wild S. salar, resulting in a reduced survival of wild S. salar. © 2015 The Fisheries Society of the British Isles.

  15. Impact of early salmon louse, Lepeophtheirus salmonis, infestation and differences in survival and marine growth of sea-ranched Atlantic salmon, Salmo salar L., smolts 1997–2009

    PubMed Central

    Skilbrei, O T; Finstad, B; Urdal, K; Bakke, G; Kroglund, F; Strand, R

    2013-01-01

    The impact of salmon lice on the survival of migrating Atlantic salmon smolts was studied by comparing the adult returns of sea-ranched smolts treated for sea lice using emamectin benzoate or substance EX with untreated control groups in the River Dale in western Norway. A total of 143 500 smolts were released in 35 release groups in freshwater from 1997 to 2009 and in the fjord system from 2007 to 2009. The adult recaptures declined gradually with release year and reached minimum levels in 2007. This development corresponded with poor marine growth and increased age at maturity of ranched salmon and in three monitored salmon populations and indicated unfavourable conditions in the Norwegian Sea. The recapture rate of treated smolts was significantly higher than the controls in three of the releases performed: the only release in 1997, one of three in 2002 and the only group released in sea water in 2007. The effect of treating the smolts against salmon lice was smaller than the variability in return rates between release groups, and much smaller that variability between release years, but its overall contribution was still significant (P < 0.05) and equivalent to an odds ratio of the probability of being recaptured of 1.17 in favour of the treated smolts. Control fish also tended to be smaller as grilse (P = 0.057), possibly due to a sublethal effect of salmon lice. PMID:23311746

  16. Habitat quality of historic Snake River fall Chinook salmon spawning locations and implications for incubation survival: part 1, substrate quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.

    2005-07-01

    We evaluated substrate quality at two historic fall Chinook salmon (Oncorhynchus tshawytscha) spawning sites in the Snake River, Idaho, USA. The primary objective of this evaluation was to measure sediment permeability within these areas to determine the potential quality of the habitat in the event that anadromous salmonids are reintroduced to the upper Snake River. Riverbed sediments within the two sites in the upper Snake River were sampled using freeze cores and hydraulic slug tests. Sediment grain size distributions at both sites were typical of gravel-bed rivers with the surface layer coarser than the underlying substrate, suggesting the riverbed surfacemore » was armored. Despite the armored nature of the bed, the size of the largest material present on the riverbed surface was well within the size limit of material capable of being excavated by spawning fall Chinook salmon. The percentage of fines was low, suggesting good quality substrate for incubating salmon embryos. Geometric mean particle sizes found in this study compared to a 55% to 80% survival to emergence based on literature values. Hydraulic slug tests showed moderate to high hydraulic conductivity and were comparable to values from current fall Chinook salmon spawning areas in the Hells Canyon Reach of the Snake River and the Hanford Reach of the Columbia River. Predicted estimates of mean egg survival at both sites (48% and 74%) equaled or exceeded estimates from fall Chinook salmon spawning areas in the Hells Canyon Reach and the Hanford Reach.« less

  17. Summary of Migration and Survival Data from Radio-Tagged Juvenile Coho Salmon in the Trinity River, Northern California, 2008

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal; Juhnke, Steve; Stutzer, Greg

    2009-01-01

    The survival of hatchery-origin juvenile coho salmon from the Trinity River Hatchery was estimated as they migrated seaward through the Trinity and Klamath Rivers. The purpose of the study was to collect data for comparison to a similar study in the Klamath River and provide data to the Trinity River Restoration Program. A total of 200 fish fitted with radio transmitters were released into the Trinity River near the hatchery (river kilometer 252 from the mouth of the Klamath River) biweekly from March 19 to May 28, 2008. Fish from the earliest release groups took longer to pass the first detection site 10 kilometers downstream of the hatchery than fish from the later release groups, but travel times between subsequent sites were often similar among the release groups. The travel times of individuals through the 239 kilometer study area ranged from 15.5 to 84.6 days with a median of 43.3 days. The data and models did not support differences in survival among release groups, but did support differences among river reaches. The probability of survival in the first 53 kilometers was lower than in the reaches farther downstream, which is similar to trends in juvenile coho salmon in the Klamath River. The lowest estimated survival in this study was in the first 10 kilometers from release in the Trinity River (0.676 SE 0.036) and the highest estimated survival was in the final 20 kilometer reach in the Klamath River (0.987 SE 0.013). Estimated survivals of radio-tagged juvenile coho salmon from release to Klamath River kilometer 33 were 0.639 per 100 kilometers for Trinity River fish and 0.721 per 100 kilometers for Klamath River fish.

  18. Competition between Asian pink salmon (Oncorhynchus gorbuscha) and Alaskan sockeye salmon (O. nerka) in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Zimmermann, M.; Myers, K.W.; Nielsen, J.L.; Rogers, D.E.

    2003-01-01

    The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd-numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd-year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977-97 indicated that smolts entering the ocean during even-numbered years and interacting with abundant odd-year pink salmon during the following year experienced 26% (age-2 smolt) to 45% (age-1 smolt) lower survival compared with smolts migrating during odd-numbered years. Adult sockeye salmon returning to Bristol Bay from even-year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd-year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.

  19. Survival and migration behavior of juvenile Coho Salmon in the Klamath River relative to discharge at Iron Gate Dam, Northern California, 2007

    USGS Publications Warehouse

    Beeman, John W.; Juhnke, Steve; Stutzer, Greg; Hetrick, Nicholas

    2008-01-01

    This report describes a study of survival and migration behavior of radio-tagged juvenile coho salmon (Oncorhynchus kisutch) in the Klamath River, northern California, in 2007. This was the third year of a multi-year study with the goal of determining the effects of discharge at Iron Gate Dam (IGD) on survival of juvenile coho salmon downstream. Survival and factors affecting survival were estimated in 2006 and 2007 after work in 2005 showed radio telemetry could be used effectively. The study has included collaborative efforts among U.S. Geological Survey (USGS), U.S. Fish and Wildlife Service (USFWS), the Karuk and Yurok Tribal Fisheries Departments, and the U.S. Bureau of Reclamation. The objectives of the study included: (1) estimating the survival of wild and hatchery juvenile coho salmon in the Klamath River downstream of Iron Gate Dam, determining the effects of discharge and other covariates on juvenile coho salmon survival (2) and migration (3), and (4) determining if fish from Iron Gate Hatchery (IGH) could be used as surrogates for the limited source of wild fish. We have been able to meet the first objective by estimating the survivals of hatchery and wild fish (when available) downstream of IGD. We have not yet met the second or third objectives, because we have been unable to separate effects of discharge from other environmental variables as they pertain to the survival or migration of juvenile coho salmon. This was foreseen when the study began, as it was known there would likely be no experimental discharges. A multi-year analysis will be conducted after the data for the third planned year are available. The fourth objective was initiated in 2006, but wild fish were not available in 2007. The next year wild fish may be available is in 2009, based on their 3-year cycle of abundance. River discharges during the 2007 study period (April 10 through July 28, 2007) were below average compared to the period of record beginning in 1962. Average daily

  20. Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam

    USGS Publications Warehouse

    Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B

    2016-01-01

    Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.

  1. Survival of Atlantic salmon Salmo salar smolts through a hydropower complex

    USGS Publications Warehouse

    Stich, D.S.; Bailey, M.M.; Zydlewski, Joseph D.

    2014-01-01

    This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was conducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0·12, 95% c.i. = 0·06–0·25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1·00 and 0·97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0·91), whereas survival through two dams that were removed was relatively high (0·99 and 0·98). Smolt survival could decrease in the Stillwater Branch with the addition of two new powerhouses while continuing to meet fish passage standards. The effects of removing two dams in the main-stem are expected to be negligible for smolt survival based on high survival observed from 2005 to 2012 at those locations. Survival through Milford Dam was been well below current regulatory standards, and thus improvement of passage at this location offers the best opportunity for improving overall smolt survival in the lower river.

  2. Comparison of migration rate and survival between radio-tagged and PIT-tagged migrant yearling chinook salmon in the Snake and Columbia rivers

    USGS Publications Warehouse

    Hockersmith, E.E.; Muir, W.D.; Smith, S.G.; Sandford, B.P.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2003-01-01

    A study was conducted to compare the travel times, detection probabilities, and survival of migrant hatchery-reared yearling chinook salmon Oncorhynchus tshawytscha tagged with either gastrically or surgically implanted sham radio tags (with an imbedded passive integrated transponder [PIT] tag) with those of their cohorts tagged only with PIT tags in the Snake and Columbia rivers. Juvenile chinook salmon with gastrically implanted radio tags migrated significantly faster than either surgically radio-tagged or PIT-tagged fish, while migration rates were similar among surgically radio-tagged and PIT-tagged fish. The probabilities of PIT tag detection at downstream dams varied by less than 5% and were not significantly different among the three groups. Survival was similar among treatments for median travel times of less than approximately 6 d (migration distance of 106 km). However, for both gastrically and surgically radio-tagged fish, survival was significantly less than for PIT-tagged fish, for which median travel times exceeded approximately 10 d (migration distance of 225 km). The results of this study support the use of radio tags to estimate the survival of juvenile chinook salmon having a median fork length of approximately 150 mm (range, 127-285 mm) and a median travel time of migration of less than approximately 6 d.

  3. Survival and Passage of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead at McNary Dam, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, James S.; Weiland, Mark A.; Woodley, Christa M.

    The study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead at McNary Dam as stipulated by the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. This study supports the USACE’s continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  4. Searching for a life history approach to salmon escapement management

    USGS Publications Warehouse

    Knudsen, E.E.; Symmes, E.W.; Margraf, F.J.

    2003-01-01

    A number of Pacific salmon populations have already been lost and many others throughout the range are in various states of decline. Recent research has documented that Pacific salmon carcasses serve as a key delivery vector of marine-derived nutrients into the freshwater portions of their ecosystems. This nutrient supply plays a critical biological feedback role in salmon sustainability by supporting juvenile salmon production. We first demonstrate how nutrient feedback potential to juvenile production may be unaccounted for in spawner-recruit models of populations under long-term exploitation. We then present a heuristic, life history-based, spreadsheet survival model that incorporates salmon carcass-driven nutrient feedback to the freshwater components of the salmon ecosystem. The productivity of a hypothetical coho salmon population was simulated using rates from the literature for survival from spawner to egg, egg to fry, fry to smolt, and smolt to adult. The effects of climate variation and nutrient feedback on survival were incorporated, as were density-dependent effects of the numbers of spawners and fry on freshwater survival of eggs and juveniles. The unexploited equilibrium population was subjected to 100 years of 20, 40, 60, and 80% harvest. Each harvest scenario greater than 20% brought the population to a reduced steady state, regardless of generous compensatory survival at low population sizes. Increasing harvest reduced the positive effects of nutrient contributions to population growth. Salmon researchers should further explore this modeling approach for establishing escapement goals. Given the importance of nutrient feedback, managers should strive for generous escapements that support nutrient rebuilding, as well as egg deposition, to ensure strong future salmon production.

  5. Compliance Monitoring of Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at The Dalles Dam during summer 2012. Under the 2008 Federal Columbia River Power System Biological Opinion, dam passage survival is required to be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal to 0.015. The study also estimated survival from the forebay 2 km upstream of the dam and through the tailrace to 2 km downstream of the dam, forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), asmore » required by the 2008 Columbia Basin Fish Accords.« less

  6. Survival of Atlantic salmon Salmo salar smolts through a hydropower complex.

    PubMed

    Stich, D S; Bailey, M M; Zydlewski, J D

    2014-10-01

    This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was conducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0·12, 95% c.i. = 0·06-0·25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1·00 and 0·97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0·91), whereas survival through two dams that were removed was relatively high (0·99 and 0·98). Smolt survival could decrease in the Stillwater Branch with the addition of two new powerhouses while continuing to meet fish passage standards. The effects of removing two dams in the main-stem are expected to be negligible for smolt survival based on high survival observed from 2005 to 2012 at those locations. Survival through Milford Dam was been well below current regulatory standards, and thus improvement of passage at this location offers the best opportunity for improving overall smolt survival in the lower river. © 2014 The Fisheries Society of the British Isles.

  7. Survival, development, and growth of fall Chinook salmon embryos, alevin, and fry exposed to variable thermal and dissolved oxygen regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.

    2006-11-15

    Some fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Snake River downstream of Hells Canyon Dam at temperatures that exceed 13?C and at intergravel dissolved oxygen concentrations that are less than 8 mg O2/L. Although water temperature declines and dissolved oxygen increases soon after spawning, these temperature and dissolved oxygen levels do not meet the water quality standards established by the states of Oregon and Idaho for salmonid spawning. Our objective was to determine if temperatures from 13 to 17 C and dissolved oxygen levels from 4 to greater than 8 mg O2/L during the first 40 days ofmore » incubation followed by declining temperature and rising dissolved oxygen affected survival, development, and growth of Snake River fall Chinook salmon embryos, alevins, and fry. During the first 40 days of incubation, temperatures were adjusted downward approximately 0.2 C/day and oxygen was increased in increments of 2 mg O2/L to mimic the thermal and oxygen regime of the Snake River where these fish spawn. At 40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal and dissolved oxygen profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures equal to or greater than 17?C, and a rapid decline in survival occurred between 16.5 C and 17 C, with no significant difference in survival at temperatures less than or equal to 16.5 C. Initial dissolved oxygen levels as low as 4 mg O2/L over a range of initial temperatures from 15 to 16.5 C did not affect embryo survival to emergence. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature and dissolved oxygen; it took from 6 to 10 days longer to reach hatch at 4 mg O2/L than at saturation

  8. Summary of survival data from juvenile coho salmon in the Klamath River, northern California, 2009

    USGS Publications Warehouse

    Beeman, John W.; Juhnke, Steven D.

    2009-01-01

    A study of the effects of the discharge from Iron Gate Dam on the Klamath River on juvenile coho salmon during their seaward migration began in 2005. Estimates of fish survival through various reaches of the river downstream of the dam were completed in 2006, 2007, 2008, and 2009. This report describes the estimates of survival during 2009, and is a complement to similar reports for 2006, 2007, and 2008. For each year, a series of numerical models were evaluated to determine apparent survival and recapture probabilities of radio-tagged fish in several river reaches between Iron Gate Hatchery at river kilometer 309 and a site at river kilometer 33. The evaluations indicate that the primary differences among years are in the survivals through reaches upstream of the confluence of the Scott River with the Klamath River. Data from 2009, one of two years when fish from both hatchery and wild origins were available for analysis, indicate that survival of wild and hatchery fish are similar.

  9. Building an ecosystem model using mismatched and fragmented data: A probabilistic network of early marine survival for coho salmon Oncorhynchus kisutch in the Strait of Georgia

    NASA Astrophysics Data System (ADS)

    Andres Araujo, H.; Holt, Carrie; Curtis, Janelle M. R.; Perry, R. I.; Irvine, James R.; Michielsens, Catherine G. J.

    2013-08-01

    We evaluated the effects of biophysical conditions and hatchery production on the early marine survival of coho salmon Oncorhynchus kisutch in the Strait of Georgia, British Columbia, Canada. Due to a paucity of balanced multivariate ecosystem data, we developed a probabilistic network that integrated physical and ecological data and information from literature, expert opinion, oceanographic models, and in situ observations. This approach allowed us to evaluate alternate hypotheses about drivers of early marine survival while accounting for uncertainties in relationships among variables. Probabilistic networks allow users to explore multiple environmental settings and evaluate the consequences of management decisions under current and projected future states. We found that the zooplankton biomass anomaly, calanoid copepod biomass, and herring biomass were the best indicators of early marine survival. It also appears that concentrating hatchery supplementation during periods of negative PDO and ENSO (Pacific Decadal and El Niño Southern Oscillation respectively), indicative of generally favorable ocean conditions for salmon, tends to increase survival of hatchery coho salmon while minimizing negative impacts on the survival of wild juveniles. Scientists and managers can benefit from the approach presented here by exploring multiple scenarios, providing a basis for open and repeatable ecosystem-based risk assessments when data are limited.

  10. Estuarine Ecology of Juvenile Salmon in Western Alaska: a Review

    USGS Publications Warehouse

    Zimmerman, Christian E.; Hillgruber, Nicola

    2009-01-01

    In the late 1990s and early 2000s, large declines in numbers of chum salmon Oncorhynchus keta and Chinook salmon O. tshawytscha returning to the Arctic-YukonKuskokwim (AYK) region (Alaska, USA) illuminated the need for an improved understanding of the variables controlling salmon abundance at all life stages. In addressing questions about salmon abundance, large gaps in our knowledge of basic salmon life history and the critical early marine life stage were revealed. In this paper, results from studies conducted on the estuarine ecology of juvenile salmon in western Alaska are summarized and compared, emphasizing timing and distribution during outmigration, environmental conditions, age and growth, feeding, and energy content of salmon smolts. In western Alaska, water temperature dramatically changes with season, ranging from 0°C after ice melt in late spring/early summer to 19°C in July. Juvenile salmon were found in AYK estuaries from early May until August or September, but to date no information is available on their residence duration or survival probability. Chum salmon were the most abundant juvenile salmon reported, ranging in percent catch from <0.1% to 4.7% and most research effort has focused on this species. Abundances of Chinook salmon, sockeye salmon O. nerka, and pink salmon O. gorbuscha varied among estuaries, while coho salmon O. kisutch juveniles were consistently rare, never amounting to more than 0.8% of the catch. Dietary composition of juvenile salmon was highly variable and a shift was commonly reported from epibenthic and neustonic prey in lower salinity water to pelagic prey in higher salinity water. Gaps in the knowledge of AYK salmon estuarine ecology are still evident. For example, data on outmigration patterns and residence timing and duration, rearing conditions and their effect on diet, growth, and survival are often completely lacking or available only for few selected years and sites. Filling gaps in knowledge concerning salmon

  11. Influence of processing steps in cold-smoked salmon production on survival and growth of persistent and presumed non-persistent Listeria monocytogenes.

    PubMed

    Porsby, Cisse Hedegaard; Vogel, Birte Fonnesbech; Mohr, Mona; Gram, Lone

    2008-03-20

    Cold-smoked salmon is a ready-to-eat product in which Listeria monocytogenes sometimes can grow to high numbers. The bacterium can colonize the processing environment and it is believed to survive or even grow during the processing steps. The purpose of the present study was to determine if the steps in the processing of cold-smoked salmon affect survival and subsequent growth of a persistent strain of L. monocytogenes to a lesser degree than presumed non-persistent strains. We used a sequence of experiments increasing in complexity: (i) small salmon blocks salted, smoked or dried under model conditions, (ii) fillets of salmon cold-smoked in a pilot plant and finally, (iii) assessment of the bacterial levels before and after processing during commercial scale production. L. monocytogenes proliferated on salmon blocks that were brined or dipped in liquid smoke and left at 25 degrees C in a humidity chamber for 24 h. However, combining brining and liquid smoke with a drying (25 degrees C) step reduced the bacterium 10-100 fold over a 24 h period. Non-salted, brine injected or dry salted salmon fillets were surface inoculated with L. monocytogenes and cold-smoked in a pilot plant. L. monocytogenes was reduced from 10(3) to 10-10(2) CFU/cm(2) immediately after cold-smoking. The greatest reductions were observed in dry salted and brine injected fillets as compared to cold-smoking of non-salted fresh fillets. Levels of L. monocytogenes decreased further when the cold-smoked fish was vacuum-packed and stored at 5 degrees C. A similar decline was seen when inoculating brine injected fillets after cold-smoking. High phenol concentrations are a likely cause of this marked growth inhibition. In a commercial production facility, the total viable count of salmon fillets was reduced 10-1000 fold by salting, cold-smoking and process-freezing (a freezing step after smoking and before slicing). The prevalence of L. monocytogenes in the commercial production facility was too low to

  12. Survival of Seaward-Migrating PIT and Acoustic-Tagged Juvenile Chinook Salmon in the Snake and Columbia Rivers: An Evaluation of Length-Specific Tagging Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Oldenburg, Eric W.; Seaburg, Adam

    Studies examining the survival of juvenile salmon as they emigrate to the ocean provide important information regarding the management of regulated river systems. Acoustic telemetry is a widely used tool for evaluating the behavior and survival of juvenile salmonids in the Columbia River basin. Thus, it is important to understand how the surgical tagging process and the presence of a transmitter affect survival so any biases can be accounted for or eliminated. This study evaluated the effects of fish length and tag type on the survival of yearling and subyearling Chinook salmon during their seaward migrations through the Snake andmore » Columbia rivers during 2006, 2007, and 2008. Fish were collected at Lower Granite Dam on the Snake River (river kilometer 695) and implanted with either only a passive integrated transponder (PIT) tag (PIT fish) or both a PIT tag and an acoustic transmitter (AT fish). Survival was estimated from release at Lower Granite Dam to multiple downstream locations (dams) using the Cormack–Jolly–Seber single release model, and analysis of variance was used to test for differences among length-classes and between tag types. No length-specific tag effect was detected between PIT and AT fish (i.e., length affected the survival of PIT fish in a manner similar to which it affected the survival of AT fish). Survival among the smallest length class (i.e., 80–89 mm) of both PIT and AT subyearling Chinook salmon was markedly low (i.e., 4%). Fish length was positively correlated with the survival of both PIT and AT fish. Significant differences in survival were detected between tag types; the survival of PIT fish was generally greater than that of AT fish. However, confounding variables warrant caution in making strong inferences regarding this factor. Further, results suggest that tag effects may be due to the process of surgically implanting the transmitter rather than the presence of the transmitter.« less

  13. Quantifying Temperature Effects on Fall Chinook Salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jager, Yetta

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  14. Effect of salt, smoke compound and temperature on the survival of Listeria monocytogenes in salmon during simulated smoking processes

    USDA-ARS?s Scientific Manuscript database

    In smoked fish processes, smoking is the only step that is capable of inactivating pathogens, such as Listeria monocytogenes, that contaminate the raw fish. The objectives of this study were to examine and develop a model to describe the survival of L. monocytogenes in salmon as affected by salt, s...

  15. Survival, development, and growth of Snake River fall Chinook salmon Embryos, Alevins, and Fry Exposed to Variable Thermal and Dissolved Oxygen Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.

    2006-11-01

    Fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Hells Canyon reach of the Snake River, Idaho (rkm 240-397), at water temperatures above 16 C. This temperature exceeds the states of Idaho and Oregon water quality standards for salmonid spawning. These standards are consistent with results from studies of embryos exposed to a constant thermal regime, while salmon eggs in the natural environment are rarely exposed to a constant temperature regime. The objective of this study was to assess whether variable temperatures (i.e., declining after spawning) affected embryo survival, development, and growth of Snake River fall Chinook salmon alevins andmore » fry. In 2003, fall Chinook salmon eggs were exposed to initial incubation temperatures ranging from 11-19 C in 2 C increments, and in 2004 eggs were exposed to initial temperatures of 13 C, 15 C, 16 C, 16.5 C, and 17 C. In both years, temperatures were adjusted downward approximately 0.2 C/day to mimic the thermal regime of the Snake River where these fish spawn. At 37-40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures >17 C in both years. A logistic regression model estimated that a 50% reduction in survival from fertilization to emergence would occur at an initial incubation temperature of {approx}16 C. The laboratory results clearly showed a significant reduction in survival between 15 C and 17 C, which supported the model estimate. Results from 2004 showed a rapid decline in survival occurred between 16.5 C and 17 C, with no significant differences in survival at initial incubation temperatures <16.5 C. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. Differences in egg mass among females (notably 2003) most likely

  16. Differential survival among sSOD-1* genotypes in Chinook Salmon

    USGS Publications Warehouse

    Hayes, Michael C.; Reisenbichler, Reginald R.; Rubin, Stephen P.; Wetzel, Lisa A.; Marshall , Anne R.

    2011-01-01

    Differential survival and growth were tested in Chinook salmon Oncorhynchus tshawytscha expressing two common alleles, *–100 and *–260, at the superoxide dismutase locus (sSOD-1*). These tests were necessary to support separate studies in which the two alleles were used as genetic marks under the assumption of mark neutrality. Heterozygous adults were used to produce progeny with –100/–100, –100/–260, and –260/–260 genotypes that were reared in two natural streams and two hatcheries in the states of Washington and Oregon. The latter also were evaluated as returning adults. In general, the genotype ratios of juveniles reared at hatcheries were consistent with high survival and little or no differential survival in the hatchery. Adult returns at one hatchery were significantly different from the expected proportions, and the survival of the –260/–260 genotype was 0.56–0.89 times that of the –100/–100 genotype over four year-classes. Adult returns at a second hatchery (one year-class) were similar but not statistically significant: survival of the –260/–260genotype relative to the –100/–100 genotype was 0.76. The performance of the heterozygote group was intermediate at both hatcheries. Significant differences in growth were rarely observed among hatchery fish (one year-class of juveniles and one age-class of adult males) but were consistent with greater performance for the –100/–100 genotype. Results from two groups of juveniles reared in streams (one year-class from each stream) suggested few differences in growth, but the observed genotype ratios were significantly different from the expected ratios in one stream. Those differences were consistent with the adult data; survival for the –260/–260 genotype was 76% of that of the –100/–100 genotype. These results, which indicate nonneutrality among sSOD-1* genotypes, caused us to modify our related studies and suggest caution in the interpretation of results and analyses in

  17. Summary of Survival Data from Juvenile Coho Salmon in the Klamath River, Northern California, 2008

    USGS Publications Warehouse

    Beeman, John W.; Juhnke, Steven; Hansel, Hal C.

    2009-01-01

    A study to estimate the effects of Iron Gate Dam discharge on ESA-listed juvenile coho salmon during their seaward migration to the ocean was begun in 2005. Estimates of survival through various reaches of river downstream from the dam were completed in 2006, 2007, and 2008 as part of this process. This report describes the estimates of survival during 2008, and is a complement to similar reports from 2006 and 2007. In each year, a series of models were evaluated to determine apparent survival and recapture probabilities of radio-tagged fish in several river reaches between Iron Gate Hatchery at river kilometer 309 and a site at river kilometer 33. These results indicate most trends in survival among reaches were similar to those from 2006 and 2007, but the magnitudes of the estimated survivals were lower in 2008. The differences in survivals from Iron Gate Hatchery to river kilometer 33 in 2006 (0.653 SE 0.039), 2007 (0.497 SE 0.044), and 2008 (0.406 SE 0.032) were caused primarily by differences in survival upstream from the Scott River. This report is intended as a brief description of the survivals estimated from the fish released in 2008 to be used by others interested in the data.

  18. The Influence of Tag Presence on the Mortality of Juvenile Chinook Salmon Exposed to Simulated Hydroturbine Passage: Implications for Survival Estimates and Management of Hydroelectric Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Thomas J.; Brown, Richard S.; Stephenson, John R.

    Each year, millions of fish have telemetry tags (acoustic, radio, inductive) surgically implanted to assess their passage and survival through hydropower facilities. One route of passage of particular concern is through hydro turbines, in which fish may be exposed to a range of potential injuries, including barotraumas from rapid decompression. The change in pressure from acclimation to exposure (nadir) has been found to be an important factor in predicting the likelihood of mortality and injury for juvenile Chinook salmon undergoing rapid decompression associated with simulated turbine passage. The presence of telemetry tags has also been shown to influence the likelihoodmore » of injury and mortality for juvenile Chinook salmon. This research investigated the likelihood of mortality and injury for juvenile Chinook salmon carrying telemetry tags and exposed to a range of simulated turbine passage. Several factors were examined as predictors of mortal injury for fish undergoing rapid decompression, and the ratio of pressure change and tag burden were determined to be the most predictive factors. As the ratio of pressure change and tag burden increase, the likelihood of mortal injury also increases. The results of this study suggest that previous survival estimates of juvenile Chinook salmon passing through hydro turbines may have been biased due to the presence of telemetry tags, and this has direct implications to the management of hydroelectric facilities. Realistic examples indicate how the bias in turbine passage survival estimates could be 20% or higher, depending on the mass of the implanted tags and the ratio of acclimation to exposure pressures. Bias would increase as the tag burden and pressure ratio increase, and have direct implications on survival estimates. It is recommended that future survival studies use the smallest telemetry tags possible to minimize the potential bias that may be associated with carrying the tag.« less

  19. Catchment-wide survival of wild- and hatchery-reared Atlantic salmon smolts in a changing system

    USGS Publications Warehouse

    Stich, Daniel S.; Bailey, Michael M.; Holbrook, Christopher M.; Kinnison, Michael T.; Zydlewski, Joseph D.

    2015-01-01

    We developed a hierarchical multistate model to estimate survival of Atlantic salmon (Salmo salar) smolts in the Penobscot River, USA, over a decade during which two mainstem dams were removed from the catchment. We investigated effects of (i) environmental factors, (ii) rearing history, and (iii) management actions, including dam removal, turbine shutdown, and installation of new powerhouses. Mean ± SD smolt survival per kilometre was higher through free-flowing reaches of the catchment (0.995 ± 0.004·km−1) than through reaches containing dams that remain in the system (0.970 ± 0.019·km−1). We observed maximum survival between 12 and 17 °C and at intermediate discharges (1200 m3·s−1). Smolt survival increased concurrent with dam removal and decreased following increases in hydropower generation. The greatest increase in smolt survival followed seasonal turbine shutdowns at a dam located on the largest tributary to the Penobscot River, while other shutdowns had little influence. Our model provides a useful tool for assessing changes to survival of migratory species and will be useful for informing stocking plans to maximize numbers of smolts leaving coastal systems.

  20. Predation by fallfish (Semotilus corporalis) on Pacific salmon eggs in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, J. H.; Nack, C.C.; Chalupnicki, M.A.

    2009-01-01

    Fallfish (Semotilus corporalis) are the largest native cyprinid in the northeastern United States and are the most abundant native species in the Salmon River, New York. The Salmon River is a high-quality spawning and nursery river for Pacific salmon (Oncorhynchus spp.) migrating from Lake Ontario. Because of the large number of Pacific salmon spawning in the river in the fall extensive redd superimposition occurs resulting in salmonid eggs being available on the substrate. We examined the fall diet of 647 fallfish in 2007 and 2008 to determine the extent of predation on Pacific salmon eggs. The contribution of eggs in the diet significantly increased once fallfish attained a size of 100 mm total length. The largest size category of fallfish examined (≥150 mm) had the highest proportion (86.1%) of salmon eggs in their diet. The contribution of Zooplankton and chironomids in the diet of fallfish decreased with fish size. Except for the two largest groups of fallfish examined (i.e., 100–149 mm and ≥150 mm) diet overlap among size groups was low. The high contribution in the diet during the fall and high caloric value of Pacific salmon eggs could increase growth and survival of this species in the Salmon River.

  1. Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at John Day Dam, Summer 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.

    The purpose of this study was to evaluate dam passage survival of subyearling Chinook salmon (Oncorhynchus tshawytscha; CH0) at John Day Dam (JDA) during summer 2010. This study was conducted by researchers from the Pacific Northwest National Laboratory (PNNL) in collaboration with the Pacific States Marine Fisheries Commission (PSMFC) and the University of Washington (UW). The study was designed to estimate the effects of 30% and 40% spill treatment levels on single release survival rates of CH0 passing through two reaches: (1) the dam, and 40 km of tailwater, (2) the forebay, dam, and 40 km of tailwater. The studymore » also estimated additional passage performance measures which are stipulated in the Columbia Basin Fish Accords.« less

  2. Retrospective analysis of AYK Chinook salmon growth

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Nielsen, Jennifer L.; Agler, B.A.

    2007-01-01

    Harvests of Yukon and Kuskokwim Chinook salmon declined significantly during 1998- 2002 in response to fewer returning salmon. Factors affecting the decline in Chinook salmon abundance are largely unknown. Growth of salmon in freshwater and the ocean is generally thought to influence salmon survival, therefore we examined historical Chinook salmon catch trends and developed growth indices of age-1.3 and age-1.4 Yukon and Kuskokwim Chinook salmon during each year and life stage in freshwater and the ocean, 1964-2004, using measurements of salmon scale growth. Availability of Yukon scales was greater than that of Kuskokwim scales during 1964-2004.Harvests of Yukon and Kuskokwim Chinook salmon rapidly increased in the mid-1970s, then rapidly declined in the late 1990s, apparently in response to the 1976/77 ocean regime shift and the 1997/98 El Nino event. Runs of Nushagak District Chinook salmon (Bristol Bay) also appeared to have been affected by these events in addition to the 1989 regime shift. The rapid responses of Chinook salmon abundance to climate change suggest late life stages were primarily affected, at least initially. Therefore, we searched for Chinook salmon growth patterns that might be related to changes in climate.

  3. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters

    DOE PAGES

    Deng, Zhiqun D.; Martinez, J. J.; Li, H.; ...

    2017-02-21

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitters is still the key limiting factor despite that considerable effort has been expended to understand the biological effects of implantation of acoustic transmitters in yearling and subyearling Chinook salmon. The newly developed injectable transmitter is the first active acoustic tag that can be implanted via injection instead of surgery. It also lasts more than four times longer than the commercially-available transmitters. A two-part field study was conducted to evaluate the performance of the injectablemore » transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the other commercially-available transmitters tested. Snake River subyearling Chinook salmon smolts implanted with the injectable tag had a higher survival probability from release to each of 11 downstream detection arrays than concurrent releases of fish surgically implanted with commercially-available tags. In addition, reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The differences in survival may have been caused by warm water temperatures and higher rates of infection experienced by the surgically implanted group due to the presence of sutures acting as an attachment site for pathogens. The reduction in size and ability to implant the new transmitter via injection has further reduced the tag or tagging effect bias associated with studying small fishes. As a result, the information gathered with this new technology is helping minimize the impact of dams on fish, leading to more environmentally sustainable energy systems.« less

  4. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun D.; Martinez, J. J.; Li, H.

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitters is still the key limiting factor despite that considerable effort has been expended to understand the biological effects of implantation of acoustic transmitters in yearling and subyearling Chinook salmon. The newly developed injectable transmitter is the first active acoustic tag that can be implanted via injection instead of surgery. It also lasts more than four times longer than the commercially-available transmitters. A two-part field study was conducted to evaluate the performance of the injectablemore » transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the other commercially-available transmitters tested. Snake River subyearling Chinook salmon smolts implanted with the injectable tag had a higher survival probability from release to each of 11 downstream detection arrays than concurrent releases of fish surgically implanted with commercially-available tags. In addition, reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The differences in survival may have been caused by warm water temperatures and higher rates of infection experienced by the surgically implanted group due to the presence of sutures acting as an attachment site for pathogens. The reduction in size and ability to implant the new transmitter via injection has further reduced the tag or tagging effect bias associated with studying small fishes. As a result, the information gathered with this new technology is helping minimize the impact of dams on fish, leading to more environmentally sustainable energy systems.« less

  5. Cryptic female choice enhances fertilization success and embryo survival in chinook salmon.

    PubMed

    Rosengrave, Patrice; Montgomerie, Robert; Gemmell, Neil

    2016-03-30

    In this study, we investigated two potentially important intersexual postcopulatory gametic interactions in a population of chinook salmon (Oncorhynchus tshawytscha): (i) the effect of female ovarian fluid (OF) on the behaviour of spermatozoa during fertilization and (ii) the effects of multilocus heterozygosity (MLH) (as an index of male quality) and female-male genetic relatedness on sperm behaviour and male fertilization success when there is sperm competition in the presence of that OF. To do this, we conducted a series of in vitro competitive fertilization experiments and found that, when ejaculates from two males are competing for access to a single female's unfertilized eggs, fertilization success was significantly biased towards the male whose sperm swam fastest in the female's OF. Embryo survival--a measure of fitness--was also positively correlated with both sperm swimming speed in OF and male MLH, providing novel evidence that cryptic female choice is adaptive for the female, enhancing the early survival of her offspring and potentially influencing her fitness. © 2016 The Author(s).

  6. Evaluation of emamectin benzoate and substance EX against salmon lice in sea-ranched Atlantic salmon smolts.

    PubMed

    Skilbrei, Ove Tommy; Espedal, Per Gunnar; Nilsen, Frank; Garcia, Enrique Perez; Glover, Kevin A

    2015-04-08

    Experimental releases of Atlantic salmon smolts treated with emamectin benzoate (EB) against salmon lice have previously been used to estimate the significance of salmon lice on the survival of migrating smolts. In recent years, the salmon louse has developed reduced sensitivity to EB, which may influence the results of such release experiments. We therefore tested the use of 2 anti-lice drugs: EB was administered to salmon smolts in high doses by intra-peritoneal injection and the prophylactic substance EX (SubEX) was administered by bathing. A third, untreated control group was also established. Salmon were challenged with copepodids of 2 strains of salmon lice (1 EB-sensitive strain and 1 with reduced EB-sensitivity) in mixed-group experimental tanks. At 31 d post-challenge, the numbers of pre-adult lice on treated fish were around 20% compared with the control fish, with minor or no differences between the 2 treatments and lice strains. Both treatments therefore appeared to give the smolts a high degree of protection against infestation of copepodids of salmon lice. However, significantly lower growth of the EB-treatment group indicates that bathing the fish in SubEX is less stressful for smolts than intra-peritoneal injection of EB.

  7. The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada

    PubMed Central

    2017-01-01

    The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37–45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012–2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction. PMID:29236731

  8. The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada.

    PubMed

    Morton, Alexandra; Routledge, Richard; Hrushowy, Stacey; Kibenge, Molly; Kibenge, Frederick

    2017-01-01

    The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37-45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012-2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction.

  9. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry; Tezak, E.; Endicott, Rick

    The efficacy of captive broodstock programs depends on high in-culture survival and the fitness of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. The following summarizes some of the work performed and results from the FY 2001 performance period: (1) The incidence of male maturation of age-1 chinook salmon was significantly reduced by reducing growth in the first year of rearing. (2) Experimentally manipulated growth rates of captively-reared coho salmon had significant effects on female maturation rate, eggmore » size, and fecundity, and the effects were stage-specific (i.e., pre-smolt vs. post-smolt). (3) A combination of Renogen and MT239 vaccination of yearling chinook salmon given an acute R. salmoninarum challenge had a significantly longer survival time than the mock-vaccinated group. The survival time was marginally higher than was seen in acutely challenged fish vaccinated with either Renogen or MT239 alone and suggests that a combination vaccine of Renogen and MT239 may be useful as both a prophylactic and therapeutic agent against BKD. (4) Full-sib (inbred) groups of chinook salmon have thus far exhibited lower ocean survival than half-sib and non-related groups. Effects of inbreeding on fluctuating asymmetry did not follow expected patterns. (5) Sockeye salmon were exposed to specific odorants at either the alevin/emergent fry stage or the smolt stage to determine the relative importance of odorant exposure during key developmental periods and the importance of exposure duration. (6) Experimental studies to determine the effects of exercise conditioning on steelhead reproductive behavior and the effects of male body size on chinook salmon fertilization success during natural spawning were completed.« less

  10. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska.

    Treesearch

    Dirk W. Lang; Gordon H. Reeves; James D. Hall; Mark S. Wipfli

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchrcs kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from...

  11. Impacts of episodic acidification on in-stream survival and physiological impairment of Atlantic salmon (Salmo salar) smolts

    USGS Publications Warehouse

    McCormick, S.D.; Keyes, A.; Nislow, K.H.; Monette, M.Y.

    2009-01-01

    We conducted field studies to determine the levels of acid and aluminum (Al) that affect survival, smolt development, ion homeostasis, and stress in Atlantic salmon (Salmo salar) smolts in restoration streams of the Connecticut River in southern Vermont, USA. Fish were held in cages in five streams encompassing a wide range of acid and Al levels for two 6-day intervals during the peak of smolt development in late April and early May. Physiological parameters were unchanged from initial sampling at the hatchery and the high water quality reference site (pH > 7.0, inorganic Al < 12 μg·L-1). Mortality, substantial loss of plasma chloride, and gill Na+/K+-ATPase activity, and elevated gill Al occurred at sites with the lowest pH (5.4-5.6) and highest inorganic Al (50-80 μg·L-1). Moderate loss of plasma chloride, increased plasma cortisol and glucose, and moderately elevated gill Al occurred at less severely impacted sites. Gill Al was a better predictor of integrated physiological impacts than water chemistry alone. The results indicate that Al and low pH under field conditions in some New England streams can cause mortality and impair smolt development in juvenile Atlantic salmon and provide direct evidence that episodic acidification is impacting conservation and recovery of Atlantic salmon in the northeastern USA.

  12. Modeling survival of juvenile salmon during downriver migration in the Columbia River on a microcomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloquin, R.A.; McKenzie, D.H.

    1994-10-01

    A compartmental model has been implemented on a microcomputer as an aid in the analysis of alternative solutions to a problem. The model, entitled Smolt Survival Simulator, simulates the survival of juvenile salmon during their downstream migration and passage of hydroelectric dams in the Columbia River. The model is designed to function in a workshop environment where resource managers and fisheries biologists can study alternative measures that may potentially increase juvenile anadromous fish survival during downriver migration. The potential application of the model has placed several requirements on the implementing software. It must be available for use in workshop settings.more » The software must be easily to use with minimal computer knowledge. Scenarios must be created and executed quickly and efficiently. Results must be immediately available. Software design emphasis vas placed on the user interface because of these requirements. The discussion focuses on methods used in the development of the SSS software user interface. These methods should reduce user stress and alloy thorough and easy parameter modification.« less

  13. Measurements of key life history metrics of Coho salmon in Pudding Creek, California

    Treesearch

    David W. Wright; Sean P. Gallagher; Christopher J. Hannon

    2012-01-01

    Since 2005, a life cycle monitoring project in Pudding Creek, California, has utilized a variety of methodologies including an adult trap, spawning surveys, PIT tags, electro-fishing, and a smolt trap to estimate coho salmon adult escapement, juvenile abundance, juvenile growth, winter survival, and marine survival. Adult coho salmon escapement and smolt abundance are...

  14. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, Progress Report 2000-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter; Kucera, Paul; Blenden, Michael

    This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenilemore » chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303

  15. Genetic differences in growth, migration, and survival between hatchery and wild steelhead and Chinook salmon: Introduction and executive summary

    USGS Publications Warehouse

    Rubin, Steve P.; Reisenbichler, Reginald; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    This report presents results of studies testing for genetically based differences in performance (growth, migration, and survival) between hatchery and wild populations of steelhead and Chinook salmon (Project Number 90-052). The report is organized into 10 chapters with a general study introduction preceding the first chapter. A growing body of data shows that domestication and a resulting loss of fitness for natural rearing occur in hatchery populations of anadromous salmonids; however, the magnitude of domestication will vary among species and hatchery programs. Better information on domestication is needed to accurately predict the consequences when hatchery and wild fish interbreed. The intent of hatchery supplementation is to increase natural production through introduction of hatchery fish into natural production areas. The goal of this study was to provide managers with information on the genetic risks of hatchery supplementation to wild populations of Columbia River Basin summer steelhead and spring Chinook salmon.

  16. Assessment of Subyearling Chinook Salmon Survival through the Federal Hydropower Projects in the Main-Stem Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, J. R.; Eppard, M. B.; Ploskey, Gene R.

    2014-07-11

    High survival through hydropower projects is an essential element in the recovery of salmonid populations in the Columbia River. It is also a regulatory requirement under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) established under the Endangered Species Act. It requires dam passage survival to be ≥0.96 and ≥0.93 for spring and summer outmigrating juvenile salmonids, respectively, and estimated with a standard error ≤ 0.015. An innovative virtual/paired-release design was used to estimate dam passage survival, defined as survival from the face of a dam to the tailrace mixing zone. A coordinated four-dam study was conductedmore » during the 2012 summer outmigration using 14,026 run-of-river subyearling Chinook salmon surgically implanted with acoustic micro-transmitter (AMT) tags released at 9 different locations, and monitored on 14 different detection arrays. Each of the four estimates of dam passage survival exceeded BiOp requirements with values ranging from 0.9414 to 0.9747 and standard errors, 0.0031 to 0.0114. Two consecutive years of survival estimates must meet BiOp standards in order for a hydropower project to be in compliance with recovery requirements for a fish stock.« less

  17. Modelling the Future Hydroclimatology of the Lower Fraser River and its Impacts on the Spawning Migration Survival of Sockeye Salmon

    NASA Technical Reports Server (NTRS)

    Hague, M. J.; Ferrari, M. R.; Miller, J. R.; Patterson, D. A.; Russell, G. L.; Farrell, A.P.; Hinch, S. G.

    2010-01-01

    Short episodic high temperature events can be lethal for migrating adult Pacific salmon (Oncorhynchus spp.). We downscaled temperatures for the Fraser River, British Columbia to evaluate the impact of climate warming on the frequency of exceeding thermal thresholds associated with salmon migratory success. Alarmingly, a modest 1.0 C increase in average summer water temperature over 100 years (1981-2000 to 2081-2100) tripled the number of days per year exceeding critical salmonid thermal thresholds (i.e. 19.0 C). Refined thresholds for two populations (Gates Creek and Weaver Creek) of sockeye salmon (Oncorhynchus nerka) were defined using physiological constraint models based on aerobic scope. While extreme temperatures leading to complete aerobic collapse remained unlikely under our warming scenario, both populations were increasingly forced to migrate upriver at reduced levels of aerobic performance (e.g. in 80% of future simulations, => 90% of salmon encountered temperatures exceeding population specific thermal optima for maximum aerobic scope; T(sub opt)) = 16.3 C for Gates Creek and T(sub sopt)=14.5 C for Weaver Creek). Assuming recent changes to river entry timing persist, we also predicted dramatic increases in the probability of freshwater mortality for Weaver Creek salmon due to reductions in aerobic, and general physiological, performance (e.g. in 42% of future simulations =>50% of Weaver Creek fish exceeded temperature thresholds associated with 0 - 60% of maximum aerobic scope). Potential for adaptation via directional selection on run-timing was more evident for the Weaver Creek population. Early entry Weaver Creek fish experienced 25% (range: 15 - 31%) more suboptimal temperatures than late entrants, compared with an 8% difference (range: 0 - 17%) between early and late Gates Creek fish. Our results emphasize the need to consider daily temperature variability in association with population-specific differences in behaviour and physiological

  18. Development of a study design and implementation plan to estimate juvenile salmon survival in Lookout Point Reservoir and other reservoirs of the Willamette Project, western Oregon

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Monzyk, Fred R.; Pope, Adam C.; Plumb, John M.

    2016-12-23

    Survival estimates for juvenile salmon and steelhead fry in reservoirs impounded by high head dams are coveted data by resource managers.  However, this information is difficult to obtain because these fish are too small for tagging using conventional methods such as passive-integrated transponders or radio or acoustic transmitters.  We developed a study design and implementation plan to conduct a pilot evaluation that would assess the performance of two models for estimating fry survival in a field setting.  The first model is a staggered-release recovery model that was described by Skalski and others (2009) and Skalski (2016).  The second model is a parentage-based tagging N-mixture model that was developed and described in this document.  Both models are conceptually and statistically sound, but neither has been evaluated in the field.  In this document we provide an overview of a proposed study for 2017 in Lookout Point Reservoir, Oregon, that will evaluate survival of Chinook salmon fry using both models.  This approach will allow us to test each model and compare survival estimates, to determine model performance and better understand these study designs using field-collected data.

  19. Yolo Bypass Juvenile Salmon Utilization Study 2016—Summary of acoustically tagged juvenile salmon and study fish release, Sacramento River, California

    USGS Publications Warehouse

    Liedtke, Theresa L.; Hurst, William R.

    2017-09-12

    The Yolo Bypass is a flood control bypass in Sacramento Valley, California. Flood plain habitats may be used for juvenile salmon rearing, however, the potential value of such habitats can be difficult to evaluate because of the intermittent nature of inundation events. The Yolo Bypass Juvenile Salmon Utilization Study (YBUS) used acoustic telemetry to evaluate the movements and survival of juvenile salmon adjacent to and within the Yolo Bypass during the winter of 2016. This report presents numbers, size data, and release data (times, dates, and locations) for the 1,197 acoustically tagged juvenile salmon released for the YBUS from February 21 to March 18, 2016. Detailed descriptions of the surgical implantation of transmitters are also presented. These data are presented to support the collaborative, interagency analysis and reporting of the study findings.

  20. Chronic oral DDT toxicity in juvenile coho and chinook salmon

    USGS Publications Warehouse

    Buhler, Donald R.; Rasmusson, Mary E.; Shanks, W.E.

    1969-01-01

    Technical and p,p′-DDT was incorporated into test diets and fed to juvenile chinook and coho salmon for periods as long as 95 days. Pure p,p′-DDT was slightly more toxic to young salmon than was the technical DDT mixture. Chinook salmon appeared to be 2–3 times more sensitive to a given concentration of DDT in the diet than were coho salmon. The size of the fish greatly influenced toxicity, smaller younger fish being more susceptible to a given diet than larger older fish. The dose of DDT accumulated within the median survival time ranged from 27–73 mg/kg for chinook salmon and from 56–72 mg/kg for coho salmon. The extrapolated 90-dose LD50 (Hayes, 1967) for young chinook and coho salmon were 0.0275 and 0.064 mg/kg/day, respectively. Liver size decreased on prolonged feeding with DDT, and carcass lipid content was increased. A severe surface ulceration of the nose region appeared in coho salmon fed DDT over long periods. In addition, an interesting localized degeneration of the distal convoluted tubule was observed in the kidney of coho salmon receiving DDT.

  1. Cryptic female choice enhances fertilization success and embryo survival in chinook salmon

    PubMed Central

    2016-01-01

    In this study, we investigated two potentially important intersexual postcopulatory gametic interactions in a population of chinook salmon (Oncorhynchus tshawytscha): (i) the effect of female ovarian fluid (OF) on the behaviour of spermatozoa during fertilization and (ii) the effects of multilocus heterozygosity (MLH) (as an index of male quality) and female–male genetic relatedness on sperm behaviour and male fertilization success when there is sperm competition in the presence of that OF. To do this, we conducted a series of in vitro competitive fertilization experiments and found that, when ejaculates from two males are competing for access to a single female's unfertilized eggs, fertilization success was significantly biased towards the male whose sperm swam fastest in the female's OF. Embryo survival—a measure of fitness—was also positively correlated with both sperm swimming speed in OF and male MLH, providing novel evidence that cryptic female choice is adaptive for the female, enhancing the early survival of her offspring and potentially influencing her fitness. PMID:27009221

  2. Surgically Implanted JSATS Micro-Acoustic Transmitters Effects on Juvenile Chinook Salmon and Steelhead Tag Expulsion and Survival, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodley, Christa M.; Carpenter, Scott M.; Carter, Kathleen M.

    2011-09-16

    The purpose of this study was to evaluate survival model assumptions associated with a concurrent study - Acoustic Telemetry Evaluation of Dam Passage Survival and Associated Metrics at John Day, The Dalles, and Bonneville Dams, 2010 by Thomas Carlson and others in 2010 - in which the Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate the survival of yearling and subyearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) migrating through the Federal Columbia River Power System (FCRPS). The micro-acoustic transmitter used in these studies is the smallest acoustic transmitter model to date (12 mm long x 5more » mm wide x 4 mm high, and weighing 0.43 g in air). This study and the 2010 study by Carlson and others were conducted by researchers from the Pacific Northwest National Laboratory and the University of Washington for the U.S. Army Corps of Engineers, Portland District, to meet requirements set forth by the 2008 FCRPS Biological Opinion. In 2010, we compared survival, tag burden, and tag expulsion in five spring groups of yearling Chinook salmon (YCH) and steelhead (STH) and five summer groups of subyearling Chinook salmon (SYC) to evaluate survival model assumptions described in the concurrent study. Each tagging group consisted of approximately 120 fish/species, which were collected and implanted on a weekly basis, yielding approximately 600 fish total/species. YCH and STH were collected and implanted from late April to late May (5 weeks) and SYC were collected and implanted from mid-June to mid-July (5 weeks) at the John Day Dam Smolt Monitoring Facility. The fish were collected once a week, separated by species, and assigned to one of three treatment groups: (1) Control (no surgical treatment), (2) Sham (surgical implantation of only a passive integrated transponder [PIT] tag), and (3) Tagged (surgical implantation of JSATS micro-acoustic transmitter [AT] and PIT tags). The test fish were held for 30 days in

  3. Benefits of prescribed flows for salmon smolt survival enhancement vary longitudinally in a highly managed river system

    USGS Publications Warehouse

    Courter, Ian; Garrison, Thomas; Kock, Tobias J.; Perry, Russell W.; Child, David; Hubble, Joel

    2016-01-01

    The influence of streamflow on survival of emigrating juvenile Pacific salmonids Oncorhynchus spp. (smolts) is a major concern for water managers throughout the northeast Pacific Rim. However, few studies have quantified flow effects on smolt survival, and available information does not indicate a consistent flow–survival relationship within the typical range of flows under management control. In the Yakima Basin, Washington, the potential effects of streamflow alterations on smolt survival have been debated for over 20 years. Using a series of controlled flow releases from upper basin reservoirs and radiotelemetry, we quantified the relationship between flow and yearling Chinook salmon smolt survival in the 208 km reach between Roza Dam and the Yakima River mouth. A multistate mark–recapture model accounted for weekly variation in flow conditions experienced by tagged fish in four discrete river segments. Smolt survival was significantly associated with streamflow in the Roza Reach [river kilometre (rkm) 208–189] and marginally associated with streamflow in the Sunnyside Reach (rkm 169–77). However, smolt survival was not significantly associated with flow in the Naches and Prosser Reaches (rkm 189–169 and rkm 77–3). This discrepancy indicates potential differences in underlying flow-related survival mechanisms, such as predation or passage impediments. Our results clarify trade-offs between flow augmentation for fisheries enhancement and other beneficial uses, and our study design provides a framework for resolving uncertainties about streamflow effects on migratory fish survival in other river systems. 

  4. Survival of migrating Atlantic salmon smolts through the Penobscot River, Maine: A pre-restoration assessment

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Kinnison, Michael T.; Holbrook, Christopher M.

    2011-01-01

    Survival, distribution, and behavior of hatchery (n = 493) and naturally reared (n = 133) smolts of Atlantic salmon Salmo salar migrating through the Penobscot River and estuary in Maine were evaluated with acoustic telemetry in 2005 and 2006. Survival and use of a secondary migration path (the Stillwater Branch) were estimated with a multistate mark–recapture model. Higher rates of mortality per kilometer (range = 0.01–0.22) were observed near release sites and within reaches that contained three particular dams: Howland, West Enfield, and Milford dams. Estimated total survival of tagged hatchery smolts through entire individual reaches containing those dams ranged from 0.52 ( 0.18) to 0.94 ( 0.09), whereas survival through most of the reaches without dams exceeded 0.95. Of those smolts that survived to the Penobscot River–Stillwater Branch split at Marsh Island, most (≥74%) remained in the main stem around Marsh Island, where they experienced lower survival than fish that used the Stillwater Branch. Movement rates of hatchery-reared smolts were significantly lower through reaches containing dams than through reaches that lacked dams. Smolts arriving at dams during the day experienced longer delays than smolts arriving at night. Planned removal of two dams in this system is expected to enhance the passage of smolts through the main-stem corridor. However, the dams currently scheduled for removal (Great Works and Veazie dams) had less influence on smolt survival than some of the dams that will remain. This case study shows that by examining prerestoration migration dynamics throughout entire river systems rather than just in the vicinity of particular dams, tracking studies can help prioritize restoration efforts or predict the costs and benefits of future hydrosystem changes.

  5. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at John Day Dam, Spring 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.

    The purpose of this study was to compare dam passage survival, at two spill treatment levels, of yearling Chinook salmon and steelhead smolts at John Day Dam during spring 2010. The two treatments were 30% and 40% spill out of total project discharge. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated forebay residence time, tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fishmore » Accords. However, by agreement among the stakeholders, this study was not an official BiOp compliance test because the long-term passage measures at John Day Dam have yet to be finalized and another year of spill-treatment testing was desired.« less

  6. Multivariate Models of Adult Pacific Salmon Returns

    PubMed Central

    Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  7. Post-release behavior and movement patterns of Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) after capture using alternative commercial fish gear, lower Columbia River, Washington and Oregon, 2013

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Evans, Scott D.; Hansen, Gabriel S.; Rondorf, Dennis W.

    2014-01-01

    In 2011 and 2012, WDFW conducted post-release mortality studies of steelhead (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) that were captured using beach or purse seines. These studies were comprised of two groups of fish tagged with passive integrated transponder tags (PIT tags): (1) treatment fish that were captured by one of the gear types 9–25 river kilometers (rkm) downstream of Bonneville Dam (rkm 234); and (2) control fish that were captured at the Adult Fish Facility near the Washington shore fish ladder at Bonneville Dam, and then transported and released 8 rkm downstream of the Bonneville Dam. Fish were confirmed to have survived if they moved upstream and were detected on PIT-tag antennas at or upstream of Bonneville Dam, were recovered at hatcheries or at the dam, or were captured by commercial or sport fishers. Post-release survival estimates were higher for steelhead (89–98 percent) than for Chinook salmon and coho salmon (50–90 percent; Washington Department of Fish and Wildlife, unpub. data, 2014). However, some Chinook salmon and coho salmon return to hatcheries, or spawn in the mainstem Columbia River and in tributaries downstream of Bonneville Dam. The proportion of Chinook salmon and coho salmon in the treatment group that were destined for areas downstream of Bonneville Dam likely was higher than in the control group because the control fish were collected as they were attempting to pass the dam. If this assertion was true, mortality would have been overestimated in these studies, so WDFW developed a study plan to determine the post-release movements and intended location of Chinook salmon and coho salmon collected with beach and purse seines in the lower Columbia River.

  8. Effects of summer flow augmentation on the migratory behavior and survival of juvenile Snake River fall Chinook salmon. Annual report 2005

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2006-01-01

    This report summarizes results of research activities conducted in 2004 and years previous to aid in the management and recovery of fall Chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall Chinook salmon juveniles for the years 1992-2004. Publication is a high priority of our staff. Publication provides our results to a wide audience, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 1991-02900 that were written or published from 1998 to 2005.

  9. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters

    PubMed Central

    Deng, Z. D.; Martinez, J. J.; Li, H.; Harnish, R. A.; Woodley, C. M.; Hughes, J. A.; Li, X.; Fu, T.; Lu, J.; McMichael, G. A.; Weiland, M. A.; Eppard, M. B.; Skalski, J. R.; Townsend, R. L.

    2017-01-01

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitter are key limiting factors. The newly developed injectable transmitter is the first acoustic transmitter that can be implanted via injection instead of surgery. A two-part field study was conducted to evaluate the performance of the injectable transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the proceeding generation of commercially-available JSATS transmitters tested concurrently. Snake River subyearling Chinook salmon smolts implanted with the injectable transmitter had a higher survival probability from release to each of eleven downstream detection arrays, because reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The reduction in size and ability to implant the new transmitter via injection has reduced the tag or tagging effect bias associated with studying small fishes. The information gathered with this new technology is helping to evaluate the impacts of dams on fishes. PMID:28220850

  10. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters.

    PubMed

    Deng, Z D; Martinez, J J; Li, H; Harnish, R A; Woodley, C M; Hughes, J A; Li, X; Fu, T; Lu, J; McMichael, G A; Weiland, M A; Eppard, M B; Skalski, J R; Townsend, R L

    2017-02-21

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitter are key limiting factors. The newly developed injectable transmitter is the first acoustic transmitter that can be implanted via injection instead of surgery. A two-part field study was conducted to evaluate the performance of the injectable transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the proceeding generation of commercially-available JSATS transmitters tested concurrently. Snake River subyearling Chinook salmon smolts implanted with the injectable transmitter had a higher survival probability from release to each of eleven downstream detection arrays, because reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The reduction in size and ability to implant the new transmitter via injection has reduced the tag or tagging effect bias associated with studying small fishes. The information gathered with this new technology is helping to evaluate the impacts of dams on fishes.

  11. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters

    NASA Astrophysics Data System (ADS)

    Deng, Z. D.; Martinez, J. J.; Li, H.; Harnish, R. A.; Woodley, C. M.; Hughes, J. A.; Li, X.; Fu, T.; Lu, J.; McMichael, G. A.; Weiland, M. A.; Eppard, M. B.; Skalski, J. R.; Townsend, R. L.

    2017-02-01

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitter are key limiting factors. The newly developed injectable transmitter is the first acoustic transmitter that can be implanted via injection instead of surgery. A two-part field study was conducted to evaluate the performance of the injectable transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the proceeding generation of commercially-available JSATS transmitters tested concurrently. Snake River subyearling Chinook salmon smolts implanted with the injectable transmitter had a higher survival probability from release to each of eleven downstream detection arrays, because reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The reduction in size and ability to implant the new transmitter via injection has reduced the tag or tagging effect bias associated with studying small fishes. The information gathered with this new technology is helping to evaluate the impacts of dams on fishes.

  12. Physiological consequences of the salmon louse (Lepeophtheirus salmonis) on juvenile pink salmon (Oncorhynchus gorbuscha): implications for wild salmon ecology and management, and for salmon aquaculture.

    PubMed

    Brauner, C J; Sackville, M; Gallagher, Z; Tang, S; Nendick, L; Farrell, A P

    2012-06-19

    Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.

  13. Linkages between Alaskan sockeye salmon abundance, growth at sea, and climate, 1955-2002

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.; Bumgarner, J.

    2007-01-01

    We tested the hypothesis that increased growth of salmon during early marine life contributed to greater survival and abundance of salmon following the 1976/1977 climate regime shift and that this, in turn, led to density-dependent reductions in growth during late marine stages. Annual measurements of Bristol Bay (Bering Sea) and Chignik (Gulf of Alaska) sockeye salmon scale growth from 1955 to 2002 were used as indices of body growth. During the first and second years at sea, growth of both stocks tended to be higher after the 1976-1977 climate shift, whereas growth during the third year and homeward migration was often below average. Multiple regression models indicated that return per spawner of Bristol Bay sockeye salmon and adult abundance of western and central Alaska sockeye salmon were positively correlated with growth during the first 2 years at sea and negatively correlated with growth during later life stages. After accounting for competition between Bristol Bay sockeye and Asian pink salmon, age-specific adult length of Bristol Bay salmon increased after the 1976-1977 regime shift, then decreased after the 1989 climate shift. Late marine growth and age-specific adult length of Bristol Bay salmon was exceptionally low after 1989, possibly reducing their reproductive potential. These findings support the hypothesis that greater marine growth during the first 2 years at sea contributed to greater salmon survival and abundance, which in turn led to density-dependent growth during later life stages when size-related mortality was likely lower. Our findings provide new evidence supporting the importance of bottom-up control in marine ecosystems and highlight the complex dynamics of species interactions that continually change as salmon grow and mature in the ocean. ?? 2007 Elsevier Ltd. All rights reserved.

  14. Provenance matters: thermal reaction norms for embryo survival among sockeye salmon Oncorhynchus nerka populations.

    PubMed

    Whitney, C K; Hinch, S G; Patterson, D A

    2013-04-01

    Differences in thermal tolerance during embryonic development in Fraser River sockeye salmon Oncorhynchus nerka were examined among nine populations in a controlled common-garden incubation experiment. Forcing embryonic development at an extreme temperature (relative to current values) of 16° C, representing a future climate change scenario, significantly reduced survival compared to the more ecologically moderate temperature of 10° C (55% v. 93%). Survival at 14° C was intermediate between the other two temperatures (85%). More importantly, this survival response varied by provenance within and between temperature treatments. Thermal reaction norms showed an interacting response of genotype and environment (temperature), suggesting that populations of O. nerka may have adapted differentially to elevated temperatures during incubation and early development. Moreover, populations that historically experience warmer incubation temperatures at early development displayed a higher tolerance for warm temperatures. In contrast, thermal tolerance does not appear to transcend life stages as adult migration temperatures were not related to embryo thermal tolerance. The intra-population variation implies potential for thermal tolerance at the species level. The differential inter-population variation in thermal tolerance that was observed suggests, however, limited adaptive potential to thermal shifts for some populations. This infers that the intergenerational effects of increasing water temperatures may affect populations differentially, and that such thermally mediated adaptive selection may drive population, and therefore species, persistence. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  15. Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California

    USGS Publications Warehouse

    Perry, Russell W.; Pope, Adam C.

    2018-05-11

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3 /s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta. In this report, we conduct four analyses to investigate the effect of the NDD and its proposed operation on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha). All analyses used the results of a Bayesian survival model that allowed us to simulate travel time, migration routing, and survival of juvenile Chinook salmon migrating through the Delta in response to NDD operations, which affected both inflows to the Delta and operation of the Delta Cross Channel (DCC). For the first analysis, we evaluated the effect of the NDD bypass rules on salmon survival. The NDD bypass rules are a set of operational rule curves designed to provide adaptive levels of fish protection by defining allowable diversion rates as a function of (1) Sacramento River discharge as measured at Freeport, and (2) time of year when endangered runs requiring the most protection are present. We determined that all bypass rule curves except constant low-level pumping (maximum diversion of 900 ft3 /s) could cause a sizeable decrease in survival by as

  16. Relative yield of two transferrin phenotypes in coho salmon

    USGS Publications Warehouse

    McIntyre, John D.; Johnson, A. Kenneth

    1977-01-01

    Experimental groups of coho salmon (Oncorhynchus kisutch) of transferring types AA and AC were compared to determine relative growth and survival before release, yields from the fishery, and returns of fish to the hatchery as 2- and 3-yr-olds. In the hatchery, growth was faster and survival higher in the AA than in the AC types. However, yields of AA and AC types were equal, although the yield of AC types as 3-yr-olds was greater than that of AA types because more of the AA males matured in 2 years. We concluded that it would be futile to attempt to increase the yield of coho salmon by maximizing the frequency of biochemical phenotypes that display only a temporary advantage over other types.

  17. The effects of summer flow augmentation on the migratory behavior and survival of juvenile Snake River fall Chinook salmon. Annual report 2003

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Haskell, Craig A.; Connor, William P.

    2005-01-01

    This report summarizes results of research activities conducted in 2002 and years previous to aid in the management and recovery of fall chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. The report is divided into self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2002. Peer-review publication remains a high priority of this research project, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers coauthored by personnel of project 199102900 that were written or published from 1998 to 2003.

  18. Aniakchak sockeye salmon investigations

    USGS Publications Warehouse

    Hamon, Troy R.; Pavey, Scott A.; Miller, Joe L.; Nielsen, Jennifer L.

    2005-01-01

    Aniakchak National Monument and Preserve provides unusual and dramatic landscapes shaped by numerous volcanic eruptions, a massive flood, enormous landslides, and ongoing geological change. The focal point of the monument is Aniakchak Caldera, a restless volcano that embodies the instability of the Alaska Peninsula. This geological instability creates a dynamic and challenging environment for the biological occupants of Aniakchak and unparalleled opportunities for scientists to measure the adaptability of organisms and ecosystems to change. The sockeye salmon (Oncorhynchus nerka) is one member of the Aniakchak ecosystem that has managed to adapt to geologic upheaval and is now thriving in the park. Aside from just surviving in the harsh environment, these salmon are also noteworthy for providing essential marinederived nutrients to plants and animals and as a source of food for historic and present day people in the region.

  19. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon

    PubMed Central

    Daly, Elizabeth A.; Brodeur, Richard D.

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes. PMID:26675673

  20. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon.

    PubMed

    Daly, Elizabeth A; Brodeur, Richard D

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981-1985; 1998-2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes.

  1. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Rebecca A.; Skalski, John R.

    2007-12-07

    In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite tomore » Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from

  2. Persistent parental effects on the survival and size, but not burst swimming performance of juvenile sockeye salmon Oncorhynchus nerka.

    PubMed

    Nadeau, P S; Hinch, S G; Pon, L B; Patterson, D A

    2009-08-01

    Sockeye salmon Oncorhynchus nerka were used as a model in an artificial fertilization experiment to investigate the relationships between individual adult O. nerka and their offspring. Survival, size and burst swimming ability were assessed in fry of known parentage (adult spawners from the Weaver Creek population, British Columbia, Canada). Maternal identity significantly affected the survival rate of eggs at hatch time, though this effect did not extend to fry life stages. The results were also suggestive of a paternal effect on both egg and fry survival, though this could not be separated from the experimental block design. After 4 months of exogenous feeding, fry mass remained under significant maternal influence, though fork length did not, despite having a high correlation with mass. Burst swimming performance was highly variable among individuals, and was not significantly influenced by maternal identity or individual fry size. Collectively, the findings presented here suggest that maternal, and possibly paternal, effects can be integral components of population dynamics in the early life stages of O. nerka. A good understanding of these factors will be essential for scientists and fisheries managers in developing a more holistic view of population-level spawning success and fry survival.

  3. Seasonal variation in size-dependent survival of juvenile Atlantic salmon (Salmo salar): Performance of multistate capture-mark-recapture models

    USGS Publications Warehouse

    Letcher, B.H.; Horton, G.E.

    2008-01-01

    We estimated the magnitude and shape of size-dependent survival (SDS) across multiple sampling intervals for two cohorts of stream-dwelling Atlantic salmon (Salmo salar) juveniles using multistate capture-mark-recapture (CMR) models. Simulations designed to test the effectiveness of multistate models for detecting SDS in our system indicated that error in SDS estimates was low and that both time-invariant and time-varying SDS could be detected with sample sizes of >250, average survival of >0.6, and average probability of capture of >0.6, except for cases of very strong SDS. In the field (N ??? 750, survival 0.6-0.8 among sampling intervals, probability of capture 0.6-0.8 among sampling occasions), about one-third of the sampling intervals showed evidence of SDS, with poorer survival of larger fish during the age-2+ autumn and quadratic survival (opposite direction between cohorts) during age-1+ spring. The varying magnitude and shape of SDS among sampling intervals suggest a potential mechanism for the maintenance of the very wide observed size distributions. Estimating SDS using multistate CMR models appears complementary to established approaches, can provide estimates with low error, and can be used to detect intermittent SDS. ?? 2008 NRC Canada.

  4. Effects of Iron Gate Dam discharge and other factors on the survival and migration of juvenile coho salmon in the lower Klamath River, northern California, 2006-09

    USGS Publications Warehouse

    Beeman, John; Juhnke, Steven; Stutzer, Greg; Wright, Katrina

    2012-01-01

    Current management of the Klamath River includes prescribed minimum discharges intended partly to increase survival of juvenile coho salmon during their seaward migration in the spring. To determine if fish survival was related to river discharge, we estimated apparent survival and migration rates of yearling coho salmon in the Klamath River downstream of Iron Gate Dam. The primary goals were to determine if discharge at Iron Gate Dam affected coho salmon survival and if results from hatchery fish could be used as a surrogate for the limited supply of wild fish. Fish from hatchery and wild origins that had been surgically implanted with radio transmitters were released into the Klamath River slightly downstream of Iron Gate Dam at river kilometer 309. Tagged fish were used to estimate apparent survival between, and passage rates at, a series of detection sites as far downstream as river kilometer 33. Conclusions were based primarily on data from hatchery fish, because wild fish were only available in 2 of the 4 years of study. Based on an information-theoretic approach, apparent survival of hatchery and wild fish was similar, despite differences in passage rates and timing, and was lowest in the 54 kilometer (km) reach between release and the Scott River. Models representing the hypothesis that a short-term tagging- or handling-related mortality occurred following release were moderately supported by data from wild fish and weakly supported by data from hatchery fish. Estimates of apparent survival of hatchery fish through the 276 km study area ranged from 0.412 (standard error [SE] 0.048) to 0.648 (SE 0.070), depending on the year, and represented an average of 0.790 per 100 km traveled. Estimates of apparent survival of wild fish through the study area were 0.645 (SE 0.058) in 2006 and 0.630 (SE 0.059) in 2009 and were nearly identical to the results from hatchery fish released on the same dates. The data and models examined supported positive effects of water

  5. Declining wild salmon populations in relation to parasites from farm salmon.

    PubMed

    Krkosek, Martin; Ford, Jennifer S; Morton, Alexandra; Lele, Subhash; Myers, Ransom A; Lewis, Mark A

    2007-12-14

    Rather than benefiting wild fish, industrial aquaculture may contribute to declines in ocean fisheries and ecosystems. Farm salmon are commonly infected with salmon lice (Lepeophtheirus salmonis), which are native ectoparasitic copepods. We show that recurrent louse infestations of wild juvenile pink salmon (Oncorhynchus gorbuscha), all associated with salmon farms, have depressed wild pink salmon populations and placed them on a trajectory toward rapid local extinction. The louse-induced mortality of pink salmon is commonly over 80% and exceeds previous fishing mortality. If outbreaks continue, then local extinction is certain, and a 99% collapse in pink salmon population abundance is expected in four salmon generations. These results suggest that salmon farms can cause parasite outbreaks that erode the capacity of a coastal ecosystem to support wild salmon populations.

  6. Coho salmon dependence on intermittent streams.

    Treesearch

    P.J. Wigington; J.L. Ebersole; M.E. Colvin; S.G. Leibowitz; B. Miller; B. Hansen; H. Lavigne; D. White; J.P. Baker; M.R. Church; J.R. Brooks; M.A. Cairns; J.E. Compton

    2006-01-01

    In this paper, we quantify the contributions of intermittent streams to coho salmon production in an Oregon coastal watershed. We provide estimates of (1) proportion of spawning that occurred in intermittent streams, (2) movement of juveniles into intermittent streams, (3) juvenile survival in intermittent and perennial streams during winter, and (4) relative size of...

  7. Dietary Exposure to Individual Polybrominated Diphenyl Ether Congeners BDE-47 and BDE-99 Alters Innate Immunity and Disease Susceptibility in Juvenile Chinook Salmon.

    PubMed

    Arkoosh, Mary R; Van Gaest, Ahna L; Strickland, Stacy A; Hutchinson, Greg P; Krupkin, Alex B; Dietrich, Joseph P

    2015-06-02

    Polybrominated diphenyl ethers (PBDEs), used as commercial flame-retardants, are bioaccumulating in threatened Pacific salmon. However, little is known of PBDE effects on critical physiological functions required for optimal health and survival. BDE-47 and BDE-99 are the predominant PBDE congeners found in Chinook salmon collected from the Pacific Northwest. In the present study, both innate immunity (phagocytosis and production of superoxide anion) and pathogen challenge were used to evaluate health and survival in groups of juvenile Chinook salmon exposed orally to either BDE-47 or BDE-99 at environmentally relevant concentrations. Head kidney macrophages from Chinook salmon exposed to BDE-99, but not those exposed to BDE-47, were found to have a reduced ability in vitro to engulf foreign particles. However, both congeners increased the in vitro production of superoxide anion in head kidney macrophages. Salmon exposed to either congener had reduced survival during challenge with the pathogenic marine bacteria Listonella anguillarum. The concentration response curves generated for these end points were nonmonotonic and demonstrated a requirement for using multiple environmentally relevant PBDE concentrations for effect studies. Consequently, predicting risk from toxicity reference values traditionally generated with monotonic concentration responses may underestimate PBDE effect on critical physiological functions required for optimal health and survival in salmon.

  8. Plasticity in growth of farmed and wild Atlantic salmon: is the increased growth rate of farmed salmon caused by evolutionary adaptations to the commercial diet?

    PubMed

    Harvey, Alison Catherine; Solberg, Monica Favnebøe; Troianou, Eva; Carvalho, Gary Robert; Taylor, Martin Ian; Creer, Simon; Dyrhovden, Lise; Matre, Ivar Helge; Glover, Kevin Alan

    2016-12-01

    Domestication of Atlantic salmon for commercial aquaculture has resulted in farmed salmon displaying substantially higher growth rates than wild salmon under farming conditions. In contrast, growth differences between farmed and wild salmon are much smaller when compared in the wild. The mechanisms underlying this contrast between environments remain largely unknown. It is possible that farmed salmon have adapted to the high-energy pellets developed specifically for aquaculture, contributing to inflated growth differences when fed on this diet. We studied growth and survival of 15 families of farmed, wild and F1 hybrid salmon fed three contrasting diets under hatchery conditions; a commercial salmon pellet diet, a commercial carp pellet diet, and a mixed natural diet consisting of preserved invertebrates commonly found in Norwegian rivers. For all groups, despite equal numbers of calories presented by all diets, overall growth reductions as high 68 and 83%, relative to the salmon diet was observed in the carp and natural diet treatments, respectively. Farmed salmon outgrew hybrid (intermediate) and wild salmon in all treatments. The relative growth difference between wild and farmed fish was highest in the carp diet (1: 2.1), intermediate in the salmon diet (1:1.9) and lowest in the natural diet (1:1.6). However, this trend was non-significant, and all groups displayed similar growth reaction norms and plasticity towards differing diets across the treatments. No indication of genetic-based adaptation to the form or nutritional content of commercial salmon diets was detected in the farmed salmon. Therefore, we conclude that diet alone, at least in the absence of other environmental stressors, is not the primary cause for the large contrast in growth differences between farmed and wild salmon in the hatchery and wild. Additionally, we conclude that genetically-increased appetite is likely to be the primary reason why farmed salmon display higher growth rates than

  9. Immunization of pacific salmon: comparison of intraperitoneal injection and hyperosmotic infiltration of Vibrio anguillarum and Aeromonas salmonicida bacterins

    USGS Publications Warehouse

    Antipa, Ross; Amend, Donald F.

    1977-01-01

    Two methods of immunizing fish, intraperitoneal (i.p.) injection and hyperosmotic infiltration, were compared for control of vibriosis and furunculosis in pen-reared coho salmon (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha). Both methods provided significant protection against vibriosis under field test conditions. In coho salmon, hyperosmotic infiltration provided the best protection and fastest rise in antibody titer of seven treatments tested. In chinook salmon, hyperosmotic infiltration of Vibrio anguillarum and Aeromonas salmonicida vaccines resulted in 83.3% survival in comparison with 28.7% survival in controls. Both i.p. injection and hyperosmotic infiltration of V. anguillarum and A. salmonicida bacterins resulted in production of serum antibodies specific for each respective pathogen. Vaccination with bivalent V. anguillarum–A.salmonicida vaccines produced antibodies to both pathogens, and provided protection against vibriosis. Growth rates of vaccinated coho salmon were not significantly different from controls.

  10. Distribution and Joint Fish-Tag Survival of Juvenile Chinook Salmon Migrating through the Sacramento-San Joaquin River Delta, California, 2008

    USGS Publications Warehouse

    Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.

    2009-01-01

    Acoustic telemetry was used to obtain the movement histories of 915 juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) through the lower San Joaquin River and Sacramento-San Joaquin Delta, California, in 2008. Data were analyzed within a release-recapture framework to estimate survival, route distribution, and detection probabilities among three migration pathways through the Delta. The pathways included the primary route through the San Joaquin River and two less direct routes (Old River and Turner Cut). Strong inferences about survival were limited by premature tag failure, but estimates of fish distribution among migration routes should be unaffected by tag failure. Based on tag failure tests (N = 66 tags), we estimated that only 55-78 percent of the tags used in this study were still functioning when the last fish was detected exiting the study area 15 days after release. Due to premature tag failure, our 'survival' estimates represent the joint probability that both the tag and fish survived, not just survival of fish. Low estimates of fish-tag survival could have been caused by fish mortality or fish travel times that exceeded the life of the tag, but we were unable to differentiate between the two. Fish-tag survival through the Delta (from Durham Ferry to Chipps Island by all routes) ranged from 0.05 +or- 0.01 (SE) to 0.06 +or- 0.01 between the two weekly release groups. Among the three migration routes, fish that remained in the San Joaquin River exhibited the highest joint fish-tag survival (0.09 +or- 0.02) in both weeks, but only 22-33 percent of tagged fish used this route, depending on the week of release. Only 4-10 percent (depending on week) of tagged fish traveled through Turner Cut, but no tagged fish that used this route were detected exiting the Delta. Most fish (63-68 percent, depending on week of release) migrated through Old River, but fish-tag survival through this route (0.05 +or- 0.01) was only about one-half that of fish that

  11. Fishing for Effective Conservation: Context and Biotic Variation are Keys to Understanding the Survival of Pacific Salmon after Catch-and-Release.

    PubMed

    Raby, Graham D; Donaldson, Michael R; Hinch, Scott G; Clark, Timothy D; Eliason, Erika J; Jeffries, Kenneth M; Cook, Katrina V; Teffer, Amy; Bass, Arthur L; Miller, Kristina M; Patterson, David A; Farrell, Anthony P; Cooke, Steven J

    2015-10-01

    Acute stressors are commonly experienced by wild animals but their effects on fitness rarely are studied in the natural environment. Billions of fish are captured and released annually around the globe across all fishing sectors (e.g., recreational, commercial, subsistence). Whatever the motivation, release often occurs under the assumption of post-release survival. Yet, capture by fisheries (hereafter "fisheries-capture") is likely the most severe acute stressor experienced in the animal's lifetime, which makes the problem of physiological recovery and survival of relevance to biology and conservation. Indeed, fisheries managers require accurate estimates of mortality to better account for total mortality from fishing, while fishers desire guidance on strategies for reducing mortality and maintaining the welfare of released fish, to maximize current and future opportunities for fishing. In partnership with stakeholders, our team has extensively studied the effects of catch-and-release on Pacific salmon in both marine and freshwater environments, using biotelemetry and physiological assessments in a combined laboratory-based and field-based approach. The emergent theme is that post-release rates of mortality are consistently context-specific and can be affected by a suite of interacting biotic and abiotic factors. The fishing gear used, location of a fishery, water temperature, and handling techniques employed by fishers each can dramatically affect survival of the salmon they release. Variation among individuals, co-migrating populations, and between sexes all seem to play a role in the response of fish to capture and in their subsequent survival, potentially driven by pre-capture pathogen-load, maturation states, and inter-individual variation in responsiveness to stress. Although some of these findings are fascinating from a biological perspective, they all create unresolved challenges for managers. We summarize our findings by highlighting the patterns that

  12. An injectable acoustic transmitter for juvenile salmon

    DOE PAGES

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong; ...

    2015-01-29

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation,more » and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.« less

  13. An injectable acoustic transmitter for juvenile salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation,more » and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.« less

  14. An injectable acoustic transmitter for juvenile salmon

    PubMed Central

    Deng, Z. D.; Carlson, T. J.; Li, H.; Xiao, J.; Myjak, M. J.; Lu, J.; Martinez, J. J.; Woodley, C. M.; Weiland, M. A.; Eppard, M. B.

    2015-01-01

    Salmon recovery and the potential detrimental effects of dams on fish have been attracting national attention due to the environmental and economic implications. In recent years acoustic telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing a bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter lasts four times longer and weighs 30% less than other transmitters. Because the new transmitter costs significantly less to use and may substantially reduce adverse effects of implantation and tag burden, it will allow for study of migration behavior and survival of species and sizes of fish that have never been studied before. The new technology will lead to critical information needed for salmon recovery and the development of fish-friendly hydroelectric systems. PMID:25630763

  15. An injectable acoustic transmitter for juvenile salmon

    NASA Astrophysics Data System (ADS)

    Deng, Z. D.; Carlson, T. J.; Li, H.; Xiao, J.; Myjak, M. J.; Lu, J.; Martinez, J. J.; Woodley, C. M.; Weiland, M. A.; Eppard, M. B.

    2015-01-01

    Salmon recovery and the potential detrimental effects of dams on fish have been attracting national attention due to the environmental and economic implications. In recent years acoustic telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing a bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter lasts four times longer and weighs 30% less than other transmitters. Because the new transmitter costs significantly less to use and may substantially reduce adverse effects of implantation and tag burden, it will allow for study of migration behavior and survival of species and sizes of fish that have never been studied before. The new technology will lead to critical information needed for salmon recovery and the development of fish-friendly hydroelectric systems.

  16. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabe, Craig D.; Nelson, Douglas D.

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket stylemore » weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition

  17. PACIFIC SALMON: LESSONS LEARNED FOR RECOVERING ATLANTIC SALMON

    EPA Science Inventory

    n evaluation of the history of efforts to reverse the long-term decline of Pacific Salmon provides instructive policy lessons for recovering Atlantic Salmon. From California to southern British Columbia, wild runs of Pacific salmon have universally declined and many have disappe...

  18. Analysis of Salmon and Steelhead Supplementation, 1990 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William H.; Coley, Travis C.; Burge, Howard L.

    Supplementation or planting salmon and steelhead into various locations in the Columbia River drainage has occurred for over 100 years. All life stages, from eggs to adults, have been used by fishery managers in attempts to establish, rebuild, or maintain anadromous runs. This report summarizes and evaluates results of past and current supplementation of salmon and steelhead. Conclusions and recommendations are made concerning supplementation. Hatchery rearing conditions and stocking methods can affect post released survival of hatchery fish. Stress was considered by many biologists to be a key factor in survival of stocked anadromous fish. Smolts were the most commonmore » life stage released and size of smolts correlated positively with survival. Success of hatchery stockings of eggs and presmolts was found to be better if they are put into productive, underseeded habitats. Stocking time, method, species stocked, and environmental conditions of the receiving waters, including other fish species present, are factors to consider in supplementation programs. The unpublished supplementation literature was reviewed primarily by the authors of this report. Direct contact was made in person or by telephone and data compiled on a computer database. Areas covered included Oregon, Washington, Idaho, Alaska, California, British Columbia, and the New England states working with Atlantic salmon. Over 300 projects were reviewed and entered into a computer database. The database information is contained in Appendix A of this report. 6 refs., 9 figs., 21 tabs.« less

  19. Poached Salmon

    MedlinePlus

    ... page: https://medlineplus.gov/recipe/poachedsalmon.html Poached Salmon To use the sharing features on this page, ... olive oil Ground black pepper, to taste For salmon: 4 salmon steaks, 5 oz each 3 cups ...

  20. Passage and survival probabilities of juvenile Chinook salmon at Cougar Dam, Oregon, 2012

    USGS Publications Warehouse

    Beeman, John W.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Hansen, Amy C.; Smith, Collin D.; Sprando, Jamie M.

    2014-01-01

    This report describes studies of juvenile-salmon dam passage and apparent survival at Cougar Dam, Oregon, during two operating conditions in 2012. Cougar Dam is a 158-meter tall rock-fill dam used primarily for flood control, and passes water through a temperature control tower to either a powerhouse penstock or to a regulating outlet (RO). The temperature control tower has moveable weir gates to enable water of different elevations and temperatures to be drawn through the dam to control water temperatures downstream. A series of studies of downstream dam passage of juvenile salmonids were begun after the National Oceanic and Atmospheric Administration determined that Cougar Dam was impacting the viability of anadromous fish stocks. The primary objectives of the studies described in this report were to estimate the route-specific fish passage probabilities at the dam and to estimate the survival probabilities of fish passing through the RO. The first set of dam operating conditions, studied in November, consisted of (1) a mean reservoir elevation of 1,589 feet, (2) water entering the temperature control tower through the weir gates, (3) most water routed through the turbines during the day and through the RO during the night, and (4) mean RO gate openings of 1.2 feet during the day and 3.2 feet during the night. The second set of dam operating conditions, studied in December, consisted of (1) a mean reservoir elevation of 1,507 ft, (2) water entering the temperature control tower through the RO bypass, (3) all water passing through the RO, and (4) mean RO gate openings of 7.3 feet during the day and 7.5 feet during the night. The studies were based on juvenile Chinook salmon (Oncorhynchus tshawytscha) surgically implanted with radio transmitters and passive integrated transponder (PIT) tags. Inferences about general dam passage percentage and timing of volitional migrants were based on surface-acclimated fish released in the reservoir. Dam passage and apparent

  1. Decreased mortality of Lake Michigan Chinook salmon after bacterial kidney disease challenge: evidence for pathogen-driven selection?

    PubMed

    Purcell, Maureen K; Murray, Anthony L; Elz, Anna; Park, Linda K; Marcquenski, Susan V; Winton, James R; Alcorn, Stewart W; Pascho, Ronald J; Elliott, Diane G

    2008-12-01

    In the late 1960s, Chinook salmon Oncorhynchus tshawytscha from the Green River, Washington, were successfully introduced into Lake Michigan. During spring from 1988 to 1992, large fish die-offs affecting Chinook salmon occurred in the lake. Multiple ecological factors probably contributed to the severity of the fish kills, but the only disease agent found regularly was Renibacterium salmoninarum, the causative agent of bacterial kidney disease. In this study, survival after challenge by R. salmoninarum was compared between two Chinook salmon stocks: a Lake Michigan stock from Wisconsin (WI) and the progenitor stock from the Green River. We found that the WI stock had significantly greater survival than the Green River stock. Next, the WI and Green River stocks were exposed to the marine pathogen Listonella anguillarum (formerly Vibrio anguillarum), one of the causative agents of vibriosis; survival after this challenge was significantly poorer for the WI stock than for the Green River stock. A close genetic relationship between the Green River and WI stocks was confirmed by analyzing 13 microsatellite loci. These results collectively suggest that disease susceptibility of Lake Michigan Chinook salmon has diverged from that of the source population, possibly in response to pathogen-driven selection.

  2. Relationship of farm salmon, sea lice, and wild salmon populations.

    PubMed

    Marty, Gary D; Saksida, Sonja M; Quinn, Terrance J

    2010-12-28

    Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10-20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon--proposed through coordinated fallowing or closed containment--will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability.

  3. Evidence for competitive dominance of Pink salmon (Oncorhynchus gorbuscha) over other Salmonids in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.

    2004-01-01

    Relatively little is known about fish species interactions in offshore areas of the world's oceans because adequate experimental controls are typically unavailable in such vast areas. However, pink salmon (Oncorhynchus gorbuscha) are numerous and have an alternating-year pattern of abundance that provides a natural experimental control to test for interspecific competition in the North Pacific Ocean and Bering Sea. Since a number of studies have recently examined pink salmon interactions with other salmon, we reviewed them in an effort to describe patterns of interaction over broad regions of the ocean. Research consistently indicated that pink salmon significantly altered prey abundance of other salmon species (e.g., zooplankton, squid), leading to altered diet, reduced total prey consumption and growth, delayed maturation, and reduced survival, depending on species and locale. Reduced survival was observed in chum salmon (O. keta) and Chinook salmon (O. tshawytscha) originating from Puget Sound and in Bristol Bay sockeye salmon (O. nerka). Growth of pink salmon was not measurably affected by other salmon species, but their growth was sometimes inversely related to their own abundance. In all marine studies, pink salmon affected other species through exploitation of prey resources rather than interference. Interspecific competition was observed in nearshore and offshore waters of the North Pacific Ocean and Bering Sea, and one study documented competition between species originating from different continents. Climate change had variable effects on competition. In the North Pacific Ocean, competition was observed before and after the ocean regime shift in 1977 that significantly altered abundances of many marine species, whereas a study in the Pacific Northwest reported a shift from predation- to competition-based mortality in response to the 1982/1983 El Nino. Key traits of pink salmon that influenced competition with other salmonids included great abundance, high

  4. A multi-year analysis of spillway survival for juvenile salmonids as a function of spill bay operations at McNary Dam, Washington and Oregon, 2004-09

    USGS Publications Warehouse

    Adams, Noah S.; Hansel, Hal C.; Perry, Russell W.; Evans, Scott D.

    2012-01-01

    We analyzed 6 years (2004-09) of passage and survival data collected at McNary Dam to examine how spill bay operations affect survival of juvenile salmonids passing through the spillway at McNary Dam. We also examined the relations between spill bay operations and survival through the juvenile fish bypass in an attempt to determine if survival through the bypass is influenced by spill bay operations. We used a Cormack-Jolly-Seber release-recapture model (CJS model) to determine how the survival of juvenile salmonids passing through McNary Dam relates to spill bay operations. Results of these analyses, while not designed to yield predictive models, can be used to help develop dam-operation strategies that optimize juvenile salmonid survival. For example, increasing total discharge typically had a positive effect on both spillway and bypass survival for all species except sockeye salmon (Oncorhynchus nerka). Likewise, an increase in spill bay discharge improved spillway survival for yearling Chinook salmon (Oncorhynchus tshawytscha), and an increase in spillway discharge positively affected spillway survival for juvenile steelhead (Oncorhynchus mykiss). The strong linear relation between increased spill and increased survival indicates that increasing the amount of water through the spillway is one strategy that could be used to improve spillway survival for yearling Chinook salmon and juvenile steelhead. However, increased spill did not improve spillway survival for subyearling Chinook salmon and sockeye salmon. Our results indicate that a uniform spill pattern would provide the highest spillway survival and bypass survival for subyearling Chinook salmon. Conversely, a predominantly south spill pattern provided the highest spillway survival for yearling Chinook salmon and juvenile steelhead. Although spill pattern was not a factor for spillway survival of sockeye salmon, spill bay operations that optimize passage through the north and south spill bays maximized

  5. Simulated growth and production of endangered Snake River Sockeye Salmon: Assessing management strategies for the nursery lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luecke, C.; Wurtsbaugh, W.A.; Budy, P.

    1996-06-01

    This document examines the potential of employing a series of lake management strategies to enhance production of endangered Snake River sockeye salmon (Oncorhynchus nerka) in its historical nursery lakes in central Idaho. A combination of limnological sampling, experimentation, and simulation modeling was used to assess effects of lake fertilization and kokanee reduction on growth and survival of juvenile sockeye salmon. Juvenile sockeye salmon from a broodstock of this endangered species are being introduced into the lakes from 1995 to 1998. Results of our analyses indicated that several lakes were suitable for receiving broodstock progeny. Field experimentation and simulation modeling indicatedmore » that lake fertilization, coupled with a program of kokanee reduction, provided the management option most likely to enhance the survival of stocked juvenile sockeye salmon. Simulation models that encompass physiological requirements, ecological interactions, and life-history consequences could be used as templates to help develop recovery plans for other endangered fishes. 4 figs., 2 tabs.« less

  6. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, October 20, 1999 to June 15, 2000 : 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter J.

    2002-12-01

    This report details the smolt performance of natural and hatchery chinook salmon and steelhead from the Imnaha River to the Snake River and Columbia River dams during migration year 2000. Flow conditions in the Imnaha River and Snake River were appreciably lower during May and June in 2000, compared to historic levels at gauging stations, but flow conditions in the Imnaha and Snake River were above average during April. Overall, water conditions for the entire Columbia River were characterized by the Fish Passage Center as below normal levels. Spill occurred continuously at Lower Granite Dam (LGR), Little Goose Dam (LGO),more » and Lower Monumental Dam (LMO) from April 5, April 10, and April 4, respectively, to June 20, and encompassed the periods of migration of Imnaha River juvenile chinook salmon and steelhead, with a few exceptions. Outflow in the tailraces of LGR, LGO, and LMO decreased in May and June while temperatures increased. Chinook salmon and steelhead were captured using rotary screw traps at river kilometer (rkm) 74 and 7 during the fall from October 20 to November 24, 1999, and during the spring period from February 26 to June 15, 2000, at rkm 7. Spring trapping information was reported weekly to the Fish Passage Center's Smolt Monitoring Program. A portion of these fish were tagged weekly with passive integrated transponder (PIT) tags and were detected migrating past interrogation sites at Snake River and Columbia River dams. Survival of PIT tagged fish was estimated with the Survival Using Proportional Hazards model (SURPH model). Estimated survival of fall tagged natural chinook (with {+-} 95% confidence intervals in parenthesis) from the upper Imnaha (rkm 74) to LGR was 29.6% ({+-} 2.8 ). Natural chinook salmon tagged in the fall in the lower Imnaha River at rkm 7, which over wintered in the Snake River, had an estimated survival of 36.8% ({+-} 2.9%) to LGR. Spring tagged natural chinook salmon from the lower site had an estimated survival of

  7. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.

    This report presents survival, behavioral, and fish passage results for tagged yearling Chinook salmon and juvenile steelhead as part of a survival study conducted at John Day Dam during spring 2011. This study was designed to evaluate the passage and survival of yearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a paired-release survival model.

  8. Effects of parasites from salmon farms on productivity of wild salmon

    PubMed Central

    Krkošek, Martin; Connors, Brendan M.; Morton, Alexandra; Lewis, Mark A.; Dill, Lawrence M.; Hilborn, Ray

    2011-01-01

    The ecological risks of salmon aquaculture have motivated changes to management and policy designed to protect wild salmon populations and habitats in several countries. In Canada, much attention has focused on outbreaks of parasitic copepods, sea lice (Lepeophtheirus salmonis), on farmed and wild salmon in the Broughton Archipelago, British Columbia. Several recent studies have reached contradictory conclusions on whether the spread of lice from salmon farms affects the productivity of sympatric wild salmon populations. We analyzed recently available sea lice data on farms and spawner–recruit data for pink (Oncorhynchus gorbuscha) and coho (Oncorhynchus kisutch) salmon populations in the Broughton Archipelago and nearby regions where farms are not present. Our results show that sea lice abundance on farms is negatively associated with productivity of both pink and coho salmon in the Broughton Archipelago. These results reconcile the contradictory findings of previous studies and suggest that management and policy measures designed to protect wild salmon from sea lice should yield conservation and fishery benefits. PMID:21873246

  9. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    USGS Publications Warehouse

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  10. Relationship of farm salmon, sea lice, and wild salmon populations

    PubMed Central

    Marty, Gary D.; Saksida, Sonja M.; Quinn, Terrance J.

    2010-01-01

    Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10–20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon—proposed through coordinated fallowing or closed containment—will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability. PMID:21149706

  11. Predictability of multispecies competitive interactions in three populations of Atlantic salmon Salmo salar.

    PubMed

    Houde, A L S; Wilson, C C; Neff, B D

    2015-04-01

    Juvenile Atlantic salmon Salmo salar from three allopatric populations (LaHave, Sebago and Saint-Jean) were placed into artificial streams with combinations of four non-native salmonids: brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, Chinook salmon Oncorhynchus tshawytscha and coho salmon Oncorhynchus kisutch. Non-additive effects, as evidenced by lower performance than predicted from weighted summed two-species competition trials, were detected for S. salar fork length (LF ) and mass, but not for survival, condition factor or riffle use. These data support emerging theory on niche overlap and species richness as factors that can lead to non-additive competition effects. © 2015 The Fisheries Society of the British Isles.

  12. Environmental variability and chum salmon production at the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kim, Suam; Kang, Sukyung; Kim, Ju Kyoung; Bang, Minkyoung

    2017-12-01

    Chum salmon, Oncorhynchus keta, are distributed widely in the North Pacific Ocean, and about 76% of chum salmon were caught from Russian, Japanese, and Korean waters of the northwestern Pacific Ocean during the last 20 years. Although it has been speculated that the recent increase in salmon production was aided by not only the enhancement program that targeted chum salmon but also by favorable ocean conditions since the early 1990s, the ecological processes for determining the yield of salmon have not been clearly delineated. To investigate the relationship between yield and the controlling factors for ocean survival of chum salmon, a time-series of climate indices, seawater temperature, and prey availability in the northwestern Pacific including Korean waters were analyzed using some statistical tools. The results of cross-correlation function (CCF) analysis and cumulative sum (CuSum) of anomalies indicated that there were significant environmental changes in the North Pacific during the last century, and each regional stock of chum salmon responded to the Pacific Decadal Oscillation (PDO) differently: for Russian stock, the correlations between PDO index and catch were significantly negative with a time-lag of 0 and 1 years; for Japanese stock, significantly positive with a timelag of 0-2 years; and for Korean stock, positive but no significant correlation. The results of statistical analyses with Korean chum salmon also revealed that a coastal seawater temperature over 14°C and the return rate of spawning adults to the natal river produced a significant negative correlation.

  13. Decreased mortality of lake michigan chinook salmon after bacterial kidney disease challenge: Evidence for pathogen-driven selection?

    USGS Publications Warehouse

    Purcell, M.K.; Murray, A.L.; Elz, A.; Park, L.K.; Marcquenski, S.V.; Winton, J.R.; Alcorn, S.W.; Pascho, R.J.; Elliott, D.G.

    2008-01-01

    In the late 1960s, Chinook salmon Oncorhynchus tshawytscha from the Green River, Washington, were successfully introduced into Lake Michigan. During spring from1988 to 1992, large fish die-offs affecting Chinook salmon occurred in the lake. Multiple ecological factors probably contributed to the severity of the fish kills, but the only disease agent found regularly was Renibacterium salmoninarum, the causative agent of bacterial kidney disease. in this study, survival after challenge by R. salmoninarum was compared between two Chinook salmon stocks: a Lake Michigan stock from Wisconsin (WI) and the progenitor stock from the Green River. We found that the WI stock had significantly greater survival than the Green River stock. Next, the WI and Green River stocks were exposed to the marine pathogen Listonella anguillarum (formerly Vibrio anguillarum), one of the causative agents of vibriosis; survival after this challenge was significantly poorer for the WI stock than for the Green River stock. A close genetic relationship between the Green River and WI stocks was confirmed by analyzing 13 microsatellite loci. These results collectively suggest that disease susceptibility of Lake Michigan Chinook salmon has diverged from that of the source population, possibly in response to pathogen-driven selection. ?? Copyright by the American Fisheries Society 2008.

  14. Relative resistance of Pacific salmon to infectious salmon anaemia virus

    USGS Publications Warehouse

    Rolland, J.B.; Winton, J.R.

    2003-01-01

    Infectious salmon anaemia (ISA) is a major disease of Atlantic salmon, Salmo salar, caused by an orthomyxovirus (ISAV). Increases in global aqua culture and the international movement of fish made it important to determine if Pacific salmon are at risk. Steelhead trout, Oncorhynchus mykiss, and chum, O. keta, Chinook, O. tshawytscha, coho, O. kisutch, and Atlantic salmon were injected intraperitoneally with a high, medium, or low dose of a Norwegian strain of ISAV. In a second challenge, the same species, except chum salmon, were injected with a high dose of either a Canadian or the Norwegian strain. Average cumulative mortality of Atlantic salmon in trial 1 was 12% in the high dose group, 20% in the medium dose group and 16% in the low dose group. The average cumulative mortality of Atlantic salmon in trial 2 was 98%. No signs typical of ISA and no ISAV-related mortality occurred among any of the groups of Oncorhynchus spp. in either experiment, although ISAV was reisolated from some fish sampled at intervals post-challenge. The results indicate that while Oncorhynchus spp. are quite resistant to ISAV relative to Atlantic salmon, the potential for ISAV to adapt to Oncorhynchus spp. should not be ignored.

  15. Research on Captive Broodstock Programs for Pacific Salmon, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.; Athos, Jaime I.; Dittman, Andrew H.

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. We were able to develop an analytical method for optimizing the detection of spawning events in Chinook salmon using EMG signals. The method developed essentially captured the consistently greater frequency of higher EMG values associated with females cover digging immediately following spawning. However, females implanted with EMGmore » tags retained the majority of their eggs, which significantly reduced their reproductive success compared to non-tagged females. Future work will include increased sample sizes, and modified tagging methods to reduce negative effects on reproductive success. Upper Columbia River sockeye salmon exposed to the odorants PEA, L-threonine, Larginine and L-glutamate were able to learn and remember these odorants as maturing adults up to 2.5 years after exposure. These results suggest that the alevin and smolt stages are both important developmental periods for successful olfactory imprinting. Furthermore, the period of time that fish are exposed to imprinting odors may be important for successful imprinting. Experimental fish exposed to imprinting odors as smolts for six or one weeks successfully imprinted to these odors but imprinting could not be demonstrated in smolts exposed to odors for only one day. A 2-3 C reduction in seawater rearing temperature during the fall and winter prior to final maturation had little effect on reproductive development of spring Chinook salmon. Body size at spawning and total ovary mass were similar between temperature treatments. The percentage of fertilized eggs was significantly higher for females exposed to the ambient temperature

  16. Variation in wind and piscivorous predator fields affecting the survival of Atlantic salmon, Salmo salar, in the Gulf of Maine

    USGS Publications Warehouse

    Friedland, K.D.; Manning, J.P.; Link, Jason S.; Gilbert, J.R.; Gilbert, A.T.; O'Connell, A.F.

    2012-01-01

    Observations relevant to the North American stock complex of Atlantic salmon, Salmo salar L., suggest that marine mortality is influenced by variation in predation pressure affecting post-smolts during the first months at sea. This hypothesis was tested for Gulf of Maine (GOM) stocks by examining wind pseudostress and the distribution of piscivorous predator fields potentially affecting post-smolts. Marine survival has declined over recent decades with a change in the direction of spring winds, which is likely extending the migration of post-smolts by favouring routes using the western GOM. In addition to changes in spring wind patterns, higher spring sea surface temperatures have been associated with shifting distributions of a range of fish species. The abundance of several pelagic piscivores, which based on their feeding habits may predate on salmon post-smolts, has increased in the areas that serve as migration corridors for post-smolts. In particular, populations of silver hake, Merluccius bilinearis (Mitchell), red hake, Urophycis chuss (Walbaum), and spiny dogfish, Squalus acanthias L., increased in size in the portion of the GOM used by post-smolts. Climate variation and shifting predator distributions in the GOM are consistent with the predator hypothesis of recruitment control suggested for the stock complex.

  17. Influence of Incision Location on Transmitter Loss, Healing, Survival, Growth, and Suture Retention of Juvenile Chinook Salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panther, Jennifer L.; Brown, Richard S.; Gaulke, Greg L.

    2011-11-01

    Fisheries research involving surgical implantation of transmitters necessitates the use of methods that minimize transmitter loss and fish mortality and optimize healing of the incision. We evaluated the effects of three incision locations on transmitter loss, healing, survival, growth, and suture retention in juvenile Chinook salmon Oncorhynchus tshawytscha. The three incision locations were (1) on the linea alba (LA incision), (2) adjacent and parallel to the LA (muscle-cutting [MC] incision), and (3) extending from the LA towards the dorsum at a 45° angle, between the parallel lines of myomeres (muscle-sparing [MS] incision). A Juvenile Salmon Acoustic Telemetry System acoustic transmittermore » (0.44 g in air) and a passive integrated transponder tag (0.10 g in air) were implanted into each fish (total N = 936 fish). The fish were held at 12°C or 20°C and were examined weekly for 98 d. The progression of healing among incision locations and the variability in transmitter loss made it difficult to identify one incision location as the best choice. The LA incisions had a much smaller wound extent (area of visible subepidermal tissue) than MC and MS incisions during the first 28 d of the study. In both temperature treatments, apposition of incisions through day 14 was better for LA incisions than for MC and MS incisions. However, MC and MS incisions were less likely than LA incisions to reopen over time and thus were less likely to allow transmitter loss through the incision.« less

  18. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, James R.; Smith, Steven G.; Muir, William D.

    2009-06-23

    In 2008, the National Marine Fisheries Service completed the sixteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder (PIT) tags. We PIT tagged and released a total of 18,565 hatchery steelhead O. mykiss, 15,991 wild steelhead, and 9,714 wild yearling Chinook salmon O. tshawytscha at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from themore » hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. These included 122,061 yearling Chinook salmon tagged at Lower Granite Dam for evaluation of latent mortality related to passage through Snake River dams. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2008 were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon and steelhead, (2) evaluate relationships between survival estimates and migration conditions, and (3) evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2008 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here

  19. Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers.

    PubMed

    Sundt-Hansen, L E; Hedger, R D; Ugedal, O; Diserud, O H; Finstad, A G; Sauterleute, J F; Tøfte, L; Alfredsen, K; Forseth, T

    2018-08-01

    Climate change is expected to alter future temperature and discharge regimes of rivers. These regimes have a strong influence on the life history of most aquatic river species, and are key variables controlling the growth and survival of Atlantic salmon. This study explores how the future abundance of Atlantic salmon may be influenced by climate-induced changes in water temperature and discharge in a regulated river, and investigates how negative impacts in the future can be mitigated by applying different regulated discharge regimes during critical periods for salmon survival. A spatially explicit individual-based model was used to predict juvenile Atlantic salmon population abundance in a regulated river under a range of future water temperature and discharge scenarios (derived from climate data predicted by the Hadley Centre's Global Climate Model (GCM) HadAm3H and the Max Plank Institute's GCM ECHAM4), which were then compared with populations predicted under control scenarios representing past conditions. Parr abundance decreased in all future scenarios compared to the control scenarios due to reduced wetted areas (with the effect depending on climate scenario, GCM, and GCM spatial domain). To examine the potential for mitigation of climate change-induced reductions in wetted area, simulations were run with specific minimum discharge regimes. An increase in abundance of both parr and smolt occurred with an increase in the limit of minimum permitted discharge for three of the four GCM/GCM spatial domains examined. This study shows that, in regulated rivers with upstream storage capacity, negative effects of climate change on Atlantic salmon populations can potentially be mitigated by release of water from reservoirs during critical periods for juvenile salmon. Copyright © 2018. Published by Elsevier B.V.

  20. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

    The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in thismore » series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon release

  1. Outbreeding depression in hybrids between odd-and even-broodyear pink salmon

    USGS Publications Warehouse

    Gharrett, A.J.; Smoker, W.W.; Reisenbichler, R.R.; Taylor, S.G.

    1999-01-01

    Fewer F2 hybrids between even- and odd-broodline pink salmon (Oncorhynchus gorbuscha), which are lines that are genetically isolated by their strict two-year life cycle, survived than did F2 controls, indicating outbreeding depression. Cryopreserved sperm of 40 broodyear 1990 males and of 40 broodyear 1991 males fertilized equal subsamples of eggs from 40 broodyear 1992 females. Return rates of F1 hybrids (1.73%) and controls (1.63%) in 1994 did not differ significantly (P=0.30). F2 hybrid and control crosses were made from 40 males and 40 females selected at random from each return group. Offspring were differentially marked and released. In 1996, returns differed significantly (P=0.011) between hybrids (n=34, 0.34%) and controls (n=44, 0.42%). The low rate of return of the control fish was similar to the measured return of a much larger group of tagged Auke Creek pink salmon, and probably not an artifact of the experiment. Although no increase in fluctuating asymmetry of paired meristic counts was observed in either F1or F2 hybrids, size and some meristic counts of hybrids exceed measurements of controls, suggesting heterosis for those traits. The observations of decreased survival in F2 hybrids confirm previous work [Gharrett, A.J., Smoker, W.W., 1991. Two generations of hybrids between even- and odd-year pink salmon (O. gorbuscha). Canadian Journal of Fisheries and Aquatic Science 48(9) 1744–1749]. Although genetic divergence between pink salmon broodlines is large and outbreeding depression might be expected in such unlikely hybrids, the results document the occurrence of outbreeding depression in salmon and signal caution in making management and aquacultural decisions that may create the possibility of outbreeding depression in self-sustaining or cultured populations.

  2. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.

    This report presents survival, behavioral, and fish passage results for yearling and subyearling Chinook salmon smolts and juvenile steelhead tagged with JSATS acoustic micro-transmitters as part of a survival study conducted at John Day Dam during 2010. This study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a single-release survival estimate model.

  3. Parasite burdens in experimental families of coho salmon.

    USGS Publications Warehouse

    Yasutake, W.T.; McIntyre, J.D.; Hemmingsen, A.R.

    1986-01-01

    We examined the possibility that parasites affect survival rates of anadromous hatchery coho salmon Oncorhynchus kisutch during their period in the wild. Survival was estimated from the rates at which adults returned to the hatchery. The frequency of infection of heart tissue by metacercariae of Nanophyetus sp. was higher in individuals from families with relatively high survival. Various degrees of parasitic and bacterial infection were observed in all groups. We frequently saw extensive infection and tissue reaction to trophozoites of Ceratomyxa sp. (probably C. shasta) in the apparent absence of spores, suggesting that the clinical method now used to determine the presence of Ceratomyxa infection needs to be reassessed.

  4. Seasonal marine growth of Bristol Bay sockeye salmon (Oncorhynchus nerka) in relation to competition with Asian pink salmon (O. gorbuscho) and the 1977 ocean regime shift

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Farley, Ed; Nielsen, Jennifer L.; Hagen, Peter

    2005-01-01

    Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each growth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2. smolts was significantly higher than age-1 smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10-18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean regime shift. During 1977-2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955-1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977-2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.

  5. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura

    2008-12-17

    -migrated from Redfish Lake in 2007. The hatchery origin component originated from a 2006 fall presmolt direct-release. The juvenile out-migrant traps on Alturas Lake Creek and Pettit Lake Creek were operated by the SBT from April 19 to May 23, 2007 and April 18 to May 29, 2007, respectively. The SBT estimated 1,749 natural origin and 4,695 hatchery origin sockeye salmon smolts out-migrated from Pettit Lake and estimated 8,994 natural origin and 6,897 hatchery origin sockeye salmon smolts out-migrated from Alturas Lake in 2007. The hatchery origin component of sockeye salmon out-migrants originated from fall presmolt direct-releases made to Pettit and Alturas lakes in 2006. In 2007, the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC) chose to have all Snake River sockeye salmon juveniles (tagged and untagged) transported due to potential enhanced survival. Therefore, mainstem survival evaluations were only conducted to Lower Granite Dam. Unique PIT tag interrogations from Sawtooth Valley juvenile out-migrant traps to Lower Granite Dam were utilized to estimate survival rates for out-migrating sockeye salmon smolts. Survival rate comparisons were made between smolts originating from Redfish, Alturas, and Pettit lakes and the various release strategies. Alturas Lake hatchery origin smolts tagged at the out-migrant trap recorded the highest survival rate of 78.0%. In 2007, 494 hatchery origin adult sockeye salmon were released to Redfish Lake for natural spawning. We observed 195 areas of excavation in the lake from spawning events. This was the highest number of redds observed in Redfish Lake since the program was initiated. Suspected redds were approximately 3 m x 3 m in size and were constructed by multiple pairs of adults. To monitor the predator population found within the lakes, we monitored bull trout spawning in Fishhook Creek, a tributary to Redfish Lake; and in Alpine Creek, a tributary to Alturas Lake. This represented the tenth consecutive year that the

  6. Growth reaction norms of domesticated, wild and hybrid Atlantic salmon families in response to differing social and physical environments

    PubMed Central

    2013-01-01

    Background Directional selection for growth has resulted in the 9-10th generation of domesticated Atlantic salmon Salmo salar L. outgrowing wild salmon by a ratio of approximately 3:1 when reared under standard hatchery conditions. In the wild however, growth of domesticated and wild salmon is more similar, and seems to differ at the most by a ratio of 1.25:1. Comparative studies of quantitative traits in farmed and wild salmon are often performed by the use of common-garden experiments where salmon of all origins are reared together to avoid origin-specific environmental differences. As social interaction may influence growth, the large observed difference in growth between wild and domesticated salmon in the hatchery may not be entirely genetically based, but inflated by inter-strain competition. This study had two primary aims: (i) investigate the effect of social interaction and inter-strain competition in common-garden experiments, by comparing the relative growth of farmed, hybrid and wild salmon when reared together and separately; (ii) investigate the competitive balance between wild and farmed salmon by comparing their norm of reaction for survival and growth along an environmental gradient ranging from standard hatchery conditions to a semi-natural environment with restricted feed. Results The main results of this study, which are based upon the analysis of more than 6000 juvenile salmon, can be summarised as; (i) there was no difference in relative growth between wild and farmed salmon when reared together and separately; (ii) the relative difference in body weight at termination between wild and farmed salmon decreased as mortality increased along the environmental gradient approaching natural conditions. Conclusions This study demonstrates that potential social interactions between wild and farmed salmon when reared communally are not likely to cause an overestimation of the genetic growth differences between them. Therefore, common-garden experiments

  7. BLACK SPOT INFESTATION IN JUVENILE COHO SALMON AND THE INFLUENCE OF OREGON COASTAL STREAM SUMMER TEMPERATURES

    EPA Science Inventory

    Freshwater survival and growth of juvenile salmon are affected by many factors, including high summer temperatures and other stressors such as parasitism. Delayed or suppressed growth related to stress can influence subsequent survival of juvenile salmonids in freshwater and mar...

  8. Evaluation of Salmon Spawning Below Bonneville Dam, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan; Mueller, Robert; Murray, Christopher

    2007-03-01

    spawning areas, and the flows necessary to ensure their long-term survival. Ongoing discussions regarding the minimum and maximum flows will result in optimal spawning habitat usage and survival of embryos of both species. Collection of additional data as part of this project will ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. This is consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin. Thus, there is a need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. Pacific Northwest National Laboratory was asked to participate in the cooperative study during FY 2000. Since then, we have focused on (1) investigating the interactions between groundwater and surface water near fall Chinook and chum salmon spawning areas; (2) providing in-season hyporheic temperature data and assisting state agencies with emergence timing estimates; (3) locating and mapping deep-water fall Chinook salmon spawning areas; and (4) providing support to the WDFW for analysis of stranding data. Work conducted during FY 2006 addressed these same efforts. This report documents the studies and tasks performed by PNNL during FY 2006. Chapter 1 provides a description of the searches conducted for deepwater redds--adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of

  9. Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon

    PubMed Central

    Rogers, Luke A.; Peacock, Stephanie J.; McKenzie, Peter; DeDominicis, Sharon; Jones, Simon R. M.; Chandler, Peter; Foreman, Michael G. G.; Revie, Crawford W.; Krkošek, Martin

    2013-01-01

    Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions. PMID:23577082

  10. Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean

    PubMed Central

    Krkošek, Martin; Revie, Crawford W.; Gargan, Patrick G.; Skilbrei, Ove T.; Finstad, Bengt; Todd, Christopher D.

    2013-01-01

    Parasites may have large effects on host population dynamics, marine fisheries and conservation, but a clear elucidation of their impact is limited by a lack of ecosystem-scale experimental data. We conducted a meta-analysis of replicated manipulative field experiments concerning the influence of parasitism by crustaceans on the marine survival of Atlantic salmon (Salmo salar L.). The data include 24 trials in which tagged smolts (totalling 283 347 fish; 1996–2008) were released as paired control and parasiticide-treated groups into 10 areas of Ireland and Norway. All experimental fish were infection-free when released into freshwater, and a proportion of each group was recovered as adult recruits returning to coastal waters 1 or more years later. Treatment had a significant positive effect on survival to recruitment, with an overall effect size (odds ratio) of 1.29 that corresponds to an estimated loss of 39 per cent (95% CI: 18–55%) of adult salmon recruitment. The parasitic crustaceans were probably acquired during early marine migration in areas that host large aquaculture populations of domesticated salmon, which elevate local abundances of ectoparasitic copepods—particularly Lepeophtheirus salmonis. These results provide experimental evidence from a large marine ecosystem that parasites can have large impacts on fish recruitment, fisheries and conservation. PMID:23135680

  11. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, 1998-1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter J.; Blenden, Michael L.; Kucera, Paul A.

    2002-08-01

    This report summarizes the results of the Lower Snake River Compensation Plan Hatchery Evaluation Studies (LSRCP) and the Imnaha Smolt Monitoring Program (SMP) for the 1999 smolt migration from the Imnaha River, Oregon. These studies were designed and closely coordinated to provide information about juvenile natural and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) biological characteristics, behavior and emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam on the Columbia River. Data collected from these studies are shared with the Fish Passage Center (FPC). These data are essential to quantify smoltmore » survival rates under the current passage conditions and to evaluate the future recovery strategies that seek to optimize smolt survival through the hydroelectric system. Information shared with the FPC assists with in-season shaping of flow and spill management requests in the Snake River reservoirs. The Bonneville Power Administration and the United States Fish and Wildlife Service contracted the Nez Perce Tribe (NPT) to monitor emigration timing and tag 21,200 emigrating natural and hatchery chinook salmon and steelhead smolts from the Imnaha River during the spring emigration period (March 1-June 15) with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 1999 marked the eighth year of emigration studies on the Imnaha River and the sixth year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Determine spring emigration timing of chinook salmon and steelhead smolts collected at the Imnaha River trap. (2) Evaluate effects of flow, temperature and other environmental factors on emigration timing. (3) Monitor the daily catch and biological characteristics of juvenile chinook salmon and steelhead smolts collected at the Imnaha River screw trap. (4) Determine emigration timing, travel time

  12. Comment on "Declining wild salmon populations in relation to parasites from farm salmon".

    PubMed

    Riddell, Brian E; Beamish, Richard J; Richards, Laura J; Candy, John R

    2008-12-19

    Krkosek et al. (Reports, 14 December 2007, p. 1772) claimed that sea lice spread from salmon farms placed wild pink salmon populations "on a trajectory toward rapid local extinction." Their prediction is inconsistent with observed pink salmon returns and overstates the risks from sea lice and salmon farming.

  13. Influence of High-Pressure Processing at Low Temperature and Nisin on Listeria innocua Survival and Sensory Preference of Dry-Cured Cold-Smoked Salmon.

    PubMed

    Lebow, Noelle K; DesRocher, Lisa D; Younce, Frank L; Zhu, Mei-Jun; Ross, Carolyn F; Smith, Denise M

    2017-12-01

    Cold-smoked salmon (CSS) production lacks a validated kill step for Listeria monocytogenes. Although Listeria spp. are reduced by nisin or high-pressure processing (HPP), CSS muscle discoloration is often observed after HPP. Effects of nisin and low-temperature HPP on L. innocua survival (nonpathogenic surrogate for L. monocytogenes), spoilage organism growth, color, and sensory preference and peelability of CSS were studied. Cold-smoked sockeye salmon (Oncorhynchus nerka) fillets ± nisin (10 μg/g) were inoculated with a 3-strain L. innocua cocktail, vacuum-packaged, frozen at - 30 °C, and high-pressure processed in an ice slurry within an insulated sleeve. Initial experiments indicated that nisin and HPP for 120 s at 450 MPa (N450) and 600 MPa (N600) were most effective against L. innocua, and thus were selected for further storage studies. L. innocua in N450 and N600-treated CSS was reduced 2.63 ± 0.15 and 3.99 ± 0.34 Log CFU/g, respectively, immediately after HPP. L. innocua and spoilage growth were not observed in HPP-treated CSS during 36 d storage at 4 °C. Low-temperature HPP showed a smaller increase in lightness of CSS compared to ambient-temperature HPP performed in previous studies. Sensory evaluation indicated that overall liking of CSS treated with N450 and N600 were preferred over the control by 61% and 62% of panelists, respectively (P < 0.05). Peelability of sliced CSS was reduced by HPP (P < 0.05). Nisin in combination with low-temperature HPP was effective in controlling L. innocua in CSS while maintaining consumer acceptability. Cold-smoked salmon is a high-risk ready-to-eat product that may be contaminated with L. monocytogenes. Results showed that nisin combined with high-pressure processing at low temperature, reduced the population of Listeria and controlled the spoilage organisms during storage. As an added benefit, high-pressure processing at low temperature may reduce lightening of the salmon flesh, leading to enhanced consumer

  14. Efficacy and toxicity of iodine disinfection of Atlantic salmon eggs

    USGS Publications Warehouse

    Chalupnicki, M.A.; Ketola, H.G.; Starliper, C.E.; Gallagher, D.

    2011-01-01

    Recent interest in the restoration of Atlantic salmon Salmo salar in the Great Lakes has given rise to new culture techniques and management programs designed to reduce pathogen transmission while stabilizing and enhancing wild populations. We examined the toxicity of iodine to Atlantic salmon eggs and its effectiveness as a disinfectant against bacteria on egg surfaces. We spawned and fertilized eight gravid Atlantic salmon from Cayuga Lake, New York, and exposed their eggs to 10 concentrations of iodine (5, 10, 50, 75, 100, 500, 750, 1,000, 5,000, and 7,500 mg/L) for 30 min during water hardening. An additional subsample of unfertilized eggs was also exposed to some of the same concentrations of iodine (5, 10, 50, 75, and 100 mg/L) to determine the efficiency of disinfection. Viable eggs were only obtained from four females. Survival of eggs to the eyed stage and hatch tended to be reduced at iodine concentrations of 50 and 75 mg/L and was significantly reduced at concentrations of 100 mg/L iodine or more. We calculated the concentrations of iodine that killed 50% of the Atlantic salmon eggs at eye-up and hatch to be 175 and 85 mg/L, respectively. Aeromonas veronii, A. schubertii, A. hydrophila, A. caviae, Plesiomonas shiggeloides, and Citrobacter spp. were the predominant bacteria present on the surface of green eggs and were significantly reduced by an iodine immersion. The use of iodine as a disinfectant on Atlantic salmon eggs was effective at low concentrations (50–75 mg/L), for which toxicity to Atlantic salmon was minimal.

  15. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries ofmore » these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.« less

  16. An Assessment of the Status of Captive Broodstock Technology of Pacific Salmon, 1995 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagg, Thomas A.; Mahnaken, Conrad V.W.; Hard, Jeffrey J.

    1995-06-01

    This report provides guidance for the refinement and use of captive broodstock technology for Pacific salmon (Oncorhynchus spp.) by bringing together information on the husbandry techniques, genetic risks, physiology, nutrition, and pathology affecting captive broodstocks. Captive broodstock rearing of Pacific salmon is an evolving technology, as yet without well defined standards. At present, we regard captive rearing of Pacific salmon as problematic: high mortality rates and low egg viability were common in the programs we reviewed for this report. One of the most important elements in fish husbandry is the culture environment itself. Many captive broodstock programs for Pacific salmonmore » have reared fish from smolt-to-adult in seawater net-pens, and most have shown success in providing gametes for recovery efforts. However, some programs have lost entire brood years to diseases that transmitted rapidly in this medium. Current programs for endangered species of Pacific salmon rear most fish full-term to maturity in fresh well-water, since ground water is low in pathogens and thus helps ensure survival to adulthood. Our review suggested that captive rearing of fish in either freshwater, well-water, or filtered and sterilized seawater supplied to land-based tanks should produce higher survival than culture in seawater net-pens.« less

  17. SALMON 2100 PROJECT: LIKELY SCENARIOS FOR WILD SALMON

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...

  18. Effects of Dietary Fatty Acids on Juvenile Salmon Growth, Biochemistry, and Aerobic Performance: A Laboratory Rearing Experiment

    NASA Astrophysics Data System (ADS)

    Litz, M. N. C.; Miller, J. A.; Copeman, L.; Hurst, T. P.

    2016-02-01

    Juvenile salmon undergo important physiological and ecological transitions as they migrate from freshwater to the ocean, a phase characterized by rapid growth and high mortality. It is becoming increasing clear that variations in nutritional quality of marine prey may be as important as prey quantity in determining salmon survival during this critical period in their life history. Growth potential, and hence survival, may be related to the size when salmon first become piscivorous. We tested the hypothesis that prey nutrient composition and predator nutritional history affects growth, biochemistry, and performance in a population of subyearling Chinook salmon (Onchorynchus tshawytscha). Salmon were reared for 12 weeks on three energetically similar experimental diets. Diets were created with ratios of docosahexaenoic acid (DHA) to eicosapentaenoic acid (EPA) of 0.56, 0.94, and 1.47 by altering the amount of krill, anchovy, and two fatty acid supplements. Tagged salmon reared on the high DHA:EPA anchovy diet trended towards faster growth (0.33±0.05 mm d-1) compared to fish reared on the low DHA:EPA krill diet (0.27±0.03 mm d-1) or blended diet (0.29±0.02 mm d-1). Tissue turnover in salmon, measured in half-lives, was 5 to 28 days for essential fatty acids, and 9 to 184 days for bulk isotopes of nitrogen and carbon, indicating that predator tissue fatty acids reflect diet sooner than stable isotopes. After the rearing experiment, salmon were starved for 4 weeks and their critical swimming speeds measured to determine whether nutritional history had an affect on aerobic performance. Although there were no significant differences in swim performance among diet treatments, there was a significant relationship (r2=0.57, p=0.02) between swimming speed and an individual's size and storage lipids across diet treatments. Results from this study will support future ecological studies of migrating juvenile salmon and quantitative estimates of diet in other anadromous fish.

  19. Salmon habitat assessment for conservation planning in the lower White Salmon River, Washington

    USGS Publications Warehouse

    Hardiman, Jill M.; Allen, M. Brady

    2015-01-01

    In 2011, Condit Dam was removed from the White Salmon River, Washington. Since dam removal, there has been interest among scientists (State and Federal), Tribes, non-profit organizations, and the general public in assessing Pacific salmon habitat and use in the White Salmon River for conservation planning and potential fishery management actions. The study area extended from the lower 6 miles of the White Salmon River to the confluence with the Columbia River, including the former reservoir area. The Mid-Columbia Fisheries Enhancement Group received a grant to initiate efforts to plan for salmon habitat protection in the lower 6 river miles of the White Salmon River. As part of efforts by the Mid-Columbia Fisheries Enhancement Group to conduct conservation planning, the U.S. Geological Survey (USGS) used current and historical habitat information to assist in the planning process. The USGS compiled existing georeferenced habitat data into a Geographic Information System to identify areas of high quality habitat for salmon, potential areas for restoration/improvement, and areas that could be threatened. The primary sources of georeferenced data for this project include a lidar flight contracted by PacifiCorp, bathymetry from USGS, and fall Chinook salmon redd surveys from the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife. Redd observations provided support that the study area is a migratory corridor for salmon and steelhead and that the lowest 2–3 miles had the highest concentration of documented fall Chinook salmon redds. The study area has potential for restoration/conservation areas to improve/conserve salmon habitat.

  20. Controlling Listeria monocytogenes in Cold Smoked Salmon with the Antimicrobial Peptide Salmine.

    PubMed

    Cheng, Christopher; Arritt, Fletcher; Stevenson, Clinton

    2015-06-01

    Listeria monocytogenes (LM) is a major safety concern for smoked salmon producers, as it can survive both the brining and smoking process in cold smoked salmon production. Salmine is a cationic antimicrobial peptide derived from the milt of salmon that has been shown to inhibit the growth of LM in vitro. Commercialization of this peptide would add value to a waste product produced when raising salmon. The purpose of this study was to determine the anti-listeria activity of salmine in smoked salmon by measuring the viable counts of LM over time. Cold smoked salmon was treated with a salmine solution or coated with agar or k-carrageenan films incorporating salmine to maintain a high surface concentration of the antimicrobial. Samples were then inoculated with approximately 1.0 × 10(3) cells of LM. The viable counts were then enumerated throughout 4 wk at 4 °C storage. It was found that 5 mg/g salmine delayed the growth of LM on smoked salmon. These samples had significantly (P < 0.05) lower LM counts than on the untreated samples on days 13 and 22. Edible films did not significantly (P > 0.05) improve the antimicrobial efficacy of salmine. The peptide combined with biopolymers also had lower antimicrobial activity in vitro when compared to salmine alone. These results suggest there is potential for salmine to be used as a natural hurdle to inhibit growth of LM due to post process contamination; however, future investigations for extending this effect throughout the shelf life of smoked salmon products are warranted. © 2015 Institute of Food Technologists®

  1. Discovering Alaska's Salmon: A Children's Activity Book.

    ERIC Educational Resources Information Center

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  2. Research on Captive Broodstock Programs for Pacific Salmon, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Current velocity in rearing vessels had little if any effect on reproductive behavior of captively reared steelhead. However, males and females reared in high velocity vessels participated a greater number of spawning events than siblings reared in low velocity tanks. Observations of nesting females and associated malesmore » in a natural stream (Hamma Hamma River) were consistent with those observed in a controlled spawning channel. DNA pedigree analyses did not reveal significant differences in the numbers of fry produced by steelhead reared in high and low velocity vessels. To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon are being exposed to known odorants at key developmental stages. Subsequently they will be tested for development of long-term memories of these odorants. In 2002-2003, the efficacy of EOG analysis for assessing imprinting was demonstrated and will be applied in these and other behavioral and molecular tools in the current work plan. Results of these experiments will be important to determine the critical periods for imprinting for the offspring of captively-reared fish destined for release into natal rivers or lakes. By early August, the oocytes of all of Rapid River Hatchery chinook salmon females returning from the ocean had advanced to the tertiary yolk globule stage; whereas, only some of the captively reared Lemhi River females sampled had advanced to this stage, and the degree of advancement was not dependent on rearing temperature. The mean spawning time of captive Lemhi River females was 3-4 weeks after that of the Rapid River

  3. Evidence for competition at sea between Norton Sound chum salmon and Asian hatchery chum salmon

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Agler, B.A.; Nielsen, Jennifer L.

    2012-01-01

    Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.

  4. Estuarine and marine diets of out-migrating Chinook Salmon smolts in relation to local zooplankton populations, including harmful blooms

    NASA Astrophysics Data System (ADS)

    Chittenden, C. M.; Sweeting, R.; Neville, C. M.; Young, K.; Galbraith, M.; Carmack, E.; Vagle, S.; Dempsey, M.; Eert, J.; Beamish, R. J.

    2018-01-01

    Changes in food availability during the early marine phase of wild Chinook Salmon (O. tshawytscha) are being investigated as a cause of their recent declines in the Salish Sea. The marine survival of hatchery smolts, in particular, has been poor. This part of the Salish Sea Marine Survival Project examined the diet of young out-migrating Chinook Salmon for four consecutive years in the Cowichan River estuary and in Cowichan Bay, British Columbia, Canada. Local zooplankton communities were monitored during the final year of the study in the Cowichan River estuary, Cowichan Bay, and eastward to the Salish Sea to better understand the bottom-up processes that may be affecting Chinook Salmon survival. Rearing environment affected body size, diet, and distribution in the study area. Clipped smolts (hatchery-reared) were larger than the unclipped smolts (primarily naturally-reared), ate larger prey, spent very little time in the estuary, and disappeared from the bay earlier, likely due to emigration or mortality. Their larger body size may be a disadvantage for hatchery smolts if it necessitates their leaving the estuary prematurely to meet energy needs; the onset of piscivory began at a forklength of approximately 74 mm, which was less than the average forklength of the clipped fish in this study. The primary zooplankton bloom occurred during the last week of April/first week of May 2013, whereas the main release of hatchery-reared Chinook Salmon smolts occurs each year in mid-May-this timing mismatch may reduce their survival. Gut fullness was correlated with zooplankton biomass; however, both the clipped and unclipped smolts were not observed in the bay until the bloom of harmful Noctiluca was finished-20 days after the maximum recorded zooplankton abundance. Jellyfish medusa flourished in nearshore areas, becoming less prevalent towards the deeper waters of the Salish Sea. The sizable presence of Noctiluca and jellyfish in the zooplankton blooms may be repelling

  5. Recent Salmon Declines: A Result of Lost Feeding Opportunities Due to Bad Timing?

    PubMed Central

    Chittenden, Cedar M.; Jensen, Jenny L. A.; Ewart, David; Anderson, Shannon; Balfry, Shannon; Downey, Elan; Eaves, Alexandra; Saksida, Sonja; Smith, Brian; Vincent, Stephen; Welch, David; McKinley, R. Scott

    2010-01-01

    As the timing of spring productivity blooms in near-shore areas advances due to warming trends in global climate, the selection pressures on out-migrating salmon smolts are shifting. Species and stocks that leave natal streams earlier may be favoured over later-migrating fish. The low post-release survival of hatchery fish during recent years may be in part due to static release times that do not take the timing of plankton blooms into account. This study examined the effects of release time on the migratory behaviour and survival of wild and hatchery-reared coho salmon (Oncorhynchus kisutch) using acoustic and coded-wire telemetry. Plankton monitoring and near-shore seining were also conducted to determine which habitat and food sources were favoured. Acoustic tags (n = 140) and coded-wire tags (n = 266,692) were implanted into coho salmon smolts at the Seymour and Quinsam Rivers, in British Columbia, Canada. Differences between wild and hatchery fish, and early and late releases were examined during the entire lifecycle. Physiological sampling was also carried out on 30 fish from each release group. The smolt-to-adult survival of coho salmon released during periods of high marine productivity was 1.5- to 3-fold greater than those released both before and after, and the fish's degree of smoltification affected their downstream migration time and duration of stay in the estuary. Therefore, hatchery managers should consider having smolts fully developed and ready for release during the peak of the near-shore plankton blooms. Monitoring chlorophyll a levels and water temperature early in the spring could provide a forecast of the timing of these blooms, giving hatcheries time to adjust their release schedule. PMID:20805978

  6. Utilization of smoked salmon trim in extruded smoked salmon jerky.

    PubMed

    Kong, J; Dougherty, M P; Perkins, L B; Camire, M E

    2012-06-01

    During smoked salmon processing, the dark meat along the lateral line is removed before packaging; this by-product currently has little economic value. In this study, the dark meat trim was incorporated into an extruded jerky. Three formulations were processed: 100% smoked trim, 75% : 25% smoked trim : fresh salmon fillet, and 50% : 50% smoked trim : fresh salmon blends (w/w basis). The base formulation contained salmon (approximately 83.5%), tapioca starch (8%), pregelatinized potato starch (3%), sucrose (4%), salt (1.5%), sodium nitrate (0.02%), and ascorbyl palmitate (0.02% of the lipid content). Blends were extruded in a laboratory-scale twin-screw extruder and then hot-smoked for 5 h. There were no significant differences among formulations in moisture, water activity, and pH. Protein was highest in the 50 : 50 blend jerky. Ash content was highest in the jerky made with 100% trim. Total lipids and salt were higher in the 100% trim jerky than in the 50 : 50 blend. Hot smoking did not adversely affect docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) content in lipids from 100% smoked trim jerky. Servings of salmon jerky made with 75% and 100% smoked trim provided at least 500 mg of EPA and DHA. The 50 : 50 formulation had the highest Intl. Commission on Illumination (CIE) L*, a*, and b* color values. Seventy consumers rated all sensory attributes as between "like slightly" and "like moderately." With some formulation and processing refinements, lateral line trim from smoked salmon processors has potential to be incorporated into acceptable, healthful snack products. Dark meat along the lateral line is typically discarded by smoked salmon processors. This omega-3 fatty acid rich by-product can be used to make a smoked salmon jerky that provides a convenient source of these healthful lipids for consumers. © 2012 Institute of Food Technologists®

  7. Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.

    2016-01-01

    Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the Salmon River during May and June prior to out-migration. Over the 4 years examined (2009–2012), annual consumption of Chinook Salmon parr by hatchery-released yearling steelhead O. mykiss and Coho Salmon O. kisutch ranged from 1.5 to 3.3 million and from 0.4 to 2.1 million, respectively. In 2009, Fallfish Semotilus corporalis were estimated to consume 2.9 million Chinook Salmon parr. Predation was higher in May, when the average TL of Chinook Salmon parr was 44.5 mm, than in June. Fallfish were also important predators of naturally reproduced steelhead subyearlings, consuming an estimated 800,000 steelhead in 2009. Hatchery-released yearling salmonids consumed 13.8–15.3% of the Chinook Salmon parr that were estimated to be present in the Salmon River during 2010–2012. Earlier releases of hatchery salmonid yearlings could reduce the riverine consumption of Chinook Salmon parr by facilitating the out-migration of yearlings prior to Chinook Salmon emergence.

  8. Integrating Salmon Recovery, Clean Water Act Compliance ...

    EPA Pesticide Factsheets

    "The South Fork Nooksack River (SFNR) is an important tributary to the Nooksack River, Bellingham Bay, and the Salish Sea. The South Fork Nooksack River comprises one of the 22 independent populations of spring Chinook in the Puget Sound Chinook Evolutionarily Significant Unit (ESU), which are listed as threatened under the Endangered Species Act (ESA). The population is considered essential for recovery of the ESU. The SFNR has suffered from legacy impacts, temperature exceedances and fine sediment, due to forestry, agriculture, flood control, and transportation facilities. The temperature exceedances threaten spring Chinook salmon survival and as such under the Clean Water Act, this pollution must be addressed through a total maximum daily load (TMDL) regulatory program. Further, climate change is projected to cumulatively add to the existing legacy impacts. Millions of dollars are spent on salmon habitat restoration in the SFNR that primarily addresses these legacy impacts, but few if any restoration actions take climate change into direct consideration. The Nooksack Indian Tribe and USEPA-ORD jointly completed a climate change pilot research project that addresses legacy impacts, ESA recovery actions, CWA regulatory compliance, and salmon habitat restoration in one comprehensive project. The project evaluates how land use impacts, including altered hydrology, stream temperature, sediment dynamics, and flooding of adjacent river floodplains, combined with pr

  9. Assessment of Barotrauma from Rapid Decompression of Depth-Acclimated Juvenile Chinook Salmon Bearing Radiotelemetry Transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.

    2009-11-01

    This study investigated the mortality of and injury to juvenile Chinook salmon Oncorhynchus tshawytscha exposed to simulated pressure changes associated with passage through a large Kaplan hydropower turbine. Mortality and injury varied depending on whether a fish was carrying a transmitter, the method of transmitter implantation, the depth of acclimation, and the size of the fish. Juvenile Chinook salmon implanted with radio transmitters were more likely than those without to die or sustain injuries during simulated turbine passage. Gastric transmitter implantation resulted in higher rates of injury and mortality than surgical implantation. Mortality and injury increased with increasing pressure ofmore » acclimation. Injuries were more common in subyearling fish than in yearling fish. Gas emboli in the gills and internal hemorrhaging were the major causes of mortality. Rupture of the swim bladder and emphysema in the fins were also common. This research makes clear that the exposure of juvenile Chinook salmon bearing radiotelemetry transmitters to simulated turbine pressures with a nadir of 8-19 kPa can result in barotrauma, leading to immediate or delayed mortality. The study also identified sublethal barotrauma injuries that may increase susceptibility to predation. These findings have significant implications for many studies that use telemetry devices to estimate the survival and behavior of juvenile salmon as they pass through large Kaplan turbines typical of those within the Columbia River hydropower system. Our results indicate that estimates of turbine passage survival for juvenile Chinook salmon obtained with radiotelemetry devices may be negatively biased.« less

  10. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    USGS Publications Warehouse

    Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.

    2015-01-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.

  11. Effects of post-capture ventilation assistance and elevated water temperature on sockeye salmon in a simulated capture-and-release experiment

    PubMed Central

    Robinson, Kendra A.; Hinch, Scott G.; Gale, Marika K.; Clark, Timothy D.; Wilson, Samantha M.; Donaldson, Michael R.; Farrell, Anthony P.; Cooke, Steven J.; Patterson, David A.

    2013-01-01

    The live release of wild adult Pacific salmon (Oncorhynchus spp.) following capture is a management tactic often used in commercial, aboriginal, and recreational fisheries. Fisheries capture and handling can be both exhausting and stressful to fish, which can limit their ability to swim and survive after release. As a result, researchers have assessed methods intended to improve post-release survival by assisting the flow of water over the gills of fish prior to release. Such approaches use recovery bags or boxes that direct water over the gills of restrained fish. This study evaluated a method of assisting ventilation that mimics one often employed by recreational anglers (i.e. holding fish facing into a current). Under laboratory conditions, wild Fraser River sockeye salmon (Oncorhynchus nerka) either received manual ventilation assistance for 1 min using a jet of water focused at the mouth or were left to recover unassisted following a capture-and-release simulation. A control group consisted of fish that were not exposed to the simulation or ventilation assistance. The experiment was conducted at 16 and 21°C, average and peak summer water temperatures for the Fraser River, and fish survival was monitored for 33 days. At 21°C, all fish perished within 3 days after treatment in all experimental groups, highlighting the consequences of handling adult sockeye salmon during elevated migration temperatures. Survival was higher at 16°C, with fish surviving on average 15–20 days after treatment. At 16°C, the capture-and-release simulation and ventilation assistance did not affect the survival of males; however, female survival was poor after the ventilation assistance compared with the unassisted and control groups. Our results suggest that the method of ventilation assistance tested in this study may not enhance the post-release survival of adult Fraser River sockeye salmon migrating in fresh water. PMID:27293599

  12. Redfish Lake Sockeye Salmon Captive Broodstock Rearing and Research, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, Deborah; McAuley, W.; Maynard, Desmond

    2003-04-01

    The National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center, in cooperation with the Idaho Department of Fish and Game and the Bonneville Power Administration, has established captive broodstock programs to aid recovery of Snake River sockeye salmon (Oncorhynchus nerka) listed as endangered under the U.S. Endangered Species Act (ESA). Captive broodstock and captive rearing programs are a form of artificial propagation that are emerging as an important component of restoration efforts for ESA-listed salmon populations that are at critically low numbers. Captive broodstocks, reared in captivity for the entire life cycle, couple the salmon's high fecundity with potentially highmore » survival in protective culture to produce large numbers of juveniles in a single generation for supplementation of natural populations. The captive broodstocks discussed in this report were intended to protect the last known remnants of sockeye salmon that return to Redfish Lake in the Sawtooth Basin of Idaho at the headwaters of the Salmon River. This report addresses NMFS activities from 1 September 2001 to 31 August 2002 on the Redfish Lake sockeye salmon captive broodstock and captive rearing program. NMFS currently has broodstocks in culture from year classes 1997, 1998, 1999, 2000, and 2001 in both the captive breeding and captive rearing programs. Offspring from these programs are being returned to Idaho to aid recovery efforts for the species.« less

  13. A Field Evaluation of an External and Neutrally Buoyant Acoustic Transmitter for Juvenile Salmon: Implications for Estimating Hydroturbine Passage Survival

    PubMed Central

    Brown, Richard S.; Deng, Z. Daniel; Cook, Katrina V.; Pflugrath, Brett D.; Li, Xinya; Fu, Tao; Martinez, Jayson J.; Li, Huidong; Trumbo, Bradly A.; Ahmann, Martin L.; Seaburg, Adam G.

    2013-01-01

    Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this. PMID

  14. A field evaluation of an external and neutrally buoyant acoustic transmitter for juvenile salmon: implications for estimating hydroturbine passage survival.

    PubMed

    Brown, Richard S; Deng, Z Daniel; Cook, Katrina V; Pflugrath, Brett D; Li, Xinya; Fu, Tao; Martinez, Jayson J; Li, Huidong; Trumbo, Bradly A; Ahmann, Martin L; Seaburg, Adam G

    2013-01-01

    Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this.

  15. From Rivers to Oceans and Back: Linking Models to Encompass the Full Salmon Life Cycle

    NASA Astrophysics Data System (ADS)

    Danner, E.; Hendrix, N.; Martin, B.; Lindley, S. T.

    2016-02-01

    Pacific salmon are a promising study subject for investigating the linkages between freshwater and coastal ocean ecosystems. Salmon use a wide range of habitats throughout their life cycle as they move with water from mountain streams, mainstem rivers, estuaries, bays, and coastal oceans, with adult fish swimming back through the same migration route they took as juveniles. Conditions in one habitat can have growth and survival consequences that manifest in the following habitat, so is key that full life cycle models are used to further our understanding salmon population dynamics. Given the wide range of habitats and potential stressors, this approach requires the coordination of a multidisciplinary suite of physical and biological models, including climate, hydrologic, hydraulic, food web, circulation, bioenergetic, and ecosystem models. Here we present current approaches to linking physical and biological models that capture the foundational drivers for salmon in complex and dynamic systems.

  16. Physiological development and migratory behavior of subyearling fall chinook salmon in the Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Wagner, P.G.

    2000-01-01

    We describe the migratory behavior and physiological development of subyearling fall chinook salmon Oncorhynchus tshawytscha migrating through John Day Reservoir on the Columbia River, Washington and Oregon. Fish were freeze-branded and coded-wire-tagged at McNary Dam, Oregon, from 1991 to 1994, to determine travel time to John Day Dam and subsequent adult contribution. Stepwise multiple regression showed that 47% of the variation in subyearling fall chinook salmon travel time was explained by the reciprocal of minimum flow and fish size. Smoltification, as measured by gill Na+-K+ adenosine triphosphatase (ATPase) activity, was not important in explaining variability in travel time of subyearling chinook salmon. Fish marked early in the out-migration generally traveled faster than middle and late migrants. Seawater challenges were used to describe physiological development and showed that osmoregulatory competence of premigrants in the Hanford Reach of the Columbia River increased with fish size and gill ATPase activity. Once active migrants began passing McNary Dam, fish generally had survival exceeding 90% and were able to regulate their blood plasma Na+ in seawater. Gill ATPase activity increased as premigrants, reared in nearshore areas of the Hanford Reach, reached a peak among active migrants in late June and early July then decreased through the remainder of the out-migration. Salinity preference also peaked in subyearling fall chinook salmon during late June to mid July in 1995. Return of adults from marked groups showed no consistent patterns that would suggest a survival advantage for any portion of the juvenile out-migration. Presumed wild migrants from the middle and late portions of the out-migration were primary contributors to all fisheries, except the Priest Rapids Hatchery. As such, fishery managers should take action to ensure the survival of these fish, especially because they migrate under more unfavorable environmental conditions than early

  17. Migratory behaviour and survival rates of wild northern Atlantic salmon Salmo salar post-smolts: Effects of environmental factors

    USGS Publications Warehouse

    Davidsen, J.G.; Rikardsen, A.H.; Halttunen, E.; Thorstad, E.B.; Okland, F.; Letcher, B.H.; Skarhamar, J.; Naesje, T.F.

    2009-01-01

    To study smolt behaviour and survival of a northern Atlantic salmon Salmo salar population during river descent, sea entry and fjord migration, 120 wild S. salar were tagged with acoustic tags and registered at four automatic listening station arrays in the mouth of the north Norwegian River Alta and throughout the Alta Fjord. An estimated 75% of the post-smolts survived from the river mouth, through the estuary and the first 17 km of the fjord. Survival rates in the fjord varied with fork length (LF), and ranged from 97??0 to 99??5% km-1. On average, the post-smolts spent 1??5 days (36 h, range 11-365 h) travelling from the river mouth to the last fjord array, 31 km from the river mouth. The migratory speed was slower (1??8 LF s-1) in the first 4 km after sea entry compared with the next 27 km (3??0 LF s-1). Post-smolts entered the fjord more often during the high or ebbing tide (70%). There was no clear diurnal migration pattern within the river and fjord, but most of the post-smolts entered the fjord at night (66%, 2000-0800 hours), despite the 24 h daylight at this latitude. The tidal cycle, wind-induced currents and the smolts' own movements seemed to influence migratory speeds and routes in different parts of the fjord. A large variation in migration patterns, both in the river and fjord, might indicate that individuals in stochastic estuarine and marine environments are exposed to highly variable selection regimes, resulting in different responses to environmental factors on both temporal and spatial scales. Post-smolts in the northern Alta Fjord had similar early marine survival rates to those observed previously in southern fjords; however, fjord residency in the north was shorter. ?? 2009 The Fisheries Society of the British Isles.

  18. THE SALMON 2100 PROJECT -- AN ALTERNATIVES FUTURES PERSPECTIVE ON PACIFIC NORTHWEST SALMON RECOVERY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in the Pacific Northwest and California. Wild salmon recovery efforts in western North Americ...

  19. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    PubMed

    Garver, K A; Marty, G D; Cockburn, S N; Richard, J; Hawley, L M; Müller, A; Thompson, R L; Purcell, M K; Saksida, S

    2016-02-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon. © 2015 John Wiley & Sons Ltd.

  20. Evaluation of Salmon Spawning Below Bonneville Dam, Annual Report October 2005 - September 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Mueller, Robert P.; Murray, Christopher J.

    2007-09-21

    spawning areas, and the flows necessary to ensure their long-term survival. Ongoing discussions regarding the minimum and maximum flows will result in optimal spawning habitat usage and survival of embryos of both species. Collection of additional data as part of this project will ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. This is consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin. Thus, there is a need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. Pacific Northwest National Laboratory was asked to participate in the cooperative study during FY 2000. Since then, we have focused on (1) investigating the interactions between groundwater and surface water near fall Chinook and chum salmon spawning areas; (2) providing in-season hyporheic temperature data and assisting state agencies with emergence timing estimates; (3) locating and mapping deep-water fall Chinook salmon spawning areas; and (4) providing support to the WDFW for analysis of stranding data. Work conducted during FY 2006 addressed these same efforts. This report documents the studies and tasks performed by PNNL during FY 2006. Chapter 1 provides a description of the searches conducted for deepwater redds--adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of

  1. Plasmacytoid leukemia of chinook salmon.

    PubMed

    Kent, M L; Eaton, W D; Casey, J W

    1997-04-01

    Plasmacytoid leukemia is a common disease of seawater pen-reared chinook salmon (Oncorhynchus tshawytscha) in British Columbia, Canada, but has also been detected in wild salmon, in freshwater-reared salmon in United States, and in salmon from netpens in Chile. The disease can be transmitted under laboratory conditions, and is associated with a retrovirus, the salmon leukemia virus. However, the proliferating plasmablasts are often infected with the microsporean Enterocytozoon salmonis, which may be an important co-factor in the disease.

  2. Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2006 - September 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Mueller, Robert P.; Murray, Katherine J.

    2008-08-08

    From 1999 through 2007, the Fish and Wildlife Program of the Bonneville Power Administration funded a project to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Data were collected to ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. The projects objectives are consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats tomore » the production of salmon in the Columbia River Basin. Because of the influence of mainstem habitat on salmon production, there is a continued need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. During FY 2007, Pacific Northwest National Laboratory focused on (1) locating and mapping deep-water fall Chinook salmon and chum salmon spawning areas, (2) investigating the interaction between groundwater and surface water near fall Chinook and chum salmon spawning areas, and (3) providing in-season hyporheic temperature and water surface elevation data to assist state agencies with emergence timing and redd dewatering estimates. This report documents the studies and tasks performed by PNNL during FY 2007. Chapter 1 provides a description of the searches conducted for deepwater redds-adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning

  3. Water uptake by Atlantic salmon ova as affected by low pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, R.H.; Martin-Robichaud, D.J.

    Fertilized ova of Atlantic salmon (Salmo salar) were water-hardened at pH 6.8, 5.0, 4.5, and 4.0. Water uptake was significantly decreased at 4.5 and 4.0. Ova hardened at pH 4.0 did not survive longer than 8 hours.

  4. Calcitonin Salmon Injection

    MedlinePlus

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to ...

  5. Seawater tolerance in Atlantic salmon, Salmo salar L., brown trout, Salmo trutta L., and S. salar × S. trutta hybrids smolt.

    PubMed

    Urke, H A; Koksvik, J; Arnekleiv, J V; Hindar, K; Kroglund, F; Kristensen, T

    2010-12-01

    High levels of hybridization between Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) have been reported in the Gyrodactylus salaris infected Rivers Vefsna and Driva in Norway. The survival and behaviour during the sea phase of such hybrids is unknown. The reported work documents ionoregulatory status after 24 h seawater challenge tests (24hSW) and gill Na+/K+-ATPase (NKA) activity of migrating wild smolts of Atlantic salmon, brown trout and hybrids at two sampling dates during the 2006 smolt run in River Driva. Salmon, trout and hybrids contributed to 27, 52 and 21% of the catches, respectively. The large contribution of hybrids suggests both a high hybridization rate and a high survival rate from fry to smolt. Both salmon and hybrids had a well-developed seawater tolerance at the time of downstream migration, revealed by small ionoregulatory effects and no or low mortality rates during the 24hSW tests. The trout were not fully adapted to seawater, and high mortality rates were observed (71 and 92%) during the 24hSW tests. The NKA activity was not significantly different between salmon and hybrids. Most of the hybrids were physiologically capable of direct entry to full strength seawater. The incomplete seawater tolerance in trout compared to salmon corresponds well with differences in life-history patterns between these two species. The life history strategy of the hybrids during the sea phase is not known, and further investigations on the marine behaviour and survival is needed to evaluate the role of hybrids in the risk of spreading G. salaris to nearby river systems.

  6. It's a Salmon's Life!

    ERIC Educational Resources Information Center

    French, M. Jenice; Skochdopole, Laura Downey

    1998-01-01

    Describes an integrated science unit to help preservice teachers gain confidence in their abilities to learn and teach science. The teachers role played being salmon as they learned about the salmon's life cycle and the difficulties salmon encounter. The unit introduced the use of investigative activities that begin with questions and end with…

  7. OVER-WINTER JUVENILE COHO SALMON GROWTH AND SURVIVAL IN A COASTAL OREGON STREAM NETWORK

    EPA Science Inventory

    Winter habitat has the potential to be a limiting factor for the production and condition of coho salmon (Oncorhynchus kisutch) smolts, but little is known about how the variation of habitat throughout whole stream networks influences coho smolts. Over a four year period (2002 - ...

  8. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  9. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  10. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  11. Long-term consequences of variation in timing and manner of fry introduction on juvenile Atlantic salmon (Salmo salar) growth, survival, and life-history expression

    USGS Publications Warehouse

    Letcher, B.H.; Dubreuil, T.; O'Donnell, M. J.; Obedzinski, M.; Griswold, K.; Nislow, K.H.

    2004-01-01

    We tested the influence of introduction time and the manner of introduction on growth, survival, and life-history expression of Atlantic salmon (Salmo salar). Introduction treatments included three fry stocking times and stream rearing of embryos. Despite poor growth conditions during the early stocking period, early-stocked fish were larger throughout the entire study period, likely the result of prior residence advantage. This interpretation was reinforced by the laboratory study, where early-stocked fish outgrew late-stocked fish when reared together, but not when they were reared separately. In contrast to growth, abundance of stocked fish was greatest for fish stocked during the middle period, and this stocking group produced the greatest number of smolts. Despite smaller size, survival of stream-incubated fish was generally greater than survival of stocked fish. Introduction timing had a pronounced effect on smolt age but a weak effect on extent of parr maturation. Overall, these observations indicate that small differences (???2 weeks) in introduction time can have long-term effects on size, survival, and life-history expression. Results suggest stabilizing selection on introduction times, mediated by the interaction between prior residence (advantage to fish introduced earlier) and habitat suitability (advantage to fish introduced later). ?? 2004 NRC Canada.

  12. Linking climate change projections for an Alaskan watershed to future coho salmon production.

    PubMed

    Leppi, Jason C; Rinella, Daniel J; Wilson, Ryan R; Loya, Wendy M

    2014-06-01

    Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three-dimensional hydrology model, we simulated coho smolt production over a 20-year span at the end of the century (2080-2100). The direction (i.e., positive vs. negative) and magnitude of changes in smolt production varied substantially by climate scenario and subwatershed. Projected smolt production decreased in all three subwatersheds under the minimum air temperature and maximum precipitation scenario due to elevated peak flows and a resulting 98% reduction in egg-to-fry survival. In contrast, the maximum air temperature and minimum precipitation scenario led to an increase in smolt production in all three subwatersheds through an increase in fry survival. Other climate change scenarios led to mixed responses, with projected smolt production increasing and decreasing in different subwatersheds. Our analysis highlights the complexity inherent in predicting climate-change-related impacts to salmon populations and demonstrates that population effects may depend on interactions between the relative magnitude of hydrologic and thermal changes and their interactions with features of the local habitat. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  13. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  14. One Northwest community - People, salmon, rivers, and the sea: Towards sustainable salmon fisheries

    USGS Publications Warehouse

    MacDonald, Donald D.; Steward, Cleveland R.; Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    Pacific salmon management is in crisis. Throughout their range, salmon and steelhead populations are being adversely affected by human activities. Without coordinated, effective, and timely action, the future of the Pacific salmon resource is most certainly in doubt. To address the challenges that are currently facing salmon management, concerned citizens representing a diverse array of government agencies and non-governmental organizations have agreed to cooperate in the development of a Sustainable Fisheries Strategy for west coast salmon and steelhead populations. The Strategy builds on the contents of this book, resulting from the Sustainable Fisheries Conference and subsequent community- and watershed-based citizen forums. This chapter presents the key elements of the Strategy including a common vision for the future, a series of guiding principles, and specific strategies for supporting sustainable fisheries. As such, the Strategy embraces an ecosystem-based approach to managing human activities, rather than the traditional egocentric approach to managing salmonid populations and associated habitats. A system of community-based, watershed-oriented councils, including all stakeholders and agency representatives, is proposed for effective transition to ecosystem-based salmon and steelhead management. It is our hope that everyone involved in Pacific salmon management will embrace both the spirit and the specific elements of the Sustainable Fisheries Strategy as we face the difficult challenges ahead.

  15. Disease resistance is related to inherent swimming performance in Atlantic salmon

    PubMed Central

    2013-01-01

    Background Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon. Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs. Results An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish. Conclusions This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish. PMID:23336751

  16. Disease resistance is related to inherent swimming performance in Atlantic salmon.

    PubMed

    Castro, Vicente; Grisdale-Helland, Barbara; Jørgensen, Sven M; Helgerud, Jan; Claireaux, Guy; Farrell, Anthony P; Krasnov, Aleksei; Helland, Ståle J; Takle, Harald

    2013-01-21

    Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon.Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs. An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish. This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish.

  17. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    USGS Publications Warehouse

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  18. VARIATION IN JUVENILE COHO SALMON END-OF-SUMMER SIZE: HIERARACHICAL ANALYSIS OF HABITAT EFFECTS

    EPA Science Inventory

    The size of coho salmon juveniles entering the winter has been shown to influence overwinter survival, and hence may be a useful indicator of linkages between summer habitat conditions and subsequent smolt production. We are investigating habitat-specific demographics of juvenile...

  19. Reduced marine survival of hatchery-reared Atlantic salmon post-smolts exposed to aluminium and moderate acidification in freshwater

    NASA Astrophysics Data System (ADS)

    Thorstad, Eva B.; Uglem, Ingebrigt; Finstad, Bengt; Kroglund, Frode; Einarsdottir, Ingibjörg Eir; Kristensen, Torstein; Diserud, Ola; Arechavala-Lopez, Pablo; Mayer, Ian; Moore, Andy; Nilsen, Rune; Björnsson, Björn Thrandur; Økland, Finn

    2013-06-01

    Short-term Al-exposure and moderate acidification increased initial marine mortality in migrating post-smolts, and can thereby reduce viability of Atlantic salmon stocks. The delayed impact of short-term aluminium (Al) exposure on hatchery-reared Atlantic salmon smolt in moderately acidified freshwater (pH 5.88-5.98) was investigated during the first 37 km of the marine migration. Smolts were tagged with acoustic tags and exposed to low (28.3 ± 4.6 μg l-1 labile Al, 90 h) or high (48.5 ± 6.4 μg l-1 labile Al, 90 or 48 h) Al concentrations within the hatchery. Thereafter their movements, together with a control group, were monitored throughout the marine fjord. Al-exposure resulted in increased gill-Al and compromised hypoosmoregulatory capacity, as shown by elevated mortality in laboratory seawater challenge tests and reduced Na+, K+-ATPase activity levels. Further, Al-exposure resulted in decreased plasma concentrations of growth hormone (GH), while the insulin-like growth factor (IGF-I) was unaffected. There was a significant mortality in the 90 h high-Al group during exposure, and those surviving until release died during the first 3.6 km of the marine migration. Physiological stress and mortality were not only a result of the Al-concentrations, but also dependent on exposure duration, as shown by results from the 48 h high-Al group. Elevated mortality was not recorded in freshwater or after entering the sea for this group, which highly contrasts to the 100% mortality in the 90 h high-Al group, despite both groups having similarly high gill-Al levels. The low-Al group showed a 20% higher mortality compared to the control group during the first 10 km of the marine migration, but during the next 28 km, mortality rates did not differ. Hence, post-smolts surviving the first 10 km subsequently showed no differences in mortality compared to controls. At least one third of the mortality in both the low-Al and control groups were due to predation by marine fishes

  20. SALMON 2100 PROJECT

    EPA Science Inventory

    Twenty eight salmon scientists and policy experts have joined forces in an innovative project to identify ways that, if adopted, likely would restore and sustain wild salmon runs in California, Oregon, Washington, Idaho, and southern British Columbia.

  1. Comparative diets of subyearling Atlantic salmon and subyearling coho salmon in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.; Ringler, Neil H.

    2016-01-01

    Restoration of Atlantic salmon (Salmo salar) in Lake Ontario could potentially be negatively affected by the presence of non-native salmonids that are naturalized in the basin. Coho salmon (Oncorhynchus kisutch) have been spawning successfully in Lake Ontario tributaries for over 40 years and their juveniles will reside in streams with juvenile Atlantic salmon for one year. This study sought to examine interspecific diet associations between these species, and to compare diets to the composition of the benthos and drift in three Lake Ontario tributaries. Aquatic insects, mainly ephemeropterans and chironomids were the major prey consumed by subyearling Atlantic salmon whereas terrestrial invertebrates made up only 3.7% of the diet. Ephemeropterans and chironomids were the primary aquatic taxa consumed by subyearling coho salmon but, as a group, terrestrial invertebrates (41.8%) were the major prey. In sympatry, Atlantic salmon fed more actively from the benthos whereas the diet of coho salmon was more similar to the drift. The different feeding pattern of each species resulted in low interspecific diet similarity. There is likely little competition between these species for food in Lake Ontario tributaries as juveniles.

  2. Sockeye salmon evolution, ecology, and management

    USGS Publications Warehouse

    Woody, Carol Ann

    2007-01-01

    This collection of articles and photographs gives managers a good idea of recent research into what the sockeye salmon is and does, covering such topics as the vulnerability and value of sockeye salmon ecotypes, their homing ability, using new technologies to monitor reproduction, DNA and a founder event in the Lake Clark sockeye salmon, marine-derived nutrients, the exploitation of large prey, dynamic lake spawning migrations by females, variability of sockeye salmon residence, expression profiling using cDNA microarray technology, learning from stable isotropic records of native otolith hatcheries, the amount of data needed to manage sockeye salmon and estimating salmon "escapement." 

  3. Summary of juvenile salmonid passage and survival at McNary Dam-Acoustic survival studies, 2006-09

    USGS Publications Warehouse

    Adams, Noah S.; Evans, Scott D.

    2011-01-01

    treatments tested. During the summer, spill treatments were characterized by a high (60 percent) and low (40 percent) percent flow of the total discharge going through the spillway. Flow through the TSWs represented about 7-8 percent of total project discharge in spring and about 10-11 percent of total project discharge in summer. Overall, the TSWs passed 24 percent of yearling Chinook salmon and 27 percent of subyearling Chinook salmon, but passed about 65 percent of juvenile steelhead. In spring, there was little evidence for an effect of spill treatment on either fish passage or survival, however, this was not surprising given there was a relatively small difference between spill treatments. For subyearling Chinook salmon during the summer study, high spill discharge resulted in higher fish passage through the spillway and lower fish passage through the powerhouse. Season wide survival (paired-release) for yearling and subyearling Chinook salmon was 0.98 and 0.92 (SE<0.04) through TSW 20, and 0.96 and 0.97 (SE<0.04) through TSW 22, respectively. Season-wide survival (single-release) for juvenile steelhead was 0.98 (SE=0.024) through TSW 20, and 0.90 (SE=0.02) through TSW 22. The extent to which location and structural design contributed to the differences observed between the two TSWs was uncertain. Nonetheless, the TSWs performed similarly to surface-oriented fish passage structures at other locations and appear to be a useful fish passage alternative at McNary Dam. The 2008 and 2009 studies confirmed previous results showing high survival for fish passing through the TSWs, especially juvenile steelhead. Although the number of all fish species passing through the TSWs was lower in 2008 and 2009 compared to 2007, fish passage efficiency for juvenile steelhead and subyearling Chinook salmon was higher in years with the TSWs, compared to 2006, before the TSWs were in place.

  4. Survival and migration behavior of juvenile salmonids at Lower Granite Dam, 2006

    USGS Publications Warehouse

    Beeman, John W.; Fielding, Scott D.; Braatz, Amy C.; Wilkerson, Tamara S.; Pope, Adam C.; Walker, Christopher E.; Hardiman, Jill M.; Perry, Russell W.; Counihan, Timothy D.

    2008-01-01

    We described behavior and estimated passage and survival parameters of juvenile salmonids during spring and summer migration periods at Lower Granite Dam in 2006. During the spring, the study was designed to examine the effects of the Behavioral Guidance Structure (BGS) by using a randomized-block BGS Stored / BGS Deployed treatment design. The summer study was designed to compare passage and survival through Lower Granite Dam using a randomized-block design during two spill treatments while the BGS was in the stored position. We used the Route Specific Survival Model to estimate survival and passage probabilities of hatchery yearling Chinook salmon, hatchery juvenile steelhead, and hatchery and wild subyearling Chinook salmon. We also estimated fish guidance efficiency (FGE), fish passage efficiency (FPE), Removable Spillway Weir passage effectiveness (RPE), spill passage effectiveness (SPY), and combined spill and RSW passage effectiveness.

  5. Nonlethal gill biopsy does not affect juvenile chinook salmon implanted with radio transmitters

    USGS Publications Warehouse

    Martinelli-Liedtke, T. L.; Shively, R.S.; Holmberg, G.S.; Sheer, M.B.; Schrock, R.M.

    1999-01-01

    Using gastric and surgical transmitter implantation, we compared radio-tagged juvenile chinook salmon Oncorhynchus tshawytscha (T(O)) with tagged fish also having a gill biopsy (T(B)) to determine biopsy effects on fish implanted with radio transmitters. We found no evidence during the 21-d period to suggest that a gill biopsy reduced survival, growth, or gross condition of the tagged-biopsy group, regardless of transmitter implantation technique. We recorded 100% survival of all treatment groups. Relative growth rates of T(O) and T(B) fish did not differ significantly. Leukocrit and lysozyme levels were not significantly different among groups, suggesting that no signs of infection were present. Our findings suggest that small chinook salmon can tolerate the combination of transmitter implantation and gill biopsy without compromising condition relative to fish receiving only the transmitter. We believe a gill biopsy can be used in field telemetry studies, especially when physiological data are needed in addition to behavioral data.

  6. Sea trout adapt their migratory behaviour in response to high salmon lice concentrations.

    PubMed

    Halttunen, E; Gjelland, K-Ø; Hamel, S; Serra-Llinares, R-M; Nilsen, R; Arechavala-Lopez, P; Skarðhamar, J; Johnsen, I A; Asplin, L; Karlsen, Ø; Bjørn, P-A; Finstad, B

    2018-06-01

    Sea trout face growth-mortality trade-offs when entering the sea to feed. Salmon lice epizootics resulting from aquaculture have shifted these trade-offs, as salmon lice might both increase mortality and reduce growth of sea trout. We studied mortality and behavioural adaptations of wild sea trout in a large-scale experiment with acoustic telemetry in an aquaculture intensive area that was fallowed (emptied of fish) synchronically biannually, creating large variations in salmon lice concentrations. We tagged 310 wild sea trout during 3 years, and gave half of the individuals a prophylaxis against further salmon lice infestation. There was no difference in survival among years or between treatments. In years of high infestation pressure, however, sea trout remained closer to the river outlet, used freshwater (FW) habitats for longer periods and returned earlier to the river than in the low infestation year. This indicates that sea trout adapt their migratory behaviour by actively choosing FW refuges from salmon lice to escape from immediate mortality risk. Nevertheless, simulations show that these adaptations can lead to lost growth opportunities. Reduced growth can increase long-term mortality of sea trout due to prolonged exposure to size-dependent predation risk, lead to lower fecundity and, ultimately, reduce the likelihood of sea migration. © 2017 The Authors. Journal of Fish Diseases Published by John Wiley & Sons Ltd.

  7. Evidence for size-selective mortality after the first summer of ocean growth by pink salmon

    USGS Publications Warehouse

    Moss, J.H.; Beauchamp, D.A.; Cross, A.D.; Myers, K.W.; Farley, Edward V.; Murphy, J.M.; Helle, J.H.

    2005-01-01

    Pink salmon Onchorhynchus gorbuscha with identifiable thermal otolith marks from Prince William Sound hatchery release groups during 2001 were used to test the hypothesis that faster-growing fish during their first summer in the ocean had higher survival rates than slower-growing fish. Marked juvenile pink salmon were sampled monthly in Prince William Sound and the Gulf of Alaska, and adults that survived to maturity were recovered at hatchery release sites the following year. Surviving fish exhibited significantly wider circuli spacing on the region of the scale formed during early marine residence than did juveniles collected at sea during their first ocean summer, indicating that marine survival after the first growing season was related to increases in early marine growth. At the same circuli, a significantly larger average scale radius for returning adults than for juveniles from the same hatchery would suggest that larger, faster-growing juveniles had a higher survival rate and that significant size-selective mortality occurred after the juveniles were sampled. Growth patterns inferred from intercirculi spacing on scales varied among hatchery release groups, suggesting that density-dependent processes differed among release groups and occurred across Prince William Sound and the coastal Gulf of Alaska. These observations support other studies that have found that larger, faster-growing fish are more likely to survive until maturity. ?? Copyright by the American Fisheries Society 2005.

  8. Salmon-Eating Grizzly Bears Exposed to Elevated Levels of Marine Derived Persistent Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Christensen, J. R.; Ross, P. S.; Whiticar, M. J.

    2004-12-01

    The coastal grizzly bears of British Columbia (BC, Canada) rely heavily on salmon returning from the Pacific Ocean, whereas interior bears do not have access to or readily utilize this marine-derived food source. Since salmon have been shown to accumulate persistent organic pollutants (POPs) from the North Pacific Ocean, we hypothesized that salmon consumption by grizzly bears would be reflected by an increase in the POP burden. To test this hypothesis we collected hair and fat tissue from grizzlies at various locations around BC to compare salmon-eating (coastal) grizzlies to non-salmon-eating (interior) grizzlies. We characterized the feeding habits for each bear sampled by measuring the stable carbon and nitrogen isotope signature of their hair. The positive relationship between 13C/12C and 15N/14N isotopic ratios suggests that the majority of the meat portion of the diet of coastal grizzlies is coming from salmon, rather than from terrestrial or freshwater sources. By contrast, stable isotope ratios revealed that interior bears have an almost exclusive vegetarian diet with no marine influence. As hypothesized, the coastal grizzly bears have significantly greater OC pesticide and lower-brominated PBDE congener body burden than the interior grizzlies. We also found a positive relationship between C and N isotope ratios and these same POP contaminants in bear tissue. Overall, these results demonstrate that Pacific salmon represents a significant vector delivering both OC pesticides and PBDEs to BC coastal grizzly bears.

  9. Potential Factors Affecting Survival Differ by Run-Timing and Location: Linear Mixed-Effects Models of Pacific Salmonids (Oncorhynchus spp.) in the Klamath River, California

    PubMed Central

    Quiñones, Rebecca M.; Holyoak, Marcel; Johnson, Michael L.; Moyle, Peter B.

    2014-01-01

    Understanding factors influencing survival of Pacific salmonids (Oncorhynchus spp.) is essential to species conservation, because drivers of mortality can vary over multiple spatial and temporal scales. Although recent studies have evaluated the effects of climate, habitat quality, or resource management (e.g., hatchery operations) on salmonid recruitment and survival, a failure to look at multiple factors simultaneously leaves open questions about the relative importance of different factors. We analyzed the relationship between ten factors and survival (1980–2007) of four populations of salmonids with distinct life histories from two adjacent watersheds (Salmon and Scott rivers) in the Klamath River basin, California. The factors were ocean abundance, ocean harvest, hatchery releases, hatchery returns, Pacific Decadal Oscillation, North Pacific Gyre Oscillation, El Niño Southern Oscillation, snow depth, flow, and watershed disturbance. Permutation tests and linear mixed-effects models tested effects of factors on survival of each taxon. Potential factors affecting survival differed among taxa and between locations. Fall Chinook salmon O. tshawytscha survival trends appeared to be driven partially or entirely by hatchery practices. Trends in three taxa (Salmon River spring Chinook salmon, Scott River fall Chinook salmon; Salmon River summer steelhead trout O. mykiss) were also likely driven by factors subject to climatic forcing (ocean abundance, summer flow). Our findings underscore the importance of multiple factors in simultaneously driving population trends in widespread species such as anadromous salmonids. They also show that the suite of factors may differ among different taxa in the same location as well as among populations of the same taxa in different watersheds. In the Klamath basin, hatchery practices need to be reevaluated to protect wild salmonids. PMID:24866173

  10. Size selection from fishways and potential evolutionary responses in a threatened Atlantic salmon population

    USGS Publications Warehouse

    Maynard, George A.; Kinnison, M.T.; Zydlewski, Joseph D.

    2017-01-01

    The evolutionary effects of harvest on wild fish populations have been documented around the world; however, sublethal selective pressures can also cause evolutionary changes in phenotypes. For migratory fishes, passage facilities may represent instances of nonlethal selective pressure. Our analysis of 6 years of passage data suggests that certain fish passage facilities on the Penobscot River have been exerting selective pressure against large-bodied, anadromous Atlantic salmon (Salmo salar). At the second and third dams in the river, a 91-cm salmon was 21%–27% and 12%–16% less likely to pass than a 45-cm salmon, respectively. Fish size positively influences egg survival and number and is a heritable trait. Therefore, in a wild-reproducing population, exclusion of large fish from spawning areas may have population-level impacts. In the Penobscot River, most returning adults derive from a hatchery program that collects its broodstock after passing the first dam in the river. Analysis of fork lengths of salmon returning to the Penobscot River from 1978 to 2012 provided mixed support for evolution of size at maturity in different age classes in a pattern that may be expected from interactions with conservation hatchery operations. Additionally, slow-maturing and iteroparous individuals that represent the largest salmon size classes were essentially lost from the population during that time, and Penobscot River fish have shorter fork lengths at maturity than Atlantic salmon in undammed systems.

  11. High salmon density and low discharge create periodic hypoxia in coastal rivers

    Treesearch

    Christopher J. Sergeant; J. Ryan Bellmore; Casey McConnell; Jonathan W. Moore

    2017-01-01

    Dissolved oxygen (DO) is essential to the survival of almost all aquatic organisms. Here, we examine the possibility that abundant Pacific salmon (Oncorhynchus spp.) and low streamflow combine to create hypoxic events in coastal rivers. Using high-frequency DO time series from two similar watersheds in southeastern Alaska, we summarize DO regimes...

  12. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  13. Isolation and identification of infectious salmon anaemia virus (ISAV) from Coho salmon in Chile.

    PubMed

    Kibenge, F S; Gárate, O N; Johnson, G; Arriagada, R; Kibenge, M J; Wadowska, D

    2001-05-04

    The isolation of infectious salmon anaemia virus (ISAV) from asymptomatic wild fish species including wild salmon, sea trout and eel established that wild fish can be a reservoir of ISAV for farmed Atlantic salmon. This report characterizes the biological properties of ISAV isolated from a disease outbreak in farmed Coho salmon in Chile and compares it with ISAV isolated from farmed Atlantic salmon in Canada and Europe. The virus that was isolated from Coho salmon tissues was initially detected with ISAV-specific RT-PCR (reverse transcription-polymerase chain reaction). The ability of the virus to grow in cell culture was poor, as cytopathology was not always conspicuous and isolation required passage in the presence of trypsin. Virus replication in cell culture was detected by RT-PCR and IFAT (indirect fluorescent antibody test), and the virus morphology was confirmed by positive staining electron microscopy. Further analysis of the Chilean virus revealed similarities to Canadian ISAV isolates in their ability to grow in the CHSE-214 cell line and in viral protein profile. Sequence analysis of genome segment 2, which encodes the viral RNA polymerase PB1, and segment 8, which encodes the nonstructural proteins NS1 and NS2, showed the Chilean virus to be very similar to Canadian strains of ISAV. This high sequence similarity of ISAV strains of geographically distinct origins illustrates the highly conserved nature of ISAV proteins PB1, NS1 and NS2 of ISAV. It is noteworthy that ISAV was associated with disease outbreaks in farmed Coho salmon in Chile without corresponding clinical disease in farmed Atlantic salmon. This outbreak, which produced high mortality in Coho salmon due to ISAV, is unique and may represent the introduction of the virus to a native wild fish population or a new strain of ISAV.

  14. Status after 5 Years of Survival Compliance Testing in the Federal Columbia River Power System (FCRPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, John R.; Weiland, Mark A.; Ham, Kenneth D.

    Survival studies of juvenile salmonids implanted with acoustic tags have been conducted at hydroelectric dams within the Federal Columbia River Power System (FCRPS) in the Columbia and Snake rivers between 2010 and 2014 to assess compliance with dam passage survival standards stipulated in the 2008 Biological Opinion (BiOp). For juvenile salmonids migrating downstream in the spring, dam passage survival defined as survival from the upstream dam face to the tailrace mixing zone must be ≥96% and for summer migrants, ≥93%, and estimated with a standard error ≤1.5% (i.e., 95% confidence interval of ±3%). A total of 29 compliance tests havemore » been conducted at 6 of 8 FCRPS main-stem dams, using over 109,000 acoustic-tagged salmonid smolts. Of these 29 compliance studies, 23 met the survival standards and 26 met the precision requirements. Of the 6 dams evaluated to date, individual survival estimates range from 0.9597 to 0.9868 for yearling Chinook Salmon, 0.9534 to 0.9952 for steelhead, and 0.9076 to 0.9789 for subyearling Chinook Salmon. These investigations suggest the large capital investment over the last 20 years to improve juvenile salmon passage through the FCRPS dams has been beneficial.« less

  15. Cost-effective management alternatives for Snake River Chinook salmon: a biological-economic synthesis.

    PubMed

    Halsing, David L; Moore, Michael R

    2008-04-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  16. Cost-effective management alternatives for Snake river chinook salmon: A biological-economic synthesis

    USGS Publications Warehouse

    Halsing, D.L.; Moore, M.R.

    2008-01-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  17. Sea Louse Infection of Juvenile Sockeye Salmon in Relation to Marine Salmon Farms on Canada's West Coast

    PubMed Central

    Price, Michael H. H.; Proboszcz, Stan L.; Routledge, Rick D.; Gottesfeld, Allen S.; Orr, Craig; Reynolds, John D.

    2011-01-01

    Background Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). Methodology/Principal Findings We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. Conclusions/Significance This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of

  18. Sea louse infection of juvenile sockeye salmon in relation to marine salmon farms on Canada's west coast.

    PubMed

    Price, Michael H H; Proboszcz, Stan L; Routledge, Rick D; Gottesfeld, Allen S; Orr, Craig; Reynolds, John D

    2011-02-09

    Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.

  19. Differential response of continental stock complexes of Atlantic salmon (Salmo salar) to the Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Friedland, Kevin D.; Shank, Burton V.; Todd, Christopher D.; McGinnity, Philip; Nye, Janet A.

    2014-05-01

    Atlantic salmon, Salmo salar, in the North Atlantic are managed as a set of population complexes distributed in North America and Europe. In recent years, these complexes have experienced reduced marine survival and many populations within the complexes are at risk, especially those at the southern ends of the species amphi-Atlantic range. Atlantic salmon is an anadromous fish dividing its life history between residence in freshwater and the marine environment. The freshwater portion of the life history includes spawning and the rearing of juveniles where in-river production has tended to be relatively stable, whereas the first year at sea, termed the post-smolt year, is characterized by more variable rates of mortality. Although their habitats are widely separated geographically along the North Atlantic seaboards, strong recruitment coherence exists between North American and European stock complexes. This recruitment coherence is correlated with ocean temperature variation associated with the Atlantic Multidecadal Oscillation (AMO). The North Atlantic Oscillation (NAO) appears to be relatively unimportant as a driver of salmon abundance. The mechanism determining the link between AMO-related thermal variation and abundance appears to differ fundamentally for the two continental stock groupings. Whereas ocean climate variability during the first springtime months of juvenile salmon migration to sea appears to be important to the survival of North American stocks, summer climate variation appears to be central to adult recruitment variation for European stocks. This contrast in seasonal effects appears to be related to the varying roles of predation pressure and size-related mortality on the continental stock complexes. The anticipated warming due to global climate change will impose thermal conditions on salmon populations outside historical context and challenge the ability of many populations to persist.

  20. Increased susceptibility to infectious salmon anemia virus (ISAv) in Lepeophtheirus salmonis – infected Atlantic salmon

    USDA-ARS?s Scientific Manuscript database

    The salmon louse and infectious salmon anemia virus (ISAv) are the two most significant pathogens of concern to the Atlantic salmon (Salmo salar) aquaculture industry. However, the interactions between sea lice and ISAv, as well as the impact of a prior sea lice infection on the susceptibility of th...

  1. Lake-specific variation in growth, migration timing and survival of juvenile sockeye salmon Oncorhynchus nerka: separating environmental from genetic influences.

    PubMed

    Reed, T E; Martinek, G; Quinn, T P

    2010-08-01

    Time series on juvenile life-history traits obtained from sockeye salmon Oncorhynchus nerka were analysed to assess lake-specific environmental influences on juvenile migration timing, size and survival of fish from a common gene pool. Every year for the past two decades, O. nerka have been spawned at a hatchery facility, and the progeny released into two lakes that differ in average summer temperatures, limnological attributes and growth opportunities. Juveniles reared in the warmer, more productive Crosswind Lake were larger and heavier as smolts compared to those from the cooler, less productive Summit Lake and had higher in-lake and subsequent marine survival. Crosswind Lake smolts migrated from the lake to sea slightly earlier in the season but the migration timing distributions overlapped considerably across years. Fry stocking density had a negative effect on smolt length for both lakes, and a negative effect on in-lake survival in Summit Lake. Taken together, the results revealed a strong effect of lake-rearing environment on the expression of life-history variation in O. nerka. The stocking of these lakes each year with juveniles from a single mixed-source population provided a large-scale reverse common-garden experiment, where the same gene pool was exposed to different environments, rather than the different gene pools in the same environment approach typical of evolutionary ecology studies. Other researchers are encouraged to seek and exploit similar serendipitous situations, which might allow environmental and genetic influences on ecologically important traits to be distinguished in natural or semi-natural settings.

  2. Cle Elum Lake Sockeye Salmon Restoration Feasibility Study, 1986-1988 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagg, Thomas A.

    1988-10-01

    In 1986, a multi-year project to evaluate the biological feasibility of reestablishing anadromous sockeye salmon (Oncorhynchus nerka) runs to Cle Elum Lake in the Yakima River Basin was established between the Bonneville Power Administration (BPA) and the National Marine Fisheries Service (NMFS). This program involves the capture, spawning, and rearing of disease-free donor stock in 1987 and 1988 and assessment of juvenile outmigration and survival from Cle Elum Lake in 1989 and 1990. Work in 1987--1988 involved collection of adult sockeye salmon from the Lake Wenatchee run and incubation and rearing of progeny as donor stock. In July 1987, 263more » adults were captured at the Dryden fishway on the Wenatchee River and transferred to net-pens in Lake Wenatchee. Adults were held approximately 90 days and spawned, and the eggs were transferred to a quarantine hatchery. Pre-spawning survival was 95.1%, and all spawners were certified as being free of Infectious Hematopoietic Necrosis (IHN) and other replicating viruses. Egg viability averaged about 40%; however, eyed egg to hatch survival was over 99%. Juveniles are being reared in quarantine, and survival to date is about 92%. The NMFS currently has over 131,000 fry (0.7 g average weight) in culture. Fry have been certified twice (at 0.12 g and 0.25 g average weight) as being free of IHN and other replicating viruses. Viral certification will continue throughout rearing. 13 refs., 4 figs., 3 tabs.« less

  3. Surface properties of Streptococcus phocae strains isolated from diseased Atlantic salmon, Salmo salar L.

    PubMed

    González-Contreras, A; Magariños, B; Godoy, M; Irgang, R; Toranzo, A E; Avendaño-Herrera, R

    2011-03-01

    Streptococcus phocae is an emerging pathogen for Chilean Atlantic salmon, Salmo salar, but the factors determining its virulence are not yet elucidated. In this work, cell surface-related properties such as hydrophobicity and haemagglutination, adhesion to mucus and cell lines, capsule detection, survival and biofilm formation in skin mucus and serum resistance of the isolates responsible for outbreaks in Atlantic salmon and seals were examined. Adhesion to hydrocarbons and the results of salt aggregation tests indicated most of the S. phocae were strongly hydrophobic. All isolates exhibited a similar ability to attach to the Chinook salmon embryo (CHSE) cells line, but were not able to enter CHSE cells. Haemagglutination was not detected. Our data clearly indicate that S. phocae can resist the killing activity of mucus and serum and proliferate in them, which could be associated with the presence of a capsular layer around the cells. Pathogenicity studies using seal and fish isolates demonstrated mortality or pathological signs in fish injected only with the Atlantic salmon isolate. No mortalities or histopathological alterations were observed in fish injected with extracellular products. © 2011 Blackwell Publishing Ltd.

  4. Basis of acoustic discrimination of Chinook salmon from other salmons by echolocating Orcinus orca.

    PubMed

    Au, Whitlow W L; Horne, John K; Jones, Christopher

    2010-10-01

    The "resident" ecotype of killer whales (Orcinus orca) in the waters of British Columbia and Washington State have a strong preference for Chinook salmon even in months when Chinook comprise less than about 10% of the salmon population. The foraging behavior of killer whales suggests that they depend on echolocation to detect and recognize their prey. In order to determine possible cues in echoes from salmon species, a series of backscatter measurements were made at the Applied Physics Laboratory (Univ. of Wash.) Facility on Lake Union, on three different salmon species using simulated killer whale echolocation signals. The fish were attached to a monofilament net panel and rotated while echoes were collected, digitized and stored on a laptop computer. Three transducer depths were used; same depth, 22° and 45° above the horizontal plane of the fish. Echoes were collected from five Chinook, three coho and one sockeye salmon. Radiograph images of all specimens were obtained to examine the swimbladder shape and orientation. The results show that echo structure from similar length but different species of salmon were different and probably recognizable by foraging killer whales.

  5. Testing for genetic differences in survival and growth between hatchery and wild Chinook salmon from Warm Springs River, Oregon (Study sites: Warm Springs Hatchery and Little White Salmon River; Stocks: Warm Springs hatchery and Warm Springs River wild; Year classes: 1992 and 1996): Chapter 8

    USGS Publications Warehouse

    Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Leonetti,; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    The program at Warm Springs National Fish Hatchery in north - central Oregon was initiated with spring Chinook salmon Oncorhynchus tshawytscha from the Warm Springs River. Managers included wild fish in the broodstock most years and avoided artificial selection to minimize genetic divergence from the wild founder population. We tested for genetic differences in survival and growth between the hatchery and wild populations to ascertain whether this goal has been achieved. Progeny of hatchery x hatchery (HH), hatchery female x wild male (HW), and wild x wild (WW) crosses were genetically marked at the sSOD - 1* allozyme locus and released together as unfed fry in hatchery ponds in 1992 and 1996 and in the Little White Salmon River, in south - central Washington, in 1996. Fish were evaluated to returning adult at the hatchery and over their freshwater residence of 16 months in the stream. The three crosses differed on several measures including survival to outmigration in the stream (WW>HH>HW) and juvenile growth in the hatchery (1992 year - class; WW>HW>HH); however, results may have been confounded. The genetic marks were found to differentially effect survival in a companion study (HH mark favored over WW mark; HW mark intermediate). Furthermore, HW survival in the current study was neither intermediate, as would be expect ed from additive genetic effects, nor similar to that of HH fish as would be expected from maternal effects since HW and HH fish were maternal half - siblings. Finally, the unexpected performance of HW fish precludes ruling out maternal differences between hatchery and wild mothers as the cause of differences between HH and WW fish. The key finding that survival of HH fish in a stream was 0.91 that for WW fish, indicating a small loss of fitness for natural rearing in the hatchery population, is valid only if three conditions hold: (1) any selection on the genetic marks was in the same direction as in the companion study, (2) lower survival in

  6. Concentrations of boron, molybdenum, and selenium in chinook salmon

    USGS Publications Warehouse

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  7. PNW WILD SALMON IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not...

  8. Bt-maize (MON810) and non-GM soybean meal in diets for Atlantic salmon (Salmo salar L.) juveniles--impact on survival, growth performance, development, digestive function, and transcriptional expression of intestinal immune and stress responses.

    PubMed

    Gu, Jinni; Bakke, Anne Marie; Valen, Elin C; Lein, Ingrid; Krogdahl, Åshild

    2014-01-01

    Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but

  9. VARIATION IN JUVENILE COHO SALMON END-OF-SUMMER SIZE AND ABUNDANCE: HIERARCHICAL ANALYSIS OF HABITAT EFFECTS

    EPA Science Inventory

    The size of coho salmon juveniles entering the winter has been shown to influence overwinter survival, and hence may be a useful indicator of linkages between summer habitat conditions and subsequent smolt production. We are investigating habitat-specific demographics of juvenile...

  10. Transcriptomic analysis of spleen infected with infectious salmon anemia virus reveals distinct pattern of viral replication on resistant and susceptible Atlantic salmon (Salmo salar).

    PubMed

    Dettleff, Phillip; Moen, Thomas; Santi, Nina; Martinez, Victor

    2017-02-01

    The infectious salmon anemia virus (ISAv) produces a systemic infection in salmonids, causing large losses in salmon production. However, little is known regarding the mechanisms exerting disease resistance. In this paper, we perform an RNA-seq analysis in Atlantic salmon challenged with ISAv (using individuals coming from families that were highly susceptible or highly resistant to ISAv infection). We evaluated the differential expression of both host and ISAv genes in a target organ for the virus, i.e. the spleen. The results showed differential expression of host genes related to response to stress, immune response and protein folding (genes such as; atf3, mhc, mx1-3, cd276, cd2, cocs1, c7, il10, il10rb, il13ra2, ubl-1, ifng, ifngr1, hivep2, sigle14 and sigle5). An increased protein processing activity was found in susceptible fish, which generates a subsequent unfolded protein response. We observed extreme differences in the expression of viral segments between susceptible and resistant groups, demonstrating the capacity of resistant fish to overcome the virus replication, generating a very low viral load. This phenomenon and survival of this higher resistant fish seem to be related to differences in immune and translational process, as well as to the increase of HIV-EP2 (hivep2) transcript in resistant fish, although the causal mechanism is yet to be discovered. This study provides valuable information about disease resistance mechanisms in Atlantic salmon from a host-pathogen interaction point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. WILD SALMON RESTORATION: IS IT WORTH IT?

    EPA Science Inventory

    Salmon are categorized biologically into two groups: Pacific salmon and Atlantic salmon. Atlantic salmon are found on both sides of the North Atlantic Ocean, but have declined precipitously compared to the size of runs prior to the 1700s. The largest (though small by historic ...

  12. Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Steven P.; Neeley, Doug

    1993-06-01

    We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model tomore » estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.« less

  13. Diseases of north European wrasse (Labridae) and possible interactions with cohabited farmed salmon, Salmo salar L.

    PubMed

    Treasurer, J W

    2012-08-01

    There have been several reported studies of wrasse health but none of these has shown transmission of wrasse diseases when stocked with farmed Atlantic salmon. Most of the studies have focussed on bacterial and parasite issues, including treatment of bacterial diseases with antibiotics and vaccination of wrasse. Classical and atypical furunculosis have been reported in wrasse following stress, and wrasse have been susceptible to vibrio infection. Further study is required on the vaccination of wrasse for furunculosis with latent carrier status to maximize survival. There are studies on viral diseases such as infectious pancreatic necrosis, infectious salmon anaemia and pancreas disease and although these did not give any undue concern for salmon health, there is also scope for further study in this area. Resident parasite communities of wrasse are largely host-specific and do not appear to be a threat to salmon. Given that wrasse have not, to date, been a vector of disease in salmon, attention should be placed on maintaining best practice in cohabiting wrasse with salmon. Other issues that should be addressed are good welfare of wrasse in pens and identifying measures of this, the identification of losses of wrasse in pens, being alert to potential emerging diseases through health screening of mortalities and assessing the risks associated with carrying forward wrasse from one salmon production cycle to the next. Issues of exploitation by fishing on wild wrasse stocks and improved biosecurity may be addressed by the increased movement by the industry to the stocking of farmed wrasse. © 2012 Blackwell Publishing Ltd.

  14. Saving the Salmon

    ERIC Educational Resources Information Center

    Sprangers, Donald

    2004-01-01

    In November 2000, wild Atlantic salmon were placed under the protection of the Endangered Species Act of 1973. Washington Academy (WA) in Maine has played an integral role in the education and restoration of this species. Efforts to restore the salmon's dwindling population, enhance critical habitat areas, and educate and inform the public require…

  15. Calcitonin Salmon Nasal Spray

    MedlinePlus

    Calcitonin salmon is used to treat osteoporosis in women who are at least 5 years past menopause and cannot ... a human hormone that is also found in salmon. It works by preventing bone breakdown and increasing ...

  16. Protective oral vaccination against infectious salmon anaemia virus in Salmo salar.

    PubMed

    Caruffo, Mario; Maturana, Carlos; Kambalapally, Swetha; Larenas, Julio; Tobar, Jaime A

    2016-07-01

    Infectious salmon anemia (ISA) is a systemic disease caused by an orthomyxovirus, which has a significant economic impact on the production of Atlantic salmon (Salmo salar). Currently, there are several commercial ISA vaccines available, however, those products are applied through injection, causing stress in the fish and leaving them susceptible to infectious diseases due to the injection process and associated handling. In this study, we evaluated an oral vaccine against ISA containing a recombinant viral hemagglutinin-esterase and a fusion protein as antigens. Our findings indicated that oral vaccination is able to protect Atlantic salmon against challenge with a high-virulence Chilean isolate. The oral vaccination was also correlated with the induction of IgM-specific antibodies. On the other hand, the vaccine was unable to modulate expression of the antiviral related gene Mx, showing the importance of the humoral response to the disease survival. This study provides new insights into fish protection and immune response induced by an oral vaccine against ISA, but also promises future development of preventive solutions or validation of the current existing therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Farag, A.M.; May, T.; Marty, G.D.; Easton, M.; Harper, D.D.; Little, E.E.; Cleveland, L.

    2006-01-01

    This study was designed to determine fish health impairment of Chinook salmon (Oncorhynchus tshawytscha) exposed to chromium. Juvenile Chinook salmon were exposed to aqueous chromium concentrations (0–266 μg l−1) that have been documented in porewater from bottom sediments and in well waters near salmon spawning areas in the Columbia River in the northwestern United States. After Chinook salmon parr were exposed to 24 and 54 μg Cr l−1 for 105 days, neither growth nor survival of parr was affected. On day 105, concentrations were increased from 24 to 120 μg Cr l−1and from 54 to 266 μg Cr l−1 until the end of the experiment on day 134. Weight of parr was decreased in the 24/120 μg Cr l−1 treatment, and survival was decreased in the 54/266 μg Cr l−1 treatment. Fish health was significantly impaired in both the 24/120 and 54/266 μg Cr l−1 treatments. The kidney is the target organ during chromium exposures through the water column. The kidneys of fish exposed to the greatest concentrations of chromium had gross and microscopic lesions (e.g. necrosis of cells lining kidney tububules) and products of lipid peroxidation were elevated. These changes were associated with elevated concentrations of chromium in the kidney, and reduced growth and survival. Also, variations in DNA in the blood were associated with pathological changes in the kidney and spleen. These changes suggest that chromium accumulates and enters the lipid peroxidation pathway where fatty acid damage and DNA damage (expressed as chromosome changes) occur to cause cell death and tissue damage. While most of the physiological malfunctions occurred following parr exposures to concentrations ≥120 μg Cr l−1, nuclear DNA damage followed exposures to 24 μg Cr l−1, which was the smallest concentration tested. The abnormalities measured during this study are particularly important because they are associated with impaired growth and reduced survival at

  18. Appendix A The influence of junction hydrodynamics on entrainment of juvenile salmon into the interior Sacramento-San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Ramón Casañas, Cintia; Burau, Jon; Blake, Aaron; Acosta, Mario; Rueda, Francisco

    2017-04-01

    River junctions where water may follow two or more alternative pathways (diffluences) could be critical points in river networks where aquatic migratory species select different migration routes. Federally listed Sacramento River Chinook salmon juveniles must survive passage through the tidal Sacramento - San Joaquin River Delta in order to successfully out-migrate to the ocean. Two of the four main migration routes identified for salmon in the Sacramento River direct them to the interior of the delta, where salmon survival is known to decrease dramatically. Migration route selection is thought to be advection-dominated, but the combination of physical and biological processes that control route selection is still poorly understood. The reach in the Sacramento-River where the entrances of the two lower-survival migration routes are located is strongly influenced by the tides, with flows reversing twice daily, and the two diffluences are located in the outside of the same Sacramento River bend where secondary circulation occurs. Three dimensional simulations are conducted, both in the Eularian and Lagrangian frame, to understand tidal and secondary-circulation effects on the migration route selection of juveniles within this reach of the Sacramento River. Although salmon behavior is reduced to the simplest (passively-driven neutrally-buoyant particles), the preliminary results here presented are consistent with previous studies that show that during the flood tide almost all the flow, and thus, all the salmon, are directed to the interior delta through these two migration routes. Simulated fish entrainment rates into the interior of the delta tend to be larger than those expected from flow entrainment calculations alone, particularly during ebb tides. Several factors account for these tendencies. First, the fraction of the flow diverted to the side channel in the shallowest layers tend to be higher than in the deeper layers, as a result of the secondary circulation

  19. Interactive effects of water diversion and climate change for juvenile chinook salmon in the lemhi river basin (USA.).

    PubMed

    Walters, Annika W; Bartz, Krista K; McClure, Michelle M

    2013-12-01

    The combined effects of water diversion and climate change are a major conservation challenge for freshwater ecosystems. In the Lemhi Basin, Idaho (U.S.A.), water diversion causes changes in streamflow, and climate change will further affect streamflow and temperature. Shifts in streamflow and temperature regimes can affect juvenile salmon growth, movement, and survival. We examined the potential effects of water diversion and climate change on juvenile Chinook salmon (Oncorhynchus tshawytscha), a species listed as threatened under the U.S. Endangered Species Act (ESA). To examine the effects for juvenile survival, we created a model relating 19 years of juvenile survival data to streamflow and temperature and found spring streamflow and summer temperature were good predictors of juvenile survival. We used these models to project juvenile survival for 15 diversion and climate-change scenarios. Projected survival was 42-58% lower when streamflows were diverted than when streamflows were undiverted. For diverted streamflows, 2040 climate-change scenarios (ECHO-G and CGCM3.1 T47) resulted in an additional 11-39% decrease in survival. We also created models relating habitat carrying capacity to streamflow and made projections for diversion and climate-change scenarios. Habitat carrying capacity estimated for diverted streamflows was 17-58% lower than for undiverted streamflows. Climate-change scenarios resulted in additional decreases in carrying capacity for the dry (ECHO-G) climate model. Our results indicate climate change will likely pose an additional stressor that should be considered when evaluating the effects of anthropogenic actions on salmon population status. Thus, this type of analysis will be especially important for evaluating effects of specific actions on a particular species. Efectos Interactivos de la Desviación del Agua y el Cambio Climático en Individuos Juveniles de Salmón Chinook en la Cuenca del Río Lemhi (E.U.A.). Conservation Biology

  20. Sustainable fisheries management: Pacific salmon

    USGS Publications Warehouse

    Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    What has happened to the salmon resource in the Pacific Northwest? Who is responsible and what can be done to reverse the decline in salmon populations? The responsibly falls on everyone involved - fishermen, resource managers and concerned citizens alike - to take the steps necessary to ensure that salmon populations make a full recovery.This collection of papers examines the state of the salmon fisheries in the Pacific Northwest. They cover existing methods and supply model approaches for alternative solutions. The editors stress the importance of input from and cooperation with all parties involved to create a viable solution. Grass roots education and participation is the key to public support - and ultimately the success - of whatever management solutions are developed.A unique and valuable scientific publication, Sustainable Fisheries Management: Pacific Salmon clearly articulates the current state of the Pacific salmon resource, describes the key features of its management, and provides important guidance on how we can make the transition towards sustainable fisheries. The solutions presented in this book provide the basis of a strategy for sustainable fisheries, requiring society and governmental agencies to establish a shared vision, common policies, and a process for collaborative management.

  1. Genetic effects of ELISA-based segregation for control of bacterial kidney disease in Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Hard, J.J.; Elliott, D.G.; Pascho, R.J.; Chase, D.M.; Park, L.K.; Winton, J.R.; Campton, D.E.

    2006-01-01

    We evaluated genetic variation in ability of Chinook salmon (Oncorhynchus tshawytscha) to resist two bacterial pathogens: Renibacterium salmoninarum, the agent of bacterial kidney disease (BKD), and Listonella anguillarum, an agent of vibriosis. After measuring R. salmoninarum antigen in 499 adults by enzyme-linked immunosorbent assay (ELISA), we mated each of 12 males with high or low antigen levels to two females with low to moderate levels and exposed subsets of their progeny to each pathogen separately. We found no correlation between R. salmoninarum antigen level in parents and survival of their progeny following pathogen exposure. We estimated high heritability for resistance to R. salmoninarum (survival h2 = 0.890 ?? 0.256 (mean ?? standard error)) independent of parental antigen level, but low heritability for resistance to L. anguillarum (h2 = 0.128 ?? 0.078). The genetic correlation between these survivals (rA = -0.204 ?? 0.309) was near zero. The genetic and phenotypic correlations between survival and antigen levels among surviving progeny exposed to R. salmoninarum were both negative (rA = -0.716 ?? 0.140; rP = -0.378 ?? 0.041), indicating that variation in antigen level is linked to survival. These results suggest that selective culling of female broodstock with high antigen titers, which is effective in controlling BKD in salmon hatcheries, will not affect resistance of their progeny. ?? 2006 NRC.

  2. Evaluating Relationships between Wild Skeena River Sockeye Salmon Productivity and the Abundance of Spawning Channel Enhanced Sockeye Smolts

    PubMed Central

    Price, Michael H. H.; Connors, Brendan M.

    2014-01-01

    The enhancement of salmon populations has long been used to increase the abundance of salmon returning to spawn and/or to be captured in fisheries. However, in some instances enhancement can have adverse impacts on adjacent non-enhanced populations. In Canada's Skeena watershed, smolt-to-adult survival of Babine Lake sockeye from 1962–2002 was inversely related to the abundance of sockeye smolts leaving Babine Lake. This relationship has led to the concern that Babine Lake smolt production, which is primarily enhanced by spawning channels, may depress wild Skeena (Babine and non-Babine) sockeye populations as a result of increased competition between wild and enhanced sockeye smolts as they leave their natal lakes and co-migrate to sea. To test this hypothesis we used data on Skeena sockeye populations and oceanographic conditions to statistically examine the relationship between Skeena sockeye productivity (adult salmon produced per spawner) and an index of Babine Lake enhanced smolt abundance while accounting for the potential influence of early marine conditions. While we had relatively high power to detect large effects, we did not find support for the hypothesis that the productivity of wild Skeena sockeye is inversely related to the abundance of enhanced sockeye smolts leaving Babine Lake in a given year. Importantly, life-time productivity of Skeena sockeye is only partially explained by marine survival, and likely is an unreliable measure of the influence of smolt abundance. Limitations to our analyses, which include: (1) the reliance upon adult salmon produced per spawner (rather than per smolt) as an index of marine survival, and (2) incomplete age structure for most of the populations considered, highlight uncertainties that should be addressed if understanding relationships between wild and enhanced sockeye is a priority in the Skeena. PMID:24760007

  3. Evaluating relationships between wild Skeena river sockeye salmon productivity and the abundance of spawning channel enhanced sockeye smolts.

    PubMed

    Price, Michael H H; Connors, Brendan M

    2014-01-01

    The enhancement of salmon populations has long been used to increase the abundance of salmon returning to spawn and/or to be captured in fisheries. However, in some instances enhancement can have adverse impacts on adjacent non-enhanced populations. In Canada's Skeena watershed, smolt-to-adult survival of Babine Lake sockeye from 1962-2002 was inversely related to the abundance of sockeye smolts leaving Babine Lake. This relationship has led to the concern that Babine Lake smolt production, which is primarily enhanced by spawning channels, may depress wild Skeena (Babine and non-Babine) sockeye populations as a result of increased competition between wild and enhanced sockeye smolts as they leave their natal lakes and co-migrate to sea. To test this hypothesis we used data on Skeena sockeye populations and oceanographic conditions to statistically examine the relationship between Skeena sockeye productivity (adult salmon produced per spawner) and an index of Babine Lake enhanced smolt abundance while accounting for the potential influence of early marine conditions. While we had relatively high power to detect large effects, we did not find support for the hypothesis that the productivity of wild Skeena sockeye is inversely related to the abundance of enhanced sockeye smolts leaving Babine Lake in a given year. Importantly, life-time productivity of Skeena sockeye is only partially explained by marine survival, and likely is an unreliable measure of the influence of smolt abundance. Limitations to our analyses, which include: (1) the reliance upon adult salmon produced per spawner (rather than per smolt) as an index of marine survival, and (2) incomplete age structure for most of the populations considered, highlight uncertainties that should be addressed if understanding relationships between wild and enhanced sockeye is a priority in the Skeena.

  4. The impact of temperature stress and pesticide exposure on mortality and disease susceptibility of endangered Pacific salmon.

    PubMed

    Dietrich, Joseph P; Van Gaest, Ahna L; Strickland, Stacy A; Arkoosh, Mary R

    2014-08-01

    Anthropogenic stressors, including chemical contamination and temperature stress, may contribute to increased disease susceptibility in aquatic animals. Specifically, the organophosphate pesticide malathion has been detected in surface waters inhabited by threatened and endangered salmon. In the presence of increasing water temperatures, malathion may increase susceptibility to disease and ultimately threaten salmon survival. This work examines the effect of acute and sublethal exposures to malathion on ocean-type subyearling Chinook salmon held under two temperature regimes. Chinook salmon were exposed to malathion at optimal (11 °C) or elevated (19 and 20 °C) temperatures. The influence of temperature on the acute toxicity of malathion was determined by generating 96-h lethal concentration (LC) curves. A disease challenge assay was also used to assess the effects of sublethal malathion exposure. The malathion concentration that resulted in 50% mortality (LC50; 274.1 μg L(-1)) of the Chinook salmon at 19 °C was significantly less than the LC50 at 11 °C (364.2 μg L(-1)). Mortality increased 11.2% in Chinook salmon exposed to malathion at the elevated temperature and challenged with Aeromonas salmonicida compared to fish held at the optimal temperature and exposed to malathion or the carrier control. No difference in disease challenge mortality was observed among malathion-exposed and unexposed fish at the optimal temperature. The interaction of co-occurring stressors may have a greater impact on salmon than if they occur in isolation. Ecological risk assessments considering the effects of an individual stressor on threatened and endangered salmon may underestimate risk when additional stressors are present in the environment. Published by Elsevier Ltd.

  5. Endangered winter-run Chinook salmon rely on diverse rearing habitats in a highly altered landscape

    DOE PAGES

    Phillis, Corey C.; Sturrock, Anna M.; Johnson, Rachel C.; ...

    2017-11-24

    Protecting habitats for imperiled species is central to conservation efforts. However, for migratory species, identifying juvenile habitats that confer success requires tracking individuals to reproduction. Here in this paper, we used otolith strontium isotope ratios ( 87Sr/ 86Sr) to reconstruct juvenile habitat use by endangered Sacramento River winter-run Chinook salmon that survived to adulthood. The isotope data revealed that 44–65% of surviving adults reared in non-natal habitats, most of which is not designated as critical habitat under the Endangered Species Act. Juveniles entered these non-natal habitats at small sizes, yet left freshwater at a similar size to those that rearedmore » in the mainstem Sacramento River, suggesting these alternate rearing habitats provide suitable growth conditions. These findings indicate Sacramento River winter-run Chinook salmon rely on rearing habitats across a broader geographic region than previously known, potentially opening up greater restoration and conservation opportunities for species recovery.« less

  6. Endangered winter-run Chinook salmon rely on diverse rearing habitats in a highly altered landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillis, Corey C.; Sturrock, Anna M.; Johnson, Rachel C.

    Protecting habitats for imperiled species is central to conservation efforts. However, for migratory species, identifying juvenile habitats that confer success requires tracking individuals to reproduction. Here in this paper, we used otolith strontium isotope ratios ( 87Sr/ 86Sr) to reconstruct juvenile habitat use by endangered Sacramento River winter-run Chinook salmon that survived to adulthood. The isotope data revealed that 44–65% of surviving adults reared in non-natal habitats, most of which is not designated as critical habitat under the Endangered Species Act. Juveniles entered these non-natal habitats at small sizes, yet left freshwater at a similar size to those that rearedmore » in the mainstem Sacramento River, suggesting these alternate rearing habitats provide suitable growth conditions. These findings indicate Sacramento River winter-run Chinook salmon rely on rearing habitats across a broader geographic region than previously known, potentially opening up greater restoration and conservation opportunities for species recovery.« less

  7. Juvenile Chinook Salmon abundance in the northern Bering Sea: Implications for future returns and fisheries in the Yukon River

    NASA Astrophysics Data System (ADS)

    Murphy, James M.; Howard, Kathrine G.; Gann, Jeanette C.; Cieciel, Kristin C.; Templin, William D.; Guthrie, Charles M.

    2017-01-01

    Juvenile Chinook Salmon (Oncorhynchus tshawytscha) abundance in the northern Bering Sea is used to provide insight into future returns and fisheries in the Yukon River. The status of Yukon River Chinook Salmon is of concern due to recent production declines and subsequent closures of commercial, sport, and personal use fisheries, and severe restrictions on subsistence fisheries in the Yukon River. Surface trawl catch data, mixed layer depth adjustments, and genetic stock mixtures are used to estimate juvenile abundance for the Canadian-origin stock group from the Yukon River. Abundance ranged from a low of 0.62 million in 2012 to a high of 2.58 million in 2013 with an overall average of 1.5 million from 2003 to 2015. Although abundance estimates indicate that average survival is relatively low (average of 5.2%), juvenile abundance was significantly correlated (r=0.87, p=0.005) with adult returns, indicating that much of the variability in survival occurs during early life-history stages (freshwater and initial marine). Juvenile abundance in the northern Bering Sea has increased since 2013 due to an increase in early life-history survival (average juveniles-per-spawner increased from 29 to 59). The increase in juvenile abundance is projected to produce larger runs and increased subsistence fishing opportunities for Chinook Salmon in the Yukon River as early as 2016.

  8. Bt-maize (MON810) and Non-GM Soybean Meal in Diets for Atlantic Salmon (Salmo salar L.) Juveniles – Impact on Survival, Growth Performance, Development, Digestive Function, and Transcriptional Expression of Intestinal Immune and Stress Responses

    PubMed Central

    Gu, Jinni; Bakke, Anne Marie; Valen, Elin C.; Lein, Ingrid; Krogdahl, Åshild

    2014-01-01

    Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but

  9. Vulnerability to predation and physiological stress responses of experimentally descaled juvenile Chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Gadomski, Dena M.; Mesa, Matthew G.; Olson, Todd M.

    1994-01-01

    Juvenile salmonids,Oncorhynchus spp., commonly encounter conditions (e.g., during hatchery release and dam passage) that result in damage to the skin, scale, and slime complex. We conducted laboratory experiments to determine if descaling of juvenile chinook salmon,O. tshawytscha, increased their vulnerability to predation, and to assess the physiological stress responses elicited by descaling. Salmon were experimentally descaled on either 10% or 20% of their total body area. When offered equal numbers of control and descaled juvenile chinook salmon, northern squawfish,Ptychocheilus oregonensis, did not consume significantly more of either prey type (48–60% of consumed prey were descaled). Juvenile chinook salmon descaled on 10% of their body area did show significant physiological stress responses, however. Mean concentrations of plasma cortisol peaked 1 h after descaling, and returned to control levels by 12 h. Plasma glucose peaked 3 h post-treatment and remained elevated for 24 h. Plasma lactate increased immediately following treatment and returned to undisturbed control levels by 3 h. The osmoregulatory response of plasma potassium was highly variable, but plasma sodium decreased immediately and remained low for 24 h. The observed physiological responses suggest that descaling of juvenile chinook salmon could result in decreased resistance to disease and other stressors encountered in the field, possibly leading to reduced performance capacity and lowered survival.

  10. Research on Captive Broodstock Programs for Pacific Salmon; Assessment of Captive Broodstock Technologies, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Current velocity in rearing vessels had little if any effect on reproductive behavior of captively reared steelhead. However, males and females reared in high velocity vessels participated a greater number of spawning events than siblings reared in low velocity tanks. Observations of nesting females and associated malesmore » in a natural stream (Hamma Hamma River) were consistent with those observed in a controlled spawning channel. DNA pedigree analyses did not reveal significant differences in the numbers of fry produced by steelhead reared in high and low velocity vessels. To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon are being exposed to known odorants at key developmental stages. Subsequently they will be tested for development of long-term memories of these odorants. In 2002-2003, the efficacy of EOG analysis for assessing imprinting was demonstrated and will be applied in these and other behavioral and molecular tools in the current work plan. Results of these experiments will be important to determine the critical periods for imprinting for the offspring of captively-reared fish destined for release into natal rivers or lakes. By early August, the oocytes of all of Rapid River Hatchery chinook salmon females returning from the ocean had advanced to the tertiary yolk globule stage; whereas, only some of the captively reared Lemhi River females sampled had advanced to this stage, and the degree of advancement was not dependent on rearing temperature. The mean spawning time of captive Lemhi River females was 3-4 weeks after that of the Rapid River

  11. Survival, growth, and tag retention in age-0 Chinook Salmon implanted with 8-, 9-, and 12-mm PIT tags

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Perry, Russell W.; Connor, William P.; Mullins, Frank L.; Rabe, Craig; Nelson, Doug D

    2015-01-01

    The ability to represent a population of migratory juvenile fish with PIT tags becomes difficult when the minimum tagging size is larger than the average size at which fish begin to move downstream. Tags that are smaller (e.g., 8 and 9 mm) than the commonly used 12-mm PIT tags are currently available, but their effects on survival, growth, and tag retention in small salmonid juveniles have received little study. We evaluated growth, survival, and tag retention in age-0 Chinook Salmon Oncorhynchus tshawytscha of three size-groups: 40–49-mm fish were implanted with 8- and 9-mm tags, and 50– 59-mm and 60–69-mm fish were implanted with 8-, 9-, and 12-mm tags. Survival 28 d after tagging ranged from 97.8% to 100% across all trials, providing no strong evidence for a fish-size-related tagging effect or a tag size effect. No biologically significant effects of tagging on growth in FL (mm/d) or weight (g/d) were observed. Although FL growth in tagged fish was significantly reduced for the 40–49-mm and 50–59-mm groups over the first 7 d, growth rates were not different thereafter, and all fish were similar in size by the end of the trials (day 28). Tag retention across all tests ranged from 93% to 99%. We acknowledge that actual implantation of 8- or 9-mm tags into small fish in the field will pose additional challenges (e.g., capture and handling stress) beyond those observed in our laboratory. However, we conclude that experimental use of the smaller tags for small fish in the field is supported by our findings.

  12. Supplementing long-chain n-3 polyunsaturated fatty acids in canned wild Pacific pink salmon with Alaska salmon oil

    PubMed Central

    Lapis, Trina J; Oliveira, Alexandra C M; Crapo, Charles A; Himelbloom, Brian; Bechtel, Peter J; Long, Kristy A

    2013-01-01

    Establishing n-3 polyunsaturated fatty acid contents in canned wild Alaska pink salmon products is challenging due to ample natural variation found in lipid content of pink salmon muscle. This study investigated the effect of adding salmon oil (SO) to canned pink salmon produced from fish exhibiting two opposite degrees of skin watermarking, bright (B) and dark (D). Specific goals of the study were to evaluate the benefits of adding SO to canned pink salmon with regard to nutritional value of the product, sensory characteristics, and the oxidative and hydrolytic stability of the lipids over thermal processing. Six groups of canned pink salmon were produced with variable levels of SO, either using bright (with 0, 1, or 2% SO) or dark (with 0, 2, or 4% SO) pink salmon. Compositional analysis revealed highest (P < 0.05) lipid content in sample B2 (8.7%) and lowest (P < 0.05) lipid content in sample D0 (3.5%). Lipid content of samples B0, B1, D2, and D4 was not significantly different (P > 0.05) ranging from 5.7% to 6.8%. Consequently, addition of SO to canned pink salmon allowed for consistent lipid content between bright and dark fish. Addition of 1% or 2% SO to canned bright pink salmon was not detrimental to the sensory properties of the product. It is recommended that canned bright pink salmon be supplemented with at least 1% SO, while supplementation with 2% SO would guarantee a minimum quantity of 1.9 g of n-3 fatty acids per 100 g of product. Addition of 4% SO to canned dark pink salmon was detrimental to product texture and taste, while supplementation with 2% SO did not negatively affect sensorial properties of the product. Accordingly, canned dark pink salmon should be supplemented with 2% SO so that a minimum n-3 fatty acids content of 1.5 g per 100 g of product. PMID:24804010

  13. WILD SALMON IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY - MAY 2006

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not...

  14. Users' guide to system dynamics model describing Coho salmon survival in Olema Creek, Point Reyes National Seashore, Marin County, California

    USGS Publications Warehouse

    Woodward, Andrea; Torregrosa, Alicia; Madej, Mary Ann; Reichmuth, Michael; Fong, Darren

    2014-01-01

    The system dynamics model described in this report is the result of a collaboration between U.S. Geological Survey (USGS) scientists and National Park Service (NPS) San Francisco Bay Area Network (SFAN) staff, whose goal was to develop a methodology to integrate inventory and monitoring data to better understand ecosystem dynamics and trends using salmon in Olema Creek, Marin County, California, as an example case. The SFAN began monitoring multiple life stages of coho salmon (Oncorhynchus kisutch) in Olema Creek during 2003 (Carlisle and others, 2013), building on previous monitoring of spawning fish and redds. They initiated water-quality and habitat monitoring, and had access to flow and weather data from other sources. This system dynamics model of the freshwater portion of the coho salmon life cycle in Olema Creek integrated 8 years of existing monitoring data, literature values, and expert opinion to investigate potential factors limiting survival and production, identify data gaps, and improve monitoring and restoration prescriptions. A system dynamics model is particularly effective when (1) data are insufficient in time series length and/or measured parameters for a statistical or mechanistic model, and (2) the model must be easily accessible by users who are not modelers. These characteristics helped us meet the following overarching goals for this model: Summarize and synthesize NPS monitoring data with data and information from other sources to describe factors and processes affecting freshwater survival of coho salmon in Olema Creek. Provide a model that can be easily manipulated to experiment with alternative values of model parameters and novel scenarios of environmental drivers. Although the model describes the ecological dynamics of Olema Creek, these dynamics are structurally similar to numerous other coastal streams along the California coast that also contain anadromous fish populations. The model developed for Olema can be used, at least as a

  15. Directional selection by fisheries and the timing of sockeye salmon (Oncorhynchus nerka) migrations.

    PubMed

    Quinn, Thomas P; Hodgson, Sayre; Flynn, Lucy; Hilborn, Ray; Rogers, Donald E

    2007-04-01

    The timing of migration from feeding to breeding areas is a critical link between the growth and survival of adult animals, their reproduction, and the fitness of their progeny. Commercial fisheries often catch a large fraction of the migrants (e.g., salmon), and exploitation rates can vary systematically over the fishing season. We examined daily records of sockeye salmon (Oncorhynchus nerka) in the Egegik and Ugashik management districts in Bristol Bay, Alaska (USA), for evidence of such temporally selective fishing. In recent years, the early migrants have experienced lower fishing rates than later migrants, especially in the Egegik district, and the median migration date of the fish escaping the fisheries has been getting progressively earlier in both districts. Moreover, the overall runs (catch and escapement) in the Egegik district and, to a lesser extent the Ugashik district, have been getting earlier, as predicted in response to the selection on timing. The trends in timing were not correlated with sea surface temperature in the region of the North Pacific Ocean where the salmon tend to concentrate, but the trends in the two districts were correlated with each other, indicating that there may be some common environmental influence in addition to the effect of selection. Despite the selection, both groups of salmon have remained productive. We hypothesize that this resilience may result from representation of all component populations among the early and late migrants, so that the fisheries have not eliminated entire populations, and from density-dependent processes that may have helped maintain the productivity of these salmon populations.

  16. Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis.

    PubMed

    Sutherland, Ben J G; Koczka, Kim W; Yasuike, Motoshige; Jantzen, Stuart G; Yazawa, Ryosuke; Koop, Ben F; Jones, Simon R M

    2014-03-15

    Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection. In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon. Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance

  17. Dietary calcein marking of brook trout, Atlantic salmon, yellow perch, and coho salmon scales

    USGS Publications Warehouse

    Honeyfield, D.C.; Ostrowski, C.S.; Fletcher, J.W.; Mohler, J.W.

    2006-01-01

    Brook trout Salvelinus fontinalis, Atlantic salmon Salmo salar, coho salmon Oncorhynchus kisutch, and yellow perch Perca flavescens fed calcein for 5 d showed characteristic calcein scale marks 7-10 d postmarking. In fish fed 0.75 or 1.25 g of calcein per kilogram of feed, the percentage of fish that exhibited a calcein mark was 100% in brook trout, 93-98% in Atlantic salmon, 60% in yellow perch, and 0% in coho salmon. However, when coho salmon were fed 5.25 g calcein/kg feed, 100% marking was observed 7-10 d postmarking. Brook trout were successfully marked twice with distinct bands when fed calcein 5 months apart. Brook trout scale pixel luminosity increased as dietary calcein increased in experiment 2. For the second calcein mark, scale pixel luminosity from brook trout fed 1.25 g calcein/kg feed was numerically higher (P < 0.08) than scales from fish fed 0.75 g calcein/kg feed. Mean pixel luminosity of calcein-marked Atlantic salmon scales was 57.7 for fish fed 0.75 g calcein/kg feed and 55.2 for fish fed 1.25 g calcein/kg feed. Although feed acceptance presented a problem in yellow perch, these experiments provide evidence that dietary calcein is a viable tool for marking fish for stock identification. ?? Copyright by the American Fisheries Society 2006.

  18. Migratory Behavior and Survival of Juvenile Salmonids in the Lower Columbia River, Estuary, and Plume in 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Harnish, Ryan A.; Skalski, John R.

    Uncertainty regarding the migratory behavior and survival of juvenile salmonids passing through the lower Columbia River and estuary after negotiating dams on the Federal Columbia River Power System (FCRPS) prompted the development and application of the Juvenile Salmon Acoustic Telemetry System (JSATS). The JSATS has been used to investigate the survival of juvenile salmonid smolts between Bonneville Dam (river kilometer (rkm) 236) and the mouth of the Columbia River annually since 2004. In 2010, a total of 12,214 juvenile salmonids were implanted with both a passive integrated transponder (PIT) and a JSATS acoustic transmitter. Using detection information from JSATS receivermore » arrays deployed on dams and in the river, estuary, and plume, the survival probability of yearling Chinook salmon and steelhead smolts tagged at John Day Dam was estimated form multiple reaches between rkm 153 and 8.3 during the spring. During summer, the survival probability of subyearling Chinook salmon was estimated for the same reaches. In addition, the influence of routes of passage (e.g., surface spill, deep spill, turbine, juvenile bypass system) through the lower three dams on the Columbia River (John Day, The Dalles, and Bonneville) on juvenile salmonid smolt survival probability from the dams to rkm 153 and then between rkm 153 and 8.3 was examined to increase understanding of the immediate and latent effects of dam passage on juvenile salmon survival. Similar to previous findings, survival probability was relatively high (>0.95) for most groups of juvenile salmonids from the Bonneville Dam tailrace to about rkm 50. Downstream of rkm 50 the survival probability of all species and run types we examined decreased markedly. Steelhead smolts suffered the highest mortality in this lower portion of the Columbia River estuary, with only an estimated 60% of the tagged fish surviving to the mouth of the river. In contrast, yearling and subyearling Chinook salmon smolts survived to

  19. Molecular characterization and histochemical demonstration of salmon olfactory marker protein in the olfactory epithelium of lacustrine sockeye salmon (Oncorhynchus nerka).

    PubMed

    Kudo, H; Doi, Y; Ueda, H; Kaeriyama, M

    2009-09-01

    Despite the importance of olfactory receptor neurons (ORNs) for homing migration, the expression of olfactory marker protein (OMP) is not well understood in ORNs of Pacific salmon (genus Oncorhynchus). In this study, salmon OMP was characterized in the olfactory epithelia of lacustrine sockeye salmon (O. nerka) by molecular biological and histochemical techniques. Two cDNAs encoding salmon OMP were isolated and sequenced. These cDNAs both contained a coding region encoding 173 amino acid residues, and the molecular mass of the two proteins was calculated to be 19,581.17 and 19,387.11Da, respectively. Both amino acid sequences showed marked homology (90%). The protein and nucleotide sequencing demonstrates the existence of high-level homology between salmon OMPs and those of other teleosts. By in situ hybridization using a digoxigenin-labeled salmon OMP cRNA probe, signals for salmon OMP mRNA were observed preferentially in the perinuclear regions of the ORNs. By immunohistochemistry using a specific antibody to salmon OMP, OMP-immunoreactivities were noted in the cytosol of those neurons. The present study is the first to describe cDNA cloning of OMP in salmon olfactory epithelium, and indicate that OMP is a useful molecular marker for the detection of the ORNs in Pacific salmon.

  20. Comparative genomics identifies candidate genes for infectious salmon anemia (ISA) resistance in Atlantic salmon (Salmo salar).

    PubMed

    Li, Jieying; Boroevich, Keith A; Koop, Ben F; Davidson, William S

    2011-04-01

    Infectious salmon anemia (ISA) has been described as the hoof and mouth disease of salmon farming. ISA is caused by a lethal and highly communicable virus, which can have a major impact on salmon aquaculture, as demonstrated by an outbreak in Chile in 2007. A quantitative trait locus (QTL) for ISA resistance has been mapped to three microsatellite markers on linkage group (LG) 8 (Chr 15) on the Atlantic salmon genetic map. We identified bacterial artificial chromosome (BAC) clones and three fingerprint contigs from the Atlantic salmon physical map that contains these markers. We made use of the extensive BAC end sequence database to extend these contigs by chromosome walking and identified additional two markers in this region. The BAC end sequences were used to search for conserved synteny between this segment of LG8 and the fish genomes that have been sequenced. An examination of the genes in the syntenic segments of the tetraodon and medaka genomes identified candidates for association with ISA resistance in Atlantic salmon based on differential expression profiles from ISA challenges or on the putative biological functions of the proteins they encode. One gene in particular, HIV-EP2/MBP-2, caught our attention as it may influence the expression of several genes that have been implicated in the response to infection by infectious salmon anemia virus (ISAV). Therefore, we suggest that HIV-EP2/MBP-2 is a very strong candidate for the gene associated with the ISAV resistance QTL in Atlantic salmon and is worthy of further study.

  1. Evidence of damage to pink salmon inhabiting Prince William Sound, Alaska, three generations after the Exxon Valdez oil spill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bue, B.G.; Miller, G.D.; Seeb, J.E.

    1995-12-31

    Investigations into the environmental effects of the 1 989 Exxon Valdez oil spill lead us to conclude that chronic damage occurred in some pink salmon populations. Differences in survival between streams contaminated by oil and uncontaminated streams have been observed annually since the spill for pink salmon embryos incubating in the intertidal portions of Prince William Sound. The authors assessed the environmental influence on these findings by collecting gametes from both contaminated and uncontaminated streams, transporting them to a hatchery where intra-stream crosses were made, and incubating the resulting embryos under identical conditions. Lower survival was detected in the embryosmore » originating from the oil-contaminated streams indicating that the agent responsible for the differences detected in the field was genetic rather than environmental.« less

  2. Ectoparasite Caligus rogercresseyi modifies the lactate response in Atlantic salmon (Salmo salar) and Coho salmon (Oncorhynchus kisutch).

    PubMed

    Vargas-Chacoff, L; Muñoz, J L P; Hawes, C; Oyarzún, R; Pontigo, J P; Saravia, J; González, M P; Mardones, O; Labbé, B S; Morera, F J; Bertrán, C; Pino, J; Wadsworth, S; Yáñez, A

    2017-08-30

    Although Caligus rogercresseyi negatively impacts Chilean salmon farming, the metabolic effects of infection by this sea louse have never been completely characterized. Therefore, this study analyzed lactate responses in the plasma, as well as the liver/muscle lactate dehydrogenase (LDH) activity and gene expression, in Salmo salar and Oncorhynchus kisutch infested by C. rogercresseyi. The lactate responses of Atlantic and Coho salmon were modified by the ectoparasite. Both salmon species showed increasing in plasma levels, whereas enzymatic activity increased in the muscle but decreased in the liver. Gene expression was overexpressed in both Coho salmon tissues but only in the liver for Atlantic salmon. These results suggest that salmonids need more energy to adapt to infection, resulting in increased gene expression, plasma levels, and enzyme activity in the muscles. The responses differed between both salmon species and over the course of infection, suggesting potential species-specific responses to sea-lice infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin

    USGS Publications Warehouse

    Connor, W.P.; Sneva, J.G.; Tiffan, K.F.; Steinhorst, R.K.; Ross, D.

    2005-01-01

    Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however, that some fall Chinook salmon juveniles in the Snake River basin spent their first winter in a reservoir and resumed seaward movement the following spring at age 1 (hereafter, reservoir-type juveniles). We collected wild and hatchery ocean-type fall Chinook salmon juveniles in 1997 and wild and hatchery reservoir-type juveniles in 1998 to assess the condition of the reservoir-type juveniles at the onset of seaward movement. The ocean-type juveniles averaged 112-139 mm fork length, and the reservoir-type juveniles averaged 222-224 mm fork length. The large size of the reservoir-type juveniles suggested a high potential for survival to salt water and subsequent return to freshwater. Scale pattern analyses of the fall Chinook salmon spawners we collected during 1998-2003 supported this point. Of the spawners sampled, an overall average of 41% of the wild fish and 51% of the hatchery fish had been reservoir-type juveniles. Males that had been reservoir-type juveniles often returned as small "minijacks" (wild, 16% of total; hatchery, 40% of total), but 84% of the wild males, 60% of the hatchery males, and 100% of the wild and hatchery females that had been reservoir-type juveniles returned at ages and fork lengths commonly observed in populations of Chinook salmon. We conclude that fall Chinook salmon in the Snake River basin exhibit two alternative juvenile life histories, namely ocean-type and reservoir-type. ?? Copyright by the American Fisheries Society 2005.

  4. Behavioural response of juvenile Chinook salmon Oncorhynchus tshawytscha during a sudden temperature increase and implications for survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellgraph, Brian J.; McMichael, Geoffrey A.; Mueller, Robert P.

    2010-01-01

    The behaviours of juvenile Chinook salmon Oncorhynchus tshawytscha were evaluated during a temperature increase from 8.8 to 23.2°C, which was designed to simulate unique thermal conditions present in a hydroelectric reservoir. The percent of fish with an active swimming behaviour increased from 26 to 93 % and mean opercular beat rates increased from 76 to 159 beats per minute between basal and maximum temperatures. Fish equilibrium did not change significantly throughout the experiment and relatively little mortality (12 %) occurred. Thermal stress is likely incurred by juvenile salmon experiencing a temperature change of this magnitude; however, stress induced in thismore » study was primarily sublethal. Behavioural changes accompanying thermal stress (e.g., erratic swimming) may increase predation potential in the wild despite being sublethal during laboratory experiments.« less

  5. Lessons from sea louse and salmon epidemiology.

    PubMed

    Groner, Maya L; Rogers, Luke A; Bateman, Andrew W; Connors, Brendan M; Frazer, L Neil; Godwin, Sean C; Krkošek, Martin; Lewis, Mark A; Peacock, Stephanie J; Rees, Erin E; Revie, Crawford W; Schlägel, Ulrike E

    2016-03-05

    Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host-parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources. © 2016 The Author(s).

  6. Lessons from sea louse and salmon epidemiology

    PubMed Central

    Rogers, Luke A.; Bateman, Andrew W.; Connors, Brendan M.; Frazer, L. Neil; Godwin, Sean C.; Krkošek, Martin; Lewis, Mark A.; Peacock, Stephanie J.; Rees, Erin E.; Revie, Crawford W.; Schlägel, Ulrike E.

    2016-01-01

    Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host–parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources. PMID:26880836

  7. Fraser River sockeye salmon productivity and climate: A re-analysis that avoids an undesirable property of Ricker’s curve

    NASA Astrophysics Data System (ADS)

    McKinnell, Skip

    2008-05-01

    In descending order of importance, artificial spawning channels, density-dependent mortality, carryover mortality, and climate have significant influences on the average productivity of Fraser River sockeye salmon ( Oncorhynchus nerka). When factors that are known or have been hypothesized to affect Fraser River sockeye salmon productivity are included in a single analytical framework, no significant change in average productivity occurred in 1976/1977, however, beginning in 1989 average productivity was significantly lower. In the one lake (Chilko) in the Fraser River basin where pre-smolt survival can be distinguished from post-smolt survival, this decline arose from freshwater causes. After accounting for other factors that have a greater influence, Fraser River sockeye salmon productivity tends to be slightly lower in years when the intensity of the Aleutian low pressure region is stormier in winter, although the effect is not strongly expressed in any particular population. A footnote to the study was the realization that estimates of Ricker’s density-dependent mortality parameter, β, are influenced by both the numerical properties of the equation and by population biology; density-dependent and density-independent influences on the estimates of the parameter are confounded.

  8. Assessing the Influence of Hydrological Connectivity on the Spawning Migration of Atlantic Salmon.

    NASA Astrophysics Data System (ADS)

    Lazzaro, G.; Soulsby, C.; Tetzlaff, D.; Botter, G.

    2016-12-01

    Atlantic salmon is an economically and ecologically important fish species, whose survival is critically impacted by successful spawning in headwater gravel-bed rivers. Streamflow dynamics may have a strong control on spawning because adult fish require sufficiently high discharges to move upriver and reach spawning sites. We present a simple outflux-influx model linking the number of female salmon emigrating (i.e. outflux) and returning (i.e. influx) to a small spawning stream in Scotland (the Girnock Burn). The model explicitly accounts for the inter-annual variability of the hydrologic regime and its influence on hydrological connectivity. Model results are then compared against a unique long-term hydro-ecological dataset that includes annual fluxes of immigrant and emigrant salmon and daily discharges for about 40 years. The satisfactory model results confirm that hydrologic variability contributes significantly to the observed dynamics of salmon returns to the Girnock, with a good correlation between the positive (negative) peaks in the immigration dataset and the exceedance (non-exceedance) probability of a threshold flow (0.3 m3/s). Importantly, model performance deteriorates when the inter-annual variability of flow regime is disregarded. The analysis suggests that the hydrological connectivity represents a key feature of riverine systems, which needs to be carefully considered in settings where flow regimes are altered by water abstractions or diversions.

  9. Association between sea lice (Lepeophtheirus salmonis) infestation on Atlantic salmon farms and wild Pacific salmon in Muchalat Inlet, Canada.

    PubMed

    Nekouei, Omid; Vanderstichel, Raphael; Thakur, Krishna; Arriagada, Gabriel; Patanasatienkul, Thitiwan; Whittaker, Patrick; Milligan, Barry; Stewardson, Lance; Revie, Crawford W

    2018-03-05

    Growth in salmon aquaculture over the past two decades has raised concerns regarding the potential impacts of the industry on neighboring ecosystems and wild fish productivity. Despite limited evidence, sea lice have been identified as a major cause for the decline in some wild Pacific salmon populations on the west coast of Canada. We used sea lice count and management data from farmed and wild salmon, collected over 10 years (2007-2016) in the Muchalat Inlet region of Canada, to evaluate the association between sea lice recorded on salmon farms with the infestation levels on wild out-migrating Chum salmon. Our analyses indicated a significant positive association between the sea lice abundance on farms and the likelihood that wild fish would be infested. However, increased abundance of lice on farms was not significantly associated with the levels of infestation observed on the wild salmon. Our results suggest that Atlantic salmon farms may be an important source for the introduction of sea lice to wild Pacific salmon populations, but that the absence of a dose response relationship indicates that any estimate of farm impact requires more careful evaluation of causal inference than is typically seen in the extant scientific literature.

  10. Post-mortem sporulation of Ceratomyxa shasta (Myxozoa) after death in adult Chinook salmon

    USGS Publications Warehouse

    Kent, Michael L.; Soderlund, K.; Thomann, E.; Schreck, Carl B.; Sharpton, T.J.

    2014-01-01

    Ceratomyxa shasta (Myxozoa) is a common gastrointestinal pathogen of salmonid fishes in the Pacific Northwest of the United States. We have been investigating this parasite in adult Chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. In prior work, we observed differences in the pattern of development of C. shasta in adult salmon compared to juvenile salmon. Adult salmon consistently had large numbers of prespore stages in many of the fish that survived to spawn in the fall. However, myxospores were rarely observed, even though they were exposed and presumably infected for months before spawning. We evaluated the ability of C. shasta to sporulate following fish death because it is reported that myxosores are common in carcasses of Chinook salmon. We collected the intestine from 30 adult salmon immediately after artificial spawning and death (T0). A total of 23 fish were infected with C. shasta based on histology, but only a few myxospores were observed in 1 fish by histology. Intestines of these fish were examined at T0 and T7 (latter held at 17 C for 7 days) using quantified wet mount preparations. An increase in myxospore concentrations was seen in 39% of these fish, ranging between a 1.5- to a 14.5-fold increase. The most heavily infected fish exhibited a 4.6-fold increase from 27,841 to 129,352 myxospores/cm. This indicates, supported by various statistical analyses, that under certain conditions presporogonic forms are viable and continue to sporulate after death in adult salmon. Considering the life cycle of C. shasta and anadromous salmon, the parasite may have evolved 2, non-mutually exclusive developmental strategies. In young fish (parr and smolts), the parasite sporulates shortly after infection and is released into freshwater from either live or dead fish before their migration to seawater, where the alternate host is absent. The second strategy occurs in adult salmon, particularly spring Chinook salmon, which become infected upon

  11. Juvenile salmon usage of the Skeena River estuary.

    PubMed

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  12. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy

    2006-05-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound inmore » Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred

  13. Population viability of the Snake River chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Emlen, John M.

    1995-01-01

    In the presence of historical data, population viability models of intermediate complexity can be parameterized and utilized to project the consequences of various management actions for endangered species. A general stochastic population dynamics model with density feedback, age structure, and autocorrelated environmental fluctuations was constructed and parameterized for best fit over 36 years of spring chinook salmon (Oncorhynchus tshawytscha) redd count data in five Idaho index streams. Simulations indicate that persistence of the Snake River spring chinook salmon population depends primarily on density-independent mortality. Improvement of rearing habitat, predator control, reduced fishing pressure, and improved dam passage all would alleviate density-independent mortality. The current value of the Ricker α should provide for a continuation of the status quo. A recovery of the population to 1957–1961 levels within 100 years would require an approximately 75% increase in survival and (or) fecundity. Manipulations of the Ricker β are likely to have little or no effect on persistence versus extinction, but considerable influence on population size.

  14. The effect of thiamine injection on upstream migration, survival, and thiamine status of putative thiamine-deficient coho salmon

    USGS Publications Warehouse

    Fitzsimons, J.D.; Williston, B.; Amcoff, P.; Balk, L.; Pecor, C.; Ketola, H.G.; Hinterkopf, J.P.; Honeyfield, D.C.

    2005-01-01

    A diet containing a high proportion of alewives Alosa pseudoharengus results in a thiamine deficiency that has been associated with high larval salmonid mortality, known as early mortality syndrome (EMS), but relatively little is known about the effects of the deficiency on adults. Using thiamine injection (50 mg thiamine/kg body weight) of ascending adult female coho salmon Oncorhynchus kisutch on the Platte River, Michigan, we investigated the effects of thiamine supplementation on migration, adult survival, and thiamine status. The thiamine concentrations of eggs, muscle (red and white), spleen, kidney (head and trunk), and liver and the transketolase activity of the liver, head kidney, and trunk kidney of fish injected with thiamine dissolved in physiological saline (PST) or physiological saline only (PS) were compared with those of uninjected fish. The injection did not affect the number of fish making the 15-km upstream migration to a collection weir but did affect survival once fish reached the upstream weir, where survival of PST-injected fish was almost twice that of controls. The egg and liver thiamine concentrations in PS fish sampled after their upstream migration were significantly lower than those of uninjected fish collected at the downstream weir, but the white muscle thiamine concentration did not differ between the two groups. At the upper weir, thiamine levels in the liver, spleen, head kidney, and trunk kidney of PS fish were indistinguishable from those of uninjected fish (called "wigglers") suffering from a severe deficiency and exhibiting reduced equilibrium, a stage that precedes total loss of equilibrium and death. For PST fish collected at the upstream weir, total thiamine levels in all tissues were significantly elevated over those of PS fish. Based on the limited number of tissues examined, thiamine status was indicated better by tissue thiamine concentration than by transketolase activity. The adult injection method we used appears to

  15. Assessment of juvenile coho salmon movement and behavior in relation to rehabilitation efforts in the Trinity River, California, using PIT tags and radiotelemetry

    USGS Publications Warehouse

    Chase, Robert; Hemphill, Nina; Beeman, John; Juhnke, Steve; Hannon, John; Jenkins, Amy M.

    2013-01-01

    Coho salmon (Oncorhynchus kisutch) of the Southern Oregon/Northern California Coast (SONCC) Evolutionarily Significant Unit (ESU) is federally listed as a threatened species. The Trinity River Restoration Program (TRRP) is rehabilitating the Trinity River to restore coho salmon (coho) and other salmonid populations. In order to evaluate the program’s actions, several studies of movements and behavior of coho in the Trinity River were conducted from 2006 to 2009, including snorkel surveys and mark-recapture techniques based on Passive Integrated Transponder (PIT) tags, elastomer tags, and radio transmitters. Catch, recapture, and condition of natural sub-yearlings, along with site fidelity and emigration of hatchery-reared yearlings in rehabilitated and reference habitats, were studied. Location was important because coho were absent from the lower controlled and rehabilitated sites most of the time. However, rehabilitation did not have a significant effect on natural coho salmon at the site level. Apparent survival of radio-tagged, hatchery-reared yearling coho released downstream from Lewiston Dam was much lower in the first 10 km downstream from the release site than in other areas between Lewiston Dam and the Klamath River estuary. Estimated survival of yearling hatchery coho salmon per 100 km down to Blake’s Riffle was estimated at 64 % over the distance of the 239 km study area. Migration primarily occurred at night in the upper Trinity River; however, as yearlings moved through the lower Trinity River towards the Klamath River, estuary nocturnal migration became less. Apparent survival was generally lowest in areas upstream from the North Fork of the Trinity River.

  16. Can intense predation by bears exert a depensatory effect on recruitment in a Pacific salmon population?

    PubMed

    Quinn, Thomas P; Cunningham, Curry J; Randall, Jessica; Hilborn, Ray

    2014-10-01

    It has long been recognized that, as populations increase in density, ecological processes affecting growth and survival reduce per capita recruitment in the next generation. In contrast to the evidence for such "compensatory" density dependence, the alternative "depensatory" process (reduced per capita recruitment at low density) has proven more difficult to demonstrate in the field. To test for such depensation, we measured the spawner-recruit relationship over five decades for a sockeye salmon (Oncorhynchus nerka) population in Alaska breeding in high-quality, unaltered habitat. Twenty-five years of detailed estimates of predation by brown bears, Ursus arctos, revealed strong density dependence in predation rate; the bears killed ca. 80% of the salmon in years of low salmon spawning abundance. Nevertheless, the reconstructed spawner-recruit relationship, adjusted to include salmon intercepted in the commercial fishery, provided no evidence of demographic depensation. That is, in years when few salmon returned and the great majority were killed by bears, the few that spawned were successful enough that the population remained highly productive, even when those killed by bears were included as potential spawners. We conclude that the high quality of breeding habitat at this site and the productive nature of semelparous Pacific salmon allowed this population to avoid the hypothesized depressed recruitment from depensatory processes expected at low density. The observed lack of demographic depensation is encouraging from a conservation standpoint because it implies that depleted populations may have the potential to rebound successfully given suitable spawning and rearing habitat, even in the presence of strong predation pressure.

  17. Seasonal shift in the effects of predators on juvenile Atlantic salmon (Salmo salar) energetics

    Treesearch

    Darren M. Ward; Keith H. Nislow; Carol L. Folt; James Grant

    2011-01-01

    Predator effects on prey populations are determined by the number of prey consumed and effects on the traits of surviving prey. Yet the effects of predators on prey traits are rarely evaluated in field studies. We measured the effects of predators on energetic traits (consumption and growth rates) of juvenile Atlantic salmon (Salmo salar) in a...

  18. Long term retention, survival, growth, and physiological indicators of salmonids marked with passive integrated transponder tags

    USGS Publications Warehouse

    Ostrand, Kenneth G.; Zydlewski, Gayle B.; Gale, William L.; Zydlewski, Joseph D.

    2011-01-01

    To track individuals in situ, over 12 million salmon and trout have been marked with passive integrated transponder (PIT) tags in the Columbia River Basin, USA. However, few studies have examined long term tag retention as well as tag effects on juvenile salmon and trout. We marked juvenile coho salmon Oncorhynchus kisutch (N = 207), steelhead (anadromous rainbow trout) O. mykiss (N = 221), cutthroat trout O. clarkii (N = 202) and bull trout Salvelinus confluentus (N = 180) with 12, 19, or 23 mm PIT tags and examined tag retention, survival, growth, and physiological performance over a six month period in a laboratory environment. PIT tag retention rates were high for coho salmon (100%), steelhead (95%), cutthroat trout (97%), and bull trout (99%), regardless of tag size. Survival was also high for coho (99%), steelhead (99%), cutthroat trout (97%), and bull trout (88%) and did not vary among tag sizes. Short term individual growth rates for coho salmon marked with 12 mm tags were significantly higher than those marked with 19 mm and 23 mm PIT tags. Likewise, steelhead trout individual growth rates were lower for fish marked with 23 mm PIT tags followed by 19 and 12 mm tags. Conversely, long-term growth rates were positive and not affected by tag size. There were no significant effects of tag size or marking on coho gill Na+, K+, -ATPase activity (µmol ADP x mg protein–1 h–1) and plasma osmolality (µmol kg–1) or bull trout hepatosomatic indices. Our study suggests that marking juvenile salmonids with PIT tags results in high retention with little effect upon their survival, growth, and important physiological indicators regardless of tag size in a laboratory environment.

  19. 76 FR 65673 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    .... 101206604-1620-01] RIN 0648-BA55 Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery Management Plan AGENCY: National Marine Fisheries Service (NMFS), National... implement Amendment 16 to the Pacific Coast Salmon Fishery Management Plan for Commercial and Recreational...

  20. Clove oil as an anaesthetic for adult sockeye salmon: Field trials

    USGS Publications Warehouse

    Woody, C.A.; Nelson, Jack L.; Ramstad, K.

    2002-01-01

    Wild migrating sockeye salmon Oncorhynchus nerka exposed to 20, 50 and 80 mg 1-1 of clove oil could be handled within 3 min, recovered within 10 min, and survived 15 min exposure trials. Fish tested at 110 mg 1-1 did not recover from 15 min exposure trials. Response curves developed for induction and recovery time considered the following predictors: clove oil concentration, sex, fish length and depth. A significant positive dependence was observed between induction time and fish length for 20, 50 and 80 mg 1-1 test concentrations; no dependence was observed between induction time and length at 110 and 140 mg 1-1. Recovery time differed as a function of clove oil concentration, but not fish size. A concentration of 50 mg 1-1 is recommended for anaesthetizing sockeye salmon ranging in length from 400 to 550 mm at water temperatures averaging 9-10??C.

  1. Synchronous cycling of Ichthyophoniasis with Chinook salmon density revealed during the annual Yukon River spawning migration

    USGS Publications Warehouse

    Zuray, Stanley; Kocan, Richard; Hershberger, Paul

    2012-01-01

    Populations of Chinook salmon Oncorhynchus tshawytscha in the Yukon River declined by more than 57% between 2003 and 2010, probably the result of a combination of anthropogenic and environmental factors. One possible contributor to this decline is Ichthyophonus, a mesomycetozoan parasite that has previously been implicated in significant losses of fish, including Chinook salmon. A multiyear epidemiological study of ichthyophoniasis in the Yukon River revealed that disease prevalence and Chinook salmon population abundance increased and decreased simultaneously (i.e., were concordant) from 1999 to 2010. The two values rose and fell synchronously 91% of the time for female Chinook salmon and 82% of the time for males; however, there was no significant correlation between Ichthyophonus prevalence and population abundance. This synchronicity might be explained by a single factor, such as a prey item that is critical to Chinook salmon survival as well as a source of Ichthyophonus infection. The host–parasite relationship between Ichthyophonus and migrating Chinook salmon from 2004 to 2010 was similar to that reported for the previous 5 years. During 2004–2010, overall disease prevalence was significantly higher among females (21%) than among males (8%), increased linearly with fish length for both males and females, and increased in both sexes as the fish progressed upriver. These regularly occurring features of host–parasite dynamics confirm a stable base of transmission for Ichthyophonus. However, from 2003 to 2010, disease prevalence decreased from 30% to just 8% in males and from 45% to 9% in females, paralleling a similar decline in Chinook salmon abundance during the same period. These findings may help clarify questions regarding the complex host–parasite dynamics that occur in marine species such as herrings Clupea spp., which have less well-defined population structures.

  2. History of salmon in the Great Lakes, 1850-1970

    USGS Publications Warehouse

    Parsons, John W.

    1973-01-01

    This history of the salmon in the Great Lakes describes the decline and extinction of the Atlantic salmon (Salmo salar) in Lake Ontario in the 1800's; the failure to establish, by salmon culture, permanent or sizable populations of Atlantic or Pacific salmon in any of the Great Lakes in 1867-1965; and the success of the plantings of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytsha) in the Great Lakes, in 1966-70 -- particularly in Lake Michigan. Despite plantings of 5 million fry and fingerlings from Lake Ontario stocks in 1866-84, the native Atlantic salmon in Lake Ontario became extinct in the late 1800's primarily because tributaries in which they spawned were blocked by mill dams. Plantings of 13 million chinook salmon and landlocked and anadromous forms of Atlantic salmon in Lake Ontario and the other Great Lakes in 1873-1947 failed completely. The first species to develop a self-sustaining population was the pink salmon (O. gorbuscha), which was planted in Lake Superior in 1956; however, it has not become abundant. A salmon fishery finally was established when 15 million coho salmon and 6 million chinook salmon were planted as smolt in the Great Lakes in 1966-70. In 1970, for example, 576,000 coho salmon (12% of those planted in 1969) were caught by anglers in Lake Michigan. Most weighed 5 to 10 pounds (2.3-4.5 kg). Sport fishing for salmon was fair in Lakes Superior and Huron, and poor in Lakes Erie and Ontario. By 1970, natural reproduction of coho, chinook, pink, and kokanee (O. nerka) salmon had occurred in some tributaries of one or more of the upper three Great Lakes. It is expected, however, that the sport fishery will continue to be supported almost entirely by planted fish.

  3. Can stream and riparian restoration offset climate change impacts to salmon populations?

    PubMed

    Justice, Casey; White, Seth M; McCullough, Dale A; Graves, David S; Blanchard, Monica R

    2017-03-01

    Understanding how stream temperature responds to restoration of riparian vegetation and channel morphology in context of future climate change is critical for prioritizing restoration actions and recovering imperiled salmon populations. We used a deterministic water temperature model to investigate potential thermal benefits of riparian reforestation and channel narrowing to Chinook Salmon populations in the Upper Grande Ronde River and Catherine Creek basins in Northeast Oregon, USA. A legacy of intensive land use practices in these basins has significantly reduced streamside vegetation and increased channel width across most of the stream network, resulting in water temperatures that far exceed the optimal range for salmon growth and survival. By combining restoration scenarios with climate change projections, we were able to evaluate whether future climate impacts could be offset by restoration actions. A combination of riparian restoration and channel narrowing was predicted to reduce peak summer water temperatures by 6.5 °C on average in the Upper Grande Ronde River and 3.0 °C in Catherine Creek in the absence of other perturbations. These results translated to increases in Chinook Salmon parr abundance of 590% and 67% respectively. Although projected climate change impacts on water temperature for the 2080s time period were substantial (i.e., median increase of 2.7 °C in the Upper Grande Ronde and 1.5 °C in Catherine Creek), we predicted that basin-wide restoration of riparian vegetation and channel width could offset these impacts, reducing peak summer water temperatures by about 3.5 °C in the Upper Grande Ronde and 1.8 °C in Catherine Creek. These results underscore the potential for riparian and stream channel restoration to mitigate climate change impacts to threatened salmon populations in the Pacific Northwest. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Life history and virulence are linked in the ectoparasitic salmon louse Lepeophtheirus salmonis.

    PubMed

    Mennerat, A; Hamre, L; Ebert, D; Nilsen, F; Dávidová, M; Skorping, A

    2012-05-01

    Models of virulence evolution for horizontally transmitted parasites often assume that transmission rate (the probability that an infected host infects a susceptible host) and virulence (the increase in host mortality due to infection) are positively correlated, because higher rates of production of propagules may cause more damages to the host. However, empirical support for this assumption is scant and limited to microparasites. To fill this gap, we explored the relationships between parasite life history and virulence in the salmon louse, Lepeophtheirus salmonis, a horizontally transmitted copepod ectoparasite on Atlantic salmon Salmo salar. In the laboratory, we infected juvenile salmon hosts with equal doses of infective L. salmonis larvae and monitored parasite age at first reproduction, parasite fecundity, area of damage caused on the skin of the host, and host weight and length gain. We found that earlier onset of parasite reproduction was associated with higher parasite fecundity. Moreover, higher parasite fecundity (a proxy for transmission rate, as infection probability increases with higher numbers of parasite larvae released to the water) was associated with lower host weight gain (correlated with lower survival in juvenile salmon), supporting the presence of a virulence-transmission trade-off. Our results are relevant in the context of increasing intensive farming, where frequent anti-parasite drug use and increased host density may have selected for faster production of parasite transmission stages, via earlier reproduction and increased early fecundity. Our study highlights that salmon lice, therefore, are a good model for studying how human activity may affect the evolution of parasite virulence. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  5. Density-dependence at sea for coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Emlen, J.M.; Reisenbichler, R.R.; McGie, A.M.; Nickelson, T.E.

    1990-01-01

    The success of expanded salmon hatchery programs will depend strongly on the degree of density-induced diminishing returns per smolt released. Several authors have addressed the question of density-dependent mortality at sea in coho salmon (Oncorhynchus kisutch), but have come to conflicting conclusions. We believe there are compelling reasons to reinvestigate the data, and have done so for public hatchery fish, using a variety of approaches. The results provide evidence that survival of these public hatchery fish is negatively affected, directly by the number of public hatchery smolts and indirectly by the number of private hatchery smolts. These results are weak, statistically, and should be considered primarily as a caution to those who, on the basis of other published work, believe that density-dependence does not exist. The results reported here also re-emphasize the often overlooked point that inferences drawn from data are strongly biased by investigators' views of how the systems of interest work and by the statistical assumptions they make preparatory to the analysis of those data.

  6. Migration delays caused by anthropogenic barriers: modeling dams, temperature, and success on migrating salmon smolts

    USGS Publications Warehouse

    Marschall, Elizabeth A.; Mather, Martha E.; Parrish, Donna; Allison, Gary W.; McMenemy, James R.

    2011-01-01

    Disruption to migration is a growing problem for conservation and restoration of animal populations. Anthropogenic barriers along migration paths can delay or prolong migrations, which may result in a mismatch with migration-timing adaptations. To understand the interaction of dams (as barriers along a migration path), seasonally changing environmental conditions, timing of Atlantic salmon (Salmo salar) downstream migration, and ultimate migration success, we used 10 years of river temperature and discharge data as a template upon which we simulated downstream movement of salmon. Atlantic salmon is a cool-water species whose downstream migrating smolts must complete migration before river temperatures become too warm. We found that dams had a local effect on survival as well as a survival effect that was spatially and temporally removed from the encounter with the dam. While smolts are delayed by dams, temperatures downstream can reach lethal or near-lethal temperatures; as a result, the match between completion of migration and the window of appropriate migration conditions can be disrupted. The strength of this spatially and temporally removed effect is at least comparable to the local effects of dams in determining smolt migration success in the presence of dams. We also considered smolts from different tributaries, varying in distance from the river mouth, to assess the potential importance of locally adapted migration timing on the effect of barriers. Migration-initiation temperature affected modeled smolt survival differentially across tributaries, with the success of smolts from upstream tributaries being much more variable across years than that of smolts with a shorter distance to travel. As a whole, these results point to the importance of broadening our spatial and temporal view when managing migrating populations. We must consider not only how many individuals never make it across migration barriers, but also the spatially and temporally removed

  7. Lack of evidence of infectious salmon anemia virus in pollock Pollachius virens cohabitating with infected farmed Atlantic salmon Salmo salar.

    PubMed

    McClure, Carol A; Hammell, K Larry; Dohoo, Ian R; Gagné, Nellie

    2004-10-21

    The infectious salmon anemia (ISA) virus causes lethargy, anemia, hemorrhage of the internal organs, and death in farmed Atlantic salmon Salmo salar. It has been a cause of disease in Norwegian farmed Atlantic salmon since 1984 and has since been identified in Canada, Scotland, the United States, and the Faroe Islands. Wild fish have been proposed as a viral reservoir because they are capable of close contact with farmed salmon. Laboratory studies have shown that brown trout and sea trout Salmo trutta, rainbow trout Oncorhynchus mykiss, and herring Clupea harengus tested positive for the virus weeks after intra-peritoneal injection of the ISA virus. Pollock Pollachius virens are commonly found in and around salmon cages, and their close association with the salmon makes them an important potential viral reservoir to consider. The objective of this study was to determine the presence or prevalence of ISA virus in pollock cohabitating with ISA-infected farmed Atlantic salmon. Kidney tissue from 93 pollock that were living with ISA-infected salmon in sea cages were tested with reverse transcription-polymerase chain reaction (RT-PCR) test. Results yielded the expected 193 bp product for positive controls, while no product was observed in any of the pollock samples, resulting in an ISA viral prevalence of 0%. This study strengthens the evidence that pollock are unlikely to be an ISA virus reservoir for farmed Atlantic salmon.

  8. Juvenile Salmon Usage of the Skeena River Estuary

    PubMed Central

    Carr-Harris, Charmaine; Gottesfeld, Allen S.; Moore, Jonathan W.

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations

  9. Cessation of a salmon decline with control of parasites.

    PubMed

    Peacock, Stephanie J; Krkosek, Martin; Proboszcz, Stan; Orr, Craig; Lewis, Mark A

    2013-04-01

    The resilience of coastal social-ecological systems may depend on adaptive responses to aquaculture disease outbreaks that can threaten wild and farm fish. A nine-year study of parasitic sea lice (Lepeophtheirus salmonis) and pink salmon (Oncorhynchus gorbuscha) from Pacific Canada indicates that adaptive changes in parasite management on salmon farms have yielded positive conservation outcomes. After four years of sea lice epizootics and wild salmon population decline, parasiticide application on salmon farms was adapted to the timing of wild salmon migrations. Winter treatment of farm fish with parasiticides, prior to the out-migration of wild juvenile salmon, has reduced epizootics of wild salmon without significantly increasing the annual number of treatments. Levels of parasites on wild juvenile salmon significantly influence the growth rate of affected salmon populations, suggesting that these changes in management have had positive outcomes for wild salmon populations. These adaptive changes have not occurred through formal adaptive management, but rather, through multi-stakeholder processes arising from a contentious scientific and public debate. Despite the apparent success of parasite control on salmon farms in the study region, there remain concerns about the long-term sustainability of this approach because of the unknown ecological effects of parasticides and the potential for parasite resistance to chemical treatments.

  10. Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Chernyak, Sergei M.; Rediske, Richard R.; O'Keefe, James P.

    2004-01-01

    We evaluated the Wisconsin bioenergetics model for chinook salmon (Oncorhynchus tshawytscha) in both the laboratory and the field. Chinook salmon in laboratory tanks were fed alewife (Alosa pseudoharengus), the predominant food of chinook salmon in Lake Michigan. Food consumption and growth by chinook salmon during the experiment were measured. To estimate the efficiency with which chinook salmon retain polychlorinated biphenyls (PCBs) from their food in the laboratory, PCB concentrations of the alewife and of the chinook salmon at both the beginning and end of the experiment were determined. Based on our laboratory evaluation, the bioenergetics model was furnishing unbiased estimates of food consumption by chinook salmon. Additionally, from the laboratory experiment, we calculated that chinook salmon retained 75% of the PCBs contained within their food. In an earlier study, assimilation rate of PCBs to chinook salmon from their food in Lake Michigan was estimated at 53%, thereby suggesting that the model was substantially overestimating food consumption by chinook salmon in Lake Michigan. However, we concluded that field performance of the model could not be accurately assessed because PCB assimilation efficiency is dependent on feeding rate, and feeding rate of chinook salmon was likely much lower in our laboratory tanks than in Lake Michigan.

  11. Salmon on the Edge: Growth and Condition of Juvenile Chum and Pink Salmon in the Northeastern Bering Sea

    NASA Astrophysics Data System (ADS)

    McPhee, M. V.

    2016-02-01

    As the Arctic and Subarctic regions warm, Pacific salmon (Oncorhynchus spp.) are expected to expand their range northward during ice-free periods in the Bering and Chukchi seas. The oscillating control hypothesis, which describes energetic differences of primary consumers between ice-associated and pelagic production phases, provides a framework for understanding how juvenile salmon might respond to changing conditions at the northern edge of their marine range. Additionally, relationships between growth/condition and temperature, salinity and bottom depth will help identify marine habitats supporting growth at the Arctic-Subarctic interface. In this study, we used survey data from NOAA and Arctic Ecosystem Integrated Survey project to 1) compare growth and condition of juvenile pink (O. gorbuscha) and chum (O. keta) salmon in the NE Bering Sea between warm and cool spring phases, and 2) describe relationships between summer environmental conditions and juvenile salmon growth and condition from 2006 - 2010. Chum and pink salmon were shorter, and chum salmon exhibited greater energy density, in years with cool springs; however, no other aspects of size and condition differed significantly between phases. Over all years, longer and more energy dense individuals of both species were caught at stations with greater bottom depths and in cooler sea-surface temperatures. We found little evidence that chlorophyll-a explained much of the variation in size or condition. We used insulin-like growth factor-1 (IGF-1) concentration as an indicator of relative growth rate for fishes sampled in 2009-2012 and that found juvenile salmon exhibited higher IGF-1 concentrations in 2010-2012 than in 2009. IGF-1 concentrations tended to increase with SST in chum salmon and with bottom depth (a proxy for distance from shore) in pink salmon, but more years of data are needed to adequately describe the relationship of IGF with environmental conditions. This study, although descriptive in

  12. Effect of water phase salt content and storage temperature on Listeria monocytogenes survival in chum salmon (Oncorhynchus keta) roe and caviar (ikura).

    PubMed

    Shin, Joong-Han; Rasco, Barbara A

    2007-06-01

    Salmon caviar, or ikura, is a ready-to-eat food prepared by curing the salmon roe in a brine solution. Other seasonings or flavorants may be added, depending upon the characteristics of the product desired. Listeria monocytogenes growth is a potential risk, since it can grow at high salt concentrations (>10%) and in some products at temperatures as low as 3 degrees C. Ikura was prepared from chum salmon (Oncorhynchus keta) roe by adding food-grade NaCl to yield water phase salt contents (WPS) of 0.22% (no added salt), 2.39%+/- 0.18%, 3.50%+/- 0.19%, and 4.36%+/- 0.36%. A cocktail containing L. monocytogenes (ATCC 19114, 7644, 19113) was incorporated into the ikura at 2 inoculum levels (log 2.4 and 4.2 CFU/g), and stored at 3 or 7 degrees C for up to 30 d. L. monocytogenes was recovered by plating onto modified Oxford media. Aerobic microflora were analyzed on plate count agar. Samples were tested at 0, 5, 10, 20, and 30 d. L. monocytogenes did not grow in chum salmon ikura held at 3 degrees C during 30 d at any salt level tested; however, the addition of salt at these levels did little to inhibit Listeria growth at 7 degrees C and counts reached 5 to 6 logs CFU/g. Components in the salmon egg intracellular fluid appear to inhibit the growth of L. monocytogenes. Total aerobic microflora levels were slightly lower in products with higher salt contents. These results indicate that temperature control is critical for ikura and similar products, but that products with lower salt contents can be safe, as long as good refrigeration is maintained.

  13. Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system.

    PubMed

    Waples, Robin S; Zabel, Richard W; Scheuerell, Mark D; Sanderson, Beth L

    2008-01-01

    The human footprint is now large in all the Earth's ecosystems, and construction of large dams in major river basins is among the anthropogenic changes that have had the most profound ecological consequences, particularly for migratory fishes. In the Columbia River basin of the western USA, considerable effort has been directed toward evaluating demographic effects of dams, yet little attention has been paid to evolutionary responses of migratory salmon to altered selective regimes. Here we make a first attempt to address this information gap. Transformation of the free-flowing Columbia River into a series of slack-water reservoirs has relaxed selection for adults capable of migrating long distances upstream against strong flows; conditions now favour fish capable of migrating through lakes and finding and navigating fish ladders. Juveniles must now be capable of surviving passage through multiple dams or collection and transportation around the dams. River flow patterns deliver some groups of juvenile salmon to the estuary later than is optimal for ocean survival, but countervailing selective pressures might constrain an evolutionary response toward earlier migration timing. Dams have increased the cost of migration, which reduces energy available for sexual selection and favours a nonmigratory life history. Reservoirs are a benign environment for many non-native species that are competitors with or predators on salmon, and evolutionary responses are likely (but undocumented). More research is needed to tease apart the relative importance of evolutionary vs. plastic responses of salmon to these environmental changes; this research is logistically challenging for species with life histories like Pacific salmon, but results should substantially improve our understanding of key processes. If the Columbia River is ever returned to a quasinatural, free-flowing state, remaining populations might face a Darwinian debt (and temporarily reduced fitness) as they struggle to

  14. Emigration of Natural and Hatchery Naco x (Chinook salmon; Oncorhynchus tshawytscha) and Heeyey (Steelhead; Oncorhynchus mykiss) Smolts from the Imnaha River, Oregon from 5 October 2006 to 21 June 2007, Annual Report 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, Brian; Espinosa, Neal

    2009-02-18

    This report summarizes the Nez Perce Tribe (NPT) Department of Fisheries Resources Management (DFRM) results for the Lower Snake River Compensation Plan (LSRCP) Hatchery Evaluation studies and the Imnaha River Smolt Monitoring Program (SMP) for the 2007 smolt migration from the Imnaha River, Oregon. These studies are closely coordinated and provide information about juvenile natural and hatchery spring/summer Naco x (Chinook Salmon; Oncorhynchus tshawytscha) and Heeyey (steelhead; O. mykiss) biological characteristics, emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam (MCD) on the Columbia River. These studies provide information on listed Naco xmore » (Chinook salmon) and Heeyey (steelhead) for the Federal Columbia River Power System (FCRPS) Biological Opinion (NMFS 2000). The Lower Snake River Compensation Plan program's goal is to maintain a hatchery production program of 490,000 Naco x (Chinook salmon) and 330,000 Heeyey (steelhead) for annual release in the Imnaha River (Carmichael et al. 1998, Whitesel et al. 1998). These hatchery releases occur to compensate for fish losses due to the construction and operation of the four lower Snake River hydroelectric facilities. One of the aspects of the LSRCP hatchery evaluation studies in the Imnaha River is to determine natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolt performance, emigration characteristics and survival (Kucera and Blenden 1998). A long term monitoring effort was established to document smolt emigrant timing and post release survival within the Imnaha River, estimate smolt survival downstream to McNary Dam, compare natural and hatchery smolt performance, and collect smolt-to-adult return information. This project collects information for, and is part of, a larger effort entitled Smolt Monitoring by Federal and Non-Federal Agencies (BPA Project No. 198712700). This larger project provides data on movement of smolts out of major

  15. Future of Pacific salmon in the face of environmental change: Lessons from one of the world's remaining productive salmon regions

    USGS Publications Warehouse

    Schoen, Erik R.; Wipfli, Mark S.; Trammell, Jamie; Rinella, Daniel J.; Floyd, Angelica L.; Grunblatt, Jess; McCarthy, Molly D.; Meyer, Benjamin E.; Morton, John M.; Powell, James E.; Prakash, Anupma; Reimer, Matthew N.; Stuefer, Svetlana L.; Toniolo, Horacio; Wells, Brett M.; Witmer, Frank D. W.

    2017-01-01

    Pacific salmon Oncorhynchus spp. face serious challenges from climate and landscape change, particularly in the southern portion of their native range. Conversely, climate warming appears to be allowing salmon to expand northwards into the Arctic. Between these geographic extremes, in the Gulf of Alaska region, salmon are at historically high abundances but face an uncertain future due to rapid environmental change. We examined changes in climate, hydrology, land cover, salmon populations, and fisheries over the past 30–70 years in this region. We focused on the Kenai River, which supports world-famous fisheries but where Chinook Salmon O. tshawytscha populations have declined, raising concerns about their future resilience. The region is warming and experiencing drier summers and wetter autumns. The landscape is also changing, with melting glaciers, wetland loss, wildfires, and human development. This environmental transformation will likely harm some salmon populations while benefiting others. Lowland salmon streams are especially vulnerable, but retreating glaciers may allow production gains in other streams. Some fishing communities harvest a diverse portfolio of fluctuating resources, whereas others have specialized over time, potentially limiting their resilience. Maintaining diverse habitats and salmon runs may allow ecosystems and fisheries to continue to thrive amidst these changes.

  16. Skagit River coho salmon life history model—Users’ guide

    USGS Publications Warehouse

    Woodward, Andrea; Kirby, Grant; Morris, Scott

    2017-09-29

    Natural resource management is conducted in the context of multiple anthropogenic stressors and is further challenged owing to changing climate. Experiments to determine the effects of climate change on complex ecological systems are nearly impossible. However, using a simulation model to synthesize current understanding of key ecological processes through the life cycle of a fish population can provide a platform for exploring potential effects of and management responses to changing conditions. Potential climate-change scenarios can be imposed, responses can be observed, and the effectiveness of potential actions can be evaluated. This approach is limited owing to future conditions likely deviating in range and timing from conditions used to create the model so that the model is expected to become obsolete. In the meantime, however, the modeling process explicitly states assumptions, clarifies information gaps, and provides a means to better understand which relationships are robust and which are vulnerable to changing climate by observing whether and why model output diverges from actual observations through time. The purpose of the model described herein is to provide such a decision-support tool regarding coho (Oncorhynchus kisutch) salmon for the Sauk-Suiattle Indian Tribe of Washington State.The Skagit coho salmon model is implemented in a system dynamics format and has three primary stocks—(1) predicted smolts, (2) realized smolts, and (3) escapement. “Predicted smolts” are the number of smolts expected based on the number of spawners in any year and the Ricker production curve. Pink salmon (Oncorhynchus gorbuscha) return to the Skagit River in odd years, and when they overlap with juvenile rearing coho salmon, coho smolt production is substantially higher than in non-pink years. Therefore, the model uses alternative Ricker equations to predict smolts depending on whether their juvenile year was a pink or non-pink year. The stock “realized smolts

  17. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project ismore » two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka

  18. Ecological, morphological, genetic and life history characteristics of two sockeye salmon populations, Tustumena Lake, Alaska

    USGS Publications Warehouse

    Woody, Carol Ann

    1998-01-01

    Populations can differ in both phenotypic and molecular genetic traits. Phenotypic differences likely result from differential selection pressures in the environment, whereas differences in neutral molecular markers result from genetic drift associated with some degree of reproductive isolation. Two sockeye salmon, Oncorhynchus nerka, populations were compared using both phenotypic and genotypic characters, and causal factors were examined. Salmon spawning in a short (<3 km), shallow (<21 cm), clear, homogenous spring-fed study site spawned later, were younger, smaller, and produced fewer and smaller eggs than salmon spawning in a longer (∼80 km), deeper, stained, diverse, precipitation-dominated stream. Run timing differences were associated with differences in stream thermal regimes. Age and size at maturity differences are likely due to differences in age-specific mortality rates. Fish in the shallow spring-fed system suffered higher adult predation rates and exhibited greater egg to fry survival compared to fish in the precipitation-fed system. Salmon in both streams exhibited non-random nest site selection for deeper habitats and smaller substrates (≥2 to <64 mm mean diameter) relative to available habitat; fish from the precipitation system avoided low velocity habitats containing fine (<2 mm) substrates. Genetic comparisons of six microsatellite loci indicated that run time was a more effective reproductive isolating mechanism than geographical distance. Differences between and within the tributary spawning populations are discussed in terms of selection, genetic drift, and the homogenizing effects of gene flow. This study indicates important adaptive differences may exist between proximate spawning groups of salmon which should be considered when characterizing populations for conservation or management purposes.

  19. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, Daniel J.; Wipfli, Mark S.; Stricker, Craig A.; Heintz, Ron A.; Rinella, Matthew J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  20. Restitution and genetic differentiation of salmon populations in the southern Baltic genotyped with the Atlantic salmon 7K SNP array.

    PubMed

    Poćwierz-Kotus, Anita; Bernaś, Rafał; Kent, Matthew P; Lien, Sigbjørn; Leliűna, Egidijus; Dębowski, Piotr; Wenne, Roman

    2015-05-06

    Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland. One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses. Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28). Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of

  1. Assessing and mitigating dock shading impacts on the behavior of juvenile pacific salmon (Oncorhynchus spp.) : can artificial light mitigate the effects?

    DOT National Transportation Integrated Search

    2010-06-01

    The shadows from large over-water structures built on nearshore habitats in the Puget Sound can reduce prey abundance and disrupt juvenile Pacific salmon (Oncorhynchus spp.) migratory behavior with potential consequences on survival rates. As part of...

  2. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillson, Todd D.

    2003-10-15

    creation of spawning refugias, supplementation if necessary and a habitat and fish monitoring and evaluation plan. If chum have been extirpated from previously utilized streams, develop re-introduction plans that utilize appropriate genetic donor stock(s) of LCR chum salmon and integrate habitat improvement and fry-to-adult survival evaluations. Third, reduce extinction risks to the Grays River chum salmon population by randomly capturing adults in the basin for use in a supplementation program and reintroduction into the Chinook River basin. The Duncan Creek project was developed using the same recovery strategy implemented for LCR chum. Biologists with the WDFW and Pacific States Marine Fisheries Commission (PSMFC) identified Duncan Creek as an ideal upriver location below Bonneville Dam for chum re-introduction. It has several attributes that make it a viable location for a re-introduction project: historically chum salmon were present, the creek is low gradient, has numerous springs/seeps, has a low potential for future development and is located close to a donor population of Lower Gorge chum. The Duncan Creek project has two goals: (1) re-introduction of chum into Duncan Creek by providing off channel high-quality spawning and incubation areas, and (2) to simultaneously evaluate natural recolonization and a supplementation strategy where adults are collected and spawned artificially at a hatchery. For supplementation, eggs are incubated and the fry reared at the Washougal Hatchery to be released back into Duncan Creek. The tasks associated with re-establishing a naturally self-sustaining population include: (1) removing mud, sand and organics present in four of the creek branches and replace with gravels expected to provide maximum egg-to-fry survival rates to a depth of at least two feet; (2) armoring the sides of these channels to reduce importation of sediment by fish spawning on the margins; (3) planting native vegetation adjacent to the channels to stabilize the

  3. Infectious diseases of Pacific salmon

    USGS Publications Warehouse

    1954-01-01

    A variety of bacteria has been found responsible for outbreaks of disease in salmon in sea water. The most important of these is a species of Vibrio. Tuberculosis has been found in adult chinook salmon and the evidence indicates that the disease was contracted at sea.

  4. Survival and behavioral effects of exposure to a hydrokinetic turbine on juvenile Atlantic salmon and adult American shad

    USGS Publications Warehouse

    Castro-Santos, Theodore R.; Haro, Alex

    2015-01-01

    This paper describes a series of experiments designed to measure the effect of exposure to a full-scale, vertical axis hydrokinetic turbine on downstream migrating juvenile Atlantic salmon (N=75) and upstream migrating adult American shad (N=208). Controlled studies were performed in a large-scale, open-channel flume, and all individuals approached the turbine under volitional control. No injuries were observed, and there was no measurable increase in mortality associated with turbine passage. Exposure to the turbine elicited behavioral responses from both species, however, with salmon passing primarily over the downrunning blades. Shad movement was impeded by the device, as indicated by fewer attempts of shorter duration and reduced distance of ascent up the flume. More work should be performed in both laboratory and field conditions to determine to what extent these effects are likely to influence free-swimming fish.

  5. Comparative anatomy of the dorsal hump in mature Pacific salmon.

    PubMed

    Susuki, Kenta; Ban, Masatoshi; Ichimura, Masaki; Kudo, Hideaki

    2017-07-01

    Mature male Pacific salmon (Genus Oncorhynchus) demonstrate prominent morphological changes, such as the development of a dorsal hump. The degree of dorsal hump formation depends on the species in Pacific salmon. It is generally accepted that mature males of sockeye (O. nerka) and pink (O. gorbuscha) salmon develop most pronounced dorsal humps. The internal structure of the dorsal hump in pink salmon has been confirmed in detail. In this study, the dorsal hump morphologies were analyzed in four Pacific salmon species inhabiting Japan, masu (O. masou), sockeye, chum (O. keta), and pink salmon. The internal structure of the dorsal humps also depended on the species; sockeye and pink salmon showed conspicuous development of connective tissue and growth of bone tissues in the dorsal tissues. Masu and chum salmon exhibited less-pronounced increases in connective tissues and bone growth. Hyaluronic acid was clearly detected in dorsal hump connective tissue by histochemistry, except for in masu salmon. The lipid content in dorsal hump connective tissue was richer in masu and chum salmon than in sockeye and pink salmon. These results revealed that the patterns of dorsal hump formation differed among species, and especially sockeye and pink salmon develop pronounced dorsal humps through both increases in the amount of connective tissue and the growth of bone tissues. In contrast, masu and chum salmon develop their dorsal humps by the growth of bone tissues, rather than the development of connective tissue. © 2017 Wiley Periodicals, Inc.

  6. Enhanced transcriptomic responses in the Pacific salmon louse Lepeophtheirus salmonis oncorhynchi to the non-native Atlantic Salmon Salmo salar suggests increased parasite fitness.

    PubMed

    Braden, Laura M; Sutherland, Ben J G; Koop, Ben F; Jones, Simon R M

    2017-01-30

    Outcomes of infections with the salmon louse Lepeophtheirus salmonis vary considerably among its natural hosts (Salmo, Oncorhynchus spp.). Host-parasite interactions range from weak to strong host responses accompanied by high to low parasite abundances, respectively. Parasite behavioral studies indicate that the louse prefers the host Atlantic Salmon (Salmo salar), which is characterized by a weak immune response, and that this results in enhanced parasite reproduction and growth rates. Furthermore, parasite-derived immunosuppressive molecules (e.g., proteases) have been detected at higher amounts in response to the mucus of Atlantic Salmon relative to Coho Salmon (Oncorhynchus kisutch). However, the host-specific responses of the salmon louse have not been well characterized in either of the genetically distinct sub-species that occur in the Atlantic and Pacific Oceans. We assessed and compared the transcriptomic feeding response of the Pacific salmon louse (L. salmonis oncorhynchi,) while parasitizing the highly susceptible Atlantic Salmon and Sockeye Salmon (Oncorhynchus nerka) or the more resistant Coho Salmon (Oncorhynchus kisutch) using a 38 K oligonucleotide microarray. The response of the louse was enhanced both in the number of overexpressed genes and in the magnitude of expression while feeding on the non-native Atlantic Salmon, compared to either Coho or Sockeye Salmon. For example, putative virulence factors (e.g., cathepsin L, trypsin, carboxypeptidase B), metabolic enzymes (e.g., cytochrome B, cytochrome C), protein synthesis enzymes (e.g., ribosomal protein P2, 60S ribosomal protein L7), and reproduction-related genes (e.g., estrogen sulfotransferase) were overexpressed in Atlantic-fed lice, indicating heightened parasite fitness with this host species. In contrast, responses in Coho- or Sockeye-fed lice were more similar to those of parasites deprived of a host. To test for host acclimation by the parasite, we performed a reciprocal host transfer

  7. Snake River fall Chinook salmon life history investigations, annual report 2008

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.; Bellgraph, Brian J.; Buchanan, Rebecca A.

    2010-01-01

    In 2009, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. We released a total of 1,000 tagged hatchery subyearlings at Cherry Lane on the Clearwater River in mid August and we monitored them as they passed downstream through various river and reservoir reaches. Survival through the free-flowing river was high (>0.85) for both radio- and acoustic-tagged fish, but dropped substantially as fish delayed in the Transition Zone and Confluence areas. Estimates of the joint probability of migration and survival through the Transition Zone and Confluence reaches combined were similar for both radio- and acoustic-tagged fish, and ranged from about 0.30 to 0.35. Estimates of the joint probability of delaying and surviving in the combined Transition Zone and Confluence peaked at the beginning of the study, ranging from 0.323 ( SE =NA; radio-telemetry data) to 0.466 ( SE =0.024; acoustic-telemetry data), and then steadily declined throughout the remainder of the study. By the end of October, no live tagged juvenile salmon were detected in either the Transition Zone or the Confluence. As estimates of the probability of delay decreased throughout the study, estimates of the probability of mortality increased, as evidenced by the survival estimate of 0.650 ( SE =0.025) at the end of October (acoustic-telemetry data). Few fish were detected at Lower Granite Dam during our study and even fewer fish passed the dam before PIT-tag monitoring ended at the end of October. Five acoustic-tagged fish passed Lower Granite Dam in October and 12 passed the dam in November based on detections in the dam tailrace; however, too few detections were available to calculate the joint probabilities of migrating and surviving or delaying and surviving. Estimates of the joint probability of migrating and surviving through the reservoir was less than 0

  8. The atlantic salmon: Genetics, conservation and management

    USGS Publications Warehouse

    Verspoor, Eric; Stradmeyer, Lee; Nielsen, Jennifer L.

    2007-01-01

    Atlantic Salmon is a cultural icon throughout its North Atlantic range; it is the focus of probably the World’s highest profile recreational fishery and is the basis for one of the World’s largest aquaculture industries. Despite this, many wild stocks of salmon are in decline and underpinning this is a dearth of information on the nature and extent of population structuring and adaptive population differentiation, and its implications for species conservation.This important new book will go a long way to rectify this situation by providing a thorough review of the genetics of Atlantic salmon. Sponsored by the European Union and the Atlantic Salmon Trust, this book comprises the work of an international team of scientists, carefully integrated and edited to provide a landmark book of vital interest to all those working with Atlantic salmon.

  9. Diel variation in summer habitat use, feeding periodicity, and diet of subyearling Atlantic salmon in the Salmon River Basin, New York

    USGS Publications Warehouse

    Johnson, James H.

    2013-01-01

    The habitat use, diet composition, and feeding periodicity of subyearling Atlantic salmon (Salmo salar) was examined during both day and night periods during summer in tributaries of Lake Ontario. The amount of cover used was the major habitat variable that differed between day and night periods in both streams. At night subyearling Atlantic salmon were associated with significantly less cover than during the day. Principal Component Analysis showed that habitat selection of subyearling Atlantic salmon was more pronounced during the day in both streams and that salmon in Orwell Brook exhibited more diel variability in habitat use than salmon in Trout Brook. Subyearling salmon fed primarily from the benthic substrate on baetids, chironomids, and leptocerids. There was a substantial amount of diel variation in diet composition with peak feeding occurring from 0400 h to 0800 h on July 21–22, 2008.

  10. Updraft gasification of salmon processing waste.

    PubMed

    Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles

    2009-10-01

    The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable.

  11. Concentrations of trace elements in Pacific and Atlantic salmon

    NASA Astrophysics Data System (ADS)

    Khristoforova, N. K.; Tsygankov, V. Yu.; Boyarova, M. D.; Lukyanova, O. N.

    2015-09-01

    Concentrations of Hg, As, Cd, Pb, Zn, and Cu were analyzed in the two most abundant species of Pacific salmon, chum and pink salmon, caught in the Kuril Islands at the end of July, 2013. The concentrations of toxic elements (Hg, As, Pb, Cd) in males and females of these species are below the maximum permissible concentrations for seafood. It was found that farmed filleted Atlantic salmon are dominated by Zn and Cu, while muscles of wild salmon are dominated by Pb. Observed differences are obviously related to peculiar environmental geochemical conditions: anthropogenic impact for Atlantic salmon grown in coastal waters and the influence of the natural factors volcanism and upwelling for wild salmon from the Kuril waters.

  12. Geomorphology and the Restoration Ecology of Salmon

    NASA Astrophysics Data System (ADS)

    Montgomery, D. R.

    2005-05-01

    Natural and anthropogenic influences on watershed processes affect the distribution and abundance of salmon across a wide range of spatial and temporal scales, from differences in species use and density between individual pools and riffles to regional patterns of threatened, endangered, and extinct runs. The specific impacts of human activities (e.g., mining, logging, and urbanization) vary among regions and watersheds, as well as between different channel reaches in the same watershed. Understanding of both disturbance history and key biophysical processes are important for diagnosing the nature and causes of differences between historical and contemporary fluvial and watershed conditions based on evaluation of both historical and spatial contexts. In order to be most effective, the contribution of geomorphologic insight to salmon recovery efforts requires both assessment protocols commensurate with providing adequate knowledge of historical and spatial context, and experienced practitioners well versed in adapting general theory to local settings. The historical record of salmon management in Europe, New England and the Pacific Northwest indicates that there is substantial need to incorporate geomorphic insights on the effects of changes in watershed processes on salmon habitat and salmon abundance into salmon recovery efforts.

  13. Determinants of public attitudes to genetically modified salmon.

    PubMed

    Amin, Latifah; Azad, Md Abul Kalam; Gausmian, Mohd Hanafy; Zulkifli, Faizah

    2014-01-01

    The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country.

  14. Determinants of Public Attitudes to Genetically Modified Salmon

    PubMed Central

    Amin, Latifah; Azad, Md. Abul Kalam; Gausmian, Mohd Hanafy; Zulkifli, Faizah

    2014-01-01

    The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country. PMID:24489695

  15. Antibody against infectious salmon anaemia virus among feral Atlantic salmon (Salmo salar)

    USGS Publications Warehouse

    Cipriano, R.C.

    2009-01-01

    Archived sera from Atlantic salmon (Salmo salar) that returned to the Penobscot River (Maine), Merrimack River (Massachusetts), and Connecticut River (in Massachusetts) from 1995 to 2002 were analysed for antibodies against infectious salmon anaemia virus (ISAV) using an enzyme-linked immunosorbent assay (ELISA). Up to 60 samples were archived per river system per year. In a given year, the number of fish sampled by ELISA for ISAV antibodies in the Penobscot River ranged from 2.9 to 11.2, and the range of salmon sampled in the Merrimack River and the Connecticut River was 31.3-100 and 20.0-67.5, respectively. Archived sera were not available for the 1995 and 2002 year classes from the Connecticut River. In all, 1141 samples were processed; 14 serum samples tested positive for antibodies to ISAV. In the Penobscot River, serum from one fish tested positive in each of the 1995 and 1999 year-class returns, and sera from two fish tested positive in the 1998 returns. In the Merrimack River, sera from four fish tested positive in each of the 1996 and 1997 returns, and sera from two fish were positive in the 2002 return. None of the archived sera from Atlantic salmon that returned to the Connecticut River tested positive. ?? 2009 United States Government, Department of the Interior.

  16. A probabilistic approach to quantifying hydrologic thresholds regulating migration of adult Atlantic salmon into spawning streams

    NASA Astrophysics Data System (ADS)

    Lazzaro, G.; Soulsby, C.; Tetzlaff, D.; Botter, G.

    2017-03-01

    Atlantic salmon is an economically and ecologically important fish species, whose survival is dependent on successful spawning in headwater rivers. Streamflow dynamics often have a strong control on spawning because fish require sufficiently high discharges to move upriver and enter spawning streams. However, these streamflow effects are modulated by biological factors such as the number and the timing of returning fish in relation to the annual spawning window in the fall/winter. In this paper, we develop and apply a novel probabilistic approach to quantify these interactions using a parsimonious outflux-influx model linking the number of female salmon emigrating (i.e., outflux) and returning (i.e., influx) to a spawning stream in Scotland. The model explicitly accounts for the interannual variability of the hydrologic regime and the hydrological connectivity of spawning streams to main rivers. Model results are evaluated against a detailed long-term (40 years) hydroecological data set that includes annual fluxes of salmon, allowing us to explicitly assess the role of discharge variability. The satisfactory model results show quantitatively that hydrologic variability contributes to the observed dynamics of salmon returns, with a good correlation between the positive (negative) peaks in the immigration data set and the exceedance (nonexceedance) probability of a threshold flow (0.3 m3/s). Importantly, model performance deteriorates when the interannual variability of flow regime is disregarded. The analysis suggests that flow thresholds and hydrological connectivity for spawning return represent a quantifiable and predictable feature of salmon rivers, which may be helpful in decision making where flow regimes are altered by water abstractions.

  17. Diet, feeding patterns, and prey selection of subyearling Atlantic salmon (Salmo salar) and subyearling chinook salmon (Oncorhynchus tshawytscha) in a tributary of Lake Ontario

    USGS Publications Warehouse

    Johnson, J. H.; Nash, K. J.; Chiavelli, R. A.; DiRado, J. A.; Mackey, G. E.; Knight, J. R.; Diaz, A. R.

    2017-01-01

    Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi-national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.

  18. Differential use of salmon by vertebrate consumers: implications for conservation

    PubMed Central

    Wheat, Rachel E.; Allen, Jennifer M.; Wilmers, Christopher C.

    2015-01-01

    Salmon and other anadromous fish are consumed by vertebrates with distinct life history strategies to capitalize on this ephemeral pulse of resource availability. Depending on the timing of salmon arrival, this resource may be in surplus to the needs of vertebrate consumers if, for instance, their populations are limited by food availability during other times of year. However, the life history of some consumers enables more efficient exploitation of these ephemeral resources. Bears can deposit fat and then hibernate to avoid winter food scarcity, and highly mobile consumers such as eagles, gulls, and other birds can migrate to access asynchronous pulses of salmon availability. We used camera traps on pink, chum, and sockeye salmon spawning grounds with various run times and stream morphologies, and on individual salmon carcasses, to discern potentially different use patterns among consumers. Wildlife use of salmon was highly heterogeneous. Ravens were the only avian consumer that fed heavily on pink salmon in small streams. Eagles and gulls did not feed on early pink salmon runs in streams, and only moderately at early sockeye runs, but were the dominant consumers at late chum salmon runs, particularly on expansive river flats. Brown bears used all salmon resources far more than other terrestrial vertebrates. Notably, black bears were not observed on salmon spawning grounds despite being the most frequently observed vertebrate on roads and trails. From a conservation and management perspective, all salmon species and stream morphologies are used extensively by bears, but salmon spawning late in the year are disproportionately important to eagles and other highly mobile species that are seasonally limited by winter food availability. PMID:26339539

  19. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previousmore » work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the

  20. THE FUTURE OF PACIFIC NORTHWEST SALMON: ANATOMY OF A CRISIS

    EPA Science Inventory

    Salmon are categorized biologically into two groups: Pacific salmon or Atlantic salmon. All seven species of Pacific salmon on both sides of the North Pacific Ocean have declined substantially from historic levels, but large runs still occur in northern British Columbia, Yukon,...

  1. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R.

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start ofmore » this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these

  2. Assessing survival of Mid-Columbia River released juvenile salmonids at McNary Dam, Washington, 2008-09

    USGS Publications Warehouse

    Evans, Scott D.; Walker, Christopher E.; Brewer, Scott J.; Adams, Noah S.

    2010-01-01

    Few studies have evaluated survival of juvenile salmon over long river reaches in the Columbia River and information regarding the survival of sockeye salmon at lower Columbia River dams is lacking. To address these information gaps, the U.S. Geological Survey was contracted by the U.S. Army Corps of Engineers to evaluate the possibility of using tagged fish released in the Mid-Columbia River to assess passage and survival at and downstream of McNary Dam. Using the acoustic telemetry systems already in place for a passage and survival study at McNary Dam, fish released from the tailraces of Wells, Rocky Reach, Rock Island, Wanapum, and Priest Rapids Dams were detected at McNary Dam and at the subsequent downstream arrays. These data were used to generate route-specific survival probabilities using single-release models from fish released in the Mid-Columbia River. We document trends in passage and survival probabilities at McNary Dam for yearling Chinook and sockeye salmon and juvenile steelhead released during studies in the Mid-Columbia River. Trends in the survival and passage of these juvenile salmonid species are presented and discussed. However, comparisons made across years and between study groups are not possible because of differences in the source of the test fish, the type of acoustic tags used, the absence of the use of passive integrated transponder tags in some of the release groups, differences in tagging and release protocols, annual differences in dam operations and configurations, differences in how the survival models were constructed (that is, number of routes that could be estimated given the number of fish detected), and the number and length of reaches included in the analysis (downstream reach length and arrays). Despite these differences, the data we present offer a unique opportunity to examine the migration behavior and survival of a group of fish that otherwise would not be studied. This is particularly true for sockeye salmon because

  3. Multigenerational outbreeding effects in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Lehnert, Sarah J; Love, Oliver P; Pitcher, Trevor E; Higgs, Dennis M; Heath, Daniel D

    2014-08-01

    Outbreeding, mating between genetically divergent individuals, may result in negative fitness consequences for offspring via outbreeding depression. Outbreeding effects are of notable concern in salmonid research as outbreeding can have major implications for salmon aquaculture and conservation management. We therefore quantified outbreeding effects in two generations (F1 hybrids and F2 backcrossed hybrids) of Chinook salmon (Oncorhynchus tshawytscha) derived from captively-reared purebred lines that had been selectively bred for differential performance based on disease resistance and growth rate. Parental lines were crossed in 2009 to create purebred and reciprocal hybrid crosses (n = 53 families), and in 2010 parental and hybrid crosses were crossed to create purebred and backcrossed hybrid crosses (n = 66 families). Although we found significant genetic divergence between the parental lines (FST = 0.130), reciprocal F1 hybrids showed no evidence of outbreeding depression (hybrid breakdown) or favorable heterosis for weight, length, condition or survival. The F2 backcrossed hybrids showed no outbreeding depression for a suite of fitness related traits measured from egg to sexually mature adult life stages. Our study contributes to the current knowledge of outbreeding effects in salmonids and supports the need for more research to better comprehend the mechanisms driving outbreeding depression.

  4. Chinook salmon foraging patterns in a changing Lake Michigan

    USGS Publications Warehouse

    Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Claramunt, Randall M.

    2013-01-01

    Since Pacific salmon stocking began in Lake Michigan, managers have attempted to maintain salmon abundance at high levels within what can be sustained by available prey fishes, primarily Alewife Alosa pseudoharengus. Chinook Salmon Oncorhynchus tshawytscha are the primary apex predators in pelagic Lake Michigan and patterns in their prey selection (by species and size) may strongly influence pelagic prey fish communities in any given year. In 1994–1996, there were larger Alewives, relatively more abundant alternative prey species, fewer Chinook Salmon, and fewer invasive species in Lake Michigan than in 2009–2010. The years 2009–2010 were instead characterized by smaller, leaner Alewives, fewer alternative prey species, higher abundance of Chinook Salmon, a firmly established nonnative benthic community, and reduced abundance of Diporeia, an important food of Lake Michigan prey fish. We characterized Chinook Salmon diets, prey species selectivity, and prey size selectivity between 1994–1996 and 2009–2010 time periods. In 1994–1996, Alewife as prey represented a smaller percentage of Chinook Salmon diets than in 2009–2010, when alewife comprised over 90% of Chinook Salmon diets, possibly due to declines in alternative prey fish populations. The size of Alewives eaten by Chinook Salmon also decreased between these two time periods. For the largest Chinook Salmon in 2009–2010, the average size of Alewife prey was nearly 50 mm total length shorter than in 1994–1996. We suggest that changes in the Lake Michigan food web, such as the decline in Diporeia, may have contributed to the relatively low abundance of large Alewives during the late 2000s by heightening the effect of predation from top predators like Chinook Salmon, which have retained a preference for Alewife and now forage with greater frequency on smaller Alewives.

  5. Migration delays caused by anthropogenic barriers: Modeling dams, temperature, and success of migrating salmon smolts

    USGS Publications Warehouse

    Marschall, E.A.; Mather, M. E.; Parrish, D.L.; Allison, G.W.; McMenemy, J.R.

    2011-01-01

    Disruption to migration is a growing problem for conservation and restoration of animal populations. Anthropogenic barriers along migration paths can delay or prolong migrations, which may result in a mismatch with migration-timing adaptations. To understand the interaction of dams (as barriers along a migration path), seasonally changing environmental conditions, timing of Atlantic salmon (Salmo salar) downstream migration, and ultimate migration success, we used 10 years of river temperature and discharge data as a template upon which we simulated downstream movement of salmon. Atlantic salmon is a cool-water species whose downstream migrating smolts must complete migration before river temperatures become too warm. We found that dams had a local effect on survival as well as a survival effect that was spatially and temporally removed from the encounter with the dam. While smolts are delayed by dams, temperatures downstream can reach lethal or near-lethal temperatures;as a result, the match between completion of migration and the window of appropriate migration conditions can be disrupted. The strength of this spatially and temporally removed effect is at least comparable to the local effects of dams in determining smolt migration success in the presence of dams. We also considered smolts from different tributaries, varying in distance from the river mouth, to assess the potential importance of locally adapted migration timing on the effect of barriers. Migration-initiation temperature affected modeled smolt survival differentially across tributaries, with the success of smolts from upstream tributaries being much more variable across years than that of smolts with a shorter distance to travel. As a whole, these results point to the importance of broadening our spatial and temporal view when managing migrating populations. We must consider not only how many individuals never make it across migration barriers, but also the spatially and temporally removed

  6. SALMON 2100: THE FUTURE OF WILD PACIFIC SALMON

    EPA Science Inventory

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  7. Salmon Mapper

    EPA Pesticide Factsheets

    Information about the web application to assist pesticide users' with an understanding of the spatial extent of certain pesticide use limitations to protect endangered or threatened salmon and steelhead in California, Oregon and Washington.

  8. California salmon and steelhead: Beyond the crossroads

    USGS Publications Warehouse

    Mills, Terry J.; McEwan, Dennis R.; Jennings, Mark R.; Stouder, Deanna J.; Bisson, Peter A.; Naiman, Robert J.

    1997-01-01

    Virtually all California salmon (Oncorhynchus spp.) and steelhead (O. mykiss) stocks have declined to record or near-record low levels during 1980-95. Escapement of naturally spawning Klamath and Sacramento basin fall-run chinook salmon (O. tshawytscha) stocks has fallen consistently below the goals of 35,000 adults (Klamath) and 120,000 adults (Sacramento) established by the Pacific Fishery Management Council. These two stocks constitute the primary management units for ocean harvest regulations in California and southern Oregon. This decline triggered a mandatory review of ocean harvest and inland production conditions in each basin. The Sacramento winter-run chinook salmon, once numbering >100,000 adult spawners, was listed as threatened in 1990 and endangered in 1994 under the Endangered Species Act. The listing occurred as a result of a precipitous decline in abundance (to <200 adult spawners) and significant threats to this stock’s continued existence.Spring-run chinook salmon, historically an abundant component of California’s inland fish fauna with >500,000 adult spawners, has been extirpated from the San Joaquin River basin. However, remnant populations of this naturally spawning stock remain within the Klamath, Smith, and Sacramento river basins. Unfortunately, annual counts of 3,000-25,000 spawners in the Sacramento River basin during the past 25 years are largely of hatchery origin. Recent steelhead data from the same region indicate that many stocks are close to extinction, and nearly all steel-head in the Sacramento River are also of hatchery origin. Both spring-run chinook salmon and summer steelhead are considered to be species of special concern by the California Department of Fish and Game because of their limited distributions and sensitivities to degraded habitat conditions. The southern race of winter steelhead south of Point Conception is nearly extinct and remnant populations have been recently recorded in only 9 streams.Coastal cutthroat

  9. History and effects of hatchery salmon in the Pacific

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Gallaugher, Patricia; Wood, Laurie

    2004-01-01

    There has been a long history of production of hatchery salmon along the Pacific coast - from California’s first efforts in the 1870s using eggs from chinook and rainbow trout to the recent large-scale production hatcheries for pink salmon in Japan and the Russian Far East. The rationale for this production has also varied from replacement of fish lost in commercial ocean harvests to mitigation and restoration of salmon in areas where extensive habitat alteration has reduced salmonid viability and abundance. Over the years, we have become very successful in producing a certain type of product from salmon hatcheries, but until recently we seldom questioned the impacts the production and release of hatchery fish may have on freshwater and marine aquatic ecosystems and on the sustainability of sympatric wild salmon populations. This paper addresses the history of hatcheries around the Pacific Rim and considers potential negative implications of hatchery-produced salmon through discussions of biological impacts and biodiversity, ecological impacts and competitive displacement, fish and ecosystem health, and genetic impacts of hatchery fish as threats to wild populations of Pacific salmon.

  10. Breeding site selection by coho salmon (Oncorhynchus kisutch) in relation to large wood additions and factors that influence reproductive success

    USGS Publications Warehouse

    Clark, Steven M.; Dunham, Jason B.; McEnroe, Jeffery R.; Lightcap, Scott W.

    2014-01-01

    The fitness of female Pacific salmon (Oncorhynchus spp.) with respect to breeding behavior can be partitioned into at least four fitness components: survival to reproduction, competition for breeding sites, success of egg incubation, and suitability of the local environment near breeding sites for early rearing of juveniles. We evaluated the relative influences of habitat features linked to these fitness components with respect to selection of breeding sites by coho salmon (Oncorhynchus kisutch). We also evaluated associations between breeding site selection and additions of large wood, as the latter were introduced into the study system as a means of restoring habitat conditions to benefit coho salmon. We used a model selection approach to organize specific habitat features into groupings reflecting fitness components and influences of large wood. Results of this work suggest that female coho salmon likely select breeding sites based on a wide range of habitat features linked to all four hypothesized fitness components. More specifically, model parameter estimates indicated that breeding site selection was most strongly influenced by proximity to pool-tail crests and deeper water (mean and maximum depths). Linkages between large wood and breeding site selection were less clear. Overall, our findings suggest that breeding site selection by coho salmon is influenced by a suite of fitness components in addition to the egg incubation environment, which has been the emphasis of much work in the past.

  11. Habitat Utilization by Juvenile Pink and Chum Salmon in Upper Resurrection Bay, Alaska

    DTIC Science & Technology

    1989-11-01

    salmon Oncorhynchus kotez Chum salmon Untcorhynchua kisutch Coho salmon Orncorhynchus nerka Sockeye salmon Oncorhynchus tohawytacha Kink salmon...coho salmon, 40 Dolly Varden, 31 sculpin, 8 tomcod (Microgadus proxins), 17 starry flounder, and 10 sockeye salmon (0. nerka ) stomachs from Cliff and...AK. Godin, J. G. J. 1981. "Daily Patterns of Feeding Behavior, Daily Rations, and Diets of Juvenile Pink Salmon ( Oncorhynchus go’buscha) in Two

  12. Habitat Suitability Index Models: Coho salmon

    USGS Publications Warehouse

    McMahon, Thomas E.

    1983-01-01

    The coho salmon (Oncorhynchus kisutch) is native to the northern Pacific Ocean, spawning and rearing in streams from Monterey Bay, California, to Point Hope, Alaska, and southward along the Asiatic coast to Japan. Its center of abundance in North America is from Oregon to Alaska (Briggs 1953; Godfrey 1965; Hart 1973; Scott and Crossman 1973). Coho salmon have been successfully introduced into the Great Lakes and reservoirs and lakes throughout the United States to provide put-and-grow sport fishing (Scott and Crossman 1973; Wigglesworth and Rawson 1974). No subspecies of coho salmon have been described (Godfrey 1965).

  13. Smolt Monitoring Program Comparative Survival Rate Study (CSS); Oregon Department of Fish and Wildlife, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian; Carmichael, Richard

    2003-05-01

    We PIT-tagged juvenile spring chinook salmon reared at Lookingglass Hatchery in October 2001 as part of the Comparative Survival Rate Study (CSS) for migratory year (MY) 2002. We tagged 20,998 Imnaha stock spring chinook salmon, and after mortality and tag loss, we allowed the remaining 20,920 fish to leave the acclimation pond at our Imnaha River satellite facility beginning 21 March 2002 to begin their seaward migration. The fish remaining in the pond were forced out on 17 April 2002. We tagged 20,973 Catherine Creek stock captive brood progeny spring chinook salmon, and after mortality and tag loss, we allowedmore » the remaining 20,796 fish to leave the acclimation ponds at our Catherine Creek satellite facility beginning 1 April 2001 to begin their seaward migration. The fish remaining in the ponds were forced out on 15 April 2001. We estimated survival rates, from release to Lower Granite Dam in MY 2002, for three stocks of hatchery spring chinook salmon tagged at Lookingglass Hatchery to determine their relative migration performance. Imnaha River stock and Lostine River stock survival rates were similar and were higher than the survival rate of Catherine Creek stock. We PIT-tagged 20,950 BY 2001 Imnaha River stock and 20,820 BY 2001 Catherine Creek stock captive brood progeny in October 2002 as part of the CSS for MY 2003. At the time the fish were transferred from Lookingglass Hatchery to the acclimation site, the rates of mortality and tag loss for Imnaha River stock were 0.14% and 0.06%, respectively. Catherine Creek stock, during the same period, had rates of mortality and tag loss of 0.57% and 0.31%, respectively. There was slightly elevated mortality, primarily from BKD, in one raceway of Catherine Creek stock at Lookingglass Hatchery for BY 2001.« less

  14. Prerelease disease treatment with potassium permanganate for Fall Chinook salmon smolts

    USGS Publications Warehouse

    Smith, Stanley D.; Gould, Rowan W.; Zaugg, Wally S.; Harrell, Lee W.; Mahnken, Conrad V.W.

    1995-01-01

    Standard potassium permanganate treatment (2 mg KMnO4/L freshwater for 1 h on three consecutive days) was applied to presmolts (parr) and smolts of fall chinook salmon (Oncorhynchus tshawytscha). Smoltification was determined by gill Na+,K+-ATPase activity. Treatments were conducted 73, 59, 45, 31, 16, and 2 d prior to full-strength seawater entry in aquaria. Potassium permanganate did not affect either growth or survival in seawater over 25 d. We observed a delayed rise in gill Na+,K+-ATPase activity in fish treated 16 d prior to seawater entry.

  15. Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2008 Annual Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Wayne H.; Schricker, Jaym'e; Ruzychi, James R.

    The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations remain depressed relative to historic levels and limited information is available for steelhead life history. Numerous habitat protection and rehabilitation projects have been implemented in the basin to improve salmonid freshwater production and survival. However, these projects often lack effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed programmatic or watershed (status and trend) information to help evaluatemore » project-specific effectiveness monitoring efforts as well as meet some data needs as index stocks. Our continued monitoring efforts to estimate salmonid smolt abundance, age structure, SAR, smolts/redd, freshwater habitat use, and distribution of critical life states will enable managers to assess the long-term effectiveness of habitat projects and to differentiate freshwater and ocean survival. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the level of emphasis by the NWPPC Fish and Wildlife Program, Independent Scientific Advisory Board (ISAB), Independent Scientific Review Panel (ISRP), NOAA National Marine Fisheries Service (NMFS), and the Oregon Plan for Salmon and Watersheds (OWEB). Each of these groups have placed priority on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. The objective is to estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook Oncorhynchus tshawytscha and

  16. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon.

    PubMed

    Sparks, Morgan M; Westley, Peter A H; Falke, Jeffrey A; Quinn, Thomas P

    2017-12-01

    An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and among treatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could facilitate

  17. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon

    USGS Publications Warehouse

    Sparks, Morgan M.; Westley, Peter A. H.; Falke, Jeffrey A.; Quinn, Thomas P.

    2017-01-01

    An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and amongtreatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could

  18. The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.

    2013-02-01

    Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three developmentmore » periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage

  19. Performance assessment of bi-directional knotless tissue-closure devices in juvenile Chinook salmon surgically implanted with acoustic transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodley, Christa M.; Wagner, Katie A.; Bryson, Amanda J.

    Acoustic transmitters used in survival and telemetry studies are often surgically implanted in fish. While this is a well-established method, it has the potential to affect health, behavior, and survival, thus affecting study results. Much research has been done to try to minimize the harmful effects caused by the transmitter and tagging process. In 2009, we first investigated the use of a bi-directional knotless (barbed) suture material in juvenile Chinook salmon (Oncorhynchus tshawytscha). We found that it resulted in higher tag retention than the simple interrupted suture pattern; however, the occurrence of ulceration and redness increased. The objective of thismore » study was to refine the suturing patterns of the bi-directional knotless suture and retest suture performance in juvenile Chinook salmon. We tested the bi-directional suture using 3 different suture patterns and two needle types: 6-Point (12-mm needle circumference), Wide “N” (12-mm needle circumference), Wide “N” Knot 12 (12-mm needle circumference), and Wide “N” Knot 18 (18-mm needle circumference).« less

  20. Fish farms, parasites, and predators: implications for salmon population dynamics.

    PubMed

    Krkosek, Martin; Connors, Brendan M; Ford, Helen; Peacock, Stephanie; Mages, Paul; Ford, Jennifer S; Morton, Alexandra; Volpe, John P; Hilborn, Ray; Dill, Lawrence M; Lewis, Mark A

    2011-04-01

    For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an

  1. Some quantitative indicators of postovulatory aging and its effect on larval and juvenile development of Atlantic salmon (Salmo salar).

    PubMed

    Mommens, Maren; Storset, Arne; Babiak, Igor

    2015-07-01

    Modern out-of-season egg production in Atlantic salmon (Salmo salar) increases the risk of postovulatory aging (POA) of oocytes. Postovulatory aging is known to influence oocyte quality in salmonids, but reliable tests for POA are lacking in Atlantic salmon egg production. To address this problem, we have collected oocytes from the same 20 Atlantic salmon females sequentially in approximately 1-week intervals, from the start of ovulation until 28 days postovulation (dpo), to determine the effect of natural retention of matured oocytes in body coelomic cavity on further performance of embryos and juveniles produced from those oocytes. Also, we investigated oocyte water hardening and several coelomic fluid parameters as potential quantitative indicators of POA. Oocyte quality decreased significantly from 22 dpo onward, as inferred from decrease in fertilization success and survival of embryos, alevins, and juveniles and increase in alevin and juvenile deformity rates. The occurrence of head deformities was significantly related to postovulatory age of oocytes. Coelomic fluid pH decreased significantly at 28 dpo and correlated positively with fertilization rates (r = 0.45), normal eyed embryo rates (r = 0.67), and alevin relative survival rates (r = 0.63) and negatively correlated with total alevin deformity rates (r = -0.59). Oocyte weight gain at 60 minutes decreased significantly at 28 dpo and correlated negatively with total alevin deformities and the occurrence of cranial nodules (r = -0.99). Generally, quality of ovulated oocytes remained stable for the first 2 weeks after ovulation. Later on, POA negatively influenced Atlantic salmon embryo, alevin, and juvenile performance. For the first time, we show a long-term effect of POA on salmonid juvenile performance. Standardized pH measurements of coelomic fluid could potentially improve embryo and juvenile production by identifying low-quality oocytes at an early stage during the production. Copyright © 2015

  2. Juvenile Salmonid survival, passage, and egress at McNary Dam during tests of temporary spillway weirs, 2009

    USGS Publications Warehouse

    Adams, N.S.; Liedtke, T.L.

    2010-01-01

    The TSWs proved to be a relatively effective way to pass juvenile salmonids at McNary Dam (Summary Tables 1.1, 1.2, and 1.3), as was the case in 2007 and 2008. The TSWs passed about 14% of yearling Chinook salmon and 34% of juvenile steelhead with only 5-10% of total project discharge flowing through the TSWs. The TSWs and adjacent spill bays 16-18 passed 27% of subyearling Chinook salmon in the summer with 6-16% of total project discharge flowing through the TSWs. Based on the number of fish passing per the proportion of water flowing through the spillway (i.e., passage effectiveness), the TSWs were the most effective passage route. Passage effectiveness for fish passing through both TSW structures was 2.0 for yearling Chinook salmon, 5.2 for juvenile steelhead, and 2.7 subyearling Chinook salmon for TSW 20 alone. Higher passage of juvenile steelhead through the TSWs could have resulted from juvenile steelhead being more surface-oriented during migration (Plumb et al. 2004; Beeman et al. 2007; Beeman and Maule 2006). Based on passage performance and effectiveness metrics, TSW 4, located on the north end of the spillway, did not perform as well as TSW 20, located on the south end of the spillway. Passage proportions for TSW 4 were at least half that of the levels observed for TSW 20 for both yearling Chinook salmon and juvenile steelhead. This difference may be attributed to TSW location or other variables such as dam operations. Regardless of which TSW was used by fish passing the dam, survival through both TSWs was high (> 0.98 for paired-release dam survival) for yearling Chinook salmon and juvenile steelhead.

  3. A critical life stage of the Atlantic salmon Salmo salar: behaviour and survival during the smolt and initial post-smolt migration.

    PubMed

    Thorstad, E B; Whoriskey, F; Uglem, I; Moore, A; Rikardsen, A H; Finstad, B

    2012-07-01

    The anadromous life cycle of Atlantic salmon Salmo salar involves long migrations to novel environments and challenging physiological transformations when moving between salt-free and salt-rich waters. In this article, (1) environmental factors affecting the migration behaviour and survival of smolts and post-smolts during the river, estuarine and early marine phases, (2) how behavioural patterns are linked to survival and (3) how anthropogenic factors affect migration and survival are synthesized and reviewed based on published literature. The timing of the smolt migration is important in determining marine survival. The timing varies among rivers, most likely as a consequence of local adaptations, to ensure sea entry during optimal periods. Smolts and post-smolts swim actively and fast during migration, but in areas with strong currents, their own movements may be overridden by current-induced transport. Progression rates during the early marine migration vary between 0.4 and 3.0 body lengths s(-1) relative to the ground. Reported mortality is 0.3-7.0% (median 2.3) km(-1) during downriver migration, 0.6-36% (median 6.0) km(-1) in estuaries and 0.3-3.4% (median 1.4) km(-1) in coastal areas. Estuaries and river mouths are the sites of the highest mortalities, with predation being a common cause. The mortality rates varied more among studies in estuaries than in rivers and marine areas, which probably reflects the huge variation among estuaries in their characteristics. Behaviour and survival during migration may also be affected by pollution, fish farming, sea lice Lepeophtheirus salmonis, hydropower development and other anthropogenic activities that may be directly lethal, delay migration or have indirect effects by inhibiting migration. Total mortality reported during early marine migration (up to 5-230 km from the river mouths) in the studies available to date varies between 8 and 71%. Hence, the early marine migration is a life stage with high mortalities, due

  4. SALMON: A WORLD AND HISTORICAL PERSPECTIVE

    EPA Science Inventory

    The four nations of Salmon World have existed for 10,000 years. Since the end of the last Ice Age, salmon established naturally substantial populations and prospered in four large regions of the earth: (1) the European side of the North Atlantic; (2) the North American side of...

  5. THE FOUR NATIONS OF SALMON WORLD

    EPA Science Inventory

    The four nations of Salmon World have existed for 10,000 years. Since the end of the last Ice Age, salmon established naturally substantial populations and prospered in four large regions of the earth: (1) the European side of the North Atlantic; (2) the North American side of...

  6. Salmon Supplementation Studies in Idaho Rivers, 1999-2000 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andy; Taki, Doug; Teton, Angelo

    2001-11-01

    As part of the Idaho Supplementation Studies, fisheries crews from the Shoshone-Bannock Tribes have been snorkeling tributaries of the Salmon River to estimate chinook salmon (Oncorhynchus tshawytscha) parr abundance; conducting surveys of spawning adult chinook salmon to determine the number of redds constructed and collect carcass information; operating a rotary screw trap on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag emigrating juvenile chinook salmon; and collecting and PIT-tagging juvenile chinook salmon on tributaries of the Salmon River. The Tribes work in the following six tributaries of the Salmon River: Bear Valleymore » Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork Salmon River. Snorkeling was used to obtain parr population estimates for ISS streams from 1992 to 1997. However, using the relatively vigorous methods described in the ISS experimental design to estimate summer chinook parr populations, results on a project-wide basis showed extraordinarily large confidence intervals and coefficients of variation. ISS cooperators modified their sampling design over a few years to reduce the variation around parr population estimates without success. Consequently, in 1998 snorkeling to obtain parr population estimates was discontinued and only General Parr Monitoring (GPM) sites are snorkeled. The number of redds observed in SBT-ISS streams has continued to decline as determined by five year cycles. Relatively weak strongholds continue to occur in the South Fork Salmon River and Bear Valley Creek. A rotary screw trap was operated on the West Fork Yankee Fork during the spring and fall of 1999 and the spring of 2000 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997 and 1999 (fall only) to 2000. Significant supplementation treatments have occurred in

  7. 'Without Fish, There Would Be Nothing Here': Attitudes to Salmon and Identification with Place in a Russian Coastal Village

    ERIC Educational Resources Information Center

    Nakhshina, Maria

    2012-01-01

    Postsocialist transformations have changed resource values in many rural parts of Russia. On the Terskii Coast in the northwest of Russia, salmon has become a key resource for people's everyday survival. Management of this resource used to be heavily controlled by the state during the Soviet period. The situation changed radically after the…

  8. Effects of acute thermal stress on the survival, predator avoidance, and physiology of juvenile fall Chinook salmon

    USGS Publications Warehouse

    Mesa, M.G.; Weiland, L.K.; Wagner, P.

    2002-01-01

    We subjected juvenile fall chinook salmon from the Hanford Reach of the Columbia River to acute thermal stressors in the laboratory that were derived from field data. We assessed the effects of thermal stress on: (1) the extent of direct mortality; (2) the vulnerability of fish to predation by smallmouth bass; and (3) some general physiological stress responses and synthesis of heat shock protein 70 (hsp70). Thermally-stressed fish showed little direct mortality and no increases in vulnerability to predation. However, these fish showed transient increases in plasma concentrations of cortisol, glucose, and lactate, and a dramatic (25-fold higher than controls) and persistent (lasting 2 wk) increase in levels of liver hsp70. Our results indicate that exposure of Hanford Reach juvenile fall chinook salmon to such stressors did not lead to significant increases in direct mortality or vulnerability to predation, but did alter physiological homeostasis, which should be of concern to those managing this resource. Because our fish received only a single exposure to one of the stressors we examined, we are also concerned about the consequences of exposing fish to multiple, cumulative stressors - a likely scenario for fish in the wild.

  9. THE SALMON 2100 PROJECT: OPTIONS TO PROTECT, RESTORE, ANE ENHANCE SALMON ALONG THE WEST COAST OF NORTH AMERICA

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...

  10. Modelling approaches for relating effects of change in river flow to populations of Atlantic salmon and brown trout

    Treesearch

    John D. Armstrong; Keith H. Nislow

    2012-01-01

    Modelling approaches for relating discharge to the biology of Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., growing in rivers are reviewed. Process-based and empirical models are set within a common framework of input of water flow and output of characteristics of fish, such as growth and survival, which relate directly to population dynamics. A...

  11. 50 CFR 660.412 - EFH identifications and descriptions for Pacific salmon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Pacific salmon. 660.412 Section 660.412 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... COAST STATES West Coast Salmon Fisheries § 660.412 EFH identifications and descriptions for Pacific salmon. Pacific salmon essential fish habitat (EFH) includes all those water bodies occupied or...

  12. Bioenergetic model estimates of interannual and spatial patterns in consumption demand and growth potential of juvenile pink salmon ( Oncorhynchus gorbuscha) in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Moss, Jamal H.; Beauchamp, David A.; Cross, Alison D.; Farley, Edward V.; Murphy, James M.; Helle, John H.; Walker, Robert V.; Myers, Katherine W.

    2009-12-01

    A bioenergetic model of juvenile pink salmon ( Oncorhynchus gorbuscha) was used to estimate daily prey consumption and growth potential of four ocean habitats in the Gulf of Alaska during 2001 and 2002. Growth potential was not significantly higher in 2002 than in 2001 at an alpha level of 0.05 ( P=0.073). Average differences in growth potential across habitats were minimal (slope habitat=0.844 g d -1, shelf habitat=0.806 g d -1, offshore habitat=0.820 g d -1, and nearshore habitat=0.703 g d -1) and not significantly different ( P=0.630). Consumption demand differed significantly between hatchery and wild stocks ( P=0.035) when examined within year due to the interaction between hatchery verses wild origin and year. However, the overall effect of origin across years was not significant ( P=0.705) due to similar total amounts of prey consumed by all juvenile pink salmon in both study years. We anticipated that years in which ocean survival was high would have had high growth potential, but this relationship did not prove to be true. Therefore, modeled growth potential may not be useful as a tool for forecasting survival of Prince William Sound hatchery pink salmon stocks. Significant differences in consumption demand and a two-fold difference in nearshore abundance during 2001 of hatchery and wild pink salmon confirmed the existence of strong and variable interannual competition and the importance of the nearshore region as being a potential competitive bottleneck.

  13. Bioenergetic model estimates of interannual and spatial patterns in consumption demand and growth potential of juvenile pink salmon (Oncorhynchus gorbuscha) in the Gulf of Alaska

    USGS Publications Warehouse

    Moss, J.H.; Beauchamp, D.A.; Cross, A.D.; Farley, E.V.; Murphy, J.M.; Helle, J.H.; Walker, R.V.; Myers, K.W.

    2009-01-01

    A bioenergetic model of juvenile pink salmon (Oncorhynchus gorbuscha) was used to estimate daily prey consumption and growth potential of four ocean habitats in the Gulf of Alaska during 2001 and 2002. Growth potential was not significantly higher in 2002 than in 2001 at an alpha level of 0.05 (P=0.073). Average differences in growth potential across habitats were minimal (slope habitat=0.844 g d-1, shelf habitat=0.806 g d-1, offshore habitat=0.820 g d-1, and nearshore habitat=0.703 g d-1) and not significantly different (P=0.630). Consumption demand differed significantly between hatchery and wild stocks (P=0.035) when examined within year due to the interaction between hatchery verses wild origin and year. However, the overall effect of origin across years was not significant (P=0.705) due to similar total amounts of prey consumed by all juvenile pink salmon in both study years. We anticipated that years in which ocean survival was high would have had high growth potential, but this relationship did not prove to be true. Therefore, modeled growth potential may not be useful as a tool for forecasting survival of Prince William Sound hatchery pink salmon stocks. Significant differences in consumption demand and a two-fold difference in nearshore abundance during 2001 of hatchery and wild pink salmon confirmed the existence of strong and variable interannual competition and the importance of the nearshore region as being a potential competitive bottleneck.

  14. Thiamine content of eggs and lengths of coho salmon (Oncorhynchus kisutch) in relation to abundance of alewife (Alosa pseudoharengus) in eastern Lake ontario, 2003 to 2006

    USGS Publications Warehouse

    Ketola, H.G.; Rinchard, J.; O'Gorman, R.; Begnoche, L.J.; Bishop, D.L.; Greulich, A.W.

    2009-01-01

    Early mortality syndrome in fry of Great Lakes salmonines is linked to reduced levels of thiamine in eggs, which reflects maternal consumption of forage fishes such as alewife (Alosa pseudoharengus) that contain thiaminase, an enzyme that destroys thiamine. We assessed annual variations in abundance and condition of alewives and thiamine status of coho salmon (Oncorhynchus kisutch) in Lake Ontario. We analyzed total thiamine in eggs of 20 coho salmon collected annually between 2003 and 2006 at the Salmon River Hatchery on the Salmon River, New York. Alewife abundance was assessed annually in southern and eastern Lake Ontario with bottom trawls during late April and early May. Mean thiamine concentration in eggs varied annually, with those collected in 2003 (2.5 nmol/g) being significantly higher than those collected in 2004 to 2006 (1.5 to 1.7 nmol/g). Although we did not test survival of fry, if reported threshold levels of thiamine for preventing mortality of Lake Michigan coho salmon fry apply, then many or most Lake Ontario coho salmon produced fry were likely to incur thiamine-deficiency mortality, especially during years 2004 to 2006. Comparison to indices of annual abundance of alewife in Lake Ontario with thiamine concentration in coho salmon eggs failed to show any significant correlations (P > 0.05). However, total length of female spawning coho salmon was positively correlated (P < 0.05) with increasing condition and estimated energy content of adult alewives in the previous spring. These results suggest that growth of coho salmon in Lake Ontario was first limited by energy intake, whereas the amount of thiamine provided by alewives was sufficient for growth (in length) but not for producing thiamine-adequate eggs.

  15. An Experimental Approach for Restoration of Salmon River Ecosystems

    NASA Astrophysics Data System (ADS)

    Stanford, J. A.

    2005-05-01

    River ecosystem theory predicts that dynamic, nonlinear physical and biological processes linking water, heat and materials (biota, sediment, plant-growth nutrients) flux and retention to fluvial landscape change in a habitat mosaic context drive salmon life histories and productivity in freshwater. Multidisciplinary studies and cross-site comparisons within a network of pristine salmon river observatories around the north Pacific Rim support these predictions. Billions of dollars have been spent on salmon-river restoration worldwide to little avail, mainly because salmon biology, rather than ecosystem process boundaries and bottlenecks, is driving restoration goals. I argue that entire river catchment restoration, in relation to these dynamic processes and bottlenecks and also coherent with the estuarine and marine implications of salmon life history parameters, is the only possibility for sustaining or restoring natural productivity and life history (genetic) diversity in salmon rivers. This can be done only in a few places owing to the continual press of human demands on river ecosystems, the morass of legal challenges to proactive salmon river restoration strategies and insufficient understanding of freshwater and marine linkages. The Elwha and Yakima Rivers in Washington, among a few others that I will name, offer real opportunities to restore entire watersheds for wild salmon. These restorations should be viewed as experimental manipulations in which outcomes may be evaluated against norms measured in the salmon river observatory network. Bias from hatcheries and harvest, among other anthropogenic interferences, must be eliminated for such experiments to be evaluated in light of contemporary river ecosystem theory. And, a much more synthetic understanding of freshwater and marine linkages must be forthcoming in concert with a much more robust general theory of river restoration.

  16. 50 CFR 679.65 - Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR program). 679.65 Section 679.65 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE...

  17. Response of ecosystem metabolism to low densities of spawning Chinook salmon

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan; Watson, Grace A.

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to <10% of their historical abundance, with subsequent declines of marine derived nutrients once provided by large salmon runs. We explored whether low densities (<0.001 spawners/m2) of naturally spawning Chinook Salmon (Oncorhynchus tshawytscha) can affect ecosystem metabolism. We measured gross primary production (GPP) and ecosystem respiration (ER) continuously before, during, and after salmon spawning. We compared downstream reaches with low densities of spawning salmon to upstream reaches with fewer or no spawners in 3 mid-sized (4th-order) rivers in northern Washington. In addition, we measured chemical, physical, and biological factors that may be important in controlling rates of GPP and ER. We observed that low densities of spawning salmon can increase GPP by 46% during spawning, but values quickly return to those observed before spawning. No difference in ER was observed between up- and downstream reaches. Based on our results, salmon density, temperature, and the proximity to salmon redds were the most important factors controlling rates of GPP, whereas temperature was most important for ER. These results suggest that even at low spawning densities, salmon can stimulate basal resources that may propagate up the food web. Understanding how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.

  18. Streambed scour of salmon spawning habitat in a regulated river influenced by management of peak discharge

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Burton, Karl D.; Magirl, Christopher S.; Konrad, Christopher P.

    2017-01-01

    In the Pacific Northwest of the United States, salmon eggs incubating within streambed gravels are susceptible to scour during floods. The threat to egg-to-fry survival by streambed scour is mitigated, in part, by the adaptation of salmon to bury their eggs below the typical depth of scour. In regulated rivers globally, we suggest that water managers consider the effect of dam operations on scour and its impacts on species dependent on benthic habitats.We instrumented salmon-spawning habitat with accelerometer scour monitors (ASMs) at 73 locations in 11 reaches of the Cedar River in western Washington State of the United States from Autumn 2013 through the Spring of 2014. The timing of scour was related to the discharge measured at a nearby gage and compared to previously published ASM data at 26 locations in two reaches of the Cedar River collected between Autumn 2010 and Spring 2011.Thirteen percent of the recovered ASMs recorded scour during a peak-discharge event in March 2014 (2-to 3-year recurrence interval) compared to 71% of the recovered ASMs during a higher peak-discharge event in January 2011 (10-year recurrence interval). Of the 23 locations where ASMs recorded scour during the 2011 and 2014 deployments, 35% had scour when the discharge was ≤87.3 m3/s (3,082 ft3/s) (2-year recurrence interval discharge) with 13% recording scour at or below the 62.3 m3/s (2,200 ft3/s) operational threshold for peak-discharge management during the incubation of salmon eggs.Scour to the depth of salmon egg pockets was limited during peak discharges with frequent (1.25-year or less) recurrence intervals, which managers can regulate through dam operations on the Cedar River. Pairing novel measurements of the timing of streambed scour with discharge data allows the development of peak-discharge management strategies that protect salmon eggs incubating within streambed gravels during floods.

  19. Salmon as drivers of physical and biological disturbance in river channels

    NASA Astrophysics Data System (ADS)

    Albers, S. J.; Petticrew, E. L.

    2012-04-01

    Large migrations across landscapes and ecosystem boundaries combined with disturbances of riverine spawning habitats through nest construction indicate the huge potential that Pacific salmon (Onchorhynchus sp.) have to disturb and alter regional energy flow. Nutrients derived from ocean-reared dead and decaying salmon are released into surrounding aquatic ecosystems fertilizing the water column, recently disturbed by increased suspended sediments due to nest construction. These opposing forces of disturbance and fertilization on spawning habitat have been demonstrated to impact local geomorphic and ecological cycles within salmon streams. An often cited, yet not fully tested, hypothesis is that this pulse of nutrients provided by decaying salmon can shift freshwater habitats to higher production levels. This hypothesis, however, remains contested and uncertain. Fine sediments are increasingly being recognized as important delivery and storage vectors for marine-derived nutrients (MDNs) in spawning streams. The temporal and spatial significance of these sediment vectors on gravelbed storage of MDN have not been quantified thereby restricting our ability to estimate the impact of gravelbed storage of MDNs on the riverine habitats. The objectives of this study were to i) quantify the magnitude of sediment deposition and retention in an active spawning area and ii) determine the contribution of MDN associated with the fine sediment storage. The Horsefly River spawning channel (HFC), an artificial salmon stock enhancement stream, was used to examine the biogeomorphic impacts of salmon spawning. We organized the HFC in an upstream-downstream paired treatment approach where the upstream enclosure was kept free of salmon and the downstream enclosure was loaded with actively spawning salmon. We used the difference in suspended sediment concentration between the salmon enclosure and the control enclosure to determine the contribution of salmon nest construction to suspended

  20. Ionotropic receptors signal host recognition in the salmon louse (Lepeophtheirus salmonis, Copepoda).

    PubMed

    Komisarczuk, Anna Z; Grotmol, Sindre; Nilsen, Frank

    2017-01-01

    A remarkable feature of many parasites is a high degree of host specificity but the mechanisms behind are poorly understood. A major challenge for parasites is to identify and infect a suitable host. Many species show a high degree of host specificity, being able to survive only on one or a few related host species. To facilitate transmission, parasite's behavior and reproduction has been fine tuned to maximize the likelihood of infection of a suitable host. For some species chemical cues that trigger or attract the parasite in question have been identified but how metazoan parasites themselves receive these signals remains unknown. In the present study we show that ionotropic receptors (IRs) in the salmon louse are likely responsible for identification of a specific host. By using RNAi to knock down the expression level of different co-receptors, a significant change of infectivity and settlement of lice larvae was achieved on Atlantic salmon. More remarkably, knock down of the IRs changed the host specificity of the salmon louse and lice larvae settled at a significant rate on host that the wild type lice rejected within minutes. To our knowledge, this has never before been demonstrated for any metazoan parasite. Our results show that the parasites are able to identify the host quickly upon settlement, settle and initiate the parasitic life style if they are on the right host. This novel discovery opens up for utilizing the host recognition system for future parasite control.

  1. Ionotropic receptors signal host recognition in the salmon louse (Lepeophtheirus salmonis, Copepoda)

    PubMed Central

    Grotmol, Sindre; Nilsen, Frank

    2017-01-01

    A remarkable feature of many parasites is a high degree of host specificity but the mechanisms behind are poorly understood. A major challenge for parasites is to identify and infect a suitable host. Many species show a high degree of host specificity, being able to survive only on one or a few related host species. To facilitate transmission, parasite’s behavior and reproduction has been fine tuned to maximize the likelihood of infection of a suitable host. For some species chemical cues that trigger or attract the parasite in question have been identified but how metazoan parasites themselves receive these signals remains unknown. In the present study we show that ionotropic receptors (IRs) in the salmon louse are likely responsible for identification of a specific host. By using RNAi to knock down the expression level of different co-receptors, a significant change of infectivity and settlement of lice larvae was achieved on Atlantic salmon. More remarkably, knock down of the IRs changed the host specificity of the salmon louse and lice larvae settled at a significant rate on host that the wild type lice rejected within minutes. To our knowledge, this has never before been demonstrated for any metazoan parasite. Our results show that the parasites are able to identify the host quickly upon settlement, settle and initiate the parasitic life style if they are on the right host. This novel discovery opens up for utilizing the host recognition system for future parasite control. PMID:28582411

  2. Inclusion of Palmaria palmata (red seaweed) in Atlantic salmon diets: effects on the quality, shelf-life parameters and sensory properties of fresh and cooked salmon fillets.

    PubMed

    Moroney, Natasha C; Wan, Alex H L; Soler-Vila, Anna; FitzGerald, Richard D; Johnson, Mark P; Kerry, Joe P

    2015-03-30

    The use of Palmaria palmata (PP) as a natural ingredient in farmed Atlantic salmon diets was investigated. The effect of salmon diet supplementation with P. palmata (0, 5, 10 and 15%) or synthetic astaxanthin (positive control, PC) for 16 weeks pre-slaughter on quality indices of fresh salmon fillets was examined. The susceptibility of salmon fillets/homogenates to oxidative stress conditions was also measured. In salmon fillets stored in modified atmosphere packs (60% N2 /40% CO2 ) for up to 15 days at 4 °C, P. palmata increased surface -a* (greenness) and b* (yellowness) values in a dose-dependent manner, resulting in a final yellow/orange flesh colour. In general, the dietary addition of P. palmata had no effect on pH, lipid oxidation (fresh, cooked and fillet homogenates) and microbiological status. 'Eating quality' sensory descriptors (texture, odour and oxidation flavour) in cooked salmon fillets were not influenced by dietary P. palmata. Salmon fed 5% PP showed increased overall acceptability compared with those fed PC and 0% PP. Dietary P. palmata was ineffective at providing red coloration in salmon fillets, but pigment deposition enhanced fillets with a yellow/orange colour. Carotenoids from P. palmata may prove to be a natural pigment alternative to canthaxanthin in salmon feeds. © 2014 Society of Chemical Industry.

  3. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Subbasin, Annual Report 2008 : Project Period 1 February 2008 to 31 January 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanke, Jeffrey A.; Alfonse, Brian M.; Bratcher, Kyle W.

    2009-07-31

    This study was designed to document and describe the status and life history strategies of spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin. We determined migration timing, abundance, and life-stage survival rates for juvenile spring Chinook salmon Oncorhynchus tshawytscha and summer steelhead O. mykiss in four streams during migratory year 2008 from 1 July 2007 through 30 June 2008. As observed in previous years of this study, spring Chinook salmon and steelhead exhibited fall and spring movements out of natal rearing areas, but did not begin their smolt migration through the Snake and lower Columbia Rivermore » hydrosystem until spring. In this report we provide estimates of migrant abundance and migration timing for each study stream, and their survival and timing to Lower Granite Dam. We also document aquatic habitat conditions using water temperature and stream flow in four study streams in the subbasin.« less

  4. Epidemiological Survey of Listeria monocytogenes in a gravlax salmon processing line

    PubMed Central

    Cruz, C.D.; Silvestre, F.A.; Kinoshita, E.M.; Landgraf, M.; Franco, B.D.G.M.; Destro, M.T.

    2008-01-01

    Listeria monocytogenes is a cause of concern to food industries, mainly for those producing ready-to-eat (RTE) products. This microorganism can survive processing steps such as curing and cold smoking and is capable of growing under refrigeration temperatures. Its presence in RTE fish products with extended shelf life may be a risk to the susceptible population. One example of such a product is gravlax salmon; a refrigerated fish product not exposed to listericidal processes and was the subject of this study. In order to evaluate the incidence and dissemination of L. monocytogenes 415 samples were collected at different steps of a gravlax salmon processing line in São Paulo state, Brazil. L. monocytogenes was confirmed in salmon samples (41%), food contact surfaces (32%), non-food contact surfaces (43%) and of food handlers’ samples (34%), but could not be detected in any ingredient. 179 L. monocytogenes isolates randomly selected were serogrouped and typed by PFGE. Most of L. monocytogenes strains belonged to serogroup 1 (73%). 61 combined pulsotypes were found and a dendrogram identified six clusters: most of the strains (120) belonged to cluster A. It was suggested that strains arriving into the plant via raw material could establish themselves in the processing environment contaminating the final product. The wide dissemination of L. monocytogenes in this plant indicates that a great effort has to be taken to eliminate the microorganism from these premises, even though it was not observed multiplication of the microorganism in the final product stored at 4°C up to 90 days. PMID:24031233

  5. Consequences of high temperatures and premature mortality on the transcriptome and blood physiology of wild adult sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M

    2012-01-01

    Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds. PMID:22957178

  6. Consequences of high temperatures and premature mortality on the transcriptome and blood physiology of wild adult sockeye salmon (Oncorhynchus nerka).

    PubMed

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M

    2012-07-01

    Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds.

  7. Salmon returns and consumer fitness: growth and energy storage in stream-dwelling salmonids increases with spawning salmon abundance

    USDA-ARS?s Scientific Manuscript database

    We examined how biomass of marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and nitrogen stable isotope ratios (d15N) of stream-dwelling fishes. We sampled coho salmon (Oncorhynchus kisutch) parr and juvenile Dolly Varden (Salvelinus malma) d...

  8. Salmon carcass movements in forest streams

    Treesearch

    Burke Strobel; Daniel R. Shivley; Brett B. Roper

    2009-01-01

    The movements of salmon carcasses over time were studied in two forest streams in the context of a large-scale salmon carcass supplementation program. The objectives were to assess both the level of treatment after stream flows had displaced carcasses and to evaluate whether the magnitude of carcass movements outside of a given reach could be predicted. The movements...

  9. Predicting the effectiveness of depth-based technologies to prevent salmon lice infection using a dispersal model.

    PubMed

    Samsing, Francisca; Johnsen, Ingrid; Stien, Lars Helge; Oppedal, Frode; Albretsen, Jon; Asplin, Lars; Dempster, Tim

    2016-07-01

    Salmon lice is one of the major parasitic problems affecting wild and farmed salmonid species. The planktonic larval stages of these marine parasites can survive for extended periods without a host and are transported long distances by water masses. Salmon lice larvae have limited swimming capacity, but can influence their horizontal transport by vertical positioning. Here, we adapted a coupled biological-physical model to calculate the distribution of farm-produced salmon lice (Lepeophtheirus salmonis) during winter in the southwest coast of Norway. We tested 4 model simulations to see which best represented empirical data from two sources: (1) observed lice infection levels reported by farms; and (2) experimental data from a vertical exposure experiment where fish were forced to swim at different depths with a lice-barrier technology. Model simulations tested were different development time to the infective stage (35 or 50°-days), with or without the presence of temperature-controlled vertical behaviour of lice early planktonic stages (naupliar stages). The best model fit occurred with a 35°-day development time to the infective stage, and temperature-controlled vertical behaviour. We applied this model to predict the effectiveness of depth-based preventive lice-barrier technologies. Both simulated and experimental data revealed that hindering fish from swimming close to the surface efficiently reduced lice infection. Moreover, while our model simulation predicted that this preventive technology is widely applicable, its effectiveness will depend on environmental conditions. Low salinity surface waters reduce the effectiveness of this technology because salmon lice avoid these conditions, and can encounter the fish as they sink deeper in the water column. Correctly parameterized and validated salmon lice dispersal models can predict the impact of preventive approaches to control this parasite and become an essential tool in lice management strategies. Copyright

  10. Atlantic salmon reovirus infection causes a CD8 T cell myocarditis in Atlantic salmon (Salmo salar L.).

    PubMed

    Mikalsen, Aase B; Haugland, Oyvind; Rode, Marit; Solbakk, Inge Tom; Evensen, Oystein

    2012-01-01

    Heart and skeletal inflammation (HSMI) of farmed Atlantic salmon (Salmo salar L.) is a disease characterized by a chronic myocarditis involving the epicardium and the compact and spongious part of the heart ventricle. Chronic myositis of the red skeletal muscle is also a typical finding of HSMI. Piscine reovirus (PRV) has been detected by real-time PCR from farmed and wild salmon with and without typical changes of HSMI and thus the causal relationship between presence of virus and the disease has not been fully determined. In this study we show that the Atlantic salmon reovirus (ASRV), identical to PRV, can be passaged in GF-1 cells and experimental challenge of naïve Atlantic salmon with cell culture passaged reovirus results in cardiac and skeletal muscle pathology typical of HSMI with onset of pathology from 6 weeks, peaking by 9 weeks post challenge. ASRV replicates in heart tissue and the peak level of virus replication coincides with peak of heart lesions. We further demonstrate mRNA transcript assessment and in situ characterization that challenged fish develop a CD8+ T cell myocarditis.

  11. How coarse is too coarse for salmon spawning substrates?

    NASA Astrophysics Data System (ADS)

    Wooster, J. K.; Riebe, C. S.; Ligon, F. K.; Overstreet, B. T.

    2009-12-01

    Populations of Pacific salmon species have declined sharply in many rivers of the western US. Reversing these declines is a top priority and expense of many river restoration projects. To help restore salmon populations, managers often inject gravel into rivers, to supplement spawning habitat that has been depleted by gravel mining and the effects of dams—which block sediment and thus impair habitat downstream by coarsening the bed where salmon historically spawned. However, there is little quantitative understanding nor a methodology for determining when a river bed has become too coarse for salmon spawning. Hence there is little scientific basis for selecting sites that would optimize the restoration benefits of gravel injection (e.g., sites where flow velocities are suitable but bed materials are too coarse for spawning). To develop a quantitative understanding of what makes river beds too coarse for salmon spawning, we studied redds and spawning use in a series of California and Washington rivers where salmon spawning ability appears to be affected by coarse bed material. Our working hypothesis is that for a given flow condition, there is a maximum “threshold” particle size that a salmon of a given size is able to excavate and/or move as she builds her redd. A second, related hypothesis is that spawning use should decrease and eventually become impossible with increasing percent coverage by immovable particles. To test these hypotheses, we quantified the sizes and spatial distributions of immovably coarse particles in a series of salmon redds in each river during the peak of spawning. We also quantified spawning use and how it relates to percent coverage by immovable particles. Results from our studies of fall-run chinook salmon (Oncorhynchus tshawytsha) in the Feather River suggest that immovable particle size varies as a function of flow velocity over the redd, implying that faster water helps fish move bigger particles. Our Feather River study also

  12. Response of ecosystem metabolism to low densities of spawning Chinook Salmon

    Treesearch

    Joseph R. Benjamin; J. Ryan Bellmore; Grace A. Watson

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to <10% of their historical abundance, with subsequent declines of marine derived nutrients once provided by large salmon runs. We explored whether low densities...

  13. POLICY OPTIONS TO REVERSE THE DECLINE OF WILD PACIFIC SALMON

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project was to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in the Pacific Northwest and California. Wild salmon recovery efforts in western North Americ...

  14. Patterns of change in climate and Pacific salmon production

    Treesearch

    Nathan J. Mantua

    2009-01-01

    For much of the 20th century a clear north-south inverse production pattern for Pacific salmon had a time dynamic that closely followed that of the Pacific Decadal Oscillation (PDO), which is the dominant pattern of North Pacific sea surface temperature variability. Total Alaska salmon production was high during warm regimes of the PDO, and total Alaska salmon...

  15. Transmission dynamics of parasitic sea lice from farm to wild salmon.

    PubMed

    Krkosek, Martin; Lewis, Mark A; Volpe, John P

    2005-04-07

    Marine salmon farming has been correlated with parasitic sea lice infestations and concurrent declines of wild salmonids. Here, we report a quantitative analysis of how a single salmon farm altered the natural transmission dynamics of sea lice to juvenile Pacific salmon. We studied infections of sea lice (Lepeophtheirus salmonis and Caligus clemensi) on juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) as they passed an isolated salmon farm during their seaward migration down two long and narrow corridors. Our calculations suggest the infection pressure imposed by the farm was four orders of magnitude greater than ambient levels, resulting in a maximum infection pressure near the farm that was 73 times greater than ambient levels and exceeded ambient levels for 30 km along the two wild salmon migration corridors. The farm-produced cohort of lice parasitizing the wild juvenile hosts reached reproductive maturity and produced a second generation of lice that re-infected the juvenile salmon. This raises the infection pressure from the farm by an additional order of magnitude, with a composite infection pressure that exceeds ambient levels for 75 km of the two migration routes. Amplified sea lice infestations due to salmon farms are a potential limiting factor to wild salmonid conservation.

  16. Transmission dynamics of parasitic sea lice from farm to wild salmon

    PubMed Central

    Krkošek, Martin; Lewis, Mark A; Volpe, John P

    2005-01-01

    Marine salmon farming has been correlated with parasitic sea lice infestations and concurrent declines of wild salmonids. Here, we report a quantitative analysis of how a single salmon farm altered the natural transmission dynamics of sea lice to juvenile Pacific salmon. We studied infections of sea lice (Lepeophtheirus salmonis and Caligus clemensi ) on juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) as they passed an isolated salmon farm during their seaward migration down two long and narrow corridors. Our calculations suggest the infection pressure imposed by the farm was four orders of magnitude greater than ambient levels, resulting in a maximum infection pressure near the farm that was 73 times greater than ambient levels and exceeded ambient levels for 30 km along the two wild salmon migration corridors. The farm-produced cohort of lice parasitizing the wild juvenile hosts reached reproductive maturity and produced a second generation of lice that re-infected the juvenile salmon. This raises the infection pressure from the farm by an additional order of magnitude, with a composite infection pressure that exceeds ambient levels for 75 km of the two migration routes. Amplified sea lice infestations due to salmon farms are a potential limiting factor to wild salmonid conservation. PMID:15870031

  17. Testing archival tag technology in coho salmon

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Richards, Philip; Tingey, Thor; Wilson, Derek; Zimmerman, Chris

    2004-01-01

    Archive tags with temperature and light-geolocation sensors will be monitored for post-smolt coho salmon in Cook Inlet. Light/location relationships specific to the Gulf of Alaska developed under Project 00478 will be applied in this study of movement and migration paths for coho salmon during maturation in ocean environments in Cook Inlet. Salmon for this study will be reared in captivity (at the Alaska Department of Fish and Game hatchery at Fort Richardson) to 1+ year of age (200-250mm) and released in Cook Inlet as part of the department's Ship Creek sport-fishing hatchery release. FY 01 includes pilot studies of tag retention, behavior, and growth for coho in captivity. Ship Creek coho will be tagged mid-May. A spring release experiment in the first year will be contingent on the successful implementation and retention of these tags. Surveys for early jack recoveries will be done at the Ship Creek weir and among sport fishers. Monitoring for adult tag recoveries will be done in the coho commercial fishery in Cook Inlet and the derby sport fishery on Ship Creek. Archive tagged fish will be used to document coho salmon use of marine habitats, migration routes, contribution to the sport fishery, and hatchery/wild interactions for salmon in Cook Inlet.

  18. 77 FR 75101 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 17 to the Salmon Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... impacts to two coho stocks. Amendment 17 Issue 7. The description of impacts to pink salmon from the ocean fishery is updated to reflect recent analyses of exploitation rate for pink salmon, conducted since the... income in local and state economies through expenditures on harvesting, processing, and marketing of the...

  19. First detection, isolation and molecular characterization of infectious salmon anaemia virus associated with clinical disease in farmed Atlantic salmon (Salmo salar) in Chile

    PubMed Central

    Godoy, Marcos G; Aedo, Alejandra; Kibenge, Molly JT; Groman, David B; Yason, Carmencita V; Grothusen, Horts; Lisperguer, Angelica; Calbucura, Marlene; Avendaño, Fernando; Imilán, Marcelo; Jarpa, Miguel; Kibenge, Frederick SB

    2008-01-01

    Background Infectious salmon anaemia (ISA) is a viral disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), which belongs to the genus Isavirus, family Orthomyxoviridae. The virus is considered to be carried by marine wild fish and for over 25 years has caused major disease outbreaks in marine-farmed Atlantic salmon in the Northern hemisphere. In the Southern hemisphere, ISAV was first detected in Chile in 1999 in marine-farmed Coho salmon (Oncorhynchus kisutch). In contrast to the classical presentation of ISA in Atlantic salmon, the presence of ISAV in Chile until now has only been associated with a clinical condition called Icterus Syndrome in Coho salmon and virus isolation has not always been possible. During the winter of 2007, unexplained mortalities were registered in market-size Atlantic salmon in a grow-out site located in Chiloé in Region X of Chile. We report here the diagnostic findings of the first significant clinical outbreak of ISA in marine-farmed Atlantic salmon in Chile and the first characterization of the ISAV isolated from the affected fish. Results In mid-June 2007, an Atlantic salmon marine farm site located in central Chiloé Island in Region X of Chile registered a sudden increase in mortality following recovery from an outbreak of Pisciricketsiosis, which rose to a cumulative mortality of 13.6% by harvest time. Based on the clinical signs and lesions in the affected fish, and laboratory tests performed on the fish tissues, a confirmatory diagnosis of ISA was made; the first time ISA in its classical presentation and for the first time affecting farmed Atlantic salmon in Chile. Rapid sequencing of the virus-specific RT-PCR products amplified from the fish tissues identified the virus to belong to the European genotype (Genotype I) of the highly polymorphic region (HPR) group HPR 7b, but with an 11-amino acid insert in the fusion glycoprotein, and ability to cause cytopathic effects (CPE) in CHSE-214 cell line

  20. First detection, isolation and molecular characterization of infectious salmon anaemia virus associated with clinical disease in farmed Atlantic salmon (Salmo salar) in Chile.

    PubMed

    Godoy, Marcos G; Aedo, Alejandra; Kibenge, Molly J T; Groman, David B; Yason, Carmencita V; Grothusen, Horts; Lisperguer, Angelica; Calbucura, Marlene; Avendaño, Fernando; Imilán, Marcelo; Jarpa, Miguel; Kibenge, Frederick S B

    2008-08-04

    Infectious salmon anaemia (ISA) is a viral disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), which belongs to the genus Isavirus, family Orthomyxoviridae. The virus is considered to be carried by marine wild fish and for over 25 years has caused major disease outbreaks in marine-farmed Atlantic salmon in the Northern hemisphere. In the Southern hemisphere, ISAV was first detected in Chile in 1999 in marine-farmed Coho salmon (Oncorhynchus kisutch). In contrast to the classical presentation of ISA in Atlantic salmon, the presence of ISAV in Chile until now has only been associated with a clinical condition called Icterus Syndrome in Coho salmon and virus isolation has not always been possible. During the winter of 2007, unexplained mortalities were registered in market-size Atlantic salmon in a grow-out site located in Chiloé in Region X of Chile. We report here the diagnostic findings of the first significant clinical outbreak of ISA in marine-farmed Atlantic salmon in Chile and the first characterization of the ISAV isolated from the affected fish. In mid-June 2007, an Atlantic salmon marine farm site located in central Chiloé Island in Region X of Chile registered a sudden increase in mortality following recovery from an outbreak of Pisciricketsiosis, which rose to a cumulative mortality of 13.6% by harvest time. Based on the clinical signs and lesions in the affected fish, and laboratory tests performed on the fish tissues, a confirmatory diagnosis of ISA was made; the first time ISA in its classical presentation and for the first time affecting farmed Atlantic salmon in Chile. Rapid sequencing of the virus-specific RT-PCR products amplified from the fish tissues identified the virus to belong to the European genotype (Genotype I) of the highly polymorphic region (HPR) group HPR 7b, but with an 11-amino acid insert in the fusion glycoprotein, and ability to cause cytopathic effects (CPE) in CHSE-214 cell line, characteristics

  1. Farmed Atlantic salmon: potential invader in the Pacific Northwest?

    Treesearch

    Jonathan Thompson; Pete Bisson

    2008-01-01

    Commercial farming of Atlantic salmon in marine net-pens has become a booming industry. At present, approximately 130 salmon farms exist along the Pacific coast of North America. Most of these farms are in cold marine bays within British Columbia, where farmed salmon have become the province’s most valuable agricultural export. Each year, thousands of farmed Atlantic...

  2. Predation of Karluk River sockeye salmon by coho salmon and char

    USGS Publications Warehouse

    McIntyre, J.D.; Reisenbichler, R.R.; Emlen, J.M.; Wilmot, R.L.; Finn, J.E.

    1988-01-01

    The number of sockeye salmon, Oncorhynchus nerka, in Alaska's Karluk River (Fig. 1) declined from millions to thousands during the early part of the present century. Rounsefell (1958) discussed alternative explanations for the decline including a general loss offertility ofthe system as the number of salmon carcasses declined, competition, overfishing, subtle changes in climate, and predation; he concluded that the combined effect of predation and fishing was the most probable explanation. Later, Van Cleave and Bevan (1973) suggested that the weir constructed in the river each year to facilitate counting the fish as they entered the system was the most probable cause ofthe decline. Itprevented free movement of both adults and juveniles in the river. All of these hypotheses remain as potential explanations for the decline

  3. 150 YEARS OF SALMON RESTORATION: ASSORTED TRUTHS

    EPA Science Inventory

    Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild Pacific salmon. Of the Earth's four regions (i.e., Asian Far East, Atlantic Europe, eastern North America, and western North America) where salmon runs originally occurred, it...

  4. SALMON RECOVERY: LEARNING FROM SUCCESSES AND MISTAKES

    EPA Science Inventory

    Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild Pacific salmon. Of the Earth's four regions (i.e., Asian Far East, Atlantic Europe, eastern North America, and western North America) where salmon runs occurred originally, it...

  5. SALMON RECOVERY: LEARNING FROM SUCCESSES AND FAILURES

    EPA Science Inventory

    Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild Pacific salmon. Of the Earth's four regions (i.e., Asian Far East, Atlantic Europe, eastern North America, and western North America) where salmon runs occurred originally, it...

  6. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon Salmo salar

    USGS Publications Warehouse

    Waldrop, Thomas; Summerfelt, Steven T.; Mazik, Patricia M.; Good, Christopher

    2018-01-01

    Swimming exercise, typically measured in body-lengths per second (BL/s), and dissolved oxygen (DO), are important environmental variables in fish culture. While there is an obvious physiological association between these two parameters, their interaction has not been adequately studied in Atlantic salmon Salmo salar. Because exercise and DO are variables that can be easily manipulated in modern aquaculture systems, we sought to assess the impact of these parameters, alone and in combination, on the performance, health and welfare of juvenile Atlantic salmon. In our study, Atlantic salmon fry were stocked into 12 circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5–2 BL/s) or low (<0.5 BL/s) swimming speeding and high (100% saturation) or low (70% saturation) DO while being raised from 10 g to approximately 350 g in weight. Throughout the study period, we assessed the impacts of exercise and DO concentration on growth, feed conversion, survival and fin condition. By study's end, both increased swimming speed and higher DO were independently associated with a statistically significant increase in growth performance (p < .05); however, no significant differences were noted in survival and feed conversion. Caudal fin damage was associated with low DO, while right pectoral fin damage was associated with higher swimming speed. Finally, precocious male sexual maturation was associated with low swimming speed. These results suggest that providing exercise and dissolved oxygen at saturation during Atlantic salmon early rearing can result in improved growth performance and a lower incidence of precocious parr.

  7. Salmon redd identification using environmental DNA (eDNA)

    USGS Publications Warehouse

    Pilliod, David S.; Laramie, Matthew B.

    2016-06-10

    IntroductionThe purpose of this project was to develop a technique to use environmental DNA (eDNA) to distinguish between redds made by Chinook salmon (Oncorhynchus tshawytscha) and redds made by Coho salmon (O. kisutch) and to distinguish utilized redds from test/abandoned redds or scours that have the appearance of redds. The project had two phases:Phase 1. Develop, test, and optimize a molecular assay for detecting and identifying Coho salmon DNA and differentiating it from Chinook salmon DNA.Phase 2. Demonstrate the efficacy of the technique.Collect and preserve water samples from the interstitial spaces of 10 known redds (as identified by expert observers) of each species and 10 gravel patches that do not include a redd of either species.Collect control samples from the water column adjacent to each redd to establish background eDNA levels.Analyze the samples using the developed molecular assays for Coho salmon (phase I) and Chinook salmon (Laramie and others, 2015).Evaluate whether samples collected from Chinook and Coho redds have significantly higher levels of eDNA of the respective species than background levels (that is, from gravel, water column).Evaluate whether samples collected from the interstitial spaces of gravel patches that are not redds are similar to background eDNA levels.The Sandy River is a large tributary of the Columbia River. The Sandy River meets the Columbia River approximately 23 km upstream of Portland, Oregon. The Sandy River Basin provides overlapping spawning habitat for both Chinook and Coho salmon.Samples provided by Portland Water Bureau for analysis were collected from the Bull Run River, Sixes Creek, Still Creek, Arrah Wanna Side Channel, and Side Channel 18.

  8. Survival and migration behavior of juvenile salmonids at McNary Dam, 2004, Final report of research

    USGS Publications Warehouse

    Perry, Russell W.; Braatz, Amy C.; Fielding, Scott D.; Lucchesi, Joel N.; Plumb, John M.; Adams, Noah S.; Rondorf, Dennis W.

    2005-01-01

    During 2004, the USGS Columbia River Research Laboratory conducted a study at McNary Dam using radio telemetry to estimate passage and survival parameters of juvenile salmonids. Our primary objective was to estimate these parameters under ambient environmental and operational conditions, and thus project-wide treatments were not implemented. The primary dam operation consisted of “biop” spill, where spill occurred at night between 1800 and 0600 hours, and no spill occurred between 0600 and 1800 hours for the majority of our study period. During the spring study period, we radio-tagged and released 1,896 yearling Chinook salmon and 1,888 juvenile steelhead. During the summer study period, we radio-tagged and released 1,919 subyearling Chinook salmon. All fish were tagged using gastric techniques to implant transmitters weighing 1.58 g for yearling Chinook salmon, 1.93 g for juvenile steelhead, and 0.96 g for subyearling Chinook salmon. Minimum fish sizes were based on a 6.5% tag:fish weight ratio, and the size of tagged fish represented about 91%, 100%, and 17% of the population, respectively for yearling Chinook salmon, juvenile steelhead, and subyearling Chinook salmon. About 60% of radio-tagged fish were released 10 km upstream of McNary Dam at Hat Rock State Park, Oregon, with the remainder released as control groups 400 m downstream of the dam.

  9. 78 FR 65555 - Establishment of Class E Airspace; Salmon, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ...-0531; Airspace Docket No. 13-ANM-20] Establishment of Class E Airspace; Salmon, ID AGENCY: Federal... at the Salmon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Salmon, ID, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Salt Lake...

  10. 77 FR 60631 - Fraser River Sockeye Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ...-XC222 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  11. 75 FR 78929 - Fraser River Sockeye Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...-XZ20 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders; request for comments. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate salmon fisheries in U.S. waters. The orders were issued by the Fraser River Panel (Panel) of the...

  12. Growth hormone transgenesis does not influence territorial dominance or growth and survival of first-feeding Atlantic salmon Salmo salar in food-limited stream microcosms.

    PubMed

    Moreau, D T R; Fleming, I A; Fletcher, G L; Brown, J A

    2011-03-01

    This study explored the relative competitive ability and performance of first-feeding growth hormone (GH) transgenic and non-transgenic Atlantic salmon Salmo salar fry under low food conditions. Pair-wise dominance trials indicated a strong competitive advantage for residents of a contested foraging territory. Transgenic and non-transgenic individuals, however, were equally likely to be dominant. Similarly, in stream environments with limited food, the transgene did not influence the growth in mass or survival at high or low fry densities. Fry in low-density treatments, however, performed better than fry in high-density treatments. These results indicate that, under the environment examined, the growth performance of GH-transgenic and non-transgenic S. salar may be similar during first feeding, an intense period of selection in their life history. Similarities in competitive ability and growth performance with wild-type fish suggest that the capacity of transgenic S. salar to establish in natural streams may not be inhibited during early life history. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  13. Neurotoxic behavioral effects of Lake Ontario salmon diets in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzler, D.R.

    1990-03-01

    Six experiments were conducted to examine possible neurotoxic effects of the exposure to contaminants in Lake Ontario salmon administered through the diets of rats. Rats were fed different concentrations of fish (8%, 15% or 30%) in one of three diet conditions: Lake Ontario salmon, Pacific Ocean salmon, or laboratory rat chow only. Following 20 days on the diets, rats were tested for five minutes per day in a modified open field for one or three days. Lake Ontario salmon diets consistently produced significantly lower activity, rearing, and nosepoke behaviors in comparison with ocean salmon or rat chow diet conditions. Amore » dose-response effect for concentration of lake salmon was obtained, and the attenuation effect occurred in males, females, adult or young animals, and postweaning females, with fish sampled over a five-year period. While only two of several potential contaminants were tested, both fish and brain analyses of mirex and PCBs relate to the behavioral effects.« less

  14. Why aren't there more Atlantic salmon (Salmo salar)?

    USGS Publications Warehouse

    Parrish, D.L.; Behnke, R.J.; Gephard, S.R.; McCormick, S.D.; Reeves, G.H.

    1998-01-01

    Numbers of wild anadromous Atlantic salmon (Salmo salar) have declined demonstrably throughout their native range. The current status of runs on rivers historically supporting salmon indicate widespread declines and extirpations in Europe and North America primarily in southern portions of the range. Many of these declines or extirpations can be attributed to the construction of mainstem dams, pollution (including acid rain), and total dewatering of streams. Purported effects on declines during the 1960s through the 1990s include overfishing, and more recently, changing ocean conditions, and intensive aquaculture. Most factors affecting salmon numbers do not act singly, but rather in concert, which masks the relative contribution of each factor. Salmon researchers and managers should not look for a single culprit in declining numbers of salmon, but rather, seek solutions through rigorous data gathering and testing of multiple effects integrated across space and time.

  15. A multi-year analysis of passage and survival at McNary Dam, 2004-09

    USGS Publications Warehouse

    Adams, Noah S.; Walker, C.E.; Perry, R.W.

    2011-01-01

    We analyzed 6 years (2004–09) of passage and survival data collected at McNary Dam to determine how dam operations and environmental conditions affect passage and survival of juvenile salmonids. A multinomial logistic regression was used to examine how environmental variables and dam operations relate to passage behavior of juvenile salmonids at McNary Dam. We used the Cormack-Jolly-Seber release-recapture model to determine how the survival of juvenile salmonids passing through McNary Dam relates to environmental variables and dam operations. Total project discharge and the proportion of flow passing the spillway typically had a positive effect on survival for all species and routes. As the proportion of water through the spillway increased, the number of fish passing the spillway increased, as did overall survival. Additionally, survival generally was higher at night. There was no meaningful difference in survival for fish that passed through the north or south portions of the spillway or powerhouse. Similarly, there was no difference in survival for fish released in the north, middle, or south portions of the tailrace. For subyearling Chinook salmon migrating during the summer season, increased temperatures had a drastic effect on passage and survival. As temperature increased, survival of subyearling Chinook salmon decreased through all passage routes and the number of fish that passed through the turbines increased. During years when the temporary spillway weirs (TSWs) were installed, passage through the spillway increased for spring migrants. However, due to the changes made in the location of the TSW between years and the potential effect of other confounding environmental conditions, it is not certain if the increase in spillway passage was due solely to the presence of the TSWs. The TSWs appeared to improve forebay survival during years when they were operated.

  16. Salmon's Laws.

    ERIC Educational Resources Information Center

    Shannon, Thomas A.

    1994-01-01

    Presents Paul Salmon's old-fashioned, common-sense guidelines for success in practical school administration. The maxims advise on problem ownership; the value of selective neglect; the importance of empowerment, enthusiasm, and effective communication; and the need for positive reinforcement, cultivation of support, and good relations with media,…

  17. Development of the salmon louse Lepeophtheirus salmonis and its effects on juvenile sockeye salmon Oncorhynchus nerka.

    PubMed

    Jakob, E; Sweeten, T; Bennett, W; Jones, S R M

    2013-11-06

    Responses of sockeye salmon Oncorhynchus nerka during infection with Lepeophtheirus salmonis were assessed in controlled laboratory trials. Juvenile salmon were exposed to 100 copepodids fish-1 (Trials 1 and 2) or 300 copepodids fish-1 (Trial 3) at mean weights of approximately 40, 80 and 135 g, respectively. Infections occurred on all salmon in all trials, and mean abundances (infection densities) ranged between 3.3 and 19.4 lice fish-1 (0.08 and 0.44 lice g-1 fish) in Trial 1, between 7.2 and 18.3 (0.09 and 0.22) in Trial 2 and between 19.5 and 60.7 (0.15 and 0.46) in Trial 3. A cumulative mortality of 24.4% occurred in Trial 3. At attachment sites on gills, we observed hyperplasia of basal epithelial cells and fusion of secondary lamellae occasionally associated with a cellular infiltrate. At attachment sites on fins, partial to complete skin erosion occurred, with limited evidence of hyperplasia or inflammation. Scale loss and abrasions coincided with pre-adult lice around 20 d post infection (dpi). Plasma osmolality was significantly elevated in exposed fish in Trials 1 (21 dpi), 2 (15 and 36 dpi) and 3 (20 dpi), whereas haematocrit was significantly depressed in exposed fish in Trials 1 (21 and 28 dpi) and 3 (20 dpi). Plasma cortisol was significantly elevated in exposed fish at 20 dpi (Trial 3). Physiological changes and mortality were related to the intensity of infection and became most prominent with pre-adult stages, suggesting patterns of infection and response in sockeye salmon similar to those reported for Atlantic and Chinook salmon.

  18. Using Grizzly Bears to Assess Harvest-Ecosystem Tradeoffs in Salmon Fisheries

    PubMed Central

    MacDuffee, Misty; Mangel, Marc; Paquet, Paul; Wilmers, Christopher C.

    2012-01-01

    Implementation of ecosystem-based fisheries management (EBFM) requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for “salmon ecosystem” function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC), Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem) equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a generalizable

  19. Using grizzly bears to assess harvest-ecosystem tradeoffs in salmon fisheries.

    PubMed

    Levi, Taal; Darimont, Chris T; Macduffee, Misty; Mangel, Marc; Paquet, Paul; Wilmers, Christopher C

    2012-01-01

    Implementation of ecosystem-based fisheries management (EBFM) requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for "salmon ecosystem" function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC), Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem) equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a generalizable method

  20. Are inland wolf-ungulate systems influenced by marine subsidies of Pacific salmon?

    USGS Publications Warehouse

    Adams, Layne G.; Farley, Sean D.; Stricker, Craig A.; Demma, Dominic J.; Roffler, Gretchen H.; Miller, Dennis C.; Rye, Robert O.

    2010-01-01

    Wolves (Canis lupus) in North America are considered obligate predators of ungulates with other food resources playing little role in wolf population dynamics or wolf–prey relations. However, spawning Pacific salmon (Oncorhyncus spp.) are common throughout wolf range in northwestern North America and may provide a marine subsidy affecting inland wolf–ungulate food webs far from the coast. We conducted stable‐isotope analyses for nitrogen and carbon to evaluate the contribution of salmon to diets of wolves in Denali National Park and Preserve, 1200 river‐km from tidewater in interior Alaska, USA. We analyzed bone collagen from 73 wolves equipped with radio collars during 1986–2002 and evaluated estimates of salmon in their diets relative to the availability of salmon and ungulates within their home ranges. We compared wolf densities and ungulate : wolf ratios among regions with differing salmon and ungulate availability to assess subsidizing effects of salmon on these wolf–ungulate systems. Wolves in the northwestern flats of the study area had access to spawning salmon but low ungulate availability and consumed more salmon (17% ± 7% [mean ± SD]) than in upland regions, where ungulates were sixfold more abundant and wolves did or did not have salmon spawning areas within their home ranges (8% ± 6% and 3% ± 3%, respectively). Wolves were only 17% less abundant on the northwestern flats compared to the remainder of the study area, even though ungulate densities were 78% lower. We estimated that biomass from fall runs of chum (O. keta) and coho (O. kisutch) salmon on the northwestern flats was comparable to the ungulate biomass there, and the contribution of salmon to wolf diets was similar to estimates reported for coastal wolves in southeast Alaska. Given the ubiquitous consumption of salmon by wolves on the northwestern flats and the abundance of salmon there, we conclude that wolf numbers in this region were enhanced by the allochthonous subsidy

  1. A novel "in-feed" delivery platform applied for oral DNA vaccination against IPNV enables high protection in Atlantic salmon (Salmon salar).

    PubMed

    Reyes, Miguel; Ramírez, Cesar; Ñancucheo, Ivan; Villegas, Ricardo; Schaffeld, Guillermo; Kriman, Luis; Gonzalez, Javier; Oyarzun, Patricio

    2017-01-23

    DNA vaccination has emerged as a promising tool against infectious diseases of farmed fish. Oral delivery allows stress-free administration that is ideal for mass immunization and of paramount importance for infectious pancreatic necrosis (IPN) and other viral disease that affect young salmonids and cause economic losses in aquaculture worldwide. We describe the development and in vivo assessment of an "in-feed" formulation strategy for oral immunization with liposomal DNA vaccines, by delivering a vaccine construct coding for an immunogenic region of the VP2 capsid protein. A challenge against IPNV was carried out to determine the vaccine efficacy, by comparing the mortality of pre-smolt Atlantic salmons immunized and non-immunized with the oral vaccine. The antibody response (ELISA) and hematological parameters after immunization were examined, as well as the vaccine effect on the growth and internal structures of fry salmons (histological analysis). The vaccine distribution in the experimental tank after oral administration was investigated by HPLC and PCR amplification. The oral vaccine induced detectable levels of VP2-specific antibodies and conferred significant protection following IPNV challenge, with relative percent survivals (RPS) of 58.2%, for single dose (1mg pDNA /kg fish ⋅d), and 66% for double dose (2mg pDNA /kg fish ⋅d). We further provide evidence in favour of the vaccine safety to fish and demonstrated absence of pDNA in the tank water, but presence of vaccine residues in faeces and unconsumed feed sediments (solid wastes). The delivery platform for liposomal DNA vaccination via feed was successfully proved against IPNV in Atlantic salmon, showing the oral vaccine to be immunogenic and safe for fish, and providing significant protection after oral administration. The "in-feed" technology for oral DNA vaccination holds potential to be applied against IPNV and other pathogens that currently threaten the aquaculture worldwide. Copyright © 2016

  2. Can reduced predation offset negative effects of sea louse parasites on chum salmon?

    PubMed Central

    Peacock, Stephanie J.; Connors, Brendan M.; Krkošek, Martin; Irvine, James R.; Lewis, Mark A.

    2014-01-01

    The impact of parasites on hosts is invariably negative when considered in isolation, but may be complex and unexpected in nature. For example, if parasites make hosts less desirable to predators then gains from reduced predation may offset direct costs of being parasitized. We explore these ideas in the context of sea louse infestations on salmon. In Pacific Canada, sea lice can spread from farmed salmon to migrating juvenile wild salmon. Low numbers of sea lice can cause mortality of juvenile pink and chum salmon. For pink salmon, this has resulted in reduced productivity of river populations exposed to salmon farming. However, for chum salmon, we did not find an effect of sea louse infestations on productivity, despite high statistical power. Motivated by this unexpected result, we used a mathematical model to show how a parasite-induced shift in predation pressure from chum salmon to pink salmon could offset negative direct impacts of sea lice on chum salmon. This shift in predation is proposed to occur because predators show an innate preference for pink salmon prey. This preference may be more easily expressed when sea lice compromise juvenile salmon hosts, making them easier to catch. Our results indicate how the ecological context of host–parasite interactions may dampen, or even reverse, the expected impact of parasites on host populations. PMID:24352951

  3. Can reduced predation offset negative effects of sea louse parasites on chum salmon?

    PubMed

    Peacock, Stephanie J; Connors, Brendan M; Krkosek, Martin; Irvine, James R; Lewis, Mark A

    2014-02-07

    The impact of parasites on hosts is invariably negative when considered in isolation, but may be complex and unexpected in nature. For example, if parasites make hosts less desirable to predators then gains from reduced predation may offset direct costs of being parasitized. We explore these ideas in the context of sea louse infestations on salmon. In Pacific Canada, sea lice can spread from farmed salmon to migrating juvenile wild salmon. Low numbers of sea lice can cause mortality of juvenile pink and chum salmon. For pink salmon, this has resulted in reduced productivity of river populations exposed to salmon farming. However, for chum salmon, we did not find an effect of sea louse infestations on productivity, despite high statistical power. Motivated by this unexpected result, we used a mathematical model to show how a parasite-induced shift in predation pressure from chum salmon to pink salmon could offset negative direct impacts of sea lice on chum salmon. This shift in predation is proposed to occur because predators show an innate preference for pink salmon prey. This preference may be more easily expressed when sea lice compromise juvenile salmon hosts, making them easier to catch. Our results indicate how the ecological context of host-parasite interactions may dampen, or even reverse, the expected impact of parasites on host populations.

  4. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde Riiver Basin : Fish Research Project Oregon : Annual Progress Report 1 September 1995 to 1 August 1996.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian C.; Carmichael, Richard W.; Keefe, MaryLouise

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grandemore » Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek.« less

  5. The Lummi Indians and the Canadian/American Pacific Salmon Treaty.

    ERIC Educational Resources Information Center

    Boxberger, Daniel L.

    1988-01-01

    Explores the probable impact of the 1985 international Pacific Salmon Treaty on the Lummi tribe's catch of Fraser River salmon and economic well-being. Discusses the 1974 Boldt Decision, which allocated half of Washington State's salmon catch to treaty tribes, and contradictions in the federal government's conception of international treaties. (SV)

  6. 77 FR 10772 - Fresh and Chilled Atlantic Salmon From Norway

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... and Chilled Atlantic Salmon From Norway Determination On the basis of the record \\1\\ developed in the... countervailing duty order and antidumping duty order on fresh and chilled Atlantic salmon from Norway would not... and Chilled Atlantic Salmon from Norway: Investigation Nos. 701-TA-302 and 731-TA-454 (Third Review...

  7. Impacts of multispecies parasitism on juvenile coho salmon (Oncorhynchus kisutch) in Oregon

    USGS Publications Warehouse

    Ferguson, Jayde A.; Romer, Jeremy; Sifneos, Jean C.; Madsen, Lisa; Schreck, Carl B.; Glynn, Michael; Kent, Michael L.

    2011-01-01

    We are studying the impacts of parasites on threatened stocks of Oregon coastal coho salmon (Oncorhynchus kisutch). In our previous studies, we have found high infections of digeneans and myxozoans in coho salmon parr from the lower main stem of West Fork Smith River (WFSR), Oregon. In contrast parr from tributaries of this river, and outmigrating smolts, harbor considerably less parasites. Thus, we have hypothesized that heavy parasite burdens in parr from this river are associated with poor overwintering survival. The objective of the current study was to ascertain the possible effects these parasites have on smolt fitness. We captured parr from the lower main stem and tributaries of WFSR and held them in the laboratory to evaluate performance endpoints of smolts with varying degrees of infection by three digeneans (Nanophyetus salmincola, Apophallus sp., and neascus) and one myxozoan (Myxobolus insidiosus). The parameters we assessed were weight, fork length, growth, swimming stamina, and gill Na+,K+-ATPase activity. We repeated our study on the subsequent year class and with hatchery reared coho salmon experimentally infected with N. salmincola. The most significant associations between parasites and these performance or fitness endpoints were observed in the heavily infected groups from both years. We found that all parasite species, except neascus, were negatively associated with fish fitness. This was corroborated for N. salmincola causing reduced growth with our experimental infection study. Parasites were most negatively associated with growth and size, and these parameters likely influenced the secondary findings with swimming stamina and ATPase activity levels.

  8. Captive Rearing Program for Salmon River Chinook Salmon, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venditti, David; Willard, Catherine; James, Chris

    2003-11-01

    During 2002, the Idaho Department of Fish and Game continued to develop techniques to rear Chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 328) and the West Fork Yankee Fork Salmon River (WFYF; N = 308) to establish brood year 2002 culture cohorts. The eyed-eggs were incubated and reared at the Eagle Fish Hatchery, Eagle, Idaho (Eagle). Juveniles collected in 2000 were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidneymore » disease prior to being transferred to the NOAA Fisheries, Manchester Marine Experimental Station, Manchester, Washington (Manchester) for saltwater rearing through maturity. Smolt transfers included 203 individuals from the WFYF and 379 from the EFSR. Maturing fish transfers from Manchester to Eagle included 107 individuals from the LEM, 167 from the WFYF, and 82 from the EFSR. This was the second year maturing adults were held on chilled water at Eagle to test if water temperature manipulations could advance spawn timing. Adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) temperature groups while at Eagle. Forty-seven mature females from the LEM (19 chilled, 16 ambient, and 12 ambient not included in the temperature study) were spawned at Eagle with 42 males in 2002. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage averaged 66.5% and did not differ significantly between the temperature groups. Personnel from the Shoshone-Bannock Tribe placed a total of 47,977 eyed-eggs from these crosses in in-stream incubators. Mature adults (N = 215 including 56 precocial males) were released into the WFYF to evaluate their reproductive performance. After release, fish distributed themselves

  9. Performance of salmon fishery portfolios across western North America.

    PubMed

    Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C

    2014-12-01

    Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications . Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally

  10. Performance of salmon fishery portfolios across western North America

    PubMed Central

    Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C

    2014-01-01

    Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally

  11. Arctic-Yukon-Kuskokwim Salmon Research and Restoration Plan

    USGS Publications Warehouse

    2006-01-01

    The Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative (AYK SSI) is an innovative partnership between public and private institutions which provides a forum for non-governmental organizations and state and federal agencies to cooperatively identify and address salmon research and restoration needs. The affected region encompasses over 40% of the State of Alaska; the AYK region includes the watersheds of the Norton Sound region up to and including the village of Shishmaref, the Yukon River Watershed within Alaska, and the Kuskokwim River Watershed (including the coastal watersheds north of Cape Newenham), plus the Bering Sea marine ecosystem. The AYK SSI is a response to disastrously low salmon returns to western Alaska in the late 1990s and early 2000s, which created numerous hardships for the people and communities that depend heavily on the salmon fishery. Some stocks in the region have been in a decline for more than a decade and a half, leading to severe restrictions on commercial and subsistence fisheries. The first step for the AYK SSI has been to collaboratively develop and implement a comprehensive research plan to understand the causes of the declines and recoveries of AYK salmon.

  12. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  13. On-site Direct Detection of Astaxanthin from Salmon Fillet Using Raman Spectroscopy.

    PubMed

    Hikima, Jun-Ichi; Ando, Masahiro; Hamaguchi, Hiro-O; Sakai, Masahiro; Maita, Masashi; Yazawa, Kazunaga; Takeyama, Haruko; Aoki, Takashi

    2017-04-01

    A new technology employing Raman spectroscopy is attracting attention as a powerful biochemical technique for the detection of beneficial and functional food nutrients, such as carotenoids and unsaturated fatty acids. This technique allows for the dynamic characterization of food nutrient substances for the rapid determination of food quality. In this study, we attempt to detect and measure astaxanthin from salmon fillets using this technology. The Raman spectra showed specific bands corresponding to the astaxanthin present in salmon and the value of astaxanthin (Raman band, 1518 cm -1 ) relative to those of protein/lipid (Raman band, 1446 cm -1 ) in the spectra increased in a dose-dependent manner. A standard curve was constructed by the standard addition method using astaxanthin as the reference standard for its quantification by Raman spectroscopy. The calculation formula was established using the Raman bands typically observed for astaxanthin (i.e., 1518 cm -1 ). In addition, we examined salmon fillets of different species (Atlantic salmon, coho salmon, and sockeye salmon) and five fillets obtained from the locations (from the head to tail) of an entire Atlantic salmon. Moreover, the sockeye salmon fillet exhibited the highest astaxanthin concentration (14.2 mg/kg), while coho salmon exhibited an intermediate concentration of 7.0 mg/kg. The Raman-based astaxanthin concentration in the five locations of Atlantic salmon was more strongly detected from the fillet closer to the tail. From the results, a rapid, convenient Raman spectroscopic method was developed for the detection of astaxanthin in salmon fillets.

  14. 21 CFR 161.170 - Canned Pacific salmon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., the common or usual name or names of each species of fish enumerated in paragraph (a)(2)(i) of this... accordance with good manufacturing practice; and then washing. Canned Pacific salmon is prepared in one of... good manufacturing practices. (iii) “Minced salmon” consists of salmon which has been minced or ground...

  15. Etiology of sockeye salmon 'virus' disease

    USGS Publications Warehouse

    Guenther, Raymond W.; Watson, S.W.; Rucker, R.R.; Ross, A.J.

    1959-01-01

    Violent epizootics among hatchery reared sockeye salmon fingerlings (Oncorhynchus nerka) caused by a filterable agent have occurred. In 1954, one source of this infectious, filterable agent was found to be adult sockeye viscera used in the diet for the fingerlings. The results of observations on an epizootic in 1958 indicate that the infection may be transmitted to fingerlings from a water supply to which adult sockeye salmon have access.

  16. Salmon Supplementation Studies in Idaho Rivers, 1996-1998 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reighn, Christopher A.; Lewis, Bert; Taki, Doug

    1999-06-01

    Information contained in this report summarizes the work that has been done by the Shoshone-Bannock Tribes Fisheries Department under BPA Project No. 89-098-3, Contract Number 92-BI-49450. Relevant data generated by the Shoshone-Bannock Tribe will be collated with other ISS cooperator data collected from the Salmon and Clearwater rivers and tributary streams. A summary of data presented in this report and an initial project-wide level supplementation evaluation will be available in the ISS 5 year report that is currently in progress. The Shoshone-Bannock Tribal Fisheries Department is responsible for monitoring a variety of chinook salmon (Oncorhynchus tshawytscha) production parameters as partmore » of the Idaho Supplementation Studies (BPA Project No. 89-098-3, Contract Number 92-BI-49450). Parameters include parr abundance in tributaries to the upper Salmon River; adult chinook salmon spawner abundance, redd counts, and carcass collection. A rotary screw trap is operated on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag chinook smolts. These traps are also used to monitor parr movement, and collect individuals for the State and Tribal chinook salmon captive rearing program. The SBT monitors fisheries parameters in the following six tributaries of the Salmon River: Bear Valley Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork. Chinook populations in all SBT-ISS monitored streams continue to decline. The South Fork Salmon River and Bear Valley Creek have the strongest remaining populations. Snorkel survey methodology was used to obtain parr population estimates for ISS streams from 1992 to 1997. Confidence intervals for the parr population estimates were large, especially when the populations were low. In 1998, based on ISS cooperator agreement, snorkeling to obtain parr population estimates was ceased due to the large confidence intervals. A rotary screw trap

  17. Effects of spectral composition, photoperiod and light intensity on the gonadal development of Atlantic salmon Salmo salar in recirculating aquaculture systems (RAS)

    NASA Astrophysics Data System (ADS)

    Qiu, Denggao; Xu, Shihong; Song, Changbin; Chi, Liang; Li, Xian; Sun, Guoxiang; Liu, Baoliang; Liu, Ying

    2015-01-01

    Artificial lighting regimes have been successfully used to inhibit sexual maturity of Atlantic salmon in confinement. However, when these operations are applied in commercial recirculating aquaculture systems (RAS) using standard lighting technology, sexual maturation is not suppressed. In this study, an L9 (33) orthogonal design was used to determine the effects of three factors (spectral composition, photoperiod, and light intensity) on the gonadal development of Atlantic salmon in RAS. We demonstrated that the photoperiod at the tested levels had a much greater effect on the gonadosomatic index and female Fulton condition factor than spectral composition and light intensity. The photoperiod had a significant effect on the secretion of sex steroids and melatonin ( P<0.05), and a short photoperiod delayed sex steroid and melatonin level increases. The three test factors had no significant effects on the survival rate, specific growth rate, relative weight gain, and male Fulton condition factor ( P>0.05). The optimum lighting levels in female and male Atlantic salmon were LD 8:16, 455 nm (or 625 nm), 8.60 W/m2; and LD 8:16, 8.60 W/m2, 455 nm respectively. These conditions not only delayed gonadal development, but also had no negative effects on Atlantic salmon growth in RAS. These results demonstrate that a combination of spectral composition, photoperiod and light intensity is effective at delaying the gonadal development of both male and female salmon in RAS.

  18. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    USGS Publications Warehouse

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    km (2009 and 2010, respectively) as stream temperatures seasonally warmed, but subyearling Chinook salmon were also found farther upstream during this time.4. Our multiscale analysis suggests that bass were selecting habitat based on antecedent thermal history at a broad scale, and if satisfactory temperature conditions were met, mesoscale habitat features (i.e. channel-unit type and depth) played an additional role in determining bass abundance. The upstream extent of bass in the late summer corresponded to a high-gradient geomorphic discontinuity in the NFJDR, which probably hindered further upstream movements of bass. The habitat determinants and upstream extent of bass were largely consistent across years, despite marked differences in the magnitude and timing of spring peak flows prior to bass spawning.5. The overriding influence of water temperature on smallmouth bass distribution suggests that managers may be able limit future upstream range expansions of bass into salmon-rearing habitat by concentrating on restoration activities that mitigate climate- or land-use-related stream warming. These management activities could be prioritised to capitalise on survival bottlenecks in the life history of bass and spatially focused on landscape knick points such as high-gradient discontinuities to discourage further upstream movements of bass.

  19. Mate choice for major histocompatibility complex genetic divergence as a bet-hedging strategy in the Atlantic salmon (Salmo salar).

    PubMed

    Evans, Melissa L; Dionne, Mélanie; Miller, Kristina M; Bernatchez, Louis

    2012-01-22

    Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.

  20. Mate choice for major histocompatibility complex genetic divergence as a bet-hedging strategy in the Atlantic salmon (Salmo salar)

    PubMed Central

    Evans, Melissa L.; Dionne, Mélanie; Miller, Kristina M.; Bernatchez, Louis

    2012-01-01

    Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures. PMID:21697172

  1. Echo characteristics of two salmon species

    NASA Astrophysics Data System (ADS)

    Nealson, Patrick A.; Horne, John K.; Burwen, Debby L.

    2005-04-01

    The Alaska Department of Fish and Game relies on split-beam hydroacoustic techniques to estimate Chinook salmon (Oncorhynchus tshawytscha) returns to the Kenai River. Chinook counts are periodically confounded by large numbers of smaller sockeye salmon (O. nerka). Echo target-strength has been used to distinguish fish length classes, but was too variable to separate Kenai River chinook and sockeye distributions. To evaluate the efficacy of alternate echo metrics, controlled acoustic measurements of tethered chinook and sockeye salmon were collected at 200 kHz. Echo returns were digitally sampled at 48 kHz. A suite of descriptive metrics were collected from a series of 1,000 echoes per fish. Measurements of echo width were least variable at the -3 dB power point. Initial results show echo elongation and ping-to-ping variability in echo envelope width were significantly greater for chinook than for sockeye salmon. Chinook were also observed to return multiple discrete peaks from a single broadcast echo. These characteristics were attributed to the physical width of chinook exceeding half of the broadcast echo pulse width at certain orientations. Echo phase variability, correlation coefficient and fractal dimension distributions did not demonstrate significant discriminatory power between the two species. [Work supported by ADF&G, ONR.

  2. Characteristics of formed Atlantic salmon jerky.

    PubMed

    Oberholtzer, Ashlan S; Dougherty, Michael P; Camire, Mary Ellen

    2011-08-01

    Smoked salmon (Salmo salar L.) processing may generate large amounts of small pieces of trimmed flesh that has little economic value. Opportunities exist to develop new added-value foods from this by-product. Brining was compared with dry salting for the production of formed salmon jerky-style strips that were then smoked. The formulations also contained brown sugar and potato starch. Salted samples had higher salt concentrations and required less force to break using a TA-XT2 Texture Analyzer. Brined samples contained more fat and were darker, redder and more yellow than the salted samples. Processing concentrated omega-3 fatty acids compared with raw salmon, and the brined jerky had the highest omega-3 fatty acid content. A panel of 57 consumers liked the appearance and aroma of both samples equally (approximately 6.7 for appearance and 6.3 for aroma on the 9-point hedonic scale. Higher acceptability scores for taste, texture, and overall quality were given to the brined product (6.7 to 6.9 against 6.2 to 6.3). Salmon trim from smoking facilities can be utilized to produce a jerky that is a good source of omega-3 fatty acids, simultaneously adding value and reducing the waste stream. © 2011 Institute of Food Technologists®

  3. Characterization of a Value-Added Salmon Product: Infant/Toddler Food

    ERIC Educational Resources Information Center

    De Santos, Felicia Ann

    2009-01-01

    Salmon are rich sources of omega-3 fatty acids. These are important in the human diet and especially for young children in the first two years of life. Wild Alaskan salmon was utilized in a novel way by development and investigation of basic baby food product formulations from sockeye and pink salmon. Thus, physical and sensory properties of baby…

  4. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon leftmore » the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  5. Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes.

    PubMed

    Pechal, Jennifer L; Benbow, M Eric

    2016-05-01

    Carrion decomposition is driven by complex relationships that affect necrobiome community (i.e. all organisms and their genes associated with a dead animal) interactions, such as insect species arrival time to carrion and microbial succession. Little is understood about how microbial communities interact with invertebrates at the aquatic-terrestrial habitat interface. The first objective of the study was to characterize internal microbial communities using high-throughput sequencing of 16S rRNA gene amplicons for aquatic insects (three mayfly species) in streams with salmon carcasses compared with those in streams without salmon carcasses. The second objective was to assess the epinecrotic microbial communities of decomposing salmon carcasses (Oncorhynchus keta) compared with those of terrestrial necrophagous insects (Calliphora terraenovae larvae and adults) associated with the carcasses. There was a significant difference in the internal microbiomes of mayflies collected in salmon carcass-bearing streams and in non-carcass streams, while the developmental stage of blow flies was the governing factor in structuring necrophagous insect internal microbiota. Furthermore, the necrophagous internal microbiome was influenced by the resource on which the larvae developed, and changes in the adult microbiome varied temporally. Overall, these carrion subsidy-driven networks respond to resource pulses with bottom-up effects on consumer microbial structure, as revealed by shifting communities over space and time. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    PubMed

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP < ER) in response to bioturbation of benthic habitats by salmon. Following the seasonal arrival of salmon, GPP declined to <12% of pre-salmon rates, while ER increased by over threefold. Metabolism by live salmon could not account for the observed increase in ER early in the salmon run, suggesting salmon nutrients and disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest

  7. How stock of origin affects performance of individuals across a meta-ecosystem: an example from sockeye salmon.

    PubMed

    Griffiths, Jennifer R; Schindler, Daniel E; Seeb, Lisa W

    2013-01-01

    Connectivity among diverse habitats can buffer populations from adverse environmental conditions, influence the functioning of meta-ecosystems, and ultimately affect the reliability of ecosystem services. This stabilizing effect on populations is proposed to derive from complementarity in growth and survival conditions experienced by individuals in the different habitats that comprise meta-ecosystems. Here we use the fine scale differentiation of salmon populations between diverse lake habitats to assess how rearing habitat and stock of origin affect the body condition of juvenile sockeye salmon. We use genetic markers (single nucleotide polymorphisms) to assign individuals of unknown origin to stock group and in turn characterize ecologically relevant attributes across habitats and stocks. Our analyses show that the body condition of juvenile salmon is related to the productivity of alternative habitats across the watershed, irrespective of their stock of origin. Emigrants and residents with genetic origins in the high productivity lake were also differentiated by their body condition, poor and high respectively. These emigrants represented a substantial proportion of juvenile sockeye salmon rearing in the lower productivity lake habitat. Despite emigrants originating from the more productive lake, they did not differ in body condition from the individuals spawned in the lower productivity, recipient habitat. Genetic tools allowed us to assess the performance of different stocks groups across the diverse habitats comprising their meta-ecosystem. The ability to characterize the ecological consequences of meta-ecosystem connectivity can help develop strategies to protect and restore ecosystems and the services they provide to humans.

  8. How Stock of Origin Affects Performance of Individuals across a Meta-Ecosystem: An Example from Sockeye Salmon

    PubMed Central

    Griffiths, Jennifer R.; Schindler, Daniel E.; Seeb, Lisa W.

    2013-01-01

    Connectivity among diverse habitats can buffer populations from adverse environmental conditions, influence the functioning of meta-ecosystems, and ultimately affect the reliability of ecosystem services. This stabilizing effect on populations is proposed to derive from complementarity in growth and survival conditions experienced by individuals in the different habitats that comprise meta-ecosystems. Here we use the fine scale differentiation of salmon populations between diverse lake habitats to assess how rearing habitat and stock of origin affect the body condition of juvenile sockeye salmon. We use genetic markers (single nucleotide polymorphisms) to assign individuals of unknown origin to stock group and in turn characterize ecologically relevant attributes across habitats and stocks. Our analyses show that the body condition of juvenile salmon is related to the productivity of alternative habitats across the watershed, irrespective of their stock of origin. Emigrants and residents with genetic origins in the high productivity lake were also differentiated by their body condition, poor and high respectively. These emigrants represented a substantial proportion of juvenile sockeye salmon rearing in the lower productivity lake habitat. Despite emigrants originating from the more productive lake, they did not differ in body condition from the individuals spawned in the lower productivity, recipient habitat. Genetic tools allowed us to assess the performance of different stocks groups across the diverse habitats comprising their meta-ecosystem. The ability to characterize the ecological consequences of meta-ecosystem connectivity can help develop strategies to protect and restore ecosystems and the services they provide to humans. PMID:23505539

  9. IBSEM: An Individual-Based Atlantic Salmon Population Model

    PubMed Central

    Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A.

    2015-01-01

    Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a ‘wild’ genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors. PMID:26383256

  10. IBSEM: An Individual-Based Atlantic Salmon Population Model.

    PubMed

    Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A

    2015-01-01

    Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a 'wild' genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors.

  11. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014

    USGS Publications Warehouse

    Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.

    2015-01-01

    The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged

  12. Influence of body condition on the population dynamics of Atlantic salmon with consideration of the potential impact of sea lice.

    PubMed

    Susdorf, R; Salama, N K G; Lusseau, D

    2017-11-21

    Atlantic salmon Salmo salar is an iconic species of high conservation and economic importance. At sea, individuals typically are subject to sea lice infestation, which can have detrimental effects on their host. Over recent decades, the body condition and marine survival in NE Atlantic stocks have generally decreased, reflected in fewer adults returning to rivers, which is partly attributable to sea lice. We developed a deterministic stage-structured population model to assess condition-mediated population dynamics resulting in changing fecundity, age at sexual maturation and marine survival rate. The model is parameterized using data from the North Esk system, north-east Scotland. Both constant and density-dependent juvenile survival rates are considered. We show that even small sea lice-mediated changes in mean body condition of MSW can cause substantial population declines, whereas 1SW condition is less influential. Density dependence alleviates the condition-mediated population effect. The resilience of the population to demographic perturbations declines as adult condition is reduced. Indirect demographic changes in salmonid life-history traits (e.g., body condition) are often considered unimportant for population trajectory. The model shows that Atlantic salmon population dynamics can be highly responsive to sea lice-mediated effects on adult body condition, thus highlighting the importance of non-lethal parasitic long-term effects. © 2017 The Authors Journal of Fish Diseases Published by John Wiley & Sons Ltd.

  13. CAN WE SUSTAIN WILD SALMON THROUGH 2100? THE SALMON 2100 PROJECT

    EPA Science Inventory

    abstract for presentation Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appe...

  14. SALMON AND THE ENDANGERED SPECIES ACT: TROUBLESOME QUESTIONS

    EPA Science Inventory

    Throughout the Pacific Northwest and California, all wild salmon runs have declined since 1850 and some have disappeared. A sustainable future for wild salmon remains elusive. In response to requirements of the U.S. Endangered Species Act, the Canadian Species at Risk Act, and ...

  15. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  16. 78 FR 45478 - Proposed Establishment of Class E Airspace; Salmon, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...-0531; Airspace Docket No. 13-ANM-20] Proposed Establishment of Class E Airspace; Salmon, ID AGENCY... action proposes to establish Class E airspace at the Salmon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Salmon, ID, to facilitate vectoring of Instrument Flight Rules...

  17. Contamination of salmon fillets and processing plants with spoilage bacteria.

    PubMed

    Møretrø, Trond; Moen, Birgitte; Heir, Even; Hansen, Anlaug Å; Langsrud, Solveig

    2016-11-21

    The processing environment of salmon processing plants represents a potential major source of bacteria causing spoilage of fresh salmon. In this study, we have identified major contamination routes of important spoilage associated species within the genera Pseudomonas, Shewanella and Photobacterium in pre-rigor processing of salmon. Bacterial counts and culture-independent 16S rRNA gene analysis on salmon fillet from seven processing plants showed higher levels of Pseudomonas spp. and Shewanella spp. in industrially processed fillets compared to salmon processed under strict hygienic conditions. Higher levels of Pseudomonas spp. and Shewanella spp. were found on fillets produced early on the production day compared to later processed fillets. The levels of Photobacterium spp. were not dependent on the processing method or time of processing. In follow-up studies of two plants, bacterial isolates (n=2101) from the in-plant processing environments (sanitized equipment/machines and seawater) and from salmon collected at different sites in the production were identified by partial 16S rRNA gene sequencing. Pseudomonas spp. dominated in equipment/machines after sanitation with 72 and 91% of samples from the two plants being Pseudomonas-positive. The phylogenetic analyses, based on partial 16S rRNA gene sequencing, showed 48 unique sequence profiles of Pseudomonas of which two were dominant. Only six profiles were found on both machines and in fillets in both plants. Shewanella spp. were found on machines after sanitation in the slaughter department while Photobacterium spp. were not detected after sanitation in any parts of the plants. Shewanella spp. and Photobacterium spp. were found on salmon in the slaughter departments. Shewanella was frequently present in seawater tanks used for bleeding/short term storage. In conclusion, this study provides new knowledge on the processing environment as a source of contamination of salmon fillets with Pseudomonas spp. and

  18. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2015-12-01

    Salmon are a valuable cultural and economic resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  19. Olfactory Transcriptional Analysis of Salmon Exposed to Mixtures of Chlorpyrifos and Malathion Reveal Novel Molecular Pathways of Neurobehavioral Injury

    PubMed Central

    Wang, Lu; Espinoza, Herbert M.; MacDonald, James W.; Bammler, Theo K.; Williams, Chase R.; Yeh, Andrew; Louie, Ke’ale W.; Marcinek, David J.; Gallagher, Evan P.

    2016-01-01

    Pacific salmon exposed to sublethal concentrations of organophosphate pesticides (OP) have impaired olfactory function that can lead to loss of behaviors that are essential for survival. These exposures often involve mixtures and can occur at levels below those which inhibit acetylcholinesterase (AChE). In this study, juvenile Coho salmon were exposed for 24 h to either 0.1, 0.5, or 2.5 ppb chlorpyrifos (CPF), 2, 10, or 50 ppb malathion (MAL), or binary mixtures of 0.1 CPF:2 ppb MAL, 0.5 CPF:10 ppb MAL, or 2.5 CPF:10 ppb MAL to mimic single and binary environmental exposures. Microarray analysis of olfactory rosettes from pesticide-exposed salmon revealed differentially expressed genes involved in nervous system function and signaling, aryl hydrocarbon receptor signaling, xenobiotic metabolism, and mitochondrial dysfunction. Coho exposed to OP mixtures exhibited a more pronounced loss in detection of a predatory olfactory cue relative to those exposed to single compounds, whereas respirometry experiments demonstrated that exposure to OPs, individually and in mixtures, reduced maximum respiratory capacity of olfactory rosette mitochondria. The observed molecular, biochemical, and behavioral effects occurred largely in the absence of effects on brain AChE. In summary, our results provide new insights associated with the sublethal neurotoxic effects of OP mixtures relevant to environmental exposures involving molecular and cellular pathways of injury to the salmon olfactory system that underlie neurobehavioral injury. PMID:26494550

  20. Interspecific competition in tributaries: Prospectus for restoring Atlantic salmon in Lake Ontario

    USGS Publications Warehouse

    Johnson, James H.; Wedge, Leslie R.

    1999-01-01

    Historically, Lake Ontario may have supported the world's largest freshwater population of Atlantic salmon (Salmo salar). However, by the late 1800's, salmon were virtually extinct in the lake due to the damming of tributaries, overharvest, deforestation, and pollution. Of these factors, the building of dams on tributaries, which precluded access by the salmon to natal spawning streams, was probably the most detrimental. Since the extirpation of Atlantic salmon in the Lake Ontario watershed over a century ago, considerable change has occurred throughout the lake and tributary ecosystem. The changes within the ecosystem that may have the most profound effect on Atlantic salmon restoration include the presence of exotic species, including other salmonines, and reduced habitat quality, especially in tributaries. These changes must be taken into account when considering Atlantic salmon restoration.

  1. Energy economy of salmon aquaculture in the Baltic sea

    NASA Astrophysics Data System (ADS)

    Folke, Carl

    1988-07-01

    Resource utilization in Atlantic salmon aquaculture in the Baltic Sea was investigated by means of an energy analysis. A comparison was made between cage farming and sea ranching enterprises each with yearly yields of 40 t of Atlantic salmon. A variety of sea ranching options were evaluated, including (a) conventional ranching, (b) ranching employing a delayed release to the sea of young smolts, (c) harvesting salmon both by offshore fishing fleets and as they return to coastal areas, and (d) when offshore fishing is banned, harvesting salmon only as they return to coastal areas where released. Inputs both from natural ecosystems (i.e., fish consumed by ranched salmon while in the sea and raw materials used for producing dry food pellets) and from the economy (i.e., fossil fuels and energy embodied in economic goods and services) were quantified in tonnes for food energy and as direct plus indirect energy cost (embodied energy). The fixed solar energy (estimated as primary production) and the direct and indirect auxiliary energy requirements per unit of fish output were expressed in similar units. Similar quantities of living resources in tonnes per unit of salmon biomass output are required whether the salmon are feeding in the sea or are caged farmed. Cage farming is about 10 times more dependent on auxiliary energies than sea ranching. Sea ranching applying delayed release of smolts is 35 45% more efficient in the use of auxiliary energies than conventional sea ranching and cage farming. Restriction of offshore fishing would make sea ranching 3 to 6.5 times more efficient than cage farming. The fixed solar energy input to Atlantic salmon aquaculture is 4 to 63 times larger than the inputs of auxiliary energy. Thus, cage farming and sea ranching are both heavily dependent on the productivity of natural ecosystems. It is concluded that sustainable development of the aquaculture industry must be founded on ecologically integrated technologies which utilize the free

  2. Gauging resource exploitation by juvenile Chinook salmon (Oncorhynchus tshawytscha) in restoring estuarine habitat

    USGS Publications Warehouse

    Davis, Melanie; Ellings, Christopher S.; Woo, Isa; Hodgson, Sayre; Larsen, Kimberly A.; Nakai, Glynnis

    2018-01-01

    In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out-migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post-restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density-dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.

  3. Diet composition and feeding periodicity of wild and hatchery subyearling Chinook salmon in Lake Ontario

    USGS Publications Warehouse

    Johnson, J. H.

    2008-01-01

    Diel feeding periodicity, daily ration, and diet composition of wild and hatchery subyearling Chinook salmon Oncorhynchus tshawytscha were examined in Lake Ontario and the Salmon River, New York. The diet of wild riverine salmon was composed mainly of aquatic invertebrates (63.4%), mostly ephemeropterans (25.8%), chiromomids (15.8%), and trichopterans (8.3%). The diet of riverine Chinook was more closely associated with the composition of drift samples rather than bottom samples, suggesting mid-water feeding. In Lake Ontario terrestrial invertebrates were more important in the diet of hatchery Chinook (49.0%) than wild salmon (30.5%) and diet overlap between hatchery and wild salmon was low (0.46%). The diet of both hatchery and wild Chinook salmon was more closely associated with the composition of mid-water invertebrate samples rather than benthic core samples, indicating mid-water and surface feeding. Hatchery Chinook salmon consumed significantly less food (P < 0.05) than wild Chinook salmon in the lake and in the river, and wild salmon from Lake Ontario consumed more food than wild salmon in the Salmon River. Peak feeding of wild Chinook salmon occurred between 1200-1600 hours in Lake Ontario and between 1600-2000 hours in the Salmon River; there was no discernable feeding peak for the hatchery Chinook in Lake Ontario. Hatchery Chinook salmon also had the least diverse diet over the 24-hour sample period. These results suggest that at 7 days post-stocking hatchery Chinook salmon had not yet fully adapted to their new environment.

  4. The effect of catch-and-release angling at high water temperatures on behaviour and survival of Atlantic salmon Salmo salar during spawning migration.

    PubMed

    Havn, T B; Uglem, I; Solem, Ø; Cooke, S J; Whoriskey, F G; Thorstad, E B

    2015-08-01

    In this study, behaviour and survival following catch-and-release (C&R) angling was investigated in wild Atlantic salmon Salmo salar (n = 75) angled on sport fishing gear in the River Otra in southern Norway at water temperatures of 16.3-21.1 °C. Salmo salar were tagged externally with radio transmitters and immediately released back into the river to simulate a realistic C&R situation. The majority of S. salar (91%) survived C&R. Most S. salar that were present in the River Otra during the spawning period 3-4 months later were located at known spawning grounds. Downstream movements (median furthest position: 0.5 km, range: 0.1-11.0 km) during the first 4 days after release were recorded for 72% of S. salar, presumably stress-induced fallback associated with C&R. Individuals that fell back spent a median of 15 days before commencing their first upstream movement after release, and 34 days before they returned to or were located above their release site. Mortality appeared to be somewhat elevated at the higher end of the temperature range (14% at 18-21 °C), although sample sizes were low. In conclusion, C&R at water temperatures up to 18 °C had small behavioural consequences and was associated with low mortality (7%). Nevertheless, low levels of mortality occur due to C&R angling and these losses should be accounted for by management authorities in rivers where C&R is practised. Refinement of best practices for C&R may help to reduce mortality, particularly at warmer temperatures. © 2015 The Fisheries Society of the British Isles.

  5. Effects of dam removal on Tule Fall Chinook salmon spawning habitat in the White Salmon River, Washington

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Skalicky, Joseph J.; Engle, Rod; Barton, Gary J.; Fosness, Ryan L.; Warren, Joe

    2016-01-01

    Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds-of-thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3-year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty-two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two-dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post-breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  6. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2016-02-01

    Salmon are a valuable resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the long term implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat after 12 years of re-colonization, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the long term, landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  7. Snake River Sockeye Salmon Habitat and Limnological Research; 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Robert G.; Taki, Doug; Lewis, Bert

    2001-01-15

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  8. Snake River Sockeye Salmon Habitat and Limnological Research; 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2002-12-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2000 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  9. Dietary and spatial overlap between sympatric ursids relative to salmon use

    USGS Publications Warehouse

    Fortin, Jennifer K.; Farley, Sean D.; Rode, Karyn D.; Robbins, Charles T.

    2007-01-01

    We hypothesized that there would be minimal dietary overlap between sympatric brown bears (Ursus arctos) and American black bears (U. americanus) relative tosalmon (Oncorhynchus spp.) utilization when alternative foods (e.g., fruits) are abundant. To maximize the chance that we would reject this hypothesis, we examined the diets of brown and black bears known to have visited salmon streams. Species, sex, and individual identification of bears visiting salmon streams were determined by DNA analysis of hair and feces collected in 2002-2004 along those streams. Diets were estimated from fecal residues and stable isotope analyses of hair. Assimilated diets of brown bears were 66.0% (SD = 16.7%) salmon, 13.9% (SD = 7.5%) terrestrial animal matter, and 20.1% (SD = 17.2%) plant matter. Assimilated diets of black bears were 8.0% (SD = 5.4%)salmon, 8.4% (SD = 9.7%) terrestrial animal matter, and 83.6% (SD = 7.7%) plant matter. Male and female brown bears did not differ in either the proportion of dietary salmon, terrestrial animal matter, or plant matter. The relative amounts of fruit residues in the feces of brown bears (87.0%, SD = 15.2%) and black bears (91.8%, SD = 7.2%) did not differ. Both sexes of brown bears visited salmon streams and consumed significant amounts of salmon, but only male American black bears visited streams and then consumed minimal amounts of salmon. Thus, brown bears were largely carnivorous and black bears were largely herbivorous and frugivorous. This reduced dietary overlap relative to salmon and fruit use is understandable in light of the concentrated, defendable nature of salmon in small streams, the widely dispersed, non-defendable nature of abundant fruits, the dominance of brown over black bears, the higher energy requirement of the larger brown bear, and, therefore, the differing ability of the species to efficiently exploit different food resources.

  10. Diel behavior of rearing fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Skalicky, Joseph J.

    2010-01-01

    In fisheries science, habitat use is often inferred when fish are sampled or observed in a particular location. Physical habitat is typically measured where fish are found, and thus deemed important to habitat use. Although less common, a more informative approach is to measure or observe fish behavior within given habitats to more thoroughly assess their use of those locations. While this approach better reflects how fish use habitat, fish behavior can be difficult to quantify, particularly at night. For example, Tiffan and others (2002, 2006) were able to quantify habitat availability and characteristics that were important for rearing juvenile fall Chinook Salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The authors, however, could only speculate as to how juvenile salmon use habitat and respond to changes in water level fluctuations. Conversely, in this study we provide data on the diel activities of rearing juvenile wild fall Chinook Salmon which provides a better understanding of how fish “use” these rearing habitats. Diel behavior patterns are important because fish in the Hanford Reach are often stranded on shorelines when the water level rapidly recedes because of hydroelectric power generation at upriver dams (Nugent and others 2002; Anglin and others 2006). We hypothesize that juvenile salmon are at greater risk of stranding at night because they are less active and occupy habitat differently than during the day. We used underwater videography to collect behavioral information during the day and night to determine if juvenile fall Chinook Salmon are more susceptible to stranding when water level fluctuations occur at night.

  11. Reduced growth in wild juvenile sockeye salmon Oncorhynchus nerka infected with sea lice.

    PubMed

    Godwin, S C; Dill, L M; Krkošek, M; Price, M H H; Reynolds, J D

    2017-07-01

    Daily growth rings were examined in the otoliths of wild juvenile sockeye salmon Oncorhynchus nerka to determine whether infection by ectoparasitic sea lice Caligus clemensi and Lepeophtheirus salmonis was associated with reduced host body growth, an important determinant of survival. Over 98% of the sea lice proved to be C. clemensi and the fish that were highly infected grew more slowly than uninfected individuals. Larger fish also grew faster than smaller fish. Finally, there was evidence of an interaction between body size and infection status, indicating the potential for parasite-mediated growth divergence. © 2017 The Fisheries Society of the British Isles.

  12. Salmon River Habitat Enhancement. 1990 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  13. Acute exposure to gas-supersaturated water does not affect reproductive success of female adult chinook salmon late in maturation

    USGS Publications Warehouse

    Gale, William L.; Maule, A.G.; Postera, A.; Peters, M.H.

    2004-01-01

    At times, total dissolved gas concentrations in the Columbia and Snake rivers have been elevated due to involuntary spill from high spring runoff and voluntary spill used as a method to pass juvenile salmonids over dams. The goal of this project was to determine if acute exposure to total dissolved gas supersaturation (TDGS) affects the reproductive performance of female chinook salmon late in their maturation. During this study, adult female spring chinook salmon were exposed to mean TDGS levels of 114.1 % to 125.5%. We ended exposures at first mortality, or at the appearance of impending death. Based on this criterion, exposures lasted from 10 to 68 h and were inversely related to TDGS. There was no effect of TDGS on pre-spawning mortality or fecundity when comparing treatment fish to experimental controls or the general hatchery population four to six weeks after exposures. Egg quality, based on egg weight and egg diameter, did not differ between treatment and control fish. Fertilization rate and survival to eyed-stage was high (>94%) for all groups. With the exception of Renibacterium salmoninarum (the causative agent of bacterial kidney disease; BKD), no viral or bacterial fish pathogens were isolated from experimental fish. The prevalence (about 45%) and severity of R. salmoninarum did not differ among the groups or the general hatchery population. We conclude that these acute exposures to moderate levels of gas-supersaturated water-perhaps similar to that experienced by immigrating adult salmon as they approach and pass a hydropower dam on the Columbia River-did not affect reproductive success of female chinook salmon late in their maturation. These results are most applicable to summer and fall chinook salmon, which migrate in the summer/fall and spawn shortly after reaching their natal streams. Published in 2004 by John Wiley and Sons, Ltd.

  14. Sea lice and salmon population dynamics: effects of exposure time for migratory fish.

    PubMed

    Krkosek, Martin; Morton, Alexandra; Volpe, John P; Lewis, Mark A

    2009-08-07

    The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2-3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon-louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon-louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.

  15. Salmon as a food-poisoning vehicle--two successive Salmonella outbreaks.

    PubMed Central

    Cartwright, K. A.; Evans, B. G.

    1988-01-01

    Gastroenteritis due to Salmonella montevideo occurred amongst guests attending two social functions held within 24 h, food for both having been provided by the same catering firm. Salmon was the most likely vehicle of infection in each case, although cross-contamination of other foods occurred. There were no deaths; four patients were admitted to hospital, one of whom underwent appendicectomy. A review of salmon-associated food-poisoning outbreaks suggests that fresh salmon is an infrequent cause of food poisoning in the United Kingdom. The two outbreaks described here resulted from a failure of simple kitchen hygiene measures at a time of high ambient temperatures. Some current cooking instructions for salmon are inadequate. PMID:3181309

  16. Early human use of anadromous salmon in North America at 11,500 y ago.

    PubMed

    Halffman, Carrin M; Potter, Ben A; McKinney, Holly J; Finney, Bruce P; Rodrigues, Antonia T; Yang, Dongya Y; Kemp, Brian M

    2015-10-06

    Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America.

  17. Early human use of anadromous salmon in North America at 11,500 y ago

    PubMed Central

    Halffman, Carrin M.; Potter, Ben A.; McKinney, Holly J.; Finney, Bruce P.; Rodrigues, Antonia T.; Yang, Dongya Y.; Kemp, Brian M.

    2015-01-01

    Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America. PMID:26392548

  18. POLICY CONUNDRUM: RESTORING WILD SALMON TO THE PACIFIC NORTHWEST

    EPA Science Inventory

    Restoring wild salmon runs to the Pacific Northwest is technically challenging, politically nasty, and socially divisive. Past restoration efforts have been largely unsuccessful. Society's failure to reverse the continuing decline of wild salmon has the characteristics of a pol...

  19. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake Rivermore » sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish

  20. Behavior, passage, and downstream migration of juvenile Chinook salmon from Detroit Reservoir to Portland, Oregon, 2014–15

    USGS Publications Warehouse

    Kock, Tobias J.; Beeman, John W.; Hansen, Amy C.; Hansel, Hal C.; Hansen, Gabriel S.; Hatton, Tyson W.; Kofoot, Eric E.; Sholtis, Matthew D.; Sprando, Jamie M.

    2015-11-16

    A Cormack-Jolly-Seber mark-recapture model was developed to provide reach-specific survival estimates for juvenile Chinook salmon. A portion of the tagged population overwintered in the Willamette River Basin and outmigrated several months after release. As a result, survival estimates from the model would have been negatively biased by factors such as acoustic tag failure and tag loss. Data from laboratory studies were incorporated into the model to provide survival estimates that accounted for these factors. In the North Santiam River between Minto Dam and the Bennett Dam complex, a distance of 37.2 kilometers, survival was estimated to be 0.844 (95-percent confidence interval 0.795–0.893). The survival estimate for the 203.7 kilometer reach between the Bennett Dam complex and Portland, Oregon, was 0.279 (95-percent confidence interval 0.234–0.324), and included portions of the North Santiam, Santiam, and Willamette Rivers. The cumulative survival estimate in the 240.9 kilometer reach from the Minto Dam tailrace to Portland was 0.236 (95-percent confidence interval 0.197–0.275).

  1. Overview of environmental and hydrogeologic conditions at King Salmon, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    1994-01-01

    The Federal Aviation Administration is conducting preliminary environmental assessments at most of its present or former facilities in Alaska. Information about environmental conditions at King Salmon, Alaska are presented in this report. This report gives an overview of the geology, hydro- logy, and climate of the King Salmon area and describes general geohydrologic conditions. A thick alluvial aquifer underlies King Salmon and both ground water and surface water are plentiful in the area.

  2. Characterisation of a monoclonal antibody detecting Atlantic salmon endothelial and red blood cells, and its association with the infectious salmon anaemia virus cell receptor.

    PubMed

    Aamelfot, Maria; Weli, Simon C; Dale, Ole B; Koppang, Erling O; Falk, Knut

    2013-05-01

    Endothelial cells (ECs) line the luminal surfaces of the cardiovascular system and play an important role in cardiovascular functions such as regulation of haemostasis and vasomotor tone. A number of fish and mammalian viruses target these cells in the course of their infection. Infectious salmon anaemia virus (ISAV) attacks ECs and red blood cells (RBCs) of farmed Atlantic salmon (Salmo salar L.), producing the severe disease of infectious salmon anaemia (ISA). The investigation of ISA has up to now been hampered by the lack of a functional marker for ECs in Atlantic salmon in situ. In this study, we report the characterisation and use of a novel monoclonal antibody (MAb) detecting Atlantic salmon ECs (e.g. vessel endothelium, endocardial cells and scavenger ECs) and RBCs. The antibody can be used with immunohistochemistry, IFAT and on Western blots. It appears that the epitope recognised by the antibody is associated with the ISAV cellular receptor. Besides being a tool to identify ECs in situ, it could be useful in further studies of the pathogenicity of ISA. Finally, the detection of an epitope shared by ECs and RBCs agrees with recent findings that these cells share a common origin, thus the MAb can potentially be used to study the ontogeny of these cells in Atlantic salmon. © 2013 Anatomical Society.

  3. Salmon 2100: Some recovery strategies that just might work

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not ...

  4. POLICY CONUNDRUM: RESTORING WILD SALMON TO THE PACIFIC NORTHWEST

    EPA Science Inventory

    Across the Pacific Northwest region of North America, many runs of wild (in contrast to hatchery-bred) salmon have declined and some have been extirpated. Restoring wild salmon runs to the Pacific Northwest is technically challenging, politically nasty, socially divisive, and ...

  5. Size, growth, and size‐selective mortality of subyearling Chinook Salmon during early marine residence in Puget Sound

    USGS Publications Warehouse

    Gamble, Madilyn M.; Connelly, Kristin A.; Gardner, Jennifer R.; Chamberlin, Joshua W.; Warheit, Kenneth I.; Beauchamp, David A.

    2018-01-01

    In marine ecosystems, survival can be heavily influenced by size‐selective mortality during juvenile life stages. Understanding how and when size‐selective mortality operates on a population can reveal underlying growth dynamics and size‐selective ecological processes affecting the population and thus can be used to guide conservation efforts. For subyearling Chinook Salmon Oncorhynchus tshawytscha in Puget Sound, previous research reported a strong positive relationship between marine survival and body mass during midsummer in epipelagic habitats within Puget Sound, suggesting that early marine growth drives survival. However, a fine‐scale analysis of size‐selective mortality is needed to identify specific critical growth periods and habitats. The objectives of this study were to (1) describe occupancy patterns across estuarine delta, nearshore marine, and offshore epipelagic habitats in Puget Sound; (2) describe changes in FL and weight observed across habitats and time; (3) evaluate evidence for size‐selective mortality; and (4) illustrate how marine survival of the stocks studied may be affected by variation in July weight. In 2014 and 2015, we sampled FLs, weights, and scales from seven hatchery‐origin and two natural‐origin stocks of subyearling Chinook Salmon captured every 2 weeks during out‐migration and rearing in estuary, nearshore, and offshore habitats within Puget Sound. Natural‐origin stocks had more protracted habitat occupancy patterns than hatchery‐origin stocks and were smaller than hatchery‐origin stocks in both years. Regardless of origin, subyearlings were longer and heavier and grew faster in offshore habitats compared to estuary and nearshore habitats. For all stocks, we found little evidence of size‐selective mortality among habitats in Puget Sound. These patterns were consistent in both years. Finally, the weights of subyearlings sampled during July in the offshore habitat predicted Puget Sound‐wide marine

  6. Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; Elliott, Robert F.; Schmidt, Larry J.; DeSorcie, Timothy J.; Hesselberg, Robert J.; Quintal, Richard T.; Begnoche, Linda J.; Bouchard, Patrick M.; Holey, Mark E.

    1998-01-01

    Most of the polychlorinated biphenyl (PCB) body burden accumulated by coho salmon (Oncorhynchus kisutch) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both coho salmon and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan coho salmon retain PCBs from their food. Our estimate was the most reliable estimate to date because (a) the coho salmon and prey fish sampled during our study were sampled in spring, summer, and fall from various locations throughout the lake, (b) detailed measurements were made on the PCB concentrations of both coho salmon and prey fish over wide ranges in fish size, and (c) coho salmon diet was analyzed in detail from April through November over a wide range of salmon size from numerous locations throughout the lake. We estimated that coho salmon from Lake Michigan retain 50% of the PCBs that are contained within their food.

  7. Coronary arteriosclerosis in Atlantic salmon. No regression of lesions after spawning.

    PubMed

    Saunders, R L; Farrell, A P

    1988-01-01

    The incidence and severity of coronary arteriosclerosis were studied in 209 wild and cultured Atlantic salmon (Salmo salar L.) during various stages of recovery of bodily condition after spawning. All recently spawned fish had lesions of moderate to extreme severity. The incidence of lesions for each fish was high (73% to 94% of all arterial cross-sections examined). The incidence and severity of lesions did not decrease during 5 months in a group of wild salmon reconditioned in the laboratory. Wild salmon that were examined in the spring angling fishery in the Miramichi River, New Brunswick, about 5 months after spawning had a high incidence (89%) of severe lesions, not significantly different from recently spawned salmon from the same and another river. A population of cultured salmon sampled at intervals from a sea cage during 9 months after spawning showed no evidence of lesion regression, but rather a continued increase in both incidence and severity during recovery of bodily condition and growth. Thus, in contrast with previous studies with steelhead trout and Atlantic salmon where the possibility of lesion regression has been suggested, our observations on a large number of Atlantic salmon from various sources gave no evidence of lesion regression. Coronary arteriosclerosis in Salmo salar appears to be a progressive condition, which continues during recovery of bodily condition and growth after spawning.

  8. 'Snorkel' lice barrier technology reduced two co- occurring parasites, the salmon louse (Lepeophtheirus salmonis) and the amoebic gill disease causing agent (Neoparamoeba perurans), in commercial salmon sea-cages.

    PubMed

    Wright, D W; Stien, L H; Dempster, T; Vågseth, T; Nola, V; Fosseidengen, J-E; Oppedal, F

    2017-05-01

    Diverse chemical-free parasite controls are gaining status in Atlantic salmon sea-cage farming. Yet, the intricacies of their use at commercial scale, including effects on co-occurring parasites, are seldom reported. A new salmon lice prevention method involves installing a deep net roof and 'snorkel' lice barrier in cages to shelter salmon from free-living infective larvae which concentrate at shallow depths, and allows salmon to jump and re- inflate their buoyancy-regulating swim bladder by swallowing air. We document use of snorkel cages (10m deep barrier) in commercial farms, where their effects on salmon lice levels, amoebic gill disease (AGD)-related gill scores, the cage environment, fish welfare and farm management practices were compared to standard cages. During an autumn-winter study involving only snorkel cages, high AGD-related gill scores were observed to decline when freshwater was pumped into snorkels, creating a freshwater surface layer for salmon to enter for self-treatment. In a spring-summer study incorporating snorkel and standard cages, snorkel cages were found to reduce new lice infestations by 84%. The deployment of snorkels and intermittent oxygen depletion detected within them in the spring-summer study did not alter fish welfare parameters. Overall, the results suggest snorkel technology has a place in the toolkit of commercial salmon sea-cage farmers co-managing salmon lice and amoebic gill disease outbreaks - two principal parasite issues facing the industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington

    NASA Astrophysics Data System (ADS)

    Smith, Gerald R.; Montgomery, David R.; Peterson, N. Phil; Crowley, Bruce

    2007-09-01

    An assemblage of fossil sockeye salmon was discovered in Pleistocene lake sediments along the South Fork Skokomish River, Olympic Peninsula, Washington. The fossils were abundant near the head of a former glacial lake at 115 m elevation. Large adult salmon are concentrated in a sequence of death assemblages that include individuals with enlarged breeding teeth and worn caudal fins indicating migration, nest digging, and spawning prior to death. The specimens were 4 yr old and 45-70 cm in total length, similar in size to modern sockeye salmon, not landlocked kokanee. The fossils possess most of the characteristics of sockeye salmon, Oncorhynchus nerka, but with several minor traits suggestive of pink salmon, O. gorbuscha. This suggests the degree of divergence of these species at about 1 million yr ago, when geological evidence indicates the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advance of the Puget lobe ice sheet. Surficial geology and topography record a complicated history of glacial damming and river diversion that implies incision of the modern gorge of the South Fork Skokomish River after deposition of the fossil-bearing sediments.

  10. Behavior patterns and fates of adult steelhead, Chinook salmon, and coho salmon released into the upper Cowlitz River Basin, 2005–09 and 2012, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Ekstrom, Brian K.; Liedtke, Theresa L.; Serl, John D.; Kohn, Mike

    2016-08-26

    A multiyear radiotelemetry evaluation was conducted to monitor adult steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) behavior and movement patterns in the upper Cowlitz River Basin. Volitional passage to this area was eliminated by dam construction in the mid-1960s, and a reintroduction program began in the mid-1990s. Fish are transported around the dams using a trap-and-haul program, and adult release sites are located in Lake Scanewa, the uppermost reservoir in the system, and in the Cowlitz and Cispus Rivers. Our goal was to estimate the proportion of tagged fish that fell back downstream of Cowlitz Falls Dam before the spawning period and to determine the proportion that were present in the Cowlitz and Cispus Rivers during the spawning period. Fallback is important because Cowlitz Falls Dam does not have upstream fish passage, so fish that pass the dam are unable to move back upstream and spawn. A total of 2,051 steelhead and salmon were tagged for the study, which was conducted during 2005–09 and 2012, and 173 (8.4 percent) of these regurgitated their transmitter prior to, or shortly after release. Once these fish were removed from the dataset, the final number of fish that was monitored totaled 1,878 fish, including 647 steelhead, 770 Chinook salmon, and 461 coho salmon.Hatchery-origin (HOR) and natural-origin (NOR) steelhead, Chinook salmon, and coho salmon behaved differently following release into Lake Scanewa. Detection records showed that the percentage of HOR fish that moved upstream and entered the Cowlitz River or Cispus River after release was relatively low (steelhead = 38 percent; Chinook salmon = 67 percent; coho salmon = 41 percent) compared to NOR fish (steelhead = 84 percent; Chinook salmon = 82 percent; coho salmon = 76 percent). The elapsed time from release to river entry was significantly lower for NOR fish than for HOR fish for all three species. Tagged fish entered the Cowlitz River in

  11. Olfactory gene expression in migrating adult sockeye salmon Oncorhynchus nerka.

    PubMed

    Bett, N N; Hinch, S G; Kaukinen, K H; Li, S; Miller, K M

    2018-04-16

    Expression of 12 olfactory genes was analysed in adult sockeye salmon Oncorhynchus nerka nearing spawning grounds and O. nerka that had strayed from their natal migration route. Variation was found in six of these genes, all of which were olfc olfactory receptors and had lower expression levels in salmon nearing spawning grounds. The results may reflect decreased sensitivity to natal water olfactory cues as these fish are no longer seeking the correct migratory route. The expression of olfactory genes during the olfactory-mediated spawning migration of Pacific salmon Oncorhynchus spp. is largely unexplored and these findings demonstrate a link between migratory behaviours and olfactory plasticity that provides a basis for future molecular research on salmon homing. © 2018 The Fisheries Society of the British Isles.

  12. 4. DETAIL OF SMOKE GENERATOR; NORTH SIDE OF LEVEL SIX, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF SMOKE GENERATOR; NORTH SIDE OF LEVEL SIX, LOOKING WEST; HICKORY SAWDUST DROPPED FROM HOPPER ONTO HEATED PLATE TO MAKE SMOKE, WHICH WAS THEN DISTRIBUTED THROUGH SQUARE DUCTS (TOP CENTER) TO INDIVIDUAL SMOKEHOUSE UNITS - Rath Packing Company, Smokehouse-Hog Chilling Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  13. 76 FR 70062 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ...-XA803 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  14. 78 FR 69002 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ...-XC965 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  15. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillson, Todd D.

    2009-06-12

    Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan

  16. Effects of Renibacterium salmoninarum on olfactory organs of Chinook salmon (Oncorhynchus tshawytscha) marked with coded wire tags

    USGS Publications Warehouse

    Elliott, Diane G.; Conway, Carla M.; Bruno, D.W.; Elliott, D.G.; Nowak, B.

    2014-01-01

    Bacterial kidney disease (BKD) caused by Renibacterium salmoninarum can cause significant morbidity and mortality in Chinook salmon (Oncorhynchus tshawytscha), particularly in Chinook salmon of the stream (spring) life history type, which migrate to sea as yearlings rather than subyearlings. R. salmoninarum can be transmitted vertically from the female parent to the progeny in association with the egg, as well as horizontally from fish to fish. This study was conducted as part of a research project to investigate whether the prevalence and intensity of R. salmoninarum infections in adult spring Chinook salmon could affect the survival and pathogen prevalence and intensity in their progeny (Pascho et al., 1991, 1993; Elliott et al., 1995). Fish from two brood years (1988 and 1989) were reared at Dworshak National Fish Hatchery (Idaho, USA) for about 1-1/2 years, released as yearling smolts, and allowed to migrate to the Pacific Ocean for maturation. The majority of progeny fish were marked with coded wire tags (CWTs) about 4 months before they were released from the hatchery so that adult returns could be monitored. The CWTs were implanted in the snouts of the fish by an experienced team of fish markers using automated wire-tagging machines. The intended placement site was the cartilage, skeletal muscle or loose connective tissue of the snout.

  17. ESTIMATING THE SIZE OF HISTORICAL COASTAL OREGON SALMON RUNS

    EPA Science Inventory

    Increasing the abundance of salmon in Oregon's rivers and streams is a high priority public policy objective. Salmon runs have been reduced from pre-development conditions (typically defined as prior to the 1850s), but it is unclear by how much. Considerable public and private ...

  18. PACIFIC NORTHWEST SALMON: IN SEARCH OF A SUSTAINABLE FUTURE

    EPA Science Inventory

    Throughout the Pacific Northwest, all wild salmon runs have declined since 1850 and some have disappeared. A sustainable future for wild salmon remains elusive. Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline. Each year, hundreds...

  19. An Assessment of Potential Mining Impacts on Salmon ...

    EPA Pesticide Factsheets

    The Bristol Bay watershed in southwestern Alaska supports the largest sockeye salmon fishery in the world, is home to 25 federally recognized tribal governments, and contains large mineral resources. The potential for large-scale mining activities in the watershed has raised concerns about the impact of mining on the sustainability of Bristol Bay’s world-class commercial, recreational and subsistence fisheries and the future of Alaska Native tribes in the watershed who have maintained a salmon-based culture and subsistence-based way of life for at least 4,000 years. The purpose of this assessment is to provide a characterization of the biological and mineral resources of the Bristol Bay watershed, increase understanding of the potential impacts of large-scale mining on the region’s fish resources, and inform future government decisions related to protecting and maintaining the chemical, physical, and biological integrity of the watershed. It will also serve as a technical resource for the public, tribes, and governments who must consider how best to address the challenges of mining and ecological protection in the Bristol Bay watershed. The purpose of this assessment is to understand how future large-scale mining may affect water quality and the Bristol Bay salmon fisheries, which includes the largest wild sockeye salmon fishery in the world. Bristol Bay, Alaska, is home to a salmon fishery that is of significant economic and subsistence value to the peopl

  20. Effects of aqueous exposure to polychlorinated biphenyls (Aroclor 1254) on physiology and behavior of smolt development of Atlantic salmon

    USGS Publications Warehouse

    Lerner, D.T.; Bjornsson, Bjorn Thrandur; McCormick, S.D.

    2007-01-01

    Polychlorinated biphenyls (PCBs) are a widespread aquatic contaminant and are present in both wild and hatchery raised Atlantic salmon, Salmo salar. The possible sub-lethal alterations in smolt physiology and behavior due to PCB exposure of salmon have not been widely examined. In this study, we examined the effects of the PCB mixture Aroclor 1254 on survival and smolt development of Atlantic salmon. In separate experiments, fish were exposed as yolk-sac larvae or as juveniles just prior to the parr-smolt transformation in April to 1 ??g l-1 (PCB-1) or 10 ??g l-1 (PCB-10) aqueous Aroclor 1254 (A1254), or vehicle for 21 days. After exposure, yolk-sac larvae were reared at ambient conditions for 1 year, until the peak of smolting the following May. Juveniles were sampled immediately after exposure. Both groups were assessed for behavioral, osmoregulatory, and endocrine disruption of smolt development at the peak of smolting. PCB-1 and PCB-10 treated yolk-sac larvae exhibited significant increases in the rate of opercular movement after 14 and 21 days of exposure. At the peak of smolting, prior exposure as yolk-sac larvae to PCB-1 did not affect behavior, while PCB-10 dramatically decreased volitional preference for seawater. Neither concentration of A1254 had long-term effects on the osmoregulatory or endocrine parameters measured in animals exposed as yolk-sac larvae. Juvenile fish exposed to PCB-1 or PCB-10 during smolting exhibited a dose-dependent reduction in preference for seawater. Fish treated with the higher dose of A1254 also exhibited a 50% decrease in gill Na+,K+-ATPase activity and a 10% decrease in plasma chloride levels in freshwater. In addition, plasma triiodothyronine was reduced 35-50% and plasma cortisol 58% in response to exposure to either concentration; whereas plasma thyroxine, growth hormone, and insulin-like growth factor I levels were unaffected. These results indicate that the effects of exposure to A1254 may vary according to