Sample records for salmon smolt program

  1. Spring Outmigration of Wild and Hatchery Chinook Salmonid Steelhead Trout Smolts from the Imnaha River, Oregon; 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blenden, Michael L.; Kucera, Paul A.; Osborne, Randall S.

    1996-04-01

    For the second consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 6 to June 20, 1995. We PIT tagged and released 421 wild chinook salmon smolts, 747 hatchery chinook salmon smolts (445 HxW and 302 HxH), 227 wild steelhead trout smolts and 1,296 hatchery steelhead trout smolts. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 78.4% for wildmore » chinook salmon, 58.9% for hatchery chinook salmon (HxW), 56.6% for hatchery chinook salmon (HxH), 76.2% for wild steelhead trout, and 69.2% for hatchery steelhead trout. Peak outmigration of NPT tagged wild Imnaha River chinook salmon smolts occurred from early to mid-May at Lower Granite, Little Goose, and Lower Monumental Dams. Median and 90% passage dates for wild chinook salmon smolts at Lower Granite Dam were May 1 and May 11, respectively. Continuous spill at Lower Granite Dam was initiated on May 3 and lasted for 51 days. The 90% passage date of wild chinook salmon smolts at Lower Granite Dam (May 11) preceded peak Snake River and Lower Granite (June 6) flows by 26 days. Although hatchery chinook salmon exhibited a shorter outmigration period through the Snake River than their wild counterparts, peak arrival for both groups occurred at approximately the same time. Median and 90% passage dates at Lower Granite Dam for other PIT tagged groups were: hatchery chinook salmon (NPT-HxW) - May 2 and May 13; hatchery chinook salmon (FPC-HxH) - May 8 and May 15; wild steelhead trout - May 2 and May 9; and hatchery steelhead trout (NPT and FPC) - May 31 and June 16. Hatchery steelhead trout displayed small peaks in arrival timing at Lower Granite and Little Goose Dams in mid-May to mid-June.« less

  2. Spring Outmigration of Wild and Hatchery Chinook Salmon and Steelhead Trout Smolts from the Imnaha River, Oregon; 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blenden, Michael L.; Rocklage, Stephen J.; Kucera, Paul A.

    1997-04-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wildmore » chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts.« less

  3. Emigration of Natural and Hatchery Naco x (Chinook salmon; Oncorhynchus tshawytscha) and Heeyey (Steelhead; Oncorhynchus mykiss) Smolts from the Imnaha River, Oregon from 5 October 2006 to 21 June 2007, Annual Report 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, Brian; Espinosa, Neal

    2009-02-18

    This report summarizes the Nez Perce Tribe (NPT) Department of Fisheries Resources Management (DFRM) results for the Lower Snake River Compensation Plan (LSRCP) Hatchery Evaluation studies and the Imnaha River Smolt Monitoring Program (SMP) for the 2007 smolt migration from the Imnaha River, Oregon. These studies are closely coordinated and provide information about juvenile natural and hatchery spring/summer Naco x (Chinook Salmon; Oncorhynchus tshawytscha) and Heeyey (steelhead; O. mykiss) biological characteristics, emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam (MCD) on the Columbia River. These studies provide information on listed Naco xmore » (Chinook salmon) and Heeyey (steelhead) for the Federal Columbia River Power System (FCRPS) Biological Opinion (NMFS 2000). The Lower Snake River Compensation Plan program's goal is to maintain a hatchery production program of 490,000 Naco x (Chinook salmon) and 330,000 Heeyey (steelhead) for annual release in the Imnaha River (Carmichael et al. 1998, Whitesel et al. 1998). These hatchery releases occur to compensate for fish losses due to the construction and operation of the four lower Snake River hydroelectric facilities. One of the aspects of the LSRCP hatchery evaluation studies in the Imnaha River is to determine natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolt performance, emigration characteristics and survival (Kucera and Blenden 1998). A long term monitoring effort was established to document smolt emigrant timing and post release survival within the Imnaha River, estimate smolt survival downstream to McNary Dam, compare natural and hatchery smolt performance, and collect smolt-to-adult return information. This project collects information for, and is part of, a larger effort entitled Smolt Monitoring by Federal and Non-Federal Agencies (BPA Project No. 198712700). This larger project provides data on movement of smolts out of major drainages and past dams on the Snake River and Columbia River. In season indices of migration strength and migration timing are provided for the run-at large at key monitoring sites. Marked smolts are utilized to measure travel time and estimate survival through key index reaches. Fish quality and descaling measures are recorded at each monitoring site and provide indicators of the health of the run. Co-managers in the Imnaha River subbasin (Ecovista 2004) have identified the need to collect information on life history, migration patterns, juvenile emigrant abundance, reach specific smolt survivals, and Smolt-to-Adult Return rates (SAR's) for both Heeyey (steelhead) and Naco x (Chinook salmon) smolts. The current study provides information related to the majority of the high priority data needs. Current funding does not allow for determination of a total (annual) juvenile emigrant abundance and lack of adult passive integrated transponder (PIT) tag detectors at the mouth of the Imnaha River results in the inability to calculate tributary specific SAR's. Information is shared with the Fish Passage Center (FPC) on a real time basis during the spring emigration period. The Bonneville Power Administration (BPA) and the United States Fish and Wildlife Service (USFWS) contracted the NPT to monitor emigration timing and tag up to 19,000 emigrating natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolts from the Imnaha River with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 2007 marked the 16th year of emigration studies on the Imnaha River, and the 14th year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Evaluate effects of flow, temperature and other environmental factors on juvenile migration timing. (2) Determine emigration timing, travel time, and in-river survival of PIT tagged hatchery Naco x (Chinook salmon) smolts released at the Imnaha River acclimation facility to the Imnaha River juvenile migration trap. (3) Monitor the daily catch and biological characteristics of juvenile Naco x (Chinook salmon) and Heeyey (steelhead) smolts collected at the Imnaha River screw trap. (4) Determine spring emigration timing of Naco x (Chinook salmon) and Heeyey (steelhead) smolts collected at the Imnaha River juvenile migration trap. (5) Compare emigration characteristics and survival rates of natural fall and spring tagged juvenile Naco x (Chinook salmon). (6) Determine arrival timing, travel time and estimated survival of PIT tagged natural and hatchery Naco x (Chinook salmon) and natural and hatchery Heeyey (steelhead) smolts from the Imnaha River to Snake and Columbia River dams.« less

  4. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, 1998-1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter J.; Blenden, Michael L.; Kucera, Paul A.

    2002-08-01

    This report summarizes the results of the Lower Snake River Compensation Plan Hatchery Evaluation Studies (LSRCP) and the Imnaha Smolt Monitoring Program (SMP) for the 1999 smolt migration from the Imnaha River, Oregon. These studies were designed and closely coordinated to provide information about juvenile natural and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) biological characteristics, behavior and emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam on the Columbia River. Data collected from these studies are shared with the Fish Passage Center (FPC). These data are essential to quantify smoltmore » survival rates under the current passage conditions and to evaluate the future recovery strategies that seek to optimize smolt survival through the hydroelectric system. Information shared with the FPC assists with in-season shaping of flow and spill management requests in the Snake River reservoirs. The Bonneville Power Administration and the United States Fish and Wildlife Service contracted the Nez Perce Tribe (NPT) to monitor emigration timing and tag 21,200 emigrating natural and hatchery chinook salmon and steelhead smolts from the Imnaha River during the spring emigration period (March 1-June 15) with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 1999 marked the eighth year of emigration studies on the Imnaha River and the sixth year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Determine spring emigration timing of chinook salmon and steelhead smolts collected at the Imnaha River trap. (2) Evaluate effects of flow, temperature and other environmental factors on emigration timing. (3) Monitor the daily catch and biological characteristics of juvenile chinook salmon and steelhead smolts collected at the Imnaha River screw trap. (4) Determine emigration timing, travel time, and in-river survival of PIT tagged hatchery chinook salmon smolts released at the Imnaha River acclimation facility to the Imnaha River Trap. (5) Determine arrival timing, travel time and estimated survival of PIT tagged hatchery and natural chinook salmon and natural and hatchery steelhead smolts from the Imnaha River to Snake and Columbia river dams.« less

  5. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of Lostine River spring Chinook salmon smolts occurred from March 3, 2003 through to April 14, 2003 and a total of 242,776 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2001 egg source and included captive broodstock (141,860) and conventional broodstock (100,916) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2003 began April 30th, the first Chinook was captured on May 16, 2003 and the last Chinook was captured on September 21, 2003. The weir and trap were removed on October 1, 2003. A total of 464 adult Chinook, including jacks, were captured during the season. The composition of the run included 239 natural origin fish and 225 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 45 natural and 4 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 366 adult Chinook were passed or transported above the weir to spawn naturally, and 49 hatchery origin adult jack Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 49 adults retained for broodstock at Lookingglass Hatchery, 21 natural females and no hatchery origin females were represented in spawning. These females produced a total of 106,609 eggs at fertilization. Eye-up was 95.50% which yielded a total of 101,811 conventional program eyed eggs. The fecundity averaged 5,077 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage. At eye they were transferred to Oxbow Hatchery where they were reared to the fingerling state at which time they were transported back to LGH until they were smolts in the spring of 2005. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2005.« less

  6. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, Catherine; Plaster, Kurtis; Castillo, Jason

    2005-01-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returnsmore » from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2003, progeny from the captive broodstock program were released using three strategies: eyed-eggs were planted in Pettit and Alturas lakes in November and December, age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2003. Age-0 through age-4 O. nerka were captured in Redfish Lake, and population abundance was estimated at 81,727 fish. Age-0 through age-3 O. nerka were captured in Alturas Lake, and population abundance was estimated at 46,234 fish. Age-0 through age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 11,961 fish. Angler surveys were conducted from May 25 through August 7, 2003 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 179 anglers and estimated that 424 kokanee were harvested. The calculated kokanee catch rate was 0.09 fish/hour. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 15 to May 29, 2003. We estimated that 4,637 wild/natural and 12,226 hatchery-produced sockeye salmon smolts out-migrated from Redfish Lake in 2003. The hatchery-produced component included an estimated 5,352 out-migrants produced from a summer direct-release made to Redfish Lake in 2002 and 6,874 out-migrants produced from a fall direct-release made in 2002. The juvenile out-migrant traps on Alturas Lake Creek and Pettit Lake Creek were operated by the SBT from April 23 to June 5, 2003 and April 25 to June 4, 2003, respectively. The SBT enumerated 28 wild/natural and 13,329 hatchery-produced sockeye salmon smolts that outmigrated from Pettit Lake and estimated 286 wild/natural and 553 hatchery-produced sockeye salmon smolts out-migrated from Alturas Lake in 2003. The hatchery-produced component of sockeye salmon out-migrants originated from presmolt releases made directly to Pettit and Alturas lakes in 2002. Median travel times for passive integrated transponder (PIT) tagged smolts from the Redfish Lake Creek trap site to Lower Granite Dam were estimated for wild/natural smolts and hatchery-produced smolts. Median travel times for smolts originating from the Redfish Lake Creek trap were 10.6 d for wild/natural smolts, 6.2 d for summer direct-released smolts, and 7.1 d for fall direct-released smolts. Median travel times for PIT-tagged smolts from the Pettit Lake Creek trap site to Lower Granite Dam were estimated for hatchery-produced smolts. Median travel times for smolts originating from the Pettit Lake Creek trap were 14.1 d for fall direct released smolts and 13.6 d for fall direct released smolts. Cumulative unique PIT tag interrogations from Sawtooth Valley juvenile out-migrant traps to mainstem Snake and Columbia river dams were utilized to estimate detection rates for out-migrating sockeye salmon smolts. Detection rate comparisons were made between smolts originating from Redfish, Alturas, and Pettit lakes and the various release strategies. Pettit Lake fall direct released smolts recorded the highest detection rate of 37.14%. In 2003, 312 hatchery-produced adult sockeye salmon were released to Redfish Lake for natural spawning. We observed 42 areas of excavation in the lake from spawning events. Suspected redds were approximately 3 m x 3 m in size and were constructed by multiple pairs of adults. We monitored bull trout spawning in Fishhook Creek, a tributary to Redfish Lake, and in Alpine Creek, a tributary to Alturas Lake. This represented the sixth consecutive year that the index reaches have been surveyed on these two streams. Adult counts (40 adults) and redd counts (17 redds) in Fishhook Creek were similar to counts conducted since monitoring began in 1998. Bull trout numbers (27 adults) and the number of redds observed (14 redds) have gradually increased in Alpine Creek compared to counts from initial monitoring.« less

  7. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006, acclimation of Lostine River spring Chinook salmon smolts occurred from February 27, 2006 through to April 10, 2006 and a total of 240,568 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2004 egg source and included captive brood (40,982) and conventional (199,586) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2006 began May 15th, the first Chinook was captured on June 14, 2006 and the last Chinook was captured on September 27, 2006. The weir and trap were removed on October 1, 2006. A total of 534 adult Chinook, including jacks, were captured during the season. The composition of the run included 205 natural origin fish and 329 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 33 natural and 120 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning and 397 adult Chinook were passed or transported above the weir to spawn naturally. In 2006, no hatchery origin adult Chinook were transported and out planted in the Wallowa River and Bear Creek to spawn in under seeded habitat. In order to meet egg take goals for the conventional portion of the program, a determination was made that approximately 147 adults were needed for broodstock. As a result 16 (8 males and 8 females) of the 153 fish collected for broodstock were returned to the Lostine River to spawn naturally. Females that were spawned and provided the brood source were made up of 12 natural females and 45 supplementation females. One of these females tested positive for high levels of Bacterial Kidney Disease and consequently this females eggs were destroyed. The remaining females produced a total of 241,372 eggs at fertilization. Eye-up was 85.47% which yielded a total of 206,309 conventional program eyed eggs. The fecundity averaged 4,162 eggs per female. The brood year 2006 eggs will be incubated and reared at Lookingglass Hatchery until they are smolts in the spring of 2008. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2008.« less

  8. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007, acclimation of Lostine River spring Chinook salmon smolts occurred from 3/5/07 through to 4/17/07 and a total of 230,010 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2005 egg source and included captive brood (24,604) and conventional (205,406) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2007 began May 14th. The first Chinook was captured on June 2, 2007 and the last Chinook was captured on September 25, 2007. The weir and trap were removed on October 1, 2007. A total of 637 adult Chinook, including jacks, were captured during the season. The composition of the run included 240 natural origin fish and 397 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 41 natural and 81 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 403 adult Chinook were passed or transported above the weir to spawn naturally, and only hatchery origin jack Chinook were transported and outplanted in the Wallowa River and Bear Creek in underseeded habitat. Of the 122 adult fish retained for broodstock, 20 natural females and 40 supplementation females were represented in spawning. The eggs from these females produced a total of 267,350 eggs at fertilization. Eye-up was 86.73% which yielded a total of 231,882 conventional program eyed eggs. The fecundity averaged 4,456 eggs per female. These eggs will be incubated and reared at Lookingglass Hatchery until they are smolts in the spring of 2009. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2009. Due to the success of the 2007 egg collection, the number of fish produced exceeded program needs and facility capabilities. As a result, there are plans to outplant fry in 2008 and parr in early 2009 to underseeded habitat in the Wallowa River.« less

  9. Growth and smolting in lower-mode Atlantic Salmon stocked into the Penobscot River, Maine

    USGS Publications Warehouse

    Zydlewski, Joseph D.; O'Malley, Andrew; Cox, Oliver; Ruksznis, Peter; Trial, Joan G.

    2014-01-01

    Restoration of Atlantic Salmon Salmo salar in Maine has relied on hatchery-produced fry and smolts for critical stocking strategies. Stocking fry minimizes domestication selection, but these fish have poor survival. Conversely, stocked smolts have little freshwater experience but provide higher adult returns. Lower-mode (LM) fish, those not growing fast enough to ensure smolting by the time of stocking, are a by-product of the smolt program and are an intermediate hatchery product. From 2002 to 2009, between 70,000 and 170,000 marked LM Atlantic Salmon were stocked into the Pleasant River (a tributary in the Penobscot River drainage, Maine) in late September to early October. These fish were recaptured as actively migrating smolts (screw trapping), as nonmigrants (electrofishing), and as returning adults to the Penobscot River (Veazie Dam trap). Fork length (FL) was measured and a scale sample was taken to retrospectively estimate FL at winter annulus one (FW1) using the intercept-corrected direct proportion model. The LM fish were observed to migrate as age-1, age-2, and infrequently as age-3 smolts. Those migrating as age-1 smolts had a distinctly larger estimated FL at FW1 (>112 mm) than those that remained in the river for at least one additional year. At the time of migration, age-2 and age-3 smolts were substantially larger than age-1 smolts. Returning adult Atlantic Salmon of LM origin had estimated FLs at FW1 that corresponded to smolt age (greater FL for age 1 than age 2). The LM product produces both age-1 and age-2 smolts that have greater freshwater experience than hatchery smolts and may have growth and fitness advantages. The data from this study will allow managers to better assess the probability of smolting age and manipulate hatchery growth rates to produce a targeted-size LM product.

  10. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004, acclimation of Lostine River spring Chinook salmon smolts occurred from March 1, 2004 through to April 14, 2004 and a total of 250,249 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2002 egg source and included captive brood (133,781) and conventional (116,468) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2004 began May 10, the first Chinook was captured on May 19, 2004 and the last Chinook was captured on September 16, 2004. The weir and trap were removed on October 1, 2004. A total of 1,091 adult Chinook, including jacks, were captured during the season. The composition of the run included 299 natural origin fish and 792 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 46 natural and 69 hatchery supplementation adults were retained for broodstock and transported to Lookingglass Hatchery for holding and spawning, 537 adult Chinook were passed or transported above the weir to spawn naturally, and 447 hatchery origin adult Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 107 adults retained (eight additional hatchery females were collected and then later returned to the Lostine River to spawn naturally) for broodstock at Lookingglass Hatchery, 22 natural females and 30 supplementation females were represented in spawning. These females produced a total of 221,889 eggs at fertilization. Eye-up was 94.9% which yielded a total of 210,661 conventional program eyed eggs. The fecundity averaged 4,267 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage and then transferred to Oxbow Hatchery where they will be reared to the fingerling stage. They will then be transported back to LGH and reared to the smolt stage and then transported to the Lostine acclimation facility for release in the spring of 2006. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2006.« less

  11. Effects of smolt release timing and size on the survival of hatchery-origin coho salmon in the Strait of Georgia

    NASA Astrophysics Data System (ADS)

    Irvine, J. R.; O'Neill, M.; Godbout, L.; Schnute, J.

    2013-08-01

    Altering release sizes and timings of coho salmon smolts from hatcheries in the Strait of Georgia will not reverse the precipitous survival declines of the past three decades. We modeled the effects on survival of ocean entry year, mean smolt size (weight), and release day. Ocean entry year was by far the most important. During 1979-2006, smolt to adult survivals declined similarly for hatchery and wild coho salmon, although wild salmon consistently survived at higher rates. Best models differed among hatcheries, implying location-specific differences in the optimal size and timing of release. At four of five hatcheries, heavier smolts survived significantly better than lighter smolts. At one hatchery, a significant interaction between ocean entry year and smolt weight reflected an increased positive effect of weight later in the time series. At two Vancouver Island hatcheries, early release groups appeared to survive better than later releases in early years, while later release groups survived best in recent years. We recommend: (1) hatchery managers release coho salmon smolts throughout the outmigration period of higher surviving wild coho salmon smolts and (2) an experimental approach using hatcheries to evaluate density-dependent effects on coho salmon growth and survival.

  12. Evaluation of emamectin benzoate and substance EX against salmon lice in sea-ranched Atlantic salmon smolts.

    PubMed

    Skilbrei, Ove Tommy; Espedal, Per Gunnar; Nilsen, Frank; Garcia, Enrique Perez; Glover, Kevin A

    2015-04-08

    Experimental releases of Atlantic salmon smolts treated with emamectin benzoate (EB) against salmon lice have previously been used to estimate the significance of salmon lice on the survival of migrating smolts. In recent years, the salmon louse has developed reduced sensitivity to EB, which may influence the results of such release experiments. We therefore tested the use of 2 anti-lice drugs: EB was administered to salmon smolts in high doses by intra-peritoneal injection and the prophylactic substance EX (SubEX) was administered by bathing. A third, untreated control group was also established. Salmon were challenged with copepodids of 2 strains of salmon lice (1 EB-sensitive strain and 1 with reduced EB-sensitivity) in mixed-group experimental tanks. At 31 d post-challenge, the numbers of pre-adult lice on treated fish were around 20% compared with the control fish, with minor or no differences between the 2 treatments and lice strains. Both treatments therefore appeared to give the smolts a high degree of protection against infestation of copepodids of salmon lice. However, significantly lower growth of the EB-treatment group indicates that bathing the fish in SubEX is less stressful for smolts than intra-peritoneal injection of EB.

  13. Competition between Asian pink salmon (Oncorhynchus gorbuscha) and Alaskan sockeye salmon (O. nerka) in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Zimmermann, M.; Myers, K.W.; Nielsen, J.L.; Rogers, D.E.

    2003-01-01

    The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd-numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd-year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977-97 indicated that smolts entering the ocean during even-numbered years and interacting with abundant odd-year pink salmon during the following year experienced 26% (age-2 smolt) to 45% (age-1 smolt) lower survival compared with smolts migrating during odd-numbered years. Adult sockeye salmon returning to Bristol Bay from even-year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd-year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.

  14. Spring Emigration of Natural and Hatchery Chinook Salmon and Steelhead Trout Smolts from the Imnaha River, Oregon; 1997 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blenden, Michael L.; Veach, Eric R.; Kucera, Paul A.

    1998-10-01

    For the fourth consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A screw trap was used to collect emigrating natural and hatchery chinook salmon (Uncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 25 to June 27, 1997. A total of 270 natural chinook salmon, 10,616 hatchery chinook salmon, 864 natural steelhead trout (and 13 natural steelhead parr), and 7,345 hatchery steelhead trout smolts were captured during emigration studies on the Imnaha River. Mortality associated with trapping, handling and tagging was low: 0.37% formore » natural chinook, 0.11% for hatchery chinook, 0.11% for natural steelhead, and 0.39% for hatchery steelhead trout smolts. Natural chinook salmon smolts emigrated from the Imnaha River from February 25 to June 10 and had a mean length of 108 mm, average weight of 13 g, and mean condition factor of 1.02. The peak period of natural chinook smolt emigration, based on number of fish collected, occurred between March 25 and April 30. Hatchery reared chinook salmon smolts were collected from April 9 to May 9, with 99% of the smolts being caught within 10 days after release. Hatchery chinook smolts mean length, weight, and condition factor were 131 mm, 25.4 g, and 1.12, respectively. Emigration of natural steelhead smolts in the Imnaha River occurred between March 14 and June 25. Peak emigration occurred from May 1 to May 15. Natural steelhead smolts averaged 175 mm in fork length, 55.8 g in weight and had a mean condition factor of 1 .OO. Hatchery steelhead smolts emigrated from the Imnaha River between April 15 and June 27. Hatchery steelhead smolts averaged 210 mm in fork length, 88 g in weight and had a mean condition factor of 0.93. Spring runoff water conditions in 1997 provided above average flows for emigrating anadromous salmonid smolts. Imnaha River mean daily discharge during spring emigration ranged from 7.4 cms (260 cfs) on March 9 to 96.6 cms (3,410 cfs) on April 20 at USGS gauge 13292000, Imnaha, OR. Snake River discharge measured at the Anatone gauge station, ranged from 61.1 to 152 kcfs from April 15 to May 18. River discharge at LGR ranged from 79.6 kcfs on March 6 to 225.3 kcfs on May 18. Flows at LGR were generally greater than 100 kcfs during most of the spring runoff period, and discharge exceeded 120 kcfs from March 20-31 and April 19 to June 24. The water spill period at LGR occurred continuously from April 10 to June 29 with peak spill of 101.9 kcfs occurring on May 17.« less

  15. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, Progress Report 2000-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter; Kucera, Paul; Blenden, Michael

    This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenilemore » chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303,769 hatchery chinook salmon released in 2002 survived to the lower trap. Post release survival estimates for hatchery chinook salmon were within the range of past estimates; 88.4% in 1998 to 100.9% in 1994. An estimated 7,646 to 23,249 (95% C.I.) natural chinook salmon smolts migrated past the lower Imnaha River trap from April 4 to April 22. An additional 6,767 to 14,706 (95% C.I.) natural chinook salmon smolts migrated past the lower Imnaha River trap from April 23 to May 14, 2002. Natural chinook salmon captured and tagged at the upper rkm 74 trap survived to Lower Granite Dam (LGR) at a rate of 28.8% during migration year 2001 and 21.9% during migration year 2002. The survival estimate for fall tagged natural chinook salmon from the lower trap to LGR was 41.9% in 2001 and 33.3% in 2002. Differences between survival from release to LGR for fall tagged natural chinook salmon from the lower trap have been 5.9% to 16.9% higher than for fall tagged natural chinook salmon from the upper trap from 1994 to 2002. Spring PIT tag release groups of natural chinook salmon, hatchery chinook salmon, and hatchery steelhead produced estimates of survival from the trap to LGR within the range of past estimates since 1993. Estimated survival from release to LGR for 2001 and 2002 were as follows: 83.7% and 86.9% for natural chinook salmon, 80.3% and 77.3% for hatchery chinook salmon, 82.7% and 81.8% for natural steelhead, and 82.0% and 83.0% for hatchery steelhead. Estimates of survival for spring tagged fish from the trap to Lower Monumental Dam (LMO) during the drought of 2001 were the lowest estimates of survival from 1998 to 2002 for natural chinook salmon, and from1997 to 2002 for natural and hatchery steelhead. Estimates of migration year 2001 survival from the trap to LMO were as follows: 65.6% - natural chinook salmon, 68.9% - hatchery chinook salmon, 49.7% natural steelhead, and 42.9% - hatchery steelhead. Estimates of migration year 2002 survival from the trap to LMO were as follows: 76.8% - natural chinook salmon, 68.1% - hatchery chinook salmon, 69.9% natural steelhead, and 78.0% - hatchery steelhead. A smolt-to-adult return rate (SAR) index from LGR to LGR was calculated for migrating pre-smolt and smolt natural chinook salmon, that were PIT tagged in the fall and spring at the lower trap, for brood years 1996 to 1998 (migration years 1998 to 2000). The SARs are representative of in-river Imnaha natural chinook salmon. The LGR to LGR SAR index for presmolt chinook salmon is as follows: 3.08% (BY 1996), 2.41% (BY 1997), and 2.98% (BY 1998). Smolt-to-adult return rate index for spring tagged smolts was lower: 1.75% (BY 1996), 2.24% (BY 1997) and 2.94% (BY 1998). Fall tagged natural chinook salmon from the upper and lower trap and spring tagged natural chinook salmon from the lower trap all had significantly different (p < 0.05) median and cumulative arrival timing at LGR during migration year 2001.« less

  16. Impact of early salmon louse, Lepeophtheirus salmonis, infestation and differences in survival and marine growth of sea-ranched Atlantic salmon, Salmo salar L., smolts 1997–2009

    PubMed Central

    Skilbrei, O T; Finstad, B; Urdal, K; Bakke, G; Kroglund, F; Strand, R

    2013-01-01

    The impact of salmon lice on the survival of migrating Atlantic salmon smolts was studied by comparing the adult returns of sea-ranched smolts treated for sea lice using emamectin benzoate or substance EX with untreated control groups in the River Dale in western Norway. A total of 143 500 smolts were released in 35 release groups in freshwater from 1997 to 2009 and in the fjord system from 2007 to 2009. The adult recaptures declined gradually with release year and reached minimum levels in 2007. This development corresponded with poor marine growth and increased age at maturity of ranched salmon and in three monitored salmon populations and indicated unfavourable conditions in the Norwegian Sea. The recapture rate of treated smolts was significantly higher than the controls in three of the releases performed: the only release in 1997, one of three in 2002 and the only group released in sea water in 2007. The effect of treating the smolts against salmon lice was smaller than the variability in return rates between release groups, and much smaller that variability between release years, but its overall contribution was still significant (P < 0.05) and equivalent to an odds ratio of the probability of being recaptured of 1.17 in favour of the treated smolts. Control fish also tended to be smaller as grilse (P = 0.057), possibly due to a sublethal effect of salmon lice. PMID:23311746

  17. Survey of large circular and octagonal tanks operated at Norwegian commercial smolt and post-smolt sites

    USDA-ARS?s Scientific Manuscript database

    A survey was conducted to determine the geometry, operating parameters, and other key features of large circular or octagonal culture tanks used to produce Atlantic salmon smolt and post-smolt at six major Norwegian Atlantic salmon production companies. A total of 55 large tanks were reported at sev...

  18. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry; Tezak, E.; Endicott, Rick

    The efficacy of captive broodstock programs depends on high in-culture survival and the fitness of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. The following summarizes some of the work performed and results from the FY 2001 performance period: (1) The incidence of male maturation of age-1 chinook salmon was significantly reduced by reducing growth in the first year of rearing. (2) Experimentally manipulated growth rates of captively-reared coho salmon had significant effects on female maturation rate, eggmore » size, and fecundity, and the effects were stage-specific (i.e., pre-smolt vs. post-smolt). (3) A combination of Renogen and MT239 vaccination of yearling chinook salmon given an acute R. salmoninarum challenge had a significantly longer survival time than the mock-vaccinated group. The survival time was marginally higher than was seen in acutely challenged fish vaccinated with either Renogen or MT239 alone and suggests that a combination vaccine of Renogen and MT239 may be useful as both a prophylactic and therapeutic agent against BKD. (4) Full-sib (inbred) groups of chinook salmon have thus far exhibited lower ocean survival than half-sib and non-related groups. Effects of inbreeding on fluctuating asymmetry did not follow expected patterns. (5) Sockeye salmon were exposed to specific odorants at either the alevin/emergent fry stage or the smolt stage to determine the relative importance of odorant exposure during key developmental periods and the importance of exposure duration. (6) Experimental studies to determine the effects of exercise conditioning on steelhead reproductive behavior and the effects of male body size on chinook salmon fertilization success during natural spawning were completed.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiffan, Kenneth F.; Rondorf, Dennis W.

    This report summarizes results of research activities conducted in 1999 and years previous. In an effort to provide this information to a wider audience, the individual chapters in this report have been submitted as manuscripts to peer-reviewed journals. These chapters communicate significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin. Abundance and timing of seaward migration of Snake River fall chinook salmon was indexed using passage data collected at Lower Granite Dam for five years. We used genetic analyses to determine the lineage of fish recaptured at Lower Granite Dammore » that had been previously PIT tagged. We then used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured to enable us to calculate annual run composition and to compared early life history attributes of wild subyearling fall and spring chinook salmon. Because spring chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam, subyearling passage data at Lower Granite Dam can only be used to index fall chinook salmon smolt abundance and passage timing if genetic samples are taken to identify run membership of smolts. Otherwise, fall chinook salmon smolt abundance would be overestimated and timing of fall chinook salmon smolt passage would appear to be earlier and more protracted than is the case.« less

  20. An Investigation into the Poor Survival of an Endangered Coho Salmon Population

    PubMed Central

    Chittenden, Cedar M.; Melnychuk, Michael C.; Welch, David W.; McKinley, R. Scott

    2010-01-01

    To investigate reasons for the decline of an endangered population of coho salmon (O. kisutch), 190 smolts were acoustically tagged during three consecutive years and their movements and survival were estimated using the Pacific Ocean Shelf Tracking project (POST) array. Median travel times of the Thompson River coho salmon smolts to the lower Fraser River sub-array were 16, 12 and 10 days during 2004, 2005 and 2006, respectively. Few smolts were recorded on marine arrays. Freshwater survival rates of the tagged smolts during their downstream migration were 0.0–5.6% (0.0–9.0% s.e.) in 2004, 7.0% (6.2% s.e.) in 2005, and 50.9% (18.6% s.e.) in 2006. Overall smolt-to-adult return rates exhibited a similar pattern, which suggests that low freshwater survival rates of out-migrating smolts may be a primary reason for the poor conservation status of this endangered coho salmon population. PMID:20526367

  1. Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backman, Thomas; Sprague, Sherman; Bretz, Justin

    The Nez Perce Tribal Hatchery (NPTH) program has the following goals (BPA, et al., 1997): (1) Protect, mitigate, and enhance Clearwater Subbasin anadromous fish resources; (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater Subbasin; (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project initiation; (4) Sustain long-term fitness and genetic integrity of targeted fish populations; (5) Keep ecological and genetic impacts to non-target populations within acceptable limits; and (6) Promote Nez Perce Tribal management of Nez Perce Tribal Hatchery Facilities and productionmore » areas within Nez Perce Treaty lands. The NPTH program was designed to rear and release 1.4 million fall and 625,000 spring Chinook salmon. Construction of the central incubation and rearing facility NPTH and spring Chinook salmon acclimation facilities were completed in 2003 and the first full term NPTH releases occurred in 2004 (Brood Year 03). Monitoring and evaluation plans (Steward, 1996; Hesse and Cramer, 2000) were established to determine whether the Nez Perce Tribal Hatchery program is achieving its stated goals. The monitoring and evaluation action plan identifies the need for annual data collection and annual reporting. In addition, recurring 5-year program reviews will evaluate emerging trends and aid in the determination of the effectiveness of the NPTH program with recommendations to improve the program's implementation. This report covers the Migratory Year (MY) 2007 period of the NPTH Monitoring & Evaluation (M&E) program. There are three NPTH spring Chinook salmon treatment streams: Lolo Creek, Newsome Creek, and Meadow Creek. In 2007, Lolo Creek received 140,284 Brood Year (BY) 2006 acclimated pre-smolts at an average weight of 34.9 grams per fish, Newsome Creek received 77,317 BY 2006 acclimated pre-smolts at an average of 24.9 grams per fish, and Meadow Creek received 53,425 BY 2006 direct stream release parr at an average of 4.7 grams per fish. Natural and hatchery origin spring Chinook salmon pre-smolt emigrants were monitored from September - November 2006 and smolts from March-June 2007. Data on adult returns were collected from May-September. A suite of performance measures were calculated including total adult and spawner escapement, juvenile production, and survival probabilities. These measures were used to evaluate the effectiveness of supplementation and provide information on the capacity of the natural environment to assimilate and support supplemented salmon populations.« less

  2. Mucous lysozyme levels in hatchery coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) early in the parr-smolt transformation

    USGS Publications Warehouse

    Schrock, R.M.; Smith, S.D.; Maule, A.G.; Doulos, S.K.; Rockowski, J.J.

    2001-01-01

    Mucous lysozyme concentrations were determined in juvenile coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) to establish reference levels during the time associated with the parr-smolt transformation. The first reported naris and vent mucous lysozyme levels are provided for spring chinook salmon and coho salmon. Naris mucous lysozyme levels ranged between 300 and 700 ??g ml-1, vent mucous lysozyme from 100 to 300 ??g ml-1, and skin mucous lysozyme levels were below 130 ??g ml-1. Lysozyme levels in the two species showed the same relationship with the highest levels in naris mucous, and the lowest in skin mucous. A seasonal decrease occurred in both species with a significant decrease in naris mucous lysozyme between February and March. Gill ATPase levels used to monitor smolt development during the same period did not reach ranges reported for smolts for either species during emigration. Identification of seasonal levels of lysozyme activity in mucous provides an alternative determination of developmental status prior to release of fish from the hatchery when salmonids are still undergoing the parr-smolt transformation. ?? 2001 Elsevier Science B.V.

  3. Protein degradation systems in the skeletal muscles of parr and smolt Atlantic salmon Salmo salar L. and brown trout Salmo trutta L.

    PubMed

    Kantserova, Nadezda P; Lysenko, Liudmila A; Veselov, Alexey E; Nemova, Nina N

    2017-08-01

    Although protein degradation limits the rate of muscle growth in fish, the role of proteolytic systems responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. The study herein aims to evaluate the role of calpains (calcium-activated proteases) and proteasomes (ATP-dependent proteases) in mediating muscle protein turnover at different life stages in wild salmonids. Protease activities were estimated in Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) parr and smolts from the Indera River (Kola Peninsula, Russia). Calpain and proteasome activities in Atlantic salmon skeletal muscles were lower in smolts as compared with parr. Reduced muscle protein degradation accompanying Atlantic salmon parr-smolt transformation appeared to provide intense muscle growth essential for a minimum threshold size achievement that is required for smoltification. Calpain and proteasome activities in brown trout parr and smolts at age 3+ did not significantly differ. However, calpain activity was higher in smolts brown trout 4+ as compared with parr, while proteasome activity was lower. Results suggest that brown trout smoltification does not correspond with intense muscle growth and is more facultative and plastic in comparison with Atlantic salmon smoltification. Obtained data on muscle protein degradation capacity as well as length-weight parameters of fish reflect differences between salmon and trout in growth and smoltification strategies.

  4. Density-dependence at sea for coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Emlen, J.M.; Reisenbichler, R.R.; McGie, A.M.; Nickelson, T.E.

    1990-01-01

    The success of expanded salmon hatchery programs will depend strongly on the degree of density-induced diminishing returns per smolt released. Several authors have addressed the question of density-dependent mortality at sea in coho salmon (Oncorhynchus kisutch), but have come to conflicting conclusions. We believe there are compelling reasons to reinvestigate the data, and have done so for public hatchery fish, using a variety of approaches. The results provide evidence that survival of these public hatchery fish is negatively affected, directly by the number of public hatchery smolts and indirectly by the number of private hatchery smolts. These results are weak, statistically, and should be considered primarily as a caution to those who, on the basis of other published work, believe that density-dependence does not exist. The results reported here also re-emphasize the often overlooked point that inferences drawn from data are strongly biased by investigators' views of how the systems of interest work and by the statistical assumptions they make preparatory to the analysis of those data.

  5. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, October 20, 1999 to June 15, 2000 : 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter J.

    2002-12-01

    This report details the smolt performance of natural and hatchery chinook salmon and steelhead from the Imnaha River to the Snake River and Columbia River dams during migration year 2000. Flow conditions in the Imnaha River and Snake River were appreciably lower during May and June in 2000, compared to historic levels at gauging stations, but flow conditions in the Imnaha and Snake River were above average during April. Overall, water conditions for the entire Columbia River were characterized by the Fish Passage Center as below normal levels. Spill occurred continuously at Lower Granite Dam (LGR), Little Goose Dam (LGO),more » and Lower Monumental Dam (LMO) from April 5, April 10, and April 4, respectively, to June 20, and encompassed the periods of migration of Imnaha River juvenile chinook salmon and steelhead, with a few exceptions. Outflow in the tailraces of LGR, LGO, and LMO decreased in May and June while temperatures increased. Chinook salmon and steelhead were captured using rotary screw traps at river kilometer (rkm) 74 and 7 during the fall from October 20 to November 24, 1999, and during the spring period from February 26 to June 15, 2000, at rkm 7. Spring trapping information was reported weekly to the Fish Passage Center's Smolt Monitoring Program. A portion of these fish were tagged weekly with passive integrated transponder (PIT) tags and were detected migrating past interrogation sites at Snake River and Columbia River dams. Survival of PIT tagged fish was estimated with the Survival Using Proportional Hazards model (SURPH model). Estimated survival of fall tagged natural chinook (with {+-} 95% confidence intervals in parenthesis) from the upper Imnaha (rkm 74) to LGR was 29.6% ({+-} 2.8 ). Natural chinook salmon tagged in the fall in the lower Imnaha River at rkm 7, which over wintered in the Snake River, had an estimated survival of 36.8% ({+-} 2.9%) to LGR. Spring tagged natural chinook salmon from the lower site had an estimated survival of 84.8% ({+-} 2.6%) to LGR. The season wide survival of spring tagged natural chinook salmon smolts from release in the Imnaha River to McNary Dam (MCN) was 67.9% ({+-} 6.3%). Post release survival of hatchery chinook salmon smolts, from release at the Imnaha River acclimation facility to the lower Imnaha River trap, was estimated at 94.7% ({+-} 4.7%). Hatchery chinook salmon, PIT tagged and released at the lower Imnaha River trap, had an estimated survival of 75.0% ({+-} 4.2%) to LGR. Estimated survival of hatchery chinook salmon smolts from the Imnaha River to McNary Dam (MCN) was 54.1% ({+-} 9.7%). Natural steelhead smolts had an estimated survival of 84.4% ({+-} 2.7%) to LGR and a survival estimate of 49.9% ({+-}12.2%) from the lower Imnaha River trap to MCN. The estimated survival of hatchery steelhead smolts to LGR was 85.8 ({+-} 2.4) and the survival from release to MCN was 40.2% ({+-}12.5%).« less

  6. Evaluating Relationships between Wild Skeena River Sockeye Salmon Productivity and the Abundance of Spawning Channel Enhanced Sockeye Smolts

    PubMed Central

    Price, Michael H. H.; Connors, Brendan M.

    2014-01-01

    The enhancement of salmon populations has long been used to increase the abundance of salmon returning to spawn and/or to be captured in fisheries. However, in some instances enhancement can have adverse impacts on adjacent non-enhanced populations. In Canada's Skeena watershed, smolt-to-adult survival of Babine Lake sockeye from 1962–2002 was inversely related to the abundance of sockeye smolts leaving Babine Lake. This relationship has led to the concern that Babine Lake smolt production, which is primarily enhanced by spawning channels, may depress wild Skeena (Babine and non-Babine) sockeye populations as a result of increased competition between wild and enhanced sockeye smolts as they leave their natal lakes and co-migrate to sea. To test this hypothesis we used data on Skeena sockeye populations and oceanographic conditions to statistically examine the relationship between Skeena sockeye productivity (adult salmon produced per spawner) and an index of Babine Lake enhanced smolt abundance while accounting for the potential influence of early marine conditions. While we had relatively high power to detect large effects, we did not find support for the hypothesis that the productivity of wild Skeena sockeye is inversely related to the abundance of enhanced sockeye smolts leaving Babine Lake in a given year. Importantly, life-time productivity of Skeena sockeye is only partially explained by marine survival, and likely is an unreliable measure of the influence of smolt abundance. Limitations to our analyses, which include: (1) the reliance upon adult salmon produced per spawner (rather than per smolt) as an index of marine survival, and (2) incomplete age structure for most of the populations considered, highlight uncertainties that should be addressed if understanding relationships between wild and enhanced sockeye is a priority in the Skeena. PMID:24760007

  7. Evaluating relationships between wild Skeena river sockeye salmon productivity and the abundance of spawning channel enhanced sockeye smolts.

    PubMed

    Price, Michael H H; Connors, Brendan M

    2014-01-01

    The enhancement of salmon populations has long been used to increase the abundance of salmon returning to spawn and/or to be captured in fisheries. However, in some instances enhancement can have adverse impacts on adjacent non-enhanced populations. In Canada's Skeena watershed, smolt-to-adult survival of Babine Lake sockeye from 1962-2002 was inversely related to the abundance of sockeye smolts leaving Babine Lake. This relationship has led to the concern that Babine Lake smolt production, which is primarily enhanced by spawning channels, may depress wild Skeena (Babine and non-Babine) sockeye populations as a result of increased competition between wild and enhanced sockeye smolts as they leave their natal lakes and co-migrate to sea. To test this hypothesis we used data on Skeena sockeye populations and oceanographic conditions to statistically examine the relationship between Skeena sockeye productivity (adult salmon produced per spawner) and an index of Babine Lake enhanced smolt abundance while accounting for the potential influence of early marine conditions. While we had relatively high power to detect large effects, we did not find support for the hypothesis that the productivity of wild Skeena sockeye is inversely related to the abundance of enhanced sockeye smolts leaving Babine Lake in a given year. Importantly, life-time productivity of Skeena sockeye is only partially explained by marine survival, and likely is an unreliable measure of the influence of smolt abundance. Limitations to our analyses, which include: (1) the reliance upon adult salmon produced per spawner (rather than per smolt) as an index of marine survival, and (2) incomplete age structure for most of the populations considered, highlight uncertainties that should be addressed if understanding relationships between wild and enhanced sockeye is a priority in the Skeena.

  8. Effects of life history variation on size and growth in stream-dwelling Atlantic salmon

    USGS Publications Warehouse

    Letcher, B.H.; Gries, G.

    2003-01-01

    A large size variation amongst life histories for stream-dwelling Atlantic salmon Salmo salar was found and the relative effect of life histories on size varied over time. As early as December (age 0+ years), fish that later smolted at age 2+ years were significantly larger than fish that did not smolt at age 2+ years. In contrast, there were no mass differences at age 0+ years between fish that would mature or not at age 1+ years (October). The mass differences between smolts and non-smolts persisted until smolting, and differences between mature and immature fish first appeared in May (age 1+ years). Following September (age 1+ years), there was also a significant interaction between smolting and maturity. Previously mature and immature age 2+ year smolts were not significantly different in size, but immature age 2+ year non-smolts were much lighter than mature age 2+ year non-smolts. Based on mass differences, the apparent 'decision' to smolt occurred c. 5 months before (winter, age 0+ years) the decision to mature (late spring, age 1+ years). In addition to strong seasonal growth variation, sizes of freshwater Atlantic salmon were largely structured by the complex interaction between smolt-age and maturity. ?? 2003 The fisheries Society of the British Isles.

  9. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura

    2008-12-17

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returnsmore » from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out-migrated from Redfish Lake in 2007. The hatchery origin component originated from a 2006 fall presmolt direct-release. The juvenile out-migrant traps on Alturas Lake Creek and Pettit Lake Creek were operated by the SBT from April 19 to May 23, 2007 and April 18 to May 29, 2007, respectively. The SBT estimated 1,749 natural origin and 4,695 hatchery origin sockeye salmon smolts out-migrated from Pettit Lake and estimated 8,994 natural origin and 6,897 hatchery origin sockeye salmon smolts out-migrated from Alturas Lake in 2007. The hatchery origin component of sockeye salmon out-migrants originated from fall presmolt direct-releases made to Pettit and Alturas lakes in 2006. In 2007, the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC) chose to have all Snake River sockeye salmon juveniles (tagged and untagged) transported due to potential enhanced survival. Therefore, mainstem survival evaluations were only conducted to Lower Granite Dam. Unique PIT tag interrogations from Sawtooth Valley juvenile out-migrant traps to Lower Granite Dam were utilized to estimate survival rates for out-migrating sockeye salmon smolts. Survival rate comparisons were made between smolts originating from Redfish, Alturas, and Pettit lakes and the various release strategies. Alturas Lake hatchery origin smolts tagged at the out-migrant trap recorded the highest survival rate of 78.0%. In 2007, 494 hatchery origin adult sockeye salmon were released to Redfish Lake for natural spawning. We observed 195 areas of excavation in the lake from spawning events. This was the highest number of redds observed in Redfish Lake since the program was initiated. Suspected redds were approximately 3 m x 3 m in size and were constructed by multiple pairs of adults. To monitor the predator population found within the lakes, we monitored bull trout spawning in Fishhook Creek, a tributary to Redfish Lake; and in Alpine Creek, a tributary to Alturas Lake. This represented the tenth consecutive year that the index reaches have been surveyed on these two streams. Adult counts (41 adults) and redd counts (22 redds) in Fishhook Creek increased compared to counts conducted since monitoring began in 1998. Beginning in 2007, we also surveyed an additional trend site in Fishhook Creek resulting in observing 43 adult bull trout and 30 additional redds. Bull trout numbers (13 adults) and the number of redds observed (18 redds) have gradually increased in Alpine Creek compared to counts from initial monitoring.« less

  10. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R.

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start ofmore » this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these goals include an estimate of smolt abundance and SAR rates, and an updated measure of the freshwater distribution of critical life stages. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the high level of emphasis the NWPPC Fish and Wildlife Program, Subbasin Summaries, NMFS, and the Oregon Plan for Salmon and Watersheds have placed on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. By implementing the proposed program we have been able to address many of the goals for population status monitoring, such as defining areas currently used by spring Chinook for holding and spawning habitats and determining range expansion or contraction of summer rearing and spawning populations. The BiOp describes these goals as defining population growth rates (adult monitoring), detecting changes in those growth rates or relative abundance in a reasonable time (adult/juvenile monitoring), estimating juvenile abundance and survival rates (juvenile/smolt monitoring), and identifying stage-specific survival (adult-to-smolt, smolt-to-adult).« less

  11. The effect of nonylphenol on gene expression in Atlantic salmon smolts

    USGS Publications Warehouse

    Robertson, Laura S.; McCormick, Stephen D.

    2012-01-01

    The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na+/K+-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers.

  12. Evaluating the chronic effects of nitrate on the health and performance of post-smolt Atlantic salmon Salmo salar in freshwater recirculation aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Commercial production of Atlantic salmon smolts, post-smolts, and market-size fish using land-based recirculation aquaculture systems (RAS) is expanding. RAS generally provide a nutrient-rich environment in which nitrate accumulates as an end-product of nitrification. An 8-month study was conducted ...

  13. Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, Part II, Smolt Monitoring Program, 1984 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnaha, Willis E.

    1985-07-01

    The report describes the travel time of marked yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri) between points within the system, and reports the arrival timing and duration of the migrations for these species as well as coho salmon (O. kisutch). A final listing of 1984 hatchery releases is also included. 8 refs., 26 figs., 20 tabs.

  14. Transcriptional profiling of the parr–smolt transformation in Atlantic salmon

    USGS Publications Warehouse

    Robertson, Laura S.; McCormick, Stephen D.

    2012-01-01

    The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. We used GRASP 16K cDNA microarrays to identify genes that are differentially expressed in the liver, gill, hypothalamus, pituitary, and olfactory rosettes of smolts compared to parr. Smolts had higher levels of gill Na+/K+-ATPase activity, plasma cortisol and plasma thyroid hormones relative to parr. Across all five tissues, stringent microarray analyses identified 48 features that were differentially expressed in smolts compared to parr. Using a less stringent method we found 477 features that were differentially expressed at least 1.2-fold in smolts, including 172 features in the gill. Smolts had higher mRNA levels of genes involved in transcription, protein biosynthesis and folding, electron transport, oxygen transport, and sensory perception and lower mRNA levels for genes involved in proteolysis. Quantitative RT-PCR was used to confirm differential expression in select genes identified by microarray analyses and to quantify expression of other genes known to be involved in smolting. This study expands our understanding of the molecular processes that underlie smolting in Atlantic salmon and identifies genes for further investigation.

  15. COLUMBIA RIVER BASIN SALMON AND STEELHEAD: Federal Agencies’ Recovery Responsibilities, Expenditures and Actions

    DTIC Science & Technology

    2002-07-01

    Monthly. Caspian Tern Working Group Developing a plan to reduce smolt predation by Caspian terns nesting in the Columbia River estuary. As needed...Environment and Public Works, U.S. SenateJuly 2002 COLUMBIA RIVER BASIN SALMON AND STEELHEAD Federal Agencies’ Recovery Responsibilities... COLUMBIA RIVER BASIN SALMON AND STEELHEAD: Federal Agencies Recovery Responsibilities, Expenditures and Actions Contract Number Grant Number Program

  16. Lower Granite Dam Smolt Monitoring Program, 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhey, Peter; Ross, Doug; Morrill, Charles

    1998-12-01

    The 1998 fish collection season at Lower Granite was characterized by relatively moderate spring flows and spill, moderate levels of debris, cool spring, warm summer and fall water temperatures, and increased chinook numbers, particularly wild subyearling chinook collected and transported. The Fish Passage Center's Smolt Monitoring Program is designed to provide a consistent, real-time database on fish passage and document the migrational characteristics of the many stocks of salmon and steelhead in the Columbia Basin.

  17. Measurements of key life history metrics of Coho salmon in Pudding Creek, California

    Treesearch

    David W. Wright; Sean P. Gallagher; Christopher J. Hannon

    2012-01-01

    Since 2005, a life cycle monitoring project in Pudding Creek, California, has utilized a variety of methodologies including an adult trap, spawning surveys, PIT tags, electro-fishing, and a smolt trap to estimate coho salmon adult escapement, juvenile abundance, juvenile growth, winter survival, and marine survival. Adult coho salmon escapement and smolt abundance are...

  18. The effect of nonylphenol on gene expression in Atlantic salmon smolts.

    PubMed

    Robertson, Laura S; McCormick, Stephen D

    2012-10-15

    The parr-smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na(+)/K(+)-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers. Published by Elsevier B.V.

  19. Downstream Migration of Masu Salmon Smolt at a Diversion Facility of Dam

    NASA Astrophysics Data System (ADS)

    Hayashida, K.; Nii, H.; Kasuga, K.; Watanabe, K.

    2014-12-01

    A diversion facility was installed on the upstream of Pirika Dam in Northern Japan that produced a downstream flow into the fishway, thus allowing the fish to migrate to the sea. On the other hand, if the flow rate in the river was more than 7.00 m 3/s (design flow rate of diversion facility), masu salmon smolt were concerned about accessing the dam reservoir, because the smolt can't migrate to the sea through the diversion facility unfortunately. Therefore, the downstream migration of smolt was investigated around the diversion facility. The PIT tag system and radio transmitters as the biotelemetry were used to determine 1) whether masu salmon smolt were able to migrate downstream through the diversion facility and fishway at Pirika Dam, 2) when the smolt started to migrate downstream, 3) whether the downstream migration of smolt were affected by the flow increase in the river. It was clarified that 88% of the smolt were able to enter the diversion facility, and then 81% of the smolt were able to access the fishway. It was also clarified that smolt downstream migration had two peaks in a day (5:00 and 18:00). During the study period, although the flow rate was in the 2.21 m3/s to 30.44 m3/s range (average 6.70 m3/s), it was revealed that the diversion facility has a satisfactory function for the downstream migration of smolt as presented above. The survey clarified the downstream migration behavior of masu salmon by using two types of biotelemetry equipment. PIT tag and radio transmitter were found to be very effective in tracking the behavior of small fish such as smolt. PIT tags, in particular, require very little operating cost, because once they are inserted in the fish, they do not need human labor for tracking. It is desirable to actively introduce the biotelemetry as tracking equipment when surveying the fish migration in the river.

  20. Recovery of sockeye salmon in the Elwha River, Washington, after dam removal: Dependence of smolt production on the resumption of anadromy by landlocked kokanee

    USGS Publications Warehouse

    Hansen, Adam G.; Gardner, Jennifer R.; Beauchamp, David A.; Paradis, Rebecca; Quinn, Thomas P.

    2016-01-01

    Pacific salmon Oncorhynchus spp. are adept at colonizing habitat that has been reopened to anadromous passage. Sockeye Salmon O. nerka are unique in that most populations require lakes to fulfill their life history. Thus, for Sockeye Salmon to colonize a system, projects like dam removals must provide access to lakes. However, if the lakes contain landlocked kokanee (lacustrine Sockeye Salmon), the recovery of Sockeye Salmon could be mediated by interactions between the two life history forms and the processes associated with the resumption of anadromy. Our objective was to evaluate the extent to which estimates of Sockeye Salmon smolt production and recovery are sensitive to the resumption of anadromy by kokanee after dam removal. We informed the analysis based on the abiotic and biotic features of Lake Sutherland, which was recently opened to passage after dam removal on the Elwha River, Washington. We first developed maximum expectations for the smolt-producing capacity of Lake Sutherland by using two predictive models developed from Sockeye Salmon populations in Alaska and British Columbia: one model was based on the mean seasonal biomass of macrozooplankton, and the other was based on the euphotic zone volume of the lake. We then constructed a bioenergetics-based simulation model to evaluate how the capacity of Lake Sutherland to rear yearling smolts could change with varying degrees of anadromy among O. nerka fry. We demonstrated that (1) the smolt-producing capacity of a nursery lake for juvenile Sockeye Salmon changes in nonlinear ways with changes in smolt growth, mortality, and the extent to which kokanee resume anadromy after dam removal; (2) kokanee populations may be robust to changes in abundance after dam removal, particularly if lakes are located higher in the watershed on tributaries separate from where dams were removed; and (3) the productivity of newly establishing Sockeye Salmon can vary considerably depending on whether the population becomes rearing limited or is recruitment limited and depending on how adult escapement is managed.

  1. Juvenile salmonid migratory behavior at the mouth of the Columbia River and within the plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; O'Toole, Amanda C.; Harnish, Ryan A.

    A total of 8,159 acoustic-tagged salmonid smolts were detected at the mouth of the Columbia River. Of the fish detected at the mouth, 14% of yearling Chinook salmon, 9% of steelhead, and 22% of subyearling Chinook salmon were detected on a sparse array deployed in the Columbia River plume. Chinook salmon smolts decreased travel rate as they left the river and entered the plume, while steelhead increased travel rate. Chinook salmon also spent more time in the transitional area between the river mouth and plume as compared to steelhead. In early spring, yearling Chinook salmon and steelhead predominately migrated pastmore » the plume array towards the edge of the shelf and to the south. Later in the season, yearling Chinook salmon and steelhead smolts tended to migrate out of the river mouth in a northerly direction. Subyearling Chinook salmon migrated predominately past the portion of the plume array to the north of the river mouth.« less

  2. Endocrine and physiological changes in Atlantic salmon smolts following hatchery release

    USGS Publications Warehouse

    McCormick, S.D.; O'Dea, M. F.; Moeckel, Amy M.; Bjornsson, Bjorn Thrandur

    2003-01-01

    Physiological and endocrine changes during smolt development were examined in Atlantic salmon (Salmo salar) reared and released as part of a restoration program on the Connecticut River and its tributaries. Fish were reared in a cold water hatchery in Pittsford, VT and released into the Farmington River, CT (a major tributary of the Connecticut River) or into 'imprint ponds' fed by the Farmington River. Smelts were recaptured 10-20 days after their release at a smolt bypass facility 16 km downstream of their release site. Fish sampled at the hatchery from January to May had only moderate smolt development based on salinity tolerance, gill Na+,K+-ATPase activity and hormone profiles. In contrast, smolts released into the river or imprint ponds had higher salinity tolerance, gill Na+,K+-ATPase activity, plasma growth hormone, insulin-like growth factor I (IGF-I) and thyroxine than smolts that remained in the hatchery. These physiological and endocrine changes were nearly identical to those of smolts that had been released into the river 2 years earlier as fry and were captured as active migrants at the same bypass facility (stream-reared smolts). The stomach contents as a percent of body weight (primarily aquatic insects) varied greatly among individuals and were greater in hatchery-reared fish than stream-reared smolts. Results from the rearing of hatchery fish at temperatures similar to that of the Farmington River indicate that some of the physiological changes may be due to increased temperature after release, though other factors may also be involved. The results indicate that substantial physiological smolt development can occur after hatchery release, coincident with downstream migration. ?? 2003 Published by Elsevier Science B.V.

  3. A Conceptual Plan for Mitigating Anadromous Fish Losses in the Hanford Reach, Columbia River, Washington.

    DTIC Science & Technology

    1980-10-01

    Oncorhynchus nerka ) An estimated 1.6 million sockeye salmon smolts pass through the Hanford Reach annually. It is expected that up to 240,000 of these smolts...supplementation or ther- mal modification during critical periods, was selected as a production strategy (Figure 2). 2. Chinook Salmon ( Oncorhynchus tshawytscha) a...supplemental heating or warmer groundwater would be necessary. 3. Coho Salmon ( Oncorhynchus kisutch) The hatchery production cycle of coho salmon is similar to

  4. A comparative study of the response to repeated chasing stress in Atlantic salmon (Salmo salar L.) parr and post-smolts.

    PubMed

    Madaro, Angelico; Olsen, Rolf Erik; Kristiansen, Tore S; Ebbesson, Lars O E; Flik, Gert; Gorissen, Marnix

    2016-02-01

    When Atlantic salmon parr migrate from fresh water towards the sea, they undergo extensive morphological, neural, physiological and behavioural changes. Such changes have the potential to affect their responsiveness to various environmental factors that impose stress. In this study we compared the stress responses in parr and post-smolt salmon following exposure to repeated chasing stress (RCS) for three weeks. At the end of this period, all fish were challenged with a novel stressor and sampled before (T0) and after 1h (T1). Parr had a higher growth rate than post-smolts. Plasma cortisol declined in the RCS groups within the first week suggesting a rapid habituation/desensitisation of the endocrine stress axis. As a result of the desensitised HPI axis, RCS groups showed a reduced cortisol response when exposed to the novel stressor. In preoptic area (POA) crf mRNA levels were higher in all post-smolt groups compared to parr. 11βhsd2 decreased by RCS and by the novel stressor in post-smolt controls (T1), whereas no effect of either stress was seen in parr. The grs were low in all groups except for parr controls. In pituitary, parr controls had higher levels of crf1r mRNA than the other parr and post-smolt groups, whilst pomcb was higher in post-smolt control groups. Overall, 11βhsd2 transcript abundance in parr was lower than post-smolt groups; after the novel stressor pomcs, grs and mr were up-regulated in parr control (T1). In summary, we highlight differences in the central stress response between parr and post-smolt salmon following RCS. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Integrated Status and Effectiveness Monitoring Program; Expansion of Existing Smolt Trapping Program in Nason Creek, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prevatte, Scott A.

    2006-03-01

    In the fall of 2004, as one part of a Basin-Wide Monitoring Program developed by the Upper Columbia Regional Technical Team and Upper Columbia Salmon Recovery Board, the Yakama Nation Fisheries Resource Management program began monitoring downstream migration of ESA listed Upper Columbia River spring chinook salmon and Upper Columbia River steelhead in Nason Creek, a tributary to the Wenatchee River. This report summarizes juvenile spring chinook salmon and steelhead trout migration data collected in Nason Creek during 2005 and also incorporates data from 2004. We used species enumeration at the trap and efficiency trials to describe emigration timing andmore » to estimate population size. Data collection was divided into spring/early summer and fall periods with a break during the summer months occurring due to low stream flow. Trapping began on March 1st and was suspended on July 29th when stream flow dropped below the minimum (30 cfs) required to rotate the trap cone. The fall period began on September 28th with increased stream flow and ended on November 23rd when snow and ice began to accumulate on the trap. During the spring and early summer we collected 311 yearling (2003 brood) spring chinook salmon, 86 wild steelhead smolts and 453 steelhead parr. Spring chinook (2004 brood) outgrew the fry stage of fork length < 60 mm during June and July, 224 were collected at the trap. Mark-recapture trap efficiency trials were performed over a range of stream discharge stages whenever ample numbers of fish were being collected. A total of 247 spring chinook yearlings, 54 steelhead smolts, and 178 steelhead parr were used during efficiency trials. A statically significant relationship between stream discharge and trap efficiency has not been identified in Nason Creek, therefore a pooled trap efficiency was used to estimate the population size of both spring chinook (14.98%) and steelhead smolts (12.96%). We estimate that 2,076 ({+-} 119 95%CI) yearling spring chinook and 688 ({+-} 140 95%CI) steelhead smolts emigrated past the trap during the spring/early summer sample period along with 10,721 ({+-} 1,220 95%CI) steelhead parr. During the fall we collected 924 subyearling (2004 brood) spring chinook salmon and 1,008 steelhead parr of various size and age classes. A total of 732 spring chinook subyearlings and 602 steelhead parr were used during 13 mark-recapture trap efficiency trials. A pooled trap efficiency of 24.59% was used to calculate the emigration of spring chinook and 17.11% was used for steelhead parr during the period from September 28th through November 23rd. We estimate that 3758 ({+-} 92 95%CI) subyearling spring chinook and 5,666 ({+-} 414 95%CI) steelhead parr migrated downstream past the trap along with 516 ({+-} 42 95%CI) larger steelhead pre-smolts during the 2005 fall sample period.« less

  6. Modeling stream network-scale variation in coho salmon overwinter survival and smolt size

    EPA Science Inventory

    We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over ...

  7. Effects of individual variation in length, condition and run-time on return rates of wild-reared Atlantic salmon Salmo salar smolts.

    PubMed

    Armstrong, J D; McKelvey, S; Smith, G W; Rycroft, P; Fryer, R J

    2018-03-01

    Groups of wild-reared Atlantic salmon Salmo salar smolts were captured during their seaward migration on a tributary of the River Conon, Scotland, U.K., from 1999 to 2014 and tagged with passive integrated transponders (PIT). Fish that subsequently returned to the river after growing at sea were recorded automatically by a PIT-detector in a fish pass. Return rate was related directly to length and condition and inversely to day of the year that the smolt was tagged. Over years, as the study progressed, there was a significant increase in the proportion of smolts returning after two or more years at sea and no trend in returns of salmon having spent one winter at sea. There was no trend in the date of return of salmon across the study period. Fish that had spent more winters at sea returned earlier in the year. © 2018 Crown Copyright. Journal of Fish Biology © 2018 The Fisheries Society of the British Isles.

  8. Identification and expressional analysis of NLRC5 inflammasome gene in smolting Atlantic salmon (Salmo salar).

    PubMed

    Pontigo, Juan Pablo; Agüero, María José; Sánchez, Patricio; Oyarzún, Ricardo; Vargas-Lagos, Carolina; Mancilla, Jorge; Kossmann, Hans; Morera, Francisco J; Yáñez, Alejandro J; Vargas-Chacoff, Luis

    2016-11-01

    The NOD-like receptors (NLRs) were recently identified as an intracellular pathogen recognition receptor family in vertebrates. While the immune system participation of NLRs has been characterized and analyzed in various mammalian models, few studies have considered NLRs in teleost species. Therefore, this study analyzed the Atlantic salmon (Salmo salar) NLRC5. Structurally, Atlantic salmon NLRC5 presented leucine-rich repeat subfamily genes. Phylogenetically, NLRC5 was moderately conserved between S. salar and other species. Real-time quantitative PCR revealed NLRC5 expression in almost all analyzed organs, with greatest expressions in the head kidney, spleen, and hindgut. Furthermore, NLRC5 gene expression decreased during smolt stage. These data suggest that NLRC5 participates in the Atlantic salmon immune response and is regulated, at least partly, by the smoltification process, suggesting that there is a depression of immune system from parr at smolt stage. This is the first report on the NLRC5 gene in salmonid smolts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1992 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Lynnette A.; Martinson, Rick D.; Absolon, Randall F.

    1993-05-01

    The seaward migration of salmonid smolts was monitored by the National marine Fisheries Service (NMFS) at two sites on the Columbia River in 1992. The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program to index Columbia Basin juvenile salmonied stocks. It is coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Agencies and Tribes. Its purpose is to facilitate fish passage through reservoirs and at dams by providing FPC with timely smolt migration data used for flow and spill management. Data is also used for travel time, migration timing and relativemore » run size magnitude analysis. This program is carried out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration (BPA). Sampling sites were John Day and Bonneville Dams under the 1992 Smolt Monitoring Program. All pertinent fish capture, condition, brand recovery, and flow data, were reported daily to FPC. These data were incorporated into the FPC`s Fish Passage Data System (FPDS).« less

  10. Compliance Monitoring of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam

    The purpose of this compliance study was to estimate dam passage survival of yearling and subyearling Chinook salmon and steelhead smolts at John Day Dam during the spring and summer outmigrations in 2012. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 for spring migrants and greater than or equal to 0.93 for summer migrants, estimated with a standard error (SE) less than or equal to 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailracemore » 3 km downstream of the dam, as well as the forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required in the Columbia Basin Fish Accords (Fish Accords). A virtual/paired-release design was used to estimate dam passage survival at John Day Dam. The approach included releases of smolts, tagged with acoustic micro-transmitters, above John Day Dam that contributed to the formation of a virtual release at the face of John Day Dam. A survival estimate from this release was adjusted by a paired release below John Day Dam. A total of 3376 yearling Chinook salmon, 5726 subyearling Chinook salmon, and 3239 steelhead smolts were used in the virtual releases. Sample sizes for the below-dam paired releases (R2 and R3, respectively) were 997 and 995 for yearling Chinook salmon smolts, 986 and 983 for subyearling Chinook salmon smolts, and 1000 and 1000 for steelhead smolts. The Juvenile Salmon Acoustic Telemetry System (JSATS) tags were manufactured by Advanced Telemetry Systems. Model SS300 tags, weighing 0.304 g in air, were surgically implanted in yearling and subyearling Chinook salmon, and Model SS130 tag, weighing 0.438 g in air, were surgically implanted in juvenile steelhead for this investigation. The intent of the spring study was to estimate dam passage survival during both 30% and 40% spill conditions. The two spill conditions were to be systematically performed in alternating 2-day test intervals over the course of the spring outmigration. High flow conditions in 2012 interrupted the spill study. Dam passage survival was therefore estimated season-wide regardless of spill conditions.« less

  11. OVER-WINTER JUVENILE COHO SALMON GROWTH AND SURVIVAL IN A COASTAL OREGON STREAM NETWORK

    EPA Science Inventory

    Winter habitat has the potential to be a limiting factor for the production and condition of coho salmon (Oncorhynchus kisutch) smolts, but little is known about how the variation of habitat throughout whole stream networks influences coho smolts. Over a four year period (2002 - ...

  12. Effects of freshwater exposure to arsenic trioxide on the parr-smolt transformation of coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Nichols, J.W.; Wedemeyer, G.A.; Mayer, F.L.; Dickhoff, Walton W.; Gregory, S.V.; Yasutake, W.T.; Smith, S.D.

    1984-01-01

    The effects of chronic (6 months) exposure to arsenic trioxide in fresh water on the Parr-smolt transformation of coho salmon (Oncorhynchus kisutch) were evaluated. Exposure to 300 μg As/L (as As2O3) appeared to delay the onset of the normal increase in plasma thyroxine concentration and cause a transient reduction of gill Na+,K+-ATPase activity. Fish exposed to 300 μg As/L also migrated to the sea less successfully than did nonexposed smolts, but there were no effects on the survival and growth of smolts held in 28‰ salt water for 6 months.

  13. Effects of aqueous exposure to polychlorinated biphenyls (Aroclor 1254) on physiology and behavior of smolt development of Atlantic salmon

    USGS Publications Warehouse

    Lerner, D.T.; Bjornsson, Bjorn Thrandur; McCormick, S.D.

    2007-01-01

    Polychlorinated biphenyls (PCBs) are a widespread aquatic contaminant and are present in both wild and hatchery raised Atlantic salmon, Salmo salar. The possible sub-lethal alterations in smolt physiology and behavior due to PCB exposure of salmon have not been widely examined. In this study, we examined the effects of the PCB mixture Aroclor 1254 on survival and smolt development of Atlantic salmon. In separate experiments, fish were exposed as yolk-sac larvae or as juveniles just prior to the parr-smolt transformation in April to 1 ??g l-1 (PCB-1) or 10 ??g l-1 (PCB-10) aqueous Aroclor 1254 (A1254), or vehicle for 21 days. After exposure, yolk-sac larvae were reared at ambient conditions for 1 year, until the peak of smolting the following May. Juveniles were sampled immediately after exposure. Both groups were assessed for behavioral, osmoregulatory, and endocrine disruption of smolt development at the peak of smolting. PCB-1 and PCB-10 treated yolk-sac larvae exhibited significant increases in the rate of opercular movement after 14 and 21 days of exposure. At the peak of smolting, prior exposure as yolk-sac larvae to PCB-1 did not affect behavior, while PCB-10 dramatically decreased volitional preference for seawater. Neither concentration of A1254 had long-term effects on the osmoregulatory or endocrine parameters measured in animals exposed as yolk-sac larvae. Juvenile fish exposed to PCB-1 or PCB-10 during smolting exhibited a dose-dependent reduction in preference for seawater. Fish treated with the higher dose of A1254 also exhibited a 50% decrease in gill Na+,K+-ATPase activity and a 10% decrease in plasma chloride levels in freshwater. In addition, plasma triiodothyronine was reduced 35-50% and plasma cortisol 58% in response to exposure to either concentration; whereas plasma thyroxine, growth hormone, and insulin-like growth factor I levels were unaffected. These results indicate that the effects of exposure to A1254 may vary according to developmental stage. Exposure to A1254 in the freshwater environment can inhibit preparatory adaptations that occur during smolting, thereby reducing marine survival and sustainability of salmon populations. ?? 2007 Elsevier B.V. All rights reserved.

  14. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XV : Evaluation of the 2007 Predictions of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead Smolts to Rock Island, Lower Granite, McNary, John Day, and Bonneville Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Jim; Townsend, Richard L.; Skalski, John R.

    Program RealTime provided monitoring and forecasting of the 2007 inseason outmigrations via the internet for 26 PIT-tagged stocks of wild ESU Chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, one PIT-tagged wild stock of sockeye salmon to McNary Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville dams. Nineteen stocks are of wild yearling Chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2007 and have at least one year's historical migration data previous tomore » the 2007 migration. These stocks originate in 19 tributaries of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through tag identification and monitored at Lower Granite Dam. Seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling Chinook salmon and the steelhead runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling Chinook, coho, and sockeye salmon, and steelhead forecasted to Rock Island, McNary, John Day, and Bonneville dams.« less

  15. Modeling stream network-scale variation in Coho salmon overwinter survival and smolt size

    Treesearch

    Joseph L. Ebersole; Mike E. Colvin; Parker J. Wigington; Scott G. Leibowitz; Joan P. Baker; Jana E. Compton; Bruce A. Miller; Michael A. Carins; Bruce P. Hansen; Henry R. La Vigne

    2009-01-01

    We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over 3 years. Contributing basin area explained the majority of spatial...

  16. Estuarine and marine diets of out-migrating Chinook Salmon smolts in relation to local zooplankton populations, including harmful blooms

    NASA Astrophysics Data System (ADS)

    Chittenden, C. M.; Sweeting, R.; Neville, C. M.; Young, K.; Galbraith, M.; Carmack, E.; Vagle, S.; Dempsey, M.; Eert, J.; Beamish, R. J.

    2018-01-01

    Changes in food availability during the early marine phase of wild Chinook Salmon (O. tshawytscha) are being investigated as a cause of their recent declines in the Salish Sea. The marine survival of hatchery smolts, in particular, has been poor. This part of the Salish Sea Marine Survival Project examined the diet of young out-migrating Chinook Salmon for four consecutive years in the Cowichan River estuary and in Cowichan Bay, British Columbia, Canada. Local zooplankton communities were monitored during the final year of the study in the Cowichan River estuary, Cowichan Bay, and eastward to the Salish Sea to better understand the bottom-up processes that may be affecting Chinook Salmon survival. Rearing environment affected body size, diet, and distribution in the study area. Clipped smolts (hatchery-reared) were larger than the unclipped smolts (primarily naturally-reared), ate larger prey, spent very little time in the estuary, and disappeared from the bay earlier, likely due to emigration or mortality. Their larger body size may be a disadvantage for hatchery smolts if it necessitates their leaving the estuary prematurely to meet energy needs; the onset of piscivory began at a forklength of approximately 74 mm, which was less than the average forklength of the clipped fish in this study. The primary zooplankton bloom occurred during the last week of April/first week of May 2013, whereas the main release of hatchery-reared Chinook Salmon smolts occurs each year in mid-May-this timing mismatch may reduce their survival. Gut fullness was correlated with zooplankton biomass; however, both the clipped and unclipped smolts were not observed in the bay until the bloom of harmful Noctiluca was finished-20 days after the maximum recorded zooplankton abundance. Jellyfish medusa flourished in nearshore areas, becoming less prevalent towards the deeper waters of the Salish Sea. The sizable presence of Noctiluca and jellyfish in the zooplankton blooms may be repelling young salmon from a critical early marine food source and reducing their survival.

  17. Comparison of damage to live v. euthanized Atlantic salmon Salmo salar smolts from passage through an Archimedean screw turbine.

    PubMed

    Brackley, R; Lucas, M C; Thomas, R; Adams, C E; Bean, C W

    2018-05-01

    This study assessed the usefulness of passing euthanized Atlantic salmon Salmo salar smolts through an Archimedean screw turbine to test for external damage, as compared with live, actively swimming smolts. Scale loss was the only observed effect. Severe scale loss was 5·9 times more prevalent in euthanized turbine-passed fish (45%) than the live fish (7·6%). Additionally, distinctive patterns of scale loss, consistent with grinding between the turbine helices and housing trough, were observed in 35% of euthanized turbine-passed smolts. This distinctive pattern of scale loss was not seen in live turbine-passed smolts, nor in control groups (live and euthanized smolts released downstream of the turbine), which suggests that the altered behaviour of dead fish in turbine flows generates biased injury outcomes. © 2018 The Fisheries Society of the British Isles.

  18. Rock Island Dam Smolt Monitoring; 1994-1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truscott, Keith B.; Fielder, Paul C.

    1995-10-01

    Downstream migrating salmon and steelhead trout (Oncorhynchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1 - August 31, 1954. This was the tenth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish caught by species, (2) number of adipose clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) daily average riverflow, (4) daily average powerhouse No. 1 and No. 2 flows and daily average spill. These data were transmitted to the Fish Passage Center, which manages the Smolt Monitoring Program throughout the Columbia River Basin.more » The Smolt Monitoring Program is used to manage the {open_quotes}water budget{close_quotes}, releasing upstream reservoir water storage allocated to supplement river flows to enhance survival of downstream migrating juvenile salmonids. The Rock Island Dam trapping facility collected 37,795 downstream migrating salmonids in 1994. Collected fish included 4 yearling and 4 sub-yearling chinook salmon (O. tshawytscha) that had been previously PIT tagged to help determine migration rates. Additionally, 1,132 sub-yearling chinook, 4,185 yearling chinook, 6,627 steelhead, (O. mykiss) and 422 sockeye (O. nerka) with clipped adipose fins were collected. The middle 80% of the 1994 spring migration (excluding sub-yearling chinooks) passed Rock Island Dam during a 34 day period, April 25 - May 28. Passage rates of chinook and steelhead smolts released from hatcheries and the downstream migration timing of all salmonids are presented. The spring migration timing of juvenile salmonids is strongly influenced by hatchery releases above Rock Island Dam.« less

  19. Distinct effects of 4-nonylphenol and estrogen-17β on expression of estrogen receptor α gene in smolting sockeye salmon

    USGS Publications Warehouse

    Luo, Qiong; Ban, Massatoshi; Ando, Hironori; Kitahashi, Takashi; Bhandari, Ramji K.; McCormick, Stephen D.; Urano, Akihisa

    2005-01-01

    Xenoestrogens such as 4-nonylphenol (4-NP) have been shown to affect the parr–smolt transformation, but their mechanisms of action are not known. We therefore examined effects of 4-NP and estradiol-17β (E2) on expression of estrogen receptor (ER) α gene in the liver, gill, pituitary and brain of sockeye salmon to elucidate molecular mechanisms of 4-NP and E2 and developmental differences in response during smolting. Fish were treated twice within a week with 4-NP (15 and 150 mg/kg BW), E2 (2 mg/kg BW) or only vehicle at three stages of smolting, pre-smolting in March, early smolting in April and late smolting in May. The absolute amounts of ERα mRNA were determined by real-time PCR. The basal amounts of ERα mRNA peaked in April in the liver, gill and pituitary. In March, E2 extensively increased the amounts in the liver, while 4-NP had no effects at this stage. In contrast, 4-NP (but not E2) decreased liver ERα mRNA in April. 4-NP also decreased the amount of ERα mRNA in the gill in April. In the pituitary, 4-NP increased ERα mRNA in March but decreased it in May. There were no significant effects in the brain. Changes in basal ERα mRNA observed in this study indicate that estrogen responsiveness of tissues may change during salmon smolting. Furthermore, 4-NP and E2 have different effects on expression of ERα gene in the liver and gill during smolting, and the response is dependent on smolt stage.

  20. Toxicity of PHOS-CHEK LC-95A and 259F fire retardants to ocean- and stream-type Chinook salmon and their potential to recover before seawater entry.

    PubMed

    Dietrich, Joseph P; Van Gaest, Ahna L; Strickland, Stacy A; Hutchinson, Greg P; Krupkin, Alex B; Arkoosh, Mary R

    2014-08-15

    Long-term fire retardants are used to prevent the spread of wildland fire, but have inadvertently entered aquatic habitats and resulted in fish kills. We examined the toxicity of two fire retardant products; PHOS-CHEK 259F and LC-95A, on Chinook salmon with two different life histories, ocean-type and stream-type, at different stages of their development. Ocean-type Chinook outmigrate to the ocean as subyearlings; while, stream-type salmon overwinter in freshwater and outmigrate as yearlings. Ocean-type and stream-type salmon were exposed to the fire retardants prior to their parr to smolt transition (presmolts) as subyearlings (stream-type and ocean-type) and yearlings (stream-type only), as well as during their transition (smolts). The salmon were exposed to eight concentrations of each retardant and a control for 96h to determine acute toxicity. Lethal concentration curves were modeled by logistic regression for each life history and life stage exposed to the two fire retardants. Among all life histories and life stages tested, PHOS-CHEK 259F was most toxic to stream-type salmon at smolt stage and PHOS-CHEK LC-95A was most toxic to ocean-type salmon at smolt stage. To determine the delayed effects of product exposures on fish health as well as for the potential of recovery, 24-hour seawater challenges were performed immediately after fire retardant exposure, as well as after a recovery period. Previous PHOS-CHEK exposure reduced survival during seawater challenge among salmon from both life histories undergoing the parr-smolt transition and was more pronounced after PHOS-CHEK LC-95A exposure. However, this delayed effect was not observed 34 or more days after either PHOS-CHEK exposure. We conclude that accidental PHOS-CHEK LC-95A or 259F drops during salmon outmigration would have adverse impacts that extend beyond the acute mortality that occurs within the immediate drop and dilution areas. Published by Elsevier B.V.

  1. Variation in wind and piscivorous predator fields affecting the survival of Atlantic salmon, Salmo salar, in the Gulf of Maine

    USGS Publications Warehouse

    Friedland, K.D.; Manning, J.P.; Link, Jason S.; Gilbert, J.R.; Gilbert, A.T.; O'Connell, A.F.

    2012-01-01

    Observations relevant to the North American stock complex of Atlantic salmon, Salmo salar L., suggest that marine mortality is influenced by variation in predation pressure affecting post-smolts during the first months at sea. This hypothesis was tested for Gulf of Maine (GOM) stocks by examining wind pseudostress and the distribution of piscivorous predator fields potentially affecting post-smolts. Marine survival has declined over recent decades with a change in the direction of spring winds, which is likely extending the migration of post-smolts by favouring routes using the western GOM. In addition to changes in spring wind patterns, higher spring sea surface temperatures have been associated with shifting distributions of a range of fish species. The abundance of several pelagic piscivores, which based on their feeding habits may predate on salmon post-smolts, has increased in the areas that serve as migration corridors for post-smolts. In particular, populations of silver hake, Merluccius bilinearis (Mitchell), red hake, Urophycis chuss (Walbaum), and spiny dogfish, Squalus acanthias L., increased in size in the portion of the GOM used by post-smolts. Climate variation and shifting predator distributions in the GOM are consistent with the predator hypothesis of recruitment control suggested for the stock complex.

  2. Atlantic salmon (Salmo salar) smolt production: the relative importance of survival and body growth

    USGS Publications Warehouse

    Horton, G.E.; Letcher, B.H.; Bailey, M.M.; Kinnison, M.T.

    2009-01-01

    The complex life history of Atlantic salmon (Salmo salar) coupled with interacting abiotic and biotic factors leads to extreme demographic variability across the species' range. Our goal was to evaluate the relative importance of survival and body growth in determining smolt production across space and time. We used passive integrated transponder tags and capture-mark-recapture analyses to estimate survival, emigration, and growth for six cohorts of presmolt Atlantic salmon in two streams (three cohorts per stream) in New England, USA. We observed remarkable among-cohort consistency in mean monthly survival during a 17-month period from age-0+ autumn to age-2+ spring yet high variability in monthly survival over shorter time intervals (seasons). Despite this latter variability, survival did not translate into amongcohort differences in proportions of age-2+ versus age-3+ smolts. Alternatively, the high variability across seasons and cohorts in mean individual growth rate did lead to differences in within-cohort proportions of age-2+ versus age-3+ smolts (regardless of stream). We conclude that in our two small study streams, variability in growth and size impacted smolt age and, ultimately, smolt production. Density-dependent effects on growth at the scale of the entire study site represent a possible mechanism underlying our observations.

  3. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river

    USGS Publications Warehouse

    Furey, Nathan B.; Hinch, Scott G.; Lotto, A.G.; Beauchamp, David A.

    2015-01-01

    Stomach contents were collected and analysed from 22 bull trout Salvelinus confluentus at the edge of the Chilko Lake and Chilko River in British Columbia, Canada, during spring outmigration of sockeye salmon Oncorhynchus nerka smolts. Twenty of the 22 (>90%) stomachs contained prey items, virtually all identifiable prey items were outmigrant O. nerka smolts and stomach contents represented a large portion (0·0–12·6%) of estimated S. confluentus mass. The results demonstrate nearly exclusive and intense feeding by S. confluentus on outmigrant smolts, and support recent telemetry observations of high disappearance rates of O. nerka smolts leaving large natural lake systems prior to entering high-order unregulated river systems.

  4. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river.

    PubMed

    Furey, N B; Hinch, S G; Lotto, A G; Beauchamp, D A

    2015-01-01

    Stomach contents were collected and analysed from 22 bull trout Salvelinus confluentus at the edge of the Chilko Lake and Chilko River in British Columbia, Canada, during spring outmigration of sockeye salmon Oncorhynchus nerka smolts. Twenty of the 22 (>90%) stomachs contained prey items, virtually all identifiable prey items were outmigrant O. nerka smolts and stomach contents represented a large portion (0·0-12·6%) of estimated S. confluentus mass. The results demonstrate nearly exclusive and intense feeding by S. confluentus on outmigrant smolts, and support recent telemetry observations of high disappearance rates of O. nerka smolts leaving large natural lake systems prior to entering high-order unregulated river systems. © 2014 The Fisheries Society of the British Isles.

  5. Impacts of episodic acidification on in-stream survival and physiological impairment of Atlantic salmon (Salmo salar) smolts

    USGS Publications Warehouse

    McCormick, S.D.; Keyes, A.; Nislow, K.H.; Monette, M.Y.

    2009-01-01

    We conducted field studies to determine the levels of acid and aluminum (Al) that affect survival, smolt development, ion homeostasis, and stress in Atlantic salmon (Salmo salar) smolts in restoration streams of the Connecticut River in southern Vermont, USA. Fish were held in cages in five streams encompassing a wide range of acid and Al levels for two 6-day intervals during the peak of smolt development in late April and early May. Physiological parameters were unchanged from initial sampling at the hatchery and the high water quality reference site (pH > 7.0, inorganic Al < 12 μg·L-1). Mortality, substantial loss of plasma chloride, and gill Na+/K+-ATPase activity, and elevated gill Al occurred at sites with the lowest pH (5.4-5.6) and highest inorganic Al (50-80 μg·L-1). Moderate loss of plasma chloride, increased plasma cortisol and glucose, and moderately elevated gill Al occurred at less severely impacted sites. Gill Al was a better predictor of integrated physiological impacts than water chemistry alone. The results indicate that Al and low pH under field conditions in some New England streams can cause mortality and impair smolt development in juvenile Atlantic salmon and provide direct evidence that episodic acidification is impacting conservation and recovery of Atlantic salmon in the northeastern USA.

  6. Condition-dependent migratory behaviour of endangered Atlantic salmon smolts moving through an inland sea

    PubMed Central

    Crossin, Glenn T; Hatcher, Bruce G; Denny, Shelley; Whoriskey, Kim; Orr, Michael; Penney, Alicia; Whoriskey, Frederick G

    2016-01-01

    Abstract The Bras d’Or Lake watershed of Cape Breton Island, Nova Scotia, Canada is a unique inland sea ecosystem, UNESCO Biosphere Reserve and home to a group of regionally distinct Atlantic salmon (Salmo salar) populations. Recent population decreases in this region have raised concern about their long-term persistence. We used acoustic telemetry to track the migrations of juvenile salmon (smolts) from the Middle River into the Bras d’Or Lake and, subsequently, into the Atlantic Ocean. Roughly half of the tagged smolts transited the Bras d’Or Lakes to the Atlantic Ocean, using a migration route that took them through the Gulf of St Lawrence’s northern exit at the Strait of Belle Isle (∼650 km from the home river) towards feeding areas in the Labrador Sea and Greenland. However, a significant fraction spent >70 days in the Lakes, suggesting that this population has an alternative resident form, in which smolts limit their migrations within the Bras d’Or. Smolts in good relative condition (as determined from length-to-mass relationships) tended to be residents, whereas fish in poorer condition were ocean migrants. We also found a covarying effect of river temperature that helped to predict residence vs. ocean migration. We discuss these results relative to their bioenergetic implications and provide suggestions for future studies aimed at the conservation of declining salmon populations in Canada. PMID:27293765

  7. Migration delays caused by anthropogenic barriers: modeling dams, temperature, and success on migrating salmon smolts

    USGS Publications Warehouse

    Marschall, Elizabeth A.; Mather, Martha E.; Parrish, Donna; Allison, Gary W.; McMenemy, James R.

    2011-01-01

    Disruption to migration is a growing problem for conservation and restoration of animal populations. Anthropogenic barriers along migration paths can delay or prolong migrations, which may result in a mismatch with migration-timing adaptations. To understand the interaction of dams (as barriers along a migration path), seasonally changing environmental conditions, timing of Atlantic salmon (Salmo salar) downstream migration, and ultimate migration success, we used 10 years of river temperature and discharge data as a template upon which we simulated downstream movement of salmon. Atlantic salmon is a cool-water species whose downstream migrating smolts must complete migration before river temperatures become too warm. We found that dams had a local effect on survival as well as a survival effect that was spatially and temporally removed from the encounter with the dam. While smolts are delayed by dams, temperatures downstream can reach lethal or near-lethal temperatures; as a result, the match between completion of migration and the window of appropriate migration conditions can be disrupted. The strength of this spatially and temporally removed effect is at least comparable to the local effects of dams in determining smolt migration success in the presence of dams. We also considered smolts from different tributaries, varying in distance from the river mouth, to assess the potential importance of locally adapted migration timing on the effect of barriers. Migration-initiation temperature affected modeled smolt survival differentially across tributaries, with the success of smolts from upstream tributaries being much more variable across years than that of smolts with a shorter distance to travel. As a whole, these results point to the importance of broadening our spatial and temporal view when managing migrating populations. We must consider not only how many individuals never make it across migration barriers, but also the spatially and temporally removed consequences of delays at the barriers for those individuals that successfully navigate them.

  8. Migration delays caused by anthropogenic barriers: Modeling dams, temperature, and success of migrating salmon smolts

    USGS Publications Warehouse

    Marschall, E.A.; Mather, M. E.; Parrish, D.L.; Allison, G.W.; McMenemy, J.R.

    2011-01-01

    Disruption to migration is a growing problem for conservation and restoration of animal populations. Anthropogenic barriers along migration paths can delay or prolong migrations, which may result in a mismatch with migration-timing adaptations. To understand the interaction of dams (as barriers along a migration path), seasonally changing environmental conditions, timing of Atlantic salmon (Salmo salar) downstream migration, and ultimate migration success, we used 10 years of river temperature and discharge data as a template upon which we simulated downstream movement of salmon. Atlantic salmon is a cool-water species whose downstream migrating smolts must complete migration before river temperatures become too warm. We found that dams had a local effect on survival as well as a survival effect that was spatially and temporally removed from the encounter with the dam. While smolts are delayed by dams, temperatures downstream can reach lethal or near-lethal temperatures;as a result, the match between completion of migration and the window of appropriate migration conditions can be disrupted. The strength of this spatially and temporally removed effect is at least comparable to the local effects of dams in determining smolt migration success in the presence of dams. We also considered smolts from different tributaries, varying in distance from the river mouth, to assess the potential importance of locally adapted migration timing on the effect of barriers. Migration-initiation temperature affected modeled smolt survival differentially across tributaries, with the success of smolts from upstream tributaries being much more variable across years than that of smolts with a shorter distance to travel. As a whole, these results point to the importance of broadening our spatial and temporal view when managing migrating populations. We must consider not only how many individuals never make it across migration barriers, but also the spatially and temporally removed consequences of delays at the barriers for those individuals that successfully navigate them. ??2011 by the Ecological Society of America.

  9. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Richard W.

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2001.

  10. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Program, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Richard W.

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2000.

  11. Linking climate change projections for an Alaskan watershed to future coho salmon production.

    PubMed

    Leppi, Jason C; Rinella, Daniel J; Wilson, Ryan R; Loya, Wendy M

    2014-06-01

    Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three-dimensional hydrology model, we simulated coho smolt production over a 20-year span at the end of the century (2080-2100). The direction (i.e., positive vs. negative) and magnitude of changes in smolt production varied substantially by climate scenario and subwatershed. Projected smolt production decreased in all three subwatersheds under the minimum air temperature and maximum precipitation scenario due to elevated peak flows and a resulting 98% reduction in egg-to-fry survival. In contrast, the maximum air temperature and minimum precipitation scenario led to an increase in smolt production in all three subwatersheds through an increase in fry survival. Other climate change scenarios led to mixed responses, with projected smolt production increasing and decreasing in different subwatersheds. Our analysis highlights the complexity inherent in predicting climate-change-related impacts to salmon populations and demonstrates that population effects may depend on interactions between the relative magnitude of hydrologic and thermal changes and their interactions with features of the local habitat. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  12. Evaluation of partial water reuse systems used for Atlantic salmon smolt production at the White River National Fish Hatchery

    USDA-ARS?s Scientific Manuscript database

    Eight of the existing 9.1 m (30 ft) diameter circular culture tanks at the White River National Fish Hatchery in Bethel, Vermont, were retrofitted and plumbed into two 8,000 L/min partial water reuse systems to help meet the region's need for Atlantic salmon (Salmo salar) smolt production. The part...

  13. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.

    2011-02-01

    The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. Themore » approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.« less

  14. Movement, migration, and smolting of Atlantic salmon (Salmo salar)

    USGS Publications Warehouse

    McCormick, S.D.; Hansen, Lonnie P.; Quinn, T.P.; Saunders, R.L.

    1998-01-01

    A variety of movements characterize the behavioral plasticity of Atlantic salmon (Salmo salar) in fresh water, including movements of fry from redds, establishment of feeding territories, spawning movements of sexually mature male parr, movement to and from winter habitat, and smolt migration in spring. Smolting is an adaptive specialization for downstream migration, seawater entry, and marine residence. While still in fresh water, smolts become silvery and streamlined, lose their positive rheotaxis and territoriality, and begin schooling. Physiological changes include increased salinity tolerance, olfactory sensitivity, metabolic rate, scope for growth, and altered hemoglobin and visual pigments. Through their impact on the neuroendocrine system, photoperiod and temperature regulate physiological changes, whereas temperature and water flow may initiate migration. Smolt survival is affected by a limited period of readiness (a physiological 'smolt window') and the timing of seawater entry with environmental conditions such as temperature, food, and predators (an ecological 'smolt window'). Smolt development is adversely affected by acidity, pollutants, and improper rearing conditions, and is often more sensitive than other life stages. Unfortunately, the migration corridor of smolts (mainstems of rivers and estuaries) are the most heavily impacted by pollution, dams, and other anthropogenic activities that may be directly lethal or increase mortality by delaying or inhibiting smolt migration.

  15. Development of seawater tolerance and subsequent downstream migration in wild and stocked young-of-the-year derived Atlantic salmon Salmo salar smolts.

    PubMed

    Urke, H A; Arnekleiv, J V; Nilsen, T O; Nilssen, K J

    2014-01-01

    This study investigated the development of hypo-osmoregulatory capacity and timing of downstream migration in wild Atlantic salmon Salmo salar smolts from the River Stjørdalselva and stocked young-of-the-year (YOY), derived S. salar smolts from the tributary River Dalåa. Both wild and stocked S. salar smolts developed seawater (SW) tolerance in early May, persisting through June, measured as their ability to regulate plasma osmolality and chloride following 24 h SW (salinity = 35) exposure. Although the majority of downstream migration among the stocked S. salar smolts occurred later than observed in their wild counterparts, the development of SW tolerance occurred concurrently. The wild S. salar from Stjørdalselva and stocked YOY smolts from the River Dalåa started to migrate on the same cumulative day-degrees (D°). The study revealed no downstream migration before development of SW tolerance. This emphasizes the importance of incorporating physiological status when studying environmental triggers for downstream migration of S. salar smolts. Overall, these findings suggest that the onset of smolt migration in stocked S. salar smolts was within the smolt window from an osmoregulatory point of view. © 2014 The Fisheries Society of the British Isles.

  16. Physiological characteristics of wild Atlantic salmon post-smolts during estuarine and coastal migration

    USGS Publications Warehouse

    Stefansson, S.O.; Bjornsson, B. Th; Sundell, K.; Nyhammer, G.; McCormick, S.D.

    2003-01-01

    Changes were measured in some of the major physiological variables associated with seawater adaptability, growth and energetics in wild Atlantic salmon Salmo salar smolts and post-smolts migrating from the river and through the estuary, fjord and coastal areas in the River Orkla and the Trondheimsfjord, Norway during late May to early June. Gill Na+,K+-ATPase activity increased to levels of 12-16 ??mol ADP mg protein-1 h -1 in post-smolts caught in higher salinity zones, probably representing long-term levels of Atlantic salmon post-smolts in oceanic conditions. Muscle moisture was regulated within narrow limits (77.7-78.7%) in fish from all zones during both years, suggesting that post-smolts adapt to marine conditions without any long-term disturbance of hydro-mineral balance. Lipid and glycogen content showed a general trend towards depletion from the river, through the fjord and into the ocean. There was, however, no significant change in protein content. The present results confirm that smolts are naturally 'energy deficient' during downstream migration, and suggest that post-smolts also mobilize energy reserves during their early marine phase, while protein is allocated for somatic growth. Plasma growth hormone (GH) levels increased transiently during passage through the estuary and fjord, with lower levels observed in post-smolts caught off-shore, i.e. in fish which were feeding on marine prey and had adapted to the marine environment. These physiological changes may confer substantial selective advantages during the critical early marine phase of anadromous salmonids, and hence are adaptive for long-term survival in sea water. ?? 2003 The Fisheries Society of the British Isles.

  17. Physiological and endocrine changes in Atlantic salmon smolts during hatchery rearing, downstream migration and ocean entry

    USGS Publications Warehouse

    McCormick, Stephen D.; Sheehan, Timothy F.; Björnsson, Björn Thrandur; Lipsky, Christine; Kocik, John F.; Regish, Amy M.; O'Dea, Michael F.

    2013-01-01

    Billions of hatchery salmon smolts are released annually in an attempt to mitigate anthropogenic impacts on freshwater habitats, often with limited success. Mortality of wild and hatchery fish is high during downstream and early ocean migration. To understand changes that occur during migration, we examined physiological and endocrine changes in Atlantic salmon (Salmo salar) smolts during hatchery rearing, downstream migration, and early ocean entry in two successive years. Gill Na+/K+-ATPase activity increased in the hatchery during spring, increased further after river release, and was slightly lower after recapture in the ocean. Plasma growth hormone levels increased in the hatchery, were higher in the river, and increased further in the ocean. Plasma IGF-I remained relatively constant in the hatchery, increased in the river, then decreased in the ocean. Plasma thyroid hormones were variable in the hatchery, but increased in both river- and ocean-captured smolts. Naturally reared fish had lower condition factor, gill NKA activity, and plasma thyroxine than hatchery fish in the river but were similar in the ocean. This novel data set provides a vital first step in understanding the role and norms of endocrine function in smolts and the metrics of successful marine entry.

  18. Validation of daily increments and a marine-entry check in the otoliths of sockeye salmon Oncorhynchus nerka post-smolts.

    PubMed

    Freshwater, C; Trudel, M; Beacham, T D; Neville, C-E; Tucker, S; Juanes, F

    2015-07-01

    Juvenile sockeye salmon Oncorhynchus nerka that were reared and smolted in laboratory conditions were found to produce otolith daily increments, as well as a consistently visible marine-entry check formed during their transition to salt water. Field-collected O. nerka post-smolts of an equivalent age also displayed visible checks; however, microchemistry estimates of marine-entry date using Sr:Ca ratios differed from visual estimates by c. 9 days suggesting that microstructural and microchemical processes occur on different time scales. © 2015 The Fisheries Society of the British Isles.

  19. Investigating the influence of nitrate nitrogen on post-smolt Atlantic salmon Salmo salar reproductive physiology in freshwater recirculation aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    An 8-month trial was carried out to assess the effects of NO3-N on a variety of performance and physiological outcomes in post-smolt Atlantic salmon Salmo salar (initial weight 102 plus or minus 1 g) reared in six replicated laboratory-scale water recirculation aquaculture systems (RAS). Three RAS r...

  20. Seawater tolerance in Atlantic salmon, Salmo salar L., brown trout, Salmo trutta L., and S. salar × S. trutta hybrids smolt.

    PubMed

    Urke, H A; Koksvik, J; Arnekleiv, J V; Hindar, K; Kroglund, F; Kristensen, T

    2010-12-01

    High levels of hybridization between Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) have been reported in the Gyrodactylus salaris infected Rivers Vefsna and Driva in Norway. The survival and behaviour during the sea phase of such hybrids is unknown. The reported work documents ionoregulatory status after 24 h seawater challenge tests (24hSW) and gill Na+/K+-ATPase (NKA) activity of migrating wild smolts of Atlantic salmon, brown trout and hybrids at two sampling dates during the 2006 smolt run in River Driva. Salmon, trout and hybrids contributed to 27, 52 and 21% of the catches, respectively. The large contribution of hybrids suggests both a high hybridization rate and a high survival rate from fry to smolt. Both salmon and hybrids had a well-developed seawater tolerance at the time of downstream migration, revealed by small ionoregulatory effects and no or low mortality rates during the 24hSW tests. The trout were not fully adapted to seawater, and high mortality rates were observed (71 and 92%) during the 24hSW tests. The NKA activity was not significantly different between salmon and hybrids. Most of the hybrids were physiologically capable of direct entry to full strength seawater. The incomplete seawater tolerance in trout compared to salmon corresponds well with differences in life-history patterns between these two species. The life history strategy of the hybrids during the sea phase is not known, and further investigations on the marine behaviour and survival is needed to evaluate the role of hybrids in the risk of spreading G. salaris to nearby river systems.

  1. Effects of acidity and aluminim on the physiology and migratory behavior of Atlantic salmon smolts in Maina, USA

    USGS Publications Warehouse

    Magee, J.A.; Haines, T.A.; Kocik, J.F.; Beland, K.F.; McCormick, S.D.

    2001-01-01

    Atlantic salmon, Salmo salar, smolts of hatchery origin were held for 5 to 16 days in ambient (pH 6.35, labile Al = 60 ??g L-1), limed (pH 6.72, labile Al = 58.4 ??g L-1), or acidified (pH 5.47, labile Al=96 ??g L-1) water from the Narraguagus River in Maine, USA. Wild smolts were captured in the same river in rotary traps and held for up to two days in ambient river water. Osmoregulatory ability was assessed by measuring Na+/K+ ATPase activity, hematocrit, and blood Cl concentration in freshwater, and after 24-hr exposure to seawater. Hatchery smolts exposed to acidic water and wild smolts displayed sub-lethal ionoregulatory stress both in fresh and seawater, with mortalities of wild smolts in seawater. Using ultrasonic telemetry, hatchery-reared ambient and acid-exposed, and wild smolts were tracked as they migrated through freshwater and estuarine sections of the river. The proportion of wild smolts migrating during daylight hours was higher than for hatchery-reared smolts. Wild smolts remained in the freshwater portions of the river longer than either group of hatchery smolts, although survival during migration to seawater was similar for all three treatments. Acid-exposed hatchery-origin and wild Narraguagus River smolts were both under ionoregulatory stress that may have affected their migratory behavior, but not their survival for the time and area in which we tracked them.

  2. Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon (Salmo salar L.).

    PubMed

    Lysenko, Liudmila A; Kantserova, Nadezda P; Kaivarainen, Elena I; Krupnova, Marina Yu; Nemova, Nina N

    2017-09-01

    Growth-related dynamics of intracellular protease activities in four year classes of the Atlantic salmon (Salmo salar L. 1758) parr and smolts inhabiting salmon rivers of northwestern Russia (the White Sea basin) were studied. Cathepsin B, cathepsin D, proteasome, and calpain activities in the skeletal muscles of salmon were assessed to investigate their relative contribution to the total protein degradation as well as to young fish growth process. It was confirmed that calpain activity dominates in salmon muscles while proteasome plays a minor role, in contrast to terrestrial vertebrates. Calpain and proteasome activities were maximal at the early post-larval stage (in parrs 0+) and declined with age (parrs 1+ through 2+) dropping to the lowest level in salmon smolts. Annual growth increments and proteolytic activities of calpains and proteasome in the muscles of salmon juveniles changed with age in an orchestrated manner, while lysosomal cathepsin activities increased with age. Comparing protease activities and growth increments in salmon parr and smolts we suggested that the partial suppression of the protein degradation could be a mechanism stimulating efficient growth in smoltifying salmon. Growth and smoltification-related dynamics of protease activities was quite similar in salmon populations from studied spawning rivers, such as Varzuga and Indera; however, some habitat-related differences were observed. Growth increments and protease activities varied in salmon parr 0+ (but not on later ages) inhabiting either main rivers or small tributaries apparently due to habitat difference on the resources for fish growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabe, Craig D.; Nelson, Douglas D.

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket stylemore » weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there were 120,415 HOR supplementation smolts released into Johnson Creek during the week of March 12, 2007. Life stage-specific juvenile survival from Johnson Creek to Lower Granite and McNary dams was calculated for brood year 2005 NOR and HOR supplementation juvenile Chinook salmon. Survival of NOR parr Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 16.2%. Survival of NOR presmolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 22.3%. Survival of NOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 44.7% and 32.9%. Survival of HOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 31.9% and 26.2%. Multi-year analysis on smolt to adult return rate's (SAR's) and progeny to parent ratio's (P:P's) were calculated for NOR and HOR supplementation Brood Year 2002 Chinook salmon. SAR's were calculated from Johnson Creek to Johnson Creek (JC to JC), Lower Granite Dam to Lower Granite (LGD to LGD), and Lower Granite Dam to Johnson Creek (LGD to JC); for NOR fish SAR's were 0.16%, 1.16% and 1.12%, while HOR supplementation SAR's from JC to JC, LGD to LGD and LGD to JC were 0.04%, 0.19% and 0.13%. P:P's for all returning NOR and HOR supplemented adults were under replacement levels at 0.13 and 0.65, respectively. Recruit per spawner estimates (R/S) for Brood Year 2005 adult Chinook salmon were also calculated for NOR and HOR supplemented Chinook salmon at JC and LGD. R/S estimates for NOR and HOR supplemented fish at JC were 231 and 1,745, while R/S estimates at LGD were 67 and 557. Management recommendations address (1) effectiveness of data collection methods, (2) sufficiency of data quality (statistical power) to enable management recommendations, (3) removal of uncertainty and subsequent cessation of M&E activities, and (4) sufficiency of findings for program modifications prior to five-year review.« less

  4. Atlantic salmon brood stock management and breeding handbook

    USGS Publications Warehouse

    Kincaid, Harold L.; Stanley, Jon G.

    1989-01-01

    Anadromus runs of Atlantic salmon have been restored to the Connecticut, Merrimack, Pawcatuck, Penobscot, and St. Croix rivers in New England by the stocking of more than 8 million smolts since 1948. Fish-breeding methods have been developed that minimize inbreeding and domestication and enhance natural selection. Methods are available to advance the maturation of brood stock, control the sex of production lots and store gametes. Current hatchery practices emphasize the use of sea-run brood stock trapped upon return to the rivers and a limited number of captive brood stock and rejuvenated kelts. Fish are allowed to mature naturally, after which they are spawned and incubated artificially. Generally, 1-year smolts are produced, and excess fish are stocked as fry in headwater streams. Smolts are stocked during periods of rising water in spring. Self-release pools are planned that enable smolts to choose the emigration time. Culturists keep good records that permit evaluation of the performance of strains and the effects of breeding practices. As Atlantic salmon populations expand, culturists must use sound breeding methods that enhance biotic potential while maintaining genetic diversity and protecting unique gene pools.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.

    The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. Themore » approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.« less

  6. Smolt Monitoring Program, Part II, Volume II, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1985 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fish Passage Center

    1986-02-01

    Volume I of this report describes the results of travel time monitoring and other migrational characteristics of yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri). This volume presents the freeze brand data used in the analysis of travel time for Lower Granite, Rock Island, McNary, and John Day dams. Brand recoveries for Lower Monumental dam also are presented. Summary of data collection procedures and explanation of data listings are presented in conjunction with the mark recapture data.

  7. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1990 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Lynette A.

    1991-03-01

    The seaward migration of salmonid smolts was monitored by the National Marine Fisheries Service (NMFS) at three sites on the Columbia River system in 1990. This project is a part of the continuing Smolt Monitoring Program to monitor Columbia Basin salmonid stocks coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Agencies and Indian Tribes. It's purpose is to provide timely data to the Fish Passage Managers for in season flow and spill management for fish passage and post-season analysis for travel time, relative magnitude and timing and the smolt migration. This program is carriedmore » out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration (BPA). Sampling sites were John Day and Bonneville Dams under the Smolt Monitoring program, and the Dallas Dam under the Fish Spill Memorandum of Agreement'' for 1990. All pertinent fish capture, condition and brand data, as well as dam operations and river flow data were reported daily to FPC. These data were incorporated into the FPC Fish Passage Data Information System (FPDIS). 10 refs., 8 figs., 1 tab.« less

  8. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Thomas J.; Skalski, John R.

    2010-10-01

    The purpose of this compliance study was to estimate dam passage survival of yearling Chinook salmon and steelhead smolts at The Dalles Dam during spring 2010. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated smolt passage survival from the forebay boat-restricted zone (BRZ) to the tailrace BRZ at The Dalles Dam, as well as the forebay residence time, tailrace egress, and spill passage efficiency (SPE), as required in themore » Columbia Basin Fish Accords. A virtual/paired-release design was used to estimate dam passage survival at The Dalles Dam. The approach included releases of acoustic-tagged smolts above John Day Dam that contributed to the formation of a virtual release at the face of The Dalles Dam. A survival estimate from this release was adjusted by a paired release below The Dalles Dam. A total of 4,298 yearling Chinook salmon and 4,309 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation. The dam passage survival results are summarized as follows: Yearling Chinook Salmon 0.9641 (SE = 0.0096) and Steelhead 0.9535 (SE = 0.0097).« less

  9. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; ,; Gillikin, Daniel; ,

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  10. Water velocity in commercial RAS culture tanks for Atlantic salmon smolt production

    USDA-ARS?s Scientific Manuscript database

    An optimal flow domain in culture tanks is vital for fish growth and welfare. This paper presents empirical data on rotational velocity and water quality in circular and octagonal tanks at two large commercial smolt production sites, with an approximate production rate of 1000 and 1300 ton smolt ann...

  11. In situ measurement of coastal ocean movements and survival of juvenile Pacific salmon

    PubMed Central

    Welch, David W.; Melnychuk, Michael C.; Payne, John C.; Rechisky, Erin L.; Porter, Aswea D.; Jackson, George D.; Ward, Bruce R.; Vincent, Stephen P.; Wood, Chris C.; Semmens, Jayson

    2011-01-01

    Many salmon populations in both the Pacific and Atlantic Oceans have experienced sharply decreasing returns and high ocean mortality in the past two decades, with some populations facing extirpation if current marine survival trends continue. Our inability to monitor the movements of marine fish or to directly measure their survival precludes experimental tests of theories concerning the factors regulating fish populations, and thus limits scientific advance in many aspects of fisheries management and conservation. Here we report a large-scale synthesis of survival and movement rates of free-ranging juvenile salmon across four species, 13 river watersheds, and 44 release groups of salmon smolts (>3,500 fish tagged in total) in rivers and coastal ocean waters, including an assessment of where mortality predominantly occurs during the juvenile migration. Of particular importance, our data indicate that, over the size range of smolts tagged, (i) smolt survival was not strongly related to size at release, (ii) tag burden did not appear to strongly reduce the survival of smaller animals, and (iii) for at least some populations, substantial mortality occurred much later in the migration and more distant from the river of origin than generally expected. Our findings thus have implications for determining where effort should be invested to improve the accuracy of salmon forecasting, to understand the mechanisms driving salmon declines, and to predict the impact of climate change on salmon stocks. PMID:21558442

  12. Effects of episodic acidification on Atlantic salmon (Salmo salar) smolts

    USGS Publications Warehouse

    Magee, J.A.; Obedzinski, M.; McCormick, S.D.; Kocik, J.F.

    2003-01-01

    The effect of episodic acidification on Atlantic salmon (Salmo salar) smolt physiology and survival in fresh water (FW) and seawater (SW) was investigated. Smolts were held in either ambient (control, pH 6.0-6.6), acidified (chronic, pH 4.4-6.1), or episodically acidified (episodic, pH reduction from control levels to pH ???5.2 for 48 h once weekly) river water for 31 days and then transferred to 34??? SW. Smolts fed little while in acidified conditions and chronic smolts did not grow in length or weight. In FW, chronic smolts experienced increases in hematocrit and plasma potassium and reductions in plasma sodium and chloride. Upon transfer to SW, chronic and episodic smolts experienced reductions in hematocrit, increases in plasma sodium, chloride, and potassium levels, and suffered mortalities. Gill Na+,K+-ATPase and citrate synthase activities were reduced by exposure to acid. For most parameters, the effect of episodic acid exposure was less than that of chronic acidification. Exposure to acidic conditions, even when short in duration and followed by a 30-h recovery period in suitable water (pH 6.5), led to a 35% mortality of smolts upon transfer to SW. This study highlights the importance of measuring and assessing sublethal stresses in FW and their ultimate effects in marine ecosystems.

  13. Passing a seawater challenge test is not indicative of hatchery-reared Atlantic salmon Salmo salar smolts performing as well at sea as their naturally produced conspecifics.

    PubMed

    Jensen, A J; Berg, M; Bremset, G; Finstad, B; Hvidsten, N A; Jensås, J G; Johnsen, B O; Lund, E

    2016-06-01

    Despite satisfactory reactions to seawater challenge tests indicative of appropriate physiological state, hatchery-reared Atlantic salmon Salmo salar smolts stocked in the Eira River in Norway between 2001 and 2011 performed less well at sea in terms of growth, age at maturity and survival than smolts of natural origin. The mean rates of return to the river for hatchery-reared and naturally produced S. salar were 0·98 and 2·35%. In the Eira River, c. 50 000 hatchery-reared S. salar smolts of local origin were stocked annually to compensate for reduced natural smolt production following regulation for hydroelectric purposes, while a mean of 17 262 smolts were produced naturally in the river. This study demonstrates that, although captive S. salar perform well in seawater challenge tests, hatchery-reared smolts are not necessarily as adaptable to marine life as their naturally produced counterparts. These findings suggest that production of hatchery-reared smolts more similar to naturally produced individuals in morphology, physiology and behaviour will be necessary to improve success of hatchery releases. Where possible, supplementary or alternative measures, including habitat restoration, could be implemented to ensure the long-term viability of wild stocks. © 2016 The Fisheries Society of the British Isles.

  14. Nutrient fluxes and the recent collapse of coastal California salmon populations

    USGS Publications Warehouse

    Moore, Jonathan W.; Hayes, Sean A.; Duffy, Walter; Gallagher, Sean; Michel, Cyril J.; Wright, David

    2011-01-01

    Migratory salmon move nutrients both in and out of fresh waters during the different parts of their life cycle. We used a mass-balance approach to quantify recent changes in phosphorus (P) fluxes in six coastal California, USA, watersheds that have recently experienced dramatic decreases in salmon populations. As adults, semelparous Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon imported 8.3 and 10.4 times more P from the ocean, respectively, than they exported as smolts, while iteroparous steelhead (i.e., sea-run rainbow trout, Oncorhynchus mykiss) imported only 1.6 times more than they exported as kelts and smolts. Semelparous species whose life histories led them to import more nutrients were also the species whose populations decreased the most dramatically in California in recent years. In addition, the relationship between import and export was nonlinear, with export being proportionally more important at lower levels of import. This pattern was driven by two density-dependent processes — smolts were larger and disproportionately more abundant at lower spawner abundances. In fact, in four of our six streams we found evidence that salmon can drive net export of P at low abundance, evidence for the reversal of the "conveyor belt" of nutrients.

  15. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 6 of 7, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Joan B.

    2004-05-01

    In 1999 the Cle Elum Hatchery began releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. In 1998 and 2000 through 2003 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, withmore » a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. To date, only the bacterial pathogens have been detected and prevalences have been low. Prevalences have varied each year and these changes are attributed to normal fluctuation of prevalence. All of the pathogens detected are widely distributed in Washington State.« less

  16. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallinat, Michael; Varney, Michelle

    2003-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River Spring Chinook Captive Broodstock Program during 2002. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combinationmore » with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program collected fish from five (1997-2001) brood years (BY). As of January 1, 2003, WDFW has approximately 11 BY 1998, 194 BY 1999, 314 BY 2000, 447 BY 2001, and 300 BY 2002 (for extra males) fish on hand at LFH. The 2002 eggtake from the 1997 brood year (Age 5) was 13,176 eggs from 10 ripe females. Egg survival was 22%. Mean fecundity based on the 5 fully spawned females was 1,803 eggs/female. The 2002 eggtake from the 1998 brood year (Age 4) was 143,709 eggs from 93 ripe females. Egg survival was 29%. Mean fecundity based on the 81 fully spawned females was 1,650 eggs/female. The 2002 eggtake from the 1999 brood year (Age 3) was 19,659 eggs from 18 ripe females. Egg survival was 55%. Mean fecundity based on the 18 fully spawned fish was 1,092 eggs/female. The total 2002 eggtake from the captive brood program was 176,544 eggs. A total of 120,833 dead eggs (68%) were removed with 55,711 live eggs remaining for the program. As of May 1, 2003 we had 46,417 BY 2002 captive brood progeny on hand A total of 20,592 excess BY 01 fish were marked as parr (AD/CWT) and released during May 2002 into the Tucannon River (rkm 40-45). This allowed us to stay within our maximum allowed number (150,000) of smolts released. On August 20, 97 (21 1998 BY and 76 1999 BY) adult captive broodstock were determined to be in excess of eggtake goals and were outplanted into the Tucannon River at Panjab Bridge (rkm 74.5). Released fish were tagged with Monel jaw tags and radio transmitters were inserted into ten females for tracking and monitoring. Due to the low frequency of natural spawning by released fish, high mortality due to predation and illegal harvest, and high egg mortality in the hatchery during 2002, priority will be to release excess progeny as parr to stay within smolt release goals rather than release excess captive broodstock as adults. During April 2003, WDFW volitionally released 140,396 BY 2001 captive broodstock progeny smolts from Curl Lake Acclimation Pond into the Tucannon River. These fish were marked with agency-only wire tags and no fin clips in order to differentiate them from the supplementation fish (CWT/Right Red VIE/No Finclip). A total of 1,007 captive brood progeny smolts were PIT tagged to compare their outmigration with smolts from the supplementation program (1,010 tagged). Monitoring their survival and future releases to adult returns, along with future natural production levels, will determine the success or failure of this captive broodstock program.« less

  17. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts.

    PubMed

    Huang, Tien-sheng; Ruoff, Peter; Fjelldal, Per G

    2010-10-01

    In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12 h:12 h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.

  18. Initiation of migration and movement rates of Atlantic salmon smolts in fresh water

    USGS Publications Warehouse

    Stich, Daniel S.; Kinnison, Michael T.; Kocik, John F.; Zydlewski, Joseph D.

    2015-01-01

    Timing of ocean entry is critical for marine survival of both hatchery and wild Atlantic salmon (Salmo salar) smolts. Management practices and barriers to migration such as dams may constrain timing of smolt migrations resulting in suboptimal performance at saltwater entry. We modeled influences of stocking location, smolt development, and environmental conditions on (i) initiation of migration by hatchery-reared smolts and (ii) movement rate of hatchery- and wild-reared Atlantic salmon smolts in the Penobscot River, Maine, USA, from 2005 through 2014 using acoustic telemetry data. We also compared movement rates in free-flowing reaches with rates in reaches with hydropower dams and head ponds. We compared movement rates before and after (1) removal of two mainstem dams and (2) construction of new powerhouses. Initiation of movement by hatchery fish was influenced by smolt development, stocking location, and environmental conditions. Smolts with the greatest gill Na+, K+-ATPase (NKA) activity initiated migration 24 h sooner than fish with the lowest gill NKA activity. Fish with the greatest cumulative thermal experience initiated migration 5 days earlier than those with lowest cumulative thermal experience. Smolts released furthest from the ocean initiated migration earlier than those released downstream, but movement rate increased by fivefold closer to the ocean, indicating behavioral trade-offs between initiation and movement rate. Dams had a strong effect on movement rate. Movement rate increased from 2.8 to 5.4 km·h−1 in reaches where dams were removed, but decreased from 2.1 to 0.1 km·h−1 in reaches where new powerhouses were constructed. Movement rate varied throughout the migratory period and was inversely related to temperature. Fish moved slower at extreme high or low discharge. Responses in fish movement rates to dam removal indicate the potential scope of recovery for these activities.

  19. Experimental and natural host specificity of Loma salmonae (Microsporidia).

    PubMed

    Shaw, R W; Kent, M L; Brown, A M; Whipps, C M; Adamson, M L

    2000-03-14

    The microsporidian Loma salmonae (Putz, Hoffman & Dunbar, 1965) Morrison & Sprague, 1981 has caused significant gill disease in Pacific salmon Oncorhynchus spp. Host specificity of the parasite was examined experimentally by per os challenge of selected salmonids and non-salmonids with infective chinook salmon O. tshawytscha gill material. Pink Oncorhynchus gorbuscha and chum salmon O. keta, brown Salmo trutta and brook trout Salvelinus fontinalis, and chinook salmon (controls) were positive, whereas Atlantic salmon Salmo salar and Arctic char Salvelinus alpinus were negative. In addition, no non-salmonids were susceptible to experimental exposure. Wild Pacific salmon species in British Columbia, Canada, were examined for L. salmonae during their freshwater life history stages (smolts, prespawning, spawning). All stages were infected, although infections in smolts were only detectable using a L. salmonae-specific PCR test. Many previous Loma spp. described from Oncorhychus spp. are likely L. salmonae based on host, parasite morphology, and site of infection.

  20. Water chemistry and its effects on the physiology and survival of Atlantic salmon Salmo salar smolts

    USGS Publications Warehouse

    Liebich, T.; McCormick, S.D.; Kircheis, D.; Johnson, Kevin; Regal, R.; Hrabik, T.

    2011-01-01

    The physiological effects of episodic pH fluctuations on Atlantic salmon Salmo salar smolts in eastern Maine, U.S.A., were investigated. During this study, S. salar smolts were exposed to ambient stream-water chemistry conditions at nine sites in four catchments for 3 and 6 day intervals during the spring S. salar smolt migration period. Plasma chloride, plasma glucose, gill aluminium and gill Na+- and K+-ATPase levels in S. salar smolts were assessed in relation to ambient stream-water chemistry during this migration period. Changes in both plasma chloride and plasma glucose levels of S. salar smolts were strongly correlated with stream pH, and S. salar smolt mortality occurred in one study site with ambient stream pH between 5??6 and 5??8 during the study period. The findings from this study suggest that physiological effects on S. salar smolts are strongly correlated with stream pH and that in rivers and streams with low dissolved organic carbon (DOC) concentrations the threshold for physiological effects and mortality probably occurs at a higher pH and shorter exposure period than in rivers with higher DOC. Additionally, whenever an acidification event in which pH drops below 5??9 coincides with S. salar smolt migration in eastern Maine rivers, there is potential for a significant reduction in plasma ions of S. salar smolts. ?? 2011 The Fisheries Society of the British Isles.

  1. Migratory urge and gll Na+,K+-ATPase activity of hatchery-reared Atlantic salmon smolts from the Dennys and Penobscot River stocks, Maine

    USGS Publications Warehouse

    Spencer, Randall C.; Zydlewski, Joseph D.; Zydlewski, Gayle B.

    2010-01-01

    Hatchery-reared Atlantic salmon Salmo salar smolts produced from captive-reared Dennys River and sea-run Penobscot River broodstock are released into their source rivers in Maine. The adult return rate of Dennys smolts is comparatively low, and disparity in smolt quality between stocks resulting from genetic or broodstock rearing effects is plausible. Smolt behavior and physiology were assessed during sequential 14-d trials conducted in seminatural annular tanks with circular flow. “Migratory urge” (downstream movement) was monitored remotely using passive integrated transponder tags, and gill Na+,K+-ATPase activity was measured at the beginning and end of the trials to provide an index of smolt development. The migratory urge of both stocks was low in early April, increased 20-fold through late May, and declined by the end of June. The frequency and seasonal distribution of downstream movement were independent of stock. In March and April, initial gill Na+,K+-ATPase activities of Penobscot River smolts were lower than those of Dennys River smolts. For these trials, however, Penobscot River smolts increased enzyme activity after exposure to the tank, whereas Dennys River smolts did not, resulting in similar activities between stocks at the end of all trials. There was no clear relationship between migratory urge and gill Na+,K+-ATPase activity. Gill Na+,K+-ATPase activity of both stocks increased in advance of migratory urge and then declined while migratory urge was increasing. Maximum movement was observed from 2 h after sunset through 1 h after sunrise but varied seasonally. Dennys River smolts were slightly more nocturnal than Penobscot River smolts. These data suggest that Dennys and Penobscot River stocks are not markedly different in either physiological or behavioral expression of smolting.

  2. Migratory patterns of hatchery and stream-reared Atlantic salmon Salmo salar smolts in the Connecticut River, U.S.A.

    USGS Publications Warehouse

    McCormick, Stephen D.; Haro, Alexander; Lerner, Darren T.; O'Dea, Michael F.; Regish, Amy M.

    2014-01-01

    The timing of downstream migration and detection rates of hatchery-reared Atlantic salmon Salmo salar smolts and stream-reared smolts (stocked 2 years earlier as fry) were examined in the Connecticut River (U.S.A.) using passive integrated transponder (PIT) tags implanted into fish and then detected at a downstream fish bypass collection facility at Turners Falls, MA (river length 192 km). In two successive years, hatchery-reared smolts were released in mid-April and early May at two sites: the West River (river length 241 km) or the Passumpsic (river length 450 km). Hatchery-reared smolts released higher in the catchment arrived 7 to 14 days later and had significantly lower detection rates than smolts stocked lower in the catchment. Hatchery-reared smolts released 3 weeks apart at the same location were detected downstream at similar times, indicating that early-release smolts had a lower average speed after release and longer residence time. The size and gill Na+/K+-ATPase (NKA) activity of smolts at the time of release were significantly greater for detected fish (those that survived and migrated) than for those that were not detected. Stream-reared pre-smolts (>11·5 cm) from four tributaries (length 261–551 km) were tagged in autumn and detected during smolt migration the following spring. Stream-reared smolts higher in the catchment arrived later and had significantly lower detection rates. The results indicate that both hatchery and stream-reared smolts from the upper catchment will arrive at the mouth of the river later and experience higher overall mortality than fish from lower reaches, and that both size and gill NKA activity are related to survival during downstream migration.

  3. GABAergic anxiolytic drug in water increases migration behaviour in salmon

    NASA Astrophysics Data System (ADS)

    Hellström, Gustav; Klaminder, Jonatan; Finn, Fia; Persson, Lo; Alanärä, Anders; Jonsson, Micael; Fick, Jerker; Brodin, Tomas

    2016-12-01

    Migration is an important life-history event in a wide range of taxa, yet many migrations are influenced by anthropogenic change. Although migration dynamics are extensively studied, the potential effects of environmental contaminants on migratory physiology are poorly understood. In this study we show that an anxiolytic drug in water can promote downward migratory behaviour of Atlantic salmon (Salmo salar) in both laboratory setting and in a natural river tributary. Exposing salmon smolt to a dilute concentration of a GABAA receptor agonist (oxazepam) increased migration intensity compared with untreated smolt. These results implicate that salmon migration may be affected by human-induced changes in water chemical properties, such as acidification and pharmaceutical residues in wastewater effluent, via alterations in the GABAA receptor function.

  4. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallinat, Michael P.; Bumgarner, Joseph D.

    2002-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood during 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination withmore » the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program will collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2001 BY fish have been selected. As of Jan 1, 2002, WDFW has 17 BY 1997, 159 BY 1998, 316 BY 1999, 448 BY 2000, and approximately 1,200 BY 2001 fish on hand at LFH. The 2001 eggtake from the 1997 brood year (Age 4) was 233,894 eggs from 125 ripe females. Egg survival was 69%. Mean fecundity based on the 105 fully spawned females was 1,990 eggs/female. The 2001 eggtake from the 1998 brood year (Age 3) was 47,409 eggs from 41 ripe females. Egg survival was 81%. Mean fecundity based on the 39 fully spawned females was 1,160 eggs/female. The total 2001 eggtake from the captive brood program was 281,303 eggs. As of May 1, 2002 we have 171,495 BY 2001 captive brood progeny on hand. A total of 20,592 excess fish were marked as parr (AD/CWT) and will be released during early May, 2002 into the Tucannon River (rkm 40-45). This will allow us to stay within our maximum allowed number (150,000) of smolts released. During April 2002, WDFW volitionally released 3,055 BY 2000 captive broodstock progeny from Curl Lake Acclimation Pond into the Tucannon River. These fish were marked with agency-only wire tags and no fin clips in order to differentiate them from the supplementation fish (CWT/Right Red VI/No Finclip). Monitoring their survival and future releases to adult returns, along with future natural production levels, will determine the success or failure of this captive broodstock program.« less

  5. Activity of metabolic enzymes and muscle-specific gene expression in parr and smolts Atlantic salmon Salmo salar L. of different age groups.

    PubMed

    Churova, Maria V; Meshcheryakova, Olga V; Veselov, Aleksey E; Efremov, Denis A; Nemova, Nina N

    2017-08-01

    This study was conducted to characterize the energy metabolism level and the features of muscle growth regulation during the development of Atlantic salmon (Salmo salar) inhabiting the Indera River (Kola Peninsula, Russia). The activities of aerobic and anaerobic enzymes (cytochrome c oxidase and lactate dehydrogenase) and carbohydrate metabolism enzymes (glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, and aldolase) were measured in muscle and liver tissue. Gene expression levels of myosin heavy chain (MyHC), myostatin (MSTN-1a), and myogenic regulatory factors (MRFs-MyoD1a, MyoD1b, MyoD1c, Myf5, myogenin) were measured in the white muscles of salmon parr of ages 0+, 1+, 2+, and 3+ and smolts of ages 2+ and 3+. Multidirectional changes in the activity of enzymes involved in aerobic and anaerobic energy metabolism with age were shown in the white muscles of the parr. The cytochrome c oxidase activity was higher in muscles of underyearlings (0+) and yearlings (1+) and decreased in 2+ and 3+ age groups. The activity of lactate dehydrogenase, in contrast, increased with age. The patterns of changes in expression levels of MyoD1a, MyoD1b, myogenin, MyHC, and MSTN-1a at different ages of the parr were similar. Particularly, the expression of these genes peaked in the yearling parr (1+) and then decreased in elder groups. The differences were revealed in parameters studied between the parr and smolts. The level of aerobic and anaerobic metabolism enzyme activities was higher in the white muscles of smolts than in parr. The activity of carbohydrate metabolism enzymes was decreased in the smolts' livers. The expression levels of MyHC, MyoD1a, MyoD1b, and myogenin were lower in smolts at age 2+ compared to parr. These findings expand our knowledge of age-related and stage-related features of energy metabolism and muscle development regulation in young Atlantic salmon in their natural habitat. The results might be used for monitoring of the salmon population during restoration and rearing.

  6. Molecular mechanisms of continuous light inhibition of Atlantic salmon parr-smolt transformation

    USGS Publications Warehouse

    Stefansson, S.O.; Nilsen, Tom O.; Ebbesson, Lars O.E.; Wargelius, A.; Madsen, Steffen S.; Bjornsson, B. Th; McCormick, S.D.

    2007-01-01

    Atlantic salmon (Salmo salar) rely on changes in photoperiod for the synchronization of the developmental events constituting the parr-smolt transformation. In the absence of photoperiod cues, parr-smolt transformation is incomplete, and such 'pseudo-smolts' normally fail to adapt to seawater. The present study addresses the endocrine and molecular mechanisms controlling the development of hypo-osmoregulatory ability and how artificial photoperiod can disrupt these changes. Juvenile Atlantic salmon reared under constant light (LL) from first feeding, were separated into two groups, and exposed to either LL or simulated natural photoperiod (LDN) from October, eight months prior to the expected completion of smoltification. Juveniles reared on LL grew well, but failed to show the smolt-related reduction in condition factor in spring. Gill mRNA levels of Na+, K+-ATPase (NKA) isoform ??1a decreased in LDN fish through completion of parr-smolt transformation, while levels remained unchanged in the LL group. In contrast, ??1b expression increased 6-fold in the LDN group between February and May, again with no change in the LL group. Further, Na+, K+, 2Cl- co-transporter (NKCC) showed a transient increase in expression in smolts on LDN between February and May, while no changes in mRNA levels were seen in juveniles under LL. Consequently, gill NKA activity and NKA ?? and NKCC protein abundance were significantly lower in juveniles on LL than in smolts on LDN. LL fish in spring had lower circulating levels of thyroid hormones (THs), growth hormone (GH) and cortisol. Gill GH-receptor mRNA levels, determined by quantitative PCR, were less than 50% of controls. In contrast, circulating levels of IGF-1 and gill IGF-1 receptor expression, were comparable to controls. Our findings show that continuous light prevents the completion of parr-smolt transformation at a very basic level, disrupting the natural up-regulation of key elements of the endocrine system involved in the regulation of the parr-smolt transformation, and consequently inhibiting the smoltification-related increase in expression, abundance and activity of gill ion transport proteins. ?? 2007 Elsevier B.V. All rights reserved.

  7. Smolt physiology and endocrinology: Chapter 5

    USGS Publications Warehouse

    McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2012-01-01

    The parr-smolt transformation of anadromous salmonids is a suite of behavioral, morphological, and physiological changes that are preparatory for downstream migration and seawater entry. The timing of smolt development varies among species, occurring soon after hatching in pink and chum salmon and after one to several years in Atlantic salmon. In many species the transformation is size dependent and occurs in spring, mediated through photoperiod and temperature cues. Smolt development is stimulated by several hormones including growth hormone, insulin-like growth factor-1, cortisol, and thyroid hormones, whereas prolactin is generally inhibitory. Increased salinity tolerance is one of the most important and tractable changes, and is caused by alteration in the function of the major osmoregulatory organs, the gill, gut, and kidney. Increased abundance of specific ion transporters (Na+/K+-ATPase, Na+/K+/Cl− cotransporter and apical Cl− channel) in gill ionocytes results in increased salt secretory capacity, increased growth and swimming performance in seawater, and higher marine survival.

  8. Catchment-wide survival of wild- and hatchery-reared Atlantic salmon smolts in a changing system

    USGS Publications Warehouse

    Stich, Daniel S.; Bailey, Michael M.; Holbrook, Christopher M.; Kinnison, Michael T.; Zydlewski, Joseph D.

    2015-01-01

    We developed a hierarchical multistate model to estimate survival of Atlantic salmon (Salmo salar) smolts in the Penobscot River, USA, over a decade during which two mainstem dams were removed from the catchment. We investigated effects of (i) environmental factors, (ii) rearing history, and (iii) management actions, including dam removal, turbine shutdown, and installation of new powerhouses. Mean ± SD smolt survival per kilometre was higher through free-flowing reaches of the catchment (0.995 ± 0.004·km−1) than through reaches containing dams that remain in the system (0.970 ± 0.019·km−1). We observed maximum survival between 12 and 17 °C and at intermediate discharges (1200 m3·s−1). Smolt survival increased concurrent with dam removal and decreased following increases in hydropower generation. The greatest increase in smolt survival followed seasonal turbine shutdowns at a dam located on the largest tributary to the Penobscot River, while other shutdowns had little influence. Our model provides a useful tool for assessing changes to survival of migratory species and will be useful for informing stocking plans to maximize numbers of smolts leaving coastal systems.

  9. Compliance Monitoring of Subyearling Chinook Salmon Smolt Survival and Passage at Bonneville Dam, Summer 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at Bonneville Dam during summer 2012, as required by the 2008 Federal Columbia River Power System Biological Opinion. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 1 km below the dam, as well as forebay residence time, tailrace egress, and spill passage efficiency, as required in the 2008 Columbia Basin Fish Accords.

  10. Physiological status of naturally reared juvenile spring chinook salmon in the Yakima River: Seasonal dynamics and changes associated with smolting

    USGS Publications Warehouse

    Beckman, B.R.; Larsen, D.A.; Sharpe, C.; Lee-Pawlak, B.; Schreck, C.B.; Dickhoff, Walton W.

    2000-01-01

    Two year-classes of juvenile spring chinook salmon Oncorhynchus tshawytscha from the Yakima River, Washington, were sampled from July (3-4 months postemergence) through May (yearling smolt out-migration). Physiological characters measured included liver glycogen, body lipid, gill Na+-K+ ATPase, plasma thyroxine (T4), and plasma insulin-like growth factor-I (IGF-I). Distinct physiological changes were found that corresponded to season. Summer and fall were characterized by relatively high body lipid and condition factor. Winter was characterized by decreases in body lipid, condition factor, and plasma hormones. An increase in condition factor and body lipid was found in February and March. Finally, April and May were characterized by dramatic changes characteristic of smolting, including increased gill Na+-K+ ATPase activity, plasma T4, and IGF-I and decreased condition factor, body lipid, and liver glycogen. These results create a physiological template for juvenile spring chinook salmon in the drainage that provides a baseline for comparison with other years, populations, and life history types. In addition, this baseline provides a standard for controlled laboratory experiments and a target for fish culturists who rear juvenile spring chinook salmon for release from conservation hatcheries. The implications of these results for juvenile chinook salmon ecology and life history are discussed.

  11. Differential regulation of sodium-potassium pump isoforms during smolt development and seawater exposure of Atlantic salmon

    USGS Publications Warehouse

    McCormick, Stephen D.; Regish, Amy M.; Christensen, Arne K.; Björnsson, Björn Thrandur

    2013-01-01

    Freshwater and seawater isoforms of the alpha subunit of Na+/K+-ATPase (NKA) have previously been identified in gill ionocytes of Atlantic salmon (Salmo salar). In the present study we examine the abundance and cellular localization of these isoforms during the parr–smolt transformation, a developmental process that is preparatory for seawater entry. The abundance of NKAα1a was lower in smolts than in parr, remained relatively constant during spring and decreased in summer. NKAα1b increased tenfold in smolts during spring, peaking in late April, coincident with downstream migration and increased salinity tolerance. NKAα1b increased a further twofold after seawater exposure of smolts, whereas NKAα1a decreased by 98%. The abundance of NKAα1b-positive, and NKAα1b and NKAα1a co-labeled ionocytes increased during smolt development, whereas the number of NKAα1a cells decreased. After seawater exposure of smolts, NKAα1b-positive ionocytes increased, NKAα1a-positive cells decreased, and co-labeled cells disappeared. Plasma growth hormone and cortisol increased during spring in smolts, but not in parr, peaking just prior to the highest levels of NKAα1b. The results indicate that the increase in the abundance of NKAα1b during smolt development is directly linked to the increase in salinity tolerance that occurs at this stage, but that significant changes also occur after seawater exposure. Spring increases in circulating levels of growth hormone and cortisol indicate that these hormones may be instrumental in upregulating NKAα1b during smolt development.

  12. Differential hormonal responses of Atlantic salmon parr and smolt to increased daylength: A possible developmental basis for smolting

    USGS Publications Warehouse

    McCormick, S.D.; Shrimpton, J.M.; Moriyama, S.; Bjornsson, Bjorn Thrandur

    2007-01-01

    In order to elucidate the developmental basis for smolting, Atlantic salmon, Salmo salar, parr ( 12.5??cm) were exposed to natural daylength (LDN) and increased daylength (LD16:8) starting in late February and gill Na+,K+-ATPase activity and circulating hormone levels monitored from January to May. Gill Na+,K+-ATPase activity remained low and constant in both groups of parr. In smolts, gill Na+,K+-ATPase began increasing in late February in both photoperiods, but was significantly higher in the LD16:8 group from March through April. Smolts exposed to LD16:8 had dramatically elevated plasma GH within one week of increased daylength that remained high through April, whereas plasma GH of LDN smolts increased steadily beginning in late February and peaking in late April. Plasma GH levels of parr remained low in spring and did not respond to increased daylength. Plasma insulin-like growth factor I (IGF-I) levels were substantially higher in smolts than parr in January. Plasma IGF-I levels of parr increased steadily from January to May, but there was no influence of increased daylength. In smolts, plasma IGF-I of LD16:8 fish initially decreased in early March then increased in late March and April, whereas plasma IGF-I of LDN smolts increased steadily to peak levels in early April. Plasma cortisol was low in parr throughout spring and did not differ between photoperiod treatments. Plasma cortisol of LD16:8 smolts increased in early March and remained elevated through April, whereas in LDN smolts plasma cortisol did not increase until early April and peaked in late April. Plasma thyroid hormones were generally higher in smolts than in parr, but there was no clear effect of increased daylength in parr or smolts. The greater capacity of the GH/IGF-I and cortisol axes to respond to increased daylength may be a critical factor underlying smolt development. ?? 2007 Elsevier B.V. All rights reserved.

  13. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    USGS Publications Warehouse

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Harnish, Ryan A.; Bellgraph, Brian J.

    The study reported herein was funded as part of the Anadromous Fish Evaluation Program, which is managed by the U.S. Army Corps of Engineers (USACE). The Anadromous Fish Evaluation Program study code is EST P 02 01: A Study of Salmonid Survival and Behavior through the Columbia River Estuary Using Acoustic Tags. The study was conducted by the Pacific Northwest National Laboratory (PNNL) and National Oceanic and Atmospheric Administration (NOAA) Fisheries for the USACE Portland District. Estimated survival of acoustic-tagged juvenile Chinook salmon and steelhead through the lower Columbia River and estuary in 2009 was lowest in the final 50more » km of the estuary. Probability of survival was relatively high (>0.90) for yearling and subyearling Chinook salmon from the Bonneville Dam forebay (rkm 236) to Three-tree Point (rkm 49.6). Survival of juvenile Chinook salmon declined sharply through the lower 50 km of the estuary. Acoustic-tagged steelhead smolts did not survive as well as juvenile Chinook salmon between Bonneville Dam and the mouth of the Columbia River. Steelhead survival began to decline farther upstream (at rkm 86) relative to that of the Chinook salmon stocks. Subyearling Chinook salmon survival decreased markedly as the season progressed. It remains to be determined whether later migrating subyearling Chinook salmon are suffering increasing mortality as the season progresses or whether some portion of the apparent loss is due to fish extending their freshwater residence. This study provided the first glimpse into what promises to be a very informative way to learn more about how juvenile salmonid passage experiences through the FCRPS may influence their subsequent survival after passing Bonneville Dam. New information regarding the influence of migration pathway through the lower 50 km of the Columbia River estuary on probability of survival of juvenile salmonids, combined with increased understanding regarding the foraging distances and time periods of avian predators should prove useful in developing or assessing management actions to reduce losses of juvenile salmonid smolts that attempt to pass through the estuary on their seaward migration.« less

  15. Impacts of short-term acid and aluminum exposure on Atlantic salmon (Salmo salar) physiology: A direct comparison of parr and smolts

    USGS Publications Warehouse

    Monette, M.Y.; McCormick, S.D.

    2008-01-01

    Episodic acidification resulting in increased acidity and inorganic aluminum (Ali) is known to impact anadromous salmonids and has been identified as a possible cause of Atlantic salmon population decline. Sensitive life-stages such as smolts may be particularly vulnerable to impacts of short-term (days–week) acid/Al exposure, however the extent and mechanism(s) of this remain unknown. To determine if Atlantic salmon smolts are more sensitive than parr to short-term acid/Al, parr and smolts held in the same experimental tanks were exposed to control (pH 6.3–6.6, 11–37 μg l−1 Ali) and acid/Al (pH 5.0–5.4, 43–68 μg l−1 Ali) conditions in the lab, and impacts on ion regulation, stress response and gill Al accumulation were examined after 2 and 6 days. Parr and smolts were also held in cages for 2 and 6 days in a reference (Rock River, RR) and an acid/Al-impacted tributary (Ball Mountain Brook, BMB) of the West River in Southern Vermont. In the lab, losses in plasma Cl− levels occurred in both control parr and smolts as compared to fish sampled prior to the start of the study, however smolts exposed to acid/Al experienced additional losses in plasma Cl− levels (9–14 mM) after 2 and 6 days, and increases in plasma cortisol (4.3-fold) and glucose (2.9-fold) levels after 6 days, whereas these parameters were not significantly affected by acid/Al in parr. Gill Na+,K+-ATPase (NKA) activity was not affected by acid/Al in either life-stage. Both parr and smolts held at BMB (but not RR) exhibited declines in plasma Cl−, and increases in plasma cortisol and glucose levels; these differences were significantly greater in smolts after 2 days but similar in parr and smolts after 6 days. Gill NKA activity was reduced 45–54% in both life-stages held at BMB for 6 days compared to reference fish at RR. In both studies, exposure to acid/Al resulted in gill Al accumulation in parr and smolts, with parr exhibiting two-fold greater gill Al than smolts after 6 days. Our results indicate that smolts are more sensitive than parr to short-term acid/Al. Increased sensitivity of smolts appears to be independent of a reduction in gill NKA activity and greater gill Al accumulation. Instead, increased sensitivity of smolts is likely a result of both the acquisition of seawater tolerance while still in freshwater and heightened stress responsiveness in preparation for seawater entry and residence.

  16. Recent Salmon Declines: A Result of Lost Feeding Opportunities Due to Bad Timing?

    PubMed Central

    Chittenden, Cedar M.; Jensen, Jenny L. A.; Ewart, David; Anderson, Shannon; Balfry, Shannon; Downey, Elan; Eaves, Alexandra; Saksida, Sonja; Smith, Brian; Vincent, Stephen; Welch, David; McKinley, R. Scott

    2010-01-01

    As the timing of spring productivity blooms in near-shore areas advances due to warming trends in global climate, the selection pressures on out-migrating salmon smolts are shifting. Species and stocks that leave natal streams earlier may be favoured over later-migrating fish. The low post-release survival of hatchery fish during recent years may be in part due to static release times that do not take the timing of plankton blooms into account. This study examined the effects of release time on the migratory behaviour and survival of wild and hatchery-reared coho salmon (Oncorhynchus kisutch) using acoustic and coded-wire telemetry. Plankton monitoring and near-shore seining were also conducted to determine which habitat and food sources were favoured. Acoustic tags (n = 140) and coded-wire tags (n = 266,692) were implanted into coho salmon smolts at the Seymour and Quinsam Rivers, in British Columbia, Canada. Differences between wild and hatchery fish, and early and late releases were examined during the entire lifecycle. Physiological sampling was also carried out on 30 fish from each release group. The smolt-to-adult survival of coho salmon released during periods of high marine productivity was 1.5- to 3-fold greater than those released both before and after, and the fish's degree of smoltification affected their downstream migration time and duration of stay in the estuary. Therefore, hatchery managers should consider having smolts fully developed and ready for release during the peak of the near-shore plankton blooms. Monitoring chlorophyll a levels and water temperature early in the spring could provide a forecast of the timing of these blooms, giving hatcheries time to adjust their release schedule. PMID:20805978

  17. Differential expression of gill Na+,K+-ATPaseα - and β-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar

    USGS Publications Warehouse

    Nilsen, Tom O.; Ebbesson, Lars O.E.; Madsen, Steffen S.; McCormick, Stephen D.; Andersson, Eva; Bjornsson, Bjorn Thrandur; Prunet, Patrick; Stefansson, Sigurd O.

    2007-01-01

    This study examines changes in gill Na+,K+-ATPase (NKA) α- and β-subunit isoforms, Na+,K+,2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, and after seawater (SW) transfer in May/June. Gill NKA activity increased from February through April, May and June among both strains in freshwater (FW), with peak enzyme activity in the landlocked salmon being 50% below that of the anadromous fish in May and June. Gill NKA-α1b, -α3, -β1 and NKCC mRNA levels in anadromous salmon increased transiently, reaching peak levels in smolts in April/May, whereas no similar smolt-related upregulation of these transcripts occurred in juvenile landlocked salmon. Gill NKA-α1a mRNA decreased significantly in anadromous salmon from February through June, whereas α1a levels in landlocked salmon, after an initial decrease in April, remained significantly higher than those of the anadromous smolts in May and June. Following SW transfer, gill NKA-α1b and NKCC mRNA increased in both strains, whereas NKA-α1a decreased. Both strains exhibited a transient increase in gill NKA α-protein abundance, with peak levels in May. Gill α-protein abundance was lower in SW than corresponding FW values in June. Gill NKCC protein abundance increased transiently in anadromous fish, with peak levels in May, whereas a slight increase was observed in landlocked salmon in May, increasing to peak levels in June. Gill CFTR I mRNA levels increased significantly from February to April in both strains, followed by a slight, though not significant increase in May and June. CFTR I mRNA levels were significantly lower in landlocked than anadromous salmon in April/June. Gill CFTR II mRNA levels did not change significantly in either strain. Our findings demonstrates that differential expression of gill NKA-α1a, -α1b and -α3 isoforms may be important for potential functional differences in NKA, both during preparatory development and during salinity adjustments in salmon. Furthermore, landlocked salmon have lost some of the unique preparatory upregulation of gill NKA, NKCC and, to some extent, CFTR anion channel associated with the development of hypo-osmoregulatory ability in anadromous salmon.

  18. The effect of stocking with 0+ year age-class Atlantic salmon Salmo salar fry: a case study from the River Bush, Northern Ireland.

    PubMed

    Kennedy, R J; Crozier, W W; Allen, M

    2012-10-01

    An enhancement programme based on stocking 0+ year age-class Atlantic salmon Salmo salar, conducted in the River Bush, Northern Ireland, U.K. over the period 1996-2005, was reviewed with reference to the performance and biological characteristics of wild fish. Wild ova to 0+ year fry (summer) survival was c. 8% with subsequent wild 0+ year fry-to-smolt survival c. 9%. Stocked unfed 0+ year juveniles gave c. 1% survival to smolt whilst fed 0+ year S. salar stocked in late summer exhibited survival at c. 5%. Stocking with unfed and fed fry contributed to increased smolt production and helped attain local management objectives between 2001 and 2005. Significant differences in biological characteristics were observed between wild and stocked-origin fish. Wild-smolt cohorts were dominated by 2+ year age-class fish on the River Bush whilst smolts originating from fed fry mostly comprised younger 1+ year individuals. The mean mass of 1+ year smolts derived from stocked fed fry was significantly lower than that of wild 1+ year smolts, although these differences were not evident between older age classes. Differences in run timing between wild smolts and smolts derived from stocked fry were also apparent with the stocked-origin fish tending to run earlier than wild fish. Although the stocking exercise was useful in terms of maximizing freshwater production, concerns over the quality of stocked-origin recruits and the long term consequences for productivity are highlighted. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  19. Evidence for cumulative temperature as an initiating and terminating factor in downstream migratory behavior of Atlantic salmon (Salmo salar) smolts

    USGS Publications Warehouse

    Zydlewski, G.B.; Haro, A.; McCormick, S.D.

    2005-01-01

    Temperature control of Atlantic salmon (Salmo salar) smolt migration was tested using a novel technique allowing nearly continuous monitoring of behavior with complete control over environmental conditions. Parr and presmolts were implanted with passive integrated transponder tags, placed in simulated streams, and monitored for upstream and downstream movements. Beginning 18 April, temperature was increased 1??C every third day (advanced), fourth day (ambient), and tenth day (delayed). Smolt downstream movements were initially low, peaked in mid-May, and subsequently declined under all conditions. Parr downstream movements were significantly lower than those of smolts in all treatments (0.8 ?? 0.5 movement??day-1 versus 26.5 ?? 4.5 movements??day-1, mean ?? SE) and showed no increase. At delayed temperatures, smolts sustained downstream movements through July; those under ambient and advanced conditions ceased activity by mid-June. Initiation and termination of downstream movements occurred at significantly different temperatures but at the same number of degree-days in all treatments. Physiological changes associated with smolting (gill Na+,K +-ATPase activity and plasma thyroxine) were coincident with behavioral changes. This is the first evidence of a behavioral component to the smolt window. We found that temperature experience over time is more relevant to initiation and termination of downstream movement than a temperature threshold. ?? 2005 NRC Canada.

  20. Cost-effective management alternatives for Snake River Chinook salmon: a biological-economic synthesis.

    PubMed

    Halsing, David L; Moore, Michael R

    2008-04-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can provide valuable tools for science-based policy and management.

  1. Cost-effective management alternatives for Snake river chinook salmon: A biological-economic synthesis

    USGS Publications Warehouse

    Halsing, D.L.; Moore, M.R.

    2008-01-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can provide valuable tools for science-based policy and management.

  2. Salmon lice – impact on wild salmonids and salmon aquaculture

    PubMed Central

    Torrissen, O; Jones, S; Asche, F; Guttormsen, A; Skilbrei, O T; Nilsen, F; Horsberg, T E; Jackson, D

    2013-01-01

    Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion. PMID:23311858

  3. Effects of training on functional variables of muscles in reared Atlantic salmon Salmo salar smolts: connection to downstream migration pattern.

    PubMed

    Anttila, K; Jokikokko, E; Erkinaro, J; Järvilehto, M; Mänttäri, S

    2011-02-01

    The relative amount of muscle contraction regulating dihydropyridine and ryanodine receptors in the swimming muscles of trained reared Atlantic salmon Salmo salar smolts was compared with those of untrained and wild smolts. After an optimized 2 week training period, i.e. swimming with a velocity of 1·5 body lengths per second for 6 h per day, the level of both receptors was significantly higher in the muscles of trained S. salar than in the untrained ones before they were released into the natural environment. This difference persisted after downstream migration in the river. The highest level of receptors was observed in wild S. salar. Swimming performance was also higher in trained fish compared to untrained ones. Furthermore, swimming performance was positively associated with the level of receptors in both red and white muscle types. Downstream migration after release into the wild was significantly slower in trained smolts than in untrained fish. This indicates that trained smolts were most probably swimming harder against the current in the river than untrained smolts. The possible advantages for a slower migration in the river are discussed. This study shows that the prerequisites for effective contraction of the swimming muscles are better met in trained S. salar compared to untrained fish, and the muscles of trained smolts more closely resemble those of wild smolts. The results also imply that the capacity of untrained, reared smolts to swim against the current is not equal to that of their trained or wild counterparts which affects the downstream migration pattern of S. salar smolts. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  4. Seasonal changes in androgen levels in stream- and hatchery-reared Atlantic salmon parr and their relationship to smolting

    USGS Publications Warehouse

    Shrimpton, J.M.; McCormick, S.D.

    2002-01-01

    In stream-reared Atlantic salmon Salmo salar, plasma androgens were significantly greater in mature male parr than immature males and females in October, but had declined by January and did not differ significantly from immature fish throughout the spring. Immature fish in March were significantly larger and had greater gill Na+,K+-ATPase activity than their previously mature counterparts. Bimodal growth distribution was seen in hatchery-reared Atlantic salmon and a proportion of the male fish in the lower mode matured. Plasma testosterone (T) and 11-ketotestosterone (11-KT) were significantly elevated from September to December in mature male (1+ year) parr. In January, plasma androgens had declined in mature males and did not differ significantly from immature fish. By May all the hatchery fish were large enough to smolt and a proportion of the previously mature males had increased gill Na+,K+-ATPase activity. Therefore elevated androgens in the previous autumn do not prevent smolting. Parr with higher plasma T and 11-KT in April and May, that are presumably beginning to mature, had lower gill Na+,K+-ATPase activity, indicating that future maturation and associated increases in androgens may inhibit smolting. ?? 2002 The Fisheries Society of the British Isles. Published by Elsevier Science Ltd. All rights reserved.

  5. Downstream migration and multiple dam passage by Atlantic Salmon smolts

    USGS Publications Warehouse

    Nyqvist, D.; McCormick, Stephen; Greenberg, L.; Ardren, W.R.; Bergman, E.; Calles, O.; Castro-Santos, Theodore R.

    2017-01-01

    The purpose of this study was to investigate behavior and survival of radio-tagged wild and hatchery-reared landlocked Atlantic Salmon Salmo salar smolts as they migrated past three hydropower dams equipped with fish bypass solutions in the Winooski River, Vermont. Among hatchery-reared smolts, those released early were more likely to initiate migration and did so after less delay than those released late. Once migration was initiated, however, the late-released hatchery smolts migrated at greater speeds. Throughout the river system, hatchery-reared fish performed similarly to wild fish. Dam passage rates varied between the three dams and was highest at the dam where unusually high spill levels occurred throughout the study period. Of the 50 fish that did migrate downstream, only 10% managed to reach the lake. Migration success was low despite the presence of bypass solutions, underscoring the need for evaluations of remedial measures; simply constructing a fishway is not synonymous with providing fish passage.

  6. Immune parameters in the intestine of wild and reared unvaccinated and vaccinated Atlantic salmon (Salmo salar L.).

    PubMed

    Løkka, Guro; Austbø, Lars; Falk, Knut; Bromage, Erin; Fjelldal, Per Gunnar; Hansen, Tom; Hordvik, Ivar; Koppang, Erling Olaf

    2014-11-01

    Forming a barrier to the outside world, the gut mucosa faces the challenge of absorbing nutrients and fluids while initiating immune reactions towards potential pathogens. As a continuation to our previous publication focusing on the regional intestinal morphology in wild caught post smolt and spawning Atlantic salmon, we here investigate selected immune parameters and compare wild, reared unvaccinated and vaccinated post smolts. We observed highest transcript levels for most immune-related genes in vaccinated post smolts followed by reared unvaccinated and finally wild post smolts, indicating that farming conditions like commercial feed and vaccination might contribute to a more alerted immune system in the gut. In all groups, higher levels of immune transcripts were observed in the second segment of mid-intestine and in the posterior segment. In the life stages and conditions investigated here, we found no indication of a previously suggested population of intestinal T cells expressing MHC class II nor RAG1 expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of short-term acid and aluminum exposure on the parr-smolt transformation in Atlantic salmon (Salmo salar): Disruption of seawater tolerance and endocrine status

    USGS Publications Warehouse

    Monette, M.Y.; Bjornsson, Bjorn Thrandur; McCormick, S.D.

    2008-01-01

    Episodic acidification resulting in increased acidity and inorganic aluminum (Ali) is known to interfere with the parr-smolt transformation of Atlantic salmon (Salmo salar), and has been implicated as a possible cause of population decline. To determine the extent and mechanism(s) by which short-term acid/Al exposure compromises smolt development, Atlantic salmon smolts were exposed to either control (pH 6.7-6.9) or acid/Al (pH 5.4-6.3, 28-64 ??g l-1 Ali) conditions for 2 and 5 days, and impacts on freshwater (FW) ion regulation, seawater (SW) tolerance, plasma hormone levels and stress response were examined. Gill Al concentrations were elevated in all smolts exposed to acid/Al relative to controls confirming exposure to increased Ali. There was no effect of acid/Al on plasma ion concentrations in FW however, smolts exposed to acid/Al followed by a 24 h SW challenge exhibited greater plasma Cl- levels than controls, indicating reduced SW tolerance. Loss of SW tolerance was accompanied by reductions in gill Na+,K+-ATPase (NKA) activity and Na+,K+,2Cl- (NKCC) cotransporter protein abundance. Acid/Al exposure resulted in decreased plasma insulin-like growth factor (IGF-I) and 3,3???,5???-triiodo-l-thyronine (T3) levels, whereas no effect of treatment was seen on plasma cortisol, growth hormone (GH), or thyroxine (T4) levels. Acid/Al exposure resulted in increased hematocrit and plasma glucose levels in FW, but both returned to control levels after 24 h in SW. The results indicate that smolt development and SW tolerance are compromised by short-term exposure to acid/Al in the absence of detectable impacts on FW ion regulation. Loss of SW tolerance during short-term acid/Al exposure likely results from reductions in gill NKA and NKCC, possibly mediated by decreases in plasma IGF-I and T3. ?? 2008 Elsevier Inc.

  8. Counterintuitive migration patterns by Atlantic salmon Salmo salar smolts in a large lake.

    PubMed

    Honkanen, H M; Rodger, J R; Stephen, A; Adams, K; Freeman, J; Adams, C E

    2018-06-21

    What little is known about the seaward migration of Salmo salar smolt migration through standing waters indicates that it is both slow and results in high mortality rates, compared with riverine migration. This may be partly because smolts in lakes need to swim more actively and require more complex directional cues than they do in rivers. In this telemetry study of smolt migration through Loch Lomond, S. salar smolts made repeated movements in directions away from the outflowing river, which considerably increased migration time. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Unlocking the secrets of Lake Clark sockeye salmon

    USGS Publications Warehouse

    Woody, Carol Ann

    2003-01-01

    Sockeye salmon are a cornerstone species in many Alaska watersheds. Each summer, adults lay eggs in rocky nests called “redds,” and they die soon after. In spring, their fry emerge from gravels and then rear in a nearby freshwater lake for one year or more before migrating as smolt to the sea. During this smolt phase, an olfactory map of their route is imprinted on their memories. Sockeye salmon spend one to four years in the ocean feeding and growing. Then, some innate cue sends them back in a mass migration to their natal lake systems, which they find using the olfactory map made years before. They complete their life cycle by spawning, then dying in habitats of their birth.

  10. Analysis of Salmon and Steelhead Supplementation, 1990 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William H.; Coley, Travis C.; Burge, Howard L.

    Supplementation or planting salmon and steelhead into various locations in the Columbia River drainage has occurred for over 100 years. All life stages, from eggs to adults, have been used by fishery managers in attempts to establish, rebuild, or maintain anadromous runs. This report summarizes and evaluates results of past and current supplementation of salmon and steelhead. Conclusions and recommendations are made concerning supplementation. Hatchery rearing conditions and stocking methods can affect post released survival of hatchery fish. Stress was considered by many biologists to be a key factor in survival of stocked anadromous fish. Smolts were the most commonmore » life stage released and size of smolts correlated positively with survival. Success of hatchery stockings of eggs and presmolts was found to be better if they are put into productive, underseeded habitats. Stocking time, method, species stocked, and environmental conditions of the receiving waters, including other fish species present, are factors to consider in supplementation programs. The unpublished supplementation literature was reviewed primarily by the authors of this report. Direct contact was made in person or by telephone and data compiled on a computer database. Areas covered included Oregon, Washington, Idaho, Alaska, California, British Columbia, and the New England states working with Atlantic salmon. Over 300 projects were reviewed and entered into a computer database. The database information is contained in Appendix A of this report. 6 refs., 9 figs., 21 tabs.« less

  11. Variability in Migration Routes Influences Early Marine Survival of Juvenile Salmon Smolts

    PubMed Central

    Furey, Nathan B.; Vincent, Stephen P.; Hinch, Scott G.; Welch, David W.

    2015-01-01

    Variability in animal migratory behavior is expected to influence fitness, but few empirical examples demonstrating this relationship exist. The initial marine phase in the migration of juvenile salmon smolts has been identified as a potentially critical life history stage to overall population productivity, yet how fine-scale migration routes may influence survival are unknown. Large-scale acoustic telemetry studies have estimated survival rates of outmigrant Pacific salmon smolts through the Strait of Georgia (SOG) along the British Columbian coastline to the Pacific Ocean, but these data have not been used to identify and characterize fine-scale movements. Data collected on over 850 sockeye salmon (Oncorhynchus nerka) and steelhead (Oncorhynchus mykiss) smolts detected at an array in the Strait of Georgia in 2004–2008 and 2010–2013 were analyzed to characterize migration routes and link movements to subsequent survival at an array 250 km further along the marine migration pathway. Both species exhibited disproportionate use of the most eastern route in the Strait of Georgia (Malaspina Strait). While many smolts moved across the northern Strait of Georgia acoustic array with no indication of long-term milling or large-scale east-to-west movements, large proportions (20–40% of sockeye and 30–50% of steelhead) exhibited a different behavior, apparently moving in a westward or counterclockwise pattern. Variability in migratory behavior for both species was linked to subsequent survival through the Strait of Georgia. Survival for both species was influenced by initial east-to-west location, and sockeye were further influenced by migration timing and duration of time spent near the northern Strait of Georgia array. Westward movements result in a net transport of smolts from Malaspina Strait to the Strait of Georgia, particularly for steelhead. Counterclockwise movements may be due to the currents in this area during the time of outmigration, and the higher proportion of steelhead smolts exhibiting this counterclockwise behavior may reflect a greater exposure to wind-altered currents for the more surface-oriented steelhead. Our results provide an empirical example of how movements can affect migration survival, for which examples remain rare in movement ecology, confirming that variability in movements themselves are an important part of the migratory process. PMID:26451837

  12. Effects of hexazinone and atrazine on the physiology and endocrinology of smolt development in Atlantic salmon

    USGS Publications Warehouse

    Nieves-Puigdoller, K.; Bjornsson, Bjorn Thrandur; McCormick, S.D.

    2007-01-01

    Exposure to hexazinone (HEX) and atrazine (ATZ), highly mobile and widely used herbicides along rivers in the United States, is potentially harmful to Atlantic salmon, which have been listed as an endangered species. To determine the effects of these contaminants on smolt development, juvenile Atlantic salmon were exposed under flow-through conditions to 100 ??g l-1 HEX, 10 and 100 ??g l-1 ATZ in fresh water (FW) for 21 days at 10 ??C beginning in mid-April. Twelve fish per treatment were sampled in FW, following a 24 h seawater (SW) challenge and after growth for 3 months in SW. Exposure to 100 ??g l-1 HEX or 10 ??g l-1 ATZ caused no mortalities of smolts in FW or after SW challenge, while 9% of the fish exposed to 100 ??g l-1 ATZ died during exposure. Fish exposed to 100 ??g l-1 ATZ reduced feeding after 10 days of exposure and had an impaired growth rate in FW and during the first month in SW; compensatory growth occurred in the second and third month in SW. HEX and ATZ at 10 ??g l-1 exposure had no effect on plasma levels of cortisol, growth hormone (GH), insulin growth factor I (IGF-I), thyroxine (T4) and plasma 3,5,3???-triiodo-l-thyronine (T3), Cl-, Mg2+, Na+, Ca2+ in FW or after SW challenge. FW smolts exposed to 100 ??g l-1 ATZ had decreased plasma Cl-, Mg2+, Na+ and Ca2+ ions and increased cortisol. No effect on plasma levels of GH, IGF-I, T4 or T3 was found in FW smolts exposed to 100 ??g l-1 ATZ. Following SW challenge, fish previously exposed to 100 ??g l-1 ATZ had significant increases in hematocrit, plasma cortisol, Cl-, Mg2+, Na+, Ca2+ and a decrease in T4 and T3. It is concluded that under the conditions imposed in this study, HEX does not affect salinity tolerance of Atlantic salmon smolts, while ATZ causes ionoregulatory, growth and endocrine disturbance. ?? 2007 Elsevier B.V. All rights reserved.

  13. Gill Na+-K+-2Cl- cotransporter abundance and location in Atlantic salmon: Effects of seawater and smolting

    USGS Publications Warehouse

    Pelis, Ryan M.; Zydlewski, Joseph D.; McCormick, Stephen D.

    2001-01-01

    Na+-K+-2Cl−cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na+-K+-2Cl−cotransporter was colocalized with Na+-K+-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na+-K+-2Cl− cotransporter abundance, large and numerous Na+-K+-2Cl− cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na+-K+-2Cl− cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na+-K+-ATPase activity and Na+-K+-2Cl− cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na+-K+-2Cl− cotransporter in salt secretion by gill chloride cells of teleost fish.

  14. Physiological preparedness and performance of Atlantic salmon Salmo salar smolts in relation to behavioural salinity preferences and thresholds.

    PubMed

    Stich, D S; Zydlewski, G B; Zydlewski, J D

    2016-02-01

    This study investigated the relationships between behavioural responses of Atlantic salmon Salmo salar smolts to saltwater (SW) exposure and physiological characteristics of smolts in laboratory experiments. It concurrently described the behaviour of acoustically tagged smolts with respect to SW and tidal cycles during estuary migration. Salmo salar smolts increased their use of SW relative to fresh water (FW) from April to June in laboratory experiments. Mean preference for SW never exceeded 50% of time in any group. Preference for SW increased throughout the course of smolt development. Maximum continuous time spent in SW was positively related to gill Na(+), K(+)-ATPase (NKA) activity and osmoregulatory performance in full-strength SW (measured as change in gill NKA activity and plasma osmolality). Smolts decreased depth upon reaching areas of the Penobscot Estuary where SW was present, and all fish became more surface oriented during passage from head of tide to the ocean. Acoustically tagged, migrating smolts with low gill NKA activity moved faster in FW reaches of the estuary than those with higher gill NKA activity. There was no difference in movement rate through SW reaches of the estuary based on gill NKA activity. Migrating fish moved with tidal flow during the passage of the lower estuary based on the observed patterns in both vertical and horizontal movements. The results indicate that smolts select low-salinity water during estuary migration and use tidal currents to minimize energetic investment in seaward migration. Seasonal changes in osmoregulatory ability highlight the importance of the timing of stocking and estuary arrival. © 2015 The Fisheries Society of the British Isles.

  15. Survival of migrating Atlantic salmon smolts through the Penobscot River, Maine: A pre-restoration assessment

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Kinnison, Michael T.; Holbrook, Christopher M.

    2011-01-01

    Survival, distribution, and behavior of hatchery (n = 493) and naturally reared (n = 133) smolts of Atlantic salmon Salmo salar migrating through the Penobscot River and estuary in Maine were evaluated with acoustic telemetry in 2005 and 2006. Survival and use of a secondary migration path (the Stillwater Branch) were estimated with a multistate mark–recapture model. Higher rates of mortality per kilometer (range = 0.01–0.22) were observed near release sites and within reaches that contained three particular dams: Howland, West Enfield, and Milford dams. Estimated total survival of tagged hatchery smolts through entire individual reaches containing those dams ranged from 0.52 ( 0.18) to 0.94 ( 0.09), whereas survival through most of the reaches without dams exceeded 0.95. Of those smolts that survived to the Penobscot River–Stillwater Branch split at Marsh Island, most (≥74%) remained in the main stem around Marsh Island, where they experienced lower survival than fish that used the Stillwater Branch. Movement rates of hatchery-reared smolts were significantly lower through reaches containing dams than through reaches that lacked dams. Smolts arriving at dams during the day experienced longer delays than smolts arriving at night. Planned removal of two dams in this system is expected to enhance the passage of smolts through the main-stem corridor. However, the dams currently scheduled for removal (Great Works and Veazie dams) had less influence on smolt survival than some of the dams that will remain. This case study shows that by examining prerestoration migration dynamics throughout entire river systems rather than just in the vicinity of particular dams, tracking studies can help prioritize restoration efforts or predict the costs and benefits of future hydrosystem changes.

  16. Physiological preparedness and performance of Atlantic salmon Salmo salar smolts in relation to behavioural salinity preferences and thresholds

    USGS Publications Warehouse

    Stich, D.S.; Zydlewski, G.B.; Zydlewski, Joseph D.

    2015-01-01

    This study investigated the relationships between behavioural responses of Atlantic salmon Salmo salarsmolts to saltwater (SW) exposure and physiological characteristics of smolts in laboratory experiments. It concurrently described the behaviour of acoustically tagged smolts with respect to SW and tidal cycles during estuary migration. Salmo salar smolts increased their use of SW relative to fresh water (FW) from April to June in laboratory experiments. Mean preference for SW never exceeded 50% of time in any group. Preference for SW increased throughout the course of smolt development. Maximum continuous time spent in SW was positively related to gill Na+, K+-ATPase (NKA) activity and osmoregulatory performance in full-strength SW (measured as change in gill NKA activity and plasma osmolality). Smolts decreased depth upon reaching areas of the Penobscot Estuary where SW was present, and all fish became more surface oriented during passage from head of tide to the ocean. Acoustically tagged, migrating smolts with low gill NKA activity moved faster in FW reaches of the estuary than those with higher gill NKA activity. There was no difference in movement rate through SW reaches of the estuary based on gill NKA activity. Migrating fish moved with tidal flow during the passage of the lower estuary based on the observed patterns in both vertical and horizontal movements. The results indicate that smolts select low-salinity water during estuary migration and use tidal currents to minimize energetic investment in seaward migration. Seasonal changes in osmoregulatory ability highlight the importance of the timing of stocking and estuary arrival.

  17. Seawater tolerance and post-smolt migration of wild Atlantic salmon Salmo salar × brown trout S. trutta hybrid smolts.

    PubMed

    Urke, H A; Kristensen, T; Arnekleiv, J V; Haugen, T O; Kjærstad, G; Stefansson, S O; Ebbesson, L O E; Nilsen, T O

    2013-01-01

    High levels of hybridization between Atlantic salmon Salmo salar and brown trout Salmo trutta have been reported in the River Driva. This study presents the underlying mechanisms of development of seawater (SW) tolerance and marine migration pattern for S. salar×S. trutta hybrids. Migrating S. salar×S. trutta hybrid smolts caught in the River Driva, Norway (a river containing Gyrodactylus salaris), displayed freshwater (FW) gill Na(+), K(+) -ATPase (NKA) activity levels of 11·8 µmol ADP mg protein h(-1), which were equal to or higher than activity levels observed in S. salar and S. trutta smolts. Following 4 days of SW exposure (salinity 32·3), enzyme activity remained high and plasma ion levels were maintained within the normal physiological range observed in S. salar smolts, indicating no signs of ion perturbations in S. salar×S. trutta hybrids. SW exposure induced an increase in NKA α1b-subunit mRNA levels with a concurrent decrease in α1a levels. Salmo salar×S. trutta post-smolts migrated rapidly through the fjord system, with increasing speed with distance from the river, as is often seen in S. salar smolts. The present findings suggest that S. salar×S. trutta smolts, as judged by the activity and transcription of the NKA system, regulation of plasma ion levels and migration speed more closely resemble S. salar than S. trutta. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  18. Water quality limits for Atlantic salmon (Salmo salar L.) exposed to short term reductions in pH and increased aluminum simulating episodes

    NASA Astrophysics Data System (ADS)

    Kroglund, F.; Rosseland, B. O.; Teien, H.-C.; Salbu, B.; Kristensen, T.; Finstad, B.

    2007-09-01

    Acidification has caused the loss or reduction of numerous Atlantic salmon (Salmo salar L.) populations on both sides of the North Atlantic. Acid deposition peaked in the 1980's and resulted in both chronically and episodically acidified rivers. At present, water quality is improving in all affected rivers due to reduced acid deposition. However, spring snow melt, heavy rainfall and sea salt episodes can still cause short term drops in pH and elevated concentrations of bioavailable aluminum. Technical malfunction in lime dozers will cause short termed episodic spates in the limed rivers. The current situation has prompted a need for dose-response relationships based on short term exposures of Atlantic salmon to assess the potential population effects of episodic acidification. Water quality guidelines for salmon have been lacking, despite a large number of experiments, all demonstrating dose-response relationships between water chemistry and fish health. We have summarized results from 347 short-term (<14 days) exposures of salmon parr and smolt performed between 1990 and 2003 in Norway. The experiments have been performed as bioassays, where fish have been exposed in tanks fed river water, in tanks where the river water quality has been manipulated (added H+ and Al) and as Carlin-tagged smolt releases after preexposure to moderately acidic waters. The results from the various bioassays are compared to water quality limits proposed on basis of the relationship between water quality and population status/health in Norwegian rivers. The focus of this article is placed on chemical-biological interactions that can be drawn across experiments and exposure protocols. We propose dose-response relationships for acid neutralizing capacity (ANC), pH, cationic Al and gill accumulated Al, versus mortality in freshwater, effects on hypo-osmoregulatory capacity in seawater challenge tests and on smolt to adult survival in release experiments. The "no effect" dose depends on the life history stage tested and on the sensitivity of the biomarkers. Parr are more tolerant than smolt. Concentrations of Al that have no significant impact on freshwater life history stages can still have major population effects if they occur prior to smolt migration. While smolt can survive in freshwater for a prolonged period of time (>10 days) at an Al dose resulting in a gill Al concentration of up to 300 μg Alg-1 dw, a 3 day exposure resulting in a gill Al accumulation in the range of 25 to 60 μg Alg-1 dw reduces smolt to adult survival in a dose related manner by 20 to 50%. For smolt to adult survival, the biological significant response is delayed relative to the dose and occurs first after the fish enters the marine environment. In addition to exposure intensity and timing, exposure duration is important for the setting of critical limits.

  19. Water quality limits for Atlantic salmon (Salmo salar L.) exposed to short term reductions in pH and increased aluminum simulating episodes

    NASA Astrophysics Data System (ADS)

    Kroglund, F.; Rosseland, B. O.; Teien, H.-C.; Salbu, B.; Kristensen, T.; Finstad, B.

    2008-03-01

    Acidification has caused the loss or reduction of numerous Atlantic salmon (Salmo salar L.) populations on both sides of the North Atlantic. Acid deposition peaked in the 1980's and resulted in both chronically and episodically acidified rivers. At present, water quality is improving in all affected rivers due to reduced acid deposition. However, spring snow melt, heavy rainfall and sea salt episodes can still cause short term drops in pH and elevated concentrations of bioavailable aluminum. Technical malfunction in lime dozers will cause short termed episodic spates in the limed rivers. The current situation has prompted a need for dose-response relationships based on short term exposures of Atlantic salmon to assess the potential population effects of episodic acidification. Water quality guidelines for salmon have been lacking, despite a large number of experiments, all demonstrating dose-response relationships between water chemistry and fish health. We have summarized results from 347 short-term (<14 days) exposures of salmon parr and smolt performed between 1990 and 2003 in Norway. The experiments have been performed as bioassays, where fish have been exposed in tanks fed river water, in tanks where the river water quality has been manipulated (added H+ and Al) and as Carlin-tagged smolt releases after preexposure to moderately acidic waters. The results from the various bioassays are compared to water quality limits proposed on basis of the relationship between water quality and population status/health in Norwegian rivers. The focus of this article is placed on chemical-biological interactions that can be drawn across experiments and exposure protocols. We propose dose-response relationships for acid neutralizing capacity (ANC), pH, cationic Al and gill accumulated Al, versus mortality in freshwater, effects on hypo-osmoregulatory capacity in seawater challenge tests and on smolt to adult survival in release experiments. The "no effect" dose depends on the life history stage tested and on the sensitivity of the biomarkers. Parr are more tolerant than smolt. Concentrations of Al that have no significant impact on freshwater life history stages can still have major population effects if they occur prior to smolt migration. While smolt can survive in freshwater for a prolonged period of time (>10 days) at an Al dose resulting in a gill Al concentration of up to 300 µg Alg-1 dw, a 3 day exposure resulting in a gill Al accumulation in the range of 25 to 60 µg Alg-1 dw reduces smolt to adult survival in a dose related manner by 20 to 50%. For smolt to adult survival, the biological significant response is delayed relative to the dose and occurs first after the fish enters the marine environment. In addition to exposure intensity and timing, exposure duration is important for the setting of critical limits.

  20. "Research to Improve the Efficacy of Captive Broodstock Programs and Advance Hatchery Reform Throughout the Columbia River Basin." [from the Abstract], 2008-2009 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.

    This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia River Basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: The ratio of jack to adult male Chinook salmon were varied in experimental breeding populations to test the hypothesis that reproductive success of the two male phenotypes would vary with their relativemore » frequency in the population. Adult Chinook salmon males nearly always obtained primary access to nesting females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Observed participation in spawning events and adult-to-fry reproductive success of jack and adult males was consistent with a negative frequency-dependent selection model. Overall, jack males sired an average of 21% of the offspring produced across a range of jack male frequencies. Implications of these and additional findings on Chinook salmon hatchery broodstock management will be presented in the FY 2009 Annual Report. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. Expression levels of basic amino acid receptor (BAAR) mRNA in the olfactory epithelium increased dramatically during final maturation in both Stanley Basin and Okanogan River sockeye. These increases appeared to be independent of odor exposure history, rising significantly in both arginine-naive and arginine-exposed fish. However, sockeye exposed to arginine during smolting demonstrated a larger increase in BAAR mRNA than arginine-naive fish. These results are consistent with the hypothesis that odorant receptors sensitive to home stream waters may be upregulated at the time of the homing migration and may afford opportunities to exploit this system to experimentally characterize imprinting success and ultimately identify hatchery practices that will minimize straying of artificially produced salmonids. Additional analysis of Sockeye salmon imprinting and further implications of these findings will be presented in the FY 2009 Annual Report. Objective 3: Photoperiod at emergence and ration after ponding were varied in Yakima River spring Chinook salmon to test the hypothesis that seasonal timing of emergence and growth during early stages of development alter seasonal timing of smoltification and age of male maturation. Fish reared under conditions to advance fry emergence and accelerate growth had the greatest variation in seasonal timing of smolting (fall, spring and summer) and highest rates of early male maturation with most males maturing at age 1 (35-40%). In contrast, fish with delayed emergence and slow growth had the least variation in phenotypes with most fish smolting as yearlings in the spring and no age-1 male maturation. Growth (not emergence timing) altered rates of age-2 male maturation. Results of this study demonstrate that altering fry development, as is often done in hatcheries, can profoundly affect later life history transitions and the range of phenotypes within a spring Chinook salmon population. Additional work in the next funding period will determine if these rearing regimes affected other aspects of smolt quality, which may affect ultimate survival upon ocean entry.« less

  1. Development of schooling behaviour during the downstream migration of Atlantic salmon Salmo salar smolts in a chalk stream.

    PubMed

    Riley, W D; Ibbotson, A T; Maxwell, D L; Davison, P I; Beaumont, W R C; Ives, M J

    2014-10-01

    The downstream migratory behaviour of wild Atlantic salmon Salmo salar smolts was monitored using passive integrated transponder (PIT) antennae systems over 10 years in the lower reaches of a small chalk stream in southern England, U.K. The timing of smolt movements and the likely occurrence of schooling were investigated and compared to previous studies. In nine of the 10 consecutive years of study, the observed diel downstream patterns of S. salar smolt migration appeared to be synchronized with the onset of darkness. The distribution of time intervals between successive nocturnal detections of PIT-tagged smolts was as expected if generated randomly from observed hourly rates. There were, however, significantly more short intervals than expected for smolts detected migrating during the day. For each year from 2006 to 2011, the observed 10th percentile of the daytime intervals was <4 s, compared to ≥55 s for the simulated random times, indicating greater incidence of groups of smolts. Groups with the shortest time intervals between successive PIT tag detections originated from numerous parr tagging sites (used as a proxy for relatedness). The results suggest that the ecological drivers influencing daily smolt movements in the lower reaches of chalk stream catchments are similar to those previously reported at the onset of migration for smolts leaving their natal tributaries; that smolts detected migrating during the night are moving independently following initiation by a common environmental factor (presumably darkness), whereas those detected migrating during the day often move in groups, and that such schools may not be site (kin)-structured. The importance of understanding smolt migratory behaviour is considered with reference to stock monitoring programmes and enhancing downstream passage past barriers. © 2014 Crown copyright. Journal of Fish Biology © 2014 The Fisheries Society of the British Isles.

  2. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    USGS Publications Warehouse

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  3. Prerelease disease treatment with potassium permanganate for Fall Chinook salmon smolts

    USGS Publications Warehouse

    Smith, Stanley D.; Gould, Rowan W.; Zaugg, Wally S.; Harrell, Lee W.; Mahnken, Conrad V.W.

    1995-01-01

    Standard potassium permanganate treatment (2 mg KMnO4/L freshwater for 1 h on three consecutive days) was applied to presmolts (parr) and smolts of fall chinook salmon (Oncorhynchus tshawytscha). Smoltification was determined by gill Na+,K+-ATPase activity. Treatments were conducted 73, 59, 45, 31, 16, and 2 d prior to full-strength seawater entry in aquaria. Potassium permanganate did not affect either growth or survival in seawater over 25 d. We observed a delayed rise in gill Na+,K+-ATPase activity in fish treated 16 d prior to seawater entry.

  4. Migration and survival of Atlantic salmon Salmo salar smolts in a large natural lake.

    PubMed

    Kennedy, R J; Rosell, R; Millane, M; Doherty, D; Allen, M

    2018-06-08

    An investigation with acoustic telemetry of the passage of Salmo salar smolts through a large natural lake found heavy mortality occurred at the river-to-lake confluences (mean 31 . 2 % km -1 ), but was lower in the main body of the lake (mean 2 . 4 % km -1 ). Predation was a significant pressure on emigrating smolts as tagged pike Esox lucius aggregated at river-to-lake confluences during the peak of the smolt run. Tagged smolts mainly emmigrated into the lake in the late evening after dusk, possibly as a predator-avoidance behaviour. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2008 Annual Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Wayne H.; Schricker, Jaym'e; Ruzychi, James R.

    The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations remain depressed relative to historic levels and limited information is available for steelhead life history. Numerous habitat protection and rehabilitation projects have been implemented in the basin to improve salmonid freshwater production and survival. However, these projects often lack effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed programmatic or watershed (status and trend) information to help evaluatemore » project-specific effectiveness monitoring efforts as well as meet some data needs as index stocks. Our continued monitoring efforts to estimate salmonid smolt abundance, age structure, SAR, smolts/redd, freshwater habitat use, and distribution of critical life states will enable managers to assess the long-term effectiveness of habitat projects and to differentiate freshwater and ocean survival. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the level of emphasis by the NWPPC Fish and Wildlife Program, Independent Scientific Advisory Board (ISAB), Independent Scientific Review Panel (ISRP), NOAA National Marine Fisheries Service (NMFS), and the Oregon Plan for Salmon and Watersheds (OWEB). Each of these groups have placed priority on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. The objective is to estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook Oncorhynchus tshawytscha and summer steelhead O. mykiss and life history characteristics of summer steelhead.« less

  6. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Richard W.

    2003-07-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2002.more » The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, they are spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, the Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation.« less

  7. Skagit River coho salmon life history model—Users’ guide

    USGS Publications Warehouse

    Woodward, Andrea; Kirby, Grant; Morris, Scott

    2017-09-29

    Natural resource management is conducted in the context of multiple anthropogenic stressors and is further challenged owing to changing climate. Experiments to determine the effects of climate change on complex ecological systems are nearly impossible. However, using a simulation model to synthesize current understanding of key ecological processes through the life cycle of a fish population can provide a platform for exploring potential effects of and management responses to changing conditions. Potential climate-change scenarios can be imposed, responses can be observed, and the effectiveness of potential actions can be evaluated. This approach is limited owing to future conditions likely deviating in range and timing from conditions used to create the model so that the model is expected to become obsolete. In the meantime, however, the modeling process explicitly states assumptions, clarifies information gaps, and provides a means to better understand which relationships are robust and which are vulnerable to changing climate by observing whether and why model output diverges from actual observations through time. The purpose of the model described herein is to provide such a decision-support tool regarding coho (Oncorhynchus kisutch) salmon for the Sauk-Suiattle Indian Tribe of Washington State.The Skagit coho salmon model is implemented in a system dynamics format and has three primary stocks—(1) predicted smolts, (2) realized smolts, and (3) escapement. “Predicted smolts” are the number of smolts expected based on the number of spawners in any year and the Ricker production curve. Pink salmon (Oncorhynchus gorbuscha) return to the Skagit River in odd years, and when they overlap with juvenile rearing coho salmon, coho smolt production is substantially higher than in non-pink years. Therefore, the model uses alternative Ricker equations to predict smolts depending on whether their juvenile year was a pink or non-pink year. The stock “realized smolts” is calculated based on the expected effect of streamflow conditions to alter the productivity predicted by the Ricker curve. Adverse conditions include scouring flow events that occur when redds are present; high-flow events during winter on juveniles, which can cause fish displacement and adverse water turbidity; and extremely low flows in summer. The stock “escapement” represents the fish remaining after accounting for ocean mortality and harvest. Ocean mortality has been linked with indices of ocean conditions, which are related to ocean biological productivity. Ocean survival also may have a density-dependent component such that lower survival is associated with higher numbers of smolts. The model allows the user to change certain model parameters and inputs, and choose among alternative predictors for certain modeled relations.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnish, Ryan A.; Johnson, Gary E.; McMichael, Geoffrey A.

    Off-channel areas (side channels, tidal flats, sand bars, and shallow-water bays) may serve as important migration corridors through estuarine environments for salmon and steelhead smolts. Relatively large percentages (21-33%) of acoustic-tagged yearling and subyearling Chinook salmon and steelhead smolts were detected migrating through off-channel areas of the Columbia River estuary in 2008. The probability of survival for off-channel migrants (0.78-0.94) was similar to or greater than the survival probability of main channel migrants (0.67-0.93). Median travel times were similar for all species or run types and migration pathways we examined, ranging from 1-2 d. The route used by smolts tomore » migrate through the estuary may affect their vulnerability to predation. Acoustic-tagged steelhead that migrated nearest to avian predator nesting colonies experienced higher predation rates (24%) than those that migrated farthest from the colonies (10%). The use of multiple migration pathways may be advantageous to out-migrating smolts because it helps to buffer against high rates of mortality, which may occur in localized areas, and helps to minimize inter- and intraspecific competition.« less

  9. Does size matter? A test of size-specific mortality in Atlantic salmon Salmo salar smolts tagged with acoustic transmitters.

    PubMed

    Newton, M; Barry, J; Dodd, J A; Lucas, M C; Boylan, P; Adams, C E

    2016-09-01

    Mortality rates of wild Atlantic salmon Salmo salar smolts implanted with acoustic transmitters were assessed to determine if mortality was size dependent. The routinely accepted, but widely debated, '2% transmitter mass: body mass' rule in biotelemetry was tested by extending the transmitter burden up to 12·7% of body mass in small [mean fork length (LF ) 138·3 mm, range 115-168 mm] downstream migrating S. salar smolts. Over the short timescale of emigration (range 11·9-44·5 days) through the lower river and estuary, mortality was not related to S. salar size, nor was a relationship found between mortality probability and transmitter mass: body mass or transmitter length: LF ratios. This study provides further evidence that smolt migration studies can deviate from the '2% rule' of thumb, to more appropriate study-specific measures, which enables the use of fishes representative of the body size in natural populations without undue effects. © 2016 The Fisheries Society of the British Isles.

  10. Experimental Transmission of Infectious Pancreatic Necrosis Virus from the Blue Mussel, Mytilus edulis, to Cohabitating Atlantic Salmon (Salmo salar) Smolts

    PubMed Central

    Pietrak, Michael R.; Bricknell, Ian

    2013-01-01

    Integrated multitrophic aquaculture (IMTA) reduces the environmental impacts of commercial aquaculture systems by combining the cultivation of fed species with extractive species. Shellfish play a critical role in IMTA systems by filter-feeding particulate-bound organic nutrients. As bioaccumulating organisms, shellfish may also increase disease risk on farms by serving as reservoirs for important finfish pathogens such as infectious pancreatic necrosis virus (IPNV). The ability of the blue mussel (Mytilus edulis) to bioaccumulate and transmit IPNV to naive Atlantic salmon (Salmo salar) smolts was investigated. To determine the ability of mussels to filter and accumulate viable IPNV, mussels were held in water containing log 4.6 50% tissue culture infective dose(s) (TCID50) of the West Buxton strain of IPNV ml−1. Viable IPNV was detected in the digestive glands (DGs) of IPNV-exposed mussels as early as 2 h postexposure. The viral load in mussel DG tissue significantly increased with time and reached log 5.35 ± 0.25 TCID50 g of DG tissue−1 after 120 h of exposure. IPNV titers never reached levels that were significantly greater than that in the water. Viable IPNV was detected in mussel feces out to 7 days postdepuration, and the virus persisted in DG tissues for at least 18 days of depuration. To determine whether IPNV can be transmitted from mussels to Atlantic salmon, IPNV-exposed mussels were cohabitated with naive Atlantic salmon smolts. Transmission of IPNV did occur from mussels to smolts at a low frequency. The results demonstrate that a nonenveloped virus, such as IPNV, can accumulate in mussels and be transferred to naive fish. PMID:23872575

  11. Temperature influence on the development and loss of seawater tolerance in two fast-growing strains of Atlantic salmon

    USGS Publications Warehouse

    Handeland, S.O.; Wilkinson, E.; Sveinsbo, B.; McCormick, S.D.; Stefansson, S.O.

    2004-01-01

    Development of hypo-osmoregulatory ability, gill Na+,K +-ATPase activity, condition factor and growth in Atlantic salmon during parr-smolt transformation was studied in a 2??3 factorial design with three temperatures (12.0, 8.9??C and ambient, 2.4-11.9??C, mean: 6.0??C) and two farmed strains of smolts (Mowi and AquaGen). The development of hypo-osmoregulatory ability and gill Na+,K+-ATPase activity were significantly influenced by freshwater temperature. In smolts raised at 12.0??C, maximum gill Na+,K+-ATPase activity was reached in late April, compared with late May and mid-June in the 8.9??C and ambient groups, respectively. In all groups, peak gill Na+,K +-ATPase activity was seen 350 degree days (d??C) after the onset of the smolt-related increase in enzyme activity (30 March) The period of high enzyme activity (>90% of maximum) lasted approximately 250 d??C. No distinct peak level in gill Na+,K+-ATPase activity was seen in the AquaGen strain at ambient temperature. Elevated temperatures also accelerated the loss of hypo-osmoregulatory capacity. In all groups, gill Na+,K+-ATPase activity reached pre-smolt levels approximately 500 d??C after the calculated peak level. Growth rate in freshwater was influenced by strain, temperature and their interaction, with the Mowi strain showing a higher growth rate than the AquaGen strain at 8.9??C and ambient temperatures. Following transfer to seawater, a higher growth rate was recorded in smolts from the Mowi strain than the AquaGen strain from the ambient temperature regime. Temperature influences the development and loss of smolt characteristics in both strains, and has long-term effects on post-smolt performance in seawater. ?? 2004 Elsevier B.V. All rights reserved.

  12. Standardized seawater rearing of chinook salmon smolts to evaluate hatchery practices showed low statistical power

    USGS Publications Warehouse

    Palmisano, Aldo N.; Elder, N.E.

    2001-01-01

    We examined, under standardized conditions, seawater survival of chinook salmon Oncorhynchus tshawytscha at the smolt stage to evaluate the experimental hatchery practices applied to their rearing. The experimental rearing practices included rearing fish at different densities; attempting to control bacterial kidney disease with broodstock segregation, erythromycin injection, and an experimental diet; rearing fish on different water sources; and freeze branding the fish. After application of experimental rearing practices in hatcheries, smolts were transported to a rearing facility for about 2-3 months of seawater rearing. Of 16 experiments, 4 yielded statistically significant differences in seawater survival. In general we found that high variability among replicates, plus the low numbers of replicates available, resulted in low statistical power. We recommend including four or five replicates and using ?? = 0.10 in 1-tailed tests of hatchery experiments to try to increase the statistical power to 0.80.

  13. Linking behavior, physiology, and survival of Atlantic Salmon smolts during estuary migration

    USGS Publications Warehouse

    Stich, Daniel S.; Zydlewski, Gayle B.; Kocik, John F.; Zydlewski, Joseph D.

    2015-01-01

    Decreased marine survival is identified as a component driver of continued declines of Atlantic Salmon Salmo salar. However, estimates of marine mortality often incorporate loss incurred during estuary migration that may be mechanistically distinct from factors affecting marine mortality. We examined movements and survival of 941 smolts (141 wild and 800 hatchery-reared fish) released in freshwater during passage through the Penobscot River estuary, Maine, from 2005 to 2013. We related trends in estuary arrival date, movement rate, and survival to fish characteristics, migratory history, and environmental conditions in the estuary. Fish that experienced the warmest thermal history arrived in the estuary 8 d earlier than those experiencing the coolest thermal history during development. Estuary arrival date was 10 d later for fish experiencing high flow than for fish experiencing low flow. Fish released furthest upstream arrived in the estuary 3 d later than those stocked further downstream but moved 0.5 km/h faster through the estuary. Temporally, movement rate and survival in the estuary both peaked in mid-May. Spatially, movement rate and survival both decreased from freshwater to the ocean. Wild smolts arrived in the estuary later than hatchery fish, but we observed no change in movement rate or survival attributable to rearing history. Fish with the highest gill Na+, K+-ATPase activity incurred 25% lower mortality through the estuary than fish with the lowest gill Na+, K+-ATPase activity. Smolt survival decreased (by up to 40%) with the increasing number of dams passed (ranging from two to nine) during freshwater migration. These results underscore the importance of physiological preparedness on performance and the delayed, indirect effects of dams on survival of Atlantic Salmon smolts during estuary migration, ultimately affecting marine survival estimates.

  14. The effect of triploidy and vaccination on neutrophils and B-cells in the peripheral blood and head kidney of 0+ and 1+ Atlantic salmon (Salmo salar L.) post-smolts.

    PubMed

    Fraser, Thomas W K; Rønneseth, Anita; Haugland, Gyri T; Fjelldal, Per Gunnar; Mayer, Ian; Wergeland, Heidrun I

    2012-07-01

    Sterile triploid fish are being used in aquaculture to prevent early unwanted sexual maturation and the genetic interaction between wild and cultured fish; however, triploid fish are typically considered to be more susceptible to disease than diploid counterparts. Proportions of leucocytes from the head kidney and peripheral blood were identified using monoclonal antibodies and flow cytometry in triploid and diploid, vaccinated and unvaccinated, out-of-season (0+) and 1+ Atlantic salmon (Salmo salar L.) three weeks post seawater transfer. Triploid 1+ fish were significantly (P<0.05) heavier than diploid fish at the time of sampling, whereas triploid 0+ had a significantly lower condition factor than diploids. Ploidy had a significant effect on the proportion of B-cells in the blood of both 0+ and 1+ fish, and the head kidney of 1+ fish, with triploids having lower proportions of B-cells to diploids in both smolt groups. In addition, a significant ploidy×vaccination interaction effect was observed in the response of neutrophils in the blood (vaccinated diploids had a higher mean proportion than diploid unvaccinated) and B-cells in the head kidney (in vaccinated fish, triploids had a lower mean proportion than diploids) in 0+ smolts. Vaccination was found to significantly increase the proportion of B-cells in the head kidney of 1+ smolts in both ploidy. Size (fish weight) was positively correlated with neutrophil proportions in 1+ fish. Our findings are discussed in relation to the physiological differences related to ploidy. The results suggest that ploidy as well as smelting regime influences the immune system of Atlantic salmon post-smolts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Benefits of prescribed flows for salmon smolt survival enhancement vary longitudinally in a highly managed river system

    USGS Publications Warehouse

    Courter, Ian; Garrison, Thomas; Kock, Tobias J.; Perry, Russell W.; Child, David; Hubble, Joel

    2016-01-01

    The influence of streamflow on survival of emigrating juvenile Pacific salmonids Oncorhynchus spp. (smolts) is a major concern for water managers throughout the northeast Pacific Rim. However, few studies have quantified flow effects on smolt survival, and available information does not indicate a consistent flow–survival relationship within the typical range of flows under management control. In the Yakima Basin, Washington, the potential effects of streamflow alterations on smolt survival have been debated for over 20 years. Using a series of controlled flow releases from upper basin reservoirs and radiotelemetry, we quantified the relationship between flow and yearling Chinook salmon smolt survival in the 208 km reach between Roza Dam and the Yakima River mouth. A multistate mark–recapture model accounted for weekly variation in flow conditions experienced by tagged fish in four discrete river segments. Smolt survival was significantly associated with streamflow in the Roza Reach [river kilometre (rkm) 208–189] and marginally associated with streamflow in the Sunnyside Reach (rkm 169–77). However, smolt survival was not significantly associated with flow in the Naches and Prosser Reaches (rkm 189–169 and rkm 77–3). This discrepancy indicates potential differences in underlying flow-related survival mechanisms, such as predation or passage impediments. Our results clarify trade-offs between flow augmentation for fisheries enhancement and other beneficial uses, and our study design provides a framework for resolving uncertainties about streamflow effects on migratory fish survival in other river systems. 

  16. An Assessment of the Status of Captive Broodstock Technology of Pacific Salmon, 1995 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagg, Thomas A.; Mahnaken, Conrad V.W.; Hard, Jeffrey J.

    1995-06-01

    This report provides guidance for the refinement and use of captive broodstock technology for Pacific salmon (Oncorhynchus spp.) by bringing together information on the husbandry techniques, genetic risks, physiology, nutrition, and pathology affecting captive broodstocks. Captive broodstock rearing of Pacific salmon is an evolving technology, as yet without well defined standards. At present, we regard captive rearing of Pacific salmon as problematic: high mortality rates and low egg viability were common in the programs we reviewed for this report. One of the most important elements in fish husbandry is the culture environment itself. Many captive broodstock programs for Pacific salmonmore » have reared fish from smolt-to-adult in seawater net-pens, and most have shown success in providing gametes for recovery efforts. However, some programs have lost entire brood years to diseases that transmitted rapidly in this medium. Current programs for endangered species of Pacific salmon rear most fish full-term to maturity in fresh well-water, since ground water is low in pathogens and thus helps ensure survival to adulthood. Our review suggested that captive rearing of fish in either freshwater, well-water, or filtered and sterilized seawater supplied to land-based tanks should produce higher survival than culture in seawater net-pens.« less

  17. Growth evaluation of atlantic salmon (Salmo salar) raised in seawater or freshwater and fed either fishmeal based on marine-free diets

    USDA-ARS?s Scientific Manuscript database

    A forty week feeding study was conducted with Atlantic salmon (Salmo salar) smolts in two recirculating aquaculture systems. Twelve salmon (average initial weight 117 g; initial density 9.4 kg/m3) were stocked per tank. Two identical systems were used and contained either freshwater (0 ppt) or sea...

  18. Restoration of fillet n-3 long-chain polyunsaturated fatty acid is improved by a modified fish oil finishing diet strategy for atlantic salmon (Salmo salar L.) smolts fed palm fatty acid distillate.

    PubMed

    Codabaccus, Mohamed B; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G

    2012-01-11

    Reducing the lipid content in fish prior to feeding a fish oil finishing diet (FOFD) has the potential to improve n-3 long-chain (≥ C(20)) polyunsaturated fatty acid (LC-PUFA) restoration. This study had two main objectives: (1) determine whether feeding Atlantic salmon smolt a 75% palm fatty acid distillate diet (75PFAD) improves the apparent digestibility (AD) of saturated fatty acids (SFA) and (2) examine whether a food deprivation period after growth on 75PFAD leads to higher n-3 LC-PUFA restoration in the fillet when applying a FOFD. The AD of SFA was higher for 75PFAD compared to that of a fish oil (FO) diet. The relative level (as % total fatty acids (FA)) of n-3 LC-PUFA was higher in unfed fish compared to that in continuously fed fish after 21 and 28 day FOFD periods, respectively. Our results suggest that a food deprivation period prior to feeding a FOFD improves the efficiency of n-3 LC-PUFA restoration in the fillet of Atlantic salmon smolt.

  19. Endocrine disruption of parr-smolt transformation and seawater tolerance of Atlantic salmon by 4-nonylphenol and 17β-estradiol

    USGS Publications Warehouse

    McCormick, Stephen D.; O'Dea, Michael F.; Moeckel, Amy M.; Lerner, Darrren T.; Bjornsson, Bjorn Thrandur

    2005-01-01

    Sex steroids are known to interfere with the parr-smolt transformation of anadromous salmonids, and environmental estrogens such as nonylphenol have recently been implicated in reduced returns of Atlantic salmon in the wild. To determine the endocrine pathways by which estrogenic compounds affect smolt development and seawater tolerance, groups of juvenile Atlantic salmon were injected with one of five doses (0.5, 2, 10, 40 or 150 μg g−1) of branched 4-nonylphenol (NP), 2 μg g−1 of 17β-estradiol (E2), or vehicle, during the parr-smolt transformation in April, and the treatment was repeated 4, 8, and 11 days after the first injection. Plasma was obtained for biochemical analysis 7 and 14 days after initiation of treatment. After 14 days of treatment, additional fish from each treatment group were exposed to seawater for 24 h to assess salinity tolerance. The E2 treatment and the highest NP dose resulted in lower salinity tolerance and decreased plasma insulin-like growth factor I (IGF-I) levels, along with elevated levels of plasma vitellogenin and total calcium. Plasma growth hormone levels were elevated at intermediate NP doses only, and not affected by E2. After 7 days, plasma thyroxine (T4) levels decreased in a strong, dose-dependent manner in response to nonylphenol, but after 14 days, this suppressive effect of T4 occurred at the highest NP dose only. Similarly, E2 decreased plasma T4 levels at 7, but not 14 days. Plasma 3,3′,5-triodo-l-thyronine was reduced by E2 and the highest NP dose after 7 and 14 days of treatment. Plasmacortisol levels were not affected by any of the treatments. The results indicate that the parr-smolt transformation and salinity tolerance can be compromised by exposure to estrogenic compounds. Suppression of plasma IGF-I levels is a likely endocrine pathway for the effects of estrogenic compounds on hypo-osmoregulatory capacity, and the detrimental effects of E2 and NP on thyroid hormone levels are also likely to compromise the normal parr-smolt transformation of Atlantic salmon.

  20. Evidence for episodic acidification effects on migrating Atlantic salmon Salmo salar smolts

    USGS Publications Warehouse

    Kelly, John T; Lerner, Darrren T.; O'Dea, Michael F.; Regish, Amy M.; Monette, Michelle Y.; Hawkes, J.P.; Nislow, Keith H.; McCormick, Stephen

    2015-01-01

    Field studies were conducted to determine levels of gill aluminium as an index of acidification effects on migrating Atlantic salmon Salmo salar smolts in the north-eastern U.S.A. along mainstem river migration corridors in several major river basins. Smolts emigrating from the Connecticut River, where most (but not all) tributaries were well buffered, had low or undetectable levels of gill aluminium and high gill Na+/K+-ATPase (NKA) activity. In contrast, smolts emigrating from the upper Merrimack River basin where most tributaries are characterized by low pH and high inorganic aluminium had consistently elevated gill aluminium and lower gill NKA activity, which may explain the low adult return rates of S. salar stocked into the upper Merrimack catchment. In the Sheepscot, Narraguagus and Penobscot Rivers in Maine, river and year-specific effects on gill aluminium were detected that appeared to be driven by underlying geology and high spring discharge. The results indicate that episodic acidification is affecting S. salar smolts in poorly buffered streams in New England and may help explain variation in S. salar survival and abundance among rivers and among years, with implications for the conservation and recovery of S. salar in the north-eastern U.S.A. These results suggest that the physiological condition of outmigrating smolts may serve as a large-scale sentinel of landscape-level recovery of atmospheric pollution in this and other parts of the North Atlantic region.

  1. Effects of feeding regimes and early maturation on migratory behaviour of landlocked hatchery-reared Atlantic salmon Salmo salar smolts.

    PubMed

    Norrgård, J R; Bergman, E; Schmitz, M; Greenberg, L A

    2014-10-01

    The migratory behaviour of hatchery-reared landlocked Atlantic salmon Salmo salar raised under three different feeding regimes was monitored through the lower part of the River Klarälven, Sweden. The smolts were implanted with acoustic transmitters and released into the River Klarälven, 25 km upstream of the outlet in Lake Vänern. Early mature males, which had matured the previous autumn, were also tagged and released. To monitor migration of the fish, acoustic receivers were deployed along the migratory route. The proportion of S. salar that reached Lake Vänern was significantly greater for fish fed fat-reduced feed than for fish given rations with higher fat content, regardless of ration size. Fish from the early mature male group remained in the river to a greater extent than fish from the three feeding regimes. Smolt status (degree of silvering), as visually assessed, did not differ among the feeding regime groups, and moreover, fully-silvered fish, regardless of feeding regime, migrated faster and had a greater migration success than fish with less developed smolt characteristics. Also, successful migrants had a lower condition factor than unsuccessful ones. These results indicate that the migration success of hatchery-reared S. smolts released to the wild can be enhanced by relatively simple changes in feeding regimes and by matching stocking time with smolt development. © 2014 The Fisheries Society of the British Isles.

  2. Evidence for episodic acidification effects on migrating Atlantic salmon Salmo salar smolts.

    PubMed

    Kelly, J T; Lerner, D T; O'Dea, M F; Regish, A M; Monette, M Y; Hawkes, J P; Nislow, K H; McCormick, S D

    2015-11-01

    Field studies were conducted to determine levels of gill aluminium as an index of acidification effects on migrating Atlantic salmon Salmo salar smolts in the north-eastern U.S.A. along mainstem river migration corridors in several major river basins. Smolts emigrating from the Connecticut River, where most (but not all) tributaries were well buffered, had low or undetectable levels of gill aluminium and high gill Na(+) /K(+) -ATPase (NKA) activity. In contrast, smolts emigrating from the upper Merrimack River basin where most tributaries are characterized by low pH and high inorganic aluminium had consistently elevated gill aluminium and lower gill NKA activity, which may explain the low adult return rates of S. salar stocked into the upper Merrimack catchment. In the Sheepscot, Narraguagus and Penobscot Rivers in Maine, river and year-specific effects on gill aluminium were detected that appeared to be driven by underlying geology and high spring discharge. The results indicate that episodic acidification is affecting S. salar smolts in poorly buffered streams in New England and may help explain variation in S. salar survival and abundance among rivers and among years, with implications for the conservation and recovery of S. salar in the north-eastern U.S.A. These results suggest that the physiological condition of outmigrating smolts may serve as a large-scale sentinel of landscape-level recovery of atmospheric pollution in this and other parts of the North Atlantic region. © 2015 The Fisheries Society of the British Isles.

  3. Juvenile salmonid monitoring in the White Salmon River, Washington, post-Condit Dam removal, 2016

    USGS Publications Warehouse

    Jezorek, Ian G.; Hardiman, Jill M.

    2017-06-23

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and removed completely in 2012, allowing anadromous salmonids access to habitat that had been blocked for nearly 100 years. A multi-agency workgroup concluded that the preferred salmonid restoration alternative was natural recolonization with monitoring to assess efficacy, followed by a management evaluation 5 years after dam removal. Limited monitoring of salmon and steelhead spawning has occurred since 2011, but no monitoring of juveniles occurred until 2016. During 2016, we operated a rotary screw trap at river kilometer 2.3 (3 kilometers downstream of the former dam site) from late March through May and used backpack electrofishing during summer to assess juvenile salmonid distribution and abundance. The screw trap captured primarily steelhead (Oncorhynchus mykiss; smolts, parr, and fry) and coho salmon (O. kisutch; smolts and fry). We estimated the number of steelhead smolts at 3,851 (standard error = 1,454) and coho smolts at 1,093 (standard error = 412). In this document, we refer to O. mykiss caught at the screw trap as steelhead because they were actively migrating, but because we did not know migratory status of O. mykiss caught in electrofishing surveys, we simply refer to them as O. mykiss or steelhead/rainbow trout. Steelhead and coho smolts tagged with passive integrated transponder tags were subsequently detected downstream at Bonneville Dam on the Columbia River. Few Chinook salmon (O. tshawytscha) fry were captured, possibly as a result of trap location or effects of a December 2015 flood. Sampling in Mill, Buck, and Rattlesnake Creeks (all upstream of the former dam site) showed that juvenile coho were present in Mill and Buck Creeks, suggesting spawning had occurred there. We compared O. mykiss abundance data in sites on Buck and Rattlesnake Creeks to pre-dam removal data. During 2016, age-0 O. mykiss were more abundant in Buck Creek than in 2009 or 2010, though age-1 and older O. mykiss abundance was similar. In Rattlesnake Creek, age-0 O. mykiss abundance during 2016 slightly exceeded the mean abundance from 2001 through 2005, although age-1 and older O. mykiss abundance was lower than from 2001 through 2005. These sampling efforts also provided the opportunity to collect genetic samples to investigate parental and stock origin, although funding to analyze the samples was not part of this grant. Juvenile salmonid sampling efforts during 2016 have shown that natural spawning produced steelhead and coho smolts and that coho were colonizing some tributaries. The 2016 efforts also provided the first post-dam juvenile abundance estimates. We hope to continue monitoring to better understand abundance trends, distribution, and life history patterns of recolonizing salmonids in the White Salmon River to assess efficacy of natural recolonization and to inform management decisions.

  4. Interactive effects of cortisol treatment and ambient seawater challenge on gill Na+,K+-ATPase and CFTR expression in two strains of Atlantic salmon smolts

    USGS Publications Warehouse

    Singer, T.D.; Finstad, B.; McCormick, S.D.; Wiseman, S.B.; Schulte, P.M.; McKinley, R.S.

    2003-01-01

    During peak smoltification, the interactive effects of cortisol and ambient seawater challenge were compared in two strains of Atlantic salmon (Salmo salar) smolts: a domesticated strain, AquaGen and a native River Imsa strain. Tissue and blood samples were taken from untreated fish on 20 May. Fish were then transferred to experimental tanks, allowed to recover for 24 h and cortisol (50 mg kg body mass-1), dissolved in vegetable oil, or vegetable oil alone (sham) was implanted. Samples were taken 5 days post implantation. Fish were then exposed to 24 h ambient seawater challenge (FW-SW) or freshwater to freshwater replacement (FW-FW) and sampled as before. Sham implantation had no significant impact on any of the measured parameters. Cortisol implantation significantly elevated plasma cortisol in FW-FW Imsa smolts, while no effect was observed in FW-SW Imsa smolts. Cortisol implantation had no effect on the plasma cortisol levels of AquaGen smolts regardless of FW-SW challenge. Increased plasma cortisol corresponded with significantly higher plasma glucose levels in FW-FW Imsa smolts. Plasma Na+ and Cl- levels were not affected by cortisol implantation but were significantly increased in FW-SW smolts of both strains. Gill Na+,K+-ATPase activity increased in response to cortisol implantation in only FW-FW smolts but not FW-SW smolts. Gill Na+,K+-ATPase ??-subunit mRNA levels were not affected by strain, cortisol injection or transfer protocol, while both CFTR I and CFTR II mRNA levels were significantly higher in AquaGen versus Imsa smolts regardless of treatment. CFTR I mRNA was elevated following cortisol implantation in FW-FW smolts from both strains suggesting CFTR I expression is under the control of cortisol. These findings also suggest that plasma cortisol levels are regulated differently between strains and that cortisol implantation and ambient FW-SW challenge interact, interfering with the individual effects of each of these factors. ?? 2003 Published by Elsevier Science B.V.

  5. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum

    USGS Publications Warehouse

    Monette, M.Y.; Yada, T.; Matey, V.; McCormick, S.D.

    2010-01-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4??gl-1 Al), acid and low Al (LAl: pH 5.4, 11??gl-1 Al), acid and moderate Al (MAl: pH 5.3, 42??gl-1 Al), and acid and high Al (HAl: pH 5.4, 56??gl-1 Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na+/K+-ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl- channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time-course and severity of Al exposure. We propose that when smolts are exposed to acid and moderate to high Al concentrations, impaired seawater tolerance results from extensive gill Al accumulation, damage to the epithelium, reduced MRC and transport protein abundance, and a synergistic stimulation of apoptosis in the gill upon seawater exposure. When smolts are exposed to acid and low levels of Al, loss of seawater tolerance appears to be independent of these mechanisms and may result instead from a shift in the phenotype of MRCs present in the gill epithelium. ?? 2010 Elsevier B.V..

  6. VARIATION IN JUVENILE COHO SALMON END-OF-SUMMER SIZE: HIERARACHICAL ANALYSIS OF HABITAT EFFECTS

    EPA Science Inventory

    The size of coho salmon juveniles entering the winter has been shown to influence overwinter survival, and hence may be a useful indicator of linkages between summer habitat conditions and subsequent smolt production. We are investigating habitat-specific demographics of juvenile...

  7. Sea lice, Lepeophtheirus salmonis, transfer between wild sympatric adult and juvenile salmon on the north coast of British Columbia, Canada.

    PubMed

    Gottesfeld, A S; Proctor, B; Rolston, L D; Carr-Harris, C

    2009-01-01

    We examine sea lice, Lepeophtheirus salmonis, on juvenile and adult salmon from the north coast of British Columbia between 2004 and 2006 in an area that does not at present contain salmon farms. There is a pronounced zonation in the abundance of L. salmonis on juvenile pink salmon, Oncorhynchus gorbuscha, in the Skeena and Nass estuaries. Abundances in the proximal and distal zones of these estuaries are 0.01 and 0.05 respectively. The outer zones serve as feeding and staging areas for the pink salmon smolts. Returning Chinook, Oncorhynchus tshawytscha, and coho salmon, Oncorhynchus kisutch, concentrate in these areas. We collected data in 2006 to examine whether L. salmonis on returning adult salmon are an important source of the sea lice that appear on juvenile pink salmon. Nearly all (99%) of the sea lice on returning Chinook and over 80% on coho salmon were L. salmonis. Most of the L. salmonis were motile stages including many ovigerous females. There was a sharp increase in the abundance of sea lice on juvenile pink salmon smolts between May and July 2006 near the sites of adult captures. As there are no salmon farms on the north coast, few sticklebacks, Gasterosteus aculeatus, and very few resident salmonids until later in the summer, it seems that the most important reservoir of L. salmonis under natural conditions is returning adult salmon. This natural source of sea lice results in levels of abundance that are one or two orders of magnitude lower than those observed on juvenile pink salmon in areas with salmon farms such as the Broughton Archipelago.

  8. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Rebecca A.; Skalski, John R.

    2007-12-07

    In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite tomore » Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from the Snake River Basin averaged 0.45% (SE=0.11%), including age-1-ocean returns, for release years 1996 through 2003. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2003), it was estimated that on average approximately 86% of the total integrated mortality for nontransported, tagged hatchery spring and summer Chinook, and 74% for steelhead, occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the systemwide T/I are weighted averages of the dam-specific T/I ratios for each transport dam (with {ge} 5,000 tagged fish transported), weighted by the probabilities of being transported at each dam. The systemwide T/I compares the observed SAR under the existing transportation system with the expected SAR if the transportation system had not been operated. Estimates of 1.0 indicate that the systemwide transportation program has no effect on SAR, while estimates > 1.0 indicate that the transportation program increases SAR. Excluding the 2001 release group, the geometric mean of the systemwide T/I estimates for hatchery spring Chinook salmon from the Snake River Basin was 1.15 (SE=0.03) for release years 1997 through 2003. The geometric mean of the systemwide T/I estimates for hatchery summer Chinook salmon from the Snake River Basin was 1.28 (SE=0.13) for release years 1997 through 2000 and 2003. Estimates were much higher for the 2001 release groups. These estimates reflect transportation from Lower Granite and/or Little Goose for most release years, depending on the number of tagged smolts actually transported at each dam during each release year. Differential post-Bonneville mortality (D) is the ratio of post-Bonneville survival to Lower Granite Dam of transported fish to that of nontransported ('inriver') fish. Excluding the 2001 release year, the geometric mean of the D estimates for hatchery spring Chinook salmon from the Snake River Basin was 1.00 (SE=0.09) for release years 1997 through 2003. For hatchery summer Chinook salmon from the Snake River Basin, the geometric mean of the D estimates was 1.32 (SE=0.27) for release years 1997 through 2000 and 2003. These estimates reflect transportation from Lower Granite and/or Little Goose, depending on the number of tagged smolts actually transported at each dam during each release year. Approximately half the point estimates of D for both spring and summer Chinook salmon were 1.0 or greater, indicating that for those release groups, transported fish did not have lower ocean and adult survival than nontransported fish. For those years with estimates of D < 1.0, the systemwide T/I estimates were always {ge} 1.0, indicating that despite lower ocean and adult survival of transported fish, transportation did not lower SAR overall.« less

  9. VARIATION IN JUVENILE COHO SALMON END-OF-SUMMER SIZE AND ABUNDANCE: HIERARCHICAL ANALYSIS OF HABITAT EFFECTS

    EPA Science Inventory

    The size of coho salmon juveniles entering the winter has been shown to influence overwinter survival, and hence may be a useful indicator of linkages between summer habitat conditions and subsequent smolt production. We are investigating habitat-specific demographics of juvenile...

  10. Survival of Atlantic salmon Salmo salar smolts through a hydropower complex.

    PubMed

    Stich, D S; Bailey, M M; Zydlewski, J D

    2014-10-01

    This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was conducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0·12, 95% c.i. = 0·06-0·25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1·00 and 0·97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0·91), whereas survival through two dams that were removed was relatively high (0·99 and 0·98). Smolt survival could decrease in the Stillwater Branch with the addition of two new powerhouses while continuing to meet fish passage standards. The effects of removing two dams in the main-stem are expected to be negligible for smolt survival based on high survival observed from 2005 to 2012 at those locations. Survival through Milford Dam was been well below current regulatory standards, and thus improvement of passage at this location offers the best opportunity for improving overall smolt survival in the lower river. © 2014 The Fisheries Society of the British Isles.

  11. Survival of Atlantic salmon Salmo salar smolts through a hydropower complex

    USGS Publications Warehouse

    Stich, D.S.; Bailey, M.M.; Zydlewski, Joseph D.

    2014-01-01

    This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was conducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0·12, 95% c.i. = 0·06–0·25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1·00 and 0·97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0·91), whereas survival through two dams that were removed was relatively high (0·99 and 0·98). Smolt survival could decrease in the Stillwater Branch with the addition of two new powerhouses while continuing to meet fish passage standards. The effects of removing two dams in the main-stem are expected to be negligible for smolt survival based on high survival observed from 2005 to 2012 at those locations. Survival through Milford Dam was been well below current regulatory standards, and thus improvement of passage at this location offers the best opportunity for improving overall smolt survival in the lower river.

  12. Variation in freshwater growth and development among five New England Atlantic salmon (Salmo salar) populations reared in a common environment

    USGS Publications Warehouse

    Obedzinski, M.; Letcher, B.H.

    2004-01-01

    We examined phenotypic variation in growth and development from the eyed-egg stage to the age-1+ smolt stage among five New England populations of Atlantic salmon (Salmo salar: East Machias, Narraguagus, Sheepscot, Penobscot, Connecticut) reared in a common laboratory environment. Study populations originated from rivers varying in size, latitude, and level of hatchery supplementation and included one reintroduced population (Connecticut was a recipient of Penobscot origin stock). Phenotypic trait differences were found among populations, and the degree of stock variation depended on ontogeny. Eggs were smaller and hatched sooner in the Penobscot (a northern, intensively managed population), but no stock differences were detected in size or growth efficiency from the onset of exogenous feeding to age 0+ summer. Differences again emerged in age 0+ autumn, with the degree of bimodality in length-frequency distributions differing among stocks; the Connecticut had the highest proportion of upper-mode fish and, ultimately, age-1+ smolts. Although genetic effects could not be entirely separated from maternal effects for egg size variation, it is likely that differences in hatch timing and smolt age had a genetic basis. Early emphasis on age-1+ hatchery-reared smolts in the Connecticut may have led to divergence in smolt age between the Penobscot and Connecticut populations in less than eight generations. ?? 2004 NRC Canada.

  13. Theoretical life history responses of juvenile Oncorhynchus mykiss to changes in food availability using a dynamic state-dependent approach

    USGS Publications Warehouse

    Romine, Jason G.; Benjamin, Joseph R.; Perry, Russell W.; Casal, Lynne; Connolly, Patrick J.; Sauter, Sally S.

    2013-01-01

    Marine subsidies can play an important role in the growth, survival, and migratory behavior of rearing juvenile salmonids. Availability of high-energy, marine-derived food sources during critical decision windows may influence the timing of emigration or the decision to forego emigration completely and remain in the freshwater environment. Increasing growth and growth rate during these decision windows may result in an altered juvenile population structure, which will ultimately affect the adult population age-structure. We used a state dependent model to understand how the juvenile Oncorhynchus mykiss population structure may respond to increased availability of salmon eggs in their diet during critical decision windows. Our models predicted an increase in smolt production until coho salmon eggs comprised more than 50 percent of juvenile O. mykiss diet at the peak of the spawning run. At higher-than intermediate levels of egg consumption, smolt production decreased owing to increasing numbers of fish adopting a resident life-history strategy. Additionally, greater growth rates decreased the number of age-3 smolts and increased the number of age-2 smolts. Increased growth rates with higher egg consumption also decreased the age at which fish adopted the resident pathway. Our models suggest that the introduction of a high-energy food source during critical periods of the year could be sufficient to increase smolt production.

  14. Physiology and behaviour of Atlantic salmon (Salmo salar) smolts during commercial land and sea transport.

    PubMed

    Nomura, M; Sloman, K A; von Keyserlingk, M A G; Farrell, A P

    2009-02-16

    This study examined the physiology (plasma cortisol, glucose, lactate, potassium, sodium and chloride concentrations) and behaviour (underwater video footage) of commercially produced Atlantic salmon (Salmo salar) smolts during transport from freshwater farms to saltwater net pens. Smolts were transported by truck in closed tanks from two freshwater farms to the dock (30-60 min), and then in the flow-through cargo holds of a live-haul vessel, the Sterling Carrier, to the saltwater net pens (~2 h). Some fish were dockside in the vessel for up to 8 h while successive deliveries were loaded into the holds. Fish and water were sampled both before and after truck transport, and then at several time points aboard the vessel. Analysis of plasma constituents showed modest primary and secondary stress responses due to loading and truck transport, and the recovery that occurred dockside in the live-haul vessel was maintained when the vessel was underway. Underwater video footage revealed behavioural differences between fish from the two freshwater facilities that were not evident from the physiological measurements, but the behaviours observed during transport on a live-haul vessel were consistent with a non-stressful environment. Although smolts were subjected to moderately stressful conditions during loading and trucking, they began to recover rapidly aboard the Sterling Carrier. We therefore conclude that smolt transport, as currently conducted by our industry partner, appears to reflect good fish welfare.

  15. Migratory Behavior and Survival of Juvenile Salmonids in the Lower Columbia River, Estuary, and Plume in 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Harnish, Ryan A.; Skalski, John R.

    Uncertainty regarding the migratory behavior and survival of juvenile salmonids passing through the lower Columbia River and estuary after negotiating dams on the Federal Columbia River Power System (FCRPS) prompted the development and application of the Juvenile Salmon Acoustic Telemetry System (JSATS). The JSATS has been used to investigate the survival of juvenile salmonid smolts between Bonneville Dam (river kilometer (rkm) 236) and the mouth of the Columbia River annually since 2004. In 2010, a total of 12,214 juvenile salmonids were implanted with both a passive integrated transponder (PIT) and a JSATS acoustic transmitter. Using detection information from JSATS receivermore » arrays deployed on dams and in the river, estuary, and plume, the survival probability of yearling Chinook salmon and steelhead smolts tagged at John Day Dam was estimated form multiple reaches between rkm 153 and 8.3 during the spring. During summer, the survival probability of subyearling Chinook salmon was estimated for the same reaches. In addition, the influence of routes of passage (e.g., surface spill, deep spill, turbine, juvenile bypass system) through the lower three dams on the Columbia River (John Day, The Dalles, and Bonneville) on juvenile salmonid smolt survival probability from the dams to rkm 153 and then between rkm 153 and 8.3 was examined to increase understanding of the immediate and latent effects of dam passage on juvenile salmon survival. Similar to previous findings, survival probability was relatively high (>0.95) for most groups of juvenile salmonids from the Bonneville Dam tailrace to about rkm 50. Downstream of rkm 50 the survival probability of all species and run types we examined decreased markedly. Steelhead smolts suffered the highest mortality in this lower portion of the Columbia River estuary, with only an estimated 60% of the tagged fish surviving to the mouth of the river. In contrast, yearling and subyearling Chinook salmon smolts survived to the mouth of the river at higher rates, with estimated survival probabilities of 84% and 86%, respectively. The influence of route of passage at the lower three dams in the FCRPS on juvenile salmonid survival appeared to be relatively direct and immediate. Significant differences in estimated survival probabilities of juvenile salmonid smolts among groups with different dam passage experiences were often detected between the dams and rkm 153. In contrast, the influence of route of passage on survival to the mouth of the Columbia River was not apparent among the groups of tagged juvenile salmonids with different FCRPS passage experiences after they had already survived to a point about 80 km downstream of Bonneville Dam. Yearling Chinook salmon and steelhead smolts that migrated through the lower estuary in off-channel habitats took two to three times longer to travel through these lower reaches and their estimated survival probabilities were not significantly different from that of their cohorts which migrated in or near the navigation channel. A large proportion of the tagged juvenile salmonids migrating in or near the navigation channel in the lower estuary crossed from the south side of the estuary near Astoria, Oregon and passed through relatively shallow expansive sand flats (Taylor Sands) to the North Channel along the Washington shore of the estuary. This migratory behavior may contribute to the avian predation losses observed on for fish (2 to 12% of fish in this study).« less

  16. Use of glacier river-fed estuary channels by juvenile coho salmon: transitional or rearing habitats?

    USGS Publications Warehouse

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2014-01-01

    Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmonOncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.

  17. Research on Captive Broodstock Programs for Pacific Salmon, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.; Athos, Jaime I.; Dittman, Andrew H.

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. We were able to develop an analytical method for optimizing the detection of spawning events in Chinook salmon using EMG signals. The method developed essentially captured the consistently greater frequency of higher EMG values associated with females cover digging immediately following spawning. However, females implanted with EMGmore » tags retained the majority of their eggs, which significantly reduced their reproductive success compared to non-tagged females. Future work will include increased sample sizes, and modified tagging methods to reduce negative effects on reproductive success. Upper Columbia River sockeye salmon exposed to the odorants PEA, L-threonine, Larginine and L-glutamate were able to learn and remember these odorants as maturing adults up to 2.5 years after exposure. These results suggest that the alevin and smolt stages are both important developmental periods for successful olfactory imprinting. Furthermore, the period of time that fish are exposed to imprinting odors may be important for successful imprinting. Experimental fish exposed to imprinting odors as smolts for six or one weeks successfully imprinted to these odors but imprinting could not be demonstrated in smolts exposed to odors for only one day. A 2-3 C reduction in seawater rearing temperature during the fall and winter prior to final maturation had little effect on reproductive development of spring Chinook salmon. Body size at spawning and total ovary mass were similar between temperature treatments. The percentage of fertilized eggs was significantly higher for females exposed to the ambient temperature compared to those exposed to the chilled temperature. However, the percentage of embryos surviving to the eye-stage, total fecundity, and mean egg mass did not differ between treatments. This work is being continued with larger samples sizes and increased duration of temperature exposure. Exercise during the months prior to final maturation had no detectable effects on fertilization success or embryo viability in Redfish Lake Sockeye. Problems with highly variable or low eyed-embryo survival are most likely due to problems with fertilization. Synchronizing spawn timing between males and females may improve gamete fertility, perhaps by making oocyte maturation and ovulation more readily detectable and synchronous within the individual. Improvements in milt production (using GnRHa) and fertilization protocols have apparently increased fertilization success in Redfish Lake sockeye over previous years. Broodstock treatment with azithromycin immediately prior to spawning can protect against acute challenge with R. salmoninarum. Among fish challenged with 10,000 virulent R. salmoninarum cells per fish, progeny of broodstock treated with azithromycin exhibited significantly greater survival than progeny of sham-treated broodstock. Work on the efficacy of antibiotic treatment and vaccination against BKD before and after smoltification in offspring chinook salmon captive broodstocks is ongoing. To date, the long-term study of inbreeding indicates that the potential for anadromous Chinook salmon to respond rapidly to close inbreeding, with adverse consequences for marine survival and, possibly, growth. The effects of inbreeding expressed during early life history do not reveal significant effects. Overall, the results would support recommendations for initiating artificially propagated populations with sufficient, outbred broodstock and implementing carefully monitored breeding practices to minimize rates of inbreeding during a program's duration.« less

  18. Photoperiod control of downstream movements of Atlantic salmon Salmo salar smolts

    USGS Publications Warehouse

    Zydlewski, Gayle B.; Stich, Daniel S.; McCormick, Stephen D.

    2014-01-01

    This study provides the first direct observations that photoperiod controls the initiation of downstream movement in Atlantic salmon Salmo salar smolts. Under simulated natural day length (LDN) conditions and seasonal increases in temperature, smolts increased their downstream movements five-fold for a period of 1 month in late spring. Under the same conditions, parr did not show changes in downstream movement behaviour. When given a shortened day length (10L:14D) beginning in late winter, smolts did not increase the number of downstream movements. An early increase in day length (16L:8D) in late winter resulted in earlier initiation and termination of downstream movements compared to the LDN group. Physiological status and behaviour were related but not completely coincident: gill Na+/K+-ATPase activity increased in all treatments and thyroid hormone was elevated prior to movement in 16L:8D treatment. The most parsimonious model describing downstream movement of smolts included synergistic effects of photoperiod treatment and temperature, indicating that peak movements occurred at colder temperatures in the 16L:8D treatment than in LDN, and temperature did not influence movement of smolts in the 10L:14D treatment. The complicated interactions of photoperiod and temperature are not surprising since many organisms have evolved to rely on correlations among environmental cues and windows of opportunity to time behaviours associated with life-history transitions. These complicated interactions, however, have serious implications for phenological adjustments and persistence ofS. salar populations in response to climate change.

  19. Expression of aquaporin-3 and -8 mRNAs in the parr and smolt stages of sockeye salmon, Oncorhynchus nerka: effects of cortisol treatment and seawater acclimation.

    PubMed

    Choi, Young Jae; Shin, Hyun Suk; Kim, Na Na; Cho, Sung Hwoan; Yamamoto, Yuzo; Ueda, Hiroshi; Lee, Jehee; Choi, Cheol Young

    2013-06-01

    This study aimed to examine the role of 2 aquaporin (AQP) isoforms (AQP3, and -8) in sockeye salmon (Oncorhynchus nerka) in response to a hyperosmotic challenge from freshwater to seawater (SW) during the parr and smoltification (smolt) stages. AQP3 mRNA was primarily detected in the osmoregulatory organs, such as gills, while AQP8 mRNA was primarily found in the intestine. These results suggested that AQP isoforms play a role in osmoregulation in specific osmoregulatory organs. Similarly, AQP3 mRNA expression in the gills (mean values:1.06 ± 0.05 [parr] and 1.29 ± 0.07 [smolt]) was significantly higher than AQP8 mRNA levels (parr: 0.04 ± 0.003; smolt: 0.14 ± 0.004), and in the intestine, AQP8 mRNA expression (parr: 0.89 ± 0.007; smolt: 1.91 ± 0.03) was significantly higher than AQP3 mRNA levels (parr: 0.24 ± 0.006; smolt: 0.83 ± 0.005); these expression patterns were similar in vivo and in vitro. Additionally, AQP mRNA levels were lower in cortisol treated than in control groups. Therefore, these results suggest that AQPs play important roles in the water absorption mechanisms associated with multiple AQP isoforms, and that cortisol enhances the hypo-osmoregulatory capacity of fish in SW, and also controls the expression of AQPs in a hyperosmotic environment. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Searching for a life history approach to salmon escapement management

    USGS Publications Warehouse

    Knudsen, E.E.; Symmes, E.W.; Margraf, F.J.

    2003-01-01

    A number of Pacific salmon populations have already been lost and many others throughout the range are in various states of decline. Recent research has documented that Pacific salmon carcasses serve as a key delivery vector of marine-derived nutrients into the freshwater portions of their ecosystems. This nutrient supply plays a critical biological feedback role in salmon sustainability by supporting juvenile salmon production. We first demonstrate how nutrient feedback potential to juvenile production may be unaccounted for in spawner-recruit models of populations under long-term exploitation. We then present a heuristic, life history-based, spreadsheet survival model that incorporates salmon carcass-driven nutrient feedback to the freshwater components of the salmon ecosystem. The productivity of a hypothetical coho salmon population was simulated using rates from the literature for survival from spawner to egg, egg to fry, fry to smolt, and smolt to adult. The effects of climate variation and nutrient feedback on survival were incorporated, as were density-dependent effects of the numbers of spawners and fry on freshwater survival of eggs and juveniles. The unexploited equilibrium population was subjected to 100 years of 20, 40, 60, and 80% harvest. Each harvest scenario greater than 20% brought the population to a reduced steady state, regardless of generous compensatory survival at low population sizes. Increasing harvest reduced the positive effects of nutrient contributions to population growth. Salmon researchers should further explore this modeling approach for establishing escapement goals. Given the importance of nutrient feedback, managers should strive for generous escapements that support nutrient rebuilding, as well as egg deposition, to ensure strong future salmon production.

  1. Migratory behaviour and survival rates of wild northern Atlantic salmon Salmo salar post-smolts: Effects of environmental factors

    USGS Publications Warehouse

    Davidsen, J.G.; Rikardsen, A.H.; Halttunen, E.; Thorstad, E.B.; Okland, F.; Letcher, B.H.; Skarhamar, J.; Naesje, T.F.

    2009-01-01

    To study smolt behaviour and survival of a northern Atlantic salmon Salmo salar population during river descent, sea entry and fjord migration, 120 wild S. salar were tagged with acoustic tags and registered at four automatic listening station arrays in the mouth of the north Norwegian River Alta and throughout the Alta Fjord. An estimated 75% of the post-smolts survived from the river mouth, through the estuary and the first 17 km of the fjord. Survival rates in the fjord varied with fork length (LF), and ranged from 97??0 to 99??5% km-1. On average, the post-smolts spent 1??5 days (36 h, range 11-365 h) travelling from the river mouth to the last fjord array, 31 km from the river mouth. The migratory speed was slower (1??8 LF s-1) in the first 4 km after sea entry compared with the next 27 km (3??0 LF s-1). Post-smolts entered the fjord more often during the high or ebbing tide (70%). There was no clear diurnal migration pattern within the river and fjord, but most of the post-smolts entered the fjord at night (66%, 2000-0800 hours), despite the 24 h daylight at this latitude. The tidal cycle, wind-induced currents and the smolts' own movements seemed to influence migratory speeds and routes in different parts of the fjord. A large variation in migration patterns, both in the river and fjord, might indicate that individuals in stochastic estuarine and marine environments are exposed to highly variable selection regimes, resulting in different responses to environmental factors on both temporal and spatial scales. Post-smolts in the northern Alta Fjord had similar early marine survival rates to those observed previously in southern fjords; however, fjord residency in the north was shorter. ?? 2009 The Fisheries Society of the British Isles.

  2. Oxbow Fish Hatchery Snake River Sockeye Salmon Smolt Program, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, Duane D.

    2009-11-14

    This contract proposal is in response to the Federal Columbia River Power System Biological Opinion Implementation Plan/Update Proposed Action (UPA) associated with increasing the number of Snake River sockeye smolts by 150,000. To accomplish this proposal the cooperation and efforts of three government entities has been planned (e.g., Idaho Department of Fish and Game (IDFG), Oregon Department of Fish and Wildlife (ODFW), and the National Marine Fisheries Service (NMFS)). Improvements at the IDFG Eagle Fish Hatchery and NMFS Burley Creek Hatchery will focus on increasing sockeye salmon captive broodstock and egg production. Improvements at the ODFW Oxbow Fish Hatchery willmore » be made to accommodate the incubation, hatching and rearing of 150,000 sockeye salmon smolts for release into Idaho's Sawtooth Valley, Upper Salmon River near IDFG's Sawtooth Fish Hatchery and/or Redfish Lake Creek 1.4 km downstream of Redfish Lake. Modifications to Oxbow Fish Hatchery (ODFW) will include retro-fit existing pond drains so pond cleaning effluent water can be routed to the pollution abatement pond, and modifications to the abatement pond. Also included in this project as an added phase, was the rerouting of the hatchery building effluent water to meet state DEQ guidelines for the use of formalin to treat salmonid eggs. Some additional funding for the described Oxbow Hatchery modifications will come from Mitchell Act Funding. All personnel costs associated with this project will come from Mitchell Act funding. Due to heavy work load issues, being under staffed, and two emergency projects in the spring and summer of 2006, ODFW engineers were not able to complete all plans and get them out for bid in 2006. As a result of these circumstances retro-fitting pond drains and modifications to the abatement pond was carried over into fiscal year 2007-2008. A no cost time extension to the contract was approved by BPA. The format for this report will follow the standard format for Statement of Work Report (SOW), which includes sub-categories Work Element (WE), and within the WE the Milestone Titles.« less

  3. Aqueous exposure to Aroclor 1254 modulates the mitogenic response of Atlantic salmon anterior kidney T-cells: indications of short- and long-term immunomodulation.

    PubMed

    Iwanowicz, Luke R; Lerner, Darren T; Blazer, Vicki S; McCormick, Stephen D

    2005-05-15

    Polychlorinated biphenyls (PCBs) exist as persistent organic pollutants in numerous river systems in the United States. Unfortunately, some of these rivers are sites of active Atlantic salmon restoration programs, and polychlorinated biphenyls have been implicated as ancillary factors contributing to failed salmon restoration. Here, we investigate the immediate and chronic effects of intermediate duration aqueous PCB exposure (1 or 10 microgL-1 Aroclor 1254) on the mitogen-stimulated lymphoproliferative response of Atlantic salmon anterior kidney leukocytes (AKLs). A short-term study was designed to examine immunomodulation in Atlantic salmon smolts immediately following 21 days of aqueous exposure, while a long-term study evaluated chronic impacts in the mitogen response in parr 15 months post-exposure as larvae. The proliferative response of AKLs to the mitogens concanavalin A (CON A), phytohemaglutinnin-P (PHA-P), pokeweed mitogen (PWM), and lipopolysaccharide were used as an indice of immunomodulation. The proliferative response to the T-cell mitogens CON A and PHA-P was significantly increased in the 10 microgL-1 group (n=10; P=0.043 and 0.002, respectively) immediately following exposure of smolts. Additionally, The PHA-P response was significantly increased in the 1 microgL-1 exposure group (n=10, P=0.036). In fish treated as larvae and tested 15 months later, the PHA-P sensitive populations exhibited elevated proliferation in the 1 and 10 microgL-1 groups (n=12, P<0.04) relative to the vehicle control while the PWM response was significantly increased (n=12, P=0.036) only in the 10 microgL-1 treated groups. These results demonstrate an immunomodulatory effect of PCBs on T-cell mitogen sensitive populations of lymphocytes in Atlantic salmon as well as long-term immunomodulation in PHA-P and PWM sensitive populations.

  4. Aqueous exposure to Aroclor 1254 modulates the mitogenic response of Atlantic salmon anterior kidney T-cells: Indications of short- and long-term immunomodulation

    USGS Publications Warehouse

    Iwanowicz, L.R.; Lerner, D.T.; Blazer, V.S.; McCormick, S.D.

    2005-01-01

    Polychlorinated biphenyls (PCBs) exist as persistent organic pollutants in numerous river systems in the United States. Unfortunately, some of these rivers are sites of active Atlantic salmon restoration programs, and polychlorinated biphenyls have been implicated as ancillary factors contributing to failed salmon restoration. Here, we investigate the immediate and chronic effects of intermediate duration aqueous PCB exposure (1 or 10 ??g L-1 Aroclor 1254) on the mitogen-stimulated lymphoproliferative response of Atlantic salmon anterior kidney leukocytes (AKLs). A short-term study was designed to examine immunomodulation in Atlantic salmon smolts immediately following 21 days of aqueous exposure, while a long-term study evaluated chronic impacts in the mitogen response in parr 15 months post-exposure as larvae. The proliferative response of AKLs to the mitogens concanavalin A (CON A), phytohemaglutinnin-P (PHA-P), pokeweed mitogen (PWM), and lipopolysaccharide were used as an indice of immunomodulation. The proliferative response to the T-cell mitogens CON A and PHA-P was significantly increased in the 10 ??g L-1 group (n = 10; P = 0.043 and 0.002, respectively) immediately following exposure of smolts. Additionally, The PHA-P response was significantly increased in the 1 ??g L-1 exposure group (n = 10, P = 0.036). In fish treated as larvae and tested 15 months later, the PHA-P sensitive populations exhibited elevated proliferation in the 1 and 10 ??g L-1 groups (n = 12, P < 0.04) relative to the vehicle control while the PWM response was significantly increased (n = 12, P = 0.036) only in the 10 ??g L-1 treated groups. These results demonstrate an immunomodulatory effect of PCBs on T-cell mitogen sensitive populations of lymphocytes in Atlantic salmon as well as long-term immunomodulation in PHA-P and PWM sensitive populations. ?? 2005 Elsevier B.V. All rights reserved.

  5. A fishmeal-free diet for post-smolt Atlantic salmon in RAS

    USDA-ARS?s Scientific Manuscript database

    Rising costs and static supply of ocean-harvested fishmeal have spurred decades of research to identify sustainable feed ingredients for salmon diets. There has been substantial progress. The amount of fishmeal and fish oil used in commercial diets has declined and there is now a long list of altern...

  6. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1989 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnsen, Richard C.

    1990-02-19

    This project is a part of the continuing Smolt Monitoring Program (SMP) to monitor Columbia Basin salmonid stocks coordinated by the Fish Passage Center (FPC). The SMP provides timely data to the Fish Passage Managers for in season flow and spill management for fish passage and post-season analysis by the FPC for travel time, relative magnitude and timing of the smolt migration. Sampling sites were McNary, John Day and Bonneville Dams under the SMP, and the Dalles Dam under the Fish Spill Memorandum of Agreement'' for 1989. All pertinent fish capture, condition and brand data, as well as dam operationsmore » and river flow data were incorporated into the FPC Fish Passage Data Information System (FPDIS). 15 refs., 6 figs., 6 tabs.« less

  7. Spatio-Temporal Migration Patterns of Pacific Salmon Smolts in Rivers and Coastal Marine Waters

    PubMed Central

    Melnychuk, Michael C.; Welch, David W.; Walters, Carl J.

    2010-01-01

    Background Migrations allow animals to find food resources, rearing habitats, or mates, but often impose considerable predation risk. Several behavioural strategies may reduce this risk, including faster travel speed and taking routes with shorter total distance. Descriptions of the natural range of variation in migration strategies among individuals and populations is necessary before the ecological consequences of such variation can be established. Methodology/Principal Findings Movements of tagged juvenile coho, steelhead, sockeye, and Chinook salmon were quantified using a large-scale acoustic tracking array in southern British Columbia, Canada. Smolts from 13 watersheds (49 watershed/species/year combinations) were tagged between 2004–2008 and combined into a mixed-effects model analysis of travel speed. During the downstream migration, steelhead were slower on average than other species, possibly related to freshwater residualization. During the migration through the Strait of Georgia, coho were slower than steelhead and sockeye, likely related to some degree of inshore summer residency. Hatchery-reared smolts were slower than wild smolts during the downstream migration, but after ocean entry, average speeds were similar. In small rivers, downstream travel speed increased with body length, but in the larger Fraser River and during the coastal migration, average speed was independent of body length. Smolts leaving rivers located towards the northern end of the Strait of Georgia ecosystem migrated strictly northwards after ocean entry, but those from rivers towards the southern end displayed split-route migration patterns within populations, with some moving southward. Conclusions/Significance Our results reveal a tremendous diversity of behavioural migration strategies used by juvenile salmon, across species, rearing histories, and habitats, as well as within individual populations. During the downstream migration, factors that had strong effects on travel speeds included species, wild or hatchery-rearing history, watershed size and, in smaller rivers, body length. During the coastal migration, travel speeds were only strongly affected by species differences. PMID:20886121

  8. Retrospective analysis of seasonal ocean growth rates of two sea winter Atlantic Salmon in eastern Maine using historic scales

    USGS Publications Warehouse

    Izzo, Lisa K.; Zydlewski, Joseph D.

    2017-01-01

    Substantial declines of anadromous Atlantic Salmon Salmo salar have occurred throughout its range, with many populations at the southern extent of the distribution currently extirpated or endangered. While both one sea winter (1SW) and two sea winter (2SW) spawner numbers for the North American stocks have declined since the 1950s, the decline has been most severe in 2SW spawners. The first months at sea are considered a period of high mortality. However, early ocean mortality alone cannot explain the more pronounced decline of 2SW spawners, suggesting that the second year at sea may be more critical than previously thought. Atlantic Salmon scales collected by anglers and the state agency from 1946 to 2013 from five rivers in eastern Maine were used to estimate smolt age and ocean age of returning adults. Additionally, seasonal growth rates of maiden 2SW spawners were estimated using intercirculi measurements and linear back-calculation methods. Generalized linear mixed models (Gaussian family, log link function) were used to investigate the influence of average sea surface temperature, accumulated thermal units, the Atlantic Multidecadal Oscillation (AMO) and North Atlantic Oscillation indices, smolt age, smolt length, postsmolt growth, and river of origin on growth rate during the oceanic migration of North American Atlantic Salmon. Results suggest that different factors influence salmon growth throughout their oceanic migration, and previous growth can be a strong predictor of future size. Growth was negatively impacted by the phase of the AMO, which has been linked to salmon abundance trends, in early spring following the postsmolt period. This is likely when the 1SW and 2SW stock components separate, and our results suggest that this period may be of interest in future work examining the disproportionate decline in 2SW spawners.

  9. Measured flow and tracer-dye data showing the anthropogenic effects on the hydrodynamics of south Sacramento-San Joaquin Delta, California, spring 1996 and 1997

    USGS Publications Warehouse

    Oltmann, Richard N.

    1998-01-01

    Tidal flows were measured using acoustic Doppler current profilers and ultrasonic velocity meters during spring 1996 and 1997 in south Sacramento-San Joaquin Delta, California, when (1) a temporary barrier was installed at the head of Old River to prevent the entrance of migrating San Joaquin River salmon smolts, (2) the rate of water export from the south Delta was reduced for an extended period of time, and (3) a 30-day pulse flow was created on the San Joaquin River to move salmon smolts north away from the export facilities during spring 1997. Tracer-dye measurements also were made under these three conditions.

  10. Growth, smoltification, and smolt-to-adult return of spring chinook salmon from hatcheries on the Deschutes river, Oregon

    USGS Publications Warehouse

    Beckman, B.R.; Dickhoff, Walton W.; Zaugg, W.S.; Sharpe, C.; Hirtzel, S.; Schrock, R.; Larsen, D.A.; Ewing, R.D.; Palmisano, A.; Schreck, C.B.; Mahnken, C.V.W.

    1999-01-01

    The relationship between smoltification and smolt-to-adult return (SAR) of spring chinook salmon Oncorhynchus tshawytscha from the Deschutes River, Oregon, was examined for four release groups in each of three successive years. Fish were reared, marked with coded wire tags, and released from Round Butte Hatchery, Pelton Ladder rearing facility, and Warm Springs National Fish Hatchery. Smolt releases occurred in nearly the same place at similar times, allowing a direct comparison of SAR to several characters representing smolt quality. Return rates varied significantly among facilities, varying over an order of magnitude each year. The highest average SAR was from Pelton Ladder, the lowest was from Warm Springs. Each of the characters used as metrics of smoltification - fish size, spring growth rate (February-April), condition factor, plasma hormone concentration (thyroxine, cortisol, and insulin-like growth factor-I [IGF-I]), stress challenge, gill Na+,K+-ATPase activity, and liver glycogen concentration - varied significantly among facilities and seasonally within hatchery groups. However, only spring growth rate, gill ATPase activity, and plasma IGF-I concentration showed significant relationships to SAR. These characters and SAR itself were consistently lower for fish released from Warm Springs Hatchery than for fish from Round Butte Hatchery and Pelton Ladder. This demonstrates that differences in the quality of fish released by facilities may have profound effects on subsequent survival and suggests that manipulations of spring growth rate may be used to influence the quality of smolts released from facilities.

  11. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014

    USGS Publications Warehouse

    Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.

    2015-01-01

    The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged concurrently with fish released upstream of the dam using identical tagging methods. Tagging and release events were conducted to target a range of flow conditions indicative of flows observed during the typical migration period (March-May) for juvenile spring Chinook salmon in the Yakima River. Three, five and four separate upstream releases were conducted in 2012, 2013, and 2014 respectively, and at least 43 fish were released alive on each occasion. The release sample sizes in 2014 were much larger (~130) compared to previous years for the purpose of increasing precision of survival estimates across the range of flows tested. Migration movements of radio-tagged spring Chinook salmon smolts were monitored with an array of telemetry receiver stations (fixed sites) that extended 208 rkm downstream from the forebay of Roza Dam to the mouth of the Yakima River. Fixed monitoring sites included the forebay of Roza Dam (rkm 208), the tailrace of Roza Dam (rkm 207.9), the mouth of Wenas Creek (rkm 199.2), the mouth of the Naches River (two sites, rkm 189.4), Sunnyside Dam (two sites, rkm 169.1), Prosser Dam (rkm 77.2), and the mouth of the Yakima River (two sites, rkm2 3). This array segregated the study area into four discrete reaches in which survival of tagged fish was estimated. Aerial and underwater antennas were also used to monitor tagged fish at Roza Dam. Aerial antennas were located in the forebay, on the East gate, on the West gate, and in the tailrace of Roza Dam. Underwater antennas were located in the fish bypass, upstream of the East gate, and upstream of the West gate to collect route-specific passage data for tagged fish. Additional years of data collection and analysis could alter or improve our understanding of the influence of flow and other environmental factors on smolt survival in the Yakima River. Nevertheless, during 2012-2014, yearling hatchery Chinook salmon smolt emigration survival was significantly associated with stream flow in the

  12. Impacts of multispecies parasitism on juvenile coho salmon (Oncorhynchus kisutch) in Oregon

    USGS Publications Warehouse

    Ferguson, Jayde A.; Romer, Jeremy; Sifneos, Jean C.; Madsen, Lisa; Schreck, Carl B.; Glynn, Michael; Kent, Michael L.

    2011-01-01

    We are studying the impacts of parasites on threatened stocks of Oregon coastal coho salmon (Oncorhynchus kisutch). In our previous studies, we have found high infections of digeneans and myxozoans in coho salmon parr from the lower main stem of West Fork Smith River (WFSR), Oregon. In contrast parr from tributaries of this river, and outmigrating smolts, harbor considerably less parasites. Thus, we have hypothesized that heavy parasite burdens in parr from this river are associated with poor overwintering survival. The objective of the current study was to ascertain the possible effects these parasites have on smolt fitness. We captured parr from the lower main stem and tributaries of WFSR and held them in the laboratory to evaluate performance endpoints of smolts with varying degrees of infection by three digeneans (Nanophyetus salmincola, Apophallus sp., and neascus) and one myxozoan (Myxobolus insidiosus). The parameters we assessed were weight, fork length, growth, swimming stamina, and gill Na+,K+-ATPase activity. We repeated our study on the subsequent year class and with hatchery reared coho salmon experimentally infected with N. salmincola. The most significant associations between parasites and these performance or fitness endpoints were observed in the heavily infected groups from both years. We found that all parasite species, except neascus, were negatively associated with fish fitness. This was corroborated for N. salmincola causing reduced growth with our experimental infection study. Parasites were most negatively associated with growth and size, and these parameters likely influenced the secondary findings with swimming stamina and ATPase activity levels.

  13. Development of a subunit vaccine for infectious pancreatic necrosis virus using a baculovirus insect/larvae system

    USGS Publications Warehouse

    Shivappa, R.B.; McAllister, P.E.; Edwards, G.H.; Santi, N.; Evensen, O.; Vakharia, V.N.; ,

    2005-01-01

    Various attempts to develop a vaccine against infectious pancreatic necrosis virus (IPNV) have not yielded consistent results. Thus, at present, no commercial vaccine is available that can be used with confidence to immunize fry of salmon and trout. We generated a cDNA clone of the large genome segment A of an IPNV Sp strain and expressed all structural protein genes in insect cells and larvae using a baculovirus expression system. Green fluorescent protein was also co-expressed as a reporter molecule. High yields of IPNV proteins were obtained and the structural proteins self assembled to form virus-like particles (VLPs). We tested the immunogenicity of the putative VLP antigen in immersion vaccine experiments (two concentrations) in rainbow trout (Oncorhynchus mykiss) fry, and by intraperitoneal immunisation of Atlantic salmon (Salmo salar) pre-smolts using an oil adjuvant formulation. Rainbow trout were challenged by immersion using either the Sp or the VR-299 strain of IPNV two or three weeks post-vaccination, while Atlantic salmon were bath challenged with Sp strain after two months, after parr-smolt transformation. In the rainbow trout fry challenged two weeks post-immunization, cumulative mortality rates three weeks post challenge were 14 % in the fry that had received the highest dose versus 8 % in the control groups. No indication of protection was seen in repeated trials using a lower dose of antigen and challenge three weeks post-immunisation. The cumulative mortality rate of intraperitoneally immunised Atlantic salmon post-smolts four weeks post challenge was lower (56 %) than in the control fish (77 %), showing a dose-response pattern.

  14. The effects of ozonation on select waterborne steroid hormones in recirculation aquaculture systems containing sexually mature Atlantic salmon Salmo salar

    USDA-ARS?s Scientific Manuscript database

    A controlled 3-month study was conducted in 6 replicated water recirculation aquaculture systems (RAS) containing a mixture of sexually mature and immature Atlantic salmon Salmo salar to determine whether water ozonation is associated with a reduction in waterborne hormones. Post-smolt Atlantic salm...

  15. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam; Smolt Monitoring by Federal and Non-Federal Entities, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2001 spring out-migration at migrant traps on the Snake River and Salmon River. In 2001 fish management agencies released significant numbers of hatchery chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery chinook salmon catch at the Snake River trap was 11% of the 2000 numbers. The wild chinookmore » catch was 3% of the previous year's catch. Hatchery steelhead trout catch was 49% of 2000 numbers. Wild steelhead trout catch was 69% of 2000 numbers. The Snake River trap collected 28 age-0 chinook salmon. During 2001 the Snake River trap captured zero hatchery and zero wild/natural sockeye salmon and six hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant reduction in catch during 2001 was due to a reduction in hatchery chinook production (60% of 2000 release) and due to extreme low flows. Trap operations began on March 11 and were terminated on June 29. The trap was out of operation for a total of two days due to mechanical failure or debris. Hatchery chinook salmon catch at the Salmon River trap was 47% and wild chinook salmon catch was 67% of 2000 numbers. The hatchery steelhead trout collection in 2001 was 178% of the 2000 numbers. Wild steelhead trout collection in 2001 was 145% of the previous year's catch. Trap operations began on March 11 and were terminated on June 8 due to the end of the smolt monitoring season. There were no days where the trap was out of operation due to high flow or debris. The decrease in hatchery chinook catch in 2001 was due to a reduction in hatchery production (39% of 2000 releases). The increase in hatchery and wild steelhead trap catch is due to the ability to operate the trap in the thalweg for a longer period of time because of the extreme low flow condition in 2001. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout marked at the head of the reservoir were affected by discharge. There were not enough hatchery and wild chinook salmon tagged at the Snake River trap in 2001 to allow migration rate/discharge analysis. For steelhead trout tagged at the Snake River trap, statistical analysis of 2001 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 1.5-fold increase in migration rate in, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2001 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery and wild chinook salmon and hatchery and wild steelhead trout. Migration rate increased 3.7-fold for hatchery chinook salmon and 2.5-fold for wild chinook salmon between 50 and 100 kcfs. For hatchery steelhead there was a 1.6-fold increase in migration rate, and for wild steelhead trout there was a 2.2-fold increase between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992). Cumulative interrogations at the four dams for fish marked at the Snake River trap were 86% for hatchery chinook, 70% for wild chinook, 71% for hatchery steelhead, and 89% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 74% for hatchery chinook, 83% for wild chinook salmon, 75% for hatchery steelhead trout, and 81% for wild steelhead trout.« less

  16. Evidence for density-dependent changes in growth, downstream movement, and size of Chinook salmon subyearlings in a large-river landscape

    USGS Publications Warehouse

    Connor, William P.; Tiffan, Kenneth F.; Plumb, John M.; Moffit, Christine M.

    2013-01-01

    We studied the growth rate, downstream movement, and size of naturally produced fall Chinook Salmon Oncorhynchus tshawytscha subyearlings (age 0) for 20 years in an 8th-order river landscape with regulated riverine upstream rearing areas and an impounded downstream migration corridor. The population transitioned from low to high abundance in association with U.S. Endangered Species Act and other federally mandated recovery efforts. The mean growth rate of parr in the river did not decline with increasing abundance, but during the period of higher abundance the timing of dispersal from riverine habitat into the reservoir averaged 17 d earlier and the average size at the time of downstream dispersal was smaller by 10 mm and 1.8 g. Changes in apparent abundance, measured by catch per unit effort, largely explained the time of dispersal, measured by median day of capture, in riverine habitat. The growth rate of smolts in the reservoir declined from an average of 0.6 to 0.2 g/d between the abundance periods because the reduction in size at reservoir entry was accompanied by a tendency to migrate rather than linger and by increasing concentrations of smolts in the reservoir. The median date of passage through the reservoir was 14 d earlier on average, and average smolt size was smaller by 38 mm and 22.0 g, in accordance with density-dependent behavioral changes reflected by decreased smolt growth. Unexpectedly, smolts during the high-abundance period had begun to reexpress the migration timing and size phenotypes observed before the river was impounded, when abundance was relatively high. Our findings provide evidence for density-dependent phenotypic change in a large river that was influenced by the expansion of a recovery program. Thus, this study shows that efforts to recover native fishes can have detectable effects in large-river landscapes. The outcome of such phenotypic change, which will be an important area of future research, can only be fully judged by examining the effect of the change on population viability and productivity.

  17. Environmental endocrinology of salmon smoltification

    USGS Publications Warehouse

    Bjornsson, Bjorn Thrandur; Stefansson, S.O.; McCormick, S.D.

    2011-01-01

    Smolting is a hormone-driven developmental process that is adaptive for downstream migration and ocean survival and growth in anadromous salmonids. Smolting includes increased salinity tolerance, increased metabolism, downstream migratory and schooling behavior, silvering and darkened fin margins, and olfactory imprinting. These changes are promoted by growth hormone, insulin-like growth factor I, cortisol, thyroid hormones, whereas prolactin is inhibitory. Photoperiod and temperature are critical environmental cues for smolt development, and their relative importance will be critical in determining responses to future climate change. Most of our knowledge of the environmental control and endocrine mediation of smolting is based on laboratory and hatchery studies, yet there is emerging information on fish in the wild that indicates substantial differences. Such differences may arise from differences in environmental stimuli in artificial rearing environments, and may be critical to ocean survival and population sustainability. Endocrine disruptors, acidification and other contaminants can perturb smolt development, resulting in poor survival after seawater entry. ?? 2010.

  18. Early marine growth of pink salmon in Prince William Sound and the coastal gulf of Alaska during years of low and high survival

    USGS Publications Warehouse

    Cross, A.D.; Beauchamp, D.A.; Myers, K.W.; Moss, J.H.

    2008-01-01

    Although early marine growth has repeatedly been correlated with overall survival in Pacific salmon Oncorhynchus spp., we currently lack a mechanistic understanding of smolt-to-adult survival. Smolt-to-adult survival of pink salmon O. gorbuscha returning to Prince William Sound was lower than average for juveniles that entered marine waters in 2001 and 2003 (3% in both years), and high for those that entered the ocean in 2002 (9%) and 2004 (8%). We used circulus patterns from scales to determine how the early marine growth of juvenile pink salmon differed (1) seasonally during May-October, the period hypothesized to be critical for survival; (2) between years of low and high survival; and (3) between hatchery and wild fish. Juvenile pink salmon exhibited larger average size, migrated onto the continental shelf and out of the sampling area more quickly, and survived better during 2002 and 2004 than during 2001 and 2003. Pink salmon were consistently larger throughout the summer and early fall during 2002 and 2004 than during 2001 and 2003, indicating that larger, faster-growing juveniles experienced higher survival. Wild juvenile pink salmon were larger than hatchery fish during low-survival years, but no difference was observed during high-survival years. Differences in size among years were determined by some combination of growing conditions and early mortality, the strength of which could vary significantly among years. ?? Copyright by the American Fisheries Society 2008.

  19. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxinmore » and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via ..beta..-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents.« less

  20. Compliance Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Carlson, Thomas J.; Skalski, John R.

    2010-12-21

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon smolts at The Dalles Dam during summer 2010. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 2 km below the dam The forebay-to-tailrace survival estimate satisfies the “BRZ-to-BRZ” survival estimate called for in the Fish Accords. , asmore » well as the forebay residence time, tailrace egress time, and spill passage efficiency, as required in the Columbia Basin Fish Accords. The estimate of dam survival for subyearling Chinook salmon at The Dalles in 2010 was 0.9404 with an associated standard error of 0.0091.« less

  1. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Lynette A.; Graves, Ritchie J.; Killins, Susan D.

    1994-04-01

    The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia River in 1993 (river mile 145 and 216, respectively, Figure 1). The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program is carried out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration. The purpose of the SMP is to index Columbia Basinmore » juvenile salmonid stocks and develop and implement flow and spill requests intended to facilitate fish passage. Data is also used for travel time, migration timing and relative run size magnitude analysis. The purpose of the NMFS portion of the program is to provide FPC with species specific data; numbers, condition, length, brand recaptures and flow data from John Day, and Bonneville Dams on a daily basis.« less

  2. Survey of parasites in threatened stocks of coho salmon (Oncorhynchus kisutch) in Oregon by examination of wet tissues and histology.

    PubMed

    Ferguson, Jayde A; St-Hilaire, Sophie; Peterson, Tracy S; Rodnick, Kenneth J; Kent, Michael L

    2011-12-01

    We are conducting studies on the impacts of parasites on Oregon coastal coho salmon (Oncorhynchus kistuch). An essential first step is documenting the geographic distribution of infections, which may be accomplished by using different methods for parasite detection. Thus, the objectives of the current study were to (1) identify parasite species infecting these stocks of coho salmon and document their prevalence, density, and geographic distribution; (2) assess the pathology of these infections; and (3) for the first time, determine the sensitivity and specificity of histology for detecting parasites compared with examining wet preparations for muscle and gill infections. We examined 576 fry, parr, and smolt coho salmon in total by histology. The muscle and gills of 219 of these fish also were examined by wet preparation. Fish were collected from 10 different locations in 2006-2007. We identified 21 different species of parasites in these fish. Some parasites, such as Nanophyetus salmincola and Myxobolus insidiosus, were common across all fish life stages from most basins. Other parasites, such as Apophallus sp., were more common in underyearling fish than smolts and had a more restricted geographic distribution. Additional parasites commonly observed were as follows: Sanguinicola sp., Trichodina truttae , Epistylis sp., Capriniana piscium, and unidentified metacercariae in gills; Myxobolus sp. in brain; Myxidium salvelini and Chloromyxum majori in kidney; Pseudocapillaria salvelini and adult digenean spp. in the intestine. Only a few parasites, such as the unidentified gill metacercariae, elicted overt pathologic changes. Histology had generally poor sensitivity for detecting parasites; however, it had relatively good specificity. We recommend using both methods for studies or monitoring programs requiring a comprehensive assessment of parasite identification, enumeration, and parasite-related pathology.

  3. Effect of commercially available egg cures on the survival of juvenile salmonids

    USGS Publications Warehouse

    Clements, S.; Chitwood, R.; Schreck, C.B.

    2011-01-01

    There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha) and steelhead (O. mykiss) with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.

  4. Growth evaluation of Atlantic Salmon (Salmo salar) raised in seawater or freshwater and fed either fishmeal based or marine-free diets

    USDA-ARS?s Scientific Manuscript database

    A forty week feeding study was conducted with Atlantic salmon (Salmo salar) smolts in two recirculating aquaculture systems. Two identical systems were used and contained either freshwater (0 ppt) or seawater (about 30 ppt). Fish were fed one of two diets, a control diet containing fishmeal and fi...

  5. The effects of long-term 20 mg/L carbon dioxide exposure on the health and performance of Atlantic salmon Salmo salar post-smolts in water recirculation aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Previous research and experience has linked elevated dissolved carbon dioxide (CO2) to reduced growth performance, poor feed conversion, and a variety of health issues in farm-raised fish, including Atlantic salmon Salmo salar. Supplemental control measures in water recirculation aquaculture systems...

  6. Fraser River sockeye salmon productivity and climate: A re-analysis that avoids an undesirable property of Ricker’s curve

    NASA Astrophysics Data System (ADS)

    McKinnell, Skip

    2008-05-01

    In descending order of importance, artificial spawning channels, density-dependent mortality, carryover mortality, and climate have significant influences on the average productivity of Fraser River sockeye salmon ( Oncorhynchus nerka). When factors that are known or have been hypothesized to affect Fraser River sockeye salmon productivity are included in a single analytical framework, no significant change in average productivity occurred in 1976/1977, however, beginning in 1989 average productivity was significantly lower. In the one lake (Chilko) in the Fraser River basin where pre-smolt survival can be distinguished from post-smolt survival, this decline arose from freshwater causes. After accounting for other factors that have a greater influence, Fraser River sockeye salmon productivity tends to be slightly lower in years when the intensity of the Aleutian low pressure region is stormier in winter, although the effect is not strongly expressed in any particular population. A footnote to the study was the realization that estimates of Ricker’s density-dependent mortality parameter, β, are influenced by both the numerical properties of the equation and by population biology; density-dependent and density-independent influences on the estimates of the parameter are confounded.

  7. Thresholds for short-term acid and aluminum impacts on Atlantic salmon smolts

    USGS Publications Warehouse

    McCormick, Stephen D.; Lerner, Darrren T.; Regish, Amy M.; O'Dea, Michael F.; Monette, Michelle Y.

    2012-01-01

    Although the negative effects of acid and aluminum (Al) on smolt development have been known for some time, the thresholds for impact of short-term exposure of several days that may occur during episodic acidification have not been systematically examined. In order to determine the levels of acid and Al that impact juvenile Atlantic salmon, smolts and yolk-sac larvae were exposed to three pH levels (6.0, 5.7, and 5.3) and four added Al levels (0, 40, 80 and 175 μg/L total Al) for 48 h. Following this treatment, 10 smolts were sampled in freshwater and another 10 were subjected to a 24 h seawater challenge (35 ppt). Survival of yolk-sac larvae was > 96% in all acid and Al treatments. All smolts died within 48 h at pH 5.3, 175 μg L− 1 Al. There were some mortalities in freshwater at pH 5.3, 80 μg L− 1 Al and pH 5.7, 175 μg L− 1 Al, and further mortalities when these fish were transferred to seawater. Mortalities in these groups were associated with decreased plasma chloride in freshwater and higher plasma chloride in seawater, indicating that these smolts had lost seawater tolerance. Gill Na+/K+-ATPase (NKA) activity decreased at pH 5.7, 175 μg L− 1 Al in freshwater, and further decreases were observed at more moderate pH and Al exposures after transfer to seawater. Hematocrit and plasma glucose were the most sensitive physiological responses, increasing at all Al treatments at pH 5.7 and 5.3 in freshwater. There was no detectable increase in gill Al levels at pH 6.0 with added Al, whereas substantial increases in gill Al were observed in all added Al groups at pH 5.7 and 5.3. Our results demonstrate a critical interaction between acid and Al in their effects on smolts, and that episodic acidification events will negatively impact smolt survival in freshwater and after seawater entry.

  8. A critical life stage of the Atlantic salmon Salmo salar: behaviour and survival during the smolt and initial post-smolt migration.

    PubMed

    Thorstad, E B; Whoriskey, F; Uglem, I; Moore, A; Rikardsen, A H; Finstad, B

    2012-07-01

    The anadromous life cycle of Atlantic salmon Salmo salar involves long migrations to novel environments and challenging physiological transformations when moving between salt-free and salt-rich waters. In this article, (1) environmental factors affecting the migration behaviour and survival of smolts and post-smolts during the river, estuarine and early marine phases, (2) how behavioural patterns are linked to survival and (3) how anthropogenic factors affect migration and survival are synthesized and reviewed based on published literature. The timing of the smolt migration is important in determining marine survival. The timing varies among rivers, most likely as a consequence of local adaptations, to ensure sea entry during optimal periods. Smolts and post-smolts swim actively and fast during migration, but in areas with strong currents, their own movements may be overridden by current-induced transport. Progression rates during the early marine migration vary between 0.4 and 3.0 body lengths s(-1) relative to the ground. Reported mortality is 0.3-7.0% (median 2.3) km(-1) during downriver migration, 0.6-36% (median 6.0) km(-1) in estuaries and 0.3-3.4% (median 1.4) km(-1) in coastal areas. Estuaries and river mouths are the sites of the highest mortalities, with predation being a common cause. The mortality rates varied more among studies in estuaries than in rivers and marine areas, which probably reflects the huge variation among estuaries in their characteristics. Behaviour and survival during migration may also be affected by pollution, fish farming, sea lice Lepeophtheirus salmonis, hydropower development and other anthropogenic activities that may be directly lethal, delay migration or have indirect effects by inhibiting migration. Total mortality reported during early marine migration (up to 5-230 km from the river mouths) in the studies available to date varies between 8 and 71%. Hence, the early marine migration is a life stage with high mortalities, due to both natural and human influences. Factors affecting mortality during the smolt and post-smolt stages contribute to determine the abundance of spawner returns. With many S. salar populations in decline, increased mortality at these stages may considerably contribute to limit S. salar production, and the consequences of human-induced mortality at this stage may be severe. Development of management actions to increase survival and fitness at the smolt and post-smolt stages is crucial to re-establish or conserve wild populations. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  9. Effects of rearing density and dietary fat content on burst-swim performance and oxygen transport capacity in juvenile Atlantic salmon Salmo salar.

    PubMed

    Hammenstig, D; Sandblom, E; Axelsson, M; Johnsson, J I

    2014-10-01

    The effects of hatchery rearing density (conventional or one third of conventional density) and feeding regime (high or reduced dietary fat levels) on burst-swim performance and oxygen transport capacity were studied in hatchery-reared Atlantic salmon Salmo salar, using wild fish as a reference group. There was no effect of rearing density or food regime on swimming performance in parr and smolts. The maximum swimming speed of wild parr was significantly higher than that of hatchery-reared conspecifics, while no such difference remained at the smolt stage. In smolts, relative ventricle mass was higher in wild S. salar compared with hatchery-reared fish. Moreover, wild S. salar had lower maximum oxygen consumption following a burst-swim challenge than hatchery fish. There were no effects of hatchery treatment on maximum oxygen consumption or relative ventricle mass. Haemoglobin and haematocrit levels, however, were lower in low-density fish than in fish reared at conventional density. Furthermore, dorsal-fin damage, an indicator of aggression, was similar in low-density reared and wild fish and lower than in S. salar reared at conventional density. Together, these results suggest that reduced rearing density is more important than reduced dietary fat levels in producing an S. salar smolt suitable for supplementary release. © 2014 The Fisheries Society of the British Isles.

  10. Brood stock segregation for the control of bacterial kidney disease can affect mortality of progeny chinook salmon (Oncorhynchus tshawytscha) in seawater

    USGS Publications Warehouse

    Elliott, Diane G.; Pascho, Ronald J.; Palmisano, Aldo N.

    1995-01-01

    Segregation of spring chinook salmon (Oncorhynchus tshawytscha) brood stock based on the measurement of maternal Renibacterium salmoninarum infection levels by the enzyme-linked immunosorbent assay (ELISA) and the fluorescent antibody technique (FAT) was previously shown to affect the prevalence and levels of bacterial kidney disease (BKD) in progeny fish during hatchery rearing. Smolts from that study were subjected to standardized fish health and condition evaluation procedures 2 weeks before the conclusion of hatchery rearing and release of the fish for migration to the Pacific Ocean. The results suggested that the general health of the smolts in the progeny group from parents that had low R. salmoninarum infection levels or tested negative for R. salmoninarum (low-BKD group) was better than that of the smolts in the progeny group from female parents with high R. salmoninarum infection levels (high-BKD group). Testing by the ELISA showed that the overall severity of R. salmoninarum infection also was lower in the smolts from the low-BKD group. Subgroups of smolts from the study were acclimated to tanks of seawater for extended holding. After a 22-day acclimation period and 98 days in full-strength (29 ppt salinity) seawater, total mortality was 12% in the low-BKD group and 44% in the high-BKD group. All of the mortality in the low-BKD group and 85% of the mortality in the high-BKD group occurred after the fish were transferred to full-strength seawater. Testing of kidney tissues from all dead fish by the FAT revealed that 85% of the fish that died in the high-BKD group had high R. salmoninarum numbers, indicating that BKD was the cause of death. In contrast, none of the fish that died in the low-BKD group had detectable numbers of R. salmoninarum. We concluded that brood stock segregation by use of the ELISA and the FAT can affect mortality and the R. salmoninarum status of progeny chinook salmon for as long as 21 months after hatching, even after the fish have been transferred to seawater.

  11. Patterns of d18O in fish tissues in two Oregon Coast range streams

    EPA Science Inventory

    We are using stable isotopes of C, N, O and S (H planned) to study the ecology of coho salmon in streams of the Oregon Coast Range. As part of this work we have examined changes in d18O in coho salmon juveniles (from eggs to smolting) and sculpin (from 0.5 to 20 gm.). For fish...

  12. Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Jim

    Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of themore » Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.« less

  13. Ca. Branchiomonas cysticola, Ca. Piscichlamydia salmonis and Salmon Gill Pox Virus transmit horizontally in Atlantic salmon held in fresh water.

    PubMed

    Wiik-Nielsen, J; Gjessing, M; Solheim, H T; Litlabø, A; Gjevre, A-G; Kristoffersen, A B; Powell, M D; Colquhoun, D J

    2017-10-01

    Elucidation of the role of infectious agents putatively involved in gill disease is commonly hampered by the lack of culture systems for these organisms. In this study, a farmed population of Atlantic salmon pre-smolts, displaying proliferative gill disease with associated Candidatus Branchiomonas cysticola, Ca. Piscichlamydia salmonis and Atlantic salmon gill pox virus (SGPV) infections, was identified. A subpopulation of the diseased fish was used as a source of waterborne infection towards a population of naïve Atlantic salmon pre-smolts. Ca. B. cysticola infection became established in exposed naïve fish at high prevalence within the first month of exposure and the bacterial load increased over the study period. Ca. P. salmonis and SGPV infections were identified only at low prevalence in exposed fish during the trial. Although clinically healthy, at termination of the trial the exposed, naïve fish displayed histologically visible pathological changes typified by epithelial hyperplasia and subepithelial inflammation with associated bacterial inclusions, confirmed by fluorescent in situ hybridization to contain Ca. B. cysticola. The results strongly suggest that Ca. B. cysticola infections transmit directly from fish to fish and that the bacterium is directly associated with the pathological changes observed in the exposed, previously naïve fish. © 2017 John Wiley & Sons Ltd.

  14. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Joan B.

    2005-05-01

    In the spring of 2004 naturally produced smolts outmigrating from the Yakima River Basin were collected for the sixth year of pathogen screening. This component of the evaluation is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Since 1999 the Cle Elum Hatchery has been releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. In 1998 and 2000 through 2004 naturally produced smolts were collectedmore » for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. Of these pathogens, only R. salmoninarum was detected in very low levels in the naturally produced smolts outmigrating in 2004. To date, only bacterial pathogens have been detected and prevalences have been low. There have been small variations each year and these changes are attributed to normal fluctuations in prevalence. All of the pathogens detected are widely distributed in Washington State.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Weiland, Mark A.; Faber, Derrek M.

    This report describes a 2008 acoustic telemetry survival study conducted by the Pacific Northwest National Laboratory for the Portland District of the U.S. Army Corps of Engineers. The study estimated the survival of juvenile Chinook salmon and steelhead passing Bonneville Dam (BON) and its spillway. Of particular interest was the relative survival of smolts detected passing through end spill bays 1-3 and 16-18, which had deep flow deflectors immediately downstream of spill gates, versus survival of smolts passing middle spill bays 4-15, which had shallow flow deflectors.

  16. Effects of the fungicide azoxystrobin on Atlantic salmon (Salmo salar L.) smolt.

    PubMed

    Olsvik, Pål A; Kroglund, Frode; Finstad, Bengt; Kristensen, Torstein

    2010-11-01

    Atlantic salmon smolts were exposed to three doses of the fungicide azoxystrobin for 4 days, and physiological blood parameters and transcriptional effects in liver and muscle were evaluated in search for potential negative effects. Azoxystrobin exposure mediated up-regulation of catalase, MAPK1 and IGFBP1 in liver tissue. Catalase, transferrin, IGFBP1 and TNFR were up-regulated and CYP1A down-regulated in muscle tissue. Blood parameters glucose, hematocrit, pCO(2), HCO(3) and pH grouped together with transcripts levels of MnSOD, MAPK1, IGFBP1, MAP3K7 and GPx4 in liver of fish exposed to the highest azoxystrobin concentration (352 μgL(-1)) using principal component analysis (PCA). In muscle, the blood parameters glucose, hematocrit, pCO(2), HCO(3) and pH grouped together with transcript levels of heme oxygenase, thioredoxin, MnSOD, TNFR and MMP9. These results suggest that the fungicide azoxystrobin affects mitochondrial respiration and mechanisms controlling cell growth and proliferation in fish and may have negative effects on juvenile Atlantic salmon. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Life history dependent morphometric variation in stream-dwelling Atlantic salmon

    USGS Publications Warehouse

    Letcher, B.H.

    2003-01-01

    The time course of morphometric variation among life histories for stream-dwelling Atlantic salmon (Salmo salar L.) parr (age-0+ to age-2+) was analyzed. Possible life histories were combinations of parr maturity status in the autumn (mature or immature) and age at outmigration (smolt at age-2+ or later age). Actual life histories expressed with enough fish for analysis in the 1997 cohort were immature/age-2+ smolt, mature/age-2 +smolt, and mature/age-2+ non-smolt. Tagged fish were assigned to one of the three life histories and digital pictures from the field were analyzed using landmark-based geometric morphometrics. Results indicated that successful grouping of fish according to life history varied with fish age, but that fish could be grouped before the actual expression of the life histories. By March (age-1+), fish were successfully grouped using a descriptive discriminant function and successful assignment ranged from 84 to 97% for the remainder of stream residence. A jackknife of the discriminant function revealed an average life history prediction success of 67% from age-1+ summer to smolting. Low sample numbers for one of the life histories may have limited prediction success. A MANOVA on the shape descriptors (relative warps) also indicated significant differences in shape among life histories from age-1+ summer through to smolting. Across all samples, shape varied significantly with size. Within samples, shape did not vary significantly with size for samples from December (age-0+) to May (age-1+). During the age-1+ summer however, shape varied significantly with size, but the relationship between shape and size was not different among life histories. In the autumn (age-1+) and winter (age-2+), life history differences explained a significant portion of the change in shape with size. Life history dependent morphometric variation may be useful to indicate the timing of early expressions of life history variation and as a tool to explore temporal and spatial variation in life history expression.

  18. Gill Na+,K+-ATPase of Atlantic salmon smolts in freshwater is not a predictor of long-term growth in seawater

    USGS Publications Warehouse

    Zydlewski, Gayle B.; Zydlewski, Joseph D.

    2012-01-01

    Gill Na+,K+-ATPase activity is a widely used measure of osmoregulatory preparedness in salmonid smolts. The degree to which this measure may predict long term performance is uncertain. In order to assess the relationship of this enzyme to long term growth and ion homeostasis, a cohort of Atlantic salmon hatchery smolts was used in a controlled environment with no salinity perturbations. In May 2006, gill Na+,K+-ATPase activity from 940 individually PIT tagged, Penobscot River smolts (USFWS, Green Lake National Fish Hatchery, Maine, United States) was measured immediately prior to isothermal transfer from freshwater to 32 ppt seawater. From the observed range of activities, individuals were classified as having “low”, “middle”, or “high” enzyme activity levels. Individual size (fork length and mass) was recorded on days 0, 1, 3, and 14 and monthly for four months. Growth rates over four time periods were calculated for individual fish maintained until the end of the experiment. Gill Na+,K+-ATPase activities were also measured from a subset of sampled fish. All groups effectively osmoregulated as evidenced by minor perturbations in plasma osmolyte levels. Apart from initial weight loss on transfer, fish grew throughout the experiment, however, there were no differences (fish size, growth rate, and gill Na+,K+-ATPase activity in seawater) among groups with initially different gill Na+,K+-ATPase activities (prior to seawater entry). While gill Na+,K+-ATPase activity may be predictive of performance during the acute phase of acclimation (first few days), typical variation in this enzyme, expressed in freshwater at the peak of smolting, does not appear to be predictive of long-term growth in seawater.

  19. Estrogenic compounds decrease growth hormone receptor abundance and alter osmoregulation in Atlantic salmon

    USGS Publications Warehouse

    Lerner, Darren T.; Sheridan, Mark A.; McCormick, Stephen D.

    2012-01-01

    Exposure of Atlantic salmon smolts to estrogenic compounds is shown to compromise several aspects of smolt development. We sought to determine the underlying endocrine mechanisms of estrogen impacts on the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis. Smolts in freshwater (FW) were either injected 3 times over 10 days with 2 μg g−1 17β-estradiol (E2) or 150 μg g−1 4-nonylphenol (NP). Seawater (SW)-acclimated fish received intraperitoneal implants of 30 μg g−1 E2 over two weeks. Treatment with these estrogenic compounds increased hepatosomatic index and total plasma calcium. E2 and NP reduced maximum growth hormone binding by 30–60% in hepatic and branchial membranes in FW and SW, but did not alter the dissociation constant. E2 and NP treatment decreased plasma levels of IGF-I levels in both FW and SW. In FW E2 and NP decreased plasma GH whereas in SW plasma GH increased after E2 treatment. Compared to controls, plasma chloride concentrations of E2-treated fish were decreased 5.5 mM in FW and increased 10.5 mM in SW. There was no effect of NP or E2 on gill sodium–potassium adenosine triphosphatase (Na+/K+-ATPase) activity in FW smolts, whereas E2 treatment in SW reduced gill Na+/K+-ATPase activity and altered the number and size of ionocytes. Our data indicate that E2 downregulates the GH/IGF-I-axis and SW tolerance which may be part of its normal function for reproduction and movement into FW. We conclude that the mechanism of endocrine disruption of smolt development by NP is in part through alteration of the GH/IGF-I axis via reduced GH receptor abundance.

  20. Fishmeal-free Atlantic salmon feed formulation shows promise - Joint research between TCFFI, USDA and EWOS uses new diet for post-smolt to food-size fish

    USDA-ARS?s Scientific Manuscript database

    The 2 MT/week of Atlantic salmon that The Conservation Fund Freshwater Institute provided to market in March and April of 2016 were fed a custom diet during nearly 90% of their growth that met the following sustainability criteria: - Fishmeal free - GMO free - Zero wild fish in: fish out according t...

  1. Trophic feasibility of reintroducing anadromous salmonids in three reservoirs on the north fork Lewis River, Washington: Prey supply and consumption demand of resident fishes

    USGS Publications Warehouse

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Beauchamp, David A.

    2016-01-01

    The reintroduction of anadromous salmonids in reservoirs is being proposed with increasing frequency, requiring baseline studies to evaluate feasibility and estimate the capacity of reservoir food webs to support reintroduced populations. Using three reservoirs on the north fork Lewis River as a case study, we demonstrate a method to determine juvenile salmonid smolt rearing capacities for lakes and reservoirs. To determine if the Lewis River reservoirs can support reintroduced populations of juvenile stream-type Chinook Salmon Oncorhynchus tshawytscha, we evaluated the monthly production of daphniaDaphnia spp. (the primary zooplankton consumed by resident salmonids in the system) and used bioenergetics to model the consumption demand of resident fishes in each reservoir. To estimate the surplus of Daphnia prey available for reintroduced salmonids, we assumed a maximum sustainable exploitation rate and accounted for the consumption demand of resident fishes. The number of smolts that could have been supported was estimated by dividing any surplus Daphnia production by the simulated consumption demand of an individual Chinook Salmon fry rearing in the reservoir to successful smolt size. In all three reservoirs, densities of Daphnia were highest in the epilimnion, but warm epilimnetic temperatures and the vertical distribution of planktivores suggested that access to abundant epilimnetic prey was limited. By comparing accessible prey supply and demand on a monthly basis, we were able to identify potential prey supply bottlenecks that could limit smolt production and growth. These results demonstrate that a bioenergetics approach can be a valuable method of examining constraints on lake and reservoir rearing capacity, such as thermal structure and temporal food supply. This method enables numerical estimation of rearing capacity, which is a useful metric for managers evaluating the feasibility of reintroducing Pacific salmon Oncorhynchus spp. in lentic systems.

  2. Triploid atlantic salmon (Salmo salar L.) post-smolts accumulate prevalence more slowly than diploid salmon following bath challenge with salmonid alphavirus subtype 3

    PubMed Central

    Moore, Lindsey J.; Nilsen, Tom Ole; Jarungsriapisit, Jiraporn; Fjelldal, Per Gunnar; Stefansson, Sigurd O.; Taranger, Geir Lasse; Patel, Sonal

    2017-01-01

    Triploid Atlantic salmon (Salmo salar L.) may play an important role in the sustainable expansion of the Norwegian aquaculture industry. Therefore, the susceptibility of triploid salmon to common infections such as salmonid alphavirus (SAV), the causative agent of pancreas disease (PD), requires investigation. In this study, shortly after seawater transfer, diploid and triploid post-smolts were exposed to SAV type 3 (SAV3) using a bath challenge model where the infectious dose was 48 TCID50 ml-1 of tank water. Copy number analysis of SAV3 RNA in heart tissue showed that there was no difference in viral loads between the diploids and triploids. Prevalence reached 100% by the end of the 35-day experimental period in both infected groups. However, prevalence accumulated more slowly in the triploid group reaching 19% and 56% at 14 and 21 days post exposure (dpe) respectively. Whereas prevalence in the diploid group was 82% and 100% at the same time points indicating some differences between diploid and triploid fish. Both heart and pancreas from infected groups at 14 dpe showed typical histopathological changes associated with pancreas disease. Observation of this slower accumulation of prevalence following a natural infection route was possible due to the early sampling points and the exposure to a relatively low dose of virus. The triploid salmon in this study were not more susceptible to SAV3 than diploid salmon indicating that they could be used commercially to reduce the environmental impact of escaped farmed fish interbreeding with wild salmon. This is important information regarding the future use of triploid fish in large scale aquaculture where SAV3 is a financial threat to increased production. PMID:28403165

  3. Triploid atlantic salmon (Salmo salar L.) post-smolts accumulate prevalence more slowly than diploid salmon following bath challenge with salmonid alphavirus subtype 3.

    PubMed

    Moore, Lindsey J; Nilsen, Tom Ole; Jarungsriapisit, Jiraporn; Fjelldal, Per Gunnar; Stefansson, Sigurd O; Taranger, Geir Lasse; Patel, Sonal

    2017-01-01

    Triploid Atlantic salmon (Salmo salar L.) may play an important role in the sustainable expansion of the Norwegian aquaculture industry. Therefore, the susceptibility of triploid salmon to common infections such as salmonid alphavirus (SAV), the causative agent of pancreas disease (PD), requires investigation. In this study, shortly after seawater transfer, diploid and triploid post-smolts were exposed to SAV type 3 (SAV3) using a bath challenge model where the infectious dose was 48 TCID50 ml-1 of tank water. Copy number analysis of SAV3 RNA in heart tissue showed that there was no difference in viral loads between the diploids and triploids. Prevalence reached 100% by the end of the 35-day experimental period in both infected groups. However, prevalence accumulated more slowly in the triploid group reaching 19% and 56% at 14 and 21 days post exposure (dpe) respectively. Whereas prevalence in the diploid group was 82% and 100% at the same time points indicating some differences between diploid and triploid fish. Both heart and pancreas from infected groups at 14 dpe showed typical histopathological changes associated with pancreas disease. Observation of this slower accumulation of prevalence following a natural infection route was possible due to the early sampling points and the exposure to a relatively low dose of virus. The triploid salmon in this study were not more susceptible to SAV3 than diploid salmon indicating that they could be used commercially to reduce the environmental impact of escaped farmed fish interbreeding with wild salmon. This is important information regarding the future use of triploid fish in large scale aquaculture where SAV3 is a financial threat to increased production.

  4. Early ocean survival and marine movements of hatchery and wild steelhead trout ( Oncorhynchus mykiss) determined by an acoustic array: Queen Charlotte Strait, British Columbia

    NASA Astrophysics Data System (ADS)

    Welch, David W.; Ward, Bruce R.; Batten, Sonia D.

    2004-03-01

    Early ocean movements, residency, and survival of steelhead (Oncorhynchus mykiss) were examined in Queen Charlotte Strait, a large (20×100 km2) marine area separating Vancouver Island from the mainland. The results provide the first detailed data on the ocean biology of hatchery and wild steelhead smolts. Initial ocean movements were not strongly directed, with most smolts swimming in the range of 0.2-0.5 body length (BL) s-1. The majority (78%) vacated Queen Charlotte Strait within 1 week of release in freshwater. Relative marine survival of hatchery smolts surgically implanted 1 month prior to release was identical to that of wild smolts implanted on the day of release; survival of hatchery smolts transported to the study site, implanted, and released all on the same day was significantly lower. The results suggest that the early marine survival of hatchery and wild smolts may be fundamentally similar, but that the cumulative stress of transportation and surgery may reduce post-surgery survival. Hatchery smolts moved at higher average swimming speeds than wild smolts, but the difference was not statistically significant. Early marine survival within the study region appears to be relatively high (⩾55%), contradicting assumptions that the early marine phase is the critical period for determining salmon recruitment.

  5. Umatilla Hatchery Monitoring and Evaluation, 1998-1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stonecypher, R. Wess; Groberg, Jr., Warren J.; Farman, Brett M.

    2001-07-01

    The Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program authorized construction of Umatilla Fish Hatchery (UFH) in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan (MI) raceways using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss). The hatchery was completed in fall 1991. Partial justification for the hatchery was to evaluate new production and supplementation techniques. MI raceways at UFH increase smolt production with a limited water supply. Test results for MI raceways will have systematicmore » application in the Columbia River basin. The UFH is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River (CTUIR and ODFW 1990) and is expected to contribute significantly to the Northwest Power Planning Council's goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan (CTUIR and ODFW 1990). The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery (Carmichael 1990) was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. The monitoring and evaluation goals are: (1) Provide information and recommendations for the culture and release of hatchery fish, harvest regulations, and natural escapement to accomplish long-term natural and hatchery production goals in the Umatilla River basin that are consistent with provisions of the Council's Columbia River Basin Fish and Wildlife Program. (2) Assess the success of achieving the management objectives in the Umatilla River basin that are presented in the Master Plan and the Comprehensive Rehabilitation Plan. A substantial proportion of the production at UFH is reared in MI raceways. This system has not been thoroughly evaluated to determine the effects on Smolt-to-adult survival (SAS). In addition, the rearing strategies proposed for spring chinook salmon require an unusually extensive period of incubation in chilled well water. Extensive background and justification for UFH monitoring and evaluation is presented in Carmichael (1990). In this report, we present findings for the UFH Monitoring and Evaluation Project from 1 November 1998 to 31 October 1999. We designed our program to evaluate fish cultural practices, conduct rearing and survival studies, assess sport fisheries, and provide information for planning and coordination. Additional studies have been designed for fall chinook salmon to evaluate straying and the effects of tagging. We monitored the culture and performance of more than 3.2 million chinook salmon and steelhead produced at UFH in 1997-98 (Appendix Tables A1-8). Individual stock profiles, release, performance, and return data of previously released groups are presented in the following sections.« less

  6. Sea louse control in Scotland, past and present.

    PubMed

    Rae, Gordon H

    2002-06-01

    Methods for farming the Atlantic salmon (Salmo salar L) in Scotland were developed at the Unilever Research Laboratory facility at Lochailort on the west coast of Scotland in the late 1960s. By the spring of 1972 a fledgling commercial company had been set up and Marine Harvest, as it was known, received its first year class of smolts at Lochailort. Sea lice (Lepeophtheirus salmonis Krøyer) from passing wild fish infected the smolts but did not cause any significant damage until the summer of 1976 when intervention was required. The Scottish industry has since grown to become a vital source of employment for fragile rural economies and produced about 130,000 tonnes of salmon in 2000. This paper gives an overview of how fish welfare has been maintained by the development of treatments and management strategies aimed at minimising the impact of sea lice.

  7. Energy economy of salmon aquaculture in the Baltic sea

    NASA Astrophysics Data System (ADS)

    Folke, Carl

    1988-07-01

    Resource utilization in Atlantic salmon aquaculture in the Baltic Sea was investigated by means of an energy analysis. A comparison was made between cage farming and sea ranching enterprises each with yearly yields of 40 t of Atlantic salmon. A variety of sea ranching options were evaluated, including (a) conventional ranching, (b) ranching employing a delayed release to the sea of young smolts, (c) harvesting salmon both by offshore fishing fleets and as they return to coastal areas, and (d) when offshore fishing is banned, harvesting salmon only as they return to coastal areas where released. Inputs both from natural ecosystems (i.e., fish consumed by ranched salmon while in the sea and raw materials used for producing dry food pellets) and from the economy (i.e., fossil fuels and energy embodied in economic goods and services) were quantified in tonnes for food energy and as direct plus indirect energy cost (embodied energy). The fixed solar energy (estimated as primary production) and the direct and indirect auxiliary energy requirements per unit of fish output were expressed in similar units. Similar quantities of living resources in tonnes per unit of salmon biomass output are required whether the salmon are feeding in the sea or are caged farmed. Cage farming is about 10 times more dependent on auxiliary energies than sea ranching. Sea ranching applying delayed release of smolts is 35 45% more efficient in the use of auxiliary energies than conventional sea ranching and cage farming. Restriction of offshore fishing would make sea ranching 3 to 6.5 times more efficient than cage farming. The fixed solar energy input to Atlantic salmon aquaculture is 4 to 63 times larger than the inputs of auxiliary energy. Thus, cage farming and sea ranching are both heavily dependent on the productivity of natural ecosystems. It is concluded that sustainable development of the aquaculture industry must be founded on ecologically integrated technologies which utilize the free production in marine ecosystems without exhausting or damaging the marine environment.

  8. Seasonal marine growth of Bristol Bay sockeye salmon (Oncorhynchus nerka) in relation to competition with Asian pink salmon (O. gorbuscho) and the 1977 ocean regime shift

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Farley, Ed; Nielsen, Jennifer L.; Hagen, Peter

    2005-01-01

    Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each growth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2. smolts was significantly higher than age-1 smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10-18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean regime shift. During 1977-2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955-1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977-2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.

  9. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1991 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Lynette A.; Martinson, Rick D.; Smith, W. William

    1992-04-01

    The 1991 smolt monitoring project of the National Marine Fisheries Service provided data on the seaward migration of juvenile salmon and steelhead at John Day, The Dalles and Bonneville Dams. All pertinent fish capture and condition data as well as dam operations and river flow data were provided to Fish Passage Center for use in developing fish passage indices and migration timing, and for water budget and spill management.

  10. Assessment of smolt condition for travel time analysis. Annual report 1988

    USGS Publications Warehouse

    Rondorf, D.W.; Beeman, J.W.; Faler, J.C.; Free, M.E.; Wagner, E.J.

    1989-01-01

    Estimates of migration rates and travel times of juvenile salmonids within index reaches of the Columbia River basin are collected through the Smolt Monitoring Program for use by the Fish Passage Center. With increased reliance upon travel time estimates in 1988 by the Fish Passage Center, this study was implemented to monitor the biological attributes of juvenile chinook salmon Oncorhynchus tshawytscha and steelhead trout 0.- mykiss used for the travel time estimates, The physiological ability of fish to respond to stress was assessed by measuring levels of plasma cortisol, glucose, and chloride before and after a stress-challenge test. Most mid-Columbia and Snake river groups responded normally to the stress challenge exhibiting an increase in plasma glucose and cortisol and a slight decrease in chloride. Fish trucked to release sites were more stressed than those released directly from the hatchery, but most still responded to the stress challenge test normally. An abnormal or extreme stress response occurred when there were deviations from preferred protocol, disease problems at hatcheries, or when fish were trucked over long periods (7h). The development of smoltification was evaluated by measuring gill Na+K+-ATPase, plasma thyroxine, purines, and body morphology. Most groups were similar at the hatcheries but differed as the migration to McNary Dam proceeded. Gill ATPase activity increased 2-3 fold during the first 20 days of migration, after which it changed little. Fish with longer in-river travel times appeared to be more smolted than those which were in the river for a shorter period of time. The prevalence of bacterial kidney disease (BKD) in spring chinook salmon was evaluated using the enzyme linked immunosorbent assay (ELISA) and fluorescent antibody technique (FAT). Prevalence of BKD in groups tested using the ELISA method was as high as 99% at some downstream locations. A review of indices is presented as a guide, to the development of an index of smolt condition and preliminary data are presented. An index could be used as a tool to synthesize information on fish condition to assist with management and evaluation of the Water Budget.

  11. Reduced marine survival of hatchery-reared Atlantic salmon post-smolts exposed to aluminium and moderate acidification in freshwater

    NASA Astrophysics Data System (ADS)

    Thorstad, Eva B.; Uglem, Ingebrigt; Finstad, Bengt; Kroglund, Frode; Einarsdottir, Ingibjörg Eir; Kristensen, Torstein; Diserud, Ola; Arechavala-Lopez, Pablo; Mayer, Ian; Moore, Andy; Nilsen, Rune; Björnsson, Björn Thrandur; Økland, Finn

    2013-06-01

    Short-term Al-exposure and moderate acidification increased initial marine mortality in migrating post-smolts, and can thereby reduce viability of Atlantic salmon stocks. The delayed impact of short-term aluminium (Al) exposure on hatchery-reared Atlantic salmon smolt in moderately acidified freshwater (pH 5.88-5.98) was investigated during the first 37 km of the marine migration. Smolts were tagged with acoustic tags and exposed to low (28.3 ± 4.6 μg l-1 labile Al, 90 h) or high (48.5 ± 6.4 μg l-1 labile Al, 90 or 48 h) Al concentrations within the hatchery. Thereafter their movements, together with a control group, were monitored throughout the marine fjord. Al-exposure resulted in increased gill-Al and compromised hypoosmoregulatory capacity, as shown by elevated mortality in laboratory seawater challenge tests and reduced Na+, K+-ATPase activity levels. Further, Al-exposure resulted in decreased plasma concentrations of growth hormone (GH), while the insulin-like growth factor (IGF-I) was unaffected. There was a significant mortality in the 90 h high-Al group during exposure, and those surviving until release died during the first 3.6 km of the marine migration. Physiological stress and mortality were not only a result of the Al-concentrations, but also dependent on exposure duration, as shown by results from the 48 h high-Al group. Elevated mortality was not recorded in freshwater or after entering the sea for this group, which highly contrasts to the 100% mortality in the 90 h high-Al group, despite both groups having similarly high gill-Al levels. The low-Al group showed a 20% higher mortality compared to the control group during the first 10 km of the marine migration, but during the next 28 km, mortality rates did not differ. Hence, post-smolts surviving the first 10 km subsequently showed no differences in mortality compared to controls. At least one third of the mortality in both the low-Al and control groups were due to predation by marine fishes, indicating that the proximate cause for elevated mortality due to Al-exposure may have been predation. Migration speeds over 3.6, 9.6 or 37.1 km from the release site was not affected by Al-exposure.

  12. Pilot study to access the role of Ceratomyxa shasta infection in mortality of fall-run Chinook smolts migrating through the lower Klamath River in 2008

    USGS Publications Warehouse

    Foott, Scott; Stutzer, Greg; Fogerty, R.; Hansel, Hal; Juhnke, Steven; Beeman, John W.

    2009-01-01

    Apparent survival and migration rate of radio-tagged hatchery subyearling Chinook salmon released at Iron Gate Hatchery was monitored in the Klamath River to see if the timing of mortality coincided with observations of ceratomyxosis in re-captured coded wire tag cohorts. Despite rapid emigration, these relatively large (mean fork length 92 mm) smolts had a cumulative apparent survival to the estuary of 0.074 (SE 0.024) and standardized rates of survival per 100 km tended to decrease linearly with distance from the hatchery. The last fish detection occurred 26 days after release but median travel time between Iron Gate Hatchery (rkm 309) and the last receiver near the Klamath estuary (Blake’s Riffle rkm 13) was about 10 days. The majority of apparent mortality (8-10 d post-release) occurred before disease from Ceratomyxa shasta infection is expected after exposure to infectious waters. Despite numerous observations of ceratomyxosis in the Klamath R. during June, an obvious link between disease and apparent survival was not present in this study. Future studies should examine the acute (e.g., predator types and densities) and chronic (e.g., swimming performance impairment due to disease) mortality factors for juvenile Chinook salmon smolts in the Klamath River.

  13. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha in the Willamette River, Oregon, USA

    USGS Publications Warehouse

    Billman, E.J.; Whitman, L.D.; Schroeder, R.K.; Sharpe, C.S.; Noakes, David L. G.; Schreck, Carl B.

    2014-01-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  14. Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Erik

    The Bonneville Power Administration (BPA) funded the development of two master plans which outline the rationale, and general approach, for implementing a defined group of projects that are an integral part of a comprehensive watershed goal to 'Protect, enhance and restore wild and natural populations of anadromous and resident fish within the Hood River Subbasin'. The Hood River Production Master Plan and the Pelton Ladder Master Plan were completed in 1991 and subsequently approved by the Northwest Power Planning Council in 1992. Action items identified in the two master plans, as well as in a later document entitled 'Hood River/Peltonmore » Ladder Master Agreement' (ODFW and CTWSRO Undated), are designed to achieve two biological fish objectives: (1) to increase production of wild summer and winter steelhead (Oncorhynchus mykiss) to levels commensurate with the subbasins current carrying capacity and (2) re-establishing a self-sustaining population of spring chinook salmon (Oncorhynchus tshawytscha). Numerical fish objectives for subbasin escapement, spawner escapement, and subbasin harvest are defined for each of these species in Coccoli (2000). Several projects are presently funded by the BPA to achieve the Hood River subbasin's numerical fish objectives for summer and winter steelhead and spring chinook salmon. They include BPA project numbers 1998-021-00 (Hood River Fish Habitat), 1998-053-03 (Hood River Production Program - CTWSRO: M&E), 1998-053-07 (Parkdale Fish Facility), 1998-053-08 (Powerdale/Oak Springs O&M), and 1998-053-12 (Hood River Steelhead Genetics Study). Collectively, they are implemented under the umbrella of what has come to be defined as the Hood River Production Program (HRPP). The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and The Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO). Strategies for achieving the HRPP's biological fish objectives for the Hood River subbasin were initially devised based on various assumptions about (1) subbasin carrying capacity, (2) survival rates for selected life history stages, and (3) historic and current escapements of wild, natural, and hatchery stocks of anadromous salmonids to the Hood River subbasin. The Oregon Department of Fish and Wildlife began funding a monitoring and evaluation (M&E) project in December 1991 to collect the quantitative biological information needed to (1) more accurately assess the validity of these assumptions and (2) evaluate the proposed hatchery supplementation component of the HRPP. Bonneville Power Administration assumed funding of the M&E project in August 1992. The M&E project was initially confined to sampling anadromous salmonids escaping to an adult trapping facility operated at Powerdale Dam; which is located at River Mile (RM) 4.5 on the mainstem of the Hood River. Stock specific life history and biological data was collected to (1) monitor subbasin spawner escapements and (2) collect pre-implementation data critical to evaluating the newly proposed HRPP's potential biological impact on indigenous populations of resident fish. The scope of the M&E project was expanded in 1994 to collect the data needed to quantify (1) subbasin smolt production and carrying capacity, (2) smolt to adult survival rates, and (3) the spatial distribution of indigenous populations of summer and winter steelhead, spring and fall chinook salmon, and coho salmon. A creel was incorporated into the M&E project in December 1996 to evaluate the HRPP with respect to its defined subbasin and spawner escapement objectives for Hood River stocks of wild and hatchery summer and winter steelhead and for natural and Deschutes stock hatchery spring chinook salmon. In 1996, the M&E project also began monitoring streamflow at various locations in the Hood River subbasin. Streamflow data will be used to correlate subbasin smolt production with summer streamflows. Data collected from 1991-1999 is reported in the following annual progress reports: Olsen et al. (1994), Olsen et al. (1995), Olsen and French (1996), Olsen et al. (1996), Olsen and French (1999), and Olsen and French (2000). The annual progress reports document information collected on (1) rearing densities of indigenous fish, (2) subbasin steelhead smolt production, (3) post-release survival of acclimated and direct released hatchery summer and winter steelhead smolts, (4) smolt to adult anadromous salmonid survival rates, (5) jack and adult anadromous salmonid escapements and harvest, (6) spatial distribution of adult anadromous salmonid holding in the Hood River subbasin, (7) selected life history patterns and morphological and meristic characteristics of wild, natural, and hatchery resident and anadromous salmonids, and (8) summer streamflows.« less

  15. Designing a monitoring program to estimate estuarine survival of anadromous salmon smolts: simulating the effect of sample design on inference

    USGS Publications Warehouse

    Romer, Jeremy D.; Gitelman, Alix I.; Clements, Shaun; Schreck, Carl B.

    2015-01-01

    A number of researchers have attempted to estimate salmonid smolt survival during outmigration through an estuary. However, it is currently unclear how the design of such studies influences the accuracy and precision of survival estimates. In this simulation study we consider four patterns of smolt survival probability in the estuary, and test the performance of several different sampling strategies for estimating estuarine survival assuming perfect detection. The four survival probability patterns each incorporate a systematic component (constant, linearly increasing, increasing and then decreasing, and two pulses) and a random component to reflect daily fluctuations in survival probability. Generally, spreading sampling effort (tagging) across the season resulted in more accurate estimates of survival. All sampling designs in this simulation tended to under-estimate the variation in the survival estimates because seasonal and daily variation in survival probability are not incorporated in the estimation procedure. This under-estimation results in poorer performance of estimates from larger samples. Thus, tagging more fish may not result in better estimates of survival if important components of variation are not accounted for. The results of our simulation incorporate survival probabilities and run distribution data from previous studies to help illustrate the tradeoffs among sampling strategies in terms of the number of tags needed and distribution of tagging effort. This information will assist researchers in developing improved monitoring programs and encourage discussion regarding issues that should be addressed prior to implementation of any telemetry-based monitoring plan. We believe implementation of an effective estuary survival monitoring program will strengthen the robustness of life cycle models used in recovery plans by providing missing data on where and how much mortality occurs in the riverine and estuarine portions of smolt migration. These data could result in better informed management decisions and assist in guidance for more effective estuarine restoration projects.

  16. Innovative techniques for analyzing the three-dimensional behavioral results from acoustically tagged fish

    NASA Astrophysics Data System (ADS)

    Steig, Tracey W.; Timko, Mark A.

    2005-04-01

    Acoustic tags were used to monitor the swimming patterns of downstream migrating salmon smolts approaching various dams on the Columbia River, USA. Downstream migrating yearling chinook (Oncorhynchus tshawytscha), steelhead (Oncorhynchus mykiss), sockeye (Oncorhynchus nerka), and sub-yearling chinook smolts were surgically implanted with acoustic tags. Fish were tracked in three-dimensions as they approached and passed into the turbine intakes, spillways, and surface bypass channel entrances at the dams during the 2004 spring and summer outmigrations. A number of advances in the analysis techniques and software have been made over the past few years. Some of these improvements include the development of various fish density algorithms, stream trace modeling analysis, and advances of three-dimensional animation programs. Three-dimensional tracks of fish approaching the turbine intakes, spillways, and surface bypass channel entrances will be presented. Concentrations of fish passage will be presented as three-dimensional fish densities superimposed over dam structures. Stream trace modeling animation will be presented showing predicted fish passage routes.

  17. Addressing Sustainability: Energy consumption of two Atlantic salmon smolt hatcheries

    USDA-ARS?s Scientific Manuscript database

    Commercial aquaculture is driven by production costs and economic returns, but conventional economic analyses do not typically include societal costs due to ecological or environmental change, thus actual production costs may be seriously underestimated. Sustainability implies that food production s...

  18. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, Catherine; Hebdon, J. Lance; Castillo, Jason

    2004-06-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacksmore » and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2002. Age-0, age-1, and age-2 O. nerka were captured in Redfish Lake, and population abundance was estimated at 50,204 fish. Age-0, age-1, age-2, and age-3 kokanee were captured in Alturas Lake, and population abundance was estimated at 24,374 fish. Age-2 and age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 18,328 fish. The ultimate goal of the Idaho Department of Fish and Game (IDFG) captive broodstock development and evaluation efforts is to recover sockeye salmon runs in Idaho waters. Recovery is defined as reestablishing sockeye salmon runs and providing for utilization of sockeye salmon and kokanee resources by anglers. The immediate project goal is to maintain this unique sockeye salmon population through captive broodstock technology and avoid species extinction. The project objectives are: (1) Develop captive broodstocks from Redfish Lake anadromous sockeye salmon. (2) Determine the contribution hatchery-produced sockeye salmon make toward avoiding population extinction and increasing population abundance. (3) Describe O. nerka population characteristics for Sawtooth Valley lakes in relation to carrying capacity and broodstock program supplementation efforts. (4) Refine our ability to discern the origin of wild and broodstock sockeye salmon to provide maximum effectiveness in their utilization within the broodstock program. (5) Transfer technology through participation in the technical oversight committee process, providing written activity reports and participation in essential program management and planning activities.« less

  19. "Research to Improve the Efficacy of Captive Broodstock Programs and Advance Hatchery Reform Throughout the Columbia River Basin." [from the Abstract], 2007-2008 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.

    This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia river basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: Adult and jack Chinook salmon males were stocked into four replicate spawning channels at a constant density (N = 16 per breeding group), but different ratios, and were left to spawn naturallymore » with a fixed number of females (N = 6 per breeding group). Adult males obtained primary access to females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Spawning participation by jack and adult males is consistent with a negative frequency dependent selection model, which means that selection during spawning favors the rarer life history form. Results of DNA parentage assignments will be analyzed to estimate adult-to-fry fitness of each male. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. The results suggest that sockeye salmon are capable of imprinting to homing cues during the developmental periods that correspond to several of current release strategies employed as part of the Captive Broodstock program (specifically, planting eyed eggs, fall and smolt releases into the lake) appear to be appropriate for successful homing of sockeye in Redfish Lake. Also, our findings indicated that sockeye salmon were capable of olfactory imprinting at multiple life stages and over varying exposure durations. Fish exposed to odors just prior to smolting showed the strongest attraction to the imprinting odor arginine and this period corresponds to the period of highest plasma thyroxine levels and increased BAAR receptor mRNA in juveniles. Objective 3: Spring Chinook salmon were exposed to three different photoperiods and three feed rations at the button-up stage of development. Both photoperiod at emergence and ration post-ponding affected the number of males maturing at age one. Nearly 70% of the males in the early emergence and satiation fed group matured after the first year of rearing, while none of the fish reared on late emergence photoperiod (equivalent to emergence on May 1) matured during this time irrespective of ration treatment. Within the early emergence groups, reducing growth using ration (low or high) appeared to reduce the number of males maturing at age one from 70% to 40-50%. Maturation rates of fish that emerged in a photoperiod equivalent to mid-February (middle emergence) ranged from 10-25%. Together these data indicate that the seasonal timing of fry emergence and growth after ponding can alter life history patterns in spring Chinook salmon. The results imply that hatchery rearing practices that alter seasonal timing of fry emergence can have drastic effects on life history patterns in juvenile Chinook salmon. All three objectives are on-going and will result in recommendations (at the end of the FY 2009 performance period) to advance hatchery reforms in conventional and captive broodstock programs.« less

  20. Interaction between migration behaviour and estuarine mortality in cultivated Atlantic salmon Salmo salar smolts.

    PubMed

    Vollset, K W; Mahlum, S; Davidsen, J G; Skoglund, H; Barlaup, B T

    2016-10-01

    Migration behaviour and estuarine mortality of cultivated Atlantic salmon Salmo salar smolts in a 16 km long estuary were studied using two methods: (1) acoustic telemetry and (2) group tagging in combination with trap nets. Progression rates of surviving individuals through the estuary were relatively slow using both methods [0·38 L T (total length) s -1 v. 0·25 L T  s -1 ]. In 2012, the progression rate was slow from the river to the estuary (0·55 L T  s -1 ) and the first part of the estuary (0·31 L T  s -1 ), but increased thereafter (1·45-2·21 L T  s -1 ). In 2013, the progression rate was fast from the river to the estuary (4·31 L T  s -1 ) but was slower thereafter (0·18-0·91 L T  s -1 ). Survival to the fjord was higher in 2012 (47%) compared to 2013 (6%). Fast moving individuals were more likely to migrate successfully through the estuary compared to slower moving individuals. Adult recapture of coded-wire-tagged S. salar was generally low (0·00-0·04%). Mortality hot spots were related to topographically distinct areas such as the river outlet (in 2012) or the sill separating the estuary and the fjord (in 2013). At the sill, an aggregation of cod Gadus morhua predating on cultivated smolts was identified. The results indicate that slow progression rates through the estuary decreases the likelihood of smolts being detected outside the estuary. The highly stochastic and site-specific mortality patterns observed in this study highlight the complexity in extrapolating mortality patterns of single release groups to the entire smolt run of wild S. salar. © 2016 The Fisheries Society of the British Isles.

  1. Genome-wide association analysis reveals loci associated with resistance against Piscirickettsia salmonis in two Atlantic salmon (Salmo salar L.) chromosomes.

    PubMed

    Correa, Katharina; Lhorente, Jean P; López, María E; Bassini, Liane; Naswa, Sudhir; Deeb, Nader; Di Genova, Alex; Maass, Alejandro; Davidson, William S; Yáñez, José M

    2015-10-24

    Pisciricketssia salmonis is the causal agent of Salmon Rickettsial Syndrome (SRS), which affects salmon species and causes severe economic losses. Selective breeding for disease resistance represents one approach for controlling SRS in farmed Atlantic salmon. Knowledge concerning the architecture of the resistance trait is needed before deciding on the most appropriate approach to enhance artificial selection for P. salmonis resistance in Atlantic salmon. The purpose of the study was to dissect the genetic variation in the resistance to this pathogen in Atlantic salmon. 2,601 Atlantic salmon smolts were experimentally challenged against P. salmonis by means of intra-peritoneal injection. These smolts were the progeny of 40 sires and 118 dams from a Chilean breeding population. Mortalities were recorded daily and the experiment ended at day 40 post-inoculation. Fish were genotyped using a 50K Affymetrix® Axiom® myDesignTM Single Nucleotide Polymorphism (SNP) Genotyping Array. A Genome Wide Association Analysis was performed on data from the challenged fish. Linear regression and logistic regression models were tested. Genome Wide Association Analysis indicated that resistance to P. salmonis is a moderately polygenic trait. There were five SNPs in chromosomes Ssa01 and Ssa17 significantly associated with the traits analysed. The proportion of the phenotypic variance explained by each marker is small, ranging from 0.007 to 0.045. Candidate genes including interleukin receptors and fucosyltransferase have been found to be physically linked with these genetic markers and may play an important role in the differential immune response against this pathogen. Due to the small amount of variance explained by each significant marker we conclude that genetic resistance to this pathogen can be more efficiently improved with the implementation of genetic evaluations incorporating genotype information from a dense SNP array.

  2. Steelhead Supplementation in Idaho Rivers, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Alan

    In 2000, we continued our assessment of the Sawtooth Hatchery steelhead stock to reestablish natural populations in Beaver and Frenchman creeks in the upper Salmon River. We stocked both streams with 15 pair of hatchery adults and estimated the potential smolt production from the 1999 outplant. I estimated that about nine smolts per female could be produced in both streams from the 1999 outplant. The smolt-to-adult return would need to exceed 20% to return two adults at this level of production. In the Red River drainage, we stocked Dworshak hatchery stock fingerlings and smolts, from 1993 to 1999, to assessmore » which life-stage produces more progeny when the adults return to spawn. In 2000, we operated the Red River weir to trap adults that returned from these stockings, but none were caught from either group. We continued to monitor wild steelhead populations in the Lochsa and Selway river drainages. We estimated that 26 wild adult steelhead returned to Fish Creek. This is the lowest adult escapement we have documented (when the weir was intact all spring) since we began monitoring Fish Creek in 1992. I estimated that nearly 25,000 juvenile steelhead migrated out of Fish Creek this year. Juvenile steelhead densities in Lochsa and Selway tributaries were similar to those observed in 1999. In 2000, we obtained funding for a DNA analysis to assess Idaho's steelhead stock structure. We collected fin samples from wild steelhead in 70 streams of the Clearwater, Snake, and Salmon River drainages and from our five hatchery stocks. The DNA analysis was subcontracted to Dr. Jennifer Nielsen, Alaska Biological Science Center, Anchorage, and will be completed in 2001.« less

  3. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gass, Carrie; Olson, Jim M.

    2004-11-01

    In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags)more » was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.« less

  4. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretz, Justin K.; Olson, Jill M.

    2003-03-01

    In 2002 the Idaho Fisheries Resource Office continued working as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, broodstock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate the project data points and augment past data. Supplementation treatments included the release of 51,329 left ventral-clipped smolts into Clear Creek (750 were PIT tagged), and 12,000 unmarked coded-wire tagged parr into Pete King Creek (998 were PIT tagged). Using juvenile collection methods, Idaho Fisheries Resource Officemore » staff PIT tagged and released 579 naturally produced spring chinook juveniles in Clear Creek, and 54 on Pete King Creek, for minimum survival estimates to Lower Granite Dam. For Clear Creek, minimum survival estimates to Lower Granite Dam of hatchery produced supplementation and naturally produced PIT tagged smolts, were 36.0%, and 53.1%, respectively. For Pete King Creek, minimum survival estimates to Lower Granite Dam, of hatchery produced supplementation smolts and naturally produced smolts PIT tagged as parr and presmolts, were 18.8%, and 8.3%, respectively. Adults collected for broodstock in 2002 represented the final adult broodstock group collected for the ISS project. Twenty-six ventral clipped, and 28 natural adult spring chinook were transported above the weir. Monitoring and evaluation of spawning success was continued on Clear and Pete King creeks. A total of 69 redds were counted and 79 carcasses were recovered on Clear Creek. Two redds were observed and no carcasses were collected on Pete King Creek.« less

  5. Osmoregulation in Atlantic salmon Salmo salar smolts transferred to seawater at different temperatures.

    PubMed

    Handeland, S O; Imsland, A K; Nilsen, T O; Ebbesson, L O E; Hosfeld, C D; Pedrosa, C; Toften, H; Stefansson, S O

    2014-10-01

    In order to investigate how changes in gill Na(+) , K(+) -ATPase (NKA) α1a and α1b subunits, Na(+) , K(+) , 2Cl(-) co-transporter (NKCC1) and the apical cystic fibrosis trans-membrane conductance regulator-I (CFTR-I) transcripts in wild strain of Atlantic salmon, Salmo salar, smolts are affected by temperature during spring, hatchery-reared parr (mean ± s.e. fork length = 14·1 ± 0·5; mean ± s.e. body mass = 28·5 ± 4·5 g) originating from broodstock from the Vosso river (western Norway) were acclimated to three temperature regimes (4·1, 8·1 and 12·9° C) in May and reared under gradually increasing salinity between May and June. Changes in plasma Na(+) , haematocrit (Hct) and PCO2 were monitored in order to assess and compare key physiological changes with the transcriptional changes in key ion transporters. The temperatures reflect the natural temperature range in the River Vosso during late spring. Overall, higher gill NKA α1b mRNA levels, gill NKCC1a levels and CFTR-I levels were observed in the 4·1° C group compared to the 11·9° C group. This coincided with a 2-3 week period with decreased Hct and PCO2 and may indicate a critical window when smolts suffer from reduced physical performance during migration. Further research is needed to confirm the potential interaction between ecological and physiological conditions on mortality of hatchery-reared smolts from River Vosso during their natural migration. © 2014 The Fisheries Society of the British Isles.

  6. Effects of feed quality and quantity on growth, early maturation and smolt development in hatchery-reared landlocked Atlantic salmon Salmo salar.

    PubMed

    Norrgård, J R; Bergman, E; Greenberg, L A; Schmitz, M

    2014-10-01

    The effects of feed quality and quantity on growth, early male parr maturation and development of smolt characteristics were studied in hatchery-reared landlocked Atlantic salmon Salmo salar. The fish were subjected to two levels of feed rations and two levels of lipid content from first feeding until release in May of their second year. Salmo salar fed high rations, regardless of lipid content, grew the most and those fed low lipid feed with low rations grew the least. In addition, fish fed low lipid feed had lower body lipid levels than fish fed high lipid feed. Salmo salar from all treatments showed some reduction in condition factor (K) and lipid levels during their second spring. Smolt status was evaluated using both physiological and morphological variables. These results, based on gill Na(+) , K(+) -ATPase (NKA) enzyme activity, saltwater tolerance challenges and visual assessments, were consistent with each other, showing that S. salar from all treatments, except the treatment in which the fish were fed low rations with low lipid content, exhibited characteristics associated with smolting at 2 years of age. Sexually mature male parr from the high ration, high lipid content treatment were also subjected to saltwater challenge tests, and were found to be unable to regulate plasma sodium levels. The proportion of sexually mature male parr was reduced when the fish were fed low feed rations, but was not affected by the lipid content of the feed. Salmo salar fed low rations with low lipid content exhibited the highest degree of severe fin erosion. © 2014 The Fisheries Society of the British Isles.

  7. Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding

    PubMed Central

    Milot, Emmanuel; Perrier, Charles; Papillon, Lucie; Dodson, Julian J; Bernatchez, Louis

    2013-01-01

    Salmonids rank among the most socioeconomically valuable fishes and the most targeted species by stocking with hatchery-reared individuals. Here, we used molecular parentage analysis to assess the reproductive success of wild- and hatchery-born Atlantic salmon over three consecutive years in a small river in Québec. Yearly restocking in this river follows a single generation of captive breeding. Among the adults returning to the river to spawn, between 11% and 41% each year were born in hatchery. Their relative reproductive success (RRS) was nearly half that of wild-born fish (0.55). RRS varied with life stage, being 0.71 for fish released at the fry stage and 0.42 for fish released as smolt. The lower reproductive success of salmon released as smolt was partly mediated by the modification of the proportion of single-sea-winter/multi-sea-winter fish. Overall, our results suggest that modifications in survival and growth rates alter the life-history strategies of these fish at the cost of their reproductive success. Our results underline the potential fitness decrease, warn on long-term evolutionary consequences for the population of repeated stocking and support the adoption of more natural rearing conditions for captive juveniles and their release at a younger stage, such as unfed fry. PMID:23745139

  8. Comparison of fatty acids and lipids of smolting hatchery-fed and wild Atlantic salmon Salmo salar.

    PubMed

    Ackman, R G; Takeuchi, T

    1986-02-01

    In Atlantic Canada the Atlantic salmon Salmo salar change from the parr stage to the smolt stage while still in fresh water, preparatory to migration to salt water. In some stocks this takes place during the second overwintering. In several hatcheries where the water temperature drops to 0-0.5 C and the ponds ice over, there is a high incidence of erosion of the dorsal and pectoral fins and sometimes of the caudal fin. No disease organism has been identified, and the lesions heal over in most cases. Dietary fatty acids were thought to be a factor. A detailed study of lipid recoveries and classes has shown that in the skins of abnormal fish the total lipid is 7.8% compared to 4.7% in control fish. Unexpectedly, an analysis of one lot of healthy smoltstage wild fish showed that whole bodies have only a quarter of the lipid of comparable hatchery fish. Comparison of fatty acids showed that wild fish lipids include a higher proportion of arachidonic acid than those of the hatchery fish. In the latter, linoleic acid is provided readily by diet but the elongation to arachidonic acid evidently does not proceed. These results suggest that the smolt lipid is involved intimately with either the cause of the dermal lesion or is a defense mechanism, possibly mediated through oxygenase activity.

  9. Risk factors for outbreaks of infectious salmon anemia in farmed Atlantic salmon, Salmo salar.

    PubMed

    McClure, Carol A; Hammell, K Larry; Dohoo, Ian R

    2005-12-12

    Infectious salmon anemia (ISA) is a viral disease occurring in farmed Atlantic salmon (Salmo salar) that is characterized by lethargy, anorexia, anemia and death. To control the disease in New Brunswick, Canada, 7.5 million fish from outbreak cages have been destroyed since 1997. Despite changes made by farmers, 2002 was the worst year ever for ISA losses in the region. We evaluated the associations between potential risk factors and ISA outbreaks in the Atlantic-salmon sites in New Brunswick. This was a multilevel study in which the site-level design was a retrospective cohort study while the cage-level design was a modified case-cohort study. The questionnaire was divided into site-level questions, cage-level questions and hatchery information. The important factors identified by this study can be categorized as environmental, farmer controlled or industry controlled according to the capacity to change or eliminate them. Environmental risk factors such as increasing the depth of the net (if nets were 3m, OR=3.34) are for the most part dictated by site location. Wild pollock (Pollachius virens) in the cage reflects the number of wild pollock that live in the site location. If there were >or=1000 pollock in the cage, the odds of disease in the cage increased 4.43-fold. Risk factors that are under farm control include increasing the number of times that the salmon are treated for sea lice (OR=3.31 if lice treatments are 99 g) and improving on the adaptation of smolts to seawater to reduce post-transfer mortalities (OR=4.52 if there was at least one cage with post-transfer mortalities >5%). The industry-controlled factors need to be addressed by the industry as a whole. Organizing boat travel to minimize the time and frequency of boats travelling to or by sites currently is being reviewed. This will be extremely important because the OR=9.43 if processing boats travel within 1 km of the site and the OR=4.03 if the site has dry feed delivered by the feed company. Because the hazard ratio increased stepwise from 1 if the nearest neighbor with ISA was >or=5 km up to 5.5 if the nearest site with ISA was within 0.5 km, increasing the distance between sites might be necessary for effective control.

  10. Intestinal barrier function of Atlantic salmon (Salmo salar L.) post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator.

    PubMed

    Sundh, Henrik; Kvamme, Bjørn Olav; Fridell, Frode; Olsen, Rolf Erik; Ellis, Tim; Taranger, Geir Lasse; Sundell, Kristina

    2010-11-09

    Fish farmed under high intensity aquaculture conditions are subjected to unnatural environments that may cause stress. Therefore awareness of how to maintain good health and welfare of farmed fish is important. For Atlantic salmon held in sea cages, water flow, dissolved oxygen (DO) levels and temperature will fluctuate over time and the fish can at times be exposed to detrimentally low DO levels and high temperatures. This experimental study investigates primary and secondary stress responses of Atlantic salmon post smolts to long-term exposure to reduced and fluctuating DO levels and high water temperatures, mimicking situations in the sea cages. Plasma cortisol levels and cortisol release to the water were assessed as indicators of the primary stress response and intestinal barrier integrity and physiological functions as indicators of secondary responses to changes in environmental conditions. Plasma cortisol levels were elevated in fish exposed to low (50% and 60% saturation) DO levels and low temperature (9°C), at days 9, 29 and 48. The intestinal barrier function, measured as electrical resistance (TER) and permeability of mannitol at the end of the experiment, were reduced at 50% DO, in both proximal and distal intestine. When low DO levels were combined with high temperature (16°C), plasma cortisol levels were elevated in the cyclic 1:5 h at 85%:50% DO group and fixed 50% DO group compared to the control (85% DO) group at day 10 but not at later time points. The intestinal barrier function was clearly disturbed in the 50% DO group; TER was reduced in both intestinal regions concomitant with increased paracellular permeability in the distal region. This study reveals that adverse environmental conditions (low water flow, low DO levels at low and high temperature), that can occur in sea cages, elicits primary and secondary stress responses in Atlantic salmon post smolts. The intestinal barrier function was significantly affected by prolonged hypoxic stress even when no primary stress response was observed. This suggests that intestinal barrier function is a good experimental marker for evaluation of chronic stress and that it can be a valuable tool to study the impact of various husbandry conditions on health and welfare of farmed Atlantic salmon.

  11. Intestinal barrier function of Atlantic salmon (Salmo salar L.) post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator

    PubMed Central

    2010-01-01

    Background Fish farmed under high intensity aquaculture conditions are subjected to unnatural environments that may cause stress. Therefore awareness of how to maintain good health and welfare of farmed fish is important. For Atlantic salmon held in sea cages, water flow, dissolved oxygen (DO) levels and temperature will fluctuate over time and the fish can at times be exposed to detrimentally low DO levels and high temperatures. This experimental study investigates primary and secondary stress responses of Atlantic salmon post smolts to long-term exposure to reduced and fluctuating DO levels and high water temperatures, mimicking situations in the sea cages. Plasma cortisol levels and cortisol release to the water were assessed as indicators of the primary stress response and intestinal barrier integrity and physiological functions as indicators of secondary responses to changes in environmental conditions. Results Plasma cortisol levels were elevated in fish exposed to low (50% and 60% saturation) DO levels and low temperature (9°C), at days 9, 29 and 48. The intestinal barrier function, measured as electrical resistance (TER) and permeability of mannitol at the end of the experiment, were reduced at 50% DO, in both proximal and distal intestine. When low DO levels were combined with high temperature (16°C), plasma cortisol levels were elevated in the cyclic 1:5 h at 85%:50% DO group and fixed 50% DO group compared to the control (85% DO) group at day 10 but not at later time points. The intestinal barrier function was clearly disturbed in the 50% DO group; TER was reduced in both intestinal regions concomitant with increased paracellular permeability in the distal region. Conclusions This study reveals that adverse environmental conditions (low water flow, low DO levels at low and high temperature), that can occur in sea cages, elicits primary and secondary stress responses in Atlantic salmon post smolts. The intestinal barrier function was significantly affected by prolonged hypoxic stress even when no primary stress response was observed. This suggests that intestinal barrier function is a good experimental marker for evaluation of chronic stress and that it can be a valuable tool to study the impact of various husbandry conditions on health and welfare of farmed Atlantic salmon. PMID:21062437

  12. The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males.

    PubMed

    Ayllon, Fernando; Kjærner-Semb, Erik; Furmanek, Tomasz; Wennevik, Vidar; Solberg, Monica F; Dahle, Geir; Taranger, Geir Lasse; Glover, Kevin A; Almén, Markus Sällman; Rubin, Carl J; Edvardsen, Rolf B; Wargelius, Anna

    2015-11-01

    Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1-5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33-36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.

  13. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy

    2006-05-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound inmore » Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred to Eagle Fish Hatchery on September 14, 2004 and later incorporated into hatchery spawn matrices. Nine anadromous females, 102 captive females from brood year 2001, and one captive female from brood year 2000 broodstock groups were spawned at the Eagle Hatchery in 2004. Spawn pairings produced approximately 140,823 eyed-eggs with egg survival to eyed stage of development averaging 72.8%. Eyed-eggs (49,134), presmolts (130,716), smolts (96), and adults (241) were planted or released into Sawtooth Valley waters in 2004. Reintroduction strategies involved releases to Redfish Lake, Alturas Lake, and Pettit Lake. During this reporting period, five broodstocks and five unique production groups were in culture at Idaho Department of Fish and Game (Eagle Fish Hatchery and Sawtooth Fish Hatchery) and Oregon Department of Fish and Wildlife (Oxbow Fish Hatchery) facilities. Two of the five broodstocks were incorporated into the 2004 spawning design.« less

  14. Snake River Sockeye Salmon Habitat and Limnological Research; 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Robert G.; Taki, Doug; Lewis, Bert

    2001-01-15

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  15. Snake River Sockeye Salmon Habitat and Limnological Research; 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2002-12-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2000 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  16. LIFE HISTORY MONITORING OF SALMONIDS IN THE WEST FORK SMITH RIVER, UMPQUA BASIN, OREGON

    EPA Science Inventory

    As a life-cycle monitoring basin for the Oregon Salmon Plan, the Oregon Department of Fish and Wildlife has estimated adult returns, distribution and smolt outmigration of coho, chinook and winter steelhead in the West Fork Smith River since 1998. In 2001/2002, the Environmenta...

  17. Fish distribution during smolt migration in the Penobscot Estuary, ME

    NASA Astrophysics Data System (ADS)

    Volkel, S. L.

    2016-02-01

    Estuaries are complex and dynamic ecosystems. The Penobscot Estuary is particularly important because it harbors a suite of imperiled diadromous fish species. In order to properly manage these populations, it is imperative to understand their distribution and ecology. My study focuses on May because endangered Atlantic salmon migrate seaward then. Successful emigration of these smolts is important to the population's overall fitness. One potential way to increase the likelihood of migratory success (survival) is to decrease their risk of predation. Assuming that predators in this system are generalists, overall smolt predation may be reduced by having a larger selection of alternative prey (other fish species). We hypothesize that diadromous fish abundance is increasing as a result of recent (2012-2013) dam removals. To explore this hypothesis, I used hydroacoustic methods to characterize the distribution patterns of alternative prey (TL=10-30 cm). I found that peak fish abundances occurred in the mid-estuary, especially during mid-May, and depth distribution patterns varied weekly. By understanding these seasonal, longitudinal, and vertical distribution patterns, I explored potential interactions of other fish populations as prey buffers to emigrating smolts.

  18. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2014 - 12/31/2014

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2015-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was influenced by the expansion of the recovery program. The long-term goal is to use the information covered here in a comprehensive modeling effort to conduct action effectiveness and uncertainty research and to inform fish population, hydrosystem, harvest, hatchery, and predation and invasive species management RM&E.

  19. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2012 – 12/31/2013: Annual report, 1991-029-00

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St. John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2014-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was influenced by the expansion of the recovery program. The long-term goal is to use the information covered here in a comprehensive modeling effort to conduct action effectiveness and uncertainty research and to inform fish population, hydrosystem, harvest, hatchery, and predation and invasive species management RM&E.

  20. Gas Supersaturation May Reduce the Survival of Yearling Chinook Salmon in the Lower Columbia River and Ocean Plume

    NASA Technical Reports Server (NTRS)

    Brosnan, Ian; Welch, David; Scott, Melinda Jacobs

    2015-01-01

    Unusually high flows in the Columbia River in 2011 raised total dissolved gas (TDG) levels in the river above the 120 percent legal limit imposed to prevent harmful impacts to aquatic organisms. This provided a unique opportunity to evaluate the effect on smolt survival. In-river (IR) migrating juvenile yearling Chinook released at Bonneville Dam with acoustic tags during periods when TDG exceeded 120 percent received estimated maximum exposures of 134 TDG. Subsequent daily survival rates in the lower river and plume were reduced by 0.06 per day (SE equals 0.01) and 0.15 per day (SE equals 0.05) relative to IR migrant fish released when TDG was less than 120 percent. Transported smolts (T) released 10-13 kilometers below Bonneville Dam had lower maximum exposure levels (126 percent) and experienced no difference in daily survival rates relative to unexposed smolts. River temperature levels and trends in turbidity and disease prevalence between releases of high and low exposure smolts were not consistent with the observed effects on survival rates. We conclude that smolts may suffer from chronic effects of elevated TDG exposure while migrating through the Columbia River and plume. Consideration should be given to measuring these survival losses in an explicit experimental framework that isolates possible confounding factors.

  1. Estimating freshwater productivity, overwinter survival, and migration patterns of Klamath River Coho Salmon

    USGS Publications Warehouse

    Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Faukner, Jimmy; Soto, Toz

    2018-01-01

    An area of great importance to resource management and conservation biology in the Klamath Basin is balancing water usage against the life history requirements of threatened Coho Salmon. One tool for addressing this topic is a freshwater dynamics model to forecast Coho Salmon productivity based on environmental inputs. Constructing such a forecasting tool requires local data to quantify the unique life history processes of Coho Salmon inhabiting this region. Here, we describe analytical methods for estimating a series of sub-models, each capturing a different life history process, which will eventually be synchronized as part of a freshwater dynamics model for Klamath River Coho Salmon. Specifically, we draw upon extensive population monitoring data collected in the basin to estimate models of freshwater productivity, overwinter survival, and migration patterns. Our models of freshwater productivity indicated that high summer temperatures and high winter flows can both adversely affect smolt production and that such relationships are more likely in tributaries with naturally regulated flows due to substantial intraannual environmental variation. Our models of overwinter survival demonstrated extensive variability in survival among years, but not among rearing locations, and demonstrated that a substantial proportion (~ 20%) of age-0+ fish emigrate from some rearing sites in the winter. Our models of migration patterns indicated that many age-0+ fish redistribute in the basin during the summer and winter. Further, we observed that these redistributions can entail long migrations in the mainstem where environmental stressors likely play a role in cueing refuge entry. Finally, our models of migration patterns indicated that changes in discharge are important in cueing the seaward migration of smolts, but that the nature of this behavioral response can differ dramatically between tributaries with naturally and artificially regulated flows. Collectively, these analyses demonstrate that environmental variation interacts with most phases of the freshwater life history of Klamath River Coho Salmon and that anthropogenic environmental variation can have a particularly large bearing on productivity.

  2. Survival of Juvenile Chinook Salmon during Barge Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Skalski, J. R.; Deters, Katherine A.

    2011-12-01

    To mitigate for fish losses related to passage through the Federal Columbia River Power System, an extensive fish transportation program using barges and trucks to move fish around and downstream of dams and reservoirs was implemented in 1981. Population modeling and other analyses to support Pacific salmon recovery efforts have assumed that the survival of juvenile salmonids during the transportation experience was 98%. To estimate survival during barge transport from Lower Granite Dam on the Snake River to a release area downstream of Bonneville Dam, a distance of 470 km, we used a novel adaptation of a release-recapture model withmore » acoustic-tagged yearling Chinook salmon (Oncorhynchus tshawytscha) smolts. A total of 1,494 yearling Chinook salmon were surgically implanted with Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic transmitters and passive integrated transponders (PIT) and divided into three groups. The three tagged groups consisted of; (1) a group which was released into the raceway with the population of fish which were later loaded into transportation barges (R{sub B}), (2) a group which was held in a net-pen suspended within the general barge population until 5-6 h prior to barge evacuation, at which time they were confirmed to be alive and then released into the general barge population (R{sub A}), and (3) to validate a model assumption, a group which was euthanized and released into the barge population 2-8 h prior to barge evacuation (R{sub D}). Six replicates of these groups were loaded onto fish transport barges that departed Lower Granite Dam on the Snake River between 29 April and 13 May, 2010. Acoustic receiver arrays between 70 and 220 km downstream of the barge evacuation site were used to detect tagged fish and served as the basis for estimation of survival within the barge. Tag-life-corrected estimates of reach survival were calculated for barged and control fish in each of the six replicate trials. The ratio of survival from release to Rkm 153 for barged fish relative to control fish provided the estimate of within-barge survival. The replicate survival estimates ranged from 0.9503 (SE = 0.0253) to 1.0003 (SE = 0.0155). The weighted average of the replicate estimates of within-barge survival was computed to be = 0.9833 (SE = 0.0062). This study provides the first documentation that assumed survival of 98% inside barges during yearling Chinook salmon smolt transport appears to be justified. Survival of other species or stocks by barge or for any species/stock by truck remains unknown.« less

  3. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinookmore » captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation. These fish continued rearing in the outdoor collection basin until release in March 2006. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 12,056 of the smolts released were also tagged with Passive Integrated Transponder tags. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 90,450 smolts were released directly into Johnson Creek on March 13 through 15, 2006.« less

  4. Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha)

    PubMed Central

    Bett, Nolan N.; Hinch, Scott G.; Dittman, Andrew H.; Yun, Sang-Seon

    2016-01-01

    Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST. PMID:27827382

  5. Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha).

    PubMed

    Bett, Nolan N; Hinch, Scott G; Dittman, Andrew H; Yun, Sang-Seon

    2016-11-09

    Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouwes, Nick; Petrosky, Charlie; Schaller, Howard

    The Comparative Survival Study (CSS) was initiated in 1996 as a multi-year program of the fishery agencies and tribes to estimate survival rates over different life stages for spring and summer chinook (hereafter, chinook) produced in major hatcheries in the Snake River basin and from selected hatcheries in the lower Columbia River. Much of the information evaluated in the CSS is derived from fish tagged with Passive Integrated Transponder (PIT) tags. A comparison of survival rates of chinook marked in two different regions (which differ in the number of dams chinook have to migrate through) provides insight into the effectsmore » of the Snake/Columbia hydroelectric system (hydrosystem). The CSS also compares the smolt-to-adult survival rates (SARs) for Snake River chinook that were transported versus those that migrated in-river to below Bonneville Dam. Additional comparisons can be made within in-river experiences as well comparison between the different collector projects from which smolts are transported. CSS also compares these survival rates for wild Snake River spring and summer chinook. These comparisons generate information regarding the relative effects of the current management actions used to recover this listed species.Scientists and managers have recently emphasized the importance of delayed hydrosystem mortality to long-term management decisions. Delayed hydrosystem mortality may be related to the smolts. experience in the Federal Columbia River Power System, and could occur for both smolts that migrate in-river and smolts that are transported. The CSS PIT tag information on in-river survival rates and smolt-to-adult survival rates (SARs) of transported and in-river fish are relevant to estimation of ''D'', which partially describes delayed hydrosystem mortality. ''D'', or differential delayed mortality, is the differential survival rate of transported fish relative to fish that migrate in-river, as measured from below Bonneville Dam to adults returning to Lower Granite Dam. A ''D'' equal to one indicates that there is no difference in survival rate after hydrosystem passage, while a ''D'' less than one indicates that transported smolts die at a greater rate after release, than smolts that have migrated through the hydrosystem. While the relative survival rates of transported and in-river migrants are important, the SARs must be also be sufficient to allow the salmon to persist and recover (Mundy et al. 1994). Decreased SARs could result from delayed hydrosystem mortality for either transported or in-river migrants, or both. Major objectives of CSS include: (1) development of a long-term index of transport SAR to in-river SAR for Snake River hatchery spring and summer chinook smolts measured at Lower Granite Dam; (2) develop a long-term index of survival rates from release of smolts at Snake River hatcheries to return of adults to the hatcheries; (3) compute and compare the overall SARs for selected upriver and downriver spring and summer chinook hatcheries; (4) begin a time series of SARs for use in hypothesis testing and in the regional long-term monitoring and evaluation program; (5) evaluate growth patterns of transported and in-river migrating smolts, and of upriver and downriver stocks. Primary CSS focus in this report for the 1997-1999 migration years included hatchery chinook tasks for objectives 1, 4 and 5.« less

  7. Medication inhibits tolerance to seawater in coho salmon smolts

    USGS Publications Warehouse

    Bouck, Gerald R.; Johnson, David A.

    1979-01-01

    Applications of 10 therapeutic and two anesthetic agents to healthy smolts of coho salmon (Oncorhynchus kisutch) by conventional methods were followed by two different posttreatment circumstances. In condition I, fish were treated and then transferred directly to 28‰ seawater for 10 days; in condition II, fish were treated and held in fresh water for 4 days before their medium was gradually changed over a 4-hour period to 28‰ seawater. In condition I, no mortality occurred among fish treated with 2,4-D, trichlorofon, simazine, quinaldine, or light to moderate doses of MS-222. About 10% mortality occurred among fish treated with formalin and nifurpirinol. High mortality in seawater followed treatments with copper sulfate, hyamine 1622, potassium permanganate, malachite green (one protocol), and heavy doses of MS-222. In condition II, mortality was reduced but still high for copper sulfate and potassium permanganate, much lower for malachite green and hyamine 1622, and zero for the other agents. The results indicate that additional recovery time in fresh water is necessary between some treatments and exposure to salt water.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faber, Derrek M.; Ploskey, Gene R.; Weiland, Mark A.

    Pacific Northwest National Laboratory (PNNL) conducted an acoustic-telemetry study at Bonneville Dam in 2009 to evaluate the effects of a behavioral guidance structure (BGS) in the Bonneville Dam second powerhouse forebay on fish passage and survival through the second powerhouse (B2), the dam as a whole, and through the first powerhouse and spillway combined. The BGS was deployed to increase the survival of fish passing through B2 by increasing the percentage of outmigrating smolts entering the B2 Corner Collector (B2CC)—a surface flow outlet known to be a relatively benign route for downstream passage at this dam. The study relied onmore » releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. Study results indicated that having turbine 11 in service is important for providing flow conditions that are comparable to those observed in pre-BGS years (2004 and 2005) and in 2008. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  9. Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1988.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idaho. Dept. of Fish and Game.

    1990-03-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead and chinook in the Clearwater and Salmon subbasins since 1984. Projects included in the monitoring are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia Rivers. This monitoring project is also funded under the same authority. A mitigation record is being developed to use actual and potential increases in smolt production as the best measures of benefit frommore » a habitat improvement project. This project is divided into two subprojects: general and intensive monitoring. Primary objectives of the general monitoring subproject are to determine natural production increases due to habitat improvement projects in terms of parr production and to determine natural production status and trends in Idaho. The second objective is accomplished by combining parr density from monitoring and evaluation of BPA habitat projects and from other IDFG management and research activities. The primary objective of the intensive monitoring subproject is to determine the relationships between spawning escapement, parr production, and smolt production in two Idaho streams; the upper Salmon River and Crooked River. Results of the intensive monitoring will be used to estimate mitigation benefits in terms of smolt production and to interpret natural production monitoring in Idaho. 30 refs., 19 figs., 34 tabs.« less

  10. Effects of ocean acidification on salinity tolerance and seawater growth of Atlantic salmon Salmo salar smolts.

    PubMed

    Mccormick, S D; Regish, A M

    2018-06-23

    Human activity has resulted in increasing atmospheric carbon dioxide (CO 2 ), which will result in reduced pH and higher levels of CO 2 in the ocean, a process known as ocean acidification. Understanding the effects of ocean acidification (OA) on fishes will be important to predicting and mitigating its consequences. Anadromous species such as salmonids may be especially at risk because of their rapid movements between fresh water and seawater, which could minimize their ability to acclimate. In the present study, we examine the effect of future OA on the salinity tolerance and early seawater growth of Atlantic salmon Salmo salar smolts. Exposure to 61.81 Pa and 102.34 Pa CO 2 did not alter salinity tolerance but did result in slightly lower plasma chloride levels in smolts exposed to seawater compared with controls (39.59 Pa). Gill Na + -K + -ATPase activity, plasma cortisol, glucose and haematocrit after seawater exposure were not altered by elevated CO 2 . Growth rate in the first 2 weeks of seawater exposure was greater at 102.34 Pa CO 2 than under control conditions. This study of the effects of OA on S. salar during the transition from fresh water to seawater indicates that elevated CO 2 is not likely to affect osmoregulation negatively and may improve early growth in seawater. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Chinook salmon and green sturgeon migrate through San Francisco Estuary despite large distortions in the local magnetic field produced by bridges

    PubMed Central

    Wyman, Megan T.; Kavet, Robert

    2017-01-01

    Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth’s main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. PMID:28575021

  12. Chinook salmon and green sturgeon migrate through San Francisco Estuary despite large distortions in the local magnetic field produced by bridges.

    PubMed

    Klimley, A Peter; Wyman, Megan T; Kavet, Robert

    2017-01-01

    Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.

  13. Chinook salmon and green sturgeon migrate through San Francisco Estuary despite large distortions in the local magnetic field produced by bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert

    Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less

  14. Chinook salmon and green sturgeon migrate through San Francisco Estuary despite large distortions in the local magnetic field produced by bridges

    DOE PAGES

    Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert; ...

    2017-06-02

    Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less

  15. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume VI : Evaluation of the 2000 Predictions of the Run-Timing of Wild Migrant Chinook Salmon and Steelhead Trout, and Hatchery Sockeye Salmon in the Snake River Basin, and Combined Wild Hatchery Salminids Migrating to Rock Island and McNary Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Caitlin

    1998-07-01

    Program RealTime provided tracking and forecasting of the 2000 in season outmigration via the internet for stocks of wild PIT-tagged spring/summer chinook salmon. These stocks were ESUs from nineteen release sites above Lower Granite dam, including Bear Valley Creek, Big Creek, Camas Creek (new), Cape Horn Creek, Catherine Creek, Elk Creek, Herd Creek, Imnaha River, Johnson Creek (new), Lake Creek, Loon Creek, Lostine River, Marsh Creek, Minam River, East Fork Salmon River (new), South Fork Salmon River, Secesh River, Sulfur Creek and Valley Creek. Forecasts were also provided for two stocks of hatchery-reared PIT-tagged summer-run sockeye salmon, from Redfish Lakemore » and Alturas Lake (new); for a subpopulation of the PIT-tagged wild Snake River fall subyearling chinook salmon; for all wild Snake River PIT-tagged spring/summer yearling chinook salmon (new) and steelhead trout (new)detected at Lower Granite Dam during the 2000 outmigration. The 2000 RealTime project began making forecasts for combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout migrating to Rock Island and McNary Dams on the mid-Columbia River and the mainstem Columbia River. Due to the new (in 1999-2000) Snake River basin hatchery protocol of releasing unmarked hatchery-reared fish, the RealTime forecasting project no longer makes run-timing forecasts for wild Snake River runs-at-large using FPC passage indices, as it has done for the previous three years (1997-1999). The season-wide measure of Program RealTime performance, the mean absolute difference (MAD) between in-season predictions and true (observed) passage percentiles, improved relative to previous years for nearly all stocks. The average season-wide MAD of all (nineteen) spring/summer yearling chinook salmon ESUs dropped from 5.7% in 1999 to 4.5% in 2000. The 2000 MAD for the hatchery-reared Redfish Lake sockeye salmon ESU was the lowest recorded, at 6.0%, down from 6.7% in 1999. The MAD for the PIT-tagged ESU of wild Snake River fall sub-yearling chinook salmon, after its second season of run-timing forecasting, was 4.7% in 2000 compared to 5.5% in 1999. The high accuracy of season-wide performance in 2000 was largely due to exceptional Program RealTime performance in the last half of the season. Passage predictions from fifteen of the sixteen spring/summer yearling chinook salmon ESUs available for comparison improved in 2000 compared to 1999. The last-half average MAD over all the yearling chinook salmon ESUs was 4.3% in 2000, compared to 6.5% in 1999. Program RealTime 2000 first-half forecasting performance was slightly worse than that of 1999 (MAD = 4.5%), but still comparable to previous years with a MAD equal to 5.1%. Three yearling chinook ESUs showed moderately large (> 10%) MADs. These stocks had larger-than-average recapture percentages in 2000, producing over-predictions early in the season, in a dynamic reminiscent of migration year 1998 (Burgess et al., 1999). The passage distribution of the new stock of hatchery-reared sockeye salmon from Alturas Lake was well-predicted by Program RealTime, based on only two years of historical data (whole-season MAD = 4.3%). The two new run-of-the-river PIT-tagged stocks of wild yearling chinook salmon and steelhead trout were predicted with very good accuracy (whole-season MADs were 4.8% for steelhead trout and 1.7% for yearling chinook salmon), particularly during the last half of the outmigration. First-half steelhead predictions were among the season's worst (MAD = 10.8%), with over-predictions attributable to the largest passage on record of wild PIT-tagged steelhead trout to Lower Granite Dam. The results of RealTime predictions of passage percentiles of combined wild and hatchery-reared salmonids to Rock Island and McNary were mixed. Some of these passage-indexed runs-at-large were predicted with exceptional accuracy (whole-season MADs for coho salmon outmigrating to Rock Island Dam and McNary Dam were, respectively, 0.58% and 1.24%; for yearling chinook to McNary, 0.59%) while others were not forecast well at all (first-half MADs of sockeye salmon migrating to Rock Island and McNary Dams, respectively, were 19.25% and 12.78%). The worst performances for these mid- and mainstem-Columbia River runs-at-large were probably due to large hatchery release disturbing the smoothly accumulating percentages of normal fish passage. The RealTime project used a stock-specific method of upwardly adjusting PIT-tagged smolt counts at Lower Granite Dam. For chinook and sockeye salmon, the project continued using the 1999 formulation for spill-adjustment. For the new stock of wild PIT-tagged steelhead trout, a formula derived for steelhead trout only was used.« less

  16. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2005 spring out-migration at migrant traps on the Snake River and Salmon River. In 2005 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, the age-1 and older fish were distinguishable from wild fish by the occurrence of fin erosion. Age-0 Chinook salmon are more difficult to distinguish between wild and non-adclipped hatchery fish and therefore classifiedmore » as unknown rearing. The total annual hatchery spring/summer Chinook salmon catch at the Snake River trap was 0.34 times greater in 2005 than in 2004. The wild spring/summer Chinook catch was 0.34 times less than the previous year. Hatchery steelhead trout catch was 0.67 times less than in 2004. Wild steelhead trout catch was 0.72 times less than the previous year. The Snake River trap collected 1,152 age-0 Chinook salmon of unknown rearing. During 2005, the Snake River trap captured 219 hatchery and 44 wild/natural sockeye salmon and 110 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 6 and were terminated on June 3. The trap was out of operation for a total of one day due to heavy debris. FPC requested that the trap be restarted on June 15 through June 22 to collect and PIT tag age-0 Chinook salmon. Hatchery Chinook salmon catch at the Salmon River trap was 1.06 times greater and wild Chinook salmon catch was 1.26 times greater than in 2004. The hatchery steelhead trout collection in 2005 was 1.41 times greater and wild steelhead trout collection was 1.27 times greater than the previous year. Trap operations began on March 6 and were terminated on May 17 due to high flows. There were two days when the trap was taken out of service because of mechanical failure. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2005 data detected a relation between migration rate and discharge for hatchery Chinook but was unable to detect a relation for wild Chinook. The inability to detect a migration rate discharge relation for wild Chinook salmon was caused by a lack of data. For hatchery Chinook salmon there was a 1.8-fold increase in migration rate between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 2.2-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2005 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon, hatchery steelhead trout, and wild steelhead trout. Migration rate increased 4.2-fold for hatchery Chinook salmon, 2.9-fold for wild Chinook salmon and 2.5-fold for hatchery steelhead, and 1.7-fold for wild steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with PIT tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2001, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the four dams for fish marked at the Snake River trap were 84% for hatchery Chinook, 89% for wild Chinook, 94% for hatchery steelhead, and 93% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 71% for hatchery Chinook, 78% for wild Chinook salmon, 80% for hatchery steelhead trout, and 81% for wild steelhead trout.« less

  17. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.

    This report presents survival, behavioral, and fish passage results for yearling and subyearling Chinook salmon smolts and juvenile steelhead tagged with JSATS acoustic micro-transmitters as part of a survival study conducted at John Day Dam during 2010. This study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a single-release survival estimate model.

  18. Investigating the influence of nitrate nitrogen on post-smolt Atlantic salmon Salmo salar reproductive physiology in water recirculation aquaculture systems

    USGS Publications Warehouse

    Good, Christopher; Davidson, John; Iwanowicz, Luke R.; Meyer, Michael T.; Dietze, Julie E.; Kolpin, Dana W.; Marancik, David; Birkett, Jill; Williams, Christina; Summerfelt, Steven T.

    2017-01-01

    A major issue affecting land-based, closed containment Atlantic salmon Salmo salar growout production in water recirculation aquaculture systems (RAS) is precocious male maturation, which can negatively impact factors such as feed conversion, fillet yield, and product quality. Along with other water quality parameters, elevated nitrate nitrogen (NO3-N) has been shown to influence the reproductive development and endogenous sex steroid production in a number of aquatic animal species, including Atlantic salmon. We sought to determine whether elevated NO3-N in RAS can influence early maturation in post-smolt Atlantic salmon in an 8-month trial in replicated freshwater RAS. Post-smolt Atlantic salmon (102 ± 1 g) were stocked into six RAS, with three RAS randomly selected for dosing with high NO3-N (99 ± 1 mg/L) and three RAS set for low NO3-N (10 ± 0 mg/L). At 2-, 4-, 6-, and 8-months post-stocking, 5 fish were randomly sampled from each RAS, gonadosomatic index(GSI) data were collected, and plasma was sampled for 11-ketotestosterone(11-KT) quantification. At 4- and 8-months post-stocking, samples of culture tank and spring water (used as “makeup” or replacement water) were collected and tested for a suite of 42 hormonally active compounds using liquid chromatography/mass spectrometry, as well as for estrogenicity using the bioluminescent yeast estrogen screen (BLYES) reporter system. Finally, at 8-months post-stocking 8–9 salmon were sampled from each RAS for blood gas and chemistry analyses, and multiple organ tissues were sampled for histopathology evaluation. Overall, sexually mature males were highly prevalent in both NO3-N treatment groups by study’s end, and there did not appear to be an effect of NO3-N on male maturation prevalence based on grilse identification, GSI, and 11-KT results, indicating that other culture parameters likely instigated early maturation. No important differences were noted between treatment groups for whole blood gas and chemistry parameters, and no significant tissue changes were noted on histopathology. No hormones, hormone conjugates, or mycotoxins were detected in any water samples; phytoestrogens were generally detected at low levels but were unrelated to NO3-N treatment. Finally, low-level estrogenicity was detected in RAS water, but a NO3-N treatment effect could not be determined. The major findings of this study are i) the NO3-N treatments did not appear to be related to the observed male maturation, and ii) the majority of hormonally active compounds were not detectable in RAS water.

  19. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

    The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in thismore » series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon release groups were pooled across the entire Snake River Basin upstream of Lower Granite Dam for this report. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.92% with an estimated standard error (dSE) of 0.25% for wild spring and summer Chinook salmon for tagged groups released from 1996 through 2004, omitting age-1-ocean (jack) returns. Only for the 1999 and 2000 release years did the wild Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for wild steelhead from the Snake River Basin averaged 0.63% (dSE = 0.15%), including age-1-ocean returns, for release years 1996 through 2004. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2004), it was estimated that on average approximately 83% of the total integrated mortality for nontransported, tagged wild spring and summer Chinook, and 78% for steelhead (omitting the 2001 release year), occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the dam-specific T/I for Lower Granite Dam were available for the 2003 and 2004 release years for both wild Chinook salmon and wild steelhead. The estimated T/I for Lower Granite was significantly > 1.0 for Chinook in 2004 (P < 0.0001) and for steelhead in both 2003 (P < 0.0001) and 2004 (P < 0.0001), indicating that for these release years, wild fish transported at Lower Granite returned there in higher proportions than fish that were returned to the river at Lower Granite, or that passed Lower Granite without detection as juveniles. Annual estimates of the dam-specific T/I for Little Goose Dam were available for wild Chinook salmon for both 2003 and 2004. The estimated T/I for Little Goose was significantly > 1.0 for wild Chinook in 2004 (P = 0.0024), but not in 2003 (P = 0.1554). Differential post-Bonneville mortality (D) is the ratio of post-Bonneville survival to Lower Granite Dam of transported fish to that of nontransported ('inriver') fish. Estimates of D were available for transportation from Lower Granite and Little Goose dams in 2003 and 2004 for wild Chinook, and from Lower Granite Dam in 2003 and 2004 for wild steelhead. Point estimates ranged from 0.74 (dSE = 0.29) for transportation of wild Chinook salmon from Lower Granite Dam in 2003 to 1.91 (dSE = 0.61) for transportation of wild steelhead from Lower Granite Dam in 2003. Small transport groups resulted in high uncertainty on the point estimates, and only for 2003 steelhead transported from Lower Granite Dam did transported fish have significantly greater post-Bonneville survival than nontransported fish (P = 0.0213).« less

  20. Comparative responses to endocrine disrupting compounds in early life stages of Atlantic salmon, Salmo salar

    USGS Publications Warehouse

    Duffy, Tara A.; Iwanowicz, Luke R.; McCormick, Stephen D.

    2014-01-01

    Atlantic salmon (Salmo salar) are endangered anadromous fish that may be exposed to feminizing endocrine disrupting compounds (EDCs) during early development, potentially altering physiological capacities, survival and fitness. To assess differential life stage sensitivity to common EDCs, we carried out short-term (four day) exposures using three doses each of 17α-ethinylestradiol (EE2), 17β-estradiol (E2), and nonylphenol (NP) on four early life stages; embryos, yolk-sac larvae, feeding fry and one year old smolts. Differential response was compared using vitellogenin (Vtg, a precursor egg protein) gene transcription. Smolts were also examined for impacts on plasma Vtg, cortisol, thyroid hormones (T4/T3) and hepatosomatic index (HSI). Compound-related mortality was not observed in any life stage, but Vtg mRNA was elevated in a dose-dependent manner in yolk-sac larvae, fry and smolts but not in embyos. The estrogens EE2 and E2 were consistently stronger inducers of Vtg than NP. Embryos responded significantly to the highest concentration of EE2 only, while older life stages responded to the highest doses of all three compounds, as well as intermediate doses of EE2 and E2. Maximal transcription was greater for fry among the three earliest life stages, suggesting fry may be the most responsive life stage in early development. Smolt plasma Vtg was also significantly increased, and this response was observed at lower doses of each compound than was detected by gene transcription suggesting this is a more sensitive indicator at this life stage. HSI was increased at the highest doses of EE2 and E2 and plasma T3 decreased at the highest dose of EE2. Our results indicate that all life stages after hatching are potentially sensitive to endocrine disruption by estrogenic compounds and that physiological responses were altered over a short window of exposure, indicating the potential for these compounds to impact fish in the wild.

  1. Evidence that thyroid hormone induces olfactory cellular proliferation in salmon during a sensitive period for imprinting.

    PubMed

    Lema, Sean C; Nevitt, Gabrielle A

    2004-09-01

    Salmon have long been known to imprint and home to natal stream odors, yet the mechanisms driving olfactory imprinting remain obscure. The timing of imprinting is associated with elevations in plasma thyroid hormone levels, with possible effects on growth and proliferation of the peripheral olfactory system. Here, we begin to test this idea by determining whether experimentally elevated plasma levels of 3,5,3'-triiodothyronine (T(3)) influence cell proliferation as detected by the 5-bromo-2'-deoxyuridine (BrdU) cell birth-dating technique in the olfactory epithelium of juvenile coho salmon (Oncorhynchus kisutch). We also explore how natural fluctuations in thyroxine (T(4)) relate to proliferation in the epithelium during the parr-smolt transformation. In both studies, we found that BrdU labeled both single and clusters of mitotic cells. The total number of BrdU-labeled cells in the olfactory epithelium was significantly greater in fish with artificially elevated T(3) compared with placebo controls. This difference in proliferation was restricted to the basal region of the olfactory epithelium, where multipotent progenitor cells differentiate into olfactory receptor neurons. The distributions of mitotic cluster sizes differed significantly from a Poisson distribution for both T(3) and placebo treatments, suggesting that proliferation tends to be non-random. Over the course of the parr-smolt transformation, changes in the density of BrdU cells showed a positive relationship with natural fluctuations in plasma T(4). This relationship suggests that even small changes in thyroid activity can stimulate the proliferation of neural progenitor cells in the salmon epithelium. Taken together, our results establish a link between the thyroid hormone axis and measurable anatomical changes in the peripheral olfactory system.

  2. Infectious pancreatic necrosis virus in Atlantic salmon, Salmo salar L., post-smolts in the Shetland Isles, Scotland: virus identification, histopathology, immunohistochemistry and genetic comparison with Scottish mainland isolates.

    PubMed

    Smail, D A; Bain, N; Bruno, D W; King, J A; Thompson, F; Pendrey, D J; Morrice, S; Cunningham, C O

    2006-01-01

    During mid-June 1999 peak mortalities of 11% of the total stock per week were seen at a sea cage site of Atlantic salmon, Salmo salar L., post-smolts in the Shetland Isles, Scotland. Virus was isolated on chinook salmon embryo (CHSE) cells in a standard diagnostic test and infectious pancreatic necrosis virus (IPNV) identified by enzyme-linked immunosorbent assay. IPNV was confirmed as serogroup A by a cell immunofluorescent antibody test using the cross-reactive monoclonal antibody AS-1. Four weeks after the main outbreak, virus titres in surviving moribund fish were assayed at >10(10) TCID50 g(-1) kidney. Histopathology of moribund fish was characterized by pancreatic acinar cell necrosis and a marked catarrhal enteritis of the intestinal mucosa. In the liver, necrosis, leucocytic infiltration and a generalized cell vacuolation were noted. IPNV-specific immunostaining was demonstrated in pancreas, liver, heart, gill and kidney tissue. The nucleotide sequence of the coding region of segment A was determined from the Shetland isolate. A 1180 bp fragment of the VP2 gene of this isolate was compared with a 1979 reference isolate from mainland Scottish Atlantic salmon, La/79 and another more recent mainland isolate, 432/00. Both A2 isolates were derived from carrier fish without signs of IPN and serotyped by a plaque neutralization test. The Shetland isolate shows a different nucleotide and amino acid sequence compared with the two isolates from carrier fish. These latter isolates showed identical amino acid sequences in the fragment examined, despite the 21 years separating the isolations. Sequence comparisons with other A2 (Sp) isolates on the database confirm all three Scottish isolates are A2 (Sp).

  3. Variation in branchial expression among insulin-like growth-factor binding proteins (igfbps) during Atlantic salmon smoltification and seawater exposure.

    PubMed

    Breves, Jason P; Fujimoto, Chelsea K; Phipps-Costin, Silas K; Einarsdottir, Ingibjörg E; Björnsson, Björn Thrandur; McCormick, Stephen D

    2017-01-18

    In preparation for migration from freshwater to marine habitats, Atlantic salmon (Salmo salar L.) undergo smoltification, a transformation that includes the acquisition of hyposmoregulatory capacity. The growth hormone (Gh)/insulin-like growth-factor (Igf) axis promotes the development of branchial ionoregulatory functions that underlie ion secretion. Igfs interact with a suite of Igf binding proteins (Igfbps) that modulate hormone activity. In Atlantic salmon smolts, igfbp4,-5a,-5b1,-5b2,-6b1 and-6b2 transcripts are highly expressed in gill. We measured mRNA levels of branchial and hepatic igfbps during smoltification (March, April, and May), desmoltification (July) and following seawater (SW) exposure in March and May. We also characterized parallel changes in a broad suite of osmoregulatory (branchial Na + /K + -ATPase (Nka) activity, Na + /K + /2Cl - cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator 1 (cftr1) transcription) and endocrine (plasma Gh and Igf1) parameters. Indicative of smoltification, we observed increased branchial Nka activity, nkcc1 and cftr1 transcription in May. Branchial igfbp6b1 and -6b2 expression increased coincidentally with smoltification. Following a SW challenge in March, igfbp6b1 showed increased expression while igfbp6b2 exhibited diminished expression. igfbp5a,-5b1 and-5b2 mRNA levels did not change during smolting, but each had lower levels following a SW exposure in March. Salmonids express an especially large suite of igfbps. Our data suggest that dynamic expression of particular igfbps accompanies smoltification and SW challenges; thus, transcriptional control of igfbps may provide a mechanism for the local modulation of Igf activity in salmon gill.

  4. Variation in branchial expression among insulin-like growth-factor binding proteins (igfbps) during Atlantic salmon smoltification and seawater exposure

    USGS Publications Warehouse

    Breves, Jason P.; Fujimoto, Chelsea K.; Phipps-Costin, Silas K.; Einarsdottir, Ingibjörg E.; Björnsson, Björn Thrandur; McCormick, Stephen

    2017-01-01

    BackgroundIn preparation for migration from freshwater to marine habitats, Atlantic salmon (Salmo salar L.) undergo smoltification, a transformation that includes the acquisition of hyposmoregulatory capacity. The growth hormone (Gh)/insulin-like growth-factor (Igf) axis promotes the development of branchial ionoregulatory functions that underlie ion secretion. Igfs interact with a suite of Igf binding proteins (Igfbps) that modulate hormone activity. In Atlantic salmon smolts, igfbp4,−5a,−5b1,−5b2,−6b1 and−6b2 transcripts are highly expressed in gill. We measured mRNA levels of branchial and hepatic igfbps during smoltification (March, April, and May), desmoltification (July) and following seawater (SW) exposure in March and May. We also characterized parallel changes in a broad suite of osmoregulatory (branchial Na+/K+-ATPase (Nka) activity, Na+ /K + /2Cl − cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator 1 (cftr1) transcription) and endocrine (plasma Gh and Igf1) parameters.ResultsIndicative of smoltification, we observed increased branchial Nka activity, nkcc1 and cftr1 transcription in May. Branchial igfbp6b1 and -6b2 expression increased coincidentally with smoltification. Following a SW challenge in March, igfbp6b1 showed increased expression while igfbp6b2 exhibited diminished expression. igfbp5a,−5b1 and−5b2 mRNA levels did not change during smolting, but each had lower levels following a SW exposure in March.ConclusionsSalmonids express an especially large suite of igfbps. Our data suggest that dynamic expression of particular igfbps accompanies smoltification and SW challenges; thus, transcriptional control of igfbps may provide a mechanism for the local modulation of Igf activity in salmon gill.

  5. Juvenile anadromous salmonid production in upper Columbia River side channels with different levels of hydrological connection

    USGS Publications Warehouse

    Martens, Kyle D.; Connolly, Patrick J.

    2014-01-01

    We examined the contribution of three types of side channels based on their hydrologic connectivity (seasonally disconnected, partially connected, and connected) to production of juvenile anadromous salmonids. Juvenile steelhead Oncorhynchus mykiss and Chinook Salmon O. tshawytscha were found in all three of these side channel types and in each year of the study. Upon connection with the main stem at high flows, the seasonally disconnected side channels experienced an emptying out of the previous year's fish while filling with young-of-year fish during the 2- to 4-month period of hydrologic connection. There were no differences between the densities of juvenile steelhead and Chinook Salmon and the rate of smolts produced among the three types of side channels. Recently reintroduced Coho Salmon O. kisutch had sporadic presence and abundance in partially and connected side channels, but the smolt production rate was over two times that of steelhead and Chinook Salmon in seasonally disconnected side channels. Within seasonally disconnected side channels, young-of-year salmonids in deep pools (≥100 cm) had greater survival than those in shallow pools (<100 cm). Densities of juvenile steelhead in all side channel types were similar to those in tributaries and were higher than in main-stem lateral margins. Juvenile Chinook Salmon densities were higher in side channels than in both tributary and main-stem lateral margins. Our results suggest that improving quality of pool habitat within seasonally disconnected side channels can result in improved survival for juvenile anadromous salmonids during the period of disconnection. Habitat improvement in these seasonally disconnected side channels should be recognized as a worthy restoration strategy, especially when full connectivity of side channels may not be a feasible target (e.g., through lack of water availability) or when full connectivity may present too high a risk (e.g., flooding, stream capture, bank destabilization).

  6. Quantifying the Ocean, Freshwater and Human Effects on Year-to-Year Variability of One-Sea-Winter Atlantic Salmon Angled in Multiple Norwegian Rivers

    PubMed Central

    Otero, Jaime; Jensen, Arne J.; L'Abée-Lund, Jan Henning; Stenseth, Nils Chr.; Storvik, Geir O.; Vøllestad, Leif Asbjørn

    2011-01-01

    Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979–2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to conserve this species. PMID:21897867

  7. Quantifying the ocean, freshwater and human effects on year-to-year variability of one-sea-winter Atlantic salmon angled in multiple Norwegian rivers.

    PubMed

    Otero, Jaime; Jensen, Arne J; L'Abée-Lund, Jan Henning; Stenseth, Nils Chr; Storvik, Geir O; Vøllestad, Leif Asbjørn

    2011-01-01

    Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979-2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to conserve this species.

  8. Predation on Pacific salmonid eggs and carcass's by subyearling Atlantic salmon in a tributary of Lake Ontario

    USGS Publications Warehouse

    Johnson, James H.; Chalupnicki, Marc A.; Abbett, Ross; Verdoliva, Francis

    2016-01-01

    A binational effort to reintroduce Atlantic salmon (Salmo salar) that were extirpated in the Lake Ontario ecosystem for over a century is currently being undertaken by the New York State Department of Environmental Conservation and the Ontario Ministry of Natural Resources. Reintroduction actions include the release of several life stages including fry, fall fingerlings, and yearling smolts. In this study we describe the diet of recently released fall fingerling Atlantic salmon in a tributary of the Salmon River, New York. A specific objective of the study was to determine if juvenile Atlantic salmon would utilize the high caloric food source provided by introduced Pacific salmonids (Oncorhynchus spp.) that includes eggs and carcass flesh. Salmon eggs and carcass flesh comprised 20.5% of the October to January diet in 2013–14 and 23.9% in 2014–15. The consumption of steelhead (O. mykiss) eggs was a major part of the diet in April in both 2014 (54.1%) and 2015 (33.2%). This study documented that recently released Atlantic salmon will consume the high caloric food material provided by Pacific salmonids and that the consumption of this material extends for several months.

  9. Assessment of Potential Impact of Electromagnetic Fields from Undersea Cable on Migratory Fish Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimley, A. P.; Wyman, M. T.; Kavet, Rob

    The US Department of Energy and US Department of the Interior, Bureau of Ocean Energy Management commissioned this study to address the limited scientific data on the impacts of high voltage direct current cables on aquatic biota, in particular migratory species within the San Francisco Bay. Empirical evidence exists that marine animals perceive and orient to local distortions in the earth’s main geomagnetic field magnetic field. The electromagnetic fields (EMF) generated by the cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concern exists that animals thatmore » migrate along the continental shelves might orient to the EMF from the cables, and move either inshore or offshore away from their normal path. The Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) through the San Francisco Bay. The study addresses the following specific questions based on measurements and projections of the EMF produced by an existing marine cable, the TBC, in San Francisco Bay. Specifically, does the presence of EMF from an operating power cable alter the behavior and path of bony fishes and sharks along a migratory corridor? Does the EMF from an operating power cable guide migratory movements or pose an obstacle to movement? To meet the main study objectives several activities needed to be carried out: 1) modeling of the magnetic fields produced by the TBC, 2) assessing the migratory impacts on Chinook salmon smolts (Oncorhynchus tshawytscha) and green sturgeon (Acipenser medirostris) as a result of local magnetic field distortions produced by bridge structures and 3) analyzing behavioral responses by migratory Chinook salmon and green sturgeon to a high-voltage power cable. To meet the first objective, magnetic field measurements were made using two submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles crossing the cable path. We applied basic formulas to describe magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable not immediately or otherwise observable. The magnetic field profiles of 76 survey lines were regressed against the measured fields, representing eight days of measurement. Many profiles were dominated by field distortions caused by bridge structures or other submerged objects, and the cable contribution to the field was not detectable. The regressions based on fundamental principles (Biot Savart law) and the vectorial summation of cable and geomagnetic fields provide estimates of cable characteristics consistent with plausible expectations. For the second objective, detailed gradiometer survey were examined. Distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the TBC. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges that run perpendicular to these migration routes do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. Finally, to assess the behavioral responses by migratory Chinook salmon and green sturgeon to a high- voltage power cable - the potential impacts effect of the TBC on fishes migrating through the San Francisco Estuary were examined. These included late-fall run Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Our results indicate Chinook salmon smolts may be attracted to the cable after activation (more cable location crossings, more detections at Bay Bridge, high importance of distance to cable in predicting fish location), but are not impeded from successfully migrating through the San Francisco Bay (similar proportions of successful exits, faster transit rates). Cable activity had opposite effects on outbound and inbound green sturgeon migrations: outbound migrations had significantly longer transit times while inbound migrations had significantly shorter migration times. However, the proportion of green sturgeon that successfully migrated through the San Francisco Bay was not strongly impacted after cable activation for either migration type. Based on the work, we provide the following conclusions: 1) calculations of magnetic fields for assessment of marine life can be performed; however, local anomalies in the fields resulting from submerged structures require validation of such calculations through collection of ambient DC magnetic field data, 2) the large anomalies produced by the bridges that run perpendicular to these migration routes do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon and 3) Chinook salmon smolts may be attracted to the activated cable based on analysis of cable crossing, misdirections, and first presence at the array data, however, the cable activation does not appear to change the proportion of smolts that successfully migrate through the San Francisco Bay. Cable activation impacts inbound and outbound migrating adult green sturgeon: travel time was increased for outbound migrations but decreased for inbound migrations. However, cable activation did not appear to impact the success of either migration type in this species.« less

  10. Low temperature limits photoperiod control of smolting in atlantic salmon through endocrine mechanisms

    USGS Publications Warehouse

    McCormick, S.D.; Moriyama, S.

    2000-01-01

    We have examined the interaction of photoperiod and temperature in regulating the parr-smolt transformation and its endocrine control. Atlantic salmon juveniles were reared at a constant temperature of 10??C or ambient temperature (2??C from January to April followed by seasonal increase) under simulated natural day length. At 10??C, an increase in day length [16 h of light and 8 h of darkness (LD 16:8)] in February accelerated increases in gill Na+K+-ATPase activity, whereas fish at ambient temperature did not respond to increased day length. Increases in gill Na+K+-ATPase activity under both photoperiods occurred later at ambient temperature than at 10??C. Plasma growth hormone (GH), insulin-like growth factor, and thyroxine increased within 7 days of increased day length at 10??C and remained elevated for 5-9 wk; the same photoperiod treatment at 2??C resulted in much smaller increases of shorter duration. Plasma cortisol increased transiently 3 and 5 wk after LD 16:8 at 10??C and ambient temperature, respectively. Plasma thyroxine was consistently higher at ambient temperature than at 10??C. Plasma triiodothyronine was initially higher at 10??C than at ambient temperature, and there was no response to LD 16:8 under either temperature regimen. There was a strong correlation between gill Na+K+-ATPase activity and plasma GH; correlations were weaker with other hormones. The results provide evidence that low temperature limits the physiological response to increased day length and that GH, insulin-like growth factor I, cortisol, and thyroid hormones mediate the environmental control of the parr-smolt transformation.

  11. Lake-specific variation in growth, migration timing and survival of juvenile sockeye salmon Oncorhynchus nerka: separating environmental from genetic influences.

    PubMed

    Reed, T E; Martinek, G; Quinn, T P

    2010-08-01

    Time series on juvenile life-history traits obtained from sockeye salmon Oncorhynchus nerka were analysed to assess lake-specific environmental influences on juvenile migration timing, size and survival of fish from a common gene pool. Every year for the past two decades, O. nerka have been spawned at a hatchery facility, and the progeny released into two lakes that differ in average summer temperatures, limnological attributes and growth opportunities. Juveniles reared in the warmer, more productive Crosswind Lake were larger and heavier as smolts compared to those from the cooler, less productive Summit Lake and had higher in-lake and subsequent marine survival. Crosswind Lake smolts migrated from the lake to sea slightly earlier in the season but the migration timing distributions overlapped considerably across years. Fry stocking density had a negative effect on smolt length for both lakes, and a negative effect on in-lake survival in Summit Lake. Taken together, the results revealed a strong effect of lake-rearing environment on the expression of life-history variation in O. nerka. The stocking of these lakes each year with juveniles from a single mixed-source population provided a large-scale reverse common-garden experiment, where the same gene pool was exposed to different environments, rather than the different gene pools in the same environment approach typical of evolutionary ecology studies. Other researchers are encouraged to seek and exploit similar serendipitous situations, which might allow environmental and genetic influences on ecologically important traits to be distinguished in natural or semi-natural settings.

  12. Effects of an advanced temperature cycle on smolt development and endocrinology indicate that temperature is not a zeitgeber for smolting in Atlantic salmon

    USGS Publications Warehouse

    McCormick, S.D.; Shrimpton, J.M.; Moriyama, S.; Bjornsson, Bjorn Thrandur

    2002-01-01

    Atlantic salmon (Salmo salar) juveniles were reared under simulated conditions of normal photoperiod (LDN) or short days (LD 9:15) and ambient temperature (AMB: normal temperature increases in April) or an advanced temperature cycle (ADV: temperature increases in February). Under both photoperiod conditions, the timing of increased and peak levels of gill Na+,K+-ATPase activity were not altered by temperature, although the rate of increase was initially greater under ADV. ADV/LD 9:15 resulted in peak gill Na+,K+-ATPase activity that was half of that seen under normal photoperiod and temperature conditions. Plasma growth hormone (GH) levels increased threefold in late March under ADV/LDN, but not under ADV/LD 9:15, indicating that there is a photoperiod-dependent effect of temperature on levels of this hormone. Plasma insulin-like growth factor I (IGF-I) increased in spring in all groups, with increases occurring significantly earlier in the ADV/LDN group. In each photoperiod condition, the advanced temperature cycle resulted in large decreases in plasma thyroxine (T4) levels in March, which subsequently recovered, whereas plasma 3,5,3???-triiodo-L-thyronine (T3) levels were not substantially affected by either photoperiod or temperature. There was no consistent pattern of change in plasma cortisol levels. The results do not provide support for the role of temperature as a zeitgeber, but do indicate that temperature has a role in the timing of smolting by affecting the rate of development and interacting with the photoperiod.

  13. Spring prey use by double-crested cormorants on the Penobscot River, Maine, USA

    USGS Publications Warehouse

    Blackwell, B.F.; Krohn, W.B.; Dube, N.R.; Godin, A.J.

    1997-01-01

    We analyzed 2 sets of data for Double-crested Cormorant (Phalacrocorax auritus) stomach contents (including esophageal contents) that were collected from April through June of 1986-1988 (N = 580) and 1992-1993 (N = 200) on the Penobscot River, Maine. Our objectives were to examine temporal and spatial variation in the spring diet and estimate the importance of Atlantic salmon (Salmo salar) smolts to the cormorant diet. We analyzed stomach contents relative to samples from 3 river sections: 5 mainstem dams collectively, above the head of tide, and free-flowing areas above and below the head of tide. Between years composition of taxa lists were compared (P = 0.05) relative to time and river section. We estimated taxon importance for data collected during 1992-1993 by ranking taxa according to 3 statistics: frequency of occurrence, mean percent volume, and numerical abundance. Data from 1986-88 were analyzed by frequency of occurrence only. Across the 3 river sections, the number of prey species recovered from cormorant stomachs increased from 15 in late April to at least 31 through May. Cormorants collected above the head of tide consumed 12 fish species (including freshwater, anadromous, and catadromous types), whereas birds collected below the head of tide consumed 28 freshwater and seasonally-available estuarine, marine benthic, and pelagic species. Salmon smolts were not recovered from stomachs collected in April, rare in stomach samples during the first week of June, and absent from the diet thereafter. In contrast, smolts were among the 5 most frequently occurring (1986-88) and highest ranking (1992-1993) prey taxa across the 3 river sections through May.

  14. Dynamics of prey moving through a predator field: a model of migrating juvenile salmon

    USGS Publications Warehouse

    Petersen, J.H.; DeAngelis, D.L.

    2000-01-01

    The migration of a patch of prey through a field of relatively stationary predators is a situation that occurs frequently in nature. Making quantitative predictions concerning such phenomena may be difficult, however, because factors such as the number of the prey in the patch, the spatial length and velocity of the patch, and the feeding rate and satiation of the predators all interact in a complex way. However, such problems are of great practical importance in many management situations; e.g., calculating the mortality of juvenile salmon (smolts) swimming down a river or reservoir containing many predators. Salmon smolts often move downstream in patches short compared with the length of the reservoir. To take into account the spatial dependence of the interaction, we used a spatially-explicit, individual-based modeling approach. We found that the mortality of prey depends strongly on the number of prey in the patch, the downstream velocity of prey in the patch, and the dispersion or spread of the patch in size through time. Some counterintuitive phenomena are predicted, such as predators downstrean capturing more prey per predator than those upstream, even though the number of prey may be greatly depleted by the time the prey patch reaches the downstream predators. Individual-based models may be necessary for complex spatial situations, such as salmonid migration, where processes such as schooling occur at fine scales and affect system predictions. We compare some results to predictions from other salmonid models. (C) 2000 Elsevier Science Inc.

  15. The Effects of Grays Harbor Estuary Sediment on the Osmoregulatory Ability of Coho Salmon Smolts, Oncorhynchus Kisutch.

    DTIC Science & Technology

    1982-09-01

    seawater for 24 hours ("seawater challenge"). These fish were able to osmoregulate as well as the control group, which was not exposed to sed- iment...what would be expected, based on previous work, and may be an artifact. There may be other fac- tors affecting the ability of fish to osmoregulate

  16. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.

    Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River for the U.S. Army Corps of Engineers, Portland District (USACE), to provide data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE's Willamette Valley Project. This study was conducted in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. We conducted a hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP duringmore » February 2010 through January 2011. Findings from this 1 year of study should be applied carefully because annual variation can be expected due to variability in adult salmon escapement, egg-to-fry and fry-to-smolt survival rates, reservoir rearing and predation, dam operations, and weather. Fish passage rates for smolt-size fish (> {approx}90 mm and < 300 mm) were highest during December-January and lowest in mid-summer through early fall. Passage peaks were also evident in early spring, early summer, and late fall. During the entire study period, an estimated total of 142,463 fish {+-} 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. Of this total, 84% passed during December-January. Run timing for small-size fish ({approx}65-90 mm) peaked (702 fish) on December 18. Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. Relatively few fish passed into the Regulating Outlets (ROs) when they were open in summer (2 fish/d) and winter (8 fish/d). Overall, when the ROs were open, RO efficiency (RO passage divided by total project passage) was 0.004. In linear regression analyses, daily fish passage (turbines and ROs combined) for smolt-size fish was significantly related to project discharge (P<0.001). This relationship was positive, but there was no relationship between total project passage and forebay elevation (P=0.48) or forebay elevation delta, i.e., day-to-day change in forebay elevation (P=0.16). In multiple regression analyses, a relatively parsimonious model was selected that predicted the observed data well. The multiple regression model indicates a positive trend between expected daily fish passage and each of the three variables in the model-Julian day, log(discharge), and log(abs(forebay delta)); i.e., as any of the environmental variables increase, expected daily fish passage increases. For vertical distribution of fish at the face of the dam, fish were surface-oriented with 62%-80% occurring above 10 m deep. The highest percentage of fish (30%-60%) was found between 5-10-m-deep. During spring and summer, mean target strengths for the analysis periods ranged from -44.2 to -42.1 dB. These values are indicative of yearling-sized juvenile salmon. In contrast, mean target strengths in fall and winter were about -49.0 dB, which are representative of subyearling-sized fish. The high-resolution spatial and temporal data reported herein provide detailed information about vertical, horizontal, diel, daily, and seasonal fish passage rates and distributions at LOP from March 2010 through January 2011. This information will support management decisions on design and development of surface passage and collection devices to help restore Chinook salmon populations in the Middle Fork Willamette River watershed above LOP.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trudel, Marc; Tucker, Strahan; Morris, John

    Historically, salmon stocks from the Columbia River and Snake River formed one of the most valuable fisheries on the west coast of North America. However, salmon and steelhead returns sharply declined during the 1980s and 1990s to reach nearly 1 million fish. Although several factors may be responsible for the decline of Columbia River salmon and steelhead, there is increasing evidence that these drastic declines were primarily attributable to persistently unfavorable ocean conditions. Hence, an understanding of the effects of ocean conditions on salmon production is required to forecast the return of salmon to the Columbia River basin and tomore » assess the efficacy of mitigation measures such as flow regulation on salmon resources in this system. The Canadian Program on High Seas Salmon has been collecting juvenile salmon and oceanographic data off the west coast of British Columbia and Southeast Alaska since 1998 to assess the effects of ocean conditions on the distribution, migration, growth, and survival of Pacific salmon. Here, we present a summary of the work conducted as part of the Canada-USA Salmon Shelf Survival Study during the 2008 fiscal year and compare these results with those obtained from previous years. The working hypothesis of this research is that fast growth enhances the marine survival of salmon, either because fast growing fish quickly reach a size that is sufficient to successfully avoid predators, or because they accumulate enough energy reserves to better survive their first winter at sea, a period generally considered critical in the life cycle of salmon. Sea surface temperature decreased from FY05 to FY08, whereas, the summer biomass of phytoplankton increased steadily off the west coast of Vancouver Island from FY05 to FY08. As in FY07, zooplankton biomass was generally above average off the west coast of Vancouver Island in FY08. Interestingly, phytoplankton and zooplankton biomass were higher in FY08 than was expected from the observed nutrient concentration that year. This suggests nutrients were more effectively by phytoplankton in FY08. In addition, the abundance of lipid-rich northern copepods increased from FY05 to FY08, whereas lipid-poor southern copepods showed the opposite pattern, suggesting that growth conditions were more favorable to juvenile salmon in FY08 than in previous years. However, growth indices for juvenile coho salmon were near the 1998-2008 average, both off the west coast of Vancouver Island and Southeast Alaska, indicating that additional factors beside prey quality affect juvenile salmon growth in the marine environment. Catches of juvenile Chinook, sockeye and chum salmon off the west coast of Vancouver Island in June-July 2008 were the highest on record during summer since 1998, suggesting that early marine survival for the 2008 smolt year was high. Interestingly, the proportion of hatchery fish was high (80-100%) among the juvenile Columbia River Chinook salmon caught off the British Columbia coast during summer, suggest that relatively few wild Chinook salmon are produced in the Columbia River Chinook. In addition, we also recovered two coded-wire tagged juvenile Redfish Lake sockeye salmon in June 2008 off the west coast of British Columbia. As relatively few Redfish Lake sockeye smolts are tagged each year, this also suggests that early marine survival was high for these fish, and may result in a high return in 2009 if they mature at age three, or in 2010 if they mature at age four. To date, our research shows that different populations of Columbia River salmon move to different locations along the coastal zone where they establish their ocean feeding grounds and overwinter. We further show that ocean conditions experienced by juvenile Columbia River salmon vary among regions of the coast, with higher plankton productivity and temperatures off the west coast of Vancouver Island than in Southeast Alaska. Hence, different stocks of juvenile salmon originating from the Columbia River and Snake River are exposed to different ocean conditions and may respond differently to climate changes. In particular, our work shows that the growth and fat content of Chinook and coho salmon vary along different parts of the coast and among years. These growth differences appear to be associated with differences in prey quality rather than by a direct effect of temperature on salmon growth or prey quantity, indicating that changes in ocean conditions and circulation affect salmon production indirectly through changes in prey community composition and quality. Taken together, our analyses indicate that the relative survival of different stocks of salmon in the ocean will depend on where they migrate in the ocean, and that changes at the base of the food chain must be taken into consideration to understand the effects of ocean conditions on salmon growth, and hence, on salmon survival.« less

  18. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2004 spring out-migration at migrant traps on the Snake River and Salmon River. In 2004 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 1.1 times greater in 2004 than in 2003.more » The wild Chinook catch was 1.1 times greater than the previous year. Hatchery steelhead trout catch was 1.2 times greater than in 2003. Wild steelhead trout catch was 1.6 times greater than the previous year. The Snake River trap collected 978 age-0 Chinook salmon of unknown rearing. During 2004, the Snake River trap captured 23 hatchery and 18 wild/natural sockeye salmon and 60 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 7 and were terminated on June 4. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 10.8% less and wild Chinook salmon catch was 19.0% less than in 2003. The hatchery steelhead trout collection in 2004 was 20.0% less and wild steelhead trout collection was 22.3% less than the previous year. Trap operations began on March 7 and were terminated on May 28 due to high flows. There were two days when the trap was taken out of service because wild Chinook catch was very low, hatchery Chinook catch was very high, and the weekly quota of PIT tagged hatchery Chinook had been met. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2004 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook salmon was caused by age-0 fall Chinook being mixed in with the age 1 Chinook. Age-0 fall Chinook migrate much slower than age-1 Chinook, which would confuse the ability to detect the migration rate discharge relation. When several groups, which consisted of significant numbers of age-0 Chinook salmon, were removed from the analysis a relation was detected. For hatchery and wild Chinook salmon there was a 2.8-fold and a 2.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.3-fold and a 2.0-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2004 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 7.0-fold for hatchery Chinook salmon, 4.7-fold for wild Chinook salmon and 3.8-fold for hatchery steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2001, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the four dams for fish marked at the Snake River trap were 82% for hatchery Chinook, 77% for wild Chinook, 90% for hatchery steelhead, and 90% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 68% for hatchery Chinook, 70% for wild Chinook salmon, 80% for hatchery steelhead trout, and 79% for wild steelhead trout.« less

  19. A New Multibeam Sonar Technique for Evaluating Fine-Scale Fish Behavior Near Hydroelectric Dam Guidance Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Robert L.; Simmons, Mary Ann; Simmons, Carver S.

    2002-03-07

    This book chapter describes a Dual-Head Multibeam Sonar (DHMS) system developed by Battelle and deployed at two dam sites on the Snake and Columbia rivers in Washington State to evaluate the fine-scale (

  20. Movement and habitat use of Chinook salmon smolts, northern pikeminnow, and smallmouth bass near the SR 520 bridge, 2007 acoustic tracking study, annual report.

    DOT National Transportation Integrated Search

    2008-10-01

    We used a fine-scale acoustic tracking system to track tagged fish in a 17.2 ha area along a 560 m stretch of the SR : 520 bridge from late May through early August 2007. The study site was the west end of the bridge in Lake : Washington, Washington ...

  1. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume IX : Evaluation of the 2001 Predictions of the Run-Timing of Wild and Hatchery-Reared Migrant Salmon and Steelhead Trout Migrating to Lower Granite, Rock Island, McNary, and John Day Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Caitlin; Skalski, John R.

    2001-12-01

    Program RealTime provided tracking and forecasting of the 2001 inseason outmigration via the internet for eighteen PIT-tagged stocks of wild salmon and steelhead to Lower Granite and/or McNary dams and eleven passage-indexed stocks to Rock Island, McNary, or John Day dams. Nine of the PIT-tagged stocks tracked this year were new to the project. Thirteen ESUs of wild subyearling and yearling chinook salmon and steelhead, and one ESU of hatchery-reared sockeye salmon were tracked and forecasted to Lower Granite Dam. Eight wild ESUs of subyearling and yearling chinook salmon, sockeye salmon and steelhead were tracked to McNary Dam for themore » first time this year. Wild PIT-tagged ESUs tracked to Lower Granite Dam included yearling spring/summer chinook salmon release-recovery stocks (from Bear Valley Creek, Catherine Creek, Herd Creek, Imnaha River, Johnson Creek, Lostine River, Minam River, South Fork Salmon River, Secesh River, and Valley Creek), PIT-tagged wild runs-at-large of yearling chinook salmon and steelhead, and a PIT-tagged stock of subyearling fall chinook salmon. The stock of hatchery-reared PIT-tagged summer-run sockeye salmon smolts outmigrating to Lower Granite Dam, consisted this year of a new stock of fish from Alturas Lake Creek, Redfish Lake Creek Trap and Sawtooth Trap. The passage-indexed stocks, counted using FPC passage indices, included combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead migrating to Rock Island and McNary dams, and, new this year, combined wild and hatchery subyearling chinook salmon to John Day Dam. Unusual run-timing and fish passage characteristics were observed in this low-flow, negligible-spill migration year. The period for the middle 80% of fish passage (i.e., progress from the 10th to the 90th percentiles) was unusually short for nine out of ten PIT-tagged yearling spring/summer chinook salmon stocks tracked to Lower Granite Dam. It was the shortest on record for seven of these ten stocks. The nine stocks recording unusually short middle 80% periods also recorded higher-than-average recovery percentages. However the opposite trend was observed for the PIT-tagged wild subyearling chinook salmon and hatchery sockeye salmon stocks whose middle 80% period of passage to Lower Granite Dam was average to above average. Recovery percentages for these two stocks were average, compared to historical recoveries. The performance results of Program RealTime to make accurate predictions of percentiles of fish passage at an index site were mixed this year. The release-recovery stocks of wild PIT-tagged spring/summer chinook salmon tracked to Lower Granite Dam were predicted less accurately than usual, on average, with two exceptions. One of these exceptions was a stock that had its best prediction (first-half, last-half, and season-wide) ever to occur. On average, however, performance was down for predicting these stocks. The RealTime Select composite season-wide MAD was 4.3%, larger than the historical average of 2.1%. Passage percentiles for PIT-tagged runs-at-large of wild Snake River yearling and subyearling chinook salmon and of wild steelhead outmigrating to Lower Granite Dam were predicted very well this year, their second year of inclusion in the project, with season-wide MADs of 3.6%, 4.7%, and 1.8% respectively. These results, too, were mixed with respect to comparison with last year's performance. The yearling chinook stock was predicted somewhat better last year (up from 1.7% last year to 3.6% this year) but the subyearling chinook salmon and steelhead stocks were predicted better this year than last, season-wide. The steelhead stock, in particular, was predicted much better this year than last year, down to 1.8% this year from 4.8% last year. The PIT-tagged runs-at-large of wild salmon and steelhead tracked to McNary Dam in 2001 for the first time, were also well-predicted. In particular, the Snake River stocks were well-predicted, with season-wide MADs of 4.7% for subyearling chinook salmon, 3.3% for yearling chinook salmon, and 1.4% for steelhead. All three Snake River stocks were better predicted at McNary Dam than they were at Lower Granite Dam. The Upper Columbia River PIT-tagged runs-at-large of wild subyearling chinook salmon and wild steelhead were not predicted with the remarkable accuracy of the Snake River stocks, but RealTime performance for these stocks was still good, with season-wide MADs of 7.9% and 4.9%, respectively. The results of RealTime predictions of FPC passage-indexed percentiles of combined wild and hatchery-reared salmonids to Rock Island and McNary dams were comparable to last year with respect to the large variability in performance. Like last year some runs were predicted very well while others were predicted very poorly. The stocks predicted best and worst last year were not necessarily the stocks predicted best and worst this year.« less

  2. History of salmon in the Great Lakes, 1850-1970

    USGS Publications Warehouse

    Parsons, John W.

    1973-01-01

    This history of the salmon in the Great Lakes describes the decline and extinction of the Atlantic salmon (Salmo salar) in Lake Ontario in the 1800's; the failure to establish, by salmon culture, permanent or sizable populations of Atlantic or Pacific salmon in any of the Great Lakes in 1867-1965; and the success of the plantings of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytsha) in the Great Lakes, in 1966-70 -- particularly in Lake Michigan. Despite plantings of 5 million fry and fingerlings from Lake Ontario stocks in 1866-84, the native Atlantic salmon in Lake Ontario became extinct in the late 1800's primarily because tributaries in which they spawned were blocked by mill dams. Plantings of 13 million chinook salmon and landlocked and anadromous forms of Atlantic salmon in Lake Ontario and the other Great Lakes in 1873-1947 failed completely. The first species to develop a self-sustaining population was the pink salmon (O. gorbuscha), which was planted in Lake Superior in 1956; however, it has not become abundant. A salmon fishery finally was established when 15 million coho salmon and 6 million chinook salmon were planted as smolt in the Great Lakes in 1966-70. In 1970, for example, 576,000 coho salmon (12% of those planted in 1969) were caught by anglers in Lake Michigan. Most weighed 5 to 10 pounds (2.3-4.5 kg). Sport fishing for salmon was fair in Lakes Superior and Huron, and poor in Lakes Erie and Ontario. By 1970, natural reproduction of coho, chinook, pink, and kokanee (O. nerka) salmon had occurred in some tributaries of one or more of the upper three Great Lakes. It is expected, however, that the sport fishery will continue to be supported almost entirely by planted fish.

  3. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait

    PubMed Central

    Moen, Thomas; Baranski, Matthew; Sonesson, Anna K; Kjøglum, Sissel

    2009-01-01

    Background Infectious pancreatic necrosis (IPN) is one of the most prevalent and economically devastating diseases in Atlantic salmon (Salmo salar) farming worldwide. The disease causes large mortalities at both the fry- and post-smolt stages. Family selection for increased IPN resistance is performed through the use of controlled challenge tests, where survival rates of sib-groups are recorded. However, since challenge-tested animals cannot be used as breeding candidates, within-family selection is not performed and only half of the genetic variation for IPN resistance is being exploited. DNA markers linked to quantitative trait loci (QTL) affecting IPN resistance would therefore be a powerful selection tool. The aim of this study was to identify and fine-map QTL for IPN-resistance in Atlantic salmon, for use in marker-assisted selection to increase the rate of genetic improvement for this trait. Results A genome scan was carried out using 10 large full-sib families of challenge-tested Atlantic salmon post-smolts and microsatellite markers distributed across the genome. One major QTL for IPN-resistance was detected, explaining 29% and 83% of the phenotypic and genetic variances, respectively. This QTL mapped to the same location as a QTL recently detected in a Scottish Atlantic salmon population. The QTL was found to be segregating in 10 out of 20 mapping parents, and subsequent fine-mapping with additional markers narrowed the QTL peak to a 4 cM region on linkage group 21. Challenge-tested fry were used to show that the QTL had the same effect on fry as on post-smolt, with the confidence interval for QTL position in fry overlapping the confidence interval found in post-smolts. A total of 178 parents were tested for segregation of the QTL, identifying 72 QTL-heterozygous parents. Genotypes at QTL-heterozygous parents were used to determine linkage phases between alleles at the underlying DNA polymorphism and alleles at single markers or multi-marker haplotypes. One four-marker haplotype was found to be the best predictor of QTL alleles, and was successfully used to deduce genotypes of the underlying polymorphism in 72% of the parents of the next generation within a breeding nucleus. A highly significant population-level correlation was found between deduced alleles at the underlying polymorphism and survival of offspring groups in the fry challenge test, parents with the three deduced genotypes (QQ, Qq, qq) having mean offspring mortality rates of 0.13, 0.32, and 0.49, respectively. The frequency of the high-resistance allele (Q) in the population was estimated to be 0.30. Apart from this major QTL, one other experiment-wise significant QTL for IPN-resistance was detected, located on linkage group 4. Conclusion The QTL confirmed in this study represents a case of a major gene explaining the bulk of genetic variation for a presumed complex trait. QTL genotypes were deduced within most parents of the 2005 generation of a major breeding company, providing a solid framework for linkage-based MAS within the whole population in subsequent generations. Since haplotype-trait associations valid at the population level were found, there is also a potential for MAS based on linkage disequilibrium (LD). However, in order to use MAS across many generations without reassessment of linkage phases between markers and the underlying polymorphism, the QTL needs to be positioned with even greater accuracy. This will require higher marker densities than are currently available. PMID:19664221

  4. Salmon Supplementation Studies in Idaho Rivers; Idaho Supplementation Studies, 2000-2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beasley, Chris; Tabor, R.A.; Kinzer, Ryan

    2003-04-01

    This report summarizes brood year 1999 juvenile production and emigration data and adult return information for 2000 for streams studied by the Nez Perce Tribe for the cooperative Idaho Salmon Supplementation Studies in Idaho Rivers (ISS) project. In order to provide inclusive juvenile data for brood year 1999, we include data on parr, presmolt, smolt and yearling captures. Therefore, our reporting period includes juvenile data collected from April 2000 through June 2001 for parr, presmolts, and smolts and through June 2002 for brood year 1999 yearling emigrants. Data presented in this report include; fish outplant data for treatment streams, snorkelmore » and screw trap estimates of juvenile fish abundance, juvenile emigration profiles, juvenile survival estimates to Lower Granite Dam (LGJ), redd counts, and carcass data. There were no brood year 1999 treatments in Legendary Bear or Fishing Creek. As in previous years, snorkeling methods provided highly variable population estimates. Alternatively, rotary screw traps operated in Lake Creek and the Secesh River provided more precise estimates of juvenile abundance by life history type. Juvenile fish emigration in Lake Creek and the Secesh River peaked during July and August. Juveniles produced in this watershed emigrated primarily at age zero, and apparently reared in downstream habitats before detection as age one or older fish at the Snake and Columbia River dams. Over the course of the ISS study, PIT tag data suggest that smolts typically exhibit the highest relative survival to Lower Granite Dam (LGJ) compared to presmolts and parr, although we observed the opposite trend for brood year 1999 juvenile emigrants from the Secesh River. SURPH2 survival estimates for brood year 1999 Lake Creek parr, presmolt, and smolt PIT tag groups to (LGJ) were 27%, 39%, and 49% respectively, and 14%, 12%, and 5% for the Secesh River. In 2000, we counted 41 redds in Legendary Bear Creek, 4 in Fishing Creek, 5 in Slate Creek, 153 in the Secesh River, and 180 in Lake Creek. We recovered 19 carcasses (11 natural 8 hatchery) in Legendary Bear Creek, one hatchery carcass in Fishing Creek, zero carcasses in Slate Creek, 82 carcasses (19 of unknown origin and 63 natural) in the Secesh River, and 178 carcasses (2 hatchery 176 natural) from Lake Creek. In 2000 the majority (82%) of carcasses were recovered in index spawning reaches. Preliminary analysis of brood year 1997 PIT tag return data for the Secesh River and Lake Creek yields LGJ to Lower Granite Dam (LGD) juvenile to adult survival rates of, 0.00% for parr, 0.20% for presmolts, and 3.13% for smolts. LGJ to LGD juvenile to adult return rates for brood year 1997 Legendary Bear Creek were 2.98% for naturally produced PIT tagged smolts and 0.89% for PIT tagged supplementation smolts. No adults were detected at LGD from brood year 1997 parr released in Fishing Creek.« less

  5. Na+/K+/2Cl- cotransporter and CFTR gill expression after seawater transfer in smolts (0+) of different Atlantic salmon (Salmo salar) families

    USGS Publications Warehouse

    Mackie, P.M.; Gharbi, K.; Ballantyne, J.S.; McCormick, S.D.; Wright, P.A.

    2007-01-01

    Smoltification involves morphological and physiological changes in the gills that prepare anadromous salmonids to osmoregulate efficiently in seawater. In a previous study, we found that different families of Atlantic salmon (Salmo salar) smolts vary in their ability to osmoregulate when abruptly transferred to cold seawater and that these differences are correlated with gill Na+/K+ ATPase activity. Here we extend these findings to test whether other key transport proteins, namely Na+/K+/2Cl- contransporter (NKCC) and the Cl- channel or cystic fibrosis transmembrane conductance regulator (CFTR), play a significant role in osmoregulatory differences between families. To facilitate molecular analysis of NKCC, we first isolated a gill cDNA containing the complete coding region (1147 aa) of an isoform previously reported as a partial sequence. Phylogenetic analysis showed that this isoform is most closely related to isoforms of the NKCC1a subfamily found in European eel and Mozambique tilapia. In a second step, we quantified NKCC protein abundance as well as mRNA expression levels for NKCC1a and two CFTR isoforms (CFTRI and CFTRII) in 0+ smolts from three families prior to and following seawater transfer. The family with the lowest salinity tolerance also showed significant increases in gill NKCC1a mRNA after seawater transfer. Taken together with our previous study, these data indicate that family differences in expression of transport proteins are in part related to salinity tolerance, although the best indicator of osmoregulatory performance between families may be gill Na+/K+ ATPase activity and CFTR I mRNA levels, rather than Na+/K+ ATPase and NKCC1a mRNA levels or NKCC protein abundance. ?? 2007 Elsevier B.V. All rights reserved.

  6. The economic benefits of disease triggered early harvest: A case study of pancreas disease in farmed Atlantic salmon from Norway.

    PubMed

    Pettersen, J M; Rich, K M; Jensen, B Bang; Aunsmo, A

    2015-10-01

    Pancreas disease (PD) is an important viral disease in Norwegian, Scottish and Irish aquaculture causing biological losses in terms of reduced growth, mortality, increased feed conversion ratio, and carcass downgrading. We developed a bio-economic model to investigate the economic benefits of a disease triggered early harvesting strategy to control PD losses. In this strategy, the salmon farm adopts a PCR (Polymerase Chain Reaction) diagnostic screening program to monitor the virus levels in stocks. Virus levels are used to forecast a clinical outbreak of pancreas disease, which then initiates a prescheduled harvest of the stock to avoid disease losses. The model is based on data inputs from national statistics, literature, company data, and an expert panel, and use stochastic simulations to account for the variation and/or uncertainty associated with disease effects and selected production expenditures. With the model, we compared the impacts of a salmon farm undergoing prescheduled harvest versus the salmon farm going through a PD outbreak. We also estimated the direct costs of a PD outbreak as the sum of biological losses, treatment costs, prevention costs, and other additional costs, less the costs of insurance pay-outs. Simulation results suggests that the economic benefit from a prescheduled harvest is positive once the average salmon weight at the farm has reached 3.2kg or more for an average Norwegian salmon farm stocked with 1,000,000smolts and using average salmon sales prices for 2013. The direct costs from a PD outbreak occurring nine months (average salmon weight 1.91kg) after sea transfer and using 2013 sales prices was on average estimated at NOK 55.4 million (5%, 50% and 90% percentile: 38.0, 55.8 and 72.4) (NOK=€0.128 in 2013). Sensitivity analyses revealed that the losses from a PD outbreak are sensitive to feed- and salmon sales prices, and that high 2013 sales prices contributed to substantial losses associated with a PD outbreak. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of short-term regulated temperature variations on the swimming economy of Atlantic salmon smolts

    PubMed Central

    Palstra, A. P.

    2017-01-01

    Abstract Migratory species travelling long distances between habitats to spawn or feed are well adapted to optimize their swimming economy. However, human activities, such as river regulation, represent potential threats to fish migration by changing environmental parameters that will have impact on their metabolism. The main objective of this study was to evaluate the changes in the swimming energetics of a salmonid species, Atlantic salmon (Salmo salar L.), caused by short-term temperature variations that usually result from the operation of hydroelectrical dams. Intermittent flow respirometry in swim tunnels allows to obtain high resolution data on oxygen consumption of swimming fish which can reflect aerobic and anaerobic metabolism. This method was used to compare the metabolic rates of oxygen consumption before, during and after sudden thermal change. Control (no temperature variation) and experimental (temperature variation of approximately 4°C in 1 h) swimming trials were conducted to achieve the following objectives: (i) quantify the variations in oxygen consumption associated with abrupt temperature decrease, and (ii) assess if the tested fish return quickly to initial oxygen consumption rates. Main results revealed that Atlantic salmon smolts show a strong response to sudden temperature variation, significantly reducing the oxygen consumption rate up to a seven-fold change. Fish quickly returned to initial swimming costs shortly after reestablishment of temperature values. Results from this study can be used to evaluate the species-specific effects of the applied operation modes by hydroelectrical dams and to increase the success of conservation and management actions directed to fish species inhabiting regulated rivers. PMID:28480037

  8. Effect of short-term regulated temperature variations on the swimming economy of Atlantic salmon smolts.

    PubMed

    Alexandre, C M; Palstra, A P

    2017-01-01

    Migratory species travelling long distances between habitats to spawn or feed are well adapted to optimize their swimming economy. However, human activities, such as river regulation, represent potential threats to fish migration by changing environmental parameters that will have impact on their metabolism. The main objective of this study was to evaluate the changes in the swimming energetics of a salmonid species, Atlantic salmon ( Salmo salar L.), caused by short-term temperature variations that usually result from the operation of hydroelectrical dams. Intermittent flow respirometry in swim tunnels allows to obtain high resolution data on oxygen consumption of swimming fish which can reflect aerobic and anaerobic metabolism. This method was used to compare the metabolic rates of oxygen consumption before, during and after sudden thermal change. Control (no temperature variation) and experimental (temperature variation of approximately 4°C in 1 h) swimming trials were conducted to achieve the following objectives: (i) quantify the variations in oxygen consumption associated with abrupt temperature decrease, and (ii) assess if the tested fish return quickly to initial oxygen consumption rates. Main results revealed that Atlantic salmon smolts show a strong response to sudden temperature variation, significantly reducing the oxygen consumption rate up to a seven-fold change. Fish quickly returned to initial swimming costs shortly after reestablishment of temperature values. Results from this study can be used to evaluate the species-specific effects of the applied operation modes by hydroelectrical dams and to increase the success of conservation and management actions directed to fish species inhabiting regulated rivers.

  9. Comparative pathogenesis of piscirickettsiosis in Atlantic salmon (Salmo salar L.) post-smolt experimentally challenged with LF-89-like and EM-90-like Piscirickettsia salmonis isolates.

    PubMed

    Rozas-Serri, M; Ildefonso, R; Peña, A; Enríquez, R; Barrientos, S; Maldonado, L

    2017-10-01

    Piscirickettsiosis (SRS) is the most prevalent bacterial disease in Chilean salmon aquaculture and is responsible for high economic losses. The aim of this study was to comparatively characterize the pathogenesis of SRS in post-smolt Atlantic salmon during the early and late stages of infection with Piscirickettsia salmonis LF-89-like (PS-LF-89) and EM-90-like (PS-EM-90) using a cohabitation challenge. The pathogenesis of cohabitant fish infected with the two isolates was relatively different due to cohabitant fish infected with PS-EM-90 showing higher cumulative mortality and shorter time until death compared with PS-LF-89 fish. PS-LF-89 caused an SRS infection characterized by kidney and liver lesions, whereas PS-EM-90 caused systemic and haemorrhagic disease characterized by kidney, liver, heart, brain, skeletal muscle and intestine lesions. Decreased serum concentration of total proteins and albumin as well as increased serum ALT, AST and creatinine levels in fish infected with both isolates confirmed that changes in liver and kidney function occurred during infection. Tissue damage, expressed as an SRS histoscore, showed a strong positive correlation with the bacterial load expressed as abundance of P. salmonis 16S rRNA transcripts in the livers and kidneys of fish affected with either isolate, but the correlation was significantly higher in fish infected with PS-EM-90. The results contribute to improving the understanding of the bacteria-host interaction. © 2017 John Wiley & Sons Ltd.

  10. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Batten, G.; Cushing, Aaron W.

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2011. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon usingmore » a virtual release, paired reference release survival model. This study supports the U.S. Army Corps of Engineers’ continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  11. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System taggedmore » smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  12. Comparative responses to endocrine disrupting compounds in early life stages of Atlantic salmon, Salmo salar.

    PubMed

    Duffy, T A; Iwanowicz, L R; McCormick, S D

    2014-07-01

    Atlantic salmon (Salmo salar) are endangered anadromous fish that may be exposed to feminizing endocrine disrupting compounds (EDCs) during early development, potentially altering physiological capacities, survival and fitness. To assess differential life stage sensitivity to common EDCs, we carried out short-term (4 day) exposures using three doses each of 17 α-ethinylestradiol (EE2), 17 β-estradiol (E2), and nonylphenol (NP) on four early life stages; embryos, yolk-sac larvae, feeding fry and 1 year old smolts. Differential response was compared using vitellogenin (Vtg, a precursor egg protein) gene transcription. Smolts were also examined for impacts on plasma Vtg, cortisol, thyroid hormones (T4/T3) and hepatosomatic index (HSI). Compound-related mortality was not observed in any life stage, but Vtg mRNA was elevated in a dose-dependent manner in yolk-sac larvae, fry and smolts but not in embryos. The estrogens EE2 and E2 were consistently stronger inducers of Vtg than NP. Embryos responded significantly to the highest concentration of EE2 only, while older life stages responded to the highest doses of all three compounds, as well as intermediate doses of EE2 and E2. Maximal transcription was greater for fry among the three earliest life stages, suggesting fry may be the most responsive life stage in early development. Smolt plasma Vtg was also significantly increased, and this response was observed at lower doses of each compound than was detected by gene transcription suggesting plasma Vtg is a more sensitive indicator at this life stage. HSI was increased at the highest doses of EE2 and E2, and plasma T3 was decreased at the highest dose of EE2. Our results indicate that all life stages are potentially sensitive to endocrine disruption by estrogenic compounds and that physiological responses were altered over a short window of exposure, indicating the potential for these compounds to impact fish in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Assessing Impacts of Navigation Dredging on Atlantic Sturgeon (Acipenser oxyrinchus)

    DTIC Science & Technology

    2014-11-01

    fishes and insect larvae (Smith 1985, Dadswell 2006). Shallow water shoals located adjacent to both sides of the Federal navigation channel, provide a...incision was closed using sterile resorbitive suture material with four to five simple interrupted stitches. An iodine disinfectant was applied to the...1976). Assessment of techniques used to quantify salmon smolt entrainment by a hydraulic suction hopper dredge in the Fraser River estuary. Environment

  14. Hood River Production Program Monitoring and Evaluation (M&E) - Confederated Tribes of Warm Springs : Annual Report For Fiscal Year, October 2007 – September 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerstenberger, Ryan

    2009-07-27

    This progress report describes work performed by the Confederated Tribes of Warm Springs (CTWSRO) portion of the Hood River Production Program Monitoring and Evaluation Project (HRPP) during the 2008 fiscal year. A total of 64,736 hatchery winter steelhead, 12,108 hatchery summer steelhead, and 68,426 hatchery spring Chinook salmon smolts were acclimated and released in the Hood River basin during the spring. The HRPP exceeded program goals for a release of and 50,000 winter steelhead but fell short of the steelhead release goals of 30,000 summer steelhead and 75,000 spring Chinook in 2008. Passive Integrated Transponders (PIT) tags were implanted inmore » 6,652 hatchery winter steelhead, and 1,196 hatchery summer steelhead, to compare migratory attributes and survival rates of hatchery fish released into the Hood River. Water temperatures were recorded at six locations within the Hood River subbasin to monitor for compliance with Oregon Department of Environmental Quality water quality standards. A preseason spring Chinook salmon adult run forecast was generated, which predicted an abundant return adequate to meet escapement goal and brood stock needs. As a result the tribal and sport fisheries were opened. A tribal creel was conducted from May 22 to July 18 during which an estimated 172 spring Chinook were harvested. One hundred sixteen Spring Chinook salmon redds were observed and 72 carcasses were inspected on 19.4 miles of spawning grounds throughout the Hood River Basin during 2008. Annual salvage operations were completed in two irrigation canals resulting in the liberation of 1,641 fish back to the Hood River.« less

  15. Long-term consequences of variation in timing and manner of fry introduction on juvenile Atlantic salmon (Salmo salar) growth, survival, and life-history expression

    USGS Publications Warehouse

    Letcher, B.H.; Dubreuil, T.; O'Donnell, M. J.; Obedzinski, M.; Griswold, K.; Nislow, K.H.

    2004-01-01

    We tested the influence of introduction time and the manner of introduction on growth, survival, and life-history expression of Atlantic salmon (Salmo salar). Introduction treatments included three fry stocking times and stream rearing of embryos. Despite poor growth conditions during the early stocking period, early-stocked fish were larger throughout the entire study period, likely the result of prior residence advantage. This interpretation was reinforced by the laboratory study, where early-stocked fish outgrew late-stocked fish when reared together, but not when they were reared separately. In contrast to growth, abundance of stocked fish was greatest for fish stocked during the middle period, and this stocking group produced the greatest number of smolts. Despite smaller size, survival of stream-incubated fish was generally greater than survival of stocked fish. Introduction timing had a pronounced effect on smolt age but a weak effect on extent of parr maturation. Overall, these observations indicate that small differences (???2 weeks) in introduction time can have long-term effects on size, survival, and life-history expression. Results suggest stabilizing selection on introduction times, mediated by the interaction between prior residence (advantage to fish introduced earlier) and habitat suitability (advantage to fish introduced later). ?? 2004 NRC Canada.

  16. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001.more » The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The increase in hatchery Chinook catch in 2002 was due to a 3.1 fold increase in hatchery production and differences in flow between years. Changes in hatchery and wild steelhead catch are probably due to differences in flow between years. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2002 data detected a relation between migration rate and discharge for hatchery and wild Chinook salmon. For hatchery and wild Chinook salmon there was a 4.7-fold and a 3.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.8-fold and a 1.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2002 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for wild Chinook salmon and hatchery steelhead trout. The analysis was unable to detect a relation between migration rate and discharge for hatchery Chinook salmon. The lack of a detectable relation was probably a result of the migration rate data being spread over a very narrow range of discharge. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 4.3-fold for wild Chinook salmon and 2.2-fold for hatchery steelhead between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2000, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the four dams for fish marked at the Snake River trap were 61% for hatchery Chinook, 68% for wild Chinook, 58% for hatchery steelhead, and 62% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 51% for hatchery Chinook, 59% for wild Chinook salmon, 45% for hatchery steelhead trout, and 54% for wild steelhead trout. Cumulative interrogations were significantly lower in 2002 than in previous years with similar flow.« less

  17. Steelhead Supplementation in Idaho Rivers : 2001 Project Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Alan

    In 2001, Idaho Department of Fish and Game (IDFG) continued an assessment of the Sawtooth Hatchery steelhead Oncorhynchus mykiss stock to reestablish natural populations in Beaver and Frenchman creeks in the upper Salmon River. Crews stocked both streams with 20 pair of hatchery adults, and I estimated the potential smolt production from the 2000 adult outplants. n the Red River drainage, IDFG stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 to assess which life stage produces more progeny when the adults return to spawn. In 2001, IDFG operated the Red River weir to trap adults that returnedmore » from these stockings, but none were caught from either group. Wild steelhead populations in the Lochsa and Selway river drainages were assessed and the chinook salmon Oncorhynchus tshawytscha escapement was enumerated in Fish Creek. I estimated that 75 wild adult steelhead and 122 adult chinook salmon returned to Fish Creek in 2001. I estimated that slightly more than 30,000 juvenile steelhead migrated out of Fish Creek. This is the largest number of steelhead to migrate out of Fish Creek in a single year since I began estimating the yearly migration in 1994. Juvenile steelhead densities in Lochsa and Selway tributaries were somewhat higher in 2001 than those observed in 2000. Crews from IDFG collected over 4,800 fin samples from wild steelhead in 74 streams of the Clearwater, Snake, and Salmon river drainages and from five hatchery stocks during the summer of 2000 for a DNA analysis to assess Idaho's steelhead stock structure. The DNA analysis was subcontracted to Dr. Jennifer Nielsen, Alaska Biological Science Center, Anchorage. Her lab developed protocols to use for the analysis in 2001 and is continuing to analyze the samples. Dr. Nielsen plans to have the complete set of wild and hatchery stocks analyzed in 2002.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berggren Thomas J.; Franzoni, Henry; Basham, Larry R.

    The Comparative Survival Study (CSS) was initiated in 1996 as a multi-year program of the fishery agencies and tribes to estimate survival rates over different life stages for spring and summer chinook (hereafter, chinook) produced in major hatcheries in the Snake River basin and from selected hatcheries in the lower Columbia River. Much of the information evaluated in the CSS is derived from fish tagged with Passive Integrated Transponder (PIT) tags. A comparison of survival rates of chinook marked in two different regions (which differ in the number of dams chinook have to migrate through) provides insight into the effectsmore » of the Snake/Columbia hydroelectric system (hydrosystem). The CSS also compares the smolt-to-adult survival rates (SARs) for Snake River chinook that were transported versus those that migrated in-river to below Bonneville Dam. Additional comparisons can be made within in-river experiences as well comparison between the different collector projects from which smolts are transported. CSS also compares these survival rates for wild Snake River spring and summer chinook. These comparisons generate information regarding the relative effects of the current management actions used to recover this listed species. Scientists and managers have recently emphasized the importance of delayed hydrosystem mortality to long-term management decisions. Delayed hydrosystem mortality may be related to the smolts experience in the Federal Columbia River Power System, and could occur for both smolts that migrate in-river and smolts that are transported. The CSS PIT tag information on in-river survival rates and smolt-to-adult survival rates (SARs) of transported and in-river fish are relevant to estimation of ''D'', which partially describes delayed hydrosystem mortality. The parameter D is the differential survival rate of transported fish relative to fish that migrate in-river, as measured from below Bonneville Dam to adults returning to Lower Granite Dam. When D = 1, there is no difference in survival rate after hydrosystem passage. When D < 1, then transported smolts die at a greater rate after release below Bonneville Dam than smolts that have migrated in-river to below Bonneville Dam. While the relative survival rates of transported and in-river migrants are important, the SARs must be also be sufficient to allow the salmon to persist and recover (Mundy et al. 1994). Decreased SARs could result from delayed hydrosystem mortality for either transported or in-river migrants, or both. Major objectives of the CSS include: (1) development of a long-term index of transport SAR to in-river SAR for Snake River hatchery and wild spring and summer chinook smolts measured at Lower Granite Dam; (2) develop a long-term index of survival rates from release of smolts at Snake River hatcheries to return of adults to the hatcheries; (3) compute and compare the overall SARs for selected upriver and downriver spring and summer chinook hatchery and wild stocks; and (4) begin a time series of SARs for use in hypothesis testing and in the regional long-term monitoring and evaluation program. Primary CSS focus in this report is for wild and hatchery spring/summer chinook that outmigrated in 1997 to 2000 and returned in 2003. Another goal of CSS was to help resolve uncertainty concerning marking, handling and bypass effects associated with control fish used in National Marine Fisheries Service's (NMFS) transportation research and evaluation. Significant concern had been raised that the designated control groups, which were collected, marked and released at dams, did not experience the same conditions as the in-river migrants which were not collected and bypassed under existing management, and that the estimated ratios of SARs of transported fish to SARs of control fish may be biased (Mundy et al. 1994). Instead of marking at the dams, as traditionally done for NMFS transportation evaluations, CSS began marking sufficient numbers of fish at the hatcheries and defining in-river groups from the detection histories at the dams (e.g., total arrivals, never detected, detected one or more times).« less

  19. Testing archival tag technology in coho salmon

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Richards, Philip; Tingey, Thor; Wilson, Derek; Zimmerman, Chris

    2004-01-01

    Archive tags with temperature and light-geolocation sensors will be monitored for post-smolt coho salmon in Cook Inlet. Light/location relationships specific to the Gulf of Alaska developed under Project 00478 will be applied in this study of movement and migration paths for coho salmon during maturation in ocean environments in Cook Inlet. Salmon for this study will be reared in captivity (at the Alaska Department of Fish and Game hatchery at Fort Richardson) to 1+ year of age (200-250mm) and released in Cook Inlet as part of the department's Ship Creek sport-fishing hatchery release. FY 01 includes pilot studies of tag retention, behavior, and growth for coho in captivity. Ship Creek coho will be tagged mid-May. A spring release experiment in the first year will be contingent on the successful implementation and retention of these tags. Surveys for early jack recoveries will be done at the Ship Creek weir and among sport fishers. Monitoring for adult tag recoveries will be done in the coho commercial fishery in Cook Inlet and the derby sport fishery on Ship Creek. Archive tagged fish will be used to document coho salmon use of marine habitats, migration routes, contribution to the sport fishery, and hatchery/wild interactions for salmon in Cook Inlet.

  20. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002.more » The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high flows. There were zero days when the trap was out of operation due to high flow or debris. The decrease in hatchery Chinook catch in 2003 was partially due to differences in flow between years because there was a 5.9% increase in hatchery production in the Salmon River drainage in 2003. The decrease in hatchery steelhead catch may be partially due to a 13% decrease in hatchery production in the Salmon River drainage in 2003. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2003 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook was probably caused by age 0 fall Chinook being mixed in with the age 1 Chinook. Age 0 fall Chinook migrate much slower than age 1 Chinook, which would confuse the ability to detect the migration rate discharge relation. For wild Chinook salmon there was a 1.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.7-fold and a 1.9-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2003 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 14-fold for hatchery Chinook salmon, 8.3-fold for wild Chinook salmon and 2.4-fold for hatchery steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2001, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the four dams for fish marked at the Snake River trap were 65% for hatchery Chinook, 72% for wild Chinook, 66% for hatchery steelhead, and 67% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 48% for hatchery Chinook, 61% for wild Chinook salmon, 57% for hatchery steelhead trout, and 56% for wild steelhead trout.« less

  1. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Subbasin, Annual Report 2008 : Project Period 1 February 2008 to 31 January 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanke, Jeffrey A.; Alfonse, Brian M.; Bratcher, Kyle W.

    2009-07-31

    This study was designed to document and describe the status and life history strategies of spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin. We determined migration timing, abundance, and life-stage survival rates for juvenile spring Chinook salmon Oncorhynchus tshawytscha and summer steelhead O. mykiss in four streams during migratory year 2008 from 1 July 2007 through 30 June 2008. As observed in previous years of this study, spring Chinook salmon and steelhead exhibited fall and spring movements out of natal rearing areas, but did not begin their smolt migration through the Snake and lower Columbia Rivermore » hydrosystem until spring. In this report we provide estimates of migrant abundance and migration timing for each study stream, and their survival and timing to Lower Granite Dam. We also document aquatic habitat conditions using water temperature and stream flow in four study streams in the subbasin.« less

  2. Aqueous exposure to 4-nonylphenol and 17β-estradiol increases stress sensitivity and disrupts ion regulatory ability of juvenile atlantic salmon

    USGS Publications Warehouse

    Lerner, Darrren T.; Bjornsson, Bjorn Thrandur; McCormick, Stephen D.

    2007-01-01

    Population declines of wild Atlantic salmon have been attributed to an array of anthropogenic disturbances, including dams, commercial and recreational fishing, habitat loss, and pollution. Environmental contaminants in particular, can act as environmental stressors on fish, typically causing disruption of ion homeostasis due to their close association with the aquatic environment. To examine the effects of the xenoestrogen 4-nonylphenol (NP) or 17β-estradiol (E2) on stress sensitivity and ion regulation, we exposed juvenile Atlantic salmon continuously for 21 d to either 10 or 100 μg/L NP (NP-L or NP-H), 2 μg/L E2 (positive control), or vehicle control during the parr-smolt transformation in April. After treatment, fish were sampled in freshwater (FW), transferred to 30‰ seawater (SW) for 24 h, or subjected to a handling stress. Estradiol and NP-H increased plasma vitellogenin in males and females, and E2 increased gonadosomatic index only in males. In FW, E2 reduced sodium potassium–activated adenosine triphosphatase activity as well as plasma levels of growth hormone, insulin-like growth factor I, and triiodothyronine. Both E2 and NP-H reduced plasma sodium in FW and increased plasma chloride in SW. Plasma Cortisol levels pre- and poststressor were significantly elevated by all treatments relative to controls, but only E2 increased plasma glucose before and after the stressor. These results indicate that exposure of anadromous salmonids to environmental estrogens heightens sensitivity to external stressors, impairs ion regulation in both FW and SW, and disrupts endocrine pathways critical for smolt development.

  3. Plasma insulin-like growth factor-I concentrations in yearling chinook salmon (Oncorhynchus tshawytscha) migrating from the Snake River Basin, USA

    USGS Publications Warehouse

    Congleton, J.L.; Biga, P.R.; Peterson, B.C.

    2003-01-01

    During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week spring migration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility, yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses of migrating fish either did not increase during the migration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations in migrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability of migrating smolts to maintain relatively elevated IGF-I levels despite restricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance. ?? 2004 Kluwer Academic Publishers.

  4. Evolution of the hormonal control of animal performance: Insights from the seaward migration of salmon.

    PubMed

    McCormick, Stephen D

    2009-10-01

    The endocrine system is the key mediator of environmental and developmental (internal) information, and is likely to be involved in altering the performance of animals when selection has favored phenotypic plasticity. The endocrine control of performance should be especially pronounced in animals that undergo a developmental shift in niche, such as occurs in migratory species. By way of example, I review the developmental and environmental control of the preparatory changes for seawater entry of juvenile salmon (known as smolting) and its hormonal regulation. There is a size threshold for smolt development in juvenile Atlantic salmon that results in greater sensitivity of the growth hormone and cortisol axes to changes in daylength. These hormones, in turn, have broad effects on survival, ion homeostasis, growth and swimming performance during entry into seawater. Migratory niche shifts and metamorphic events are extreme examples of the role of hormones in animal performance and represent one end of a continuum. A framework for predicting when hormones will be involved in performance of animals is presented. Endocrine involvement in performance will be more substantial when (1) selection differentials on traits underlying performance are high and temporally discontinuous over an animal's lifetime, (2) the energetic and fitness costs of maintaining performance plasticity are less than those of constant performance, (3) cues for altering performance are reliable indicators of critical environmental conditions, require neurosensory input, and minimize effects of lag, and (4) the need for coordination of organs, tissues and cells to achieve increased performance is greater. By examining these impacts of selection, endocrinologists have an opportunity to contribute to the understanding of performance, phenotypic plasticity, and the evolution of life-history traits.

  5. Reconstructing the Migratory Behavior and Long-Term Survivorship of Juvenile Chinook Salmon under Contrasting Hydrologic Regimes

    DOE PAGES

    Sturrock, Anna M.; Wikert, J. D.; Heyne, Timothy; ...

    2015-05-20

    The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith 87Sr/ 86Sr in adult Chinook salmon (Oncorhynchus tshawytcha) returningmore » to the Stanislaus River in the California Central Valley (USA) to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000) and drier (2003) year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts) to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10%) and greater smolt contributions in the drier year (13% vs. 44%). In conclusion, these data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate.« less

  6. Evolution of the hormonal control of animal performance: insights from the seaward migration of salmon

    USGS Publications Warehouse

    McCormick, S.D.

    2009-01-01

    The endocrine system is the key mediator of environmental and developmental (internal) information, and is likely to be involved in altering the performance of animals when selection has favored phenotypic plasticity. The endocrine control of performance should be especially pronounced in animals that undergo a developmental shift in niche, such as occurs in migratory species. By way of example, I review the developmental and environmental control of the preparatory changes for seawater entry of juvenile salmon (known as smolting) and its hormonal regulation. There is a size threshold for smolt development in juvenile Atlantic salmon that results in greater sensitivity of the growth hormone and cortisol axes to changes in daylength. These hormones, in turn, have broad effects on survival, ion homeostasis, growth and swimming performance during entry into seawater. Migratory niche shifts and metamorphic events are extreme examples of the role of hormones in animal performance and represent one end of a continuum. A framework for predicting when hormones will be involved in performance of animals is presented. Endocrine involvement in performance will be more substantial when (1) selection differentials on traits underlying performance are high and temporally discontinuous over an animal's lifetime, (2) the energetic and fitness costs of maintaining performance plasticity are less than those of constant performance, (3) cues for altering performance are reliable indicators of critical environmental conditions, require neurosensory input, and minimize effects of lag, and (4) the need for coordination of organs, tissues and cells to achieve increased performance is greater. By examining these impacts of selection, endocrinologists have an opportunity to contribute to the understanding of performance, phenotypic plasticity, and the evolution of life-history traits.

  7. Reconstructing the Migratory Behavior and Long-Term Survivorship of Juvenile Chinook Salmon under Contrasting Hydrologic Regimes

    PubMed Central

    Sturrock, Anna M.; Wikert, J. D.; Heyne, Timothy; Mesick, Carl; Hubbard, Alan E.; Hinkelman, Travis M.; Weber, Peter K.; Whitman, George E.; Glessner, Justin J.; Johnson, Rachel C.

    2015-01-01

    The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith 87Sr/86Sr in adult Chinook salmon (Oncorhynchus tshawytcha) returning to the Stanislaus River in the California Central Valley (USA) to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000) and drier (2003) year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts) to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10%) and greater smolt contributions in the drier year (13% vs. 44%). These data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate. PMID:25992556

  8. Nutritional Evaluation of an EPA-DHA Oil from Transgenic Camelina sativa in Feeds for Post-Smolt Atlantic Salmon (Salmo salar L.).

    PubMed

    Betancor, Mónica B; Sprague, Matthew; Sayanova, Olga; Usher, Sarah; Metochis, Christoforos; Campbell, Patrick J; Napier, Johnathan A; Tocher, Douglas R

    2016-01-01

    Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but their use is limited by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15% total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil (WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents.

  9. Nutritional Evaluation of an EPA-DHA Oil from Transgenic Camelina sativa in Feeds for Post-Smolt Atlantic Salmon (Salmo salar L.)

    PubMed Central

    Betancor, Mónica B.; Sprague, Matthew; Sayanova, Olga; Usher, Sarah; Metochis, Christoforos; Campbell, Patrick J.; Napier, Johnathan A.; Tocher, Douglas R.

    2016-01-01

    Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but their use is limited by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15% total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil (WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents. PMID:27454884

  10. Reconstructing the Migratory Behavior and Long-Term Survivorship of Juvenile Chinook Salmon under Contrasting Hydrologic Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturrock, Anna M.; Wikert, J. D.; Heyne, Timothy

    The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith 87Sr/ 86Sr in adult Chinook salmon (Oncorhynchus tshawytcha) returningmore » to the Stanislaus River in the California Central Valley (USA) to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000) and drier (2003) year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts) to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10%) and greater smolt contributions in the drier year (13% vs. 44%). In conclusion, these data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate.« less

  11. Salmon Supplementation Studies in Idaho Rivers, 1996-1998 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reighn, Christopher A.; Lewis, Bert; Taki, Doug

    1999-06-01

    Information contained in this report summarizes the work that has been done by the Shoshone-Bannock Tribes Fisheries Department under BPA Project No. 89-098-3, Contract Number 92-BI-49450. Relevant data generated by the Shoshone-Bannock Tribe will be collated with other ISS cooperator data collected from the Salmon and Clearwater rivers and tributary streams. A summary of data presented in this report and an initial project-wide level supplementation evaluation will be available in the ISS 5 year report that is currently in progress. The Shoshone-Bannock Tribal Fisheries Department is responsible for monitoring a variety of chinook salmon (Oncorhynchus tshawytscha) production parameters as partmore » of the Idaho Supplementation Studies (BPA Project No. 89-098-3, Contract Number 92-BI-49450). Parameters include parr abundance in tributaries to the upper Salmon River; adult chinook salmon spawner abundance, redd counts, and carcass collection. A rotary screw trap is operated on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag chinook smolts. These traps are also used to monitor parr movement, and collect individuals for the State and Tribal chinook salmon captive rearing program. The SBT monitors fisheries parameters in the following six tributaries of the Salmon River: Bear Valley Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork. Chinook populations in all SBT-ISS monitored streams continue to decline. The South Fork Salmon River and Bear Valley Creek have the strongest remaining populations. Snorkel survey methodology was used to obtain parr population estimates for ISS streams from 1992 to 1997. Confidence intervals for the parr population estimates were large, especially when the populations were low. In 1998, based on ISS cooperator agreement, snorkeling to obtain parr population estimates was ceased due to the large confidence intervals. A rotary screw trap was operated on the West Fork Yankee Fork during the spring, summer, and fall of 1998 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997. Supplementation treatments have occurred on the South Fork Salmon River (IDFG), the East Fork Salmon River (EFSR), and the West Fork Yankee Fork of the Salmon River (WFYF). The EFSR received supplementation treatments yearly through 1995. There have been no treatments since 1995, and no significant future treatments from local broodstock are planned due to extremely poor escapement. The WFYF received a single presmolt treatment in 1994. There was an egg and adult release treatment in 1998 from the captive rearing program, not part of the original ISS study. Similarly, no significant future treatments are planned for the West Fork Yankee Fork due to extremely poor escapement. However, small scale experimental captive rearing and broodstock techniques are currently being tested with populations from the EFSR and WFYF. Captive rearing/broodstock techniques could potentially provide feedback for evaluation of supplementation. The other three SBT-ISS streams are control streams and do not receive supplementation treatments.« less

  12. Evaluation of the prototype surface bypass for salmonid smolts in Spring 1996 and 1997 at Lower Granite Dam on the Snake River, Washington

    USGS Publications Warehouse

    Johnson, G.E.; Adams, N.S.; Johnson, Robert L.; Rondorf, D.W.; Dauble, D.D.; Barila, T.Y.

    2000-01-01

    In spring 1996 and 1997, we studied the prototype surface bypass and collector (SBC) at Lower Granite Dam on the Snake River in Washington. Our objectives were to determine the most efficient SBC configuration and to describe smolt movements and swimming behavior in the forebay. To do this, we used hydroacoustic and radiotelemetry techniques. The SBC was retrofitted onto the upstream face of the north half of the powerhouse to test the surface bypass method of diverting smolts from turbines. The SBC had three entrances, with mean velocities ranging from 0.37 to 1.92 m/s, and it discharged 113 m3/s through its outlet at Spill Bay 1, which was adjacent to the powerhouse. Different SBC configurations were created by altering the size and shape of entrances. During spring 1996 and 1997, river discharge was well above normal (123 and 154% of average, respectively). Powerhouse operations caused a strong downward component of flow upstream of the SBC. Many smolts (primarily steelhead and secondarily chinook salmon) were observed actively swimming upward in the water column. There were four times as many smolts diverted from turbines per unit volume of water with SBC flow than with spill flow, which indicated that the SBC may be an especially important bypass consideration in moderate- or low-flow years. The highest SBC efficiency (the proportion of total fish passing through the north half of the powerhouse by all routes that passed through the SBC) for any configuration tested was about 40%. Although no single SBC configuration stood out as the most efficient, the horizontal surface and maximum area configurations, or some combination of the two, are worth further investigation because they were moderately efficient.

  13. Functional characterisation of a TLR accessory protein, UNC93B1, in Atlantic salmon (Salmo salar).

    PubMed

    Lee, P T; Zou, J; Holland, J W; Martin, S A M; Scott, C J W; Kanellos, T; Secombes, C J

    2015-05-01

    Toll-like receptors (TLRs) are indispensable components of the innate immune system, which recognise conserved pathogen associated molecular patterns (PAMPs) and induce a series of defensive immune responses to protect the host. Biosynthesis, localisation and activation of TLRs are dependent on TLR accessory proteins. In this study, we identified the accessory protein, UNC93B1, from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs aided by the conserved gene synteny of genes flanking UNC93B1 in fish, birds and mammals. Phylogenetic analysis showed that salmon UNC93B1 grouped with other vertebrate UNC93B1 molecules, and had highest amino acid identity and similarity to zebrafish UNC93B1. The salmon UNC93B1 gene organisation was also similar in structure to mammalian UNC93B1. Our gene expression studies revealed that salmon UNC93B1 was more highly expressed in spleen, liver and gill tissues but was expressed at a lower level in head kidney tissue in post-smolts relative to parr. Moreover, salmon UNC93B1 mRNA transcripts were up-regulated in vivo in spleen tissue from polyI:C treated salmon and in vitro in polyI:C or IFNγ stimulated Salmon Head Kidney-1 (SHK-1) cells. Initial studies into the functional role of salmon UNC93B1 in fish TLR signalling found that both wild type salmon UNC93B1 and a molecule with a site-directed mutation (H424R) co-immunoprecipitated with salmon TLR19, TLR20a and TLR20d. Overall, these data illustrate the potential importance of UNC93B1 as an accessory protein in fish TLR signalling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Estuarine Ecology of Juvenile Salmon in Western Alaska: a Review

    USGS Publications Warehouse

    Zimmerman, Christian E.; Hillgruber, Nicola

    2009-01-01

    In the late 1990s and early 2000s, large declines in numbers of chum salmon Oncorhynchus keta and Chinook salmon O. tshawytscha returning to the Arctic-YukonKuskokwim (AYK) region (Alaska, USA) illuminated the need for an improved understanding of the variables controlling salmon abundance at all life stages. In addressing questions about salmon abundance, large gaps in our knowledge of basic salmon life history and the critical early marine life stage were revealed. In this paper, results from studies conducted on the estuarine ecology of juvenile salmon in western Alaska are summarized and compared, emphasizing timing and distribution during outmigration, environmental conditions, age and growth, feeding, and energy content of salmon smolts. In western Alaska, water temperature dramatically changes with season, ranging from 0°C after ice melt in late spring/early summer to 19°C in July. Juvenile salmon were found in AYK estuaries from early May until August or September, but to date no information is available on their residence duration or survival probability. Chum salmon were the most abundant juvenile salmon reported, ranging in percent catch from <0.1% to 4.7% and most research effort has focused on this species. Abundances of Chinook salmon, sockeye salmon O. nerka, and pink salmon O. gorbuscha varied among estuaries, while coho salmon O. kisutch juveniles were consistently rare, never amounting to more than 0.8% of the catch. Dietary composition of juvenile salmon was highly variable and a shift was commonly reported from epibenthic and neustonic prey in lower salinity water to pelagic prey in higher salinity water. Gaps in the knowledge of AYK salmon estuarine ecology are still evident. For example, data on outmigration patterns and residence timing and duration, rearing conditions and their effect on diet, growth, and survival are often completely lacking or available only for few selected years and sites. Filling gaps in knowledge concerning salmon use and survival in estuarine and near-shore habitats within the AYK region will aid in assessing the relative roles of all habitats (freshwater to marine) in controlling salmon abundance.

  15. Larval exposure to 4-nonylphenol and 17β-estradiol affects physiological and behavioral development of seawater adaptation in Atlantic salmon smolts

    USGS Publications Warehouse

    Lerner, Darrren T.; Bjornsson, Bjorn Thrandur; McCormick, Stephen D.

    2007-01-01

    Population declines of anadromous salmonids are attributed to anthropogenic disturbances including dams, commercial and recreational fisheries, and pollutants, such as estrogenic compounds. Nonylphenol (NP), a xenoestrogen, is widespread in the aquatic environment due to its use in agricultural, industrial, and household products. We exposed Atlantic salmon yolk-sac larvae to waterborne 10 or 100 μg L-1 NP (NP-L or NP-H, respectively), 2 μg L-1 17β-estradiol (E2), or vehicle, for 21 days to investigate their effects on smolt physiology and behavior 1 year later. NP-H caused approximately 50% mortality during exposure, 30 days after exposure, and 60 days after exposure. Mortality rates of NP-L and E2 fish were not affected until 60 days after treatment, when they were 4-fold greater than those of controls. Treatment with NP-L or E2 as yolk-sac larvae decreased gill sodium-potassium-activated adenosine triphosphatase (Na+,K+-ATPase) activity and seawater (SW) tolerance during smolt development, 1 year after exposure. Exposure to NP-L and E2 resulted in a latency to enter SW and reduced preference for SW approximately 2- and 5-fold, respectively. NP-L-exposed fish had 20% lower plasma insulin-like growth factor I (IGF-I) levels and 35% lower plasma triiodothyronine (T3). Plasma growth hormone and thyroxine (T4) were unaffected. Exposure to E2 did not affect plasma levels of IGF-I, GH, T3, or T4. Both treatment groups exhibited increased plasma cortisol and decreased osmoregulatory capacity in response to a handling stressor. These results suggest that early exposure to environmentally relevant concentrations of NP, and other estrogenic compounds, can cause direct and delayed mortalities and that this exposure can have long term, “organizational” effects on life-history events in salmonids.

  16. Environmental change influences the life history of salmon Salmo salar in the North Atlantic Ocean.

    PubMed

    Jonsson, B; Jonsson, N; Albretsen, J

    2016-02-01

    Annual mean total length (LT) of wild one-sea-winter (1SW) Atlantic salmon Salmo salar of the Norwegian River Imsa decreased from 63 to 54 cm with a corresponding decrease in condition factor (K) for cohorts migrating to sea from 1976 to 2010. The reduction in LT is associated with a 40% decline in mean individual mass, from 2 to 1·2 kg. Hatchery fish reared from parental fish of the same population exhibited similar changes from 1981 onwards. The decrease in LT correlated negatively with near-surface temperatures in the eastern Norwegian Sea, thought to be the main feeding area of the present stock. Furthermore, S. salar exhibited significant variations in the proportion of cohorts attaining maturity after only one winter in the ocean. The proportion of S. salar spawning as 1SW fish was lower both in the 1970s and after 2000 than in the 1980s and 1990s associated with a gradual decline in post-smolt growth and smaller amounts of reserve energy in the fish. In wild S. salar, there was a positive association between post-smolt growth and the sea survival back to the River Imsa for spawning. In addition, among smolt year-classes, there were significant positive correlations between wild and hatchery S. salar in LT, K and age at maturity. The present changes may be caused by ecosystem changes following the collapse and rebuilding of the pelagic fish abundance in the North Atlantic Ocean, a gradual decrease in zooplankton abundance and climate change with increasing surface temperature in the Norwegian Sea. Thus, the observed variation in the life-history traits of S. salar appears primarily associated with major changes in the pelagic food web in the ocean. © 2016 The Fisheries Society of the British Isles.

  17. Piscivorous fish exhibit temperature-influenced binge feeding during an annual prey pulse.

    PubMed

    Furey, Nathan B; Hinch, Scott G; Mesa, Matthew G; Beauchamp, David A

    2016-09-01

    Understanding the limits of consumption is important for determining trophic influences on ecosystems and predator adaptations to inconsistent prey availability. Fishes have been observed to consume beyond what is sustainable (i.e. digested on a daily basis), but this phenomenon of hyperphagia (or binge-feeding) is largely overlooked. We expect hyperphagia to be a short-term (1-day) event that is facilitated by gut volume providing capacity to store consumed food during periods of high prey availability to be later digested. We define how temperature, body size and food availability influence the degree of binge-feeding by comparing field observations with laboratory experiments of bull trout (Salvelinus confluentus), a large freshwater piscivore that experiences highly variable prey pulses. We also simulated bull trout consumption and growth during salmon smolt outmigrations under two scenarios: 1) daily consumption being dependent upon bioenergetically sustainable rates and 2) daily consumption being dependent upon available gut volume (i.e. consumption is equal to gut volume when empty and otherwise 'topping off' based on sustainable digestion rates). One-day consumption by laboratory-held bull trout during the first day of feeding experiments after fasting exceeded bioenergetically sustainable rates by 12- to 87-fold at low temperatures (3 °C) and by  ˜1·3-fold at 20 °C. The degree of binge-feeding by bull trout in the field was slightly reduced but largely in agreement with laboratory estimates, especially when prey availability was extremely high [during a sockeye salmon (Oncorhynchus nerka) smolt outmigration and at a counting fence where smolts are funnelled into high densities]. Consumption by bull trout at other settings were lower and more variable, but still regularly hyperphagic. Simulations demonstrated the ability to binge-feed increased cumulative consumption (16-32%) and cumulative growth (19-110%) relative to only feeding at bioenergetically sustainable rates during the  ˜1-month smolt outmigration period. Our results indicate the ability for predators to maximize short-term consumption when prey are available can be extreme and is limited primarily by gut volume, then mediated by temperature; thus, predator-prey relationships may be more dependent upon prey availability than traditional bioenergetic models suggest. Binge-feeding has important implications for energy budgets of consumers as well as acute predation impacts on prey. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  18. Piscivorous fish exhibit temperature-influenced binge feeding during an annual prey pulse

    USGS Publications Warehouse

    Furey, Nathan B.; Hinch, Scott G.; Mesa, Matthew G.; Beauchamp, David A.

    2016-01-01

    Understanding the limits of consumption is important for determining trophic influences on ecosystems and predator adaptations to inconsistent prey availability. Fishes have been observed to consume beyond what is sustainable (i.e. digested on a daily basis), but this phenomenon of hyperphagia (or binge-feeding) is largely overlooked. We expect hyperphagia to be a short-term (1-day) event that is facilitated by gut volume providing capacity to store consumed food during periods of high prey availability to be later digested.We define how temperature, body size and food availability influence the degree of binge-feeding by comparing field observations with laboratory experiments of bull trout (Salvelinus confluentus), a large freshwater piscivore that experiences highly variable prey pulses. We also simulated bull trout consumption and growth during salmon smolt outmigrations under two scenarios: 1) daily consumption being dependent upon bioenergetically sustainable rates and 2) daily consumption being dependent upon available gut volume (i.e. consumption is equal to gut volume when empty and otherwise ‘topping off’ based on sustainable digestion rates).One-day consumption by laboratory-held bull trout during the first day of feeding experiments after fasting exceeded bioenergetically sustainable rates by 12- to 87-fold at low temperatures (3 °C) and by  ˜1·3-fold at 20 °C. The degree of binge-feeding by bull trout in the field was slightly reduced but largely in agreement with laboratory estimates, especially when prey availability was extremely high [during a sockeye salmon (Oncorhynchus nerka) smolt outmigration and at a counting fence where smolts are funnelled into high densities]. Consumption by bull trout at other settings were lower and more variable, but still regularly hyperphagic.Simulations demonstrated the ability to binge-feed increased cumulative consumption (16–32%) and cumulative growth (19–110%) relative to only feeding at bioenergetically sustainable rates during the  ˜1-month smolt outmigration period.Our results indicate the ability for predators to maximize short-term consumption when prey are available can be extreme and is limited primarily by gut volume, then mediated by temperature; thus, predator–prey relationships may be more dependent upon prey availability than traditional bioenergetic models suggest. Binge-feeding has important implications for energy budgets of consumers as well as acute predation impacts on prey.

  19. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde Riiver Basin : Fish Research Project Oregon : Annual Progress Report 1 September 1995 to 1 August 1996.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian C.; Carmichael, Richard W.; Keefe, MaryLouise

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grandemore » Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek.« less

  20. Restitution and genetic differentiation of salmon populations in the southern Baltic genotyped with the Atlantic salmon 7K SNP array.

    PubMed

    Poćwierz-Kotus, Anita; Bernaś, Rafał; Kent, Matthew P; Lien, Sigbjørn; Leliűna, Egidijus; Dębowski, Piotr; Wenne, Roman

    2015-05-06

    Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland. One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses. Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28). Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of its closer geographic proximity.

  1. The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.

    2013-02-01

    Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three developmentmore » periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage fish, respectively, as gas levels increased; however, there were no significant differences in mortality between life stages after 96 h in seawater. The study results suggest that current water quality guidelines for the management of dissolved gas appear to offer a conservative level of protection to chum salmon alevin incubating in gravel habitat downstream of Bonneville Dam.« less

  2. Recovery of coded wire tags at a caspian tern colony in San Francisco Bay: A technique to evaluate impacts of avian predation on juvenile salmonids

    USGS Publications Warehouse

    Evans, A.F.; Roby, D.D.; Collis, K.; Cramer, B.M.; Sheggeby, J.A.; Adrean, L.J.; Battaglia, D.S.; Lyons, Donald E.

    2011-01-01

    We recovered coded wire tags (CWTs) from a colony of Caspian terns Hydroprogne caspia on Brooks Island in San Francisco Bay, California, to evaluate predation on juvenile salmonids originating from the Sacramento and San Joaquin rivers. Subsamples of colony substrate representing 11.7% of the nesting habitat used by the terns yielded 2,079 salmonid CWTs from fish released and subsequently consumed by terns in 2008. The estimated number of CWTs deposited on the entire tern colony was 40,143 (ranging from 26,763 to 80,288), once adjustments were made to account for tag loss and the total amount of nesting habitat used by terns. Tags ingested by terns and then egested on the colony were undamaged, and the tags' complete numeric codes were still identifiable. The CWTs found on the tern colony indicated that hatchery Chinook salmon Oncorhynchus tshawytscha trucked to and released in San Pablo Bay were significantly more likely to be consumed by Caspian terns than Chinook salmon that migrated in-river to the bay; 99.7% of all tags recovered were from bay-released Chinook salmon. Of the CWTs recovered on the tern colony, 98.0% were from fall-run Chinook salmon, indicating a higher susceptibility to tern predation than for the spring run type. None of the approximately 518,000 wild Chinook salmon that were coded-wire-tagged and released in the basin were recovered on the tern colony, suggesting that the impacts on wild, U.S. Endangered Species Act-listed Chinook salmon populations were minimal in 2008. Overall, we estimate that 0.3% of the approximately 12.3 million coded-wire-tagged Chinook salmon released in the basin in 2008 were subsequently consumed by Caspian terns from the Brooks Island colony. These results indicate that CWTs implanted in juvenile salmon can be recovered from a piscivorous waterbird colony and used to evaluate smolt losses for runs that are tagged. Abstract We recovered coded wire tags (CWTs) from a colony of Caspian terns Hydroprogne caspia on Brooks Island in San Francisco Bay, California, to evaluate predation on juvenile salmonids originating from the Sacramento and San Joaquin rivers. Subsamples of colony substrate representing 11.7% of the nesting habitat used by the terns yielded 2,079 salmonid CWTs from fish released and subsequently consumed by terns in 2008. The estimated number of CWTs deposited on the entire tern colony was 40,143 (ranging from 26,763 to 80,288), once adjustments were made to account for tag loss and the total amount of nesting habitat used by terns. Tags ingested by terns and then egested on the colony were undamaged, and the tags' complete numeric codes were still identifiable. The CWTs found on the tern colony indicated that hatchery Chinook salmon Oncorhynchus tshawytscha trucked to and released in San Pablo Bay were significantly more likely to be consumed by Caspian terns than Chinook salmon that migrated in-river to the bay; 99.7% of all tags recovered were from bay-released Chinook salmon. Of the CWTs recovered on the tern colony, 98.0% were from fall-run Chinook salmon, indicating a higher susceptibility to tern predation than for the spring run type. None of the approximately 518,000 wild Chinook salmon that were coded-wire-tagged and released in the basin were recovered on the tern colony, suggesting that the impacts on wild, U.S. Endangered Species Act-listed Chinook salmon populations were minimal in 2008. Overall, we estimate that 0.3% of the approximately 12.3 million coded-wire-tagged Chinook salmon released in the basin in 2008 were subsequently consumed by Caspian terns from the Brooks Island colony. These results indicate that CWTs implanted in juvenile salmon can be recovered from a piscivorous waterbird colony and used to evaluate smolt losses for runs that are tagged ?? American Fisheries Society 2011.

  3. The Chief Joseph Hatchery Program 2013 Annual Report

    USGS Publications Warehouse

    Baldwin, Casey; Pearl, Andrea; Laramie, Matthew; Rohrback, John; Phillips, Pat; Wolf, Keith

    2016-01-01

    The Chief Joseph Hatchery is the fourth hatchery obligated under the Grand Coulee Dam/Dry Falls project, originating in the 1940s. Leavenworth, Entiat, and Winthrop National Fish Hatcheries were built and operated as mitigation for salmon blockage at Grand Coulee Dam, but the fourth hatchery was not built, and the obligation was nearly forgotten. After the Colville Tribes successfully collaborated with the United States to resurrect the project, planning of the hatchery began in 2001 and construction was completed in 2013. The monitoring program began in 2012 and adult Chinook Salmon were brought on station for the first time in June 2013. BPA is the primary funding source for CJH, and the Mid-Columbia PUDs (Douglas, Grant and Chelan County) have entered into cost-share agreements with the tribes and BPA in order to meet some of their mitigation obligations. The CJH production level was set at 60% in 2013 in order to train staff and test hatchery facility systems during the first year of operation. Leavenworth National Fish Hatchery (LNFH) provided 422 Spring Chinook broodstock in June, 2013; representing the official beginning of CJH operations. In July and August the CCT used a purse seine vessel to collect 814 summer/fall Chinook as broodstock that were a continuation and expansion of the previous Similkameen Pond program. In-hatchery survival for most life stages exceeded survival targets and, as of April 2014, the program was on track to exceed the 60% production target for its start-up year. The CJH monitoring project collected field data to determine Chinook population status, trend, and hatchery effectiveness centered on five major activities; 1) rotary screw traps (juvenile outmigration, natural-origin smolt PIT tagging) 2) beach seine (naturalorigin smolt PIT tagging) 3) lower Okanogan adult fish pilot weir (adult escapement, proportion of hatchery-origin spawners [pHOS], broodstock) 4) spawning ground surveys (redd and carcass surveys)(viable salmonid population [VSP] parameters) 5) eDNA collection (VSP parameter—distribution/spatial structure). Adult summer/fall Chinook spawning escapement in 2013 was estimated to be 8,193, with more than 6,227 natural-origin spawners, which exceeded the recent five year and long term averages. The values for pHOS (0.24) and proportion of natural influence (PNI) (0.79) in 2013 exceeded the objectives (0.67), but the five year averages fell short of the goals (0.39 and 0.62, respectively). An Annual Program Review (APR) was held in March, 2014 to share hatchery production and monitoring data, review the salmon forecast for the upcoming year, and develop action plans for the hatchery, selective harvest, and monitoring projects. Based on a strong pre-season forecast of 67,500 Upper Columbia summer/fall Chinook, the plan for 2014 is to operate the hatchery at full program levels of 2 million summer/fall Chinook and 900,000 spring Chinook. To maximize PNI, broodstock for the integrated program should Chief Joseph Hatchery Program 2013 Annual Report 3 be 100% natural-origin broodstock (NOB) and CCT should plan to harvest their full allocation with the selective harvest program removing as many adult hatchery Chinook as possible with the purse seine, the weir, and at the hatchery ladder.

  4. Conceptual model for quantifying pre-smolt production from flow-dependent physical habitat and water temperature

    USGS Publications Warehouse

    Williamson, S. C.; Bartholow, J. M.; Stalnaker, C. B.

    1993-01-01

    A conceptual model has been developed to test river regulation concepts by linking physical habitat and water temperature with salmonid population and production in cold water streams. Work is in progress to examine numerous questions as part of flow evaluation and habitat restoration programmes in the Trinity River of California and elsewhere. For instance, how much change in pre-smolt chinook salmon (Oncorhynchus tshawytscha) production in the Trinity River would result from a different annual instream allocation (i.e. up or down from 271 × 106 m3released in the late 1980s) and how much change in pre-smolt production would result from a different release pattern (i.e. different from the 8.5 m3 s−1 year-round release). The conceptual model is being used to: design, integrate and improve young-of-year population data collection efforts; test hypotheses that physical habitat significantly influences movement, growth and mortality of salmonid fishes; and analyse the relative severity of limiting factors during each life stage. The conceptual model, in conjunction with previously developed tools in the Instream Flow Incremental Methodology, should provide the means to more effectively manage a fishery resource below a regulated reservoir and to provide positive feedback to planning of annual reservoir operations.

  5. Hydroacoustic Evaluation of Fish Passage Through Bonneville Dam in 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Weiland, Mark A.; Zimmerman, Shon A.

    2006-12-04

    The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory (PNNL) conduct fish-passage studies at Bonneville Dam in 2005. These studies support the Portland District's goal of maximizing fish-passage efficiency (FPE) and obtaining 95% survival for juvenile salmon passing Bonneville Dam. Major passage routes include 10 turbines and a sluiceway at Powerhouse 1 (B1), an 18-bay spillway, and eight turbines and a sluiceway at Powerhouse 2 (B2). In this report, we present results of two studies related to juvenile salmonid passage at Bonneville Dam. The studies were conducted between April 16 and Julymore » 15, 2005, encompassing most of the spring and summer migrations. Studies included evaluations of (1) Project fish passage efficiency and other major passage metrics, and (2) smolt approach and fate at B1 Sluiceway Outlet 3C from the B1 forebay. Some of the large appendices are only presented on the compact disk (CD) that accompanies the final report. Examples include six large comma-separated-variable (.CSV) files of hourly fish passage, hourly variances, and Project operations for spring and summer from Appendix E, and large Audio Video Interleave (AVI) files with DIDSON-movie clips of the area upstream of B1 Sluiceway Outlet 3C (Appendix H). Those video clips show smolts approaching the outlet, predators feeding on smolts, and vortices that sometimes entrained approaching smolts into turbines. The CD also includes Adobe Acrobat Portable Document Files (PDF) of the entire report and appendices.« less

  6. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River Fall Chinook Salmon ESU, 1/1/2016 - 12/31/2016

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Plumb, John M.; Perry, Russell W.; Erhardt, John M.; Hemingway, Rulon J.; Bickford, Brad; Rhodes, Tobyn N.

    2017-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2016 in association with U.S. Endangered Species Act recovery efforts and other federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2016, we described estimated the consumption rate and loss of subyearlings by Smallmouth Bass before, during, and after four hatchery releases. Before releases, Smallmouth Bass consumption rates of subyearling was low (0–0.36 fish/bass/d), but the day after the releases consumption rates reached as high as 1.6 fish/bass/d. Bass consumption in the upper portion of Hells Canyon was high for about 1–2 d before returning to pre-release levels, but in the lower river consumption rates were reduced but took longer to return to pre-release levels. We estimated that most of the subyearlings consumed by bass were of hatchery origin. Smallmouth Bass predation on subyearlings is intense following a hatchery release, but the predation pressure is relatively short-lived as subyearlings quickly disperse downstream. This information will allow us to better estimate subyearling loss to predation from our past efforts at time intervals less than 2 weeks. These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was influenced by the expansion of the recovery program. The long-term goal is to use the information covered here in a comprehensive modeling effort to conduct action effectiveness and uncertainty research and to inform Fish Population, Hydrosystem, Harvest, Hatchery, and Predation and Invasive Species Management RM&E.

  7. The role of fish movements and the spread of infectious salmon anemia virus (ISAV) in Chile, 2007-2009.

    PubMed

    Mardones, F O; Martinez-Lopez, B; Valdes-Donoso, P; Carpenter, T E; Perez, A M

    2014-04-01

    Infectious salmon anemia virus (ISAV) infection is a constant major threat to farmed and wild Atlantic salmon worldwide. Many epidemics have recently been reported in the most important salmon farming regions of the world, including Chile (2007-2009), where ISAV generated the most important disease and economic crisis in history of the salmon industry of the country. The spread of ISAV within a region is most likely by local or neighborhood spread from an infected farm; however, there is evidence that anthropogenic activities, such as movement of live or harvested fish or their byproduct, may have played a more important role than environmental or passive transmission in the 2007-2009 outbreak. Atlantic salmon farms (n=421) were retrospectively followed from stocking to harvesting in southern Chile at the time of the ISAV epidemic (2007-2009). The effect of husbandry and spatial risk factors, in addition to contact-network risk factors, which were obtained from the social network analyses, on time to first ISAV infection was estimated using a multivariable Cox proportional hazards model. Five variables were retained in the final fitted model: co-existing multiple generations on a farm (hazard ratio [HR]=2.585), mean smolt weight at stocking greater than 120g (HR=1.165), farm area (perkm(2)) (HR=1.005), and increased number of shipments entering a farm, i.e. the farm input degree (HR=1.876) were associated with reduced time to infection; whereas time-to-infection was longer for farms located farther from an ongoing ISAV outbreak (HR=0.943). It was demonstrated that movements of latently infected fish resulted in approximately 7 outbreaks, and potentially explain about 6% of the total number of cases during the epidemic. Results from this study provide new information about the mechanisms of spread of ISAV in one the largest documented ISAV epidemics in the world. Findings may be used to support the design and implementation of risk-based surveillance and control programs that may help to prevent, detect and control future ISAV outbreaks. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program; Satellite Facilities Operation and Maintenance, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2006-01-01

    There were 2 acclimation periods at the Catherine Creek Acclimation Facility (CCAF) in 2005. During the early acclimation period, 130,748 smolts were delivered from Lookingglass Hatchery (LGH) on 7 March. This group contained progeny of both the captive (53%) and conventional broodstock programs. The size of the fish at delivery was 23.9 fish/lb. Volitional releases began 14 March 2005 and ended 27 March with an estimated total (based on PIT tag detections of 3,187) of 29,402 fish leaving the raceways. This was 22.5% of the total fish delivered. Fish remaining in the raceways after volitional release were forced out. Hourlymore » detections of PIT-tagged fish showed that most of the fish left around 1900 hours. The size of the fish just before the volitional release was 23.9 and the size of the fish remaining just before the forced release was 23.2 fish/lb. The total mortality for the acclimation period was 204 (0.16%). The total number of fish released from the acclimation facility during the early period was 130,544. During the second acclimation period 59,100 smolts were delivered from LGH on 28 March. This group was comprised entirely of progeny from the conventional broodstock program. The size of the fish at delivery was 21.8 fish/lb. Volitional releases began 3 April 2005 and ended with a force out emergency release on 7 April. The size of the fish just before the volitional release was 21.8. The total mortality for the acclimation period was 64 (0.11 %). The total number of fish released from the acclimation facility during the late period was 59,036. There was only 1 planned acclimation period at the Upper Grande Ronde Acclimation Facility (UGRAF) in 2005. During the early acclimation period 105,418 smolts were delivered from LGH on 8 March. This group was comprised entirely of progeny from the conventional broodstock program. The size of the fish at delivery was 21.0 fish/lb. There was no volitional release in 2005 due to freezing air and water conditions prompting an early release. The total mortality for the acclimation period was 49 (0.05 %). The total number of fish released from the acclimation facility during the late period was 105,369. Maintenance and repair activities were conducted at the acclimation facilities in 2005. Facility maintenance work consisted of snow removal, installation of drainage lines, removal of gravel from intake area, installation of new gate at the CCAF, and complete overhaul of 2 travel trailers. The Catherine Creek Adult Capture Facility (CCACF) was put into operation on 11 February 2005. The first adult summer steelhead was captured on 4 March. A total of 190 adult summer steelhead were trapped and released from 4 March to 16 May 2005. Peak arrival at the trap was the week of 8 April. The first adult spring Chinook salmon was captured at CCACF on 6 May 2005. A total of 226 spring Chinook salmon were trapped from 6 May to 8 July 2005. There were 56 adults and 4 jacks unmarked and 136 adult and 30 jack marked spring Chinook salmon trapped. Peak arrival at the trap was the week of 10 June for the unmarked and marked fish. None of the captive broodstock returns were collected for broodstock. Broodstock was collected systematically over the entire return from 31 May to 6 July 2005. Ten of the 34 broodstock collected and transported from CCACF to LGH were unmarked fish trapped. About 18% of the naturally produced adult males and females trapped were taken to LGH for broodstock. One jack was collected for every 5 adult males that were taken to LGH. A total of 30 age 4 and 5 and 4 age 3 fish were transported to LGH for broodstock. The hatchery component of the broodstock was 66.7%. Five weekly spawning surveys were conducted below the weir on Catherine Creek beginning 30 June 2005. During these surveys no live or dead fish were observed. The trap was removed from Catherine Creek on 3 August 2005. Temperatures at the CCACF ranged from -0.1 C on 14 February to 23.7 C on 21 July. The hourly temperatures at the adult trap during the period of operation showed that the lowest water temperatures usually occurred around 0700 hours and the highest water temperatures usually occurred around 1600 hours. Facility maintenance work at CCACF consisted of construction of a debris barrier in front of the intake, maintenance of weir, and weed abatement. The Upper Grande Ronde Adult Collection Facility (UGRACF) was put into operation on 10 March 2005. The first adult summer steelhead was captured on 8 April. A total of 41 adult summer steelhead were trapped and released from 8 April to 11 May 2005. Peak arrival at the trap was the week of 22 April. The first adult spring Chinook salmon was captured at UGRACF on 31 May 2005. A total of 277 spring Chinook salmon were trapped from 31 May to 3 August 2005. There were 14 adults and no jacks unmarked and 257 adult and 6 jack marked spring Chinook salmon trapped. Peak arrival at the trap for both unmarked and marked fish was 10 June.« less

  9. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake Rivermore » sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in Redfish, Pettit, and Alturas lakes; and (8) assist IDFG with captive broodstock production activities.« less

  10. Concentrations of organic contaminants detected during managed flow conditions, San Joaquin River and Old River, California, 2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn

    2005-01-01

    Concentrations of organic contaminants were determined in water samples collected at six surface-water sites located along the San Joaquin and Old Rivers during April through June 2001. Water samples were collected, coincident with salmon smolt caging studies conducted by researchers from the Bodega Marine Laboratory at the University of California at Davis to characterize exposure of the salmon smolt to organic contaminants. Sampling occurred prior to, during, and following the implementation of managed streamflow conditions on the San Joaquin and Old Rivers as part of the Vernalis Adaptive Management Plan. Thirteen pesticides were detected in water samples collected during this study, and at least five pesticides were detected in each sample. The total number of pesticide detections varied little between river systems and between sites, but the maximum concentrations of most pesticides occurred in San Joaquin River samples. The total number of pesticides detected varied little over the three time periods. However, during the period of managed streamflow, the fewest number of pesticides were detected at their absolute maximum concentration. Nine wastewater compounds were detected during this study. Suspended-sediment concentrations were similar for the San Joaquin and Old Rivers except during the period of managed streamflow conditions, when suspended-sediment concentration was higher at sites on the San Joaquin River than at sites on the Old River. Values for water parameters (pH, specific conductance, and hardness) were lowest during the period of managed flows.

  11. Behavior and potential threats to survival of migrating lamprey ammocoetes and macrophthalmia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Mary L.; Jackson, Aaron D.; Lucas, Martyn C.

    2015-03-01

    Upon metamorphosis, anadromous juvenile lamprey (macrophthalmia) exhibit distinct migration behaviors that take them from larval rearing habitats in streams to the open ocean. While poorly studied, lamprey larvae (ammocoetes) also engage in downstream movement to some degree. Like migrating salmon smolts, lamprey macrophthalmia undergo behavioral changes associated with a highly synchronized metamorphosis. Unlike salmon smolts, the timing of juvenile migration in lamprey is protracted and poorly documented. Lamprey macrophthalmia and ammocoetes are not strong swimmers, attaining maximum individual speeds of less than 1 m s-1, and sustained speeds of less than 0.5 m s-1. They are chiefly nocturnal and distributemore » throughout the water column, but appear to concentrate near the bottom in the thalweg of deep rivers. At dams and irrigation diversions, macrophthalmia can become impinged on screens or entrained in irrigation canals, suffer increased predation, and experience physical injury that may result in direct or delayed mortality. The very structures designed to protect migrating juvenile salmonids can be harmful to juvenile lamprey. Yet at turbine intakes and spillways, lampreys, which have no swim bladder, can withstand changes in pressure and shear stress large enough to injure or kill most teleosts. Lamprey populations are in decline in many parts of the world, with some species designated as species of concern for conservation that merit legally mandated protections. Hence, provisions for safe passage of juvenile lamprey are being considered at dams and water diversions in North America and Europe.« less

  12. Prevalence and levels of Renibacterium salmoninarum in spring-summer Chinook salmon (Oncorhynchus tshawytscha) smolts at dams on the Columbia and Snake Rivers.

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.; Jackson, L.M.; Mathews, G.M.; Harmon, J.R.

    1997-01-01

    We evaluated Renibaeterium salmoninarum infection in smolts of hatchery and wild spring-summer Chinook salmon Oncorhynchus tshawytscha sampled during most of the outmigration at Little Goose (1988) and Lower Granite dams (1988–1991) on the Snake River and at Priest Rapids and McNary dams on the Columbia River (1988–1990). We sampled 860–2,178 fish per dam each year. Homogenates of kidney–spleen tissue from all fish were tested for the presence of R. salmoninarum antigens by the enzyme-linked immunosorbent assay (ELISA), and homogenates from 10% of the fish were examined by the fluorescent antibody technique (FAT). Although only 1–11% of fish sampled at a given dam during any l year exhibited lesions characteristic of bacterial kidney disease, 86–100% of the fish tested positive for R. salmoninarum antigen by ELISA, whereas 4–17% of the fish tested positive by the FAT. During most years, a majority (68–87%) of fish testing positive by the ELISA had low R. salmoninarum antigen levels, but in 1989, 53% of positive fish from Lower Granite Dam and 52% from McNary Dam showed medium-to-high antigen levels. For most years, the highest mean antigen levels were measured in fish sampled after 75% of the total out-migrants had passed a given dam. When the largest numbers of fish were being collected for bypass or downriver transportation, mean antigen levels were relatively low.

  13. Renibacterium salmoninarum in spring-summer chinook salmon smolts at dams on the Columbia and Snake Rivers

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.; Jackson, L.M.; Matthews, G.M.; Harmon, J.R.

    1997-01-01

    We evaluated Renibacterium salmoninarum infection in smolts of hatchery and wild spring-summer chinook salmon Oncorhynchus tshawytscha sampled during most of the out-migration at Little Goose (1988) and Lower Granite dams (1988-1991) on the Snake River and at Priest Rapids and McNary dams on the Columbia River (1988-1990). We sampled 860-2,178 fish per dam each year. Homogenates of kidney-spleen tissue from all fish were tested for the presence of R. salmoninarum antigens by the enzyme-linked immunosorbent assay (ELISA), and homogenates from 10% of the fish were examined by the fluorescent antibody technique (FAT). Although only 1-11% of fish sampled at a given dam during any 1 year exhibited lesions characteristic of bacterial kidney disease, 86-100% of the fish tested positive for R. salmoninarum antigen by ELISA, whereas 4-17% of the fish tested positive by the FAT. During most years, a majority (68-87%) of fish testing positive by the ELISA had low R. salmoninarum antigen levels, but in 1989, 53% of positive fish from Lower Granite Dam and 52% from McNary Dam showed medium-to-high antigen levels. For most years, the highest mean antigen levels were measured in fish sampled after 75% of the total out-migrants had passed a given dam. When the largest numbers of fish were being collected for bypass or downriver transportation, mean antigen levels were relatively low.

  14. Assessment of a land-locked Atlantic salmon (Salmo salar L.) population as a potential genetic resource with a focus on long-chain polyunsaturated fatty acid biosynthesis.

    PubMed

    Betancor, M B; Olsen, R E; Solstorm, D; Skulstad, O F; Tocher, D R

    2016-03-01

    The natural food for Atlantic salmon (Salmo salar) in freshwater has relatively lower levels of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) than found in prey for post-smolt salmon in seawater. Land-locked salmon such as the Gullspång population feed exclusively on freshwater type lipids during its entire life cycle, a successful adaptation derived from divergent evolution. Studying land-locked populations may provide insights into the molecular and genetic control mechanisms that determine and regulate n-3 LC-PUFA biosynthesis and retention in Atlantic salmon. A two factorial study was performed comparing land-locked and farmed salmon parr fed diets formulated with fish or rapeseed oil for 8 weeks. The land-locked parr had higher capacity to synthesise n-3 LC-PUFA as indicated by higher expression and activity of desaturase and elongase enzymes. The data suggested that the land-locked salmon had reduced sensitivity to dietary fatty acid composition and that dietary docosahexaenoic acid (DHA) did not appear to suppress expression of LC-PUFA biosynthetic genes or activity of the biosynthesis pathway, probably an evolutionary adaptation to a natural diet lower in DHA. Increased biosynthetic activity did not translate to enhanced n-3 LC-PUFA contents in the flesh and diet was the only factor affecting this parameter. Additionally, high lipogenic and glycolytic potentials were found in land-locked salmon, together with decreased lipolysis which in turn could indicate increased use of carbohydrates as an energy source and a sparing of lipid. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Chemical physiological and morphological studies of feral baltic salmon (Salmo salar) suffering from abnormal fry mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norrgren, L.; Andersson, T.; Bergqvist, P.A.

    In 1974, abnormally high mortality was recorded among yolk-sac fry of Baltic salmon (Salmo salar) originating from feral females manually stripped and fertilized with milt from feral males. The cause of this mortality, designated M74, is unknown. The hypothesis is that xenobiotic compounds responsible for reproduction failure in higher vertebrates in the Baltic Sea also interfere with reproduction in Baltic salmon. The significance of M74 should not be underestimated, because the syndrome has caused up to 75% yearly mortality of developing Baltic salmon yolk-sac larvae in a fish hatchery dedicated to production of smolt during the last two decades. Themore » author cannot exclude the possibility that only a relatively low number of naturally spawned eggs develop normally because of M74. No individual pollutant has been shown to be responsible for the development of M74 syndrome. However, a higher total body burden of organochlorine substances may be responsible for the M74 syndrome. The presence of induced hepatic cytochrome P450 enzymes in both yolk-sac fry suffering from M74 and adult feral females producing offspring affected by M74 supports this hypothesis. In addition, the P450 enzyme activity in offspring from feral fish is higher than the activity in yolk-sac fry from hatchery-raised fish, suggesting that feral Baltic salmon are influenced by organic xenobiotics.« less

  16. Quantification of ventricular β2 -adrenoceptor density and ligand binding affinity in wild sockeye salmon Oncorhynchus nerka smolts using a novel modification to the tritiated ligand technique.

    PubMed

    Goulding, A T; Farrell, A P

    2016-05-01

    A new, image-based, tritiated ligand technique for measuring cardiac β2 -adrenoceptor (β2 -AR) binding characteristics was developed and validated with adult rainbow trout Oncorhynchus mykiss hearts so that the tissue limitation of traditional receptor binding techniques could be overcome and measurements could be made in hearts nearly 14-times smaller than previously used. The myocardial cell-surface (functional) β2 -AR density of O. nerka smolts sampled at the headwaters of the Chilko River was 54·2 fmol mg protein(-1) and about half of that previously found in return migrating adults of the same population, but still more than twice that of adult hatchery O. mykiss (21·1 fmol mg protein(-1) ). This technique now opens the possibility of investigating cardiac receptor density in a much wider range of fish species and life stages. © 2016 The Fisheries Society of the British Isles.

  17. Concurrent jellyfish blooms and tenacibaculosis outbreaks in Northern Norwegian Atlantic salmon (Salmo salar) farms

    PubMed Central

    Brevik, Øyvind Jakobsen; Frisch, Kathleen; Watanabe, Kuninori; Duesund, Henrik; Nylund, Are

    2017-01-01

    Tenacibaculosis is an increasing problem in the Norwegian Atlantic salmon aquaculture industry causing significant economic losses. In September 2015, two separate outbreaks of suspected tenacibaculosis occurred at two Atlantic salmon farms in Finnmark County in Northern Norway. The events resulted in major losses of smolts newly transferred into seawater. Prior to, and during the outbreaks, large numbers of small jellyfish, identified as Dipleurosoma typicum (Boeck) were observed in the vicinity of the farms and inside the net-pens. This study investigates the possible link between the jellyfish, Tenacibaculum spp. and the tenacibaculosis outbreaks. Bacteriology, histology, scanning and transmission electron microscopy, and real-time RT-PCR screening were performed on both fish and jellyfish samples. Based on the findings, Tenacibaculum finnmarkense was found to be the dominant bacteria associated with the tenacibaculosis outbreaks at both sites and that D. typicum is unlikely to be a vector for this fish pathogenic bacterium. However, results do show that the jellyfish caused direct damage to the fish’s skin and may have exacerbated the bacterial infection by allowing an entry point for bacteria. PMID:29095885

  18. Concurrent jellyfish blooms and tenacibaculosis outbreaks in Northern Norwegian Atlantic salmon (Salmo salar) farms.

    PubMed

    Småge, Sverre Bang; Brevik, Øyvind Jakobsen; Frisch, Kathleen; Watanabe, Kuninori; Duesund, Henrik; Nylund, Are

    2017-01-01

    Tenacibaculosis is an increasing problem in the Norwegian Atlantic salmon aquaculture industry causing significant economic losses. In September 2015, two separate outbreaks of suspected tenacibaculosis occurred at two Atlantic salmon farms in Finnmark County in Northern Norway. The events resulted in major losses of smolts newly transferred into seawater. Prior to, and during the outbreaks, large numbers of small jellyfish, identified as Dipleurosoma typicum (Boeck) were observed in the vicinity of the farms and inside the net-pens. This study investigates the possible link between the jellyfish, Tenacibaculum spp. and the tenacibaculosis outbreaks. Bacteriology, histology, scanning and transmission electron microscopy, and real-time RT-PCR screening were performed on both fish and jellyfish samples. Based on the findings, Tenacibaculum finnmarkense was found to be the dominant bacteria associated with the tenacibaculosis outbreaks at both sites and that D. typicum is unlikely to be a vector for this fish pathogenic bacterium. However, results do show that the jellyfish caused direct damage to the fish's skin and may have exacerbated the bacterial infection by allowing an entry point for bacteria.

  19. A test for the relative strength of maternal and stock effects in spring Chinook salmon (Oncorhynchus tshawytscha) from two different hatcheries (Study site: Warm Springs Hatchery; Stocks: Warm Springs Hatchery and Carson Hatchery; Year class: 1993): Chapter 10

    USGS Publications Warehouse

    Wetzel, Lisa A.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Stenberg, Karl D.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    An experiment was undertaken to determine the relative strength of maternal and stock effects in Chinook salmon (Oncorhynchus tshawytscha) reared in a common environment, as a companion study to our investigation of hatchery and wild Chinook salmon. Pure-strain and reciprocal crosses were made between two hatchery stocks (Carson and Warm Springs National Fish Hatcheries). The offspring were reared together in one of the hatcheries to the smolt stage, and then were transferred to a seawater rearing facility (USGS-Marrowstone Field Station). Differences in survival, growth and disease prevalence were assessed. Fish with Carson parentage grew to greater size at the hatchery and in seawater than the pure-strain Warm Springs fish, but showed higher mortality at introduction to seawater. The analyses of maternal and stock effects were inconclusive, but the theoretical responses to different combinations of maternal and stock effects may be useful in interpreting stock comparison studies.

  20. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    Estimates of juvenile salmon survival are important data for fishery managers in the Yakima River Basin. Radiotelemetry studies during 2012–14 showed that tagged juvenile Chinook salmon (Oncorhynchus tshawytscha) that passed through the fish bypass at Roza Dam had lower survival than fish that passed through other routes at the dam. That study also identified flow-survival relationships in the reaches between the Roza Dam tailrace and Sunnyside Dam. During 2012–14, survival also was estimated through reaches downstream of Sunnyside Dam, but generally, sample sizes were low and the estimates were imprecise. In 2016, we conducted an evaluation using acoustic cameras and acoustic telemetry to build on information collected during the previous study. The goal of the 2016 research was to identify areas where mortality occurs in the fish bypass at Roza Dam, and to estimate reach-specific survival in reaches downstream of the dam. The 2016 study included juvenile Chinook salmon and coho salmon (O. kisutch).Three acoustic cameras were used to observe fish behavior (1) near the entrances to the fish bypass, (2) at a midway point in the fish bypass (convergence vault), and (3) at the bypass outfall. In total, 504 hours of acoustic camera footage was collected at these locations. We determined that smolt-sized fish (95–170 millimeters [mm]) were present in the highest proportions at each location, but predator-sized fish (greater than 250 mm) also were present at each site. Fish presence generally peaked during nighttime hours and crepuscular periods, and was low during daytime hours. In the convergence vault, smolt-sized fish exhibited holding behavior patterns, which may explain why some fish delayed while passing through the bypass.Some of the acoustic-tagged fish were delayed in the fish bypass following release, but there was no evidence to suggest that they experienced higher mortality than fish that were released at the bypass outfall or downstream of the dam. Most of the tagged fish that were released in the fish bypass moved downstream and re-entered the river within 12 hours, but 9.8 percent of the Chinook salmon and 15.7 percent of the coho salmon remained in the bypass for 2.5–17.4 days. We developed a set of models for Chinook salmon and coho salmon and used model selection to determine if release site was an important predictor of survival of tagged fish. The models that provided the best fit to the Chinook salmon and coho salmon datasets did not include release site as a covariate. Furthermore, survival estimates for groups of fish from the various release sites were nearly identical for both species. Based on these observations, it appears that passage through the fish bypass did not result in increased mortality relative to groups of fish released downstream of the bypass.Juvenile Chinook salmon migrated downstream faster than juvenile coho salmon and survival for each species varied with release timing. Median travel time from release at Roza Dam to arrival at a detection gate located at river kilometer (rkm) 527.8 on the Columbia River was 15.4 days for Chinook salmon and 37.4 days for coho salmon. Cumulative survival from Roza Dam to the Columbia River detection gate ranged from 0.299 to 0.678 for Chinook salmon, and from 0.321 to 0.627 for coho salmon. Survival was highest for both species when tagged fish were released in mid-April and lowest when tagged fish were released in early-May. Reach-specific survival estimates were standardized to create estimates that described survival per 100 rkm, which showed that survival was very low (less than 0.500) for some release groups, particularly in the Roza, Sunnyside, and Chandler diversion reaches. A more extensive analysis of reach-specific survival is planned for this dataset, which should provide insights into covariates that affected survival during 2016.

  1. Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean

    PubMed Central

    Krkošek, Martin; Revie, Crawford W.; Gargan, Patrick G.; Skilbrei, Ove T.; Finstad, Bengt; Todd, Christopher D.

    2013-01-01

    Parasites may have large effects on host population dynamics, marine fisheries and conservation, but a clear elucidation of their impact is limited by a lack of ecosystem-scale experimental data. We conducted a meta-analysis of replicated manipulative field experiments concerning the influence of parasitism by crustaceans on the marine survival of Atlantic salmon (Salmo salar L.). The data include 24 trials in which tagged smolts (totalling 283 347 fish; 1996–2008) were released as paired control and parasiticide-treated groups into 10 areas of Ireland and Norway. All experimental fish were infection-free when released into freshwater, and a proportion of each group was recovered as adult recruits returning to coastal waters 1 or more years later. Treatment had a significant positive effect on survival to recruitment, with an overall effect size (odds ratio) of 1.29 that corresponds to an estimated loss of 39 per cent (95% CI: 18–55%) of adult salmon recruitment. The parasitic crustaceans were probably acquired during early marine migration in areas that host large aquaculture populations of domesticated salmon, which elevate local abundances of ectoparasitic copepods—particularly Lepeophtheirus salmonis. These results provide experimental evidence from a large marine ecosystem that parasites can have large impacts on fish recruitment, fisheries and conservation. PMID:23135680

  2. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    2009-07-09

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008more » are: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007-2008 showed these antennas (and anchoring method) are not adequate to withstand high spring flows in this drainage. Future plans involve removing these antennas before high spring flows. (5) At Little Goose Dam in 2008, length and/or weight were taken on 505 recaptured fish from 12 Idaho stream populations. Fish had grown an average of 40.1 mm in length and 10.6 g in weight over an average of 288 d. Their mean condition factor declined from 1.25 at release (parr) to 1.05 at recapture (smolt). (6) Mean release lengths for detected fish were significantly larger than for fish not detected the following spring and summer (P < 0.0001). (7) Fish that migrated through Lower Granite Dam in April and May were significantly larger at release than fish that migrated after May (P < 0.0001) (only 12 fish migrated after May). (8) In 2008, peak detections at Lower Granite Dam of parr tagged during summer 2007 (from the 12 stream populations in Idaho and 4 streams in Oregon) occurred during moderate flows of 87.5 kcfs on 7 May and high flows of 197.3 kcfs on 20 May. The 10th, 50th, and 90th percentile passage occurred on 30 April, 11 May, and 23 May, respectively. (9) In 2007-2008, estimated parr-to-smolt survival to Lower Granite Dam for Idaho and Oregon streams (combined) averaged 19.4% (range 6.2-38.4% depending on stream of origin). In Idaho streams the estimated parr-to-smolt survival averaged 21.0%. This survival was the second highest since 1993 for Idaho streams. Relative parr densities were lower in 2007 (2.4 parr/100 m2) than in all previous years since 2000. In 2008, we observed low-to-moderate flows prior to mid-May and relatively cold weather conditions throughout the spring migration season. These conditions moved half of the fish through Lower Granite Dam prior to mid-May; then high flows moved 50 to 90% of the fish through the dam in only 12 days. Clearly, complex interrelationships of several factors drive the annual migrational timing of the stocks.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magie, Robert J.; Morris, Matthew S.; Ledgerwood, Richard D.

    In 2008, we sampled migrating juvenile Pacific salmonids Oncorhynchus spp. tagged with passive integrated transponder (PIT) tags using a surface pair trawl in the upper Columbia River estuary (rkm 61-83). The cod-end of the trawl was replaced with a cylindrical PIT-tag detection antenna with an 86-cm-diameter fish-passage opening and two detection coils connected in series. The pair trawl was 105 m long with a 91.5-m opening between the wings and a sample depth of 4.9 m. Also during 2008, we finalized the development of a prototype 'matrix' antenna, which was larger than previous antennas by a considerable magnitude. The matrixmore » antenna consisted of 6 coils: a 3-coil front component and a 3-coil rear component, which were separated by 1.5-m of net mesh. The fish-passage opening was 2.5 m wide by 3.0 m tall and was attached to a standard-size pair trawl net. Intermittent sampling with a single crew began on 7 March and targeted yearling Chinook salmon O. tshawytscha and steelhead O. mykiss. Daily sampling using two crews began on 30 April and continued through 14 June; during this period we detected 2.7% of all juvenile salmonids previously detected at Bonneville Dam--a measure of sample efficiency. Sampling with a single crew continued through 20 August and targeted subyearling Chinook salmon. We detected 7,397 yearling Chinook salmon, 2,735 subyearling Chinook salmon, 291 coho salmon O. kisutch, 5,950 steelhead, and 122 sockeye salmon O. nerka in the upper estuary. We deployed the matrix antenna system and the older, cylindrical antenna system (86-cm-diameter fish-passage opening) simultaneously in mid-May 2008 to test matrix detection efficiency. The cylindrical antenna system had been used successfully in 2007 and early 2008. Because distribution of migrating salmonids in the estuary changes rapidly, we felt that a tandem sampling effort between the two systems was the only way to truly evaluate comparative detection efficiency. We deployed both systems within 1 km of each other during a period of high fish densities on 13, 14, and 15 May. Detections of the matrix system surpassed those of the cylindrical system by 53% in 14 h of simultaneous sampling (total detections 716 and 339, respectively). We believe that the higher detection rate observed with the matrix system was due to fewer smolts escaping the trawl entrance and to more smolts readily passing through the larger fish-passage opening. After tandem sampling, we continued exclusive use of the matrix system for the remainder of the 2008 juvenile migration season. Mean survival rates from Lower Granite to Bonneville Dam for yearling Chinook salmon and steelhead were 42% (SE = 3.7%) and 46% (SE = 1.5%), respectively. Over 358,000 PIT-tagged salmonids were transported, and we detected 4,619 of these fish.« less

  4. Wind River water restoration, Annual report November 2008 to October 2009.

    USGS Publications Warehouse

    Connolly, P.J.; Jezorek, I.G.; Munz, C.S.

    2010-01-01

    This report summarizes work completed by U.S. Geological Survey’s Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period November 2008 through October 2009 under Bonneville Power Administration (BPA) contract 41038. Long term research in the Wind River has focused on assessments of steelhead/rainbow trout Oncorhynchus mykiss populations, interactions with introduced populations of spring Chinook salmon O. tshawytscha and brook trout Salvelinus fontinalis, and influences of habitat variables on fish productivity. During this period, we collected water temperature data to characterize variation within and among tributaries and mainstem sections in the Trout Creek watershed, and assisted Washington Department of Fish and Wildlife with smolt trapping and tagging of smolt and parr steelhead with passive integrated transponder (PIT) tags. We also continued to maintain and test efficacy of a passive integrated transponder tag interrogation system (PTIS) in Trout Creek for assessing the adult steelhead runsize. We continued to maintain and download PTIS setups in the fish ladder at Hemlock Dam. These PTISs contributed information on movement and rearing of steelhead parr and smolts. A statement of work (SOW) was submitted to BPA in October 2009 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  5. Growth and development of skeletal anomalies in diploid and triploid Atlantic salmon (Salmo salar) fed phosphorus-rich diets with fish meal and hydrolyzed fish protein

    PubMed Central

    Puvanendran, Velmurugu; Riesen, Guido; Seim, Rudi Ripman; Hagen, Ørjan; Martínez-Llorens, Silvia; Falk-Petersen, Inger-Britt; Fernandes, Jorge M. O.; Jobling, Malcolm

    2018-01-01

    Diploid and triploid Atlantic salmon, Salmo salar were fed high-protein, phosphorus-rich diets (56–60% protein; ca 18g phosphorus kg-1 diet) whilst being reared at low temperature from start-feeding until parr-smolt transformation. Performances of salmon fed diets based on fish meal (STD) or a mix of fishmeal and hydrolysed fish proteins (HFM) as the major protein sources were compared in terms of mortality, diet digestibility, growth and skeletal deformities. Separate groups of diploids and triploids were reared in triplicate tanks (initially 3000 fish per tank; tank biomass ca. 620 g) from 0–2745 degree-days post-start feeding (ddPSF). Growth metrics (weight, length, condition factor) were recorded at ca. 4 week intervals, external signs of deformities to the operculum, jaws and spinal column were examined in parr sampled at 1390 ddPSF, and external signs of deformity and vertebral anomalies (by radiography) were examined in fish sampled at the end of the trial (2745 ddPSF). The triploid salmon generally had a lower mass per unit length, i.e. lower condition factor, throughout the trial, but this did not seem to reflect any consistent dietary or ploidy effects on either dietary digestibility or the growth of the fish. By the end of the trial fish in all treatment groups had achieved a weight of 50+ g, and had completed the parr-smolt transformation. The triploids had slightly, but significantly, fewer vertebrae (Triploids STD 58.74 ± 0.10; HFM 58.68 ± 0.05) than the diploids (Diploids STD 58.97 ± 0.14; HFM 58.89 ± 0.01), and the incidence of skeletal (vertebral) abnormalities was higher in triploids (Triploids STD 31 ± 0.90%; HFM 15 ± 1.44%) than in diploids (Diploids STD 4 ± 0.80%; HFM 4 ± 0.83%). The HFM diet gave a significant reduction in the numbers of triploid salmon with vertebral anomalies in comparison with the triploids fed the STD diet possibly as a result of differences in phosphorus bioavailability between the two diets. Overall, the incidence of skeletal deformities was lower than reported in previous studies (Diploids 20+%, Triploids 40+%), possibly as a result of the combination of rearing at low-temperature and phosphorus-rich diets being used in the present study. PMID:29566030

  6. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at John Day Dam, Spring 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.

    The purpose of this study was to compare dam passage survival, at two spill treatment levels, of yearling Chinook salmon and steelhead smolts at John Day Dam during spring 2010. The two treatments were 30% and 40% spill out of total project discharge. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated forebay residence time, tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fishmore » Accords. However, by agreement among the stakeholders, this study was not an official BiOp compliance test because the long-term passage measures at John Day Dam have yet to be finalized and another year of spill-treatment testing was desired.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System taggedmore » smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  8. Ontogeny of the Digestive System of Atlantic Salmon (Salmo salar L.) and Effects of Soybean Meal from Start-Feeding.

    PubMed

    Sahlmann, Christian; Gu, Jinni; Kortner, Trond M; Lein, Ingrid; Krogdahl, Åshild; Bakke, Anne Marie

    2015-01-01

    Despite a long history of rearing Atlantic salmon in hatcheries in Norway, knowledge of molecular and physiological aspects of juvenile development is still limited. To facilitate introduction of alternative feed ingredients and feed additives during early phases, increased knowledge regarding the ontogeny of the digestive apparatus in salmon is needed. In this study, we characterized the development of the gastrointestinal tract and accessory digestive organs for five months following hatch by using histological, biochemical and molecular methods. Furthermore, the effects of a diet containing 16.7% soybean meal (SBM) introduced at start-feeding were investigated, as compared to a fishmeal based control diet. Salmon yolk sac alevins and fry were sampled at 18 time points from hatch until 144 days post hatch (dph). Histomorphological development was investigated at 7, 27, 46, 54 and 144 dph. Ontogenetic expression patterns of genes encoding key digestive enzymes, nutrient transporters, gastrointestinal peptide hormones and T-cell markers were analyzed from 13 time points by qPCR. At 7 dph, the digestive system of Atlantic salmon alevins was morphologically distinct with an early stomach, liver, pancreas, anterior and posterior intestine. About one week before the yolk sac was internalized and exogenous feeding was started, gastric glands and developing pyloric caeca were observed, which coincided with an increase in gene expression of gastric and pancreatic enzymes and nutrient transporters. Thus, the observed organs seemed ready to digest external feed well before the yolk sac was absorbed into the abdominal cavity. In contrast to post-smolt Atlantic salmon, inclusion of SBM did not induce intestinal inflammation in the juveniles. This indicates that SBM can be used in compound feeds for salmon fry from start-feeding to at least 144 dph and/or 4-5 g body weight.

  9. Ontogeny of the Digestive System of Atlantic Salmon (Salmo salar L.) and Effects of Soybean Meal from Start-Feeding

    PubMed Central

    Sahlmann, Christian; Gu, Jinni; Kortner, Trond M.; Lein, Ingrid; Krogdahl, Åshild; Bakke, Anne Marie

    2015-01-01

    Despite a long history of rearing Atlantic salmon in hatcheries in Norway, knowledge of molecular and physiological aspects of juvenile development is still limited. To facilitate introduction of alternative feed ingredients and feed additives during early phases, increased knowledge regarding the ontogeny of the digestive apparatus in salmon is needed. In this study, we characterized the development of the gastrointestinal tract and accessory digestive organs for five months following hatch by using histological, biochemical and molecular methods. Furthermore, the effects of a diet containing 16.7% soybean meal (SBM) introduced at start-feeding were investigated, as compared to a fishmeal based control diet. Salmon yolk sac alevins and fry were sampled at 18 time points from hatch until 144 days post hatch (dph). Histomorphological development was investigated at 7, 27, 46, 54 and 144 dph. Ontogenetic expression patterns of genes encoding key digestive enzymes, nutrient transporters, gastrointestinal peptide hormones and T-cell markers were analyzed from 13 time points by qPCR. At 7 dph, the digestive system of Atlantic salmon alevins was morphologically distinct with an early stomach, liver, pancreas, anterior and posterior intestine. About one week before the yolk sac was internalized and exogenous feeding was started, gastric glands and developing pyloric caeca were observed, which coincided with an increase in gene expression of gastric and pancreatic enzymes and nutrient transporters. Thus, the observed organs seemed ready to digest external feed well before the yolk sac was absorbed into the abdominal cavity. In contrast to post-smolt Atlantic salmon, inclusion of SBM did not induce intestinal inflammation in the juveniles. This indicates that SBM can be used in compound feeds for salmon fry from start-feeding to at least 144 dph and/or 4-5 g body weight. PMID:25923375

  10. Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers.

    PubMed

    Sundt-Hansen, L E; Hedger, R D; Ugedal, O; Diserud, O H; Finstad, A G; Sauterleute, J F; Tøfte, L; Alfredsen, K; Forseth, T

    2018-08-01

    Climate change is expected to alter future temperature and discharge regimes of rivers. These regimes have a strong influence on the life history of most aquatic river species, and are key variables controlling the growth and survival of Atlantic salmon. This study explores how the future abundance of Atlantic salmon may be influenced by climate-induced changes in water temperature and discharge in a regulated river, and investigates how negative impacts in the future can be mitigated by applying different regulated discharge regimes during critical periods for salmon survival. A spatially explicit individual-based model was used to predict juvenile Atlantic salmon population abundance in a regulated river under a range of future water temperature and discharge scenarios (derived from climate data predicted by the Hadley Centre's Global Climate Model (GCM) HadAm3H and the Max Plank Institute's GCM ECHAM4), which were then compared with populations predicted under control scenarios representing past conditions. Parr abundance decreased in all future scenarios compared to the control scenarios due to reduced wetted areas (with the effect depending on climate scenario, GCM, and GCM spatial domain). To examine the potential for mitigation of climate change-induced reductions in wetted area, simulations were run with specific minimum discharge regimes. An increase in abundance of both parr and smolt occurred with an increase in the limit of minimum permitted discharge for three of the four GCM/GCM spatial domains examined. This study shows that, in regulated rivers with upstream storage capacity, negative effects of climate change on Atlantic salmon populations can potentially be mitigated by release of water from reservoirs during critical periods for juvenile salmon. Copyright © 2018. Published by Elsevier B.V.

  11. Intestinal morphology of the wild Atlantic salmon (Salmo salar).

    PubMed

    Løkka, Guro; Austbø, Lars; Falk, Knut; Bjerkås, Inge; Koppang, Erling Olaf

    2013-08-01

    The worldwide-industrialized production of Atlantic salmon (Salmo salar) has increased dramatically during the last decades, followed by diseases related to the on-going domestication process as a growing concern. Even though the gastrointestinal tract seems to be a target for different disorders in farmed fish, a description of the normal intestinal status in healthy, wild salmon is warranted. Here, we provide such information in addition to suggesting a referable anatomical standardization for the intestine. In this study, two groups of wild Atlantic salmon were investigated, consisting of post smolts on feed caught in the sea and of sexually mature, starved individuals sampled from a river. The two groups represent different stages in the anadromous salmon life cycle, which also are part of the production cycle of farmed salmon. Selected regions of gastrointestinal tract were subjected to morphological investigations including immunohistochemical, scanning electron microscopic, and morphometric analyses. A morphology-based nomenclature was established, defining the cardiac part of the stomach and five different regions of the Atlantic salmon intestine, including pyloric caeca, first segment of the mid-intestine with pyloric caeca, first segment of the mid-intestine posterior to pyloric caeca, second segment of the mid-intestine and posterior intestinal segment. In each of the above described regions, for both groups of fish, morphometrical measurements and regional histological investigations were performed with regards to magnitude and direction of mucosal folding as well as the composition of the intestinal wall. Additionally, immunohistochemistry showing cells positive for cytokeratins, α-actin and proliferating cell nuclear antigen, in addition to alkaline phosphatase reactivity in the segments is presented. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  12. Alteration of thyroid hormone concentrations in juvenile Chinook salmon (Oncorhynchus tshawytscha) exposed to polybrominated diphenyl ethers, BDE-47 and BDE-99.

    PubMed

    Arkoosh, Mary R; Van Gaest, Ahna L; Strickland, Stacy A; Hutchinson, Greg P; Krupkin, Alex B; Dietrich, Joseph P

    2017-03-01

    Polybrominated diphenyl ethers (PBDEs) have been used as flame-retardants in consumer products and are currently detected in salmon globally. The two most predominant PBDE congeners found in salmon are BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) and BDE-99 (2,2',4,4',5-pentabromodiphenyl ether). In the present study, groups of juvenile Pacific Chinook salmon were fed five environmentally relevant concentrations of either BDE-47 (0.3-552 ng total PBDEs/g food), BDE-99 (0.3-580 ng total PBDEs/g food), or nearly equal mixtures of both congeners (0.7-690 ng total PBDEs/g food) for 39-40 days. The concentrations of circulating total thyroid hormones, thyroxine (T 4 ) and 3,5,3'-triiodothyronine (T 3 ), were measured using a hormone-specific time-resolved fluoroimmunoassay to determine if PBDE exposure disrupts the hypothalamic-pituitary-thyroid endocrine axis. The concentrations of both circulating T 4 and T 3 were altered in juvenile salmon by dietary uptake of BDE-99. Exposure to BDE-47 did not alter either T 3 or T 4 circulating hormone concentrations. However, exposure to a mixture of BDE-47 and BDE-99 reduced T 3 in fish with lower concentrations of total whole body PBDEs than with either congener alone at equivalent PBDE whole body concentrations. Accordingly, the disruption of PBDEs on circulating thyroid hormone concentrations has the potential to impact a number of critical functions in juvenile salmon including growth, parr-smolt transformation, and immunological processes. Published by Elsevier Ltd.

  13. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam

    USGS Publications Warehouse

    Nyqvist, Daniel; Greenberg, L.; Goerig, E.; Calles, O.; Bergman, E.; Ardren, William R.; Castro-Santos, Theodore R.

    2017-01-01

    Passage of fish through hydropower dams is associated with mortality, delay, increased energy expenditure and migratory failure for migrating fish and the need for remedial measures for both upstream and downstream migration is widely recognised. A functional fish passage must ensure safe and timely passage routes that a substantial portion of migrating fish will use. Passage solutions must address not only the number or percentage of fish that successfully pass a barrier, but also the time it takes to pass. Here, we used radiotelemetry to study the functionality of a fish bypass for downstream-migrating wild-caught and hatchery-released Atlantic salmon smolts. We used time-to-event analysis to model the influence of fish characteristics and environmental variables on the rates of a series of events associated with dam passage. Among the modelled events were approach rate to the bypass entry zone, retention rates in both the forebay and the entry zone and passage rates. Despite repeated attempts, only 65% of the tagged fish present in the forebay passed the dam. Fish passed via the bypass (33%), via spill (18%) and via turbines (15%). Discharge was positively related to approach, passage and retention rates. We did not detect any differences between wild and hatchery fish. Even though individual fish visited the forebay and the entry zone on multiple occasions, most fish passed during the first exposures to these zones. This study underscores the importance of timeliness to passage success and the usefulness of time-to-event analysis for understanding factors governing passage performance.

  14. Estimation of Parameters Influencing Waterborne Transmission of Infectious Hematopoietic Necrosis Virus (IHNV) in Atlantic Salmon (Salmo salar)

    PubMed Central

    Garver, Kyle A; Mahony, Amelia A. M.; Stucchi, Dario; Richard, Jon; Van Woensel, Cecile; Foreman, Mike

    2013-01-01

    Understanding how pathogenic organisms spread in the environment is crucial for the management of disease, yet knowledge of propagule dispersal and transmission in aquatic environments is limited. We conducted empirical studies using the aquatic virus, infectious hematopoietic necrosis virus (IHNV), to quantify infectious dose, shedding capacity, and virus destruction rates in order to better understand the transmission of IHN virus among Atlantic salmon marine net-pen aquaculture. Transmission of virus and subsequent mortality in Atlantic salmon post-smolts was initiated with as low as 10 plaque forming units (pfu) ml−1. Virus shedding from IHNV infected Atlantic salmon was detected before the onset of visible signs of disease with peak shed rates averaging 3.2×107 pfu fish−1 hour−1 one to two days prior to mortality. Once shed into the marine environment, the abundance of free IHNV is modulated by sunlight (UV A and B) and the growth of natural biota present in the seawater. Virus decayed very slowly in sterilized seawater while rates as high as k =  4.37 d−1 were observed in natural seawater. Decay rates were further accelerated when exposed to sunlight with virus infectivity reduced by six orders of magnitude within 3 hours of full sunlight exposure. Coupling the IHNV transmission parameter estimates determined here with physical water circulation models, will increase the understanding of IHNV dispersal and provide accurate geospatial predictions of risk for IHNV transmission from marine salmon sites. PMID:24340016

  15. Smolt Monitoring Program Comparative Survival Rate Study (CSS); Oregon Department of Fish and Wildlife, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian; Carmichael, Richard

    2003-05-01

    We PIT-tagged juvenile spring chinook salmon reared at Lookingglass Hatchery in October 2001 as part of the Comparative Survival Rate Study (CSS) for migratory year (MY) 2002. We tagged 20,998 Imnaha stock spring chinook salmon, and after mortality and tag loss, we allowed the remaining 20,920 fish to leave the acclimation pond at our Imnaha River satellite facility beginning 21 March 2002 to begin their seaward migration. The fish remaining in the pond were forced out on 17 April 2002. We tagged 20,973 Catherine Creek stock captive brood progeny spring chinook salmon, and after mortality and tag loss, we allowedmore » the remaining 20,796 fish to leave the acclimation ponds at our Catherine Creek satellite facility beginning 1 April 2001 to begin their seaward migration. The fish remaining in the ponds were forced out on 15 April 2001. We estimated survival rates, from release to Lower Granite Dam in MY 2002, for three stocks of hatchery spring chinook salmon tagged at Lookingglass Hatchery to determine their relative migration performance. Imnaha River stock and Lostine River stock survival rates were similar and were higher than the survival rate of Catherine Creek stock. We PIT-tagged 20,950 BY 2001 Imnaha River stock and 20,820 BY 2001 Catherine Creek stock captive brood progeny in October 2002 as part of the CSS for MY 2003. At the time the fish were transferred from Lookingglass Hatchery to the acclimation site, the rates of mortality and tag loss for Imnaha River stock were 0.14% and 0.06%, respectively. Catherine Creek stock, during the same period, had rates of mortality and tag loss of 0.57% and 0.31%, respectively. There was slightly elevated mortality, primarily from BKD, in one raceway of Catherine Creek stock at Lookingglass Hatchery for BY 2001.« less

  16. Modelling the effects of stranding on the Atlantic salmon population in the Dale River, Norway.

    PubMed

    Sauterleute, Julian F; Hedger, Richard D; Hauer, Christoph; Pulg, Ulrich; Skoglund, Helge; Sundt-Hansen, Line E; Bakken, Tor Haakon; Ugedal, Ola

    2016-12-15

    Rapid dewatering in rivers as a consequence of hydropower operations may cause stranding of juvenile fish and have a negative impact on fish populations. We implemented stranding into an Atlantic salmon population model in order to evaluate long-term effects on the population in the Dale River, Western Norway. Furthermore, we assessed the sensitivity of the stranding model to dewatered area in comparison to biological parameters, and compared different methods for calculating wetted area, the main abiotic input parameter to the population model. Five scenarios were simulated dependent on fish life-stage, season and light level. Our simulation results showed largest negative effect on the population abundance for hydropeaking during winter daylight. Salmon smolt production had highest sensitivity to the stranding mortality of older juvenile fish, suggesting that stranding of fish at these life-stages is likely to have greater population impacts than that of earlier life-stages. Downstream retention effects on the ramping velocity were found to be negligible in the stranding model, but are suggested to be important in the context of mitigation measure design. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effects of Renibacterium salmoninarum on olfactory organs of Chinook salmon (Oncorhynchus tshawytscha) marked with coded wire tags

    USGS Publications Warehouse

    Elliott, Diane G.; Conway, Carla M.; Bruno, D.W.; Elliott, D.G.; Nowak, B.

    2014-01-01

    Bacterial kidney disease (BKD) caused by Renibacterium salmoninarum can cause significant morbidity and mortality in Chinook salmon (Oncorhynchus tshawytscha), particularly in Chinook salmon of the stream (spring) life history type, which migrate to sea as yearlings rather than subyearlings. R. salmoninarum can be transmitted vertically from the female parent to the progeny in association with the egg, as well as horizontally from fish to fish. This study was conducted as part of a research project to investigate whether the prevalence and intensity of R. salmoninarum infections in adult spring Chinook salmon could affect the survival and pathogen prevalence and intensity in their progeny (Pascho et al., 1991, 1993; Elliott et al., 1995). Fish from two brood years (1988 and 1989) were reared at Dworshak National Fish Hatchery (Idaho, USA) for about 1-1/2 years, released as yearling smolts, and allowed to migrate to the Pacific Ocean for maturation. The majority of progeny fish were marked with coded wire tags (CWTs) about 4 months before they were released from the hatchery so that adult returns could be monitored. The CWTs were implanted in the snouts of the fish by an experienced team of fish markers using automated wire-tagging machines. The intended placement site was the cartilage, skeletal muscle or loose connective tissue of the snout.

  18. Tricellulin, occludin and claudin-3 expression in salmon intestine and kidney during salinity adaptation.

    PubMed

    Tipsmark, C K; Madsen, S S

    2012-08-01

    Molecular regulation of tight junctions in osmoregulatory epithelia of euryhaline fishes must be extensive during ontogeny and acclimation to salinity changes. In this study, five tight junction proteins were examined in Atlantic salmon (Salmo salar): tight junction associated tricellulin, occludin and claudin-3 isoforms (a, b, c). A survey of tissue distribution in freshwater (FW) salmon showed that tricellulin expression was highest in the intestine. Occludin was detected in tissues with importance for epithelial transport and the order of expression was gill>intestine>kidney. The three claudin-3 isoforms were expressed at highest level in kidney tissue. Transfer of juvenile FW salmon to seawater (SW) elevated intestinal tricellulin and occludin mRNA, and these transcripts were also elevated at the time of best SW-tolerance during the course of smoltification. In the kidney, expression of tricellulin and claudin-3 isoforms was elevated after SW-transfer and tricellulin, occludin, claudin-3a and -3b increased in March before the peak smolt stage. In the gill, none of the examined tight junction proteins were impacted by SW-transfer. The data suggest that expression of tricellulin and occludin is dynamically involved in reorganization of intestinal epithelium and possibly changed paracellular permeability during SW-acclimation. The increased renal tricellulin and claudin-3 expression in SW suggests a role in remodeling of the kidney during SW-acclimation. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Differential response of continental stock complexes of Atlantic salmon (Salmo salar) to the Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Friedland, Kevin D.; Shank, Burton V.; Todd, Christopher D.; McGinnity, Philip; Nye, Janet A.

    2014-05-01

    Atlantic salmon, Salmo salar, in the North Atlantic are managed as a set of population complexes distributed in North America and Europe. In recent years, these complexes have experienced reduced marine survival and many populations within the complexes are at risk, especially those at the southern ends of the species amphi-Atlantic range. Atlantic salmon is an anadromous fish dividing its life history between residence in freshwater and the marine environment. The freshwater portion of the life history includes spawning and the rearing of juveniles where in-river production has tended to be relatively stable, whereas the first year at sea, termed the post-smolt year, is characterized by more variable rates of mortality. Although their habitats are widely separated geographically along the North Atlantic seaboards, strong recruitment coherence exists between North American and European stock complexes. This recruitment coherence is correlated with ocean temperature variation associated with the Atlantic Multidecadal Oscillation (AMO). The North Atlantic Oscillation (NAO) appears to be relatively unimportant as a driver of salmon abundance. The mechanism determining the link between AMO-related thermal variation and abundance appears to differ fundamentally for the two continental stock groupings. Whereas ocean climate variability during the first springtime months of juvenile salmon migration to sea appears to be important to the survival of North American stocks, summer climate variation appears to be central to adult recruitment variation for European stocks. This contrast in seasonal effects appears to be related to the varying roles of predation pressure and size-related mortality on the continental stock complexes. The anticipated warming due to global climate change will impose thermal conditions on salmon populations outside historical context and challenge the ability of many populations to persist.

  20. Metabolism, health and fillet nutritional quality in Atlantic salmon (Salmo salar) fed diets containing n-3-rich microalgae.

    PubMed

    Kousoulaki, Katerina; Østbye, Tone-Kari Knutsdatter; Krasnov, Aleksei; Torgersen, Jacob Seilø; Mørkøre, Turid; Sweetman, John

    2015-01-01

    Microalgae, as primary producers of EPA and DHA, are among the most prominent alternative sources to fish oil for n-3 long-chain PUFA in animal and human nutrition. The present study aimed to assess technical, nutritional and fish health aspects of producing n-3-rich Atlantic salmon (Salmo salar) fish fillets by dietary supplementation of increasing levels of a DHA-producing Schizochytrium sp. and reduced or without use of supplemental fish oil. Atlantic salmon smolt were fed diets with graded levels of microalgae for 12 weeks, during which all fish showed high feed intake rates with postprandial plasma leptin levels inversely correlating with final mean fish body weights. Fish performance was optimal in all experimental treatments (thermal growth coefficient about 4·0 and feed conversion ratio 0·8-0·9), protein digestibility was equal in all diets, whereas dietary lipid digestibility inversely correlated with the dietary levels of the SFA 16 : 0. Fillet quality was good and similar to the control in all treatments in terms of n-3 long-chain PUFA content, gaping, texture and liquid losses during thawing. Histological fluorescence staining and immunofluorescence analysis of salmon intestines (midgut: base of intestine and villi) revealed significant effects on slime, goblet cell production and inducible nitric oxide synthase (iNOS) activity with increasing levels of dietary Schizochytrium sp. supplementation. Microarray analysis did not reveal any signs of toxicity, stress, inflammation or any other negative effects from Schizochytrium sp. supplementation in diets for Atlantic salmon.

  1. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven G.; Muir, William D.; Zabel, Richard W.

    2004-01-01

    For juvenile chinook salmon Oncorhynchus tshawytscha, sockeye salmon O. nerka, and steelhead O. mykiss that migrate through reservoirs, hydroelectric projects, and free-flowing sections of the Snake and Columbia Rivers, survival estimates are essential to develop effective strategies for recovering depressed stocks. Many management strategies were based on estimates of system survival (Raymond 1979; Sims and Ossiander 1981) derived in a river system considerably different from today's (Williams and Matthews 1995; Williams et al. 2001). Knowledge of the magnitude, locations, and causes of smolt mortality under present passage conditions, and under conditions projected for the future, are necessary to develop strategiesmore » that will optimize smolt survival during migration. From 1993 through 2002, the National Marine Fisheries Service (NMFS) and the University of Washington (UW) demonstrated the feasibility of using three statistical models to estimate survival of PIT-tagged (Prentice et al. 1990a) juvenile salmonids passing through Snake River dams and reservoirs (Iwamoto et al. 1994; Muir et al. 1995, 1996, 2001a, 2003; Smith et al. 1998, 2000a,b; Hockersmith et al. 1999; Zabel et al. 2001, 2002). Evaluation of assumptions for these models indicated that all were generally satisfied, and accurate and precise survival estimates were obtained. In 2003, NMFS and UW completed the eleventh year of the study. Flow levels during the early portion of the 2003 spring migration were similar to 2002, and only slightly higher than in the drought conditions during 2001. However, flow levels were much greater during the later part of the migration in 2003. Spill levels were similar to 2002, much higher than in 2001. Research objectives were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the performance of the survival-estimation models under prevailing operational and environmental conditions. Additionally, as adult return information becomes available, as part of this study we will evaluate relationships between juvenile survival and subsequent adult returns for fish with different juvenile migration histories.« less

  2. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts

    PubMed Central

    Nuez-Ortín, Waldo G.; Carter, Chris G.; Wilson, Richard; Cooke, Ira; Nichols, Peter D.

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend. PMID:27556399

  3. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts.

    PubMed

    Nuez-Ortín, Waldo G; Carter, Chris G; Wilson, Richard; Cooke, Ira; Nichols, Peter D

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.

  4. Interpopulation Comparison of Sex-Biased Mortality and Sexual Size Dimorphism in Sea-Run Masu Salmon, Oncorhynchus masou.

    PubMed

    Tamate, Tsuyoshi

    2015-08-01

    Evolutionary ecologists often expect that natural and sexual selection result in systematic co-occurrence patterns of sex-biased mortality and sexual size dimorphism (SSD) within animal species. However, whether such patterns actually occur in wild animals is poorly examined. The following expectation, the larger sex suffers higher mortality, was primarily tested here for apparently native sea-run masu salmon (Oncorhynchus masou) in three populations in Hokkaido, Japan. Field surveys on sex ratios, body sizes, and ages of smolts and returning adults revealed that two of the three populations exhibited an expected pattern, a female-biased marine mortality and SSD, but one population demonstrated an unexpected co-occurrence of male-biased marine mortality and female-biased SSD. These female-biased SSDs were attributed to faster marine growth of females because of no sex difference in smolt body size. It has been previously suggested that breeding selection favoring large size generally act more strongly in females than in males in Japanese anadromous masu, as there is a weak sexual selection on adult males but universally intensive natural selection on adult females. Thus, this hypothesis explains female-biased SSDs well in all study populations. Interpopulation variation in sex-biased mortality found here might result from differences in marine predation and/or fishing pressures, given that selection driving female-biased SSD makes females forage more aggressively than males during the marine phase. Taken together, these results raise the possibility that evolutionary forces have shaped adaptive sex-specific foraging strategies under relationships between growth and mortality, resulting in co-occurrence patterns of sex-biased mortality and SSD within animal species.

  5. Effect of daily oscillation in temperature and increased suspended sediment on growth and smolting in juvenile chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Shrimpton, J.M.; Zydlewski, Joseph D.; Heath, J.W.

    2007-01-01

    We examined the effect of temperature oscillation and increased suspended sediment concentration on growth and smolting in juvenile ocean-type chinook salmon (Oncorhynchus tshawytscha). Fish were ponded on February 26; each treatment group had three replicates of 250 fish. Mean temperatures for the entire experiment were 12.3????C for all tanks with a total of 1348 and 1341 degree days for the constant temperature and oscillating temperature tanks, respectively. Daily fluctuation in temperature averaged 7.5????C in the variable temperature groups and less than 1????C for the constant temperature group. Starting on April 5, bentonite clay was added each day to tanks as a pulse event to achieve a suspended sediment concentration of 200??mg l- 1; clay cleared from the tanks within approximately 8??h. Fish were sampled at approximately two??week intervals from ponding until mid-June. On the last sample date, June 12, a single gill arch was removed and fixed for histological examination of gill morphology. By early May, significant differences were seen in size between the groups; control > temperature = sediment > (temperature ?? sediment). This relationship was consistent throughout the experiment except for the last sample date when the temperature group had a mean weight significantly greater than the sediment group. Gill Na+,K+-ATPase activity was not affected by daily temperature oscillations, but groups subjected to increased suspended sediment had significantly lower enzyme activities compared to controls. Mean cell size for gill chloride cells did not differ between groups. Plasma cortisol increased significantly during the spring, but there were no significant differences between groups. ?? 2007 Elsevier B.V. All rights reserved.

  6. Hepatic insulin-like growth-factor binding protein (igfbp) responses tofood restriction in Atlantic salmon smolts

    USGS Publications Warehouse

    Breves, Jason P.; Phipps-Costin, Silas K.; Fujimoto, Chelsea K.; Einarsdottir, Ingibjörg E.; Regish, Amy M.; Björnsson, Björn Thrandur; McCormick, Stephen

    2016-01-01

    The growth hormone (Gh)/insulin-like growth-factor (Igf) system plays a central role in the regulation of growth in fishes. However, the roles of Igf binding proteins (Igfbps) in coordinating responses to food availability are unresolved, especially in anadromous fishes preparing for seaward migration. We assayed plasma Gh, Igf1, thyroid hormones and cortisol along with igfbp mRNA levels in fasted and fed Atlantic salmon ( Salmo salar ). Fish were fasted for 3 or 10 days near the peak of smoltification (late April to early May). Fasting reduced plasma glucose by 3 days and condition factor by 10 days. Plasma Gh, cortisol, and thyroxine (T 4 ) were not altered in response to fasting, whereas Igf1 and 3,5,3′-triiodo- l -thyronine (T 3 ) were slightly higher and lower than controls, respectively. Hepatic igfbp1b1 , - 1b2 , - 2a , - 2b1 and - 2b2 mRNA levels were not responsive to fasting, but there were marked increases in igfbp1a1 following 3 and 10 days of fasting. Fasting did not alter hepatic igf1or igf2 ; however, muscle igf1 was diminished by 10 days of fasting. There were no signs that fasting compromised branchial ionoregulatory functions, as indicated by unchanged Na + /K + -ATPase activity and ion pump/transporter mRNA levels. We conclude that dynamic hepatic igfbp1a1 and muscle igf1 expression participate in the modulation of Gh/Igf signaling in smolts undergoing catabolism.

  7. Comparative Survival Study (CSS) of PIT-Tagged Spring/Summer Chinook and Summer Steelhead : 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comparative Survival Study Oversight Committee and Fish Passage Center

    2008-12-02

    The Comparative Survival Study (CSS; BPA Project 199602000) began in 1996 with the objective of establishing a long term dataset of the survival rate of annual generations of salmon from their outmigration as smolts to their return to freshwater as adults to spawn (smolt-to-adult return rate; SAR). The study was implemented with the express need to address the question whether collecting juvenile fish at dams and transporting them downstream in barges and trucks and releasing them downstream of Bonneville Dam was compensating for the effect of the Federal Columbia River Power System (FCRPS) on survival of Snake Basin spring/summer Chinookmore » salmon migrating through the hydrosystem. The Completion of this annual report for the CSS signifies the 12th outmigration year of hatchery spring/summer Chinook salmon marked with Passive Integrated Transponder (PIT) tags as part of the CSS and the 9th complete brood year return as adults of those PIT-tagged fish (report covers adult returns from 1997-2006 hatchery Chinook juvenile migrations). In addition, the CSS has provided PIT-tags to on-going tagging operations for wild Chinook since 2002 (report covers adult returns from 1994-2006 wild Chinook juvenile migrations). The CSS tags wild steelhead on the lower Clearwater River and utilized wild and hatchery steelhead from other tagging operations in evaluations of transportation (report covers adult returns from 1997-2005 wild and hatchery steelhead migrations). The primary purpose of this report is to update the time series of smolt-to-adult survival rate data and related parameters with additional years of data since the completion of the CSS 10-yr retrospective analysis report (Schaller et al 2007). The 10-yr report provided a synthesis of the results from this ongoing study, the analytical approaches employed, and the evolving improvements incorporated into the study as reported in CSS annual progress reports. This current report specifically addresses the constructive comments of the most recent regional technical review conducted by the Independent Scientific Advisory Board and Independent Scientific Review Panel (ISAB and ISRP 2007). This report completes the 3-salt returns from migration years 2004 for wild and hatchery Chinook and steelhead (all returns are to Lower Granite Dam). For wild and hatchery Chinook, this report also provides 3-salt returns from migration year 2005 and 2-salt returns from migration year 2006 through a cutoff date of August 13, 2008. For wild and hatchery steelhead, it provides completed 2-salt returns for wild and hatchery steelhead that outmigrated in 2005 (any 3-salt returns of PIT-tagged steelhead are few, but will occur after July 1, 2008). All of the Chinook salmon evaluated in the CSS study exhibit a stream-type life history. All study fish used in this report were uniquely identifiable based on a PIT-tag implanted in the body cavity during (or before) the smolt life stage and retained through their return as adults. These tagged fish can then be detected as juveniles and adults at several locations of the Snake and Columbia rivers. Reductions in the number of individuals detected as the tagged fish grow older provide estimates of survival. This allows comparisons of survival over different life stages between fish with different experiences in the hydrosystem (e.g. transportation vs. in-river migrants and migration through various numbers of dams) as illustrated in Figure 1.1. The CSS is a long term study within the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (NPCC FWP) and is funded by Bonneville Power Administration (BPA). Study design and analyses are conducted through a CSS Oversight Committee with representation from Columbia River Inter-Tribal Fish Commission (CRITFC), Idaho Department of Fish and Game (IDFG), Oregon Department of Fish and Wildlife (ODFW), U.S. Fish and Wildlife Service (USFWS), and Washington Department of Fish and Wildlife (WDFW). The Fish Passage Center (FPC) coordinates the PIT-tagging efforts, data management and preparation, and CSSOC work. The location of all tagging sites is identified in Figures 1.2 and 1.3. All draft and final written work products are subject to regional technical and public review and are available electronically on FPC and BPA websites: FPC: http://www.fpc.org/documents/CSS.html; and BPA: http://www.efw.bpa.gov/searchpublications/index.aspx?projid.« less

  8. Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Timothy; Johnson, June; Putnam, Scott

    2008-12-01

    Populations of anadromous salmonids in the Snake River basin declined precipitously following the construction of hydroelectric dams in the Snake and Columbia rivers. Raymond (1988) documented a decrease in survival of emigrating steelhead trout Oncorhynchus mykiss and Chinook salmon O. tshawytscha from the Snake River following the construction of dams on the lower Snake River during the late 1960s and early 1970s. Although Raymond documented some improvements in survival through the early 1980s, anadromous populations remained depressed and declined even further during the 1990s (Petrosky et al. 2001; Good et al. 2005). The effect was disastrous for all anadromous salmonidmore » species in the Snake River basin. Coho salmon O. kisutch were extirpated from the Snake River by 1986. Sockeye salmon O. nerka almost disappeared from the system and were declared under extreme risk of extinction by authority of the Endangered Species Act (ESA) in 1991. Chinook salmon were classified as threatened with extinction in 1992. Steelhead trout were also classified as threatened in 1997. Federal management agencies in the basin are required to mitigate for hydroelectric impacts and provide for recovery of all ESA-listed populations. In addition, the Idaho Department of Fish and Game (IDFG) has the long-term goal of preserving naturally reproducing salmon and steelhead populations and recovering them to levels that will provide a sustainable harvest (IDFG 2007). Management to achieve these goals requires an understanding of how salmonid populations function (McElhany et al. 2000) as well as regular status assessments. Key demographic parameters, such as population density, age composition, recruits per spawner, and survival rates must be estimated annually to make such assessments. These data will guide efforts to meet mitigation and recovery goals. The Idaho Natural Production Monitoring and Evaluation Project (INPMEP) was developed to provide this information to managers. The Snake River stocks of steelhead and spring/summer Chinook salmon still have significant natural reproduction and thus are the focal species for this project's investigations. The overall goal is to monitor the abundance, productivity, distribution, and stock-specific life history characteristics of naturally produced steelhead trout and Chinook salmon in Idaho (IDFG 2007). We have grouped project tasks into three objectives, as defined in our latest project proposal and most recent statement of work. The purpose of each objective involves enumerating or describing individuals within the various life stages of Snake River anadromous salmonids. By understanding the transitions between life stages and associated controlling factors, we hope to achieve a mechanistic understanding of stock-specific population dynamics. This understanding will improve mitigation and recovery efforts. Objective 1. Measure 2007 adult escapement and describe the age structure of the spawning run of naturally produced spring/summer Chinook salmon passing Lower Granite Dam. Objective 2. Monitor the juvenile production of Chinook salmon and steelhead trout for the major population groups (MPGs) within the Clearwater and Salmon subbasins. Objective 3. Evaluate life cycle survival and the freshwater productivity/production of Snake River spring/summer Chinook salmon. There are two components: update/refine a stock-recruit model and estimate aggregate smolt-to-adult survival. In this annual progress report, we present technical results for work done during 2007. Part 2 contains detailed results of INPMEP aging research and estimation of smolt-to-adult return rates for wild and naturally produced Chinook salmon (Objectives 1 and 3). Part 3 is a report on the ongoing development of a stock-recruit model for the freshwater phase of spring/summer Chinook salmon in the Snake River basin (Objective 3). Part 4 is a summary of the parr density data (Objective 2) collected in 2007 using the new site selection procedure. Data are maintained in computer databases housed at the IDFG Nampa Fisheries Research office (described in the Appendix) and are available from the first author. Other project accomplishments during 2007 (e.g., professional presentations) are also summarized in the Appendix.« less

  9. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008 Report of Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    2009-05-26

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008more » are listed below: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007-2008 showed these antennas (and anchoring method) are not adequate to withstand high spring flows in this drainage. Future plans involve removing these antennas before high spring flows. (5) At Little Goose Dam in 2008, length and/or weight were taken on 505 recaptured fish from 12 Idaho stream populations. Fish had grown an average of 40.1 mm in length and 10.6 g in weight over an average of 288 d. Their mean condition factor declined from 1.25 at release (parr) to 1.05 at recapture (smolt). (6) Mean release lengths for detected fish were significantly larger than for fish not detected the following spring and summer (P < 0.0001). (7) Fish that migrated through Lower Granite Dam in April and May were significantly larger at release than fish that migrated after May (P < 0.0001) (only 12 fish migrated after May). (8) In 2008, peak detections at Lower Granite Dam of parr tagged during summer 2007 (from the 12 stream populations in Idaho and 4 streams in Oregon) occurred during moderate flows of 87.5 kcfs on 7 May and high flows of 197.3 kcfs on 20 May. The 10th, 50th, and 90th percentile passage occurred on 30 April, 11 May, and 23 May, respectively. (9) In 2007-2008, estimated parr-to-smolt survival to Lower Granite Dam for Idaho and Oregon streams (combined) averaged 19.4% (range 6.2-38.4% depending on stream of origin). In Idaho streams the estimated parr-to-smolt survival averaged 21.0%. This survival was the second highest since 1993 for Idaho streams. Relative parr densities were lower in 2007 (2.4 parr/100 m{sup 2}) than in all previous years since 2000. In 2008, we observed low-to-moderate flows prior to mid-May and relatively cold weather conditions throughout the spring migration season. These conditions moved half of the fish through Lower Granite Dam prior to mid-May; then high flows moved 50 to 90% of the fish through the dam in only 12 days. Clearly, complex interrelationships of several factors drive the annual migrational timing of the stocks.« less

  10. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearsons, Todd N.; Thomas, Joan B.

    2003-01-01

    The change in pathogens prevalence to wild fish is probably the least studied ecological interaction associated with hatchery operations. In 1999, the Cle Elum Hatchery began releasing spring chinook smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to evaluate whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Approximately 200 smolts were collected at the Chandler smolt collection facility on the lower Yakimamore » River during 1998, 2000 and 2001 and monitored for specific pathogens. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. In addition, the fish were tested for Ceratomyxa shasta spores in 2001. Not all testing has been completed for every year, but to date, there have only been minimal changes in levels of the bacterial pathogens in the naturally produced smolts. At this point, due to the limited testing so far, these changes are attributed to normal fluctuation of prevalence.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

    The purpose of this study was to estimate dam passage and route specific survival rates for subyearling Chinook salmon smolts to a primary survival-detection array located 81 km downstream of the dam, evaluate a BGS located in the B2 forebay, and evaluate effects of two spill treatments. The 2010 study also provided estimates of forebay residence time, tailrace egress time, spill passage efficiency (SPE), and spill + B2 Corner Collector (B2CC) efficiency, as required in the Columbia Basin Fish Accords. In addition, the study estimated forebay passage survival and survival of fish traveling from the forebay entrance array, through themore » dam and downstream through 81 km of tailwater.« less

  12. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at differentmore » areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.« less

  13. An oil containing EPA and DHA from transgenic Camelina sativa to replace marine fish oil in feeds for Atlantic salmon (Salmo salar L.): Effects on intestinal transcriptome, histology, tissue fatty acid profiles and plasma biochemistry

    PubMed Central

    Betancor, Mónica B.; Li, Keshuai; Sprague, Matthew; Bardal, Tora; Sayanova, Olga; Usher, Sarah; Han, Lihua; Måsøval, Kjell; Torrissen, Ole; Napier, Johnathan A.; Tocher, Douglas R.; Olsen, Rolf Erik

    2017-01-01

    New de novo sources of omega 3 (n-3) long chain polyunsaturated fatty acids (LC-PUFA) are required as alternatives to fish oil in aquafeeds in order to maintain adequate levels of the beneficial fatty acids, eicosapentaenoic and docosahexaenoic (EPA and DHA, respectively). The present study investigated the use of an EPA+DHA oil derived from transgenic Camelina sativa in Atlantic salmon (Salmo salar) feeds containing low levels of fishmeal (35%) and fish oil (10%), reflecting current commercial formulations, to determine the impacts on tissue fatty acid profile, intestinal transcriptome, and health of farmed salmon. Post-smolt Atlantic salmon were fed for 12-weeks with one of three experimental diets containing either a blend of fish oil/rapeseed oil (FO), wild-type camelina oil (WCO) or transgenic camelina oil (DCO) as added lipid source. The DCO diet did not affect any of the fish performance or health parameters studied. Analyses of the mid and hindgut transcriptomes showed only mild effects on metabolism. Flesh of fish fed the DCO diet accumulated almost double the amount of n-3 LC-PUFA than fish fed the FO or WCO diets, indicating that these oils from transgenic oilseeds offer the opportunity to increase the n-3 LC-PUFA in farmed fish to levels comparable to those found a decade ago. PMID:28403232

  14. An oil containing EPA and DHA from transgenic Camelina sativa to replace marine fish oil in feeds for Atlantic salmon (Salmo salar L.): Effects on intestinal transcriptome, histology, tissue fatty acid profiles and plasma biochemistry.

    PubMed

    Betancor, Mónica B; Li, Keshuai; Sprague, Matthew; Bardal, Tora; Sayanova, Olga; Usher, Sarah; Han, Lihua; Måsøval, Kjell; Torrissen, Ole; Napier, Johnathan A; Tocher, Douglas R; Olsen, Rolf Erik

    2017-01-01

    New de novo sources of omega 3 (n-3) long chain polyunsaturated fatty acids (LC-PUFA) are required as alternatives to fish oil in aquafeeds in order to maintain adequate levels of the beneficial fatty acids, eicosapentaenoic and docosahexaenoic (EPA and DHA, respectively). The present study investigated the use of an EPA+DHA oil derived from transgenic Camelina sativa in Atlantic salmon (Salmo salar) feeds containing low levels of fishmeal (35%) and fish oil (10%), reflecting current commercial formulations, to determine the impacts on tissue fatty acid profile, intestinal transcriptome, and health of farmed salmon. Post-smolt Atlantic salmon were fed for 12-weeks with one of three experimental diets containing either a blend of fish oil/rapeseed oil (FO), wild-type camelina oil (WCO) or transgenic camelina oil (DCO) as added lipid source. The DCO diet did not affect any of the fish performance or health parameters studied. Analyses of the mid and hindgut transcriptomes showed only mild effects on metabolism. Flesh of fish fed the DCO diet accumulated almost double the amount of n-3 LC-PUFA than fish fed the FO or WCO diets, indicating that these oils from transgenic oilseeds offer the opportunity to increase the n-3 LC-PUFA in farmed fish to levels comparable to those found a decade ago.

  15. Physiological response of juvenile coho salmon (Oncorhynchus kisutch) and rainbow trout (Salmo gairdneri) to handling and crowding stress in intensive fish culture

    USGS Publications Warehouse

    Wedemeyer, Gary A.

    1976-01-01

    Moving 4–5-in. coho salmon (Oncorhynchus kisutch) held in soft (20 ppm CaCO3) water from the relatively light loading density of 0.5 lb/ft3 to 1, 2, or 4 lb/ft3 (density index, DI = 0.1, 0.2, 0.4, 0.8) caused significant stress as indicated by loss of feeding behavior, but only minimal physiological disturbances, as indicated by lack of hyperglycemia or hypochloremia. However, moving them to 6 or 12 lb/ft3 (DI = 1.2, 2.4) caused significant physiological stress which required at least a week for recovery. Smolting coho salmon were physiologically stressed by population densities of 1 lb/ft3 or more and a subclinical corynebacterial kidney infection was activated. Rainbow trout (Salmo gairdneri) (4–5 in.) were physiologically stressed when moved and held at 1 lb/ft3 or more but retained normal feeding behavior. This indicates that handling and crowding stress will be minimized in softwater areas if densities in fish distribution trucks or in ponds or raceways during disease treatments are held to 0.1–0.5 lb/gal.

  16. Status after 5 Years of Survival Compliance Testing in the Federal Columbia River Power System (FCRPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, John R.; Weiland, Mark A.; Ham, Kenneth D.

    Survival studies of juvenile salmonids implanted with acoustic tags have been conducted at hydroelectric dams within the Federal Columbia River Power System (FCRPS) in the Columbia and Snake rivers between 2010 and 2014 to assess compliance with dam passage survival standards stipulated in the 2008 Biological Opinion (BiOp). For juvenile salmonids migrating downstream in the spring, dam passage survival defined as survival from the upstream dam face to the tailrace mixing zone must be ≥96% and for summer migrants, ≥93%, and estimated with a standard error ≤1.5% (i.e., 95% confidence interval of ±3%). A total of 29 compliance tests havemore » been conducted at 6 of 8 FCRPS main-stem dams, using over 109,000 acoustic-tagged salmonid smolts. Of these 29 compliance studies, 23 met the survival standards and 26 met the precision requirements. Of the 6 dams evaluated to date, individual survival estimates range from 0.9597 to 0.9868 for yearling Chinook Salmon, 0.9534 to 0.9952 for steelhead, and 0.9076 to 0.9789 for subyearling Chinook Salmon. These investigations suggest the large capital investment over the last 20 years to improve juvenile salmon passage through the FCRPS dams has been beneficial.« less

  17. Research, Monitoring, and Evaluation of Avian Predation on Salmonid Smolts in the Lower and Mid-Columbia River, 2008 Draft Season Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roby, Daniel D.; Collis, Ken; Lyons, Donald E.

    2009-07-08

    This report describes investigations into predation by piscivorous colonial waterbirds on juvenile salmonids (Oncorhynchus spp.) from throughout the Columbia River basin during 2008. East Sand Island in the Columbia River estuary again supported the largest known breeding colony of Caspian terns (Hydroprogne caspia) in the world (approximately 10,700 breeding pairs) and the largest breeding colony of double-crested cormorants (Phalacrocorax auritus) in western North America (approximately 10,950 breeding pairs). The Caspian tern colony increased from 2007, but not significantly so, while the double-crested cormorant colony experienced a significant decline (20%) from 2007. Average cormorant nesting success in 2008, however, was downmore » only slightly from 2007, suggesting that food supply during the 2008 nesting season was not the principal cause of the decline in cormorant colony size. Total consumption of juvenile salmonids by East Sand Island Caspian terns in 2008 was approximately 6.7 million smolts (95% c.i. = 5.8-7.5 million). Caspian terns nesting on East Sand Island continued to rely primarily on marine forage fishes as a food supply. Based on smolt PIT tag recoveries on the East Sand Island Caspian tern colony, predation rates were highest on steelhead in 2008; minimum predation rates on steelhead smolts detected passing Bonneville Dam averaged 8.3% for wild smolts and 10.7% for hatchery-raised smolts. In 2007, total smolt consumption by East Sand Island double-crested cormorants was about 9.2 million juvenile salmonids (95% c.i. = 4.4-14.0 million), similar to or greater than that of East Sand Island Caspian terns during that year (5.5 million juvenile salmonids; 95% c.i. = 4.8-6.2 million). The numbers of smolt PIT tags recovered on the cormorant colony in 2008 were roughly proportional to the relative availability of PIT-tagged salmonids released in the Basin, suggesting that cormorant predation on salmonid smolts in the estuary was less selective than tern predation. Cormorant predation rates in excess of 30%, however, were observed for some groups of hatchery-reared fall Chinook salmon released downstream of Bonneville Dam. Implementation of the federal plan 'Caspian Tern Management to Reduce Predation of Juvenile Salmonids in the Columbia River Estuary' was initiated in 2008 with construction by the Corps of Engineers of two alternative colony sites for Caspian terns in interior Oregon: a 1-acre island on Crump Lake in the Warner Valley and a 1-acre island on Fern Ridge Reservoir near Eugene. We deployed Caspian tern social attraction (decoys and sound systems) on these two islands and monitored for Caspian tern nesting. Caspian terns quickly colonized the Crump Lake tern island; about 430 pairs nested there, including 5 terns that had been banded at the East Sand Island colony in the Columbia River estuary, over 500 km to the northwest. No Caspian terns nested at the Fern Ridge tern island in 2008, but up to 9 Caspian terns were recorded roosting on the island after the nesting season. There were two breeding colonies of Caspian terns on the mid-Columbia River in 2008: (1) about 388 pairs nested at the historical colony on Crescent Island in the McNary Pool and (2) about 100 pairs nested at a relatively new colony site on Rock Island in the John Day Pool. Nesting success at the Crescent Island tern colony was only 0.28 young fledged per breeding pair, the lowest nesting success recorded at that colony since monitoring began in 2000, while only three fledglings were raised at the Rock Island tern colony. The diet of Crescent Island Caspian terns consisted of 68% salmonid smolts; total smolt consumption was estimated at 330,000. Since 2004, total smolt consumption by Crescent Island terns has declined by 34%, due mostly to a decline in colony size, while steelhead consumption has increased 10% during this same period. In 2008, approximately 64,000 steelhead smolts were consumed by Caspian terns nesting at Crescent Island. Based on smolt PIT tag recoveries on the Crescent Island Caspian tern colony, the average predation rate on in-river migrants from the Snake River (all species and run types combined based on interrogations at Lower Monumental Dam) was at least 1.4%. Predation rates on PIT-tagged steelhead smolts were greater than those for other salmonid species; 6.0% of wild steelhead smolts from the Snake River were consumed by Crescent Island terns. The double-crested cormorant colony on Foundation Island in the mid-Columbia River consisted of at least 360 pairs nesting in trees in 2008. The proportion of juvenile salmonids in stomach samples collected from cormorants nesting on Foundation Island during the peak of the smolt out-migration was about 45% of prey biomass.« less

  18. McNary Dam, Ice Harbor Dam, and Lower Monumental Dam Smolt Monitoring Program; 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillson, Todd; Lind, Sharon; Price, William

    1997-07-01

    The Washington Department of Fish & Wildlife (WDFW) assumed responsibility for the Smolt Monitoring Program at McNary Dam on the Columbia River in 1990 and at the new juvenile collection facility at Lower Monumental Dam on the Snake River in 1993. In 1996, Smolt Monitoring Program activities also began at the new juvenile collection facility located at Ice Harbor Dam. This report summarizes the 1996 Smolt Monitoring work at all three sites. The work at Ice Harbor consisted of Gas Bubble Trauma (GBT) monitoring only. In general, the 1996 passage season at both the McNary and Lower Monumental sites canmore » be characterized by reduced passage of juveniles through the collection systems due to elevated river flows and spill, and low (<1%) overall facility mortality rates most likely resulting from cooler water temperatures. In accordance with the National Marine Fisheries Service recommendations (NMFS, 1995) all spring migrants were bypassed at McNary Dam in 1996. Mechanical problems within the McNary collection system resulted in collection and sampling activities being delayed until April 18 at this site, while sampling and collection began on the scheduled starting date of April 1 at Lower Monumental Dam. Monitoring operations were conducted through December 14 at McNary Dam and through October 28 at Lower Monumental Dam. An ongoing transportation evaluation summer migrant marking program was conducted at McNary Dam in 1996 by the NMFS. This necessitated the sampling of 394,211 additional fish beyond the recommended sampling guidelines. All total, 509,237 and 31,219 juvenile salmonids were anesthetized and individually counted, examined for scale loss, injuries, and brands by WDFW Smolt Monitoring personnel in 1996 at McNary Dam and Lower Monumental Dam, respectively.« less

  19. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar).

    PubMed

    Bangera, Rama; Correa, Katharina; Lhorente, Jean P; Figueroa, René; Yáñez, José M

    2017-01-31

    Salmon Rickettsial Syndrome (SRS) caused by Piscirickettsia salmonis is a major disease affecting the Chilean salmon industry. Genomic selection (GS) is a method wherein genome-wide markers and phenotype information of full-sibs are used to predict genomic EBV (GEBV) of selection candidates and is expected to have increased accuracy and response to selection over traditional pedigree based Best Linear Unbiased Prediction (PBLUP). Widely used GS methods such as genomic BLUP (GBLUP), SNPBLUP, Bayes C and Bayesian Lasso may perform differently with respect to accuracy of GEBV prediction. Our aim was to compare the accuracy, in terms of reliability of genome-enabled prediction, from different GS methods with PBLUP for resistance to SRS in an Atlantic salmon breeding program. Number of days to death (DAYS), binary survival status (STATUS) phenotypes, and 50 K SNP array genotypes were obtained from 2601 smolts challenged with P. salmonis. The reliability of different GS methods at different SNP densities with and without pedigree were compared to PBLUP using a five-fold cross validation scheme. Heritability estimated from GS methods was significantly higher than PBLUP. Pearson's correlation between predicted GEBV from PBLUP and GS models ranged from 0.79 to 0.91 and 0.79-0.95 for DAYS and STATUS, respectively. The relative increase in reliability from different GS methods for DAYS and STATUS with 50 K SNP ranged from 8 to 25% and 27-30%, respectively. All GS methods outperformed PBLUP at all marker densities. DAYS and STATUS showed superior reliability over PBLUP even at the lowest marker density of 3 K and 500 SNP, respectively. 20 K SNP showed close to maximal reliability for both traits with little improvement using higher densities. These results indicate that genomic predictions can accelerate genetic progress for SRS resistance in Atlantic salmon and implementation of this approach will contribute to the control of SRS in Chile. We recommend GBLUP for routine GS evaluation because this method is computationally faster and the results are very similar with other GS methods. The use of lower density SNP or the combination of low density SNP and an imputation strategy may help to reduce genotyping costs without compromising gain in reliability.

  20. Treatment with thiamine hydrochloride and astaxanthine for the prevention of yolk-sac mortality in Baltic salmon fry (M74 syndrome).

    PubMed

    Koski, P; Pakarinen, M; Nakari, T; Soivio, A; Hartikainen, K

    1999-09-14

    Two practical methods are reported for treating feral Baltic salmon with thiamine hydrochloride against M74 syndrome (abnormally high yolk-sac fry mortality of the Baltic salmon). Both bathing of the yolk-sac fry in thiamine hydrochloride (1000 mg l-1, 1 h) and a single intraperitoneal injection given to the female brood fish (100 mg kg-1 fish) during the summer 3 mo before stripping were shown to elevate the whole body total thiamine concentration in the fry. Both treatments were also shown to be effective in preventing mortality due to M74 syndrome. The effect of bathing the yolk-sac fry was shown to be dose-dependent. The results support the view that there is a causal relationship between the thiamine status of the yolk-sac fry and M74 mortality. An intraperitoneal injection of astaxanthine suspension administered to the female brood fish (11 mg kg-1 fish) in the summer 3 mo before stripping elevated the astaxanthine concentration in the eggs but did not affect mortality due to M74 syndrome. An interaction between astaxanthine and thiamine may occur in the developing embryo or yolk-sac fry, however. No association could be demonstrated between the various thiamine hydrochloride treatment practices and hepatic cytochrome P450 dependent 7-ethoxyresorufin-O-deethylase (EROD) activity in the yolk-sac fry. An injection of thiamine hydrochloride into the peritoneal cavity of wild Baltic salmon females could be used to raise thiamine concentrations in their offspring in the rivers. The effect on smolt production in Finnish Baltic salmon rivers needs to be investigated further, however.

  1. Wind River watershed restoration, annual report November 2009 to October 2010.

    USGS Publications Warehouse

    Connolly, P.J.; Jezorek, I.G.

    2011-01-01

    This report summarizes work completed by U.S. Geological Survey’s Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period November 2009 through October 2010 under Bonneville Power Administration (BPA) contract 46102. Long term research in the Wind River has focused on assessments of steelhead/rainbow trout Oncorhynchus mykiss populations, interactions with introduced populations of spring Chinook salmon O. tshawytscha and brook trout Salvelinus fontinalis, and influences of habitat variables and habitat restoration on fish productivity. During the period covered by this report, we collected water temperature data to characterize variation within and among tributaries and mainstem sections in the Trout Creek watershed, and assisted Washington Department of Fish and Wildlife (WDFW) with smolt trapping and tagging of smolt and parr steelhead with passive integrated transponder (PIT) tags. We also continued to maintain and test efficacy of a passive integrated transponder tag interrogation system (PTIS) in Trout Creek for assessing the adult steelhead runsize. A statement of work (SOW) was submitted to BPA in October 2009 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  2. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.

    2011-07-01

    This report presents the results of an evaluation of juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of the study was to provide fish passage and distribution data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE’s Willamette Valley Project in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) asmore » threatened under the Endangered Species Act. During the year-long study period - February 1, 2010 to January 31, 2011the objectives of the hydroacoustic evaluation of fish passage and distribution at LOP were to: 1. Estimate passage rates, run timing, horizontal distribution, and diel distribution at turbine penstock intakes for smolt-size fish. 2. Estimate passage rates, run timing and diel distribution at turbine penstock intakes for small-size fish. 3. Estimate passage rates and run timing at the regulating outlets for smolt-size fish. 4. Estimate vertical distribution of smolt-size fish in the forebay near the upstream face of the dam. The fixed-location hydroacoustic technique was used to accomplish the objectives of this study. Transducers (420 kHz) were deployed in each penstock intake, above each RO entrance, and on the dam face; a total of nine transducers (2 single-beam and 7 split-beam) were used. We summarize the findings from the hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011 as follows. • Fish passage rates for smolt-size fish (> ~90 mm) were highest during December-January and lowest in mid-summer through early fall. • During the entire study period, an estimated total of 142,463 fish ± 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. • Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. • Run timing for small-size fish (~65-90 mm) peaked (702 fish) on December 18. Downstream passage of small-size juvenile fish was variable, occurring on two days in the spring, eight days in the summer, and at times throughout late fall and winter. A total of 7,017 ± 690 small-size fish passed through the turbine penstock intakes during the study period. • Relatively few fish passed into the ROs when they were open in summer (2 fish/d) and winter (8 fish/d). • Fish were surface-oriented with 62-80% above 10 m deep. The highest percentage of fish (30-60%) was in the 5-10 m depth bin. We draw the following conclusions from the study. • The non-obtrusive hydroacoustic data from this study are reliable because passage estimates and patterns were similar with those observed in the direct capture data from the tailrace screw trap and were consistent with distribution patterns observed in other studies of juvenile salmonid passage at dams. • Fish passage at LOP was apparently affected but not dominated by dam operations and reservoir elevation. • The surface-oriented vertical distribution of fish we observed supports development of surface passage or collector devices. In summary, the high-resolution spatially and temporally data reported herein provide detailed estimates of vertical, horizontal, diel, daily, and seasonal passage and distributions at LOP during March 2010 through January 2011. This information is applicable to management decisions on design and development of surface passage and collections devices to help restore Chinook salmon populations in the Middle Fork Willamette River watershed above Lookout Point Dam.« less

  3. Umatilla Basin Natural Production Monitoring and Evaluation; 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Jesse D.M.; Contor, Craig C.; Hoverson, Eric

    2005-10-01

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). UBNPMEP is coordinated with two ODFW research projects that also monitor and evaluatemore » the success of the Umatilla Fisheries Restoration Plan. Our project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 19000500, Umatilla Hatchery M & E) and smolt outmigration (project No. 198902401, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects comprehensively monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. Table 1 outlines relationships with other BPA supported projects. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan (ODFW and CTUIR 2004), the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (Schwartz & Cameron Under Revision). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPPC 2004). The need for monitoring the natural production of salmonids in the Umatilla River Basin developed with the efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha) coho salmon and (O. kisutch) and enhance summer steelhead (O. mykiss). The need for restoration began with agricultural development in the early 1900's that extirpated salmon and reduced steelhead runs (BOR 1988). The most notable development was the construction and operation of Three-Mile Falls Dam (3MD) and other irrigation projects that dewatered the Umatilla River during salmon migrations. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and the Oregon Department of Fish and Wildlife (ODFW) developed the Umatilla Hatchery Master Plan to restore the historical fisheries in the basin. The plan was completed in 1990 and included the following objectives: (1) Establish hatchery and natural runs of Chinook and coho salmon. (2) Enhance existing summer steelhead populations through a hatchery program. (3) Provide sustainable tribal and non-tribal harvest of salmon and steelhead. (4) Maintain the genetic characteristics of salmonids in the Umatilla River Basin. (5) Produce almost 48,000 adult returns to Three-Mile Falls Dam. The goals were reviewed in 1999 and were changed to 31,500 adult salmon and steelhead returns (Table 2). We conduct core long-term monitoring activities each year as well as two and three-year projects that address special needs for adaptive management. Examples of these projects include adult passage evaluations (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998), genetic monitoring (Currens & Schreck 1995, Narum et al. 2004), and habitat assessment surveys (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998). Our project goal is to provide quality information to managers and researchers working to restore anadromous salmonids to the Umatilla River Basin. This is the only project that monitors the restoration of naturally producing salmon and steelhead in the basin.« less

  4. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 6,716 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1997 to June 1998; approximately 6% of the migrants left in summer, 29% in fall, 2% in winter, and 63% in spring. We estimated 8,763 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1997 to June 1998; approximately 12% of the migrants left in summer, 37% in fall, 21% in winter, and 29% in spring. We estimated 8,859 juvenilemore » chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1997 to June 1998; approximately 99% of the migrants left in spring. We estimated 15,738 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1997 to April 1998; approximately 3% of the migrants left in summer, 61% in fall, 2% in winter, and 34% in spring. We estimated 22,754 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from September 1997 to April 1998; approximately 55% of the migrants left in fall, 5% in winter, and 40% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 April to 26 June 1998, with a median passage date of 1 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 3 April to 26 June 1998, with a median passage date of 8 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 26 May 1998, with a median passage date of 28 April. Juveniles tagged as they left the upper rearing areas of the Grande Ronde and Lostine rivers in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the downstream areas. Fish from Catherine Creek showed no difference in detection rates between the fall and winter tag groups, indicating similar overwinter survival in the upper and lower rearing areas. Chinook salmon parr were generally associated with low velocity habitat types during winter in Catherine Creek, and both winter and summer in the Lostine River. In summer 1997, we PIT-tagged parr on Catherine Creek and the Minam and Imnaha rivers in order to monitor their subsequent migration as smolts through the Snake and Columbia River hydrosystem. We found significant differences among populations in smolt migration timing at Lower Granite Dam in 1998. Fish from Catherine Creek and the Minam and Imnaha rivers were detected in the hydrosystem at rates of 16.4, 20.5, and 28.1%, respectively. In 1998, we estimated parr abundance and the number of parr produced per redd in Catherine Creek and the Lostine River. We estimated that 429 mature, age 1+ male parr and 13,222 immature, age 0+ parr were present in Catherine Creek in August. An average of 29 mature, age 1+ male parr and 287 immature, age 0+ parr were produced from each redd constructed in 1996 and 1997, respectively. We estimated that 75 mature, age 1+ male parr and 40,748 immature, age 0+ parr were present in the Lostine River in August. An average of 3 mature, age 1+ male parr and 832 immature, age 0+ parr were produced from each redd constructed in 1996 and 1997, respectively. For every anadromous female spawner in Catherine Creek and the Lostine River in 1998, there were an estimated 13 and 3 mature male parr, respectively.« less

  5. A review of potential pathogens of sea lice and the application of cleaner fish in biological control.

    PubMed

    Treasurer, James W

    2002-06-01

    There are many examples of successful biological control of pest populations in aquatic environments. This approach to sea louse control has environmental benefits and is cost-effective. The range of possible pathogens of lice is reviewed and epibionts recorded from sea lice, including the monogenean Udonella caligorum and ciliates, are examined. Baculoviruses when ingested by insects form occlusion bodies resulting in severe damage to the digestive system and subsequent death, and this may be a promising approach. Cleaner wrasse (Labridae) have been stocked commercially with farmed salmon since 1989, and recent work on improving the method is reviewed. Wrasse are sourced from a wild fishery and stocked at ratios of 1 to 25-150 salmon. Over 5 million wrasse are stocked annually in Norway and c 30% of smolts in Scotland were stocked with wrasse until 1998, when an outbreak of infections salmon anaemia (ISA) deterred many farmers from transferring wild fish to cages. A case study is given showing that salmon in cages stocked with wrasse had a burden of one to eight lice through the first year compared with up to 40 lice per fish on unprotected and untreated fish. Electivity indices were used to compare the relative composition of lice developmental stages on salmon in stocked and unstocked cages, and adult male and female lice were found to comprise only 6% of the population in cages with wrasse, compared with 49% adults on fish in control cages. Measures to improve the efficacy of wrasse as a way of cleaning salmon in the second production year include the use of refuges to assist over-wintering survival, and stocking ballan wrasse. Health hygiene includes sourcing wrasse in the farm locality, testing for pathogens, vaccination of wrasse and ultimately rearing wrasse for stocking. The role of wrasse in an IPM strategy is described.

  6. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2004-01-01

    Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of constructionmore » and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threatened under the Endangered Species Act of 1973 by the National Marine Fisheries Service (NMFS) on 18 August, 1997. Co-managers have also discontinued off-station releases of juvenile Wallowa stock (non-endemic) hatchery summer steelhead into Catherine Creek in 1998 and the upper Grande Ronde River in 1999. Data are lacking on adult return numbers and the genetic make-up of populations that return to tributaries of the Grande Ronde River basin, Catherine Creek and the upper Grande Ronde River specifically. Adult fish weirs are in place on Catherine Creek and the upper Grande Ronde River and data on summer steelhead populations in those areas are collected.« less

  7. Post-mortem sporulation of Ceratomyxa shasta (Myxozoa) after death in adult Chinook salmon

    USGS Publications Warehouse

    Kent, Michael L.; Soderlund, K.; Thomann, E.; Schreck, Carl B.; Sharpton, T.J.

    2014-01-01

    Ceratomyxa shasta (Myxozoa) is a common gastrointestinal pathogen of salmonid fishes in the Pacific Northwest of the United States. We have been investigating this parasite in adult Chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. In prior work, we observed differences in the pattern of development of C. shasta in adult salmon compared to juvenile salmon. Adult salmon consistently had large numbers of prespore stages in many of the fish that survived to spawn in the fall. However, myxospores were rarely observed, even though they were exposed and presumably infected for months before spawning. We evaluated the ability of C. shasta to sporulate following fish death because it is reported that myxosores are common in carcasses of Chinook salmon. We collected the intestine from 30 adult salmon immediately after artificial spawning and death (T0). A total of 23 fish were infected with C. shasta based on histology, but only a few myxospores were observed in 1 fish by histology. Intestines of these fish were examined at T0 and T7 (latter held at 17 C for 7 days) using quantified wet mount preparations. An increase in myxospore concentrations was seen in 39% of these fish, ranging between a 1.5- to a 14.5-fold increase. The most heavily infected fish exhibited a 4.6-fold increase from 27,841 to 129,352 myxospores/cm. This indicates, supported by various statistical analyses, that under certain conditions presporogonic forms are viable and continue to sporulate after death in adult salmon. Considering the life cycle of C. shasta and anadromous salmon, the parasite may have evolved 2, non-mutually exclusive developmental strategies. In young fish (parr and smolts), the parasite sporulates shortly after infection and is released into freshwater from either live or dead fish before their migration to seawater, where the alternate host is absent. The second strategy occurs in adult salmon, particularly spring Chinook salmon, which become infected upon their return to freshwater in the spring or early summer. For several months throughout the summer, only prespore stages are observed in most fish, even at the time of spawning. But once the fish dies, environmental conditions experienced by C. shasta change and viable presporogonic stages are induced to sporulate. As the post-spawned fish occur in the upper reaches of rivers, the myxospores would be released in a freshwater environment that would provide a reasonable opportunity for them to encounter their freshwater polychaete hosts, which reside downstream.

  8. Modeling survival of juvenile salmon during downriver migration in the Columbia River on a microcomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloquin, R.A.; McKenzie, D.H.

    1994-10-01

    A compartmental model has been implemented on a microcomputer as an aid in the analysis of alternative solutions to a problem. The model, entitled Smolt Survival Simulator, simulates the survival of juvenile salmon during their downstream migration and passage of hydroelectric dams in the Columbia River. The model is designed to function in a workshop environment where resource managers and fisheries biologists can study alternative measures that may potentially increase juvenile anadromous fish survival during downriver migration. The potential application of the model has placed several requirements on the implementing software. It must be available for use in workshop settings.more » The software must be easily to use with minimal computer knowledge. Scenarios must be created and executed quickly and efficiently. Results must be immediately available. Software design emphasis vas placed on the user interface because of these requirements. The discussion focuses on methods used in the development of the SSS software user interface. These methods should reduce user stress and alloy thorough and easy parameter modification.« less

  9. Genome-wide analysis of Atlantic salmon (Salmo salar) mucin genes and their role as biomarkers

    PubMed Central

    Grammes, Fabian Thomas; Ytteborg, Elisabeth; Takle, Harald; Jørgensen, Sven Martin

    2017-01-01

    The aim of this study was to identify potential mucin genes in the Atlantic salmon genome and evaluate tissue-specific distribution and transcriptional regulation in response to aquaculture-relevant stress conditions in post-smolts. Seven secreted gel-forming mucin genes were identified based on several layers of evidence; annotation, transcription, phylogeny and domain structure. Two genes were annotated as muc2 and five genes as muc5. The muc2 genes were predominantly transcribed in the intestinal region while the different genes in the muc5 family were mainly transcribed in either skin, gill or pyloric caeca. In order to investigate transcriptional regulation of mucins during stress conditions, two controlled experiments were conducted. In the first experiment, handling stress induced mucin transcription in the gill, while transcription decreased in the skin and intestine. In the second experiment, long term intensive rearing conditions (fish biomass ~125 kg/m3) interrupted by additional confinement led to increased transcription of mucin genes in the skin at one, seven and fourteen days post-confinement. PMID:29236729

  10. Spokane Tribal Hatchery, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peone, Tim L.

    2006-03-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting harvestable fisheries for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). The Spokane Tribe, Washington Department of Fish and Wildlife, Colville Confederated Tribes and Lake Roosevelt Development Association/Lake Roosevelt Volunteer Net Pen Projectmore » are cooperating in a comprehensive artificial production program to produce kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) for annual releases into the project area. The program consists of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and Lake Roosevelt Rainbow Trout Net Pen Rearing Projects. The Lake Roosevelt and Banks Lake Fisheries Evaluation Program monitor and evaluates release strategies and production methods for the aforementioned projects. Between 1985 and 2005 the projects have collectively produced up to 800,000 rainbow trout and 4 million kokanee salmon for release into Lake Roosevelt and 1.4 million kokanee fry for Banks Lake annually. In 2005, the annual release goal included 3.3 million kokanee fry, 475,000 kokanee yearlings and 500,000 rainbow trout yearlings. Fish produced by this project in 2005 to meet collective fish production and release goals included: 3,446,438 kokanee fingerlings, 347,730 rainbow trout fingerlings and 525,721 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Meadow Creek and Lake Whatcom kokanee, diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to rainbow trout catch and harvest rates while the impact on the kokanee fishery was minimal. Success of the Lake Roosevelt kokanee artificial production program appears to be limited primarily owing to predation, precocity and high entrainment rates through Grand Coulee Dam. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue kokanee fry and post-smolt releases, 100% triploid hatchery stock rainbow trout used and adipose fin clip hatchery stock rainbow trout prior to release. The Spokane Tribal Hatchery is funded by the Bonneville Power Administration under directives by the Northwest Power Conservation Council Columbia River Basin Fish & Wildlife Program, Resident Fish Substitution Measures, 1987 to current (Subbasin Plan), as partial mitigation for anadromous and resident fish losses in the blocked areas above Chief Joseph and Grand Coulee Dams.« less

  11. Smallmouth bass and largemouth bass predation on juvenile Chinook salmon and other salmonids in the Lake Washington basin

    USGS Publications Warehouse

    Tabor, R.A.; Footen, B.A.; Fresh, K.L.; Celedonia, M.T.; Mejia, F.; Low, D.L.; Park, L.

    2007-01-01

    We assessed the impact of predation by smallmouth bass Micropterus dolomieu and largemouth bass M. salmoides on juveniles of federally listed Chinook salmon Oncorhynchus tshawytscha and other anadromous salmonid populations in the Lake Washington system. Bass were collected with boat electrofishing equipment in the south end of Lake Washington (February-June) and the Lake Washington Ship Canal (LWSC; April-July), a narrow waterway that smolts must migrate through to reach the marine environment. Genetic analysis was used to identify ingested salmonids to obtain a more precise species-specific consumption estimate. Overall, we examined the stomachs of 783 smallmouth bass and 310 largemouth bass greater than 100 mm fork length (FL). Rates of predation on salmonids in the south end of Lake Washington were generally low for both black bass species. In the LWSC, juvenile salmonids made up a substantial part of bass diets; consumption of salmonids was lower for largemouth bass than for smallmouth bass. Smallmouth bass predation on juvenile salmonids was greatest in June, when salmonids made up approximately 50% of their diet. In the LWSC, overall black bass consumption of salmonids was approximately 36,000 (bioenergetics model) to 46,000 (meal turnover consumption model) juveniles, of which about one-third was juvenile Chinook salmon, one-third was coho salmon O. kisutch, and one-third was sockeye salmon O. nerka. We estimated that about 2,460,000 juvenile Chinook salmon (hatchery and wild sources combined) were produced in the Lake Washington basin in 1999; thus, the mortality estimates in the LWSC range from 0.5% (bioenergetics) to 0.6% (meal turnover). Black bass prey mostly on subyearlings of each salmonid species. The vulnerability of subyearlings to predation can be attributed to their relatively small size; their tendency to migrate when water temperatures exceed 15??C, coinciding with greater black bass activity; and their use of nearshore areas, where overlap with black bass is greatest. We conclude that under current conditions, predation by smallmouth bass and largemouth bass has a minor impact on Chinook salmon and other salmonid populations in the Lake Washington system. ?? Copyright by the American Fisheries Society 2007.

  12. Efficacy of electrofishing to assess plasma cortisol concentration in juvenile chinook salmon passing hydroelectric dams on the Columbia River

    USGS Publications Warehouse

    Mauls, Alec G.; Mesa, Matthew G.

    1994-01-01

    We tested the efficacy of using electrofishing to collect juvenile fall chinook salmon Oncorhynchus tshawytscha to assess their plasma cortisol concentrations. In laboratory experiments, plasma cortisol titers of fish sampled immediately (<4 s) after a 1.5-s, 500-V DC electroshock were not different from controls (mean ± SE, 28.8 ± 5.2 ng/mL), but within 15 min they were significantly higher (148.2 ± 19.0 ng/mL) than controls. Plasma cortisol levels of fish released through turbines and of those released through the juvenile-bypass system at Bonneville Dam, Oregon-Washington, and collected by electrofishing did not differ from each other or from prerelease samples (about 70 ± 7 ng/mL). Our results indicate that electrofishing can be used to collect fish for stress assessment in the wild, provided fish are sacrificed immediately after capture. We are concerned, however, that the small number of fish we captured by electrofishing may not be representative of the majority of fish that pass through turbines or bypass systems. The fish used in this study were not migrating smolts and so were not typical of juvenile chinook salmon passing through hydroelectric dams on the Columbia River. Developmental as well as species- and stock-related factors should be addressed in future studies.

  13. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change.

    PubMed

    Elliott, J M; Elliott, J A

    2010-11-01

    Atlantic salmon Salmo salar, brown trout Salmo trutta (including the anadromous form, sea trout) and Arctic charr Salvelinus alpinus (including anadromous fish) provide important commercial and sports fisheries in Western Europe. As water temperature increases as a result of climate change, quantitative information on the thermal requirements of these three species is essential so that potential problems can be anticipated by those responsible for the conservation and sustainable management of the fisheries and the maintenance of biodiversity in freshwater ecosystems. Part I compares the temperature limits for survival, feeding and growth. Salmo salar has the highest temperature tolerance, followed by S. trutta and finally S. alpinus. For all three species, the temperature tolerance for alevins is slightly lower than that for parr and smolts, and the eggs have the lowest tolerance; this being the most vulnerable life stage to any temperature increase, especially for eggs of S. alpinus in shallow water. There was little evidence to support local thermal adaptation, except in very cold rivers (mean annual temperature <6·5° C). Part II illustrates the importance of developing predictive models, using data from a long-term study (1967-2000) of a juvenile anadromous S. trutta population. Individual-based models predicted the emergence period for the fry. Mean values over 34 years revealed a large variation in the timing of emergence with c. 2 months between extreme values. The emergence time correlated significantly with the North Atlantic Oscillation Index, indicating that interannual variations in emergence were linked to more general changes in climate. Mean stream temperatures increased significantly in winter and spring at a rate of 0·37° C per decade, but not in summer and autumn, and led to an increase in the mean mass of pre-smolts. A growth model for S. trutta was validated by growth data from the long-term study and predicted growth under possible future conditions. Small increases (<2·5° C) in winter and spring would be beneficial for growth with 1 year-old smolts being more common. Water temperatures would have to increase by c. 4° C in winter and spring, and 3° C in summer and autumn before they had a marked negative effect on trout growth. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.

  14. Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): Seasonal development and seawater acclimation

    USGS Publications Warehouse

    Nilsen, Tom O.; Ebbesson, Lars O.E.; Kiilerich, P.; Bjornsson, B. Th; Madsen, Steffen S.; McCormick, S.D.; Stefansson, S.O.

    2008-01-01

    The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt transformation (smoltification) period and following four days and one month seawater (SW) acclimation. Plasma GH and gill GH receptor (GHR) mRNA levels increased continuously during the spring smoltification period in the anadromous, but not in landlocked salmon. There were no differences in plasma IGF-I levels between strains, or any increase during smoltification. Gill IGF-I and IGF-I receptor (IGF-IR) mRNA levels increased in anadromous salmon during smoltification, with no changes observed in landlocked fish. Gill PRLR mRNA levels remained stable in both strains during spring. Plasma cortisol levels in anadromous salmon increased 5-fold in May and June, but not in landlocked salmon. Gill glucocorticoid receptor (GR) mRNA levels were elevated in both strains at the time of peak smoltification in anadromous salmon, while mineralocorticoid receptor (MR) mRNA levels remained stable. Only anadromous salmon showed an increase of gill 11??-hydroxysteroid dehydrogenase type-2 (11??-HSD2) mRNA levels in May. GH and gill GHR mRNA levels increased in both strains following four days of SW exposure in mid-May, whereas only the anadromous salmon displayed elevated plasma GH and GHR mRNA after one month in SW. Plasma IGF-I increased after four days in SW in both strains, decreasing in both strains after one month in SW. Gill IGF-I mRNA levels were only increased in landlocked salmon after 4 days in SW. Gill IGF-IR mRNA levels in SW did not differ from FW levels in either strain. Gill PRLR mRNA did not change after four days of SW exposure, and decreased in both strains after one month in SW. Plasma cortisol levels did not change following SW exposure in either strain. Gill GR, 11??-HSD2 and MR mRNA levels increased after four days in SW in both strains, whereas only the anadromous strain maintained elevated gill GR and 11??-HSD2 mRNA levels after one month in SW. The results indicate that hormones and receptors of the GH and cortisol axes are present at significantly lower levels during spring development and SW acclimation in landlocked relative to anadromous salmon. These findings suggest that attenuation of GH and cortisol axes may, at least partially, result in reduced preparatory upregulation of key gill ion-secretory proteins, possibly a result of reduced selection pressure for marine adaptations in landlocked salmon. ?? 2007 Elsevier Inc. All rights reserved.

  15. Steelhead Supplementation in Idaho Rivers, 1993-1999 Summary Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Alan

    2001-02-01

    The Steelhead Supplementation Study has conducted field experiments since 1993 that assess the ability of hatchery stocks to reestablish natural populations. We have stocked hatchery adult steelhead Oncorhynchus mykiss trapped at Sawtooth Fish Hatchery in Beaver Creek yearly and Frenchman creeks when enough fish were available. We stocked Dworshak Hatchery stock fingerlings in the South Fork Red River from 1993 to 1996 and smolts in Red River from 1996 to 1999. Although results from all experiments are not complete, preliminary findings indicate that these hatchery stocks will not reestablish natural steelhead populations. We focused most of our effort on monitoringmore » and evaluating wild steelhead stocks. We operated a temporary weir to estimate the wild steelhead escapement in Fish Creek, a tributary of the Lochsa River. We snorkeled streams to monitor juvenile steelhead abundance, captured and tagged steelhead with Passive Integrated Transponder (PIT) tags, and recorded stream temperatures in the Clearwater and Salmon River drainages. We operated screw traps in five to ten streams each year. We have documented growth rates in Fish and Gedney creeks, age of parr in Fish Creek, Gedney Creek, Lick Creek, and Rapid River, and documented parr and smolt migration characteristics. This report summarizes our effort during the years 1993 to 1999.« less

  16. Lower Granite Dam Smolt Monitoring Program, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrill, Charles; Ross, Doug; Mensik, Fred

    2000-01-01

    The 2000 fish collection season at Lower Granite was characterized by lower than average spring flows and spill, low levels of debris, cool water temperatures, increased unclipped yearling and subyearling chinook smolts, and 8,300,546 smolts collected and transported compared to 5,882,872 in 1999. With the continued release of unclipped supplementation chinook and steelhead above Lower Granite Dam, we can no longer accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. Although some table titles in this report still show ''wild'' column headings, the numbers in these columns for 1999 and 2000 include wild and unclipped hatchery origin smolts. Themore » increases over previous years reflect the increased supplementation. A total of 8,300,546 juvenile salmonids were collected at Lower Granite Dam. Of these, 187,862 fish were bypassed back to the river and 7,950,648 were transported to release sites below Bonneville Dam, 7,778,853 by barge and 171,795 by truck. A total of 151,344 salmonids were examined in daily samples. Nine research projects conducted by four agencies impacted a total of 1,361,006 smolts (16.4% of the total collection).« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berggren, Thomas J.; Franzoni, Henry; Basham, Larry R.

    The Comparative Survival Study (CSS) was initiated in 1996 as a multi-year program of the fishery agencies and tribes to estimate survival rates over different life stages for spring and summer Chinook (hereafter, Chinook) produced in major hatcheries in the Snake River basin and from selected hatcheries in the lower Columbia River. Much of the information evaluated in the CSS is derived from fish tagged with Passive Integrated Transponder (PIT) tags. A comparison of survival rates of Chinook marked in two different regions (which differ in the number of dams Chinook have to migrate through) provides insight into the effectsmore » of the Snake/Columbia hydroelectric system (hydrosystem). The CSS also compares the smolt-to-adult survival rates (SARs) for Snake River Chinook that were transported versus those that migrated in-river to below Bonneville Dam. Additional comparisons can be made within in-river experiences as well as comparison between the different collector projects from which smolts are transported. CSS also compares survival rates for wild Snake River spring and summer Chinook. These comparisons generate information regarding the relative effects of the current management actions used to recover this listed species. Scientists and managers have recently emphasized the importance of delayed hydrosystem mortality to long-term management decisions. Delayed hydrosystem mortality may be related to the smolts experience in the Federal Columbia River Power System, and could occur for both smolts that migrate in-river and smolts that are transported. The CSS PIT tag information on in-river survival rates and smolt-to-adult survival rates (SARs) of transported and in-river fish are relevant to estimation of ''D'', which partially describes delayed hydrosystem mortality. The parameter D is the differential survival rate of transported fish relative to fish that migrate in-river, as measured from below Bonneville Dam to adults returning to Lower Granite Dam. When D = 1, there is no difference in survival rate after hydrosystem passage. When D < 1, then transported smolts die at a greater rate after release below Bonneville Dam than smolts that have migrated in-river to below Bonneville Dam Major objectives of the CSS include: (1) development of a long-term index of transport SAR to in-river SAR for Snake River hatchery and wild spring and summer Chinook smolts measured at Lower Granite Dam; (2) develop a long-term index of survival rates from release of smolts at Snake River hatcheries to return of adults to the hatcheries; (3) compute and compare the overall SARs for selected upriver and downriver spring and summer Chinook hatchery and wild stocks; and (4) begin a time series of SARs for use in hypothesis testing and in the regional long-term monitoring and evaluation program. Primary CSS focus in this report is for wild and hatchery spring/summer Chinook that outmigrated in 1997 to 2002 and their respective adult returns through 2004.« less

  18. Geochemical signatures in fin rays provide a nonlethal method to distinguish the natal rearing streams of endangered juvenile Chinook Salmon Oncorhynchus tshawytscha in the Wenatchee River, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linley, Timothy J.; Krogstad, Eirik J.; Nims, Megan K.

    Rebuilding fish populations that have undergone a major decline is a challenging task that can be made more complicated when estimates of abundance obtained from physical tags are biased or imprecise. Abundance estimates based on natural tags where each fish in the population is marked can help address these problems, but generally requires that the samples be obtained in a nonlethal manner. We evaluated the potential of using geochemical signatures in fin rays as a nonlethal method to determine the natal tributaries of endangered juvenile spring Chinook Salmon in the Wenatchee River, Washington. Archived samples of anal fin clips collectedmore » from yearling smolt in 2009, 2010 and 2011 were analyzed for Ba/Ca, Mn/Ba, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr by inductively coupled plasma mass spectrometry. Water samples collected from these same streams in 2012 were also quantified for geochemical composition. Fin ray and water Ba/Ca, Sr/Ca, and 87Sr/86Sr were highly correlated despite the samples having been collected in different years. Fin ray Ba/Ca, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr ratios differed significantly among the natal streams, but also among years within streams. A linear discriminant model that included Ba/Ca, Mg/Ca, Sr/Ca, and 87Sr/86Sr correctly classified 95% of the salmon to their natal stream. Our results suggest that fin ray geochemistry may provide an effective, nonlethal method to identify mixtures of Wenatchee River spring Chinook Salmon for recovery efforts when these involve the capture of juvenile fish to estimate population abundance.« less

  19. Acquired Protective Immunity in Atlantic Salmon Salmo salar against the Myxozoan Kudoa thyrsites Involves Induction of MHIIβ+ CD83+ Antigen-Presenting Cells.

    PubMed

    Braden, Laura M; Rasmussen, Karina J; Purcell, Sara L; Ellis, Lauren; Mahony, Amelia; Cho, Steven; Whyte, Shona K; Jones, Simon R M; Fast, Mark D

    2018-01-01

    The histozoic myxozoan parasite Kudoa thyrsites causes postmortem myoliquefaction and is responsible for economic losses to salmon aquaculture in the Pacific Northwest. Despite its importance, little is known about the host-parasite relationship, including the host response to infection. The present work sought to characterize the immune response in Atlantic salmon during infection, recovery, and reexposure to K. thyrsites After exposure to infective seawater, infected and uninfected smolts were sampled three times over 4,275 degree-days. Histological analysis revealed infection severity decreased over time in exposed fish, while in controls there was no evidence of infection. Following a secondary exposure of all fish, severity of infection in the controls was similar to that measured in exposed fish at the first sampling time but was significantly reduced in reexposed fish, suggesting the acquisition of protective immunity. Using immunohistochemistry, we detected a population of MHIIβ + cells in infected muscle that followed a pattern of abundance concordant with parasite prevalence. Infiltration of these cells into infected myocytes preceded destruction of the plasmodium and dissemination of myxospores. Dual labeling indicated a majority of these cells were CD83 + /MHIIβ + Using reverse transcription-quantitative PCR, we detected significant induction of cellular effectors, including macrophage/dendritic cells ( mhii / cd83 / mcsf ), B cells ( igm / igt ), and cytotoxic T cells ( cd8 / nkl ), in the musculature of infected fish. These data support a role for cellular effectors such as antigen-presenting cells (monocyte/macrophage and dendritic cells) along with B and T cells in the acquired protective immune response of Atlantic salmon against K. thyrsites . Copyright © 2017 American Society for Microbiology.

  20. Hypoxia tolerance and responses to hypoxic stress during heart and skeletal muscle inflammation in Atlantic salmon (Salmo salar).

    PubMed

    Lund, Morten; Krudtaa Dahle, Maria; Timmerhaus, Gerrit; Alarcon, Marta; Powell, Mark; Aspehaug, Vidar; Rimstad, Espen; Jørgensen, Sven Martin

    2017-01-01

    Heart and skeletal muscle inflammation (HSMI) is associated with Piscine orthoreovirus (PRV) infection and is an important disease in Atlantic salmon (Salmo salar) aquaculture. Since PRV infects erythrocytes and farmed salmon frequently experience environmental hypoxia, the current study examined mutual effects of PRV infection and hypoxia on pathogenesis and fish performance. Furthermore, effects of HSMI on hypoxia tolerance, cardiorespiratory performance and blood oxygen transport were studied. A cohabitation trial including PRV-infected post-smolts exposed to periodic hypoxic stress (4 h of 40% O2; PRV-H) at 4, 7 and 10 weeks post-infection (WPI) and infected fish reared under normoxic conditions (PRV) was conducted. Periodic hypoxic stress did not influence infection levels or histopathological changes in the heart. Individual incipient lethal oxygen saturation (ILOS) was examined using a standardized hypoxia challenge test (HCT). At 7 WPI, i.e. peak level of infection, both PRV and PRV-H groups exhibited reduced hypoxia tolerance compared to non-infected fish. Three weeks later (10 WPI), during peak levels of pathological changes, reduced hypoxia tolerance was still observed for the PRV group while PRV-H performed equal to non-infected fish, implying a positive effect of the repeated exposure to hypoxic stress. This was in line with maximum heart rate (fHmax) measurements, showing equal performance of PRV-H and non-infected groups, but lower fHmax above 19°C as well as lower temperature optimum (Topt) for aerobic scope for PRV, suggesting reduced cardiac performance and thermal tolerance. In contrast, the PRV-H group had reduced hemoglobin-oxygen affinity compared to non-infected fish. In conclusion, Atlantic salmon suffering from HSMI have reduced hypoxia tolerance and cardiac performance, which can be improved by preconditioning fish to transient hypoxic stress episodes.

  1. Hypoxia tolerance and responses to hypoxic stress during heart and skeletal muscle inflammation in Atlantic salmon (Salmo salar)

    PubMed Central

    Krudtaa Dahle, Maria; Timmerhaus, Gerrit; Alarcon, Marta; Powell, Mark; Aspehaug, Vidar; Rimstad, Espen; Jørgensen, Sven Martin

    2017-01-01

    Heart and skeletal muscle inflammation (HSMI) is associated with Piscine orthoreovirus (PRV) infection and is an important disease in Atlantic salmon (Salmo salar) aquaculture. Since PRV infects erythrocytes and farmed salmon frequently experience environmental hypoxia, the current study examined mutual effects of PRV infection and hypoxia on pathogenesis and fish performance. Furthermore, effects of HSMI on hypoxia tolerance, cardiorespiratory performance and blood oxygen transport were studied. A cohabitation trial including PRV-infected post-smolts exposed to periodic hypoxic stress (4 h of 40% O2; PRV-H) at 4, 7 and 10 weeks post-infection (WPI) and infected fish reared under normoxic conditions (PRV) was conducted. Periodic hypoxic stress did not influence infection levels or histopathological changes in the heart. Individual incipient lethal oxygen saturation (ILOS) was examined using a standardized hypoxia challenge test (HCT). At 7 WPI, i.e. peak level of infection, both PRV and PRV-H groups exhibited reduced hypoxia tolerance compared to non-infected fish. Three weeks later (10 WPI), during peak levels of pathological changes, reduced hypoxia tolerance was still observed for the PRV group while PRV-H performed equal to non-infected fish, implying a positive effect of the repeated exposure to hypoxic stress. This was in line with maximum heart rate (fHmax) measurements, showing equal performance of PRV-H and non-infected groups, but lower fHmax above 19°C as well as lower temperature optimum (Topt) for aerobic scope for PRV, suggesting reduced cardiac performance and thermal tolerance. In contrast, the PRV-H group had reduced hemoglobin-oxygen affinity compared to non-infected fish. In conclusion, Atlantic salmon suffering from HSMI have reduced hypoxia tolerance and cardiac performance, which can be improved by preconditioning fish to transient hypoxic stress episodes. PMID:28700748

  2. Development, Characterisation and Application of Monoclonal Antibodies for the Detection and Quantification of Infectious Salmon Anaemia Virus in Plasma Samples Using Luminex Bead Array Technology.

    PubMed

    Hoare, R; Thompson, K D; Herath, T; Collet, B; Bron, J E; Adams, A

    2016-01-01

    Infectious salmon anaemia virus (ISAV) is an orthomyxovirus that has had a significant economic impact on Atlantic salmon farming in Europe, North America and Chile. Monoclonal antibodies (mAbs) were developed against Segment 3 (encoding the viral nucleoprotein, NP) of the virus. Six of the mAbs were shown to be specific to ISAV and recognised all isolates from Scotland, Norway and Canada. They reacted with ISAV in enzyme-linked immunosorbent assay (ELISA), indirect fluorescent antibody technique (IFAT) and western blotting. They were also used to develop a novel detection method based on Luminex (Bio-Plex) bead-based flow cytometric technology for the detection of ISAV in the plasma of Atlantic salmon (Salmo salar L.) smolts experimentally infected with ISAV. Fish were challenged by intraperitoneal (i.p.) injection of virus at 50% Tissue Culture Infective Dose (TCID50) = 2.8 x106 per animal. Virus present in plasma of infected fish, collected at 0, 4, 8, 12, 16, 21 and 28 days post infection using a non-lethal sampling method (n = 12 at each time point), was quantified using the optimised Bio-Plex assay. The results obtained with this assay were compared with absolute quantification of the virus by RT-qPCR using SYBR Green I and TaqMan chemistries. The Bio-Plex assay developed using the NP mAbs appears to be a rapid, sensitive method for detecting and quantifying ISAV in small volumes of fish plasma and has the potential to be multiplexed for the detection of other fish pathogens (e.g. during co-infections). To our knowledge this is the first report of the use of Luminex (Bio-Plex) technology for the detection of a fish pathogen.

  3. High level efficacy of lufenuron against sea lice (Lepeophtheirus salmonis) linked to rapid impact on moulting processes.

    PubMed

    Poley, Jordan D; Braden, Laura M; Messmer, Amber M; Igboeli, Okechukwu O; Whyte, Shona K; Macdonald, Alicia; Rodriguez, Jose; Gameiro, Marta; Rufener, Lucien; Bouvier, Jacques; Wadowska, Dorota W; Koop, Ben F; Hosking, Barry C; Fast, Mark D

    2018-03-13

    Drug resistance in the salmon louse Lepeophtheirus salmonis is a global issue for Atlantic salmon aquaculture. Multiple resistance has been described across most available compound classes with the exception of the benzoylureas. To target this gap in effective management of L. salmonis and other species of sea lice (e.g. Caligus spp.), Elanco Animal Health is developing an in-feed treatment containing lufenuron (a benzoylurea) to be administered prior to seawater transfer of salmon smolts and to provide long-term protection of salmon against sea lice infestations. Benzoylureas disrupt chitin synthesis, formation, and deposition during all moulting events. However, the mechanism(s) of action are not yet fully understood and most research completed to date has focused on insects. We exposed the first parasitic stage of L. salmonis to 700 ppb lufenuron for three hours and observed over 90% reduction in survival to the chalimus II life stage on the host, as compared to vehicle controls. This agrees with a follow up in vivo administration study on the host, which showed >95% reduction by the chalimus I stage. Transcriptomic responses of salmon lice exposed to lufenuron included genes related to moulting, epithelial differentiation, solute transport, and general developmental processes. Global metabolite profiles also suggest that membrane stability and fluidity is impacted in treated lice. These molecular signals are likely the underpinnings of an abnormal moulting process and cuticle formation observed ultrastructurally using transmission electron microscopy. Treated nauplii-staged lice exhibited multiple abnormalities in the integument, suggesting that the coordinated assembly of the epi- and procuticle is impaired. In all cases, treatment with lufenuron had rapid impacts on L. salmonis development. We describe multiple experiments to characterize the efficacy of lufenuron on eggs, larvae, and parasitic stages of L. salmonis, and provide the most comprehensive assessment of the physiological responses of a marine arthropod to a benzoylurea chemical. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Predation on juvenile pacific salmon oncorhynchus spp. in downstream migrant traps in prairie creek, california

    USGS Publications Warehouse

    Duffy, W.G.; Bjorkstedt, E.P.; Ellings, C.S.

    2011-01-01

    Downstream migrant traps are a widely applied fishery management tool for sampling anadromous Pacific salmon Oncorhynchus spp. and steelhead O. mykiss smolts along theWest Coast of North America and elsewhere, yet predation on juvenile salmonids in traps has not been studied quantitatively.We assessed the frequency of occurrence and abundance of juvenile salmonids in the stomachs of coastal cutthroat trout O. clarkii clarkii, coho salmon O. kisutch, steelhead, and prickly sculpin Cottus asper (>70 mm fork length) captured in traps and in nearby stream habitats. All four predator species took juvenile salmonids with much greater frequency in traps than in stream habitats. Among free-swimming predators, only coastal cutthroat trout were observed with salmonid fry in their stomachs, but they took fewer salmonid prey and appeared to rely more heavily on insect prey than did coastal cutthroat trout captured in traps. Predators consumed up to 25% of the available prey over a broad range of prey abundances. Over the course of the study, predators consumed 2.5% of all salmonid fry captured in traps, but this fraction ranged from less than 1% to more than 10% in any given year. The number of prey taken in traps increased with predator length and with prey abundance in traps, and predation in traps peaked during the period of most intense downstream migration by salmon fry. In contrast, live-box design and trap location had little or no effect on the total number of prey taken by individual predators.We estimated that the predation mortality of juvenile salmon increased by 0.5-1.0% due to in-trap predation (i.e., a 9-10% relative increase over natural predation rates). We found no evidence that predators selected for prey on the basis of species. These results should motivate additional research on methods that reduce or eliminate predation in trap live-boxes and protocols for efficiently measuring predation associated with the trapping of downstream migrants. ?? American Fisheries Society 2011.

  5. A novel "in-feed" delivery platform applied for oral DNA vaccination against IPNV enables high protection in Atlantic salmon (Salmon salar).

    PubMed

    Reyes, Miguel; Ramírez, Cesar; Ñancucheo, Ivan; Villegas, Ricardo; Schaffeld, Guillermo; Kriman, Luis; Gonzalez, Javier; Oyarzun, Patricio

    2017-01-23

    DNA vaccination has emerged as a promising tool against infectious diseases of farmed fish. Oral delivery allows stress-free administration that is ideal for mass immunization and of paramount importance for infectious pancreatic necrosis (IPN) and other viral disease that affect young salmonids and cause economic losses in aquaculture worldwide. We describe the development and in vivo assessment of an "in-feed" formulation strategy for oral immunization with liposomal DNA vaccines, by delivering a vaccine construct coding for an immunogenic region of the VP2 capsid protein. A challenge against IPNV was carried out to determine the vaccine efficacy, by comparing the mortality of pre-smolt Atlantic salmons immunized and non-immunized with the oral vaccine. The antibody response (ELISA) and hematological parameters after immunization were examined, as well as the vaccine effect on the growth and internal structures of fry salmons (histological analysis). The vaccine distribution in the experimental tank after oral administration was investigated by HPLC and PCR amplification. The oral vaccine induced detectable levels of VP2-specific antibodies and conferred significant protection following IPNV challenge, with relative percent survivals (RPS) of 58.2%, for single dose (1mg pDNA /kg fish ⋅d), and 66% for double dose (2mg pDNA /kg fish ⋅d). We further provide evidence in favour of the vaccine safety to fish and demonstrated absence of pDNA in the tank water, but presence of vaccine residues in faeces and unconsumed feed sediments (solid wastes). The delivery platform for liposomal DNA vaccination via feed was successfully proved against IPNV in Atlantic salmon, showing the oral vaccine to be immunogenic and safe for fish, and providing significant protection after oral administration. The "in-feed" technology for oral DNA vaccination holds potential to be applied against IPNV and other pathogens that currently threaten the aquaculture worldwide. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, James R.; Smith, Steven G.; Muir, William D.

    2009-06-23

    In 2008, the National Marine Fisheries Service completed the sixteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder (PIT) tags. We PIT tagged and released a total of 18,565 hatchery steelhead O. mykiss, 15,991 wild steelhead, and 9,714 wild yearling Chinook salmon O. tshawytscha at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from themore » hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. These included 122,061 yearling Chinook salmon tagged at Lower Granite Dam for evaluation of latent mortality related to passage through Snake River dams. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2008 were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon and steelhead, (2) evaluate relationships between survival estimates and migration conditions, and (3) evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2008 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here. Survival and detection probabilities were estimated precisely for most of the 2008 yearling Chinook salmon and steelhead migrations. Hatchery and wild fish were combined in some of the analyses. For yearling Chinook salmon, overall percentages for combined release groups used in survival analyses in the Snake River were 80% hatchery-reared and 20% wild. For steelhead, the overall percentages were 65% hatchery-reared and 35% wild. Estimated survival from the tailrace of Lower Granite Dam to the tailrace of Little Goose Dam averaged 0.939 for yearling Chinook salmon and 0.935 for steelhead.« less

  7. Modeling the response of native steelhead to hatchery supplementation programs in an Idaho River

    USGS Publications Warehouse

    Byrne, Alan; Bjornn, T.C.; McIntyre, J.D.

    1993-01-01

    A life history model was used to predict the response of native steelhead Oncorhynchus mykiss in the Lochsa River, Idaho, to long-term supplementation with hatchery fry and smolts. The four key factors affecting the response of the native fish to a stocking program were (1) the number of native spawners, (2) the number of stocked fish, (3) the number and fitness of progeny from stocked fish, and (4) the amount of mating between hatchery and native fish. Long-term stocking of fry or smolts led to the extinction of native fish in some scenarios. The model can be used to help assess the risks and benefits of proposed stocking programs.

  8. Gene expression in Atlantic salmon skin in response to infection with the parasitic copepod Lepeophtheirus salmonis, cortisol implant, and their combination

    PubMed Central

    2012-01-01

    Background The salmon louse is an ectoparasitic copepod that causes major economic losses in the aquaculture industry of Atlantic salmon. This host displays a high level of susceptibility to lice which can be accounted for by several factors including stress. In addition, the parasite itself acts as a potent stressor of the host, and outcomes of infection can depend on biotic and abiotic factors that stimulate production of cortisol. Consequently, examination of responses to infection with this parasite, in addition to stress hormone regulation in Atlantic salmon, is vital for better understanding of the host pathogen interaction. Results Atlantic salmon post smolts were organised into four experimental groups: lice + cortisol, lice + placebo, no lice + cortisol, no lice + placebo. Infection levels were equal in both treatments upon termination of the experiment. Gene expression changes in skin were assessed with 21 k oligonucleotide microarray and qPCR at the chalimus stage 18 days post infection at 9°C. The transcriptomic effects of hormone treatment were significantly greater than lice-infection induced changes. Cortisol stimulated expression of genes involved in metabolism of steroids and amino acids, chaperones, responses to oxidative stress and eicosanoid metabolism and suppressed genes related to antigen presentation, B and T cells, antiviral and inflammatory responses. Cortisol and lice equally down-regulated a large panel of motor proteins that can be important for wound contraction. Cortisol also suppressed multiple genes involved in wound healing, parts of which were activated by the parasite. Down-regulation of collagens and other structural proteins was in parallel with the induction of proteinases that degrade extracellular matrix (MMP9 and MMP13). Cortisol reduced expression of genes encoding proteins involved in formation of various tissue structures, regulators of cell differentiation and growth factors. Conclusions These results suggest that cortisol-induced stress does not affect the level of infection of Atlantic salmon with the parasite, however, it may retard repair of skin. The cortisol induced changes are in close concordance with the existing concept of wound healing cascade. PMID:22480234

  9. Influence of bacterial kidney disease on smoltification in salmonids: Is it a case of double jeopardy?

    USGS Publications Warehouse

    Mesa, M.G.; Maule, A.G.; Poe, T.P.; Schreck, C.B.

    1999-01-01

    We investigated the effects of a chronic, progressive infection with Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease (BKD), on selected aspects of smoltification in yearling juvenile spring chinook salmon (Oncorhynchus tshawytscha). After experimentally infecting fish with Rs using an immersion challenge, we sampled them every two weeks to monitor changes in gill Na+, K+-ATPase (ATPase), cortisol, infection level, mortality, growth, and other stress-related physiological factors during the normal time of parr-smolt transformation in fresh water (i.e., from winter to spring). A progressively worsening infection with Rs did not alter the normal changes in gill ATPase and condition factor associated with smoltification in juvenile chinook salmon. The infection did, however, lead to elevated levels of plasma cortisol and lactate and depressed levels of plasma glucose, indicating that the disease is stressful during the later stages. A dramatic proliferation of BKD was associated with maximal responses of indicators of smoltification, suggesting that the process of smoltification itself can trigger outbreaks of disease. Our results suggest mechanisms that probably influence the reported inability of Rs-infected fish to successfully adapt to sea water.

  10. Whole body-element composition of Atlantic salmon Salmo salar influenced by migration direction and life stage in three distinct populations.

    PubMed

    Ebel, J D; Leroux, S J; Robertson, M J; Dempson, J B

    2016-11-01

    Body-element content was measured for three life stages of wild Atlantic salmon Salmo salar from three distinct Newfoundland populations as individuals crossed between freshwater and marine ecosystems. Life stage explained most of the variation in observed body-element concentration whereas river of capture explained very little variation. Element composition of downstream migrating post-spawn adults (i.e. kelts) and juvenile smolts were similar and the composition of these two life stages strongly differed from adults migrating upstream to spawn. Low variation within life stages and across populations suggests that S. salar may exert rheostatic control of their body-element composition. Additionally, observed differences in trace element concentration between adults and other life stages were probably driven by the high carbon concentration in adults because abundant elements, such as carbon, can strongly influence the observed concentrations of less abundant elements. Thus, understanding variation among individuals in trace elements composition requires the measurement of more abundant elements. Changes in element concentration with ontogeny have important consequences the role of fishes in ecosystem nutrient cycling and should receive further attention. © 2016 The Fisheries Society of the British Isles.

  11. Consistent melanophore spot patterns allow long-term individual recognition of Atlantic salmon Salmo salar.

    PubMed

    Stien, L H; Nilsson, J; Bui, S; Fosseidengen, J E; Kristiansen, T S; Øverli, Ø; Folkedal, O

    2017-12-01

    The present study shows that permanent melanophore spot patterns in Atlantic salmon Salmo salar make it possible to use images of the operculum to keep track of individual fish over extended periods of their life history. Post-smolt S. salar (n = 246) were initially photographed at an average mass of 98 g and again 10 months later after rearing in a sea cage, at an average mass of 3088 g. Spots that were present initially remained and were the most overt (largest) 10 months later, while new and less overt spots had developed. Visual recognition of spot size and position showed that fish with at least four initial spots were relatively easy to identify, while identifying fish with less than four spots could be challenging. An automatic image analysis method was developed and shows potential for fast match processing of large numbers of fish. The current findings promote visual recognition of opercular spots as a welfare-friendly alternative to tagging in experiments involving salmonid fishes. © The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  12. Carcass analog addition enhances juvenile Atlantic salmon (Salmo salar) growth and condition

    USGS Publications Warehouse

    Guyette, Margaret Q.; Loftin, Cynthia S.; Zydlewski, Joseph D.

    2013-01-01

    Our study used historic marine-derived nutrient (MDN) delivery timing to simulate potential effects of restored connectivity on juvenile Atlantic salmon (ATS; Salmo salar) growth and condition. Four headwater streams were stocked with ATS young of the year (YOY) and received carcass analog additions (0.10 kg·m–2 wetted area) in treatment reaches to match the timing of sea lamprey (Petromyzon marinus) spawning. Individual ATS mass was 33%–48% greater and standard length was 9%–15% greater in treatment reaches relative to control reaches for 4 months following nutrient additions. Percent total lipids in YOY ATS were twice as great in treatment reaches 1 month following carcass analog additions and remained elevated in treatment fish for 2 more months. Absolute growth rates, based on otolith microstructure analysis, correlated with water temperature fluctuations in all reaches and were elevated by an average of 0.07 mm·day–1 in treatment reaches for 1 month following carcass analog additions. Simulated sea lamprey MDNs increased juvenile ATS growth, which, via potential increases in overwinter survival and decreases in smolt age, may contribute to population persistence and ecosystem productivity.

  13. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Detroit Dam, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Royer, Ida M.; Johnson, Gary E.

    Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Detroit Dam (DET) on the North Santiam River, Oregon for the U.S. Army Corps of Engineers (USACE) to provide data to support decisions on long-term measures to enhance downstream passage at DET and others dams in USACE’s Willamette Valley Project. This study was conducted in response to regulatory requirements necessitated by the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. The goal of the study was to provide information of juvenile salmonid passagemore » and distribution at DET from February 2011 through February 2012. The results of the hydroacoustic study provide new and, in some cases, first-ever data on passage estimates, run timing, distributions, and relationships between fish passage and environmental variables at the dam. This information will inform management decisions on the design and development of surface passage and collection devices to help restore Chinook salmon populations in the North Santiam River watershed above DET. During the entire study period, an estimated total of 182,526 smolt-size fish (±4,660 fish, 95% CI) passed through turbine penstock intakes. Run timing peaked in winter and early spring months. Passage rates were highest during late fall, winter and early spring months and low during summer. Horizontal distribution for hours when both turbine units were operated simultaneously indicated Unit 2 passed almost twice as much fish as Unit 1. Diel distribution for smolt-size fish during the study period was fairly uniform, indicating fish were passing the turbines at all times of the day. A total of 5,083 smolt-size fish (± 312 fish, 95% CI) were estimated passed via the spillway when it was open between June 23 and September 27, 2011. Daily passage was low at the spillway during the June-August period, and increased somewhat in September 2011. When the spillway was operated simultaneously with the turbines, spillway efficiency (efficiency is estimated as spillway passage divided by total project passage) was 0.72 and effectiveness (fish:flow ratio—proportion fish passage at a route (e.g., spillway) divided by proportion water through that route out of the total project) was 2.69. That is, when the spillway was open, 72% of the fish passing the dam used the spillway and 28% passed into the turbine penstocks. Diel distribution for smolt-size fish at the spillway shows a distinct peak in passage between mid-morning and mid-afternoon and low passage at night. We estimated that 23,339 smolt-size fish (± 572 fish, 95% CI) passed via the Regulating Outlet (RO) when it was open from October 29 through November 12, 2011, January 2-6, and January 20 through February 3, 2012. During the October–November period, RO passage peaked at 1,086 fish on November 5, with a second peak on November 7 (1,075 fish). When the RO was operated simultaneously with the turbines, RO efficiency was 0.33 and effectiveness was 0.89. In multiple regression analyses, a relatively parsimonious model was selected that predicted the observed fish passage data well. The best model included forebay temperature at depth, forebay elevation, total discharge, hours of daylight, and the operation period. The vertical distribution of fish in the forebay near the face of the dam where the transducers sampled showed fish were generally distributed throughout the water column during all four operational periods. During the refill and full pool periods, vertical distribution was bi-modal with surface-layer and mid-water modes. Patterns for day and night distributions were variable. Fish were distributed above and below the thermocline when it was present (full pool and drawdown periods).« less

  14. Yakima Fisheries Project : Final Environmental Impact Statement.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration; Washington; Confederated Tribes and Bands of the Yakama Nation, Washington.

    1996-01-01

    BPA proposes to fund several fishery-related activities in the Yakima River Basin. These activities, known as the Yakima Fisheries Project (YFP), would be jointly managed by the State of Washington and the Yakima Indian Nation. The YFP is included in the Northwest Power Planning Council`s (Council`s) fish and wildlife program. The Council selected the Yakima River system for attention because fisheries resources are severely reduced from historical levels and because there is a significant potential for enhancement of these resources. BPA`s proposed action is to fund (1) information gathering on the implementation of supplementation techniques and on feasibility of reintroducingmore » coho salmon in an environment where native populations have become extinct; (2) research activities based on continuous assessment, feedback and improvement of research design and activities ({open_quotes}adaptive management{close_quotes}); and (3) die construction, operation, and maintenance of facilities for supplementing populations of upper Yakima spring chinook salmon. Examined in addition to No Action are two alternatives for action: (1) supplementation of depressed natural populations of upper Yakima spring chinook and (2) that same supplementation plus a study to determine the feasibility of reestablishing naturally spawning population and a significant fall fishery for coho in the Yakima Basin. Alternative 2 is the preferred action. A central hatchery would be built for either alternative, as well as three sites with six raceways each for acclimation and release of spring chinook smolts. Major issues examined in the Revised Draft EIS include potential impacts of the project on genetic and ecological resources of existing fish populations, on water quality and quantity, on threatened and endangered species listed under the Endangered Species Act, and on the recreational fishery.« less

  15. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operations and Maintenance, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2005-02-01

    There were 2 acclimation periods at the Catherine Creek Acclimation Facility (CCAF) in 2004. During the early acclimation period, 92,475 smolts were delivered from Lookingglass Hatchery (LGH) on 8 March. This group was comprised entirely of progeny from the captive broodstock program. The size of the fish at delivery was 23.1 fish/lb. Volitional releases began 15 March 2004 and ended 22 March with an estimated total (based on PIT tag detections of 1,475) of 8,785 fish leaving the raceways. This was 9.5% of the total fish delivered. Fish remaining in the raceways after volitional release were forced out. Hourly detectionsmore » of PIT-tagged fish showed that most of the fish left between 1200 and 2000 hours which was similar to the hourly temperature profile. The size of the fish just before the volitional release was 23.1 and the size of the fish remaining just before the forced release was 23.5 fish/lb. The total mortality for the acclimation period was 62 (0.07 %). The total number of fish released from the acclimation facility during the early period was 92,413. During the second acclimation period 70,977 smolts were delivered from LGH on 24 March. This group was comprised entirely of progeny from the conventional broodstock program. The size of the fish at delivery was 23.4 fish/lb. Volitional releases began 30 March 2004 and ended 12 April with an estimated total (based on PIT tag detections of 3,632) of 49,147 fish leaving the raceways. This was 69.2% of the total fish delivered. Fish remaining in the raceways after volitional release were forced out. Hourly detections of PIT-tagged fish showed that most of the fish left between 1200 and 2000 hours which was similar to the hourly temperature profile. The size of the fish just before the volitional release was 23.4 and the size of the fish remaining just before the forced release was 23.9 fish/lb. The total mortality for the acclimation period was 18 (0.03 %). The total number of fish released from the acclimation facility during the late period was 70,959.« less

  16. Evaluation of blade-strike models for estimating the biological performance of large Kaplan hydro turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Z.; Carlson, T. J.; Ploskey, G. R.

    2005-11-01

    Bio-indexing of hydro turbines has been identified as an important means to optimize passage conditions for fish by identifying operations for existing and new design turbines that minimize the probability of injury. Cost-effective implementation of bio-indexing requires the use of tools such as numerical and physical turbine models to generate hypotheses for turbine operations that can be tested at prototype scales using live fish. Blade strike has been proposed as an index variable for the biological performance of turbines. Report reviews an evaluation of the use of numerical blade-strike models as a means with which to predict the probability ofmore » blade strike and injury of juvenile salmon smolt passing through large Kaplan turbines on the mainstem Columbia River.« less

  17. 77 FR 26744 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... of reduction payment tender of Southeast Alaska purse seine salmon permits. SUMMARY: The National... Southeast Alaska purse seine salmon fishery. The program authorizes NMFS to make payments to permit holders...

  18. Ecosystem-based management of predator-prey relationships: piscivorous birds and salmonids.

    PubMed

    Wiese, Francis K; Parrish, Julia K; Thompson, Christopher W; Maranto, Christina

    2008-04-01

    Predator-prey relationships are often altered as a result of human activities. Where prey are legally protected, conservation action may include lethal predator control. In the Columbia River basin (Pacific Northwest, USA and Canada), piscivorous predators have been implicated in contributing to a lack of recovery of several endangered anadromous salmonids (Oncorhynchus spp.), and lethal and nonlethal control programs have been instituted against both piscine and avian species. To determine the consequences of avian predation, we used a bioenergetics approach to estimate the consumption of salmonid smolts by waterbirds (Common Merganser, California and Ring-billed Gull, Caspian Tern, Double-crested Cormorant) found in the mid-Columbia River from April through August, 2002-2004. We used our model to explore several predator-prey scenarios, including the impact of historical bird abundance, and the effect of preserving vs. removing birds, on smolt abundance. Each year, <1% of the estimated available salmonid smolts (interannual range: 44,830-109,209; 95% CI = 38,000-137,000) were consumed, 85-98% away from dams. Current diet data combined with historical gull abundance at dams suggests that past smolt consumption may have been 1.5-3 times current numbers, depending on the assumed distribution of gulls along the reaches. After the majority (80%) of salmonid smolts have left the study area, birds switch their diet to predominantly juvenile northern pikeminnow (Ptychocheilus oregonensis), which as adults are significant native salmonid predators in the Columbia River. Our models suggest that one consequence of removing birds from the system may be increased pikeminnow abundance, which--even assuming 80% compensatory mortality in juvenile pikeminnow survival--would theoretically result in an annual average savings of just over 180,000 smolts, calculated over a decade. Practically, this suggests that smolt survival could be maximized by deterring birds from the river when smolts are present, allowing bird presence after the diet switch to act as a tool for salmonid-predator control, and conducting adult-pikeminnow control throughout. Our analysis demonstrates that identifying the strength of ecosystem interactions represents a top priority when attempting to manage the abundance of a particular ecosystem constituent, and that the consequences of a single-species view may be counterintuitive, and potentially counterproductive.

  19. 78 FR 33810 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... reduction loan for the fishing capacity reduction program in the Southeast Alaska purse seine salmon fishery... July 22, 2012. Since then, all harvesters of Southeast Alaska purse seine salmon must pay the fee and...

  20. 77 FR 41754 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... program in the Southeast Alaska purse seine salmon fishery. NMFS conducted a referendum to approve the..., Chief, Financial Services Division, NMFS, Attn: SE Alaska Purse Seine Salmon Buyback, 1315 East-West...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryer, John L.

    The Department of Microbiology at Oregon State University with funding from the Bonneville Power Administration has conducted a study since 1983 relating to the epidemiology and control of three diseases of salmonids in the Columbia River Basin. These diseases are ceratomyxosis, caused by the protozoan parasite Ceratomyxa Shasta, bacterial kidney disease, the etiological agent of which is Renibacterium salmoninarum and infectious hematopoietic necrosis which is caused by a rhabdovirus. Each of these diseases is difficult or impossible to treat with antimicrobial agents. The presence of the infectious stage of C. shasta was again detected at Little Goose Dam on themore » Snake River. The prevalence of ceratomyxosis increased from 1.1% in 1984 to 10% in 1985. None of the susceptible rainbow trout exposed in the Yakima and Umatilla Rivers died of this disease. Ceratomyxosis in resistant chinook salmon smolts seined from the Columbia River just above the estuary seems dependent on whether or not they are held after capture in fresh or salt water. In fresh water the disease incidence ranged from 7--19%, whereas in salt water it ranged from 0--3%. These results which suggest that recovery from ceratomyxosis may occur after the smolts enter salt water are different from those obtained with susceptible Alsea steelhead trout where experimental groups in salt water have died at the same rate as those in fresh water. Comparing data from groups of Columbia River chinook smolts held after capture in either fresh or salt water, R. salmoninarum is a much more effective pathogen in the salt water environment. After four years of sampling smolts in the open ocean, numbers of this microorganism sufficient to cause death have been detected in chinook (7%) and, coho salmon (2%) and steelhead trout (1%). Results from three years of sampling have consistently indicated that additional fish infected with R. salmoninarum will be detected if egg washings are included in the procedures for monitoring bacterial kidney disease in adults. Antigenic differences among strains of R. salmoninarum and common antigens present on both R. salmoninarum and other Gram positive bacteria have been demonstrated for the first time using monoclonal antibodies. All of the monoclonal antibodies belong to the murine IgGl, IgG3 or TgG2a class and subclass. Field studies at Round Butte Hatchery with the molecular filtration apparatus detected IHNV in effluent water from the adult holding pond and in water from a tank containing steelhead trout fry infected with IHN disease. The concentrations of IHNV detected in these samples suggested that in the order of 10{sup 10} virions are being released each day into the Deschutes River at the peak of steelhead trout spawning at Round Butte Hatchery. Isolation of IHNV from dead eggs suggested that virus replication during incubation may be a possible cause of egg mortality. Two possible reasons for inconsistencies in the data from the IHNV transmission studies at Round Butte Hatchery are: (1) UV treatment does not completely sterilize the water and (2) vertical transmission occurs but under, as yet, undescribed conditions. Constant IHNV production over a prolonged period has been recorded in unfiltered ovarian fluid samples. Filtration eliminates this virus production. These observations suggest that cellular components in ovarian fluid are responsible for producing the delayed appearance of IHNV after storage at 4 C for 8 to 16 days.« less

  2. 50 CFR 679.65 - Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR program). 679.65 Section 679.65 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE...

  3. Risk factors perceived predictive of ISA spread in Chile: applications to decision support.

    PubMed

    Gustafson, L; Antognoli, M; Lara Fica, M; Ibarra, R; Mancilla, J; Sandoval Del Valle, O; Enriquez Sais, R; Perez, A; Aguilar, D; Madrid, E; Bustos, P; Clement, A; Godoy, M G; Johnson, C; Remmenga, M

    2014-11-01

    Aquaculture is anticipated to be a critical element in future solutions to global food shortage. However, diseases can impede industry efficiency and sustainability. Consequently, diseases can and have led to dramatic re-structuring in industry or regulatory practices. The emergence of infectious salmon anemia (ISA) in Chile is one such example. As in other countries, many mitigations were instituted universally, and many incurred considerable costs as they introduced a new layer of coordination of farming activities of marine sites within common geographic areas (termed 'neighborhoods' or 'barrios'). The aggregate response led to a strong reduction in ISA incidence and impact. However, the relative value of individual mitigations is less clear, especially where response policies were universally applied and retrospective analyses are missing 'controls' (i.e., areas where a mitigation was not applied). Further, re-focusing policies around disease prevention following resolution of an outbreak is important to renew sustainable production; though, again, field data to guide this shift in purpose are often lacking. Expert panels can offer timely decision support in the absence of empirical data. We convened a panel of fish health experts to weight risk factors predictive of ISA virus (ISAV) introduction or spread between Atlantic salmon barrios in Chile. Barrios, rather than sites, were the unit of interest because many of the new mitigations operate at this level and few available studies examine their efficacy. Panelists identified barrio processing plant biosecurity, fallowing strategies, adult live fish transfers, fish and site density, smolt quality, hydrographic connection with other neighborhoods, presence of sea lice (Caligus rogercresseyi), and harvest vessel biosecurity as factors with the greatest predictive strength for ISAV virulent genotype ('HPR-deleted') occurrence. Fewer factors were considered predictive of ISAV HPR0 genotype ('HPR0') occurrence, with greatest strengths assigned to fish and site density, adult live fish transfers, and smolt facility HPR0 status. Field validation based on ISAV and risk factor occurrence after panel completion generally supports expert estimates, and highlights a few factors (e.g., broodstock HPR0 status) less conclusive in the original study. Results inform legislation, industry best management practices and surveillance design. Published by Elsevier B.V.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrosky, Charles E.; Holubetz, Terry B.

    The Idaho Department of Fish and Game has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) in the Clearwater and Salmon River drainages over the last four years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed to use increased smolt production at full seeding as the best measure of benefit from a habitat enhancementmore » project. Determination of full benefit from a project depends on presence of adequate numbers of fish to document actual increases in fish production. The depressed nature of upriver anadromous stocks have precluded attainment of full benefit of any habitat project in Idaho. Partial benefit will be credited to the mitigation record in the interim period of run restoration. According to the BPA Work Plan, project implementors have the primary responsibility for measuring physical habitat and estimating habitat change. To date, Idaho habitat projects have been implemented primarily by the US Forest Service (USFS). The Shoshone-Bannock Tribes (SBT) have sponsored three projects (Bear Valley Mine, Yankee Fork, and the proposed East Fork Salmon River projects). IDFG implemented two barrier-removal projects (Johnson Creek and Boulder Creek) that the USFS was unable to sponsor at that time. The role of IDFG in physical habitat monitoring is primarily to link habitat quality and habitat change to changes in actual, or potential, fish production. Individual papers were processed separately for the data base.« less

  5. Effects of mining chemicals on fish: exposure to tailings containing Lilaflot D817M induces CYP1A transcription in Atlantic salmon smolt.

    PubMed

    Olsvik, Pål A; Urke, Henning A; Nilsen, Tom O; Ulvund, John B; Kristensen, Torstein

    2015-08-29

    Mine tailings, containing metals and production chemicals such as flotation chemicals and flocculants, may pose an environmental threat to aquatic organisms living in downstream ecosystems. The aim of this work was to study to which degree Lilaflot D817M, a flotation chemical extensively used by the mining industry, represents a hazard for migrating salmon in rivers affected by mining activity. Smoltifying Atlantic salmon were exposed to four concentrations of iron-ore mine tailings containing residual Lilaflot D817M [water versus tailing volumes of 0.002 (Low), 0.004 (Medium), 0.013 (High) and 0.04 (Max)]. After 96 h of exposure, gill and liver tissues were harvested for transcriptional responses. Target genes included markers for oxidative stress, detoxification, apoptosis and DNA repair, cell signaling and growth. Of the 16 evaluated markers, significant transcriptional responses of exposure to tailings enriched with Lilaflot D817M were observed for CYP1A, HSP70 and HMOX1 in liver tissue and CYP1A in gill tissue. The significant induction of CYP1A in both liver and gills suggest that the flotation chemical is taken up by the fish and activates cytochrome P450 detoxification via phase I biotransformation in the cells. The overall weak transcriptional responses to short-term exposure to Lilaflot D817M-containing iron-ore tailings suggest that the mining chemical has relatively low toxic effect on fish. The underlying mechanisms behind the observed CYP1A induction should be studied further.

  6. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated. 2006 Annual Report

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.

    2007-01-01

    During the winter of 2005-06, we radio and PIT tagged and released 48 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. Fish were released at the upstream end of the Lower Granite Dam forebay in November and December 2005. Fixed radio telemetry detection sites located in forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental and Ice Harbor dams were used to monitor fish movements and dam passage through early-May 2006. Of the 48 fish released during our study, 39 (81 %) passed Lower Granite Dam and were detected at downstream detection sites, 29 (60%) passed Little Goose Dam, 25 (52%) passed Lower Monumental Dam, and 15 (31%) passed Ice Harbor Dam. Thirty-seven (95%), 23 (79%), 16 (64%), and 9 (60%) of the fish that passed Lower Granite, Little Goose, Lower Monumental, and Ice Harbor dams respectively, did so when the fish bypass system was not operated. Passage of tagged fish past lower Snake River dams generally declined during the winter, but increased again after bypass began in April. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 118 d), and varied by reservoir and time of year. We observed no diel passage trends. Only 15 of the 48 fish were subsequently detected at a PIT-tag interrogation site the following spring. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more to chance than directed downstream movement. Since the primary route of passage during the winter is through powerhouse turbines, the potential exists for increased mortality for over-wintering juvenile fall Chinook salmon in the Snake River. Our findings also have implications for transportation studies of subyearling fall Chinook salmon in the Snake River. Specifically, the finding that some fish can pass undetected during the winter may bias smolt-to-adult return rate calculations that are typically used to measure the success of the aforementioned management actions.

  7. Investigations into the Early History of Naturally Produced Spring Chinook Salmon in the Grand Ronde Basin : Fish Research Project Oregon : Annual Progress Report Project Period September 1, 1996 to August 31, 1997.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johasson, Brian C.; Tranquilli, J. Vincent; Keefe, MaryLouise

    1998-10-28

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving uppermore » rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in pool habitats, particularly alcove and backwater pools. These results were consistent for both summer and winter surveys.« less

  8. Characterization of full-length sequenced cDNA inserts (FLIcs) from Atlantic salmon (Salmo salar)

    PubMed Central

    Andreassen, Rune; Lunner, Sigbjørn; Høyheim, Bjørn

    2009-01-01

    Background Sequencing of the Atlantic salmon genome is now being planned by an international research consortium. Full-length sequenced inserts from cDNAs (FLIcs) are an important tool for correct annotation and clustering of the genomic sequence in any species. The large amount of highly similar duplicate sequences caused by the relatively recent genome duplication in the salmonid ancestor represents a particular challenge for the genome project. FLIcs will therefore be an extremely useful resource for the Atlantic salmon sequencing project. In addition to be helpful in order to distinguish between duplicate genome regions and in determining correct gene structures, FLIcs are an important resource for functional genomic studies and for investigation of regulatory elements controlling gene expression. In contrast to the large number of ESTs available, including the ESTs from 23 developmental and tissue specific cDNA libraries contributed by the Salmon Genome Project (SGP), the number of sequences where the full-length of the cDNA insert has been determined has been small. Results High quality full-length insert sequences from 560 pre-smolt white muscle tissue specific cDNAs were generated, accession numbers [GenBank: BT043497 - BT044056]. Five hundred and ten (91%) of the transcripts were annotated using Gene Ontology (GO) terms and 440 of the FLIcs are likely to contain a complete coding sequence (cCDS). The sequence information was used to identify putative paralogs, characterize salmon Kozak motifs, polyadenylation signal variation and to identify motifs likely to be involved in the regulation of particular genes. Finally, conserved 7-mers in the 3'UTRs were identified, of which some were identical to miRNA target sequences. Conclusion This paper describes the first Atlantic salmon FLIcs from a tissue and developmental stage specific cDNA library. We have demonstrated that many FLIcs contained a complete coding sequence (cCDS). This suggests that the remaining cDNA libraries generated by SGP represent a valuable cCDS FLIc source. The conservation of 7-mers in 3'UTRs indicates that these motifs are functionally important. Identity between some of these 7-mers and miRNA target sequences suggests that they are miRNA targets in Salmo salar transcripts as well. PMID:19878547

  9. Host-based identification is not supported by morphometrics in natural populations of Gyrodactylus salaris and G. thymalli (Platyhelminthes, Monogenea).

    PubMed

    Olstad, K; Shinn, A P; Bachmann, L; Bakke, T A

    2007-12-01

    Gyrodactylus salaris is a serious pest of wild pre-smolt Atlantic salmon (Salmo salar) in Norway. The closely related G. thymalli, originally described from grayling (Thymallus thymallus), is assumed harmless to both grayling and salmon. The 2 species are difficult to distinguish using traditional, morphometric methods or molecular approaches. The aim of this study was to explore whether there is a consistent pattern of morphometrical variation between G. salaris and G. thymalli and to analyse the morphometric variation in the context of 'diagnostic realism' (in natural populations). Specimens from the type-material for the 2 species are also included. In total, 27 point-to-point measurements from the opisthaptoral hard parts were used and analysed by digital image processing and uni- and multivariate morphometry. All populations most closely resembled its respective type material, as expected from host species, with the exception of G. thymalli from the Norwegian river Trysilelva. We, therefore, did not find clear support in the morphometrical variation among G. salaris and G. thymalli for an a priori species delineation based on host. The present study also indicates an urgent need for more detailed knowledge on the influence of environmental factors on the phenotype of gyrodactylid populations.

  10. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters

    PubMed Central

    Deng, Z. D.; Martinez, J. J.; Li, H.; Harnish, R. A.; Woodley, C. M.; Hughes, J. A.; Li, X.; Fu, T.; Lu, J.; McMichael, G. A.; Weiland, M. A.; Eppard, M. B.; Skalski, J. R.; Townsend, R. L.

    2017-01-01

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitter are key limiting factors. The newly developed injectable transmitter is the first acoustic transmitter that can be implanted via injection instead of surgery. A two-part field study was conducted to evaluate the performance of the injectable transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the proceeding generation of commercially-available JSATS transmitters tested concurrently. Snake River subyearling Chinook salmon smolts implanted with the injectable transmitter had a higher survival probability from release to each of eleven downstream detection arrays, because reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The reduction in size and ability to implant the new transmitter via injection has reduced the tag or tagging effect bias associated with studying small fishes. The information gathered with this new technology is helping to evaluate the impacts of dams on fishes. PMID:28220850

  11. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters.

    PubMed

    Deng, Z D; Martinez, J J; Li, H; Harnish, R A; Woodley, C M; Hughes, J A; Li, X; Fu, T; Lu, J; McMichael, G A; Weiland, M A; Eppard, M B; Skalski, J R; Townsend, R L

    2017-02-21

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitter are key limiting factors. The newly developed injectable transmitter is the first acoustic transmitter that can be implanted via injection instead of surgery. A two-part field study was conducted to evaluate the performance of the injectable transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the proceeding generation of commercially-available JSATS transmitters tested concurrently. Snake River subyearling Chinook salmon smolts implanted with the injectable transmitter had a higher survival probability from release to each of eleven downstream detection arrays, because reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The reduction in size and ability to implant the new transmitter via injection has reduced the tag or tagging effect bias associated with studying small fishes. The information gathered with this new technology is helping to evaluate the impacts of dams on fishes.

  12. Acute lion's mane jellyfish, Cyanea capillata (Cnideria: Scyphozoa), exposure to Atlantic salmon (Salmo salar L.).

    PubMed

    Powell, M D; Åtland, Å; Dale, T

    2018-05-01

    Jellyfish-induced gill pathology relies upon occasional diagnostic observations yet the extent and impact of jellyfish blooms on aquaculture may be significant. Idiopathic gill lesions are often observed in apparently healthy fish. This study exposed Atlantic salmon (Salmo salar L.) smolts to macerated Cyanea capillata at 2.5 and 5 g/L for 2 hr under controlled laboratory conditions. Blood chemistry and gill histopathology were examined over a subsequent 4-week period. Fish showed an acute response to the presence of jellyfish, including characteristic external "whiplash" discoloration of the skin and acute increases in blood electrolytes and CO 2 concentration; however, these were resolved within 4 days after exposure. Histopathologically, gills showed first an acute oedema with epithelial separation followed by focal haemorrhage and thrombus formation, and then progressive inflammatory epithelial hyperplasia that progressively resolved over the 4 weeks post-exposure. Results were consistent with the envenomation of gills with cytotoxic neurotoxins and haemolysins known to be produced by C. capillata. This study suggests that many focal hyperplastic lesions on gills, especially those involving focal thrombi, may be the result of jellyfish stings. Thus, the presence of jellyfish and their impact may be severe and understated in terms of marine fish aquaculture and fish welfare. © 2018 John Wiley & Sons Ltd.

  13. Assessment of interbreeding and introgression of farm genes into a small Scottish Atlantic salmon Salmo salar stock: ad hoc samples - ad hoc results?

    PubMed

    Verspoor, E; Knox, D; Marshall, S

    2016-12-01

    An eclectic set of tissues and existing data, including purposely collected samples, spanning 1997-2006, was used in an ad hoc assessment of hybridization and introgression of farmed wild Atlantic salmon Salmo salar in the small Loch na Thull (LnT) catchment in north-west Scotland. The catchment is in an area of marine farm production and contains freshwater smolt rearing cages. The LnT S. salar stock was found to be genetically distinctive from stocks in neighbouring rivers and, despite regular reports of feral farm S. salar, there was no evidence of physical or genetic mixing. This cannot be completely ruled out, however, and low level mixing with other local wild stocks has been suggested. The LnT population appeared underpinned by relatively smaller effective number of breeders (N eb ) and showed relatively low levels of genetic diversity, consistent with a small effective population size. Small sample sizes, an incomplete farm baseline and the use of non-diagnostic molecular markers, constrain the power of the analysis but the findings strongly support the LnT catchment having a genetically distinct wild S. salar population little affected by interbreeding with feral farm escapes. © 2016 The Fisheries Society of the British Isles.

  14. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters

    NASA Astrophysics Data System (ADS)

    Deng, Z. D.; Martinez, J. J.; Li, H.; Harnish, R. A.; Woodley, C. M.; Hughes, J. A.; Li, X.; Fu, T.; Lu, J.; McMichael, G. A.; Weiland, M. A.; Eppard, M. B.; Skalski, J. R.; Townsend, R. L.

    2017-02-01

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitter are key limiting factors. The newly developed injectable transmitter is the first acoustic transmitter that can be implanted via injection instead of surgery. A two-part field study was conducted to evaluate the performance of the injectable transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the proceeding generation of commercially-available JSATS transmitters tested concurrently. Snake River subyearling Chinook salmon smolts implanted with the injectable transmitter had a higher survival probability from release to each of eleven downstream detection arrays, because reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The reduction in size and ability to implant the new transmitter via injection has reduced the tag or tagging effect bias associated with studying small fishes. The information gathered with this new technology is helping to evaluate the impacts of dams on fishes.

  15. Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 1 of 7, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busack, Craig A.; Frye, Alice; Kassler, Todd

    2004-05-01

    Genetic work for 2003, as in previous years, was quite diverse. In chapter 1 we report on the use of DNA microsatellite markers to sex spring chinook collected at Roza. We have learned through comparison of sex determinations at Roza and then at CESRF that sexing green fish on the basis of morphology is somewhat inaccurate, and accurate sexing of fish at Roza is needed to estimate sex ratios of fish on the spawning grounds. Using DNA microsatellite markers, sexing accuracy was high, but not perfect. In chapter 2 we report on new genetic risk concepts currently being developed andmore » their implications for the YKFP spring chinook program. The impact on domestication of gene flow between the natural and hatchery spawning components is now much better understood. It is now possible to compare the risk of different hatchery programs much more quantitatively in the past. Thus, we can now make good predictions of how much less domesticating the Yakima spring chinook supplementation effort is than other programs. In chapter 3 we present the initial results of morphological comparisons of adult (1) hatchery-origin Upper Yakima spring chinook, (2) natural-origin U. Yakima spring chinook, and (3) Naches spring chinook. Canonical variate analysis allowed both sexes of the three groups to be classified correctly with over accuracy. The differences are subtle, but hatchery-origin fish appear to be someone thinner than natural-origin fish. This is consistent with observations of hatchery vs wild morphology in coho. In chapter 4 we describe the ongoing work to refine the Domestication Research/Monitoring Plan. Work for last year included analysis of the impact of HC line precocious males spawning in the wild, development of a misting incubation system for off-site incubation of Naches eggs, and refinement of some aspects of experimental design. The misting incubation system has broad applicability outside the project. The most recent version of the domestication monitoring plan is included as an appendix. In chapter 5 we present a final report on computer simulations of factorial mating designs. Using three different schemes for combining breeding values of fish, we found that full factorial mating offers a substantial increase in effective size over single-pair mating. Although full factorial mating may be too difficult logistically, but a significant proportion of the full factorial mating advantage can be obtained by using 2 x 2 partial factorials. We have developed a method that allows us to determine the relative effective size advantage of mixed partial factorial designs. In chapter 6 we report on an analysis of stock origin of smolts collected at Chandler. The 702 Chinook salmon smolts collected at the Chandler trap in 2003 were screened at 12 microsatellite DNA loci. A new Yakima basin baseline, consisting of spring chinook from the upper Yakima, Naches, and American River populations and fall chinook from the Marion Drain and lower Yakima populations, was created for these same 12 loci. DNA template problems with the tissue collections from the Naches, and American River populations prompted the omission of four loci prior to analysis. The results indicated: 80% Naches spring, 13% American River spring, 7% upper Yakima spring, and less than 1% for the two fall populations combined. The estimated stock proportions in the 2003 Chandler collection differed substantially from those for the 2002 collection. The temporal pattern of sampling in both Chandler smolt collections was not proportional to the observed outmigration in each year, suggesting that both of these estimates should be regarded with caution. Strengthening of the baseline data set will be a high priority for future work with Chandler smolts.« less

  16. Magnitude and Dynamics of Predation on Juvenile Salmonids in Columbia and Snake River Reservoirs, Annual Report of Research, 1989-1990.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, J.H.

    1990-07-01

    Three aspects of predation upon juvenile salmonids in the Columbia River are addressed in this report: (1) Indexing predator consumption. During 1989--1990, two indices of northern squawfish consumption upon juvenile salmonids were developed for use throughout the Columbia River Basin. The direct Consumption Index (CI) is based upon the concept of meal turnover time and takes into account number of salmonids, temperature, total gut content weight and predator weight. A Bioenergetics Index (BI) for consumption indexing was also developed to complement the direct CI. In the BI, growth, consumption, excretion/evacuation and respiration processes are modeled to predict the consumption requiredmore » to produce an observed growth increment. (2) Studies on predator-smolt dynamics. Northern squawfish consumption data were collected in the McNary Dam tailrace during nine days in July 1988 to improve our understanding of the predator-smolt functional response. (3) Selective predation by northern squawfish. Laboratory and field protocols were developed to evaluate northern squawfish selection and prey vulnerability. Results from laboratory studies suggest that northern squawfish prefer dead over live prey and that descaled prey may be more vulnerable to predation than non-descaled prey. Stressed and unstressed prey were consumed in equal proportions when predation occurred for 6 or 24 h. Physiological and behavioral effects of stress on juvenile salmon are presented. 100 refs., 13 figs., 12 tabs.« less

  17. 77 FR 19004 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... Salmon Fishery. DATES: Comments must be submitted on or before 5 p.m. EST April 13, 2012. ADDRESSES: Send... Seine Salmon Buyback, 1315 East-West Highway, Silver Spring, MD 20910 (see FOR FURTHER INFORMATION...

  18. Predation by Resident Fish on Juvenile Salmonids in John Day Reservoir: Final Report, 1983-1986: Volume 1, Final Report of Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poe, Thomas P.; Rieman, Bruce E.

    1988-07-01

    In 1982 the NPPC included in its Fish and Wildlife Program a measure that called for studies ''... to investigate juvenile salmon and steelhead losses to predators while these fish are migrating through Columbia and Snake River reservoirs.'' In the same year the Bonneville Power Administration (BPA) funded ODFW and FWS to conduct collaborative studies to estimate the number of juvenile salmonids lost to predators in John Day Reservoir. Also included as study objectives were: (1) a description of the importance of predation losses relative to mortality at the dam and total reservoir mortality; (2) a description of how predationmore » losses might vary (spatially and temporally); and (3) recommendations of measures to control predation on smolts. We studied four species of predator: northern squawfish, walleye, smallmouth bass, and channel catfish. We selected John Day Reservoir as the study site because the following factors led us to believe if predation was a problem in any reservoir, it would be most obvious there because: (1) the reservoir is an important subyearling chinook rearing area; (2) passage and residualism of juvenile salmonids were considered a problem there; and (3) substantial populations of predators were known to reside in the reservoir. Individual reports were processed separately for the data base.« less

  19. Atlantic salmon (Salmo salar) require increased dietary levels of B-vitamins when fed diets with high inclusion of plant based ingredients

    PubMed Central

    Lock, Erik-Jan; Olsvik, Pål Asgeir; Hamre, Kristin; Espe, Marit; Torstensen, Bente Elisabeth; Silva, Joana; Hansen, Ann-Cecilie; Waagbø, Rune; Johansen, Johan S.; Sanden, Monica; Sissener, Nini H.

    2016-01-01

    Aiming to re-evaluate current recommendations for nutrient supplementations when Atlantic salmon are fed diets based on plant ingredients, two regression experiments, with parr and post-smolt, were conducted. A control diet was included to evaluate if ingredients supplied sufficient nutrients without any added nutrient package (NP). The nutrient package consisted of vitamins B, C, E, minerals, cholesterol, methionine, taurine and histidine. This paper focus on B-vitamins. In parr, growth, health and welfare parameters responded on NP additions, but this was not observed in the seawater stage. During three months of feeding, parr tripled their weight. Parr given diets added the NP above NRC (2011) showed improved protein retention, and reduced liver and viscera indices. Post-smolt fed the same diets during five months showed a doubling of weight, but did not respond to the variation in NP to the same extent as parr. Significant regressions were obtained in body compartments for several of the B-vitamins in the premix. Whole body biotin concentration was unaffected by micronutrient premix level, and mRNA expression of the enzymes dependent of biotin showed only weak increases with increased biotin. Muscle thiamine plateaued at a diet level similar to NRC (2011) recommendation in freshwater, and showed stable values independent on premix addition in seawater. The mRNA expression of the enzyme G6PDH (glucose-6-phosphate dehydrogenase) is sensitive to thiamine availability; results did not indicate any need to add thiamine above levels recommended for fish in general. Niacin showed a steady increase in whole body concentrations as feed niacin increased. Muscle riboflavin peaked at a diet level of 12.4 mg kg−1. Sufficient riboflavin is important to avoid e.g., development of cataract. Cataract was not registered to be any problem, neither in fresh- nor in seawater. Cobalamin (B 12) in muscle and liver was saturated at 0.17 mg kg−1 diet. Muscle pyridoxine showed a dose-dependent level in muscle, and peaked around 10 mg kg −1 diet. White muscle ASAT (asparagine amino transferase) activity steadily increased, with indications of stable values when dietary pyridoxine was around 10–16 mg kg −1 diet. Pantothenic acid increased in gill tissue up to a level of 5.5 mg kg −1 soft gill tissue; at a dietary level of 22 mg kg−1. Improved performance, and coverage of metabolic need for niacin was at a dietary level of 66 mg kg −1, riboflavin 10–12 mg kg−1, pyridoxine 10 mg kg−1 and panthotenic acid 22 mg kg−1. Based on these results, recommended B-vitamin supplementation in plant based diets for Atlantic salmon should be adjusted. PMID:27703849

  20. Effect of dietary α-tocopherol + ascorbic acid, selenium, and iron on oxidative stress in sub-yearling Chinook salmon (Oncorhynchus tshawytscha Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2009-01-01

    A three-variable central composite design coupled with surface-response analysis was used to examine the effects of dietary ??-tocopherol + ascorbic acid (TOCAA), selenium (Se), and iron (Fe) on indices of oxidative stress in juvenile spring Chinook salmon. Each dietary factor was tested at five levels for a total of fifteen dietary combinations (diets). Oxidative damage in liver and kidney (lipid peroxidation, protein carbonyls) and erythrocytes (erythrocyte resistance to peroxidative lysis, ERPL) was determined after feeding experimental diets for 16 (early December) and 28 (early March) weeks. Only TOCAA influenced oxidative stress in this study, with most measures of oxidative damage decreasing (liver lipid peroxidation in December and March; ERPL in December; liver protein carbonyl in March) with increasing levels of TOCAA. We also observed a TOCAA-stimulated increase in susceptibility of erythrocytes to peroxidative lysis in March at the highest levels of TOCAA. The data suggest that under most circumstances a progressive decrease in oxidative stress occurs as dietary TOCAA increases, but higher TOCAA concentrations can stimulate oxidative damage in some situations. Higher levels of TOCAA in the diet were required in March than in December to achieve comparable levels of protection against oxidative damage, which may have been due to physiological changes associated with the parr-smolt transformation. Erythrocytes appeared to be more sensitive to variation in dietary levels of TOCAA than liver and kidney tissues. Using the March ERPL assay results as a baseline, a TOCAA level of approximately 350-600 mg/kg diet would provide adequate protection against lipid peroxidation under most circumstances in juvenile Chinook salmon. ?? 2008 The Authors.

  1. Effects of dietary lipid, vitamins and minerals on total amounts and redox status of glutathione and ubiquinone in tissues of Atlantic salmon (Salmo salar): a multivariate approach.

    PubMed

    Hamre, Kristin; Torstensen, Bente E; Maage, Amund; Waagbø, Rune; Berge, Rolf K; Albrektsen, Sissel

    2010-10-01

    The hypothesis of the present study was that Atlantic salmon (Salmo salar) would respond to large variations in supplementation of dietary pro- and antioxidants, and marine lipid, with adjustment of the endogenously synthesised antioxidants, glutathione (GSH) and ubiquinone (UQ). An experiment with 2(7-3) reduced factorial design (the number of cases reduced systematically from 2(7) (full design) to 2(4) (reduced design)) was conducted, where vitamins, minerals and lipid were supplemented in the diet at high and low levels. For the vitamins and minerals the high levels were chosen to be just below anticipated toxic levels and the low levels were just above the requirement (vitamin C, 30 and 1000 mg/kg; vitamin E, 70 and 430 mg/kg; Fe, 70 and 1200 mg/kg; Cu, 8 and 110 mg/kg; Mn, 12 and 200 mg/kg). For astaxanthin, the dietary levels were 10 and 50 mg/kg and for lipid, 150 and 330 g/kg. The experiment was started with post-smolts (148 (sd 17 g)) and lasted for 5 months. The only effect on GSH was a minor increase ( < 10 %) in total concentration in the liver in response to high dietary lipid. GSH redox state was not affected. UQ responded to dietary lipid, astaxanthin and vitamin E, both with regard to total concentration and redox state. Except for an effect of Fe on plasma GSH, the trace elements and vitamin C had no effect on tissue levels and oxidation state of GSH and UQ. This shows that the endogenous redox state is quite robust with regard to variation of dietary pro- and antioxidants in Atlantic salmon.

  2. Detecting genotypic changes associated with selective mortality at sea in Atlantic salmon: polygenic multilocus analysis surpasses genome scan.

    PubMed

    Bourret, Vincent; Dionne, Mélanie; Bernatchez, Louis

    2014-09-01

    Wild populations of Atlantic salmon have declined worldwide. While the causes for this decline may be complex and numerous, increased mortality at sea is predicted to be one of the major contributing factors. Examining the potential changes occurring in the genome-wide composition of populations during this migration has the potential to tease apart some of the factors influencing marine mortality. Here, we genotyped 5568 SNPs in Atlantic salmon populations representing two distinct regional genetic groups and across two cohorts to test for differential allelic and genotypic frequencies between juveniles (smolts) migrating to sea and adults (grilses) returning to freshwater after 1 year at sea. Given the complexity of the traits potentially associated with sea mortality, we contrasted the outcomes of a single-locus F(ST) based genome scan method with a new multilocus framework to test for genetically based differential mortality at sea. While numerous outliers were identified by the single-locus analysis, no evidence for parallel, temporally repeated selection was found. In contrast, the multilocus approach detected repeated patterns of selection for a multilocus group of 34 covarying SNPs in one of the two populations. No significant pattern of selective mortality was detected in the other population, suggesting different causes of mortality among populations. These results first support the hypothesis that selection mainly causes small changes in allele frequencies among many covarying loci rather than a small number of changes in loci with large effects. They also point out that moving away from the a strict 'selective sweep paradigm' towards a multilocus genetics framework may be a more useful approach for studying the genomic signatures of natural selection on complex traits in wild populations. © 2014 John Wiley & Sons Ltd.

  3. Early migration and estuary stopover of introduced chinook salmon population in the Lapataia River Basin, southern Tierra del Fuego Island

    NASA Astrophysics Data System (ADS)

    Chalde, T.; Fernández, D. A.

    2017-12-01

    Established populations of chinook salmon (Oncorhynchus tshawytscha) have recently been reported in South America, at both Atlantic and Pacific basins. Several studies have evaluated different aspects of their life histories; however, little is known about the use of the estuaries by the juveniles of these populations. We examined spawning time, seaward migration timing, growth rate, scale patterns, diet, and geometric morphometric, contrasting the early life history during freshwater and estuary residence of a chinook population established in Lapataia Basin. Fall run spawning took place in March-April and the parr emerged in September. Two distinct seaward migration patterns were identified from sein net fishing records: one population segment migrating earlier to the estuary in October and a second group migrating later in February. The growth rate of fish captured at the estuary was significantly higher than the fish captured in freshwater. In addition, higher scale intercirculi distances were observed in estuary fish showing differences in growth rate. The feeding habitat in fish captured in both environments changed through time from bottom feeding to surface feeding and from significant diet overlap to no overlap. The morphology of the fish captured at the estuary was associated with the elongation of the caudal peduncle and a decrease in the condition factor index, both changes related to smolt transformation. The earlier migration and the higher growth rate of juveniles in the estuary together with fish of 1 + yo captured in this environment reveal that the estuary of Lapataia Basin is not only a stopover for the chinook salmon, but also a key habitat to reside and feed previous to the final seaward migration.

  4. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffnagle, Timothy L.; Hair, Donald; Gee, Sally

    2009-03-31

    The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program is designed to rapidly increase numbers of Chinook salmon in stocks that are in imminent danger of extirpation in Catherine Creek (CC), Lostine River (LR) and upper Grande Ronde River (GR). Natural parr are captured and reared to adulthood in captivity, spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation. Presmolt rearing was initially conducted at Lookingglass Fish Hatcherymore » (LFH) but parr collected in 2003 and later were reared at Wallowa Fish Hatchery (WFH). Post-smolt rearing is conducted at Bonneville Fish Hatchery (BOH - freshwater) and at Manchester Research Station (MRS - saltwater). The CC and LR programs are being terminated, as these populations have achieved the goal of a consistent return of 150 naturally spawning adults, so the 2005 brood year was the last brood year collected for theses populations. The Grande Ronde River program continued with 300 fish collected each year. Currently, we are attempting to collect 150 natural parr and incorporate 150 parr collected as eggs from females with low ELISA levels from the upper Grande Ronde River Conventional Hatchery Program. This is part of a comparison of two methods of obtaining fish for a captive broodstock program: natural fish vs. those spawned in captivity. In August 2007, we collected 152 parr (BY 2006) from the upper Grande Ronde River and also have 155 Grande Ronde River parr (BY 2006) that were hatched from eyed eggs at LFH. During 2008, we were unable to collect natural parr from the upper Grande Ronde River. Therefore, we obtained 300 fish from low ELISA females from the upper Grande Ronde River Conventional Program. In October 2008 we obtained 170 eyed eggs from the upper Grande Ronde river Conventional Hatchery Program. We will attempt to collect natural parr in August 2009. This year 752 fish were removed from the captive population: 629 fish survived to gamete production and 123 fish died from various causes prior to spawning. Growth of the Captive Broodstock fish was similar to previous years. The saltwater fish have grown more slowly than those reared in freshwater. A total of 720 fish were sorted as maturing and 629 (87.4%) of them survived to spawn. We collected gametes from 273 females and 350 males from the 2002-2006 brood years in 2008, using 111 spawning matrices and collected 474,187 green eggs (1,737 eggs/female). All ripe males were spawned and no semen was collected for cryo-preservation. Of the 474,187 eggs collected for the BY 2008 F1 generation, 448,373 (94.6%) survived to the eyed stage. 68,612 (15.3%) were culled from females with high ELISA OD values for BKD prevention. For BY 2007, we collected a total of 477,048 eggs from all three populations and 407,369 (85.4%) reached the eyed stage, while 95,024 eyed eggs (23.3%) were culled for BKD prevention. Eyed eggs were hatched at Lookingglass Fish Hatchery, producing 267,131 fry. As parr, 153,371 fish were coded-wire tagged (CWT). For the 2006 F1 brood year, we collected 177,890 eggs and 149,073 (83.8%) reached the eyed stage. 83,826 eyed eggs (56.2%) were culled at the eyed stage for BKD prevention. 61,044 fry were produced (93.6%), 53,688 (88 %) survived to smolt. There were 54 bacterial kidney disease (BKD) mortalities at BOH and MRS, combined in this reporting period. Overall, there were fewer BKD mortalities in 2008 due to a reduced number of fish coming into the Captive Broodstock Program and a shift away from collecting wild parr to using eyed eggs from low ELISA females from the Conventional Hatchery Program. Unknown causes of death accounted for 32 deaths at MRS and BOH, combined in 2008. We continually examine and modify the operations of the Captive Broodstock Program to make improvements wherever possible. We continue to have difficulty with prevention and treatment of BKD outbreaks and continue to use erythromycin and azithromycin to treat this disease. We are also continuing to investigate other possible treatments and prophylactic measures. To reduce the incidence of BKD in offspring of the Captive Broodstock Program, we continue to allow culling of eyed eggs from females with high BKD ELISA values (generally >0.800 OD units but the cull level varies annually, depending on the distribution of ELISA values, number of eggs collected, and management considerations). We are also using ultrasound to determine maturity and sex of fish early in the maturation process and are now able to determine maturity and sex of most maturing fish in early April. This allows us to transfer maturing fish from saltwater to freshwater at a more natural time, which should improve fecundity and egg quality of saltwater-reared fish.« less

  5. Captive Rearing Program for Salmon River Chinook Salmon, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venditti, David; Willard, Catherine; James, Chris

    2003-11-01

    During 2002, the Idaho Department of Fish and Game continued to develop techniques to rear Chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 328) and the West Fork Yankee Fork Salmon River (WFYF; N = 308) to establish brood year 2002 culture cohorts. The eyed-eggs were incubated and reared at the Eagle Fish Hatchery, Eagle, Idaho (Eagle). Juveniles collected in 2000 were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidneymore » disease prior to being transferred to the NOAA Fisheries, Manchester Marine Experimental Station, Manchester, Washington (Manchester) for saltwater rearing through maturity. Smolt transfers included 203 individuals from the WFYF and 379 from the EFSR. Maturing fish transfers from Manchester to Eagle included 107 individuals from the LEM, 167 from the WFYF, and 82 from the EFSR. This was the second year maturing adults were held on chilled water at Eagle to test if water temperature manipulations could advance spawn timing. Adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) temperature groups while at Eagle. Forty-seven mature females from the LEM (19 chilled, 16 ambient, and 12 ambient not included in the temperature study) were spawned at Eagle with 42 males in 2002. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage averaged 66.5% and did not differ significantly between the temperature groups. Personnel from the Shoshone-Bannock Tribe placed a total of 47,977 eyed-eggs from these crosses in in-stream incubators. Mature adults (N = 215 including 56 precocial males) were released into the WFYF to evaluate their reproductive performance. After release, fish distributed themselves throughout the study section and displayed a progression of habitat associations and behavior consistent with progressing maturation and the onset of spawning. Twenty-six captive-reared females constructed 33 redds in the WFYF in 2002. Eighteen of these were hydraulically sampled, and eggs were collected from 17. The percentage of live eggs ranged from 0-100% and averaged 34.6%. No live eggs were found in redds spawned by brood year 1997 females. Expanding these results to the remaining redds gives an estimate of 22,900 eyed-eggs being produced by captive-reared fish in the WFYF. Additionally, 130 mature adults (including 41 precocial males) were released into the EFSR. Almost all of these fish moved out of the areas shoreline observers had access to, so no spawning behavior was observed. Radio-telemetry indicated that most of these fish initially moved downstream (although three females moved upstream as far as 7 km) and then held position.« less

  6. Monitoring of the in-river migration of smolts from two groups of spring chinook salmon, Oncorhynchus tshawytscha (Walbaum), with different profiles of Renibacterium salmoninarum infection

    USGS Publications Warehouse

    Pascho, R.J.; Elliott, D.G.; Achord, S.

    1993-01-01

    Broodstock segregation based on the measurement of maternal Renibacterium salmoninarum infection levels by the enzyme-linked immunosorbent assay (ELISA) and the membrane filtration-fluorescent antibody technique (MF-FAT) was previously shown to affect the prevalence and levels of bacterial kidney disease (BKD) in progeny of chinook salmon, Oncorhynchus tshawytscha (Walbaum), during hatchery rearing. Subgroups of fish from that study were marked with passive integrated transponder (PIT) tags, and monitored by PIT-tag detectors during the first 342km of their migration to the Pacific Ocean. Differences in the recovery of tagged fish were significant (P≤ 0·01) at each detection point and became more pronounced as the fish moved downstream. Cumulative recoveries of fish from the low-BKD group and the high-BKD group, respectively, were 31% and 28% after 116km, 44% and 37% after 176km, and 51% and 42% after 342km. There were no apparent differences in the migration timing of the two groups to the first detection point. The data suggested that in-river survival was higher in the progeny group from parents that had low R. salmoninarum infection levels or tested negative for R. salmoninarum (low-BKD group) than in the group female parents with high infection levels (high-BKD group).

  7. Stochastic modelling of direct costs of pancreas disease (PD) in Norwegian farmed Atlantic salmon (Salmo salar L.).

    PubMed

    Aunsmo, Arnfinn; Valle, Paul Steinar; Sandberg, Marianne; Midtlyng, Paul Johan; Bruheim, Torkjel

    2010-02-01

    An economic model for estimating the direct costs of disease in industrial aquaculture was developed to include the following areas: biological losses, extraordinary costs, costs of treatment, costs of prevention and insurance pay-out. Direct costs of a pancreas disease (PD) outbreak in Norwegian farmed Atlantic salmon were estimated in the model, using probability distributions for the biological losses and expenditures associated with the disease. The biological effects of PD on mortality, growth, feed conversion and carcass quality and their correlations, together with costs of prevention were established using elicited data from an expert panel, and combined with basal losses in a control model. Extraordinary costs and costs associated with treatment were collected through a questionnaire sent to staff managing disease outbreaks. Norwegian national statistics for 2007 were used for prices and production costs in the model. Direct costs associated with a PD-outbreak in a site stocked with 500,000 smolts (vs. a similar site without the disease) were estimated to NOK (Norwegian kroner) 14.4 million (5% and 95% percentile: 10.5 and 17.8) (NOK=euro0.12 or $0.17 for 2007). Production was reduced to 70% (5% and 95% percentile: 57% and 81%) saleable biomass, and at an increased production cost of NOK 6.0 per kg (5% and 95% percentile: 3.5 and 8.7). Copyright 2009 Elsevier B.V. All rights reserved.

  8. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Joan B.

    2003-05-01

    In 1999 the Cle Elem Hatchery began releasing spring chinook smolts into the upper Yakima River for restoration and supplementation. This project was designed to evaluate whether introduction of intensively reared hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Approximately 200 smolts were collected at the Chandler smolt collection facility on the lower Yakima River during 1998, 2000 and 2001 and 130 smolts were collected in 2002 for monitoring for specific pathogens. The pathogens monitoredmore » were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. In addition the fish were tested for Ceratomyxa shasta spores in 2000 and 2001 (a correction from the 2001 report). To date, the only changes have been in the levels the bacterial pathogens in the naturally produced smolts and they have been minimal. These changes are attributed to normal fluctuation of prevalence.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinstry, Craig A.; Carlson, Thomas J.; Brown, Richard S.

    In 2005 the U.S. Army Corps of Engineers (USACE) began a study to investigate the response of hatchery and run-of-the-river (ROR) juvenile Chinook salmon to the effects of rapid decompression during passage through mainstem Federal Columbia River Power System (FCRPS) Kaplan turbines. In laboratory studies conducted by Pacific Northwest National Laboratory (PNNL) for USACE since 2005, juvenile fish have been exposed to rapid decompression in a barometric pressure chamber. An initial study considered the response of juvenile Chinook salmon bearing radio transmitters to rapid decompression resulting from exposure to a pressure time history simulating the worst case condition that mightmore » be experienced during passage through an operating turbine. The study in 2005 found that acclimation depth was a very important treatment factor that greatly influenced the significantly higher incidence of injury and mortality of rapidly decompressed Chinook salmon bearing radio telemetry devices. In 2006 we initiated a statistical investigation using data in hand into derivation of a new end-point measure for assessment of the physiological response of juvenile Chinook salmon to rapid decompression. Our goal was a measure that would more fully utilize both mortality and injury data while providing a better assessment of the most likely survival outcome for juvenile physostomous fish exposed to rapid decompression. The conclusion of the analysis process was to classify fish as mortally injured when any of the 8 injuries are present, regardless of whether the fish was last observed alive or not. The mortally injured classification has replaced mortality as the end point metric for our rapid decompression studies. The process described in this report is an example of how a data set may be analyzed to identify decision criterion for objective classification of test fish to a specific end-point. The resulting list of 8 mortal injuries is applicable to assess injuries from rapid decompression and is currently being applied to ongoing studies. We intend to update this analysis as more data becomes available and to extend it to ROR Chinook salmon smolt. The method itself is applicable to other injury and mortality data for juvenile salmonids from laboratory and field studies related to all dam passage routes and for collision, strike, and shear injuries in addition to decompression.« less

  10. Assessment of smolt condition: Biological and environmental interactions -- The impact of prey and predators on juvenile salmonids

    USGS Publications Warehouse

    Sauter, Sally T.; Schrock, Robin M.; Petersen, James H.; Maule, Alec G.

    2004-01-01

    The Bonneville Power Administration (BPA) has funded the Assessment of Smolt Condition project since 1987. During that time the project changed frequently to meet the information needs of fish managers by conducting studies throughout the Columbia River basin. Past research has examined the influence of smolt physiological development and health on migration rate; differences in development and migration rates of smolts of hatchery or wild origins; and the impacts of hatchery practices on smolt development. The Smolt Assessment Project will not continue beyond 2004, and here we report on the final study of the project in which we used bioenergetics modeling to investigate predation on juvenile salmonids by northern pikeminnow, smallmouth bass, and walleye in the lower Columbia River reservoirs.

  11. Evaluation of Fish Movements, Migration Patterns, and Population Abundance with Streamwidth PIT Tag Interrogation Systems, Final Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zydlewski, Gayle; Winter, Christiane; McClanahan, Dee

    2003-02-01

    Two remote Streamwidth PIT tag Interrogation systems (SPIs) were operated continuously for over one year to test the feasibility of these systems for generating movement, migration, survival and smolt production estimates for salmonids. A total of 1,588 juvenile (< 100 mm FL) naturally produced salmonids (7 coho salmon, 482 cutthroat trout, and 1,099 steelhead) were PIT tagged above the upstream-most SPI (9 sites approximately 1 linear km each) in Fall 2001. Age at tagging for wild caught cutthroat and steelhead was 1 year. SPIs were operating before any PIT tagged fish were released in the creek. Over 390,000 detections weremore » recorded from October 2001 to 31 July 2002. Efficiencies were site dependent, but overall detection efficiency for the creek was 97% with 95% confidence intervals of 91-100%. PIT tag detection efficiency ranged from 55-100% depending on the SPI and varied throughout the year with average efficiencies of 73% and 89%. SPI efficiency of PIT tag detection was not completely dependent on electronics noise levels or environmental conditions. Fish from all tagging locations were detected at the SPIs. Steelhead and cutthroat trout were primarily detected moving in the Spring (April-June) coincident with the anticipated smolt migration. Steelhead were also detected moving past SPIs at lower numbers in the Fall and Winter. Travel time between SPIs (downstream movement) was highly dependent on time of year. Travel time in the Spring was significantly faster (34.4 {+-} 7.0 hours) for all species than during any other time of year (763.1 {+-} 267.0 hours). Steelhead and cutthroat migrating in the Spring were the same age as those that did not migrate in the Spring. Peak of steelhead migration recorded at the two SPIs was 5/11 and 5/12 and the peak in the screw trap was recorded on 5/17. Steelhead smolt production estimates using SPIs (3,802 with 95% confidence intervals of 3,440 - 4,245) was similar to those using more standard screw trap methods (approximately 5,400). All species used the faster moving/deeper section of the creek at both SPIs. A backpack PIT tag detector was also developed and used as another remote 'recapture' for additional accuracy in estimating population survival and recapture probability. This unit was used at an approximate efficiency of 24% to survey the creek after the Spring migration. Twenty-five individual fish were re-located. All PIT tag data were used to calculate survival and recapture probabilities using the Cormack-Jolly-Seber population model. Survival for steelhead was high and recapture probability depended greatly on season. Probability of recapture was highest in Spring (29.5%) and relatively low in all other seasons (< 7% in Fall, Winter, and Summer). Wild steelhead PIT tagged in the field and returned to the laboratory had a tag retention rate of 97.6%. A laboratory study was designed to determine the effects of 3-sized PIT tags (12 mm, 20 mm, and 23 mm) on survival and growth of individuals. Survival from surgical implantation of 23 mm PIT tags was > 98% for fish (coho salmon and steelhead). Retention of 23 mm PIT tags was 100% for coho salmon and 89% for steelhead. For both coho and steelhead, growth rates during the first month were affected by tagging, but by the end of 2 months growth effects equalized for all tag sizes. Life history characteristics quantified with SPI techniques are comparable to standard techniques. For example, peaks of Spring migration for steelhead and cutthroat were amazingly similar to those reported from the screw trap. These techniques will enable application of less laborious methods which are more accurate at estimating life history parameters.« less

  12. Evaluation of Fish Movements, Migration Patterns and Populations Abundance with Streamwidth PIT Tag Interrogation Systems, Final Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zydlewski, Gayle B.; Casey, Sean

    2003-02-01

    Two remote Streamwidth PIT tag Interrogation systems (SPIs) were operated continuously for over one year to test the feasibility of these systems for generating movement, migration, survival and smolt production estimates for salmonids. A total of 1,588 juvenile (< 100 mm FL) naturally produced salmonids (7 coho salmon, 482 cutthroat trout, and 1,099 steelhead) were PIT tagged above the upstream-most SPI (9 sites approximately 1 linear km each) in Fall 2001. Age at tagging for wild caught cutthroat and steelhead was 1 year. SPIs were operating before any PIT tagged fish were released in the creek. Over 390,000 detections weremore » recorded from October 2001 to 31 July 2002. Efficiencies were site dependent, but overall detection efficiency for the creek was 97% with 95% confidence intervals of 91-100%. PIT tag detection efficiency ranged from 55-100% depending on the SPI and varied throughout the year with average efficiencies of 73% and 89%. SPI efficiency of PIT tag detection was not completely dependent on electronics noise levels or environmental conditions. Fish from all tagging locations were detected at the SPIs. Steelhead and cutthroat trout were primarily detected moving in the Spring (April-June) coincident with the anticipated smolt migration. Steelhead were also detected moving past SPIs at lower numbers in the Fall and Winter. Travel time between SPIs (downstream movement) was highly dependent on time of year. Travel time in the Spring was significantly faster (34.4 {+-} 7.0 hours) for all species than during any other time of year (763.1 {+-} 267.0 hours). Steelhead and cutthroat migrating in the Spring were the same age as those that did not migrate in the Spring. Peak of steelhead migration recorded at the two SPIs was 5/11 and 5/12 and the peak in the screw trap was recorded on 5/17. Steelhead smolt production estimates using SPIs (3,802 with 95% confidence intervals of 3,440-4,245) was similar to those using more standard screw trap methods (approximately 5,400). All species used the faster moving/deeper section of the creek at both SPIs. A backpack PIT tag detector was also developed and used as another remote ''recapture'' for additional accuracy in estimating population survival and recapture probability. This unit was used at an approximate efficiency of 24% to survey the creek after the Spring migration. Twenty-five individual fish were re-located. All PIT tag data were used to calculate survival and recapture probabilities using the Cormack-Jolly-Seber population model. Survival for steelhead was high and recapture probability depended greatly on season. Probability of recapture was highest in Spring (29.5%) and relatively low in all other seasons (< 7% in Fall, Winter, and Summer). Wild steelhead PIT tagged in the field and returned to the laboratory had a tag retention rate of 97.6%. A laboratory study was designed to determine the effects of 3-sized PIT tags (12 mm, 20 mm, and 23 mm) on survival and growth of individuals. Survival from surgical implantation of 23 mm PIT tags was > 98% for fish (coho salmon and steelhead). Retention of 23 mm PIT tags was 100% for coho salmon and 89% for steelhead. For both coho and steelhead, growth rates during the first month were affected by tagging, but by the end of 2 months growth effects equalized for all tag sizes. Life history characteristics quantified with SPI techniques are comparable to standard techniques. For example, peaks of Spring migration for steelhead and cutthroat were amazingly similar to those reported from the screw trap. These techniques will enable application of less laborious methods which are more accurate at estimating life history parameters.« less

  13. Redfish Lake Sockeye Salmon Captive Broodstock Rearing and Research, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, Deborah; McAuley, W.; Maynard, Desmond

    2003-04-01

    The National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center, in cooperation with the Idaho Department of Fish and Game and the Bonneville Power Administration, has established captive broodstock programs to aid recovery of Snake River sockeye salmon (Oncorhynchus nerka) listed as endangered under the U.S. Endangered Species Act (ESA). Captive broodstock and captive rearing programs are a form of artificial propagation that are emerging as an important component of restoration efforts for ESA-listed salmon populations that are at critically low numbers. Captive broodstocks, reared in captivity for the entire life cycle, couple the salmon's high fecundity with potentially highmore » survival in protective culture to produce large numbers of juveniles in a single generation for supplementation of natural populations. The captive broodstocks discussed in this report were intended to protect the last known remnants of sockeye salmon that return to Redfish Lake in the Sawtooth Basin of Idaho at the headwaters of the Salmon River. This report addresses NMFS activities from 1 September 2001 to 31 August 2002 on the Redfish Lake sockeye salmon captive broodstock and captive rearing program. NMFS currently has broodstocks in culture from year classes 1997, 1998, 1999, 2000, and 2001 in both the captive breeding and captive rearing programs. Offspring from these programs are being returned to Idaho to aid recovery efforts for the species.« less

  14. Bile components and lecithin supplemented to plant based diets do not diminish diet related intestinal inflammation in Atlantic salmon.

    PubMed

    Kortner, Trond M; Penn, Michael H; Bjӧrkhem, Ingemar; Måsøval, Kjell; Krogdahl, Åshild

    2016-09-07

    The present study was undertaken to gain knowledge on the role of bile components and lecithin on development of aberrations in digestive functions which seemingly have increased in Atlantic salmon in parallel with the increased use of plant ingredients in fish feed. Post smolt Atlantic salmon were fed for 77 days one of three basal diets: a high fish meal diet (HFM), a low fishmeal diet (LFM), or a diet with high protein soybean meal (HPS). Five additional diets were made from the LFM diet by supplementing with: purified taurocholate (1.8 %), bovine bile salt (1.8 %), taurine (0.4 %), lecithin (1.5 %), or a mix of supplements (suppl mix) containing taurocholate (1.8 %), cholesterol (1.5 %) and lecithin (0.4 %). Two additional diets were made from the HPS diet by supplementing with: bovine bile salt (1.8 %) or the suppl mix. Body and intestinal weights were recorded, and blood, bile, intestinal tissues and digesta were sampled for evaluation of growth, nutrient metabolism and intestinal structure and function. In comparison with fish fed the HFM diet fish fed the LFM and HPS diets grew less and showed reduced plasma bile salt and cholesterol levels. Histological examination of the distal intestine showed signs of enteritis in both LFM and HPS diet groups, though more pronounced in the HPS diet group. The HPS diet reduced digesta dry matter and capacity of leucine amino peptidase in the distal intestine. None of the dietary supplements improved endpoints regarding fish performance, gut function or inflammation in the distal intestine. Some endpoints rather indicated negative effects. Dietary supplementation with bile components or lecithin in general did not improve endpoints regarding performance or gut health in Atlantic salmon, in clear contrast to what has been previously reported for rainbow trout. Follow-up studies are needed to clarify if lower levels of bile salts and cholesterol may give different and beneficial effects, or if other supplements, and other combinations of supplements might prevent or ameliorate inflammation in the distal intestine.

  15. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Alcorn, S.W.; Murray, A.L.; Pascho, R.J.

    2002-01-01

    To determine if the defences of sockeye salmon (Oncorhynchus nerka) raised in captivity are affected by the rearing temperature or their life-cycle stage, various indices of the humoral and cellular immune functions were measured in fish reared at either 8 or 12??C for their entire life-cycle. Measures of humoral immunity included the commonly used haematological parameters, as well as measurements of complement, and lysozyme activity. Cellular assays quantified the ability of macrophages from the anterior kidney to phagocytise Staphylococcus aureus cells, or the activities of certain bactericidal systems of those cells. The T-dependent antibody response to a recombinant 57 kDa protein of Renibacterium salmoninarum was used to quantify the specific immune response. Fish were sampled during the spring and fall of their second, third and fourth years, corresponding to a period that began just before smolting and ended at sexual maturation. Fish reared at 8??C tended to have a greater percentage of phagocytic kidney macrophages during the first 2 years of sampling than the fish reared at 12??C. During the last half of the study the complement activity of the fish reared at 8??C was greater than that of the 12??C fish. Conversely, a greater proportion of the blood leucocytes were lymphocytes in fish reared at 12??C compared to the fish reared at 8??C. Fish reared at 12??C also produced a greater antibody response than those reared at 8??C. Results suggested that the immune apparatus of sockeye salmon reared at 8??C relied more heavily on the non-specific immune response, while the specific immune response was used to a greater extent when the fish were reared at 12??C. Although a seasonal effect was not detected in any of the indices measured, varying effects were observed in some measurements during sexual maturation of fish in both temperature groups. At that time there were dramatic decreases in complement activity and lymphocyte numbers. This study was unique in its scope because it was the first quantitative assessment of salmon immune functions for an entire life-cycle. ?? 2002 Elsevier Science Ltd.

  16. 75 FR 32378 - Fisheries of the Exclusive Economic Zone off Alaska; Chinook Salmon Bycatch Data Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... the Exclusive Economic Zone off Alaska; Chinook Salmon Bycatch Data Collection; Workshop for Industry... Chinook salmon bycatch management program that will be implemented under Amendment 91 to the Fishery... trawl fishery who are knowledgeable about industry plans and operations for avoiding Chinook salmon...

  17. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangeredmore » under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and Johnson 1997; Pravecek and Kline 1998; Kline and Heindel 1999; Hebdon et al. 2000; Flagg et al. 2001; Kline and Willard 2001; Frost et al. 2002; Hebdon et al. 2002; Hebdon et al. 2003; Kline et al. 2003a; Kline et al. 2003b; Willard et al. 2003a; Willard et al. 2003b; Baker et al. 2004; Baker et al. 2005; Willard et al. 2005; Baker et al. 2006; Plaster et al. 2006; Baker et al. 2007). The immediate goal of the program is to utilize captive broodstock technology to conserve the population's unique genetics. Long-term goals include increasing the number of individuals in the population to address delisting criteria and to provide sport and treaty harvest opportunity. (1) Develop captive broodstocks from Redfish Lake sockeye salmon, culture broodstocks and produce progeny for reintroduction. (2) Determine the contribution hatchery-produced sockeye salmon make toward avoiding population extinction and increasing population abundance. (3) Describe O. nerka population characteristics for Sawtooth Valley lakes in relation to carrying capacity and broodstock program reintroduction efforts. (4) Utilize genetic analysis to discern the origin of wild and broodstock sockeye salmon to provide maximum effectiveness in their utilization within the broodstock program. (5) Transfer technology through participation in the technical oversight committee process, provide written activity reports, and participate in essential program management and planning activities. Idaho Department of Fish and Game's participation in the Snake River Sockeye Salmon Captive Broodstock Program includes two areas of effort: (1) sockeye salmon captive broodstock culture, and (2) sockeye salmon research and evaluations. Although objectives and tasks from both components overlap and contribute to achieving the same goals, work directly related to sockeye salmon captive broodstock research and enhancement will appear under a separate cover. Research and enhancement activities associated with Snake River sockeye salmon are permitted under NOAA permit numbers 1120, 1124, and 1481. This report details fish culture information collected between January 1 and December 31, 2007.« less

  18. Influence of PPB on Capital Budgeting.

    ERIC Educational Resources Information Center

    Ellis, Arthur E.

    This talk is divided into two parts: Part one covers Planning, Programming and Budgeting for Capital Programs. Part two is a brief description of the Coho Salmon Program and how Program Planning and Budgeting in both the operation program and the capital phase was used to develop the Salmon Fishing Industry in Michigan. The planning process…

  19. Importance of the predator's ecological neighborhood in modeling predation on migrating prey

    USGS Publications Warehouse

    DeAngelis, Donald L.; Petersen, James H.

    2001-01-01

    Most mathematical descriptions of predator-prey interactions fail to take into account the spatio-temporal structures of the populations, which can lead to errors or misinterpretations. For example, a compact pulse of prey migrating through a field of quasi-stationary predators may not be well described by standard predator-prey models, because the predators and prey are unlikely to be well mixed; that is, the prey may be exposed to only a fraction of the predator population at a time. This underscores the importance of properly accounting for the ecological neighborhood, or effective feeding range, of predators in models. We illustrate this situation with a series of models of salmon smolts migrating through a reservoir arrayed with predators. The reservoir is divided into a number of longitudinal compartments or spatial cells, the length of each cell representing the upstream-downstream range over which predators can forage. In this series of models a 100-km-long reservoir is divided, successively into 2, 5, 10, 25, 50, 100, 200, and 400 cells, with respective cell lengths of 50, 20, 10, 4, 2, 1, 0.5, and 0.25 km. We used a detailed individual-based simulation model at first, but to ensure robustness of results we supplemented this with a simple analytic model. Both models showed sharp differences in the predicted mortality to a compact pulse of smolt prey moving through the reservoir, depending on the number of spatial cells in the model. In particular, models with fewer than about 10 cells vastly overpredicted the amount of mortality due to predators with activity ranges of not more than a few kilometers. These results corroborate recent theoretical and simulation studies on the importance of spatial scale and behavior in modeling predator-prey dynamics.

  20. 76 FR 7546 - Proposed Information Collection; Comment Request; Prohibited Species Donation (PSD) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... Collection; Comment Request; Prohibited Species Donation (PSD) Program AGENCY: National Oceanic and... species donation (PSD) program for Pacific salmon and Pacific halibut has effectively reduced regulatory... distribution of salmon and halibut. The PSD program requires a collection-of-information so that NMFS can...

  1. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis

    USGS Publications Warehouse

    Lind-Null, Angela; Larsen, Kimberly; Reisenbichler, Reginald

    2007-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act. The preservation of the Nisqually delta ecosystem coupled with extensive restoration of approximately 1,000 acres of diked estuarine habitat is identified as the highest priority action for the recovery of naturally spawning Nisqually River Fall Chinook salmon (Oncorhynchus tshawytscha) in the Nisqually Chinook Recovery Plan. In order to evaluate the response of Chinook salmon to restoration, a pre-restoration baseline of life history diversity and estuary utilization must be established. Otolith analysis has been proposed as a means to measure Chinook salmon life history diversity, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: (1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, (2) compare pre and post restoration residence times and growth rates, and (3) suggest whether estuary restoration yields substantial benefits for Chinook salmon. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile Chinook salmon can exhibit a variety of life history trajectories ? some enter the sea (or Puget Sound) as fry, some rear in the estuary before entering the sea, and some rear in the river and then move rapidly through the estuary into the sea as smolts. The purpose of this study is to evaluate and use analysis of otolith microstructure as a tool for characterizing the importance of the estuary to Chinook salmon in the Nisqually River before and after restoration efforts at the Nisqually National Wildlife Refuge (NNWR). This tool is used to quantify changes in habitat use and help assess restoration benefits to the federally threatened Nisqually River Chinook salmon population. Analysis of otolith microstructure typically is superior to the alternative of traditional mark-recapture methods. The latter are extremely expensive or inadequate in estuary habitats, typically are biased and substantially underestimate use, and do not directly reveal the importance or contribution to adult recruitment (i.e., they do not account for differential survival afterward in Puget Sound or the ocean). Analysis of otolith microstructure for these purposes, while new, is proving highly successful in a similar study that USGS and partners are conducting in the Skagit River estuary system located in northern Puget Sound. This work has been based on research by Neilson et al. (1985). We expect to use the Skagit River data as a reference for the before/after restoration comparison in the Nisqually River.

  2. 76 FR 51346 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ...: National Oceanic and Atmospheric Administration (NOAA). Title: Alaska Prohibited Species Donation Program... information collection. A prohibited species donation (PSD) program for Pacific salmon and Pacific halibut has... participating in the donation program voluntarily retain and process salmon and halibut bycatch. An authorized...

  3. Epidemiological investigation into the re-emergence and control of an outbreak of infectious salmon anaemia in the Shetland Islands, Scotland.

    PubMed

    Murray, Alexander G; Munro, Lorna A; Wallace, I Stuart; Berx, Barbara; Pendrey, Daniel; Fraser, David; Raynard, Rob S

    2010-09-17

    Infectious salmon anaemia (ISA) is an orthomyxoviral disease, primarily affecting marine-phase farmed Atlantic salmon, which can result in high levels of mortality. ISA first emerged in Norway in the 1980s and subsequently has occurred in Canada, the USA, the Faeroe Islands and Chile. An outbreak occurred in Scotland in 1998-1999, but was eradicated at a cost of over pounds sterling 20M. The epidemiology of a new outbreak of ISA in the Scottish Shetland Islands during 2008-2009 is described. Six sites have been confirmed ISA-positive. Spread of the virus via transport of fish between marine sites, harvest vessels, smolts and wild fish appears to have been of little or no importance, with spread primarily associated with marine water currents. The use of management areas by Marine Scotland to control the event appears to have been effective in restricting spread to a small area. This localised outbreak contrasts with the 1998-1999 outbreak that spread over a wide geographic area with transported fish and harvest vessels. The development and application of industry codes of good practice, good husbandry and biosecurity practices, limited marine site-to-site movement of live fish and improved disinfection of vessels and processing plant waste that occurred subsequent to the 1998-1999 outbreak may explain the localised spread of infection in 2008-2009. Depopulation of confirmed sites has been achieved within 7 wk (mean = 3.7 wk); however, it is likely that subclinical infection persisted undetected for months on at least 1 site. The origin of the 2008-2009 outbreak remains unknown. Potential sources include evolution from a local reservoir of infection or importation. Synchronous fallowing of management areas, with good husbandry and biosecurity, reduces the risk of ISA recurring. Movement of fish between sites in different management areas represents the greatest risk of regional-scale spread, should this occur.

  4. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters

    DOE PAGES

    Deng, Zhiqun D.; Martinez, J. J.; Li, H.; ...

    2017-02-21

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitters is still the key limiting factor despite that considerable effort has been expended to understand the biological effects of implantation of acoustic transmitters in yearling and subyearling Chinook salmon. The newly developed injectable transmitter is the first active acoustic tag that can be implanted via injection instead of surgery. It also lasts more than four times longer than the commercially-available transmitters. A two-part field study was conducted to evaluate the performance of the injectablemore » transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the other commercially-available transmitters tested. Snake River subyearling Chinook salmon smolts implanted with the injectable tag had a higher survival probability from release to each of 11 downstream detection arrays than concurrent releases of fish surgically implanted with commercially-available tags. In addition, reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The differences in survival may have been caused by warm water temperatures and higher rates of infection experienced by the surgically implanted group due to the presence of sutures acting as an attachment site for pathogens. The reduction in size and ability to implant the new transmitter via injection has further reduced the tag or tagging effect bias associated with studying small fishes. As a result, the information gathered with this new technology is helping minimize the impact of dams on fish, leading to more environmentally sustainable energy systems.« less

  5. Effects of emergence time and early social rearing environment on behaviour of Atlantic salmon: consequences for juvenile fitness and smolt migration.

    PubMed

    Larsen, Martin H; Johnsson, Jörgen I; Winberg, Svante; Wilson, Alexander D M; Hammenstig, David; Thörnqvist, Per-Ove; Midwood, Jonathan D; Aarestrup, Kim; Höglund, Erik

    2015-01-01

    Consistent individual differences in behaviour have been well documented in a variety of animal taxa, but surprisingly little is known about the fitness and life-history consequences of such individual variation. In wild salmonids, the timing of fry emergence from gravel spawning nests has been suggested to be coupled with individual behavioural traits. Here, we further investigate the link between timing of spawning nest emergence and behaviour of Atlantic salmon (Salmo salar), test effects of social rearing environment on behavioural traits in fish with different emergence times, and assess whether behavioural traits measured in the laboratory predict growth, survival, and migration status in the wild. Atlantic salmon fry were sorted with respect to emergence time from artificial spawning nest into three groups: early, intermediate, and late. These emergence groups were hatchery-reared separately or in co-culture for four months to test effects of social rearing environment on behavioural traits. Twenty fish from each of the six treatment groups were then subjected to three individual-based behavioural tests: basal locomotor activity, boldness, and escape response. Following behavioural characterization, the fish were released into a near-natural experimental stream. Results showed differences in escape behaviour between emergence groups in a net restraining test, but the social rearing environment did not affect individual behavioural expression. Emergence time and social environment had no significant effects on survival, growth, and migration status in the stream, although migration propensity was 1.4 to 1.9 times higher for early emerging individuals that were reared separately. In addition, despite individuals showing considerable variation in behaviour across treatment groups, this was not translated into differences in growth, survival, and migration status. Hence, our study adds to the view that fitness (i.e., growth and survival) and life-history predictions from laboratory measures of behaviour should be made with caution and ideally tested in nature.

  6. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun D.; Martinez, J. J.; Li, H.

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitters is still the key limiting factor despite that considerable effort has been expended to understand the biological effects of implantation of acoustic transmitters in yearling and subyearling Chinook salmon. The newly developed injectable transmitter is the first active acoustic tag that can be implanted via injection instead of surgery. It also lasts more than four times longer than the commercially-available transmitters. A two-part field study was conducted to evaluate the performance of the injectablemore » transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the other commercially-available transmitters tested. Snake River subyearling Chinook salmon smolts implanted with the injectable tag had a higher survival probability from release to each of 11 downstream detection arrays than concurrent releases of fish surgically implanted with commercially-available tags. In addition, reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The differences in survival may have been caused by warm water temperatures and higher rates of infection experienced by the surgically implanted group due to the presence of sutures acting as an attachment site for pathogens. The reduction in size and ability to implant the new transmitter via injection has further reduced the tag or tagging effect bias associated with studying small fishes. As a result, the information gathered with this new technology is helping minimize the impact of dams on fish, leading to more environmentally sustainable energy systems.« less

  7. Lower Granite Dam Smolt Monitoring Program, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mensik, Fred; Rapp, Shawn; Ross, Doug

    2004-08-01

    The 2003 fish collection season at Lower Granite Dam Juvenile Fish Facility (LGR) was characterized by water temperatures, total flows and spill that were below the five year average, low levels of debris, and increased smolt collection numbers compared to 2002 with the exception of unclipped sockeye/kokanee. There were 6,183,825 juvenile salmonids collected. Of these, 6,054,167 were transported to release sites below Bonneville Dam, 5,957,885 by barge and 96,282 by truck. An additional 102,340 fish were bypassed back to the river, primarily due to research projects with another 62,122 bypassed through the PIT-tag bypass system. According to the PTAGIS database,more » 152,268 PIT-tagged fish were detected at Lower Granite Dam. Of these, Smolt Monitoring Staff recorded 345 PIT-tagged raceway and sample mortalities. Of the 6,183,825 total fish collected, 113,290 were PIT-tagged or radio tagged and 380 were sacrificed by researchers. The collection included 836,885 fish that had hatchery marks other than clipped fins (elastomer, freeze brands or Coded Wire Tags). An estimated 54,857 incidental fish were collected with an additional 8,730 adult salmonids removed from the separator.« less

  8. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffnagle, Timothy L.; Hair, Don; Carmichael, Richard W.

    2004-07-01

    BPA Fish and Wildlife Program Project Number 1998-01-001 provides funding for the Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program. This report satisfies the requirement that an annual report be submitted for FY 2003. The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, these fish are spawned (within stocks) and their progeny reared to smoltification before being released into themore » natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation. This report covers activities conducted and provides data analyses for the Grande Ronde Spring Chinook Salmon Captive broodstock Program from 1 January--31 December 2003. Since the fiscal year ends in the middle of the spawning period, an annual report based on calendar year is more logical. This document is the FY 2003 annual report. Detailed information on historic and present population status, project background, goals and objectives, significance to regional programs and relationships to other programs, methods and previous results are available in the 1995-2002 Project Status Report (Hoffnagle et al 2003).« less

  9. Escapement and Productivity of Spring Chinook and Summer Steelhead in the John Day River Basin, Technical Report 2004-2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Wayne

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. Spawning ground surveys for spring (stream-type) Chinook salmon were conducted in four main spawning areas (Mainstem, Middle Fork, North Fork, and Granite Creek System) and seven minor spawning areas (South Fork, Camas Creek, Desolation Creek, Trail Creek, Deardorff Creek, Clear Creek, and Big Creek) in the John Day River basin during Augustmore » and September of 2005. Census surveys included 298.2 river kilometers (88.2 rkm within index, 192.4 rkm additional within census, and 17.6 rkm within random survey areas) of spawning habitat. We observed 902 redds and 701 carcasses including 227 redds in the Mainstem, 178 redds in the Middle Fork, 420 redds in the North Fork, 62 redds in the Granite Creek System, and 15 redds in Desolation Creek. Age composition of carcasses sampled for the entire basin was 1.6% age 3, 91.2% age 4, and 7.1% age 5. The sex ratio was 57.4% female and 42.6% male. Significantly more females than males were observed in the Granite Creek System. During 2005, 82.3% of female carcasses sampled had released all of their eggs. Significantly more pre-spawn mortalities were observed in Granite Creek. Nine (1.3%) of 701 carcasses were of hatchery origin. Of 298 carcasses examined, 4.0% were positive for the presence of lesions. A significantly higher incidence of gill lesions was found in the Granite Creek System when compared to the rest of the basin. Of 114 kidney samples tested, two (1.8%) had clinical BKD levels. Both infected fish were age-4 females in the Middle Fork. All samples tested for IHNV were negative. To estimate spring Chinook and summer steelhead smolt-to-adult survival (SAR) we PIT tagged 5,138 juvenile Chinook and 4,913 steelhead during the spring of 2005. We estimated that 130,144 (95% CL's 97,133-168,409) Chinook emigrated from the upper John Day subbasin past our seining area in the Mainstem John Day River (river kilometers 274-296) between February 4 and June 16, 2005. We also estimated that 32,601 (95% CL's 29,651 and 36,264) Chinook and 47,921 (95% CL's 35,025 and 67,366) steelhead migrated past our Mainstem rotary screw trap at river kilometer (rkm) 326 between October 4, 2004 and July 6, 2005. We estimated that 20,193 (95% CL's 17,699 and 22,983) Chinook and 28,980 (95% CL's 19,914 and 43,705) steelhead migrated past our Middle Fork trap (rkm 24) between October 6, 2004 and June 17, 2005. Seventy three percent of PIT tagged steelhead migrants were age-2 fish, 13.8% were age-3, 12.7% were age-2, and 0.3% were age 4. Spring Chinook SAR for the 2002 brood year was estimated at 2.5% (100 returns of 4,000 PIT tagged smolts). Preliminary steelhead SAR (excluding 2-ocean fish) for the 2004 tagging year was estimated at 1.61% (60 returns of 3,732 PIT-tagged migrants).« less

  10. Sensor Fish: an autonomous sensor package for characterizing complex flow fields and fish passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Martinez, Jayson J.; Lu, Jun

    Fish passing through dams or other hydraulic structures may be injured or killed despite advances in turbine design, project operations, and other fish bypass systems. The Sensor Fish (SF) device is an autonomous sensor package that characterizes the physical conditions and stressors to which fish are exposed during passage through hydro facilities. It was designed to move passively as a neutrally buoyant object through severe hydraulic environments, while collecting high-resolution sensor data. Since its first generation1, the SF device has been successfully deployed in many fish passage studies and has evolved to be a major tool for characterizing fish passagemore » conditions during fish passage in the Columbia River Basin. To better accelerate hydropower development, the U.S. Department of Energy Water Power Program provided funding to develop a new generation (Gen 2 SF) to incorporate more capabilities and accommodate a wider range of users over a broader range of turbine designs and operating environments. The Gen 2 SF (Figure 1) is approximately the size and density of a yearling salmon smolt and is nearly neutrally buoyant. It contains three-dimensional (3D) rotation sensors, 3D linear acceleration sensors, a pressure sensor, a temperature sensor, a 3D orientation sensor, a radiofrequency (RF) transmitter, and a recovery module2. A low-power microcontroller collects data from the sensors and stores up to 5 min of data on internal flash memory at a sampling frequency of 2048 Hz. The recovery module makes the SF positively buoyant after a pre-programmed period of time, causing it to float to the surface for recovery.« less

  11. 50 CFR Table 47d to Part 679 - Percent of the CDQ Program's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount...Chinook salmon deducted from the annual threshold amount of 3,883 Column F Percent used to calculate...

  12. 78 FR 32378 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... proposed adult management program associated with spring Chinook salmon hatchery plans for major... be sent to Allyson Purcell, National Marine Fisheries Services, Salmon Management Division, 1201 N.E... should be directed to the National Marine Fisheries Services, Salmon Management Division, 1201 N.E. Lloyd...

  13. Migratory behavior and physiological development as potential determinants of life history diversity in fall Chinook Salmon in the Clearwater River

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.; Richmond, Marshall C.; Perkins, William A.

    2018-01-01

    We studied the influence of behavior, water velocity, and physiological development on the downstream movement of subyearling fall‐run Chinook Salmon Oncorhynchus tshawytscha in both free‐flowing and impounded reaches of the Clearwater and Snake rivers as potential mechanisms that might explain life history diversity in this stock. Movement rates and the percentage of radio‐tagged fish that moved faster than the average current velocity were higher in the free‐flowing Clearwater River than in impounded reaches. This supports the notion that water velocity is a primary determinant of downstream movement regardless of a fish's physiological development. In contrast, movement rates slowed and detections became fewer in impounded reaches, where water velocities were much lower. The percentage of fish that moved faster than the average current velocity continued to decline and reached zero in the lowermost reach of Lower Granite Reservoir, suggesting that the behavioral disposition to move downstream was low. These findings contrast with those of a similar, previous study of Snake River subyearlings despite similarity in hydrodynamic conditions between the two studies. Physiological differences between Snake and Clearwater River migrants shed light on this disparity. Subyearlings from the Clearwater River were parr‐like in their development and never showed the increase in gill Na+/K+‐ATPase activity displayed by smolts from the Snake River. Results from this study provide evidence that behavioral and life history differences between Snake and Clearwater River subyearlings may have a physiological basis that is modified by environmental conditions.

  14. Migratory Behavior and Physiological Development as Potential Determinants of Life History Diversity in Fall Chinook Salmon in the Clearwater River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.

    We studied the influence of behavior, water velocity, and physiological development on the downstream movement of subyearling fall Chinook Salmon Oncorhynchus tshawytscha in free-flowing and impounded reaches of the Clearwater and Snake rivers as potential mechanisms that might explain life history diversity in this stock. Movement rates and the percentage of radio-tagged fish that moved faster than the average current velocity were highest in the free-flowing Clearwater River compared to impounded reaches. This provided support for our hypothesis that water velocity is a primary determinant of downstream movement regardless of a fish’s physiological development. In contrast, movement rates slowed andmore » detections became fewer in impounded reaches where velocities were much lower. The percentage of fish that moved faster than the average current velocity continued to decline and reached zero in the lower-most reach of Lower Granite Reservoir suggesting that behavioral disposition to move downstream was low. These findings contrast those of a similar, previous study of Snake River subyearlings in spite of hydrodynamic conditions being similar. Physiological differences between Snake and Clearwater river migrants shed light on this disparity. Subyearlings from the Clearwater River were parr-like in their development and never showed an increase in gill Na+/K+-ATPase activity as did smolts from the Snake River. The later emergence timing and cooler rearing temperatures in the Clearwater River may suppress normal physiological development that causes many fish to delay downstream movement and adopt a yearling life history strategy.« less

  15. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.; Tezak, E.P.; Endicott, Rick

    In the 2000 Federal Columbia River Power System (FCRPS) Biological Opinion, NMFS identified six populations of steelhead and several salmon populations that had dropped to critically low levels and continue to decline. Following thorough risk-benefit analyses, captive propagation programs for some or all of the steelhead (Oncorhynchus mykiss) populations may be required to reduce the risk of extinction, and more programs may be required in the future. Thus, captive propagation programs designed to maintain or rebuild steelhead populations require intensive and rigorous scientific evaluation, much like the other objectives of BPA Project 1993-056-00 currently underway for chinook (O. tshawytscha) andmore » sockeye salmon (O. nerka). Pacific salmon reared to the adult stage in captivity exhibit poor reproductive performance when released to spawn naturally. Poor fin quality and swimming performance, incomplete development of secondary sex characteristics, changes in maturation timing, and other factors may contribute to reduced spawning success. Improving natural reproductive performance is critical for the success of captive broodstock programs in which adult-release is a primary reintroduction strategy for maintaining ESA-listed populations.« less

  16. Size-conditional smolting and the response of Carmel River steelhead to two decades of conservation efforts

    PubMed Central

    Lopez Arriaza, Juan; Urquhart, Kevan; Mangel, Marc

    2017-01-01

    Threshold effects are common in ecosystems and can generate counterintuitive outcomes in management interventions. A threshold effect proposed for steelhead trout (Oncorhynchus mykiss) is size-conditional smolting and marine survival. Steelhead are anadromous, maturing in the ocean but migrating to freshwater to spawn, where their offspring reside for one or more years before smolting—physiologically transforming to a saltwater form—and migrating to the ocean. In conditional smolting, juveniles transform only if growth exceeds a threshold body size prior to migration season, and subsequent marine survival correlates with size at ocean entry. Conditional smolting suggests that efforts to improve freshwater survival of juveniles may reduce smolt success if they increase competition and reduce growth. Using model-selection techniques, we asked if this effect explained declining numbers of adult Carmel River steelhead. This threatened population has been the focus of two decades of habitat restoration, as well as active translocation and captive-rearing of juveniles stranded in seasonally dewatered channels. In the top-ranked model selected by information-theoretic criteria, adult decline was linked to reduced juvenile growth rates in the lower river, consistent with the conditional smolting hypothesis. According to model inference, since 2005 most returning adult steelhead were captively-reared. However, a lower-ranked model without conditional smolting also had modest support, and suggested a negative effect of captive rearing. Translocations of juvenile fish to perennial reaches may have reduced the steelhead run slightly by raising competition, but this effect is confounded in the data with effects of river flow on growth. Efforts to recover Carmel River steelhead will probably be more successful if they focus on conditions promoting rapid growth in the river. Our analysis clearly favored a role for size-conditional smolting and marine survival in the decline of the population, but did not definitively rule out alternative explanations. PMID:29190806

  17. Lower Granite Dam Smolt Monitoring Program, 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhey, Peter; Morrill, Charles; Mensik, Fred

    1999-01-01

    The 1999 fish collection season at Lower Granite was characterized by high spring flows and spill, low levels of debris, cool water temperatures, increased hatchery chinook numbers, and an overall decrease in numbers of smolts collected and transported. A total of 5,882,872 juvenile salmonids were collected at Lower Granite. Of these, 5,466,057 were transported to release sites below Bonneville Dam, 5,232,105 by barge and 233,952 by truck. An additional 339,398 fish were bypassed back to the river. A total of 117,609 salmonids were examined in daily samples. Nine research projects conducted by four agencies impacted a total of 440,810 smoltsmore » (7.5% of the total collected) of which 247,268 were PIT tagged and 572 were recorded as incidental mortalities.« less

  18. Hard choices in assessing survival past dams — a comparison of single- and paired-release strategies

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Stich, Daniel S.; Sigourney, Douglas B.

    2017-01-01

    Mark–recapture models are widely used to estimate survival of salmon smolts migrating past dams. Paired releases have been used to improve estimate accuracy by removing components of mortality not attributable to the dam. This method is accompanied by reduced precision because (i) sample size is reduced relative to a single, large release; and (ii) variance calculations inflate error. We modeled an idealized system with a single dam to assess trade-offs between accuracy and precision and compared methods using root mean squared error (RMSE). Simulations were run under predefined conditions (dam mortality, background mortality, detection probability, and sample size) to determine scenarios when the paired release was preferable to a single release. We demonstrate that a paired-release design provides a theoretical advantage over a single-release design only at large sample sizes and high probabilities of detection. At release numbers typical of many survival studies, paired release can result in overestimation of dam survival. Failures to meet model assumptions of a paired release may result in further overestimation of dam-related survival. Under most conditions, a single-release strategy was preferable.

  19. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the studymore » of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.« less

  20. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the studymore » of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.« less

Top